Science.gov

Sample records for 5-nitro-2-3-phenylpropylamino benzoic acid

  1. Block of ATP-binding cassette B19 ion channel activity by 5-nitro-2-(3-phenylpropylamino)-benzoic acid impairs polar auxin transport and root gravitropism.

    PubMed

    Cho, Misuk; Henry, Elizabeth M; Lewis, Daniel R; Wu, Guosheng; Muday, Gloria K; Spalding, Edgar P

    2014-12-01

    Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target.

  2. Synthesis of 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid: Photoaffinity labeling of human red blood cell ghosts with a 5-nitro-2-(3-phenylpropylamino)-benzoic acid analog

    SciTech Connect

    Branchini, B.R.; Murtiashaw, M.H.; Egan, L.A. )

    1991-04-15

    A photoaffinity analog of the potent epithelial chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid has been synthesized and characterized. In the dark, this reagent, 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid, and the parent compound reversibly inhibited chloride efflux in human red blood cell ghosts. Irradiation of ghost membranes with 350 microM arylazide analog reduced the rate of chloride efflux to 33% of the control value. The photoinactivation process was not reversed by exhaustive washing of ghost membranes. Covalent incorporation of the photoaffinity reagent was supported by difference ultraviolet spectroscopy, which indicated the attachment of the substituted 2-amino-5-nitrobenzoic acid chromophore to ghost membranes. The novel photolabeling agent described here should be a useful structural probe for chloride channels in erythrocyte membranes and epithelial cells.

  3. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate.

    PubMed

    Lin, Wen-Ying; Sohma, Yoshiro; Hwang, Tzyh-Chang

    2016-09-01

    Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating.

  4. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  5. Volume-activated amino acid efflux from term human placental tissue: stimulation of efflux via a pathway sensitive to anion transport inhibitors.

    PubMed

    Shennan, D B; McNeillie, S A

    1995-04-01

    The effect of a hyposmotic challenge and hence cell-swelling upon the efflux of a variety of solutes from isolated human placental tissue has been examined. A hyposmotic shock increased the fractional release of taurine, the most abundant free amino acid in placental tissue, via a pathway sensitive to niflumic acid, DIDS (4,4'-Diisothiocyanatostilbene-2',2'-disulphonic acid,) NPPB (5-Nitro-2(3-phenylpropylamino)benzoic acid) and DIOA (R(+)[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden -5-y) oxy] acetic acid). In contrast, tamoxifen was without effect. The cell-swelling induced efflux of taurine was attenuated (40 per cent) by replacing external Cl- with NO3-. The efflux of glutamic acid was also markedly increased by a hyposmotic challenge. Niflumic acid inhibited both basal and volume-activated glutamic acid efflux. A hyposmotic shock also increased alpha-aminoisobutyric acid efflux but not that of 3-O-methylglucose and SO4(2)-. The results suggest that the human placenta can respond to cell-swelling by releasing organic osmolytes such as amino acids via a pathway which is sensitive to anion transport inhibitors. However, it appears that the volume-activated amino acid transport system is independent from the placental anion-exchange pathways. The efflux of these compounds may act with K+ and Cl- efflux to effect a regulatory volume decrease in placental tissue. In addition, volume-activated transport may play a role in transplacental amino acid transfer.

  6. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  7. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and....1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid occurs naturally are...

  8. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  9. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  10. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  11. Relaxation of endothelin-1-induced pulmonary arterial constriction by niflumic acid and NPPB: mechanism(s) independent of chloride channel block.

    PubMed

    Kato, K; Evans, A M; Kozlowski, R Z

    1999-03-01

    We investigated the effects of the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) on endothelin-1 (ET-1)-induced constriction of rat small pulmonary arteries (diameter 100-400 microm) in vitro, following endothelium removal. ET-1 (30 nM) induced a sustained constriction of rat pulmonary arteries in physiological salt solution. Arteries preconstricted with ET-1 were relaxed by niflumic acid (IC50: 35.8 microM) and NPPB (IC50: 21.1 microM) in a reversible and concentration-dependent manner. However, at concentrations known to block Ca++-activated Cl- channels, DIDS (acid (30 microM) and NPPB (30 microM) inhibited the ET-1-induced constriction by approximately 53% and approximately 60%, respectively, both in the continued presence of nifedipine and in Ca++-free physiological salt solution. The Ca++ ionophore A23187 (10 microM) also evoked a sustained constriction of pulmonary arteries. Surprisingly, the A23187-induced constriction was also inhibited in a reversible and concentration-dependent manner by niflumic acid (IC50: 18.0 microM) and NPPB (IC50: 8.8 microM), but not by DIDS (acid and NPPB inhibit pulmonary artery constriction is independent of Cl- channel blockade. One possibility is that these compounds may block the Ca++-dependent contractile processes.

  12. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    PubMed

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  13. 21 CFR 573.210 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Benzoic acid. 573.210 Section 573.210 Food and... Listing § 573.210 Benzoic acid. The food additive, benzoic acid, may be safely used in the manufacture of... acid (CAS 65-85-0) by weight with the sum of 2-methylbiphenyl, 3-methylbiphenyl,...

  14. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  15. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  16. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  17. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  18. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  19. Capillary Electrophoresis of Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Spence, John D.; Bushey, Michelle M.

    2005-01-01

    A series of substituted benzoic acids (SBAs) are prepared by students. The pKa shift, a result of the electron-withdrawing or electron-donating characteristics of the subsistent is examined in reference to the electrophoretic migration behavior of benzoic acid.

  20. Photodissociation dynamics of benzoic acid

    SciTech Connect

    Dyakov, Yuri A.; Bagchi, Arnab; Lee, Yuan T.; Ni, Chi-Kung

    2010-01-07

    The photodissociation of benzoic acid at 193 and 248 nm was investigated using multimass ion imaging techniques. Three dissociation channels were observed at 193 nm: (1) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}+COOH, (2) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}CO+OH, and (3) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 6}+CO{sub 2}. Only channels, (2) and (3), were observed at 248 nm. Comparisons of the ion intensities and photofragment translational energy distributions with the potential energies obtained from ab initio calculations and the branching ratios obtained from the Rice-Ramsperger-Kassel-Marcus theory suggest that the dissociation occurs on many electronic states.

  1. The Cl− channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells

    PubMed Central

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-01-01

    The effect of the Cl− channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl− channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl− channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl− channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR. PMID:14623766

  2. The Cl(-) channel blocker niflumic acid releases Ca(2+) from an intracellular store in rat pulmonary artery smooth muscle cells.

    PubMed

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-12-01

    The effect of the Cl- channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl- channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl- channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl- channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR.

  3. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  4. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  5. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  6. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  7. 3-Acetyl-benzoic acid.

    PubMed

    Fixler, David E; Newman, Jacob M; Lalancette, Roger A; Thompson, Hugh W

    2010-06-05

    In the crystal structure of the title compound, C(9)H(8)O(3), essentially planar mol-ecules [the carboxyl group makes a dihedral angle of 4.53 (7)° with the plane of the ring, while the acid group forms a dihedral angle of 3.45 (8)° to the ring] aggregate by centrosymmetric hydrogen-bond pairing of ordered carboxyl groups. This yields dimers which have two orientations in a unit cell, creating a herringbone pattern. In addition, two close C-H⋯O inter-molecular contacts exist: one is between a methyl H atom and the ketone of a symmetry-related mol-ecule and the other involves a benzene H atom and the carboxyl group O atom of another mol-ecule. The crystal studied was a non-merohedral twin with twin law [100, 00, 0] and a domain ratio of 0.8104(14): 0.1896(14).

  8. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  9. Identification and functional characterization of a voltage-gated chloride channel and its novel splice variant in taste bud cells.

    PubMed

    Huang, Liquan; Cao, Jie; Wang, Hong; Vo, Lynn A; Brand, Joseph G

    2005-10-28

    Taste bud cells are epithelial cells with neuronal properties. Voltage-dependent ion channels have been physiologically described in these cells. Here, we report the molecular identification and functional characterization of a voltage-gated chloride channel (ClC-4) and its novel splice variant (ClC-4A) from taste bud cells. ClC-4A skipped an exon near its 5'-end, incurring the loss of 60 amino acids at the N terminus. In situ hybridization and immunohistochemistry localized these two channels' transcripts and proteins to a subset of taste bud cells. Electrophysiological recordings of the heterologously expressed channels in Xenopus oocytes showed that ClC-4 and ClC-4A have opposite sensitivity to pH and unique ion selectivity. The chloride channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid had a slight or no inhibitory effect on the conductance of ClC-4, but both blockers inhibited ClC-4A, suggesting that ClC-4A is a candidate channel for an acid-induced 5-nitro-2-(3-phenylpropylamino)benzoic acid-sensitive current. Furthermore, these two channels may play a role in bitter-, sweet-, and umami-mediated taste transmission by regulating transmitter uptake into synaptic vesicles.

  10. Uptake of benzoic acid and chloro-substituted benzoic acids by alcaligenes denitrificans BRI 3010 and BRI 6011

    SciTech Connect

    Miguez, C.B.; Ingram, J.M.; MacLeod, R.A.

    1995-12-01

    The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K{sub m} and V{sub max} values of 1.4 {mu}M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting presence of two uptake systems for benzoic acid with distinct K{sub m} (0.72 and 5.3 {mu}M) and V{sub max} (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3`, 4`-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.

  11. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids.

  12. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid,...

  13. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid,...

  14. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  15. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid,...

  16. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  17. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  18. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid,...

  19. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid,...

  20. Silver-catalysed protodecarboxylation of ortho-substituted benzoic acids.

    PubMed

    Cornella, Josep; Sanchez, Carolina; Banawa, David; Larrosa, Igor

    2009-12-14

    Catalytic amounts of Ag(I) salts in DMSO have been found to promote the protodecarboxylation of a wide variety of ortho-substituted benzoic acids under mild conditions and in excellent yields, highlighting a possible role for silver in decarboxylative cross-couplings.

  1. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals.

  2. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  3. A kinetic study on benzoic acid pungency and sensory attributes of benzoic acid.

    PubMed

    Otero-Losada, M E

    1999-06-01

    Aqueous solutions of benzoic acid (BA) were evaluated by two methods: (i) sensory profile: a descriptive test of sensory attributes combined with semiquantitative analysis; and (ii) pungency intensity measures as a function of time: a computerized recording using specific software. Kinetic parameters evaluated were maximal intensity (I(MAX)), total time of pungency (Ttot), rates of increase (V1) and decrease (V2), half-life (T1/2), area under curve (AUC) and time to maximal intensity (T(IMAX)). Results were analyzed by ANOVA, LSD test, iterative calculations and adjustment to equations according to mathematical models, regression analysis, principal component analysis (PCA) and clusters analysis. Pungency was the main sensory attribute of BA (3-36 mM) in the tongue and epiglottis. The seven kinetic parameters showed concentration-dependency (P < 0.001) and were described by different functions: (i) lineal: I(MAX) = 2.24 +/- 0.14C - 3.06 +/- 2.58, R2 = 0.98; T(IMAX) = 0.19 +/- 0.02C + 6.87 +/- 0.47, R2 = 0.92; V1 = 0.68 +/- 0.03C + 0.10 +/- 0.69, R2 = 0.99; AUC = 49.10 +/- 3.17C - 230.78 +/- 59.66, R2 = 0.98; (ii) potency: T1/2 = 6.62 +/- 0.61C(0.39+/-0.03), R2 = 0.97; V2 = 1.07 +/- 0.11C(0.53+/-0.04), R2 = 0.98; Ttot = 8.08 +/- 1.01C(0.43+/-0.04), R2 = 0.96. PCA revealed high correlation between (i) T(IMAX) and Ttot; (ii) T1/2 and V2; and (iii) I(MAX) and V1. Stimuli grouped across three main clusters: (i) 3 and 6 mM; (ii) 9, 12 and 18 mM; and (iii) 24 and 36 mM. Maximal pungency intensity best correlated with both concentration and persistence among kinetic parameters. Prototypical prickling of BA was observed at 12 and 18 mM.

  4. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Thermal properties of Acetamide (AM) - Benzoic acid (BA) and Benzoic acid (BA) - Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  5. [Study on THz spectra and vibrational modes of benzoic acid and sodium Benzoate].

    PubMed

    Zheng, Zhuan-Ping; Fan, Wen-Hui; Yan, Hui; Liu, Jia; Xu, Li-Min

    2013-03-01

    Terahertz time-domain spectroscopy was employed to measure the terahertz absorption spectra of benzoic acid and sodium benzoate at room temperature. The origins of the measured features of benzoic acid were summarized based on previous study. Density functional theory was used to compute and analyze the molecular structure and vibrational modes of sodium benzoate in monomer. Based on the obtained results, the authors found that the THz spectral features can be used to distinguish benzoic acid and sodium benzoate totally; the essential reason for the THz spectral difference between benzoic acid and sodium benzoate is that the electrovalent bond of sodium benzoate affects the values of covalent bond lengths and bond angles, as well as the molecular interactions and arrangement in unit cell; the measured features of benzoic acid and sodium benzoate come from the collective vibrations except the peaks located at 107 cm-1 of benzoic acid and 54 cm-1 of sodium benzoate.

  6. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  7. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  8. 40 CFR 721.10555 - Benzoic acid nonyl ester, branched and linear.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid nonyl ester, branched and... Specific Chemical Substances § 721.10555 Benzoic acid nonyl ester, branched and linear. (a) Chemical... acid nonyl ester, branched and linear (PMN P-06-370; CAS No. 670241-72-2) is subject to reporting...

  9. 40 CFR 721.10555 - Benzoic acid nonyl ester, branched and linear.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid nonyl ester, branched and... Specific Chemical Substances § 721.10555 Benzoic acid nonyl ester, branched and linear. (a) Chemical... acid nonyl ester, branched and linear (PMN P-06-370; CAS No. 670241-72-2) is subject to reporting...

  10. An Optical Test Strip for the Detection of Benzoic Acid in Food

    PubMed Central

    Hamzah, Hairul Hisham; Yusof, Nor Azah; Salleh, Abu Bakar; Bakar, Fatimah Abu

    2011-01-01

    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (Ki) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products. PMID:22164018

  11. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  12. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  13. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  14. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  15. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  16. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  17. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  18. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  19. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  20. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  1. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  2. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  3. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  4. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  5. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  6. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  7. Acutifoliside, a novel benzoic acid glycoside from Salix acutifolia.

    PubMed

    Wu, Yanqi; Dobermann, Darja; Beale, Michael H; Ward, Jane L

    2016-08-01

    Ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) profiling of a polar solvent extract of juvenile stem tissue of Salix acutifolia Willd. identified a range of phenolic metabolites. Salicortin, 1, a well-known salicinoid, was the major compound present and the study identified young stem tissue of this species as a potential source of this compound for future studies. Three further known metabolites (salicin 2, catechin 3 and tremuloidin 4) were also present. The UHPLC-MS analysis also revealed the presence of a further, less polar, unknown compound, which was isolated via HPLC peak collection. The structure was elucidated by high-resolution mass spectroscopic analysis, 1- and 2-D NMR analysis and chemical derivatisation and was shown to be a novel benzoic acid glycoside 5, which we have named as acutifoliside.

  8. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    PubMed Central

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  9. Benzoic acid and specific 2-oxo acids activate hepatic efflux of glutamate at OAT2.

    PubMed

    Pfennig, Till; Herrmann, Beate; Bauer, Tim; Schömig, Edgar; Gründemann, Dirk

    2013-02-01

    The liver is the principal source of glutamate in blood plasma. Recently we have discovered that efflux of glutamate from hepatocytes is catalyzed by the transporter OAT2 (human gene symbol SLC22A7). Organic anion transporter 2 (OAT2) is an integral membrane protein of the sinusoidal membrane domain; it is primarily expressed in liver and much less in kidney, both in rats and humans. Many years ago, Häussinger and coworkers have demonstrated in isolated perfused rat liver that benzoic acid or specific 2-oxo acid analogs of amino acids like e.g. 2-oxo-4-methyl-pentanoate ('2-oxo-leucine') strongly stimulate release of glutamate (up to 7-fold); '2-oxo-valine' and the corresponding amino acids were without effect. The molecular mechanism of efflux stimulation has remained unclear. In the present study, OAT2 from human and rat were heterologously expressed in 293 cells. Addition of 1 mmol/l benzoic acid to the external medium increased OAT2-specific efflux of glutamate up to 20-fold; '2-oxo-leucine' was also effective, but not '2-oxo-valine'. Similar effects were seen for efflux of radiolabeled orotic acid. Expression of OAT2 did not increase uptake of benzoic acid; thus, benzoic acid is no substrate, and trans-stimulation can be excluded. Instead, further experiments suggest that increased efflux of glutamate is caused by direct interaction of benzoic acid and specific 2-oxo acids with OAT2. We propose that stimulators bind to a distinct extracellular site and thereby accelerate relocation of the empty substrate binding site to the intracellular face. Increased glutamate efflux at OAT2 could be the main benefit of benzoate treatment in patients with urea cycle defects.

  10. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  11. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    PubMed Central

    Cox, Jordan M.; Basso, Sanjukta; Benedict, Jason B.

    2017-01-01

    The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxyl­ate (1/1)], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid mol­ecules which form a C(5)[R 3 3(11)] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-amino­benzoic acid. PMID:28316811

  12. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology.

  13. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  14. Study of Self Assembly Systems Formed by Malic Acid and Alkyloxy Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vellalapalayam Nallagounder; Madhu Mohan, Mathukumalli Lakshmi Narayana

    2010-12-01

    Self assembly systems formed by malic acid and alkyloxy benzoic acids are characterized. The ferroelectric ingredient malic acid formed double hydrogen bond with p-n-alkyloxy benzoic acids. Various hydrogen bonded complexes have been synthesized with malic acid and pentyl to dodecyloxy benzoic acid, respectively. Fourier transformation infrared (FTIR) studies confirm the hydrogen bond formation. Polarizing optical microscopic (POM) studies revealed the textural information while the transition and enthalpy values are calculated from differential scanning calorimetry (DSC) studies. A phase diagram has been constructed from the POMand DSC studies. A new smectic ordering, smectic X*, has been identified which exhibits a finger print type texture. This phase has been characterized by POM, DSC, helix, and tilt angle studies. The transition from traditional cholesteric to smectic X* phase is observed to be first order. The tilt angle data in this phase has been fitted to a power law and the temperature variation of the tilt angle follows mean field theory predictions. The results of FTIR, POM, DSC, tilt angle, and helicoidal studies are discussed.

  15. Effect of benzoic acid and combination of benzoic acid with a probiotic containing Bacillus cereus var. Toyoi in weaned pig nutrition.

    PubMed

    Papatsiros, V G; Tassis, P D; Tzika, E D; Papaioannou, D S; Petridou, E; Alexopoulos, C; Kyriakis, S C

    2011-01-01

    The purpose of this study was to assess the efficacy of a probiotic containing Bacillus cereus var. Toyoi spores (Toyocerin) and benzoic acid (VevoVitall) on growth performance and diarrhoea in weaning pigs, against negative controls. The trial groups were as follows: (a) NC group (Negative Controls): No treatment (b) TOYO group: Same feed as in the controls plus Toyocerin at a dose of 1 x 10(9) Bacillus cereus var. Toyoi spores/kg feed, (c) BA group: Same feed as in the controls plus VevoVitall at a dose of 5 g/kg feed (5000 ppm benzoic acid) and (d) TOYO+BA group: Same feed as in the controls plus Toyocerin at a dose of 1 x 10(9) Bacillus cereus var. Toyoi spores and VevoVitall at a dose of 5 g/kg feed. In conclusion, the results of this study indicated that administration of Bacillus cereus var. Toyoi spores at 1 x 10(9)/kg feed or benzoic acid at a dose of 5000 ppm or the combination of 1 x 10(9) Bacillus cereus var. Toyoi spores and 5000 ppm of benzoic acid/kg feed, improved the growth performance parameters and reduced the severity of diarrhoea in weaning pigs.

  16. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  17. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  18. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  19. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  20. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  1. Secretion of acid and base equivalents by intact distal airways.

    PubMed

    Inglis, S K; Wilson, S M; Olver, R E

    2003-05-01

    Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.

  2. A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Lin, Tung-Yin

    2008-01-01

    An experiment is described involving the nitration of ortho or meta monosubstituted benzoic acids (XC[subscript 6]H[subscript 4]CO[subscript 2]H, X = Halogen, Me, OH, or OMe) and monochlorinated acetanilides with nitric acid to determine the regioselectivity of addition by [superscript 1]H NMR spectroscopy and molecular modeling. Students were…

  3. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  4. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  5. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  6. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  7. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  8. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  9. Intermolecular decarboxylative direct C-3 arylation of indoles with benzoic acids.

    PubMed

    Cornella, Josep; Lu, Pengfei; Larrosa, Igor

    2009-12-03

    A palladium catalyzed C-H activation of indoles and a silver catalyzed decarboxylative C-C activation of ortho substituted benzoic acids are synergistically combined to synthesize indoles arylated exclusively in the C-3 position. This novel decarboxylative C-H arylation methodology is compatible with electron-donating and -withdrawing substituents in both coupling partners.

  10. Correlation between chemical structure and rodent repellency of benzoic acid derivatives

    USGS Publications Warehouse

    Fearn, J.E.; DeWitt, J.B.

    1965-01-01

    Sixty-five benzoic acid derivatives were either prepared or obtained from commercial concerns, tested for rat repellency, and their indices of repellency computed. The data from these tests were considered analytically for any correlation between chemical structure and rat repellency. The results suggest a qualitative relationship which is useful in deciding probability of repellency in other compounds.

  11. Mathematical models of antisickling activities of benzoic acid derivatives on red blood cells of sicklers.

    PubMed

    Fasanmade, A A; Olaniyi, A A; Ab-Yisak, W

    1994-12-01

    A classical drug design technique based on the quantitative structure--activity relationship is applied to a series of synthetic benzoic acid derivatives. Some of the active derivatives tested include; p-toluic acid, p-dimethyl-amino benzoic acid, p-fluorobenzoic acid, p-chlorobenzoic acid, m-chlorobenzoic acid, p-bromobenzoic acid, p-nitrobenzoic acid, and p-iodobenzoic acid. The Hansch lipophilicity, pi, and the Hammett electronic parameters; sigma, were found to predict activities of the agents on the reversal of sickle-shaped deoxygenated sickle red blood cell to normal morphology. A series of equations correlating the biological activities with the structure of the tested compounds were analysed using multiple regression techniques. The most applicable of the equations was found to be; Log BR = -A sigma + B pi--C pi 2 + K Interpretation of this equation in terms of the biological action of the drugs on red blood cells was attempted. In designing a potent antisickling agent, the benzoic acid should have strong electron donating group(s) attached to the benzene ring and should be made averagely lipophilic to satisfy the relationship derived in this study.

  12. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  13. Effects of Benzoic Acid and Thymol on Growth Performance and Gut Characteristics of Weaned Piglets

    PubMed Central

    Diao, Hui; Zheng, Ping; Yu, Bing; He, Jun; Mao, Xiangbing; Yu, Jie; Chen, Daiwen

    2015-01-01

    A total of 144 weaned crossed pigs were used in a 42-d trial to explore the effects of different concentrations/combinations of benzoic acid and thymol on growth performance and gut characteristics in weaned pigs. Pigs were randomly allotted to 4 dietary treatments: i) control (C), basal diet, ii) C+1,000 mg/kg benzoic acid+100 mg/kg thymol (BT1), iii) C+1,000 mg/kg benzoic acid+200 mg/kg thymol (BT2) and, iv) C+2,000 mg/kg benzoic acid+100 mg/kg thymol (BT3). Relative to the control, pigs fed diet BT3 had lower diarrhoea score during the overall period (p<0.10) and improved feed to gain ratio between days 1 to 14 (p<0.05), which was accompanied by improved apparent total tract digestibility of ether extract, Ca and crude ash (p<0.05), and larger lipase, lactase and sucrose activities in the jejunum (p<0.05) at d 14 and d 42. Similarly, relative to the control, pigs fed diet BT3 had higher counts for Lactobacillus spp in digesta of ileum at d 14 (p<0.05), and pigs fed diets BT1, BT2, or BT3 also had higher counts of Bacillus spp in digesta of caecum at d 14 (p<0.05), and lower concentration of ammonia nitrogen in digesta of caecum at d 14 and d 42 (p<0.05). Finally, pigs fed diet BT3 had higher concentration of butyric acid in digesta of caecum at d 42 (p<0.05), and a larger villus height:crypt depth ratio in jejunum and ileum at d 14 (p<0.05) than pigs fed the control diet. In conclusion, piglets fed diet supplementation with different concentrations/combinations of benzoic acid and thymol could improve feed efficiency and diarrhoea, and improve gut microfloral composition. The combination of 2,000 mg/kg benzoic acid+100 mg/kg thymol produced better effects than other treatments in most measurements. PMID:25925060

  14. Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet in Taiwan.

    PubMed

    Ling, Min-Pei; Lien, Keng-Wen; Wu, Chiu-Hua; Ni, Shih-Pei; Huang, Hui-Ying; Hsieh, Dennis P H

    2015-02-25

    The purpose was to assess the health risk to general consumers in Taiwan associated with dietary intake of benzoic acid and sorbic acid by conducting a total diet study (TDS). The hazard index (HI) in percent acceptable daily intake (%ADI) of benzoic acid and sorbic acid for eight exposure groups classified by age were calculated. In high-intake consumers, the highest HI of benzoic acid was 54.1%ADI for males aged 1-2 years old at the 95th percentile, whereas for females, the HI was 61.7%ADI for aged over 66 years old. The highest HI of sorbic acid for male and female consumers aged 3-6 years old at the 95th percentile were 14.0%ADI and 12.2%ADI, respectively. These results indicate that the use of benzoic acid and sorbic acid as preservatives at the current level of use in the Taiwanese diet does not constitute a public health and safety concern.

  15. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C-H amidation of benzoic acids.

    PubMed

    Ng, Ka-Ho; Ng, Fo-Ning; Yu, Wing-Yiu

    2012-12-11

    An efficient method for synthesis of anthranilic acids by Pd-catalyzed ortho-C-H amidation of benzoic acids is disclosed. The amidation is proposed to proceed by carboxylate-assisted ortho-C-H palladation to form an arylpalladium(II) complex, followed by nitrene insertion to the Pd-C bond.

  16. Determination of benzoic acid in serum or plasma by gas chromatography-mass spectrometry (GC/MS).

    PubMed

    Knoblauch, Jeff M; Scott, David K; Smith, Laurie D; Garg, Uttam

    2010-01-01

    Nonketotic hyperglycinemia (NKH), a metabolic disorder due to defects in the glycine cleavage system, leads to the accumulation of toxic levels of glycine. Glycine levels in these patients may be lowered by sodium benzoate treatment. Benzoic acid binds to glycine to form hippurate, which is subsequently eliminated through the kidneys. At high concentrations, hippuric acid can crystallize in the kidneys and cause renal failure. Therefore, it is desirable to have benzoic acids concentrations within a therapeutic range. In the gas chromatography method described, the drug from the acidified serum or plasma sample is extracted using ethyl acetate. The organic phase containing drug is separated and dried under a stream of nitrogen. After trimethylsilyl derivatization, benzoic acid analysis is done on a gas chromatograph mass spectrometer. Quantitation of the drug in a sample is achieved by comparing responses of the unknown sample to the responses of the calibrators using selected ion monitoring. Benzoic acid D(5) is used as an internal standard.

  17. Distribution ratio, distribution constant and partition coefficient. Countercurrent chromatography retention of benzoic acid.

    PubMed

    Berthod, Alain; Mekaoui, Nazim

    2011-09-09

    There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.

  18. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant.

    PubMed

    Muthuraman, G; Teng, Tjoon Tow; Leh, Cheu Peng; Norli, I

    2009-04-15

    Liquid-liquid extraction (LLE) of methylene blue (MB) from industrial wastewater using benzoic acid (extractant) in xylene has been studied at 27 degrees C. The extraction of the dye increased with increasing extractant concentration. The extraction abilities have been studied on benzoic acid concentration in the range of 0.36-5.8x10(-2) M. The distribution ratio of the dye is reasonably high (D=49.5) even in the presence of inorganic salts. Irrespective of the concentration of dye, extraction under optimal conditions was 90-99% after 15 min of phase separation. The extracted dye in the organic phase can be back extracted into sulphuric acid solution. The resultant recovered organic phase can be reused in succeeding extraction of dye with the yield ranging from 99 to 87% after 15 times reused, depending on the concentration of the initial feed solution. Experimental parameters examined were benzoic acid concentration, effect of diluent, effect of pH, effect of initial dye concentration, effect of equilibration time, various stripping agents, aqueous to organic phase ratio in extraction, organic to aqueous phase ratio in stripping and reusability of solvent.

  19. The ortho-substituent effect on the Ag-catalysed decarboxylation of benzoic acids.

    PubMed

    Grainger, Rachel; Cornella, Josep; Blakemore, David C; Larrosa, Igor; Campanera, Josep M

    2014-12-08

    A combined experimental and computational investigation on the Ag-catalysed decarboxylation of benzoic acids is reported herein. The present study demonstrates that a substituent at the ortho position exerts dual effects in the decarboxylation event. On one hand, ortho-substituted benzoic acids are inherently destabilised starting materials compared to their meta- and para-substituted counterparts. On the other hand, the presence of an ortho-electron-withdrawing group results in an additional stabilisation of the transition state. The combination of both effects results in an overall reduction of the activation energy barrier associated with the decarboxylation event. Furthermore, the Fujita-Nishioka linear free energy relationship model indicates that steric bulk of the substituent can also exert a negative effect by destabilising the transition state of decarboxylation.

  20. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  1. Influence of benzoic acid on thermal, crystallization and mechanical properties of isotactic polypropylene under irradiation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamshad; Basfar, A. A.

    1999-05-01

    Degree of super-cooling is denoted by the temperature difference between the melting temperature of the polymer Tm, and peak crystallization temperature Tp. Upon addition of progressively increasing amounts of benzoic acid (BA) to isotactic polypropylene {(is)-PP}, the degree of super-cooling was found to decrease, which leads to considerable reduction in moulding cycle time and savings in production cost. Haze % was found to progressively decrease with the corresponding increase in the amount of benzoic acid in (is)-PP, resulting in much improved transparency of the (is)-PP-benzoic acid blends. Irradiation to an absorbed dose of 25 kGy affected the transparency of blends slightly. Thermogravimetric analysis of (is)-PP-BA blends showed that there is no adverse effect on thermal stability of the polypropylene. Also, the irradiation of (is)-PP-BA blends did not bring about any significant changes in their thermal stability. (is)-PP-BA blends demonstrated, in general, improved tensile strength when compared to pure (is)-PP. Moreover, no significant detrimental influence of irradiation was observed on the tensile strength of (is)-PP-BA blends.

  2. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  3. Evaluation of benzoic acid derivatives as sirtuin inhibitors.

    PubMed

    Chen, Yi-Pei; Catbagan, Chad C; Bowler, Jeannette T; Gokey, Trevor; Goodwin, Natalie D M; Guliaev, Anton B; Wu, Weiming; Amagata, Taro

    2014-01-01

    Employing a genetically modified yeast strain as a screening tool, 4-dimethylaminobenzoic acid (5) was isolated from the marine sediment-derived Streptomyces sp. CP27-53 as a weak yeast sirtuin (Sir2p) inhibitor. Using this compound as a scaffold, a series of disubstituted benzene derivatives were evaluated to elucidate the structure activity relationships for Sir2p inhibition. The results suggested that 4-alkyl or 4-alkylaminobenzoic acid is the key structure motif for Sir2p inhibitory activity. The most potent Sir2p inhibitor, 4-tert-butylbenzoic acid (20), among the tested compounds in this study turned out to be a weak but selective SIRT1 inhibitor. The calculated binding free energies between the selected compounds and the catalytic domain of SIRT1 were well correlated to their measured SIRT1 inhibitory activities.

  4. Crystal structure of 3-ethynyl­benzoic acid

    PubMed Central

    Venturini, Chiara; Ratel-Ramond, Nicolas; Gourdon, Andre

    2015-01-01

    In the title compound, C9H6O2, the carb­oxy­lic acid group is almost in the plane of the benzene ring, making a dihedral angle of 2.49 (18)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical acid–acid inversion dimers, with an R 2 2(8) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds forming chains, enclosing R 2 2(16) ring motifs, propagating along the c-axis direction. PMID:26594457

  5. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria.

    PubMed

    Mischek, Daniela; Krapfenbauer-Cermak, Christine

    2012-01-01

    An exposure assessment was performed to estimate the potential intake of preservatives in the Austrian population. Food consumption data of different population groups, such as preschool children aged 3-6 years, female and male adults aged 19-65 years were used for calculation. Levels of the preservatives in food were derived from analyses conducted from January 2007 to August 2010. Dietary intakes of the preservatives were estimated and compared to the respective acceptable daily intakes (ADIs). In the average-intake scenario, assuming that consumers randomly consume food products that do or do not contain food additives, estimated dietary intakes of all studied preservatives are well below the ADI for all population groups. Sulphite exposure accounted for 34%, 84% and 89% of the ADI in preschool children, females and males, respectively. The mean estimated daily intake of benzoic acid was 32% (preschool children), 31% (males) and 36% (females) of the ADI. Sorbic acid intakes correspond to 7% of the ADI in preschool children and 6% of the ADI in adults. In the high-intake scenario assuming that consumers always consume food products that contain additives and considering a kind of brand loyalty of consumers, the ADI is exceeded for sulphites among adults (119 and 124%, respectively). Major contributors to the total intake of sulphites were wine and dried fruits for adults. Mean estimated dietary intakes of benzoic acid exceeded the ADI in all population groups, 135% in preschool children, 124% in females and 118% of the ADI in males, respectively. Dietary intakes of sorbic acid are well below the ADI, accounting for a maximum of 30% of the ADI in preschool children. The highest contributors to benzoic and sorbic acid exposure were fish and fish products mainly caused by high consumption data of this large food group, including also mayonnaise-containing fish salads. Other important sources of sorbic acid were bread, buns and toast bread and fruit and vegetable

  6. Crystal structure of 4-acetamido-benzoic acid monohydrate.

    PubMed

    Cai, Wen-Juan; Chi, Shao-Ming; Kou, Jun-Feng; Liu, Feng-Yi

    2014-11-01

    In the title compound, C9H9NO3·H2O, the plane of the acetamide group is oriented at 20.52 (8)° with respect to the benzene ring, whereas the plane of the carb-oxy-lic acid group is essentially coplanar with the benzene ring [maximum deviation = 0.033 (1) Å]. In the crystal, classical O-H⋯O and N-H⋯O hydrogen bonds and weak C-H⋯O hydrogen bonds link the organic mol-ecules and water mol-ecules of crystallization into a three-dimensional supra-molecular architecture.

  7. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    SciTech Connect

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  8. Ultrafast formation of the benzoic acid triplet upon ultraviolet photolysis and its sequential photodissociation in solution

    SciTech Connect

    Yang Chunfan; Su Hongmei; Sun Xuezhong; George, Michael W.

    2012-05-28

    Time-resolved infrared (TR-IR) absorption spectroscopy in both the femtosecond and nanosecond time domain has been applied to examine the photolysis of benzoic acid in acetonitrile solution following either 267 nm or 193 nm excitation. By combining the ultrafast and nanosecond TR-IR measurements, both the excited states and the photofragments have been detected and key mechanistic insights were obtained. We show that the solvent interaction modifies the excited state relaxation pathways and thus the population dynamics, leading to different photolysis behavior in solution from that observed in the gas phase. Vibrational energy transfer to solvents dissipates excitation energy efficiently, suppressing the photodissociation and depopulating the excited S{sub 2} or S{sub 3} state molecules to the lowest T{sub 1} state with a rate of {approx}2.5 ps after a delayed onset of {approx}3.7 ps. Photolysis of benzoic acid using 267 nm excitation is dominated by the formation of the T{sub 1} excited state and no photofragments could be detected. The results from TR-IR experiments using higher energy of 193 nm indicate that photodissociation proceeds more rapidly than the vibrational energy transfer to solvents and C-C bond fission becomes the dominant relaxation pathway in these experiments as featured by the prominent observation of the COOH photofragments and negligible yield of the T{sub 1} excited state. The measured ultrafast formation of T{sub 1} excited state supports the existence of the surface intersections of S{sub 2}/S{sub 1}, S{sub 2}/T{sub 2}, and S{sub 1}/T{sub 1}/T{sub 2}, and the large T{sub 1} quantum yield of {approx}0.65 indicates the importance of the excited state depopulation to triplet manifold as the key factor affecting the photophysical and photochemical behavior of the monomeric benzoic acid.

  9. Topical use of tea tree oil reduces the dermal absorption of benzoic acid and methiocarb.

    PubMed

    Nielsen, Jesper Bo; Nielsen, Flemming

    2006-03-01

    Tea tree oil (TTO) is a complex mixture of terpene hydrocarbons. Intensive topical use of TTO in different cosmetics and investigations into its potential as an antimicrobial or anti-inflammatory agent has accentuated the need for studies on the toxicity of TTO. We have applied an experimental in vitro model using static diffusion cells with human skin to study penetration characteristics of terpinen-4-ol and the way TTO affects the barrier integrity of the skin and the percutaneous penetration of two chemicals covering a range of solubilities from 0.03 g/l (methiocarb) to 3.0 g/l (benzoic acid). Through GC-MS analysis we identified the major constituents of TTO. In our experimental set-up with full-thickness skin, only the least lipophilic ingredients of TTO penetrated the skin. Barrier integrity was evaluated through measurement of percutaneous penetration of tritiated water. Data indicate that 1% TTO does not affect barrier conditions. The Kp value for tritiated water was increased significantly at 5% TTO, which demonstrate that the barrier integrity is affected at this relatively low concentration of TTO. The barrier integrity is, however, not seriously damaged, but our data indicate an initiated and concentration-dependent effect on the barrier integrity. TTO changed the penetration characteristics for benzoic acid as well as for methiocarb. The general effect was that TTO reduced the maximal flux. For methiocarb, the lag-time was also prolonged by increasing the TTO concentration in the donor phase to 5%. Thus, TTO reduced the overall amount of benzoic acid as well as methiocarb entering the receptor chamber.

  10. Dietary exposure of secondary school students in Hong Kong to benzoic acid in prepackaged non-alcoholic beverages.

    PubMed

    Ma, Ka Ming; Chan, Cheok Man; Chung, Stephen Wai Cheung; Ho, Yuk Yin; Xiao, Ying

    2009-01-01

    This study evaluated the dietary exposure of secondary school students in Hong Kong to benzoic acid from pre-packaged non-alcoholic beverages. Exposure was estimated using local food consumption data of secondary school students obtained by a semi-quantitative food frequency questionnaire in 2000 and the benzoic acid level detected in pre-packaged beverages, including soft drink (both diet/light and regular types), fruit juice, soy milk, Chinese tea and coffee/tea) available locally in late 2006. The estimated dietary exposure to benzoic acid from pre-packaged beverages of average and high consumers (95(th) percentile) was 0.31 and 0.97 mg kg(-1) bw day(-1), respectively. These exposures accounted for 6.1 and 19.3% of the acceptable daily intake (ADI: 0-5 mg kg(-1) bw) of benzoic acid for average and high consumers, respectively. As in other countries, soft drinks contributed most to dietary exposure to benzoic acid from pre-packaged beverages in Hong Kong.

  11. A benzoic acid derivative and flavokawains from Piper species as schistosomiasis vector controls.

    PubMed

    Rapado, Ludmila N; Freitas, Giovana C; Polpo, Adriano; Rojas-Cardozo, Maritza; Rincón, Javier V; Scotti, Marcus T; Kato, Massuo J; Nakano, Eliana; Yamaguchi, Lydia F

    2014-04-23

    The search of alternative compounds to control tropical diseases such as schistosomiasis has pointed to secondary metabolites derived from natural sources. Piper species are candidates in strategies to control the transmission of schistosomiasis due to their production of molluscicidal compounds. A new benzoic acid derivative and three flavokawains from Piper diospyrifolium, P. cumanense and P. gaudichaudianum displayed significant activities against Biomphalaria glabrata snails. Additionally, "in silico" studies were performed using docking assays and Molecular Interaction Fields to evaluate the physical-chemical differences among the compounds in order to characterize the observed activities of the test compounds against Biomphalaria glabrata snails.

  12. Iridium-Catalyzed ortho-Arylation of Benzoic Acids with Arenediazonium Salts.

    PubMed

    Huang, Liangbin; Hackenberger, Dagmar; Gooßen, Lukas J

    2015-10-19

    In the presence of catalytic [{IrCp*Cl2 }2 ] and Ag2 CO3 , Li2 CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl-2-carboxylates under mild conditions. This C-H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron-rich to electron-poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide-based cross-couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents.

  13. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1.

    PubMed

    Partridge, Katherine M; Antonysamy, Stephen; Bhattachar, Shobha N; Chandrasekhar, Srinivasan; Fisher, Matthew J; Fretland, Adrian; Gooding, Karen; Harvey, Anita; Hughes, Norman E; Kuklish, Steven L; Luz, John G; Manninen, Peter R; McGee, James E; Mudra, Daniel R; Navarro, Antonio; Norman, Bryan H; Quimby, Steven J; Schiffler, Matthew A; Sloan, Ashley V; Warshawsky, Alan M; Weller, Jennifer M; York, Jeremy S; Yu, Xiao-Peng

    2017-03-15

    We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.

  14. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  15. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    ERIC Educational Resources Information Center

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  16. Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu(110)

    NASA Astrophysics Data System (ADS)

    Frederick, B. G.; Ashton, M. R.; Richardson, N. V.; Jones, T. S.

    1993-07-01

    The interaction of the polyimide precursor pyromellitic dianhydride (PMDA), and the related compounds benzoic acid and phthalic anhydride, with Cu(110) has been studied by high resolution electron energy loss spectroscopy (HREELS). For benzoic acid, deprotonation of the carboxylic acid group occurs on adsorption leading to the formation of a surface benzoate species (C 6H 5COO-). Bonding to the surface occurs through a carboxylate linkage via two equivalent oxygen atoms. The HREEL spectrum is characterised by an intense dipole active band, the symmetric OCO stretching vibration, at ˜ 1420 cm -1. The plane of the carboxylate group is aligned perpendicular to the surface as is the plane of the benzene ring. A similar species is found following exposure of Cu(110) to phthalic anhydride. The carboxylate linkage results from disruption of the anhydride ring with loss of the CO character (C 6H 4COO-). In the case of the dianhydride species PMDA, only one of the anhydride units is used in bonding to the surface; the second unit points away from the surface and is characterised by the symmetric anhydride stretch at 1255 cm -1 and weak OO stretching vibrations at ˜ 1850 cm -1. In both cases, changes in the intensity of some of the bands compared with benzoic acid suggest that the carboxylate group is tilted away from the surface normal due to an interaction between one of the carbons of the aromatic ring and the copper surface. This implies that the plane of the aromatic ring is now twisted out of the plane of the carboxylate group and, although still perpendicular to the surface, the axis is tilted to allow one of the β-carbon atoms to interact with the surface. In all cases, off-specular measurements at a primary electron energy of ˜ 8 eV are dominated by the intense CH stretching vibration. Measurements of the intensity of this mode, in the surface benzoate species, as a function of incident electron energy suggest that excitation of this mode occurs via

  17. Electronic and steric effects: how do they work in ionic liquids? The case of benzoic acid dissociation.

    PubMed

    D'Anna, Francesca; Marullo, Salvatore; Vitale, Paola; Noto, Renato

    2010-07-16

    The need to have a measure of the strength of some substituted benzoic acids in ionic liquid solution led us to use the protonation equilibrium of sodium p-nitrophenolate as a probe reaction, which was studied by means of spectrophotometric titration at 298 K. In order to evaluate the importance of electronic effect of the substituents present on the aromatic ring, both electron-withdrawing and -donor substituents were taken into account. Furthermore, to have a measure of the importance of the steric effect of the substituents both para- and ortho-substituted benzoic acids were analyzed. The probe reaction was studied in two ionic liquids differing for the ability of the cation to give hydrogen bond and pi-pi interactions, namely [bm(2)im][NTf(2)] and [bmpyrr][NTf(2)]. Data collected show that benzoic acids are less dissociated in ionic liquid than in water solution. Furthermore, the equilibrium constant values seem to be significantly affected by both the nature of ionic liquid cation and the structure of the acid. In particular, the ortho-steric effect seems to operate differently in water and in the aromatic ionic liquid, determining in this solvent medium a particular behavior for ortho-substituted benzoic acids.

  18. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  19. First derivative spectrophotometric and high performance liquid chromatographic simultaneous determination of benzoic and salicylic acids in pharmaceutical preparations.

    PubMed

    Silva, B O

    2008-01-01

    Two methods are presented for the simultaneous determination of benzoic and salicylic acids in pharmaceutical preparations using first (1D) derivative spectrophotometry and high-performance liquid chromatography. Benzoic and salicylic acids were determined by measurement of first derivative amplitude at the zero crossing points 283 and 310 nm respectively. Methanolic solutions obeyed Beer's law in the concentration range of 20-60 and 10-30 microg/ml for benzoic and salicylic acids respectively. The HPLC method depends upon using a Vydac reversed-phase column at ambient temperature with a mobile phase consisting of 20:80 (ACN:H2O) at a flow rate 0.5 ml min(-1) Quantitation was achieved with UV detection of 230 nm at 0 min and 204 nm at 4 min based on peak area. For the two methods the regression line equations were derived with correlation coefficient better than 0.995. The two methods were successfully applied to the simultaneous determination of benzoic and salicylic acids in laboratory-prepared mixtures and in creams with good accuracy and precision. No significant differences were found between the results obtained both by the HPLC and derivative procedures.

  20. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  1. Amphipathic Benzoic Acid Derivativies: Synthesis and Binding in the Hydrophobic Tunnel of the Zinc Deacetylase LpxC

    SciTech Connect

    Shin,H.; Gennadios, H.; Whittington, D.; Christianson, D.

    2007-01-01

    The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25 {angstrom} resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.

  2. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  3. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  4. Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study

    PubMed Central

    Mason, Shayne; Mienie, Lodewyk J.; Westerhuis, Johan A.; Reinecke, Carolus J.

    2016-01-01

    Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following uncontrolled benzoic acid ingestion. We performed a metabolomics study which used commercial benzoic acid containing flavored water as vehicle for designed interventions, and report here on the controlled consumption of the benzoic acid by 21 cases across 6 time points for a total of 126 time points. Metabolomics data from urinary samples analyzed by nuclear magnetic resonance spectroscopy were generated in a time-dependent cross-over study. We used ANOVA-simultaneous component analysis (ASCA), repeated measures analysis of variance (RM-ANOVA) and unfolded principal component analysis (unfolded PCA) to supplement conventional statistical methods to uncover fully the metabolic perturbations due to the xenobiotic intervention, encapsulated in the metabolomics tensor (three-dimensional matrices having cases, spectral areas and time as axes). Identification of the biologically important metabolites by the novel combination of statistical methods proved the power of this approach for metabolomics studies having complex data structures in general. The study disclosed a high degree of inter-individual variation in detoxification of the xenobiotic and revealed metabolic information, indicating that detoxification of benzoic acid through glycine conjugation to hippuric acid does not indicate glycine depletion, but is supplemented by ample glycine regeneration. The observations lend support to the view of maintenance of glycine homeostasis during detoxification. The study indicates also that time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment–an approach

  5. Minimization of sample requirement for delta18O in benzoic acid.

    PubMed

    Hagopian, William M; Jahren, A Hope

    2010-09-15

    The measurement of the oxygen stable isotope content in organic compounds has applications in many fields, ranging from paleoclimate reconstruction to forensics. Conventional High-Temperature Conversion (HTC) techniques require >20 microg of O for a single delta(18)O measurement. Here we describe a system that converts the CO produced by HTC into CO(2) via reduction within a Ni-furnace. This CO(2) is then concentrated cryogenically, and 'focused' into the isotope ratio mass spectrometry (IRMS) source using a low-flow He carrier gas (6-8 mL/min). We report analyses of benzoic acid (C(7)H(6)O(2)) reference materials that yielded precise delta(18)O measurement down to 1.3 microg of O, suggesting that our system could be used to decrease sample requirement for delta(18)O by more than an order of magnitude.

  6. Low temperature Raman study of a liquid crystalline system 4-Decyloxy benzoic acid (4DBA)

    NASA Astrophysics Data System (ADS)

    Vikram, K.; Nandi, Rajib; Singh, Ranjan K.

    2013-08-01

    The Raman spectra of a liquid crystalline system, 4-Decyloxy benzoic acid (4DBA) have been recorded at different temperatures within the interval 300-78 K in order to identify the structural changes in crystalline state of a nematogen and to understand the molecular alignment therein. The earlier predicted dimer structure of 4DBA was optimized with DFT method and the theoretical Raman spectra of dimer as well as monomer have been calculated for comparison with the experimental spectra. The mode specific quartic coupling coefficient; Ai,ω and phonon frequency; ωi have been calculated using temperature dependent anharmonic perturbation theory. The precise band shape analysis of Raman bands at ˜807, ˜881, ˜1255, ˜1282, ˜1436, ˜1576, ˜1604, ˜2881 and ˜3081 cm-1 gives signature of temperature induced slow crystal modification. The structural changes leading to crystal modification have been discussed.

  7. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  8. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells.

    PubMed

    O'Donnell, M J; Rheault, M R; Davies, S A; Rosay, P; Harvey, B J; Maddrell, S H; Kaiser, K; Dow, J A

    1998-04-01

    Anion conductance across the Drosophila melanogaster Malpighian (renal) tubule was investigated by a combination of physiological and transgenic techniques. Patch-clamp recordings identified clusters of 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive "maxi-chloride" channels in a small domain of the apical membrane. Fluid secretion assays demonstrated sensitivity to the chloride channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, anthracene-9-carboxylic acid, and niflumic acid. Electrophysiological analysis showed that the calcium-mediated increase in anion conductance was blocked by the same agents. Vibrating probe analysis revealed a small number of current density hot spots, coincident with "stellate" cells, that were abolished by low-chloride saline or the same chloride channel blockers. GAL-4-targeted expression of an aequorin transgene revealed that the neurohormone leucokinin elicits a rapid increase in intracellular calcium levels in stellate cells that precedes the fastest demonstrable physiological effect. Taken together, these data show that leucokinins act on stellate cells through intracellular calcium to increase transcellular chloride conductance through channels. As electrogenic cation conductance is confined to principal cells, the two pathways are spatially segregated in this tissue.

  9. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  10. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  11. Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation.

    PubMed

    Lee, Min-Goo; Macglashan, Donald W; Undem, Bradley J

    2005-07-01

    We tested the hypothesis that an ionic current carried by chloride ions contributes to bradykinin (BK)-induced membrane depolarization and activation of vagal afferent C-fibres. In an ex vivo innervated trachea/bronchus preparation, BK (1 microM) consistently produced action potential discharge in vagal afferent C-fibres with receptive fields in the trachea or main stem bronchus. The Ca2+-activated Cl- channel (CLCA) inhibitor, niflumic acid (NFA, 100 microM), significantly reduced BK-induced action potential discharge to 21 +/- 7% of the control BK response. NFA did not inhibit capsaicin-induced or citric-acid-induced action potential discharge in tracheal C-fibres. The inhibitory effect of NFA was mimicked by another CLCA inhibitor, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 100 microM). NFA also inhibited the BK-induced inward current in gramicidin-perforated whole-cell patch-clamp recordings of capsaicin-sensitive jugular ganglion neurones retrogradely labelled from the airways. NFA did not inhibit the BK-induced increase in intracellular free Ca2+. The TRPV1 inhibitor, iodo-resiniferatoxin (1 microM), also partially inhibited BK-induced action potential discharge, and the combination of iodo-resiniferatoxin and NFA virtually abolished the BK-induced action potential discharge. We concluded that in vagal afferent C-fibres, BK evokes membrane depolarization and action potential discharge through the additive effects of TRPV1 and Cl- channel activation.

  12. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity.

    PubMed

    Pantoja, A M; Holt, J C; Guth, P S

    1997-10-01

    Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect.

  13. Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives.

    PubMed

    Korpany, Katalin V; Majewski, Dorothy D; Chiu, Cindy T; Cross, Shoronia N; Blum, Amy Szuchmacher

    2017-03-13

    The excellent performance of functionalized iron oxide nanoparticles (IONPs) in nanomaterial and biomedical applications often relies on achieving the attachment of ligands to the iron oxide surface both in sufficient number and with proper orientation. Toward this end, we determine relationships between the ligand chemical structure and surface binding on magnetic IONPs for a series of related benzoic acid and catechol derivatives. Ligand exchange was used to introduce the model ligands, and the resultant nanoparticles were characterized using Fourier transform infrared-attenuated internal reflectance spectroscopy, transmission electron microscopy, and nanoparticle solubility behavior. An in-depth analysis of ligand electronic effects and reaction conditions reveals that the nature of ligand binding does not solely depend on the presence of functional groups known to bind to IONPs. The structure of the resultant ligand-surface complex was primarily influenced by the relative positioning of hydroxyl and carboxylic acid groups within the ligand and whether or not HCl(aq) was added to the ligand-exchange reaction. Overall, this study will help guide future ligand-design and ligand-exchange strategies toward realizing truly custom-built IONPs.

  14. A volume-activated anion conductance in insulin-secreting cells.

    PubMed

    Best, L; Sheader, E A; Brown, P D

    1996-01-01

    The whole-cell patch-clamp recording technique was used to measure volume-activated currents in K+-free solutions in RINm5F and HIT-T15 insulinoma cells and in dispersed rat islet cells. Cell swelling, induced by intracellular hypertonicity or extracellular hypotonicity, caused activation of an outwardly rectifying conductance which could be subsequently inactivated by hypertonic extracellular solutions. The conductance required adenosine 5'-triphosphate (ATP) in the pipette solution but was Ca2+ independent. Na+ and Cl- substitution studies suggested that the swelling-activated current is Cl- selective with a halide permeability sequence of Br > Cl > I. The conductance was reversibly inhibited by the anion channel inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Further evidence for a volume-activated anion conductance was provided by studies of volume regulation in insulin-secreting cells. When RINm5F cells were exposed to a hypotonic medium, the initial cell swelling was followed by a regulatory volume decrease (RVD). This RVD response was also inhibited by DIDS and by NPPB. These data therefore provide evidence for a volume-activated anion conductance in insulin-secreting cells which could be involved in the RVD following osmotic stress. A possible role for the conductance in hypotonically induced insulin release is also discussed.

  15. Anoctamin-1 in the Juvenile Rat Urinary Bladder

    PubMed Central

    Bijos, Dominika A.; Drake, Marcus J.; Vahabi, Bahareh

    2014-01-01

    Purpose To investigate presence, location and functional role of calcium-activated chloride channel (CaCC) Anoctamin-1 (Ano1) in rat urinary bladder. Materials and Methods Bladders from 3 week old Wistar rats were studied. End-point PCR on total mRNA was used to assess the expression of Ano1. Immunofluorescent labelling of whole mount bladder tissue imaged with confocal microscope allowed localization of Ano1 and vimentin immunopositive cells. The effects of CaCC blockers: niflumic acid (NFA) (3,10,30 µM) and 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (10, 30 µM) on spontaneous phasic contractile activity of intact (with mucosa) and denuded (without mucosa) detrusor strips were measured under isometric tension in organ baths (n = 141, N = 60). Results Ano1 expression was found at mRNA level in mucosa and detrusor layers. Confocal microscopy revealed presence of Ano1 immunopositive cells in mucosa and in detrusor layers; a subpopulation of vimentin positive cells expressed Ano1. Both chloride channel blockers reduced the amplitude and frequency of phasic contractions in denuded and intact strips. Conclusions Ano1 is expressed in rat urinary bladder and is present in cells sharing markers with interstitial cells. CaCC blockers reduced phasic activity of the bladder tissue. Ano1 is expressed in the bladder and plays a role in its spontaneous phasic contractile activity. PMID:25181534

  16. Characterization of the chloride conductance in porcine renal brush-border membrane vesicles.

    PubMed

    Krick, W; Dölle, A; Hagos, Y; Burckhardt, G

    1998-02-01

    The chloride conductance in brush-border membrane vesicles prepared from pig kidney cortex was investigated using a light-scattering assay, anion-diffusion-potential-dependent Na+-D-glucose cotransport and 36Cl- influx. K+-diffusion-potential-driven salt exit from, or entry into, the vesicles was slow in the presence of gluconate, SO42- and F-, intermediate with Cl- and Br-, and fast with I-, NO3-, and SCN-. Stimulation of Na+-D-glucose uptake followed a similar anion sequence. Conductive Cl- flux had a low activation energy and was inhibited by suphhydryl reagents, the stilbene disulphonates 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonate (SITS) and 4, 4'-diisothiocyanato-2,2'-disulphonate (DIDS), and the arylaminobenzoates diphenylamine-2-carboxylic acid (DPC) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). Intravesicular Ca2+ and extravesicular nucleotides were without effect on conductive Cl- flux. These characteristics tentatively exclude some known Cl- channels and leave members of the ClC family as possible candidates responsible for the Cl- conductance in brush-border membranes.

  17. The contribution of a Ca(2+)-activated Cl(-) conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout.

    PubMed

    Sato, K; Suzuki, N

    2000-01-01

    To determine whether amino-acid-induced inward currents of ciliated olfactory receptor neurons (ORNs) in rainbow trout (Oncorhynchus mykiss) include a Ca(2+)-activated Cl(-) conductance, we first studied changes in reversal potential and the current/voltage relationships of the responses of ORNs to an amino acid mixture (l-alanine, l-arginine, l-glutamate and l-norvaline; all 10 mmol l(-)(1)) with different concentrations of Na(+) and Cl(-) in the perfusion and recording pipette solutions. We also examined the effects of six different Cl(-) channel blockers on the responses of ORNs using a conventional whole-cell voltage-clamp technique. The amino acid mixture and one blocker were applied focally to the cilia of ORNs using a double-barrelled micropipette and a pressure ejection system. The expected shifts in reversal potential, indicating the contribution of the Ca(2+)-activated Cl(-) conductance, occurred in both positive and negative directions depending on the external and internal Na(+) and Cl(-) concentrations. Niflumic acid, flufenamic acid, NPPB [5-nitro-2-(3-phenylpropylamino)-benzonate] and DCDPC (3', 5-dichlorodiphenylamine-2-carboxylate), at 0.5 mmol l(-)(1), reversibly blocked both the amino-acid-induced inward currents and the background activity in most ORNs. The effectiveness of these blocking agents varied from 77 to 91 % for ORNs perfused externally with standard Ringer's solution. SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonate), at 5.0 mmol l(-)(1), irreversibly inhibited the physiological response (100 % inhibition), whereas DIDS (4,4'-diisothiocyanatostilbene-2, 2'-disulphonate), at 5.0 mmol l(-)(1), had the smallest effect (45 %) of the inhibitors tested. The dose of niflumic acid inducing 50 % inhibition (IC(50)), determined specifically for the current component of the Ca(2+)-activated Cl(-) channels, was 70 micromol l(-)(1). Our results suggest that these blockers are not specific for Ca(2+)-activated Cl(-) channels and that

  18. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  19. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  20. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  1. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  2. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  3. Auxin Activity of Substituted Benzoic Acids and Their Effect on Polar Auxin Transport 1

    PubMed Central

    Keitt, George W.; Baker, Robert A.

    1966-01-01

    Six dichloro-, 3 trichloro-, 2 triiodo-, and 3 heterosubstituted benzoic acids (amiben, dinoben, dicamba), and N-1-naphthylphthalamic acid have been tested for effects on growth and on polar auxin transport. Growth activity with and without kinetin was measured by effects on fresh and dry weights of 30-day cultures of fresh tobacco pith. Transport inhibition was measured by following uptake and output of IAA-2-14C through 10 mm bean epicotyl sections. The distribution of callus growth on vascularized tobacco stem segments was also observed. Avena first internode extension assays established the relative activities: dicamba > amiben > dinoben suggested by pith growth results. Growth effects of active compounds were similar with and without kinetin, except that amiben was less active with kinetin, while 2,3,6-trichlorobenzoic acid was more active with kinetin than alone. The weak auxin activity of NPA was confirmed. Transport experiments showed that NPA was the most inhibitory compound tested, followed by TIBA. Other compounds tested were at least 300 times less inhibitory to IAA transport. The best growth promoters were the least inhibitory to transport, and the most effective transport inhibitors were at best poor auxins. It is suggested that the weak auxin and auxin synergistic activity of TIBA (and perhaps 2,3-dichlorobenzoic acid) in extension growth tests arises from its inhibition of transport of endogenous or added auxin out of the sections, rather than from its intrinsic auxin activity. Chemically induced apolar callus growth on vascularized tobacco stem explants can arise from inhibition of native auxin transport, apolar growth stimulation by auxinic action of the test compound, or both. PMID:16656441

  4. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  5. Electrophysiology of pumpkin seeds: Memristors in vivo

    PubMed Central

    Volkov, Alexander G.; Nyasani, Eunice K.; Tuckett, Clayton; Greeman, Esther A.; Markin, Vladislav S.

    2016-01-01

    ABSTRACT Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds. PMID:26926652

  6. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  7. Electrophysiology of pumpkin seeds: Memristors in vivo.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Greeman, Esther A; Markin, Vladislav S

    2016-01-01

    Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.

  8. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.

    PubMed

    Zhang, Haoran; Stephanopoulos, Gregory

    2016-07-01

    3-amino-benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coli-E. coli co-culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co-culture system was found to improve 3AB production by 15 fold, compared to the mono-culture approach. Further engineering of the co-culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co-culture engineering can be a powerful new approach in the broad field of metabolic engineering.

  9. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters.

    PubMed

    Han, Noori; Park, Sun-Young; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-11-01

    This study sought to investigate the change of naturally occurring benzoic acid (BA) during skim milk fermentation by 4 kinds of commercial cheese starters used in domestic cheese. The culture was incubated at 3-h intervals for 24h at 30, 35, and 40°C. The BA content during fermentation by Streptococcus thermophilus STB-01 was detected after 12h at all temperatures, sharply increasing at 30°C. In Lactobacillus paracasei LC431, BA was detected after 9h at all temperatures, sharply increasing until 18h and decreasing after 18h at 30 and 35°C. In the case of R707 (consisting of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris), BA increased from 6h to 15h and decreased after 15h at 40°C. The BA during STB-01 and CHN-11 (1:1; mixture of S. thermophilus, Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. diacetylactis, Leuconostoc mesenteroides ssp. cremoris) fermentation was detected after 3h at 35 and 40°C, sharply increasing up to 12h and decreasing after 15h at 35°C, and after 6h, increasing up to 9h at 30°C. After 3h, it steadily decreased at 40°C. The highest amount of BA was found during the fermentation by R707 at 30°C; 15h with 12.46mg/kg.

  10. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

    PubMed Central

    Yu, Shiqin; Plan, Manuel R.; Winter, Gal; Krömer, Jens O.

    2016-01-01

    para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L−1 and a carbon yield of 18.1% (C-mol C-mol−1) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase. PMID:27965953

  11. Bioactivity of novel transition metal complexes of N'-[(4-methoxy)thiobenzoyl]benzoic acid hydrazide.

    PubMed

    Shrivastav, Anuraag; Tripathi, Pratibha; Srivastava, Ajay K; Singh, Nand K; Sharma, Rajendra K

    2008-03-01

    Cu(II), Fe(III), and Mn(II) complexes of a novel ligand N'-[(4-methoxy)thiobenzoyl]benzoic acid hydrazide (H(2)mtbh) have been synthesized and characterized by elemental analyses, IR, UV-vis, NMR, mass, EPR and Mössbauer spectroscopy. The results suggest a square planar structure for [Cu(Hmtbh)Cl] and [Cu(mtbh)] whereas an octahedral structure for [Mn(Hmtbh)(2)] and [Fe(Hmtbh)(mtbh)]. Mn(II) and Fe(III) complexes were found to inhibit proliferation of HT29 cells. [Mn(Hmtbh)(2)] and [Fe(Hmtbh)(mtbh)] inhibited proliferation of HT29 cells with half maximal inhibition (IC(50)) of 8.15+/-0.87 and 68.1+/-4.8 microM, respectively, whereas H(2)mtbh showed growth inhibition with IC(50) of 90.9+/-7.8 microM and were able to inhibit NMT activity in vitro. Mn(II) and Fe(III) complexes inhibited NMT activity in a dose dependent manner with IC(50) values of 20+/-2.2 and 60+/-7.2 microM, respectively, whereas ligand (H(2)mtbh) displayed IC(50) of 3.2+/-0.5 mM.

  12. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films.

    PubMed

    Mohite, V S; Mahadik, M A; Kumbhar, S S; Hunge, Y M; Kim, J H; Moholkar, A V; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Highly transparent pure and Au doped TiO2 thin films are successfully deposited by using simple chemical spray pyrolysis technique. The effect of Au doping onto the structural and physicochemical properties has been investigated. The PEC study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc=1.81mA and Voc=890mV) relatively higher at 3at.% Au doping percentage. XRD study shows that the films are nanocrystalline in nature with tetragonal crystal structure. FESEM images show that the film surface covered with a smooth, uniform, compact and rice shaped nanoparticles. The Au doped thin films exhibit indirect band gap, decreases from 3.23 to 3.09eV with increase in Au doping. The chemical composition and valence states of pure and Au doped TiO2 films are studied by using X-ray photoelectron spectroscopy. The photocatalytic degradation effect is 49% higher in case 3at.% Au doped TiO2 than the pure TiO2 thin film photoelectrodes in the degradation of benzoic acid. It is revealed that Au doped TiO2 can be reused for five cycles of experiments without a requirement of post-treatment while the degradation efficiency was retained.

  13. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  14. Modified ferrous ammonium sulfate benzoic acid xyelenol orange (MFBX) and thermoluminescent dosimeters--a comparative study.

    PubMed

    Brindha, S; Rose, J V R; Sathyan, S; Singh I, Rabi Raja; Ravindran, B Paul

    2002-06-07

    Radiation dosimetry deals with the determination of absorbed dose to the medium exposed to ionizing radiation. Chemical dosimetry depends on oxidation or reduction of chemicals by ionizing radiation. A ferrous ammonium sulfate benzoic acid xyelenol orange (FBX) dosimeter based on this principle is being used as a clinical dosimeter at present. Certain modifications were carried out in the preparation and storage of the FBX dosimeter to increase its shelf life. The resulting dosimeter was called a modified FBX (MFBX) dosimeter and has been used in our department for the past few years. An extensive study of the dose, dose rate and energy response of the dosimeter was carried out and compared with a thermoluminescent (LiF7) dosimeter. The results obtained were found to be comparable to the thermoluminescent (LiF7) dosimeter. Hence it was concluded that the MFBX dosimeter could be used for phantom dosimetry, data collection and in vivo measurements. Easier preparation and availability of the reagents are added advantages of using MFBX as a clinical dosimeter in small radiotherapy departments.

  15. Self-Assembled Structures of Benzoic Acid on Au(111) Surface

    NASA Astrophysics Data System (ADS)

    Vu, Thu-Hien; Wandlowski, Thomas

    2017-02-01

    Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O-H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.

  16. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  17. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase.

    PubMed

    Burner, U; Obinger, C; Paumann, M; Furtmüller, P G; Kettle, A J

    1999-04-02

    Myeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation. We have investigated the mechanism by which benzoic acid hydrazides (BAH) are oxidized by myeloperoxidase, and we have determined the features that enable them to inactivate the enzyme. BAHs readily reduced compound I of myeloperoxidase. The rate constants for these reactions ranged from 1 to 3 x 10(6) M-1 s-1 (15 degrees C, pH 7.0) and were relatively insensitive to the substituents on the aromatic ring. Rate constants for reduction of compound II varied between 6.5 x 10(5) M-1 s-1 for ABAH and 1.3 x 10(3) M-1 s-1 for 4-nitrobenzoic acid hydrazide (15 degrees C, pH 7.0). Reduction of both compound I and compound II by BAHs adhered to the Hammett rule, and there were significant correlations with Brown-Okamoto substituent constants. This indicates that the rates of these reactions were simply determined by the ease of oxidation of the substrates and that the incipient free radical carried a positive charge. ABAH was oxidized by myeloperoxidase without added hydrogen peroxide because it underwent auto-oxidation. Although BAHs generally reacted rapidly with compound II, they should be poor peroxidase substrates because the free radicals formed during peroxidation converted myeloperoxidase to compound III. We found that the reduction of ferric myeloperoxidase by BAH radicals was strongly influenced by Hansch's hydrophobicity constants. BAHs containing more hydrophilic substituents were more effective at converting the enzyme to compound III. This implies that BAH radicals must hydrogen bond to residues in the distal heme pocket before they can reduce the ferric enzyme. Inactivation of myeloperoxidase by BAHs

  18. 2-(2-Methyl-benzo-yl)benzoic acid: catemeric hydrogen bonding in a γ-keto acid.

    PubMed

    Platosz, Natalia A; Lalancette, Roger A; Thompson, Hugh W; Newman, Jacob M; Schachter, Ari

    2013-01-01

    The crystal structure of the title compound, C15H12O3, displays catemeric aggregation involving O-H⋯O hydrogen bonds progressing from the carboxyl group of one mol-ecule to the ketone O atom of another glide-related neighbor. The mol-ecule is twisted, with the toluene 80.61 (3)° out of plane with respect to the phenyl group of the benzoic acid. The acid group makes a dihedral angle of 13.79 (14)° with the attached phenyl ring. The mol-ecules are achiral, but the space group glide planes create alternating conformational chirality in the chain units. The four hydrogen-bonding chains progress along [001] in an A-A-B-B pattern (right-to-left versus left-to-right), and are related to each other by the center of symmetry at (0.5, 0.5, 0.5) in the chosen cell. There is one close contact (2.54 Å) between a phenyl H atom and the acid carbonyl from a symmetry-related mol-ecule.

  19. Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

    PubMed Central

    Gutzwiller, A.; Schlegel, P.; Guggisberg, D.; Stoll, P.

    2014-01-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions. PMID:25049984

  20. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  1. Thermochemical investigations of nearly ideal binary solvents. VII: Monomer and dimer models for solubility of benzoic acid in simple binary and ternary solvents.

    PubMed

    Acree, W E; Bertrand, G L

    1981-09-01

    Solubilities are reported for benzoic acid at 25.0 degrees in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, or n-heptane and of cyclohexane with n-hexane or n-heptane and in ternary mixtures of carbon tetrachloride-cyclohexane-n-hexane and carbon tetrachloride-cyclohexane-n-heptane. Solubilities also are reported for benzoic acid in some binary solvents at 30.0 degrees and for m-toluic acid in binary mixtures of cyclohexane and n-hexane at 25.0 degrees. The results are compared to the predictions of equations developed previously for solubility in systems of purely nonspecific interactions, with the benzoic acids considered as either monomeric or dimeric molecules in solution. The dimer model gave more accurate predictions, with a maximum deviation of 4.4% between observed and predicted solubilities in all systems studied. Solubility maxima were predicted and observed for benzoic and m-toluic acids in cyclohexane-n-hexane and for benzoic acid in cyclohexane-n-heptane. The application of these solubility relationships to liquid-liquid partition coefficients is discussed.

  2. Microwave-Assisted Syntheses of Amino Acid Ester Substituted Benzoic Acid Amides: Potential Inhibitors of Human CD81-Receptor HCV-E2 Interaction

    PubMed Central

    Holzer, Marcel; Ziegler, Sigrid; Kronenberger, Bernd; Klein, Christian D; Hartmann, Rolf W

    2008-01-01

    Results from our group showed benzyl salicylate to be a moderate inhibitor of the CD81-LEL–HCV-E2 interaction. To increase the biological activity, heterocyclic substituted benzoic acids were coupled to amino acid esters via microwave assisted DCC-reaction. The prepared compounds were tested for their inhibitory potency by means of a fluorescence labeled antibody assay system using HUH7.5 cells. PMID:19662141

  3. Effects of ionic liquid as additive and the pH of the mobile phase on the retention factors of amino benzoic acids in RP-HPLC.

    PubMed

    Zheng, J; Polyakova, Y; Row, K H

    2007-01-01

    As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.

  4. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study.

    PubMed

    van de Sandt, J J M; van Burgsteden, J A; Cage, S; Carmichael, P L; Dick, I; Kenyon, S; Korinth, G; Larese, F; Limasset, J C; Maas, W J M; Montomoli, L; Nielsen, J B; Payan, J-P; Robinson, E; Sartorelli, P; Schaller, K H; Wilkinson, S C; Williams, F M

    2004-06-01

    To obtain better insight into the robustness of in vitro percutaneous absorption methodology, the intra- and inter-laboratory variation in this type of study was investigated in 10 European laboratories. To this purpose, the in vitro absorption of three compounds through human skin (9 laboratories) and rat skin (1 laboratory) was determined. The test materials were benzoic acid, caffeine, and testosterone, representing a range of different physico-chemical properties. All laboratories performed their studies according to a detailed protocol in which all experimental details were described and each laboratory performed at least three independent experiments for each test chemical. All laboratories assigned the absorption of benzoic acid through human skin, the highest ranking of the three compounds (overall mean flux of 16.54+/-11.87 microg/cm(2)/h). The absorption of caffeine and testosterone through human skin was similar, having overall mean maximum absorption rates of 2.24+/-1.43 microg/cm(2)/h and 1.63+/-1.94 microg/cm(2)/h, respectively. In 7 out of 9 laboratories, the maximum absorption rates of caffeine were ranked higher than testosterone. No differences were observed between the mean absorption through human skin and the one rat study for benzoic acid and testosterone. For caffeine the maximum absorption rate and the total penetration through rat skin were clearly higher than the mean value for human skin. When evaluating all data, it appeared that no consistent relation existed between the diffusion cell type and the absorption of the test compounds. Skin thickness only slightly influenced the absorption of benzoic acid and caffeine. In contrast, the maximum absorption rate of testosterone was clearly higher in the laboratories using thin, dermatomed skin membranes. Testosterone is the most lipophilic compound and showed also a higher presence in the skin membrane after 24 h than the two other compounds. The results of this study indicate that the in

  5. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  6. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.

    PubMed

    Owen, R W; Wimonwatwatee, T; Spiegelhalder, B; Bartsch, H

    1996-08-01

    The hypoxanthine/xanthine oxidase enzyme system is known to produce the superoxide ion and hydrogen peroxide during the hydroxylation of hypoxanthine via xanthine to uric acid. When chelated iron is included in this system, superoxide reduces iron (III) to iron(II) and the iron(II)-chelate further reacts with hydrogen peroxide to form the highly reactive hydroxyl radical. Because of the limitations of colourimetric and spectrophotometric techniques by which, to date, the mechanisms of hydroxyl radical formation in the hypoxanthine/xanthine oxidase system have been monitored, a high performance liquid chromatography method utilizing the ion-pair reagent tetrabutylammonium hydroxide and salicylic acid as an aromatic probe for quantification of hydroxyl radical formation was set up. In the hypoxanthine/xanthine oxidase system the major products of hydroxyl radical attack on salicylic acid were 2,5-dihydroxy benzoic acid and 2,3-dihydroxy benzoic acid in the approximate ratio of 5:1. That the hydroxyl radical is involved in the hydroxylation of salicylic acid in this system was demonstrated by the potency especially of dimethyl sulphoxide, butanol and ethanol as scavengers. Phytic acid, which is considered to be an important protective dietary constituent against colorectal cancer, inhibited hydroxylation of salicylic acid at a concentration one order of magnitude lower than the classical scavengers, but was only effective in the absence of EDTA. The method has been applied to the study of free radical generation in faeces, and preliminary results indicate that the faecal flora are able to produce reactive oxygen species in abundance.

  7. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.

  8. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45.

    PubMed

    Silva, Manori J; Hilton, Donald; Furr, Johnathan; Gray, L Earl; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2016-03-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague-Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R (2) = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures.

  9. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45

    PubMed Central

    Hilton, Donald; Furr, Johnathan; Gray, L. Earl; Preau, James L.; Calafat, Antonia M.; Ye, Xiaoyun

    2015-01-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague–Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R2 = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures. PMID:25804200

  10. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    NASA Astrophysics Data System (ADS)

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-01

    The benzoic acid dimer, (BZA)2, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S1/S2 state splitting and coherent electronic energy transfer within supersonically cooled (BZA)2 and its 13C-, d1 -, d2 -, and 13C/d1 - isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA)2-(h - h) and (BZA)2-(d - d) dimers are C2h symmetric, hence only the S2 ← S0 transition can be observed, the S1 ← S0 transition being strictly electric-dipole forbidden. A single 12C/13C or H/D isotopic substitution reduces the symmetry of the dimer to Cs, so that the isotopic heterodimers (BZA)2 - 13C, (BZA)2 -(h - d), (BZA)2 -(h13C-d), and (BZA)2 -(h - d13C) show both S1 ← S0 and S2 ← S0 bands. The S1/S2 exciton splitting inferred is Δexc = 0.94 ± 0.1 cm-1. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, Δiso, arise from the change of the zero-point vibrational energy upon electronic excitation and range from Δiso = 3.3 cm-1 upon 12C/13C substitution to 14.8 cm-1 for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S1 ← S0 and S2 ← S0 origin bands; near-complete localization is observed even for a single 12C/13C substitution. The S1/ S2 energy gap of (BZA)2 is Δ ^{exc}_{calc} = 11 cm-1 when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic quenching, this decreases to Δ ^{exc}_{vibron}=2.1 cm-1 [P. Ottiger et al., J. Chem. Phys. 136, 174308 (2012)], 10.1063/1.4705119, in good agreement with the observed Δexc = 0.94 cm-1. The observed excitonic splittings can be converted to exciton hopping times τexc. For the (BZA)2-(h - h) homodimer τexc = 18 ps, which is nearly 40 times shorter than the double proton transfer time

  11. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic

  12. Synthesis, characterization and biocidal activity of new organotin complexes of 2-(3-oxocyclohex-1-enyl)benzoic acid.

    PubMed

    Vieira, Flaviana T; de Lima, Geraldo M; Maia, José R da S; Speziali, Nivaldo L; Ardisson, José D; Rodrigues, Leonardo; Correa, Ary; Romero, Oscar B

    2010-03-01

    The reaction of 1,3-cyclohexadione with 2-aminobenzoic acid has produced the 2-(3-oxocyclohex-1-enyl)benzoic acid (HOBz). Subsequent reactions of the ligand with organotin chlorides led to [Me(2)Sn(OBz)O](2) (1), [Bu(2)Sn(OBz)O](2) (2), [Ph(2)Sn(OBz)O](2) (3), [Me(3)Sn(OBz)] (4), [Bu(3)Sn(OBz)] (5) and [Ph(3)Sn(OBz)] (6). All complexes have been fully characterized. In addition the structure of complexes (2) and (4) have been authenticated by X-ray crystallography. The biological activity of all derivatives has been screened against Cryptococcus neoformans and Candida albicans. In addition we have performed toxicological testes employing human kidney cell. The complexes (3), (5) and (6) displayed the best values of inhibition of the fungus growing, superior to ketoconazole. Compound (5) presented promising results in view of the antifungal and cytotoxicity assays.

  13. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    PubMed Central

    2012-01-01

    Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC) and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future. PMID:22545774

  14. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Dean, L O; Drake, M A

    2011-09-01

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations in dried whey products. No legal limit exists in the United States for BP use in whey, but international concerns exist. The objectives of this study were to determine the effect of hydrogen peroxide (HP) or BP bleaching on the flavor of 34% WPC (WPC34) and to evaluate residual BA in commercial and experimental WPC bleached with and without BP. Cheddar whey was manufactured in duplicate. Pasteurized fat-separated whey was subjected to hot bleaching with either HP at 500 mg/kg, BP at 50 or 100 mg/kg, or no bleach. Whey was ultrafiltered and spray dried into WPC34. Color [L*(lightness), a* (red-green), and b* (yellow-blue)] measurements and norbixin extractions were conducted to compare bleaching efficacy. Descriptive sensory and instrumental volatile analyses were used to evaluate bleaching effects on flavor. Benzoic acid was extracted from experimental and commercial WPC34 and 80% WPC (WPC80) and quantified by HPLC. The b* value and norbixin concentration of BP-bleached WPC34 were lower than HP-bleached and control WPC34. Hydrogen peroxide-bleached WPC34 displayed higher cardboard flavor and had higher volatile lipid oxidation products than BP-bleached or control WPC34. Benzoyl peroxide-bleached WPC34 had higher BA concentrations than unbleached and HP-bleached WPC34 and BA concentrations were also higher in BP-bleached WPC80 compared with unbleached and HP-bleached WPC80, with smaller differences than those observed in WPC34. Benzoic acid extraction from permeate showed that WPC80 permeate contained more BA than did WPC34 permeate. Benzoyl peroxide is more effective in color removal of whey and results in fewer flavor side effects compared with HP and residual BA is

  15. Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino benzoic acid- and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Pooja

    2013-03-01

    A series of metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 2-amino benzoic acid thiophen-2-ylmethylene hydrazide (Habth) and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide (Hhbth) have been synthesized. The complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, IR, NMR, ESR spectra and thermal studies (TGA and DTA). Molecular structure of the Habth ligand was determined by single crystal X-ray diffraction technique. Habth acts as a monobasic bidentate ligand in all its complexes bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups whereas, Hhbth acts as a monobasic bidentate in its Co(II) and Ni(II) complexes, bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups and as monobasic tridentate in Cu(II) and Zn(II) complexes bonding through lbond2 Cdbnd O, lbond2 Cdbnd Nsbnd and deprotonated (Csbnd O)- groups with the metal ion. Electronic spectra suggest a square planar geometry for Co(II), Ni(II) and Cu(II) complexes of Habth and Co(II) and Ni(II) complexes of Hhbth. However, the Cu(II) and Zn(II) complexes of Hhbth have octahedral geometry. The ESR spectra of Cu(II) complex of Hhbth in the solid state and in DMSO frozen solution show axial signals and suggest the presence of unpaired electron in d orbital of Cu(II). The Cu(II) complex of Habth in solid state shows isotropic signal, whereas, axial signal in DMSO frozen solution in the range of tetragonally distorted octahedral geometry due to interactions of DMSO molecules at axial positions. Thermal studies of some of the metal complexes show a multi-step decomposition pattern of bonded ligands in the complex.

  16. 40 CFR 180.1110 - 3-Carbamyl-2,4,5-trichloro-benzoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1110 3-Carbamyl-2,4,5-trichloro-benzoic... is established for the residues of 3-carbamyl-2,4,5-trichlorobenzoic acid in or on all raw agricultural commodities which occur from the direct application of chlorothalonil to crops in § 180.275...

  17. Synthesis and anti-inflammatory evaluation of N-sulfonyl anthranilic acids via Ir(III)-catalyzed C-H amidation of benzoic acids.

    PubMed

    Han, Sang Hoon; Suh, Hyo Sun; Jo, Hyeim; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kim, Hyung Sik; Jung, Young Hoon; Lee, Byung Mu; Kim, In Su

    2017-03-29

    The iridium(III)-catalyzed ortho-C-H amidation of benzoic acids with sulfonyl azides is described. These transformations allow the facile generation of N-sulfonyl anthranilic acids, which are known as crucial scaffolds found in biologically active molecules. In addition, all synthetic products were evaluated for in vitro anti-inflammatory activity against interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with lipopolysaccharide (LPS)-induced RAW264.7 cells. Notably, compounds 4c and 4d, generated from p-OMe- and p-Br-sulfonyl azides, were found to display potent anti-inflammatory property stronger than that of well-known NSAIDs ibuprofen.

  18. Spectroscopic studies on the interaction between norfloxacin and p-amino benzoic acid: Analytical application on determination of norfloxacin

    NASA Astrophysics Data System (ADS)

    More, V. R.; Mote, U. S.; Patil, S. R.; Kolekar, G. B.

    2009-10-01

    Fluorescence (Förster) Resonance Energy Transfer (FRET) between norfloxacin (NF) and p-amino benzoic acid (PABA) has been investigated by fluorescence and UV-vis absorption spectroscopy. It was found that the quenching of fluorescence of PABA is followed by simultaneous sensitization of NF fluorescence. The hydrophobic and electrostatic interaction plays an important role to stabilize the complex. The binding constant ( K), binding site number ( n) and corresponding thermodynamic parameters like free energy change (Δ G), enthalpy change (Δ H) and entropy change (Δ S) were determined according to van't Hoff equation. Using FRET, the distance ( r) between donor (PABA) and acceptor (NF) was obtained. This method is simple, selective and relatively free of interference from co-existing substances. The method was successfully applied to the determination of norfloxacin from pharmaceutical tablets.

  19. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. [Desulfovibrio vulgaris; Desulfovibrio simplex; Desulfovibrio sp

    SciTech Connect

    Zellner, G.; Winter, J. ); Kneifel, H. )

    1990-07-01

    Desulfovibrio vulgaris Marburg, Desulfovibrio simplex XVI, and Desulfovibrio sp. strain MP47 used benzaldehydes such as vanillin, 3,4,5-trimethoxybenzaldehyde, protocatechualdehyde, syringaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, and 2-methoxybenzaldehyde as electron donors for sulfate reduction and carbon dioxide and/or components of yeast extract as carbon sources for cell synthesis. The aldehydes were oxidized to their corresponding benzoic acids. The three sulfate reducers oxidized up to 7 mM vanillin and up to 4 mM p-anisaldehyde. Higher concentrations of vanillin or p-anisaldehyde were toxic. In addition, pyridoxal hydrochloride and o-vanillin served as electron donors for sulfate reduction. Salicylaldehyde, pyridine-2-aldehyde, pyridine-4-aldehyde, and 4-hydroxy-3-methoxybenzylalcohol were not oxidized. No molecular hydrogen was detected in the gas phase. The oxidized aldehydes were not further degraded.

  20. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters.

    PubMed

    Pesci, Lorenzo; Kara, Selin; Liese, Andreas

    2016-10-04

    The enzymatic carboxylation of phenolic compounds has been attracting increasing interest in recent years, owing to its regioselectivity and technical potential as a biocatalytic equivalent for the Kolbe-Schmitt reaction. Mechanistically the reaction was demonstrated to occur through electrophilic aromatic substitution/water elimination with bicarbonate as a cosubstrate. The effects of the substituents on the phenolic ring have not yet been elucidated in detail, but this would give detailed insight into the substrate-activity relationship and would provide predictability for the acceptance of future substrates. In this report we show how the kinetic and (apparent) thermodynamic behavior can be explained through the evaluation of linear free energy relationships based on electronic, steric, and geometric parameters and through the consideration of enzyme-ligand interactions. Moreover, the similarity between the benzoic acid decarboxylases and the amidohydrolases superfamily is investigated, and promiscuous hydrolytic activity of the decarboxylase in the context of the hydrolysis of an activated ester bond has been established.

  1. Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures

    NASA Astrophysics Data System (ADS)

    Manouchehrian Fard, Manouchehr; Beiki, Hossein

    2016-10-01

    An experimental study was performed to measure benzoic acid diffusion coefficient in water-based γ-Al2O3 nanofluids at different temperatures. Measurements were carried out at 15, 20 and 25 °C. γ-Al2O3 nanoparticles with an average diameter of 10-20 nm were added into de-ionized water as the based fluid. Nanoparticles volume fractions used in the based fluid were 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 %. Measurements showed that the diffusion coefficients was not changed with nanoparticles concentration and no enhancement was found. Dependence of diffusion coefficients on nanoparticles concentration followed the same trend in all temperatures investigated in this work. Nano stirring and nano-obstacles could be regarded as two reasons for mass diffusivity changes in nanofluids.

  2. [Radiocompetitive assay of sulfamido-3-chloro-4-benzoic acid with carbonic anhydrase as binding reagent (author's transl)].

    PubMed

    Khiat, M; Bali, J P; Guibert, M S; Chanal, J L; Marignan, R

    1978-01-16

    The control of patients treated by diuretic sulfonamides can be carried out by a radiocompetitive assay using their binding properties to carbonic anhydrase (CA). In this paper we have studied the assay of sulfamido-3-chloro-4-benzoic acid (SD3) using dialysis equilibrium as separation procedure. With (CA) 2 X 10(-6) M and 14C-SD3 0.5 X 10(-6) M (specific activity: 2 muCi/mg), can be detected 0.5 X 10(-6) M of (SD3) in the assay medium. 6.5 mg protein present in serum lower the assay sensitivity twenty times, owing to an elevated value of the affinity constant, Ka, of albumin-(SD3) complex (10(3) mol-1). On the other hand, the molecules with sulfamidobenzoic group cannot be differentiated in this procedure.

  3. Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins.

    PubMed

    Rajendiran, N; Jude Jenita, M

    2015-02-05

    Inclusion complex formation of 4-hydroxy-3-methoxybenzoic acid (HMBA) and 4-hydroxy-3,5-dimethoxybenzoic acid (HDMBA) with α-CD, β-CD, HP-α-CD and HP-β-CD were studied by absorption, steady state fluorescence, time resolved fluorescence, FT-IR, (1)H NMR and molecular modeling methods. The effect of the CDs with HMBA and HDMBA were studied in pH∼1, pH∼7 and pH∼10 buffer solutions. The study revealed that both hydroxybenzoic acids formed 1:1 complex with the four CDs. The theoretical values suggest that both guests are partially encapsulated into the CDs cavity. The hydroxy group is present in the interior part of the CD cavity and carboxyl group is present in the hydrophilic part of the CD cavity. Molecular modeling studies proved that (i) the negative Gibbs energy and enthalpy changes for the inclusion complexes indicated that the formation of these complexes were spontaneous and exothermic, (ii) hydrogen bonding interactions played a major role in the inclusion process, (iii) the dipole moment values for guests increased when they entered into the CDs cavities which is an indication of the increase of the polarity and the formation of complex and (iv) differences in binding energy and enthalpy change suggest that the β-CD formed more stable complex than α-CD.

  4. Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Jude Jenita, M.

    2015-02-01

    Inclusion complex formation of 4-hydroxy-3-methoxybenzoic acid (HMBA) and 4-hydroxy-3,5-dimethoxybenzoic acid (HDMBA) with α-CD, β-CD, HP-α-CD and HP-β-CD were studied by absorption, steady state fluorescence, time resolved fluorescence, FT-IR, 1H NMR and molecular modeling methods. The effect of the CDs with HMBA and HDMBA were studied in pH ∼ 1, pH ∼ 7 and pH ∼ 10 buffer solutions. The study revealed that both hydroxybenzoic acids formed 1:1 complex with the four CDs. The theoretical values suggest that both guests are partially encapsulated into the CDs cavity. The hydroxy group is present in the interior part of the CD cavity and carboxyl group is present in the hydrophilic part of the CD cavity. Molecular modeling studies proved that (i) the negative Gibbs energy and enthalpy changes for the inclusion complexes indicated that the formation of these complexes were spontaneous and exothermic, (ii) hydrogen bonding interactions played a major role in the inclusion process, (iii) the dipole moment values for guests increased when they entered into the CDs cavities which is an indication of the increase of the polarity and the formation of complex and (iv) differences in binding energy and enthalpy change suggest that the β-CD formed more stable complex than α-CD.

  5. Kinetics of proton transfer between ortho substituted benzoic acids and the carbinol base of crystal violet in toluene. Ortho effect on the reactivity of benzoic acids in apolar aprotic solvents.

    PubMed

    Sen Gupta, Susanta K; Mishra, Sangeeta

    2011-05-12

    Apolar aprotic solvents are particularly advantageous for investigating the intrinsic ortho effect free from complications of specific solvent effects. A kinetic study for toluene-phase proton transfers between ortho F, Cl, Br, I, OMe, OEt, OPh, OAc, Me, NO(2), COMe, COPh, OH, NH(2), and H benzoic acids and crystal violet carbinol base has shown the forward rate constant (log k(+1)) is the most appropriate reactivity parameter in toluene. log k(+1) (toluene) as compared to other reported reactivity parameters in benzene, toluene, or chlorobenzene has been found more sensitive to the ortho substituent effect. The regression results of the correlation of log k(+1) (toluene) of the acids (except OH and NH(2) substituted ones) according to seven ortho effect models are all very significant, and the best result is given by Fujita-Nishioka's model. The overall analysis reveals that a substituent's ortho effect pattern is a 58:24:18 ratio of its ordinary electrical, proximity electrical, and steric effects and that the proximity electrical effect is the major component to account for the peculiarity of the substituent's ortho effect. The results further favor the transmission of this effect mainly through the molecular cavity. The effect may, however, be outweighed by the steric component for bulky enough substituents, e.g., Me. The enhanced strength exhibited by salicylic acid in toluene has been quantitatively described using Pytela-Liška's σ(HB)(i) parameter. The abnormally high log k(+1) observed for anthranilic acid in toluene has been ascribed to a very extensive homoconjugation in its acid-acid anion complex induced by the acid's three hydrogen bond donors.

  6. Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk-oxy-benzoic acids: 4-meth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-11-01

    The crystal structures of four hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk-oxy-benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth-oxy-benzoic acid mol-ecules and one 1,2-di(pyridin-4-yl)ethene mol-ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol-ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol-ecules. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter-molecular C-H⋯O inter-actions are observed. The 2:1 units of (I) and (II) are linked via C-H⋯O hydrogen bonds, forming tape structures. In (III), the C-H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C-H⋯O inter-actions are observed, but π-π and C-H⋯π inter-actions link the units into a column structure.

  7. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ho, S. S. H.; Lee, S. C.; Kawamura, K.; Zou, S. C.; Cao, J. J.; Xu, H. M.

    2011-03-01

    Ground-based PM2.5 samples collected at four different sites in Pearl River Delta region (PRD) during winter and summer (from 14 December 2006 to 28 January 2007 in winter and from 4 July to 9 August 2007 in summer) were analyzed for 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species followed by phthalic acid (Ph) in PRD region. The concentrations of total dicarboxylic acids ranged from 99 to 1340 ng m-3, with an average of 438 ± 267 ng m-3 in PRD. The concentrations of total ketocarboxylic acids ranged from 0.6 to 207 ng m-3 (43 ± 48 ng m-3 on average) while the concentrations of total α-dicarbonyls, including glyoxal and methylglyoxal, ranged from 0.2 to 89 ng m-3, with an average of 11 ± 18 ng m-3 in PRD. The total quantified water-soluble compounds (TQWOC) (organic carbon) accounted for 3.4 ± 2.2% of OC and 14.3 ± 10.3% of water-soluble OC (WSOC). Hexadecanoic acid (C16:0), octadecanoic acid (C18:0) and oleic acid (C18:1) were the three most abundant fatty acids in PRD. The distributions of fatty acids were characterized by a strong even carbon number predominance with a maximum (Cmax) at hexadecanoic acid (C16:0). Ratio of C18:1 to C18:0 acts as an indicator for aerosol aging. In PRD, an average of C18:1/C18:0 ratio was 0.53 ± 0.39, suggesting an enhanced photochemical degradation of unsaturated fatty acid. Moreover, the concentrations of benzoic acid ranged from 84 to 306 ng m-3, (165 ± 48 ng m-3 on average), which can be emitted as primary pollutant from motor vehicles exhaust, or formed from photochemical degradation of aromatic hydrocarbons. Seasonal variations of the organic specie concentrations were found in the four sampling cities. Higher concentrations of TQWOC were observed in winter (598 ± 321 ng m-3) than in summer (372 ± 215 ng m-3). However

  8. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks.

    PubMed

    van Duuren, J B J H; Brehmer, B; Mars, A E; Eggink, G; Dos Santos, V A P Martins; Sanders, J P M

    2011-06-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, toluene, or phenol from lignin to cis, cis-muconic acid, which is subsequently converted to adipic acid through hydrogenation. Apart from the impact of usage of petrochemical and biomass-based feedstocks, the environmental impact of the final concentration of cis, cis-muconic acid in the fermentation broth was studied using 1.85% and 4.26% cis, cis-muconic acid. The LCA focused on the cumulative energy demand (CED), cumulative exergy demand (CExD), and the CO(2) equivalent (CO(2) eq) emission, with CO(2) and N(2) O measured separately. The highest calculated reduction potential of CED and CExD were achieved using phenol, which reduced the CED by 29% and 57% with 1.85% and 4.26% cis, cis-muconic acid, respectively. A decrease in the CO(2) eq emission was especially achieved when the N(2) O emission in the combined biological and chemical process was restricted. At 4.26% cis, cis-muconic acid, the different carbon backbone feedstocks contributed to an optimized reduction of CO(2) eq emissions ranging from 14.0 to 17.4 ton CO(2) eq/ton adipic acid. The bulk of the bioprocessing energy intensity is attributed to the hydrogenation reactor, which has a high environmental impact and a direct relationship with the product concentration in the broth.

  9. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ho, S. S. H.; Lee, S. C.; Kawamura, K.; Zou, S. C.; Cao, J. J.; Xu, H. M.

    2010-11-01

    Ground-based PM2.5 samples collected in Pearl River Delta (PRD) region during winter and summer (from 14 December 2006 to 28 January 2007 in winter and from 4 July 2007 to 9 August 2007 in summer) were analyzed for 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species followed by phthalic acid (Ph) in PRD region. The concentrations of total dicarboxylic acids ranged from 99 to 1340 ng m-3, with an average of 438 ± 267 ng m-3 in PRD. The concentrations of total ketocarboxylic acids ranged from 0.6 to 207 ng m-3 (43 ± 48 ng m-3 on average) while the concentrations of total α-dicarbonyls, including glyoxal and methylglyoxal, ranged from 0.2 to 89 ng m-3, with an average of 11 ± 18 ng m-3 in PRD. The total quantified water-soluble organic carbon (TQWOC) accounted for 3.4 ± 2.2% of OC and 14.3 ± 10.3% of water-soluble OC (WSOC). Hexadecanoic acid (C16:0), octadecanoic acid (C18:0) and oleic acid (C18:1) are the three most abundant fatty acids in PRD. The distributions of fatty acids are characterized by a strong even carbon number predominance with a maximum (Cmax) at hexadecanoic acid (C16:0). Ratio of C18:1 to C18:0 acts as an indicator for aerosol aging. In PRD, an average of C18:1/C18:0 ratio was 0.53 ± 0.39, suggesting an enhanced photochemical degradation of unsaturated fatty acid. Seasonal variations of the pollutant concentrations were found in the four sampling cities. Higher concentrations of TQWOC were observed in winter (544 ng m-3) than in summer (318 ng m-3). However, the abundances of TQWOC in OC mass were higher in summer (1.8-12.4%, 5.4% on average) than in winter (1.1-5.7, 2.6% on average), being consistent with enhanced secondary production of dicarboxylic acids in warmer weather. Spatial variations of water-soluble dicarboxylic acids were characterized

  10. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs.

    PubMed

    Bühler, K; Liesegang, A; Bucher, B; Wenk, C; Broz, J

    2010-10-01

    In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25 to 66 kg of BW, whereas in Exp. 2, 32 crossbred gilts (25 to 108 kg of BW) were used. All pigs were individually housed in pens and restrictively fed 1 of 4 diets throughout the experiment. Total P content of the wheat-soybean diets was 4 g/kg (all values on an as-fed basis). The experimental diets were 1) unsupplemented control diet; 2) control diet with 0.5% BA; 3) Phy diet with 750 Phy units (FTU) of Phy/kg and no BA; and 4) PhyBA, control diet with 750 FTU of Phy/kg and 0.5% BA. Blood samples were taken at the beginning of the experiment, wk 3 (only for pigs in Exp. 1), wk 6, and before slaughter to determine P and Ca in serum and concentrations of total alkaline phosphatase, serum crosslaps (marker for bone resorption), and osteocalcin (marker for bone formation). Ash, P, and Ca contents of bones and bone stability were examined using the left metatarsal bones and tibia of the pigs after slaughter. Benzoic acid did not influence any of the blood variables (P > 0.09). The addition of Phy increased (P < or =0.03) P concentration in serum from 2.71 +/- 0.08 to 3.03 +/- 0.07 mmol/L at wk 3 and content of serum crosslaps from 0.39 +/- 0.02 to 0.45 +/- 0.02 ng/mL at wk 6 and decreased (P < 0.05) osteocalcin at wk 6 by 160 ng/mL. No long-term effect of diets on serum mineral concentrations, alkaline phosphatase, and bone markers in serum could be detected. Benzoic acid negatively affected (P < or = 0.03) Ca content in bones and distal bone mineral density, especially in the younger pigs. In the control diet with 0.5% BA and the control diet with 750 FTU of Phy/kg and 0.5% BA, the CA content in bones and distal bone mineral density were reduced by 6 and 11%, respectively

  11. Theoretical investigations on the structure and properties of p-n-alkoxy benzoic acid based liquid crystals

    NASA Astrophysics Data System (ADS)

    Subhapriya, P.; Dhanapal, V.; Sadasivam, K.; Vijayanand, P. S.

    2016-05-01

    The present study focused on the structural conformations, alkoxy chain lengths and mesogenic properties of two mole of alkoxy benzoic acid(nOBA) and one mole of suberic acid (SA) hydrogen bonded (nOBASA) complexes (n=8 to 10) by density functional theory (DFT) calculations and the Fourier Transform Infrared (FT-IR) spectrum. The intermolecular hydrogen bond formation was confirmed by the optimized geometric bond lengths and bond angles obtained by computation. Using the natural bond orbital (NBO) analysis, the stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed. Results obtained shows that the charge in electron density (ED) in σ*and π* antibonding orbital and second order delocalization energies E(2) authorizes the occurrence of intermolecular charge transfer. The molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule to obtain the chemical reactivity of the molecule. From the local charge distributions, the mesomorphic behavior and the nematic phase stabilities for each of the molecule have been predicted. Finally the calculated result is applied to simulated infrared spectra of 8OBASA mesogens which shows good agreement with the observed spectra. The comparison of the theoretical results obtained with the experimental ones shows the reliability of this DFT method.

  12. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: A nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Tamilselvan, S.; Vimalan, M.; Vetha Potheher, I.; Rajasekar, S.; Jeyasekaran, R.; Antony Arockiaraj, M.; Madhavan, J.

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm2. The sample was thermally stable up to 134 °C. Microhardness, dielectric and AC/DC conductivity measurements were made along (0 0 1) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  13. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: a nonlinear optical single crystal.

    PubMed

    Tamilselvan, S; Vimalan, M; Potheher, I Vetha; Rajasekar, S; Jeyasekaran, R; Arockiaraj, M Antony; Madhavan, J

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm(2). The sample was thermally stable up to 134°C. Microhardness, dielectric and AC/DC conductivity measurements were made along (001) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  14. Studies on New Activities of Enantiomers of 2-(2-Hydroxypropanamido) Benzoic Acid: Antiplatelet Aggregation and Antithrombosis

    PubMed Central

    Zhang, Qili; Wang, Danlin; Zhang, Meiyan; Zhao, Yunli; Yu, Zhiguo

    2017-01-01

    R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA), a marine-derived anti-inflammatory drug, however, the antiplatelet and antithrombotic effects have not been investigated. In this paper, the in vitro antiplatelet activities and in vivo antithrombotic effects of R-/S-HPABA were investigated, for the first time. The effects of R-/S-HPABA on platelet aggregation induced by adenosine diphosphate (ADP), collagen (COLL) and arachidonic acid (AA) were evaluated. In addition, the in vivo bleeding time, clotting time, collagen-epinephrine induced pulmonary thrombosis and common carotid artery thrombosis were also investigated in rats. R-/S-HPABA significantly inhibited ADP, COLL and AA induced platelet aggregation in rabbit platelet rich plasma in vitro compared with control group, to a degree similar to that of aspirin. Besides, R-/S-HPABA prolonged bleeding time and clotting time as well as increased the recovery rate obviously in pulmonary thrombosis. Moreover, the level of thromboxane B2 (TXB2) was decreased while the production of 6-keto-prostaglandin F1α (6-keto-PGF1α) was increased markedly by R-/S-HPABA. Furthermore, R-/S-HPABA reduced carotid artery thrombosis weight. These results illustrated that R-/S-HPABA could be a potent antiplatelet aggregation and antithrombotic agent. PMID:28107496

  15. Analytical studies of the interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides

    NASA Astrophysics Data System (ADS)

    Shehata, A. M. A.; Azab, H. A.; El-assy, N. B.; Anwar, Z. M.; Mostafa, H. M.

    2016-01-01

    The interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides (adenosine, cytidine, guanosine and inosine) was investigated using UV and fluorescence methods. The reaction of Tb-complex with cytidine, guanosine and adenosine is accompanied by shift to longer wavelength in the absorption band, while there is a blue shift in the absorption band with an enhancement in the molar absorptivity upon the reaction with inosine. The fluorescence intensity of Tb(III)-2-{[(4- methoxy benzoyl) oxy]} methyl benzoic acid binary complex at λ = 545 nm (5D4 → 7F5) was decreased with the addition of the nucleoside molecule following the order: cytidine > inosine > guanosine > adenosine.

  16. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  17. Preparation and Identification of Benzoic Acids and Benzamides: An Organic "Unknown" Lab

    NASA Astrophysics Data System (ADS)

    Taber, Douglass F.; Nelson, Jade D.; Northrop, John P.

    1999-06-01

    The reaction of an unknown substituted benzene derivative (illustrated by toluene) with oxalyl chloride and aluminum chloride gives the acid chloride. Hydrolysis of the acid chloride gives the acid, and reaction of the acid with concentrated aqueous ammonia gives the benzamide.

    The equivalent weight of the acid can be determined by titration with standardized aqueous sodium hydroxide. Given this information and the melting points of the acid and the benzamide, it is possible to deduce the structure of the initial unknown.

  18. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.

    PubMed

    Ferrer-Sueta, G; Ruiz-Ramírez, L; Radi, R

    1997-12-01

    Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.

  19. Effect of doping of calcium fluoride nanoparticles on the photoluminescence properties of europium complexes with benzoic acid derivatives as secondary ligands and 2-aminopyridine as primary ligand

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Narula, Anudeep Kumar

    2015-08-01

    The present article reports the synthesis of three Eu(III) complexes [Eu(BA)3(2-ap)] (1), [Eu(HBA)3(2-ap)] (2) and [Eu(ABA)3(2-ap)] (3) (BA = benzoic acid, HBA = 2-hydroxy benzoic acid, ABA = 2-amino benzoic acid and 2-ap = 2-aminopyridine) carried out in ethanol solution. The complexes were further doped with CaF2 nanoparticles and a change in the photoluminescence properties was observed. The compositions and structural investigation of the complexes were determined by elemental analysis and Fourier transform infrared spectroscopy (FTIR) which suggest the coordination of ligands with the central Eu(III) ion. The optical properties of the complexes were studied by Ultraviolet Visible absorption spectroscopy (UV-Vis) and photoluminescence studies (PL). The relative PL intensity was enhanced in the Eu(III) complexes doped with CaF2 nanoparticles as compared to the pure Eu(III) complexes, however the increase in intensity varied in the order of ligands ABA > HBA > BA. The photoluminescence lifetime decay curves also revealed the longer lifetime (τ) and higher quantum efficiency (η) for europium complexes with ABA ligands suggesting the efficient energy transfer and better sensitizing ability of the ligand to europium ion. The morphology of the synthesized compounds were studied by Scanning Electron Microscopy (SEM) revealing spherical morphology with agglomeration of the nanoparticles.

  20. Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2014-09-01

    The charge transfer complexes of the donor p-nitroaniline (PNA) with the π-acceptor benzoic acid (BEA) have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using an absorption spectrophotometer. The outcome suggests that the formation of the CT-complex is comparatively high in less polar solvent. The stoichiometry of the CT-complex was found to be 1:1. The physical parameters of the CT-complex were evaluated by the Benesi-Hildebrand equation. The data are discussed in terms of the formation constant (KCT), molar extinction coefficient (ɛCT), Standard Gibbs free energy (ΔG0), oscillator strength (f), transition dipole moment (μEN), resonance energy (RN) and ionization potential (ID). The formation constant (KCT) of the complex was depends upon the nature of electron acceptor, donor, and polarity of solvents used. It is also observed that a charge transfer molecular complex is stabilized by hydrogen bonding. The formation of the complex has been confirmed by UV-visible, FT-IR, 1H NMR and TGA/DTA. The structure of the CT-complex is [(PNA)+ (BEA)-]. A general mechanism for its formation of the complex has also been proposed.

  1. Study of cross - relaxation and molecular dynamics in the solid 3-(trifluoromethyl) benzoic acid by solid state NMR off - resonance.

    PubMed

    Woźniak-Braszak, Aneta

    2017-02-01

    Molecular dynamics of the solid 3-(trifluoromethyl) benzoic acid containing proton (1)H and fluorine (19)F nuclei was explored by the solid-state NMR off - resonance technique. Contrary to the previous experiments the proton nuclei system I relaxed in the off - resonance effective field B→e while fluorine nuclei system S was saturated for short time in comparison to the relaxation time T1I. New cross - relaxation solid - state NMR off - resonance experiments were conducted on a homebuilt pulse spectrometer operating at the on-resonance frequency of 30.2MHz, at the off - resonance frequency varied between 30.2 and 30.6MHz for protons and at the frequency of 28.411MHz for fluorines, respectively. Based on the experimental data the dispersions of the proton off - resonance spin - lattice relaxation rate ρρ(I), the fluorine off - resonance spin - lattice relaxation rate ρρ(S) and the cross - relaxation rate σρ in the rotating frame were determined.

  2. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate specie.

    PubMed

    Kumar, Satendra; Maji, S; Joseph, M; Sankaran, K

    2015-03-05

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3](-) which is highly luminescent. In particular, three sharp bands at 431, 443, 461nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68μs which is much more compared to the lifetime of uncomplexed uranyl (20μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3](-) specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  3. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.

    PubMed Central

    Monserrate, E; Häggblom, M M

    1997-01-01

    The anaerobic biodegradation of monobrominated phenols and benzoic acids by microorganisms enriched from marine and estuarine sediments was determined in the presence of different electron acceptors [i.e., Fe(III), SO4(2-), or HCO3-]. Under all conditions tested, the bromophenol isomers were utilized without a lengthy lag period whereas the bromobenzoate isomers were utilized only after a lag period of 23 to 64 days. 2-Bromophenol was debrominated to phenol, with the subsequent utilization of phenol under all three reducing conditions. Debromination of 3-bromophenol and 4-bromophenol was also observed under sulfidogenic and methanogenic conditions but not under iron-reducing conditions. In the bromobenzoate-degrading cultures, no intermediates were observed under any of the conditions tested. Debromination rates were higher under methanogenic conditions than under sulfate-reducing or iron-reducing conditions. The stoichiometric reduction of sulfate or Fe(III) and the utilization of bromophenols and phenol indicated that biodegradation was coupled to sulfate or iron reduction, respectively. The production of phenol as a transient intermediate demonstrates that reductive dehalogenation is the initial step in the biodegradation of bromophenols under iron- and sulfate-reducing conditions. PMID:9480645

  4. D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells.

    PubMed

    Katono, Masataka; Bessho, Takeru; Meng, Sheng; Humphry-Baker, Robin; Rothenberger, Guido; Zakeeruddin, Shaik M; Kaxiras, Efthimios; Grätzel, Michael

    2011-12-06

    A D-π-A dye (KM-1) incorporating cyano-benzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66,700 M(-1) cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO(2). In addition, the adsorption of the dye on TiO(2) follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO(2) seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to design new dyes that combine good visible light harvesting with strong binding to the metal oxide surface.

  5. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    PubMed Central

    Prompanya, Chadaporn; Dethoup, Tida; Gales, Luís; Lee, Michael; Pereira, José A. C.; Silva, Artur M. S.; Pinto, Madalena M. M.; Kijjoa, Anake

    2016-01-01

    Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. PMID:27438842

  6. Glutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing mice.

    PubMed

    Slemmer, Jennifer E; Matsushita, Shinichi; De Zeeuw, Chris I; Weber, John T; Knöpfel, Thomas

    2004-06-01

    The homeostasis of intracellular Cl(-) concentration ([Cl(-)](i)) is critical for neuronal function, including gamma-aminobutyric acid (GABA)ergic synaptic transmission. Here, we investigated activity-dependent changes in [Cl(-)](i) using a transgenetically expressed Cl(-)-sensitive enhanced yellow-fluorescent protein (EYFP) in cultures of mouse hippocampal neurons. Application of glutamate (100 microm for 3 min) in a bath perfusion to cell cultures of various days in vitro (DIV) revealed a decrease in EYFP fluorescence. The EYFP signal increased in amplitude with increasing DIV, reaching a maximal response after 7 DIV. Glutamate application resulted in a slight neuronal acidification. Although EYFP fluorescence is sensitive to pH, EYFP signals were virtually abolished in Cl(-)-free solution, demonstrating that the EYFP signal represented an increase in [Cl(-)](i). Similar to glutamate, a rise in [Cl(-)](i) was also induced by specific ionotropic glutamate receptor agonists and by increasing extracellular [K(+)], indicating that an increase in driving force for Cl(-) suffices to increase [Cl(-)](i). To elucidate the membrane mechanisms mediating the Cl(-) influx, a series of blockers of ion channels and transporters were tested. The glutamate-induced increase in [Cl(-)](i) was resistant to furosemide, bumetanide and 4,4'-diisothiocyanato-stilbene-2,2'-disulphonic acid (DIDS), was reduced by bicuculline to about 80% of control responses, and was antagonized by niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We conclude that membrane depolarization increases [Cl(-)](i) via several pathways involving NFA- and NPPB-sensitive anion channels and GABA(A) receptors, but not through furosemide-, bumetanide- or DIDS-sensitive Cl(-) transporters. The present study highlights the vulnerability of [Cl(-)](i) homeostasis after membrane depolarization in neurons.

  7. Basolateral Cl channels in primary airway epithelial cultures.

    PubMed

    Fischer, Horst; Illek, Beate; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2007-06-01

    Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.

  8. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels.

    PubMed

    Ordaz, B; Vaca, L; Franco, R; Pasantes-Morales, H

    2004-06-01

    Volume changes and whole cell ionic currents activated by gradual osmolarity reductions (GOR) of 1.8 mosM/min were characterized in C6 glioma cells. Cells swell less in GOR than after sudden osmolarity reductions (SOR), the extent of swelling being partly Ca(2+) dependent. In nominally Ca(2+)-free conditions, GOR activated predominantly whole cell outward currents. Cells depolarized from the initial -79 mV to a steady state of -54 mV reached at 18% osmolarity reduction [hyposmolarity of -18% (H-18%)]. Recordings of Cl(-) and K(+) currents showed activation at H-3% of an outwardly rectifying Cl(-) current, with conductance of 1.6 nS, sensitive to niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, followed at H-18% by an outwardly rectifying K(+) current with conductance of 4.1 nS, inhibited by clofilium but insensitive to the typical K(+) channel blockers. With 200 nM Ca(2+) in the patch pipette, whole cell currents activated at H-3% and at H-13% cells depolarized from -77 to -63 mV. A K(+) current activated at H-1%, showing a rapid increase in conductance, suppressed by charybdotoxin and insensitive to clofilium. These results show the operation of two different K(+) channels in response to GOR in the same cell type, activated by Ca(2+) and osmolarity and with different osmolarity activation thresholds. Taurine and glutamate efflux, monitored by labeled tracers, showed delayed osmolarity thresholds of H-39 and H-33%, respectively. This observation clearly separates the Cl(-) and amino acid osmosensitive pathways. The delayed amino acid efflux may contribute to counteract swelling at more stringent osmolarity reductions.

  9. Cell Volume Decrease as a Link between Azaspiracid-Induced Cytotoxicity and c-Jun-N-Terminal Kinase Activation in Cultured Neurons

    PubMed Central

    Vale, Carmen; Nicolaou, Kyriacos C.; Frederick, Michael O.; Vieytes, Mercedes R.; Botana, Luis M.

    2010-01-01

    Azaspiracids (AZAs) are a group of marine toxins recently described that currently includes 20 members. Not much is known about their mechanism of action, although the predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system, and exhibits high neurotoxicity in vitro. AZA distribution is increasing globally with mussels being most widely implicated in AZA-related food poisoning events, with human poisoning by AZAs emerging as an increasing worldwide problem in recent years. We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Several targets for AZA-induced neurotoxicity were evaluated. AZA-1 elicited a concentration-dependent hyperpolarization in cerebellar granule cells of 2–3 days in vitro; however, it did not modify membrane potential in mature neurons. Furthermore, in immature cells, AZA-1 decreased the membrane depolarization evoked by exposure of the neurons to 50mM K+. Preincubation of the neurons with 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 4-acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid (SITS), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), amiloride, or ouabain before addition of AZA-1 decreased the AZA-1-induced neurotoxicity and the increase in phosphorylated c-Jun-N-terminal kinase (JNK) caused by the toxin, indicating that disruption in ion fluxes was involved in the neurotoxic effect of AZA-1. Furthermore, short exposures of cultured neurons to AZA-1 caused a significant decrease in neuronal volume that was reverted by preincubation of the neurons with DIDS or amiloride before addition of the toxin. The results presented here indicate that the JNK activation induced by AZA-1 is secondary to the decrease in cellular volume elicited by the toxin. PMID:19815690

  10. Analysis of hyposmolarity-induced taurine efflux pathways in the bullfrog sympathetic ganglia.

    PubMed

    Sakai, S; Tosaka, T

    1999-03-01

    Hyposmolarity-induced taurine release was dependent on the decrease in medium osmolarity (5-50%) in the satellite glial cells of the bullfrog sympathetic ganglia. Release of GABA induced by hyposmolarity was much less than that of taurine. Omission of external Cl- replaced with gluconate totally suppressed taurine release, but only slightly suppressed GABA release. Bumetanide and furosemide, blockers of the Na+/K+/2Cl- cotransport system, inhibited taurine release by about 40%. Removal of external Na+ by replacement with choline, or omission of K+, suppressed taurine release by 40%. Antagonists of the Cl-/HCO3 exchange system, SITS, DIDS and niflumic acid, significantly reduced taurine release. The carbonic anhydrase inhibitor, acetazolamide, reduced the taurine release by 34%. Omission of external HCO3 by replacement with HEPES caused a 40% increase in the hyposmolarity-induced taurine release. Hyposmolarity-induced GABA release was not affected by bumetanide or SITS. Chloride channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and N-phenylanthranilic acid (DPC), practically abolished taurine release. Blockers of K+ channels, clofilium and quinidine, had no effect on the taurine release. The hyposmolarity-induced taurine release was considerably enhanced by a simultaneous increase in external K+. GABA was not mediated by the same transport pathway as that of taurine. These results indicate that Cl- channels may be responsible for the hyposmolarity-induced taurine release, and that Na+/K+/2Cl- cotransporter and Cl-/HCO3 exchanger may contribute to maintain the intracellular Cl- levels higher than those predicted for a passive thermodynamic distribution in the hyposmolarity-induced taurine release.

  11. Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade.

    PubMed

    Dodds, Kelsi N; Staikopoulos, Vasiliki; Beckett, Elizabeth A H

    2015-06-01

    Mechanisms involved in the generation of spontaneous uterine contractions are not fully understood. Kit-expressing interstitial cells of Cajal are pacemakers of contractile rhythm in other visceral organs, and recent studies describe a role for Ca(2+)-activated Cl(-) currents as the initiating conductance in these cells. The existence and role of similar specialized pacemaker cells in the nonpregnant uterus remains undetermined. Spontaneous contractility patterns were characterized throughout the estrous cycle in isolated, nonpregnant mouse uteri using spatiotemporal mapping and tension recordings. During proestrus, estrus, and diestrus, contraction origin predominated in the oviduct end of the uterus, suggesting the existence of a dominant pacemaker site. Propagation speed of contractions during estrus and diestrus were significantly slower than in proestrus and metestrus. Five major patterns of activity were predominantly exhibited in particular stages: quiescent (diestrus), high-frequency phasic (proestrus), low-frequency phasic (estrus), multivariant (metestrus), and complex. Kit-immunopositive cells reminiscent of pacemaking ICCs were not consistently observed within the uterus. Niflumic acid (10 μM), anthracene-9-carboxylic acid (0.1-1 mM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (10 μM) each reduced the frequency of spontaneous contractions, suggesting involvement of Cl(-) channels in generating spontaneous uterine motor activity. It is unlikely that this conductance is generated by the Ca(2+)-activated Cl(-) channels, anoctamin-1 and CLCA4, as immunohistochemical labeling did not reveal protein expression within muscle or pacemaker cell networks. In summary, these results suggest that spontaneous uterine contractions may be generated by a Kit-negative pacemaker cell type or uterine myocytes, likely involving the activity of a yet-unidentified Cl(-) channel.

  12. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration.

    PubMed

    Moreland, Jessica G; Davis, A Paige; Bailey, Gail; Nauseef, William M; Lamb, Fred S

    2006-05-05

    NADPH oxidase activity, phagocytosis, and cell migration are essential functions of polymorphonuclear leukocytes (PMNs) in host defense. The cytoskeletal reorganization necessary to perform these functions has been extensively studied, but the role of cell volume regulation, which is likely dependent upon anion channels, has not been defined. Mice lacking the anion channel ClC-3 (Clcn3(-/-)) died from presumed sepsis following intravascular catheter placement, whereas Clcn3(+/+) littermates survived. We hypothesized that ClC-3 has a critical role in host defense and reasoned that PMN function would be compromised in these mice. Clcn3(-/-) PMNs displayed markedly reduced NADPH oxidase activity in response to opsonized zymosan and modestly reduced activity after phorbol 12-myristate 13-acetate. Human PMNs treated with the anion channel inhibitors niflumic acid or 5-nitro-2-(3-phenylpropylamino)benzoic acid had a very similar defect. ClC-3 protein was detected in the secretory vesicles and secondary granules of resting PMNs and was up-regulated to the phagosomal membrane. Clcn3(-/-) PMNs and human PMNs lacking normal anion channel function both exhibited reduced uptake of opsonized zymosan at 1, 5, and 10 min in a synchronized phagocytosis assay. Niflumic acid-treated PMNs also had impaired transendothelial migration in vitro, whereas migration in vivo was not altered in Clcn3(-/-) PMNs. Selective inhibition of the swelling-activated chloride channel with tamoxifen profoundly reduced PMN migration but had no effect on NADPH oxidase activity. In summary, PMNs lacking normal anion channel function exhibited reduced NADPH oxidase activity, diminished phagocytosis, and impaired migration. ClC-3 was specifically involved in the respiratory burst and phagocytosis.

  13. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing.

    PubMed

    Dargaei, Zahra; Colmers, Phillip L W; Hodgson, Heather M; Magoski, Neil S

    2014-12-01

    In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.

  14. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia.

    PubMed

    Liu, Shan-Wen; Li, Yuan; Zou, Li-Li; Guan, Yu-Tao; Peng, Shuang; Zheng, Li-Xin; Deng, Shun-Mei; Zhu, Lin-Yan; Wang, Li-Wei; Chen, Li-Xin

    2016-06-03

    Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l-1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l-1 ) to a hypotonic solution (290 mOsm l-1 ), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4'-diisothiocyanatostilbene-2,2'- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia.

  15. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells

    PubMed Central

    Sagheddu, Claudia; Boccaccio, Anna; Dibattista, Michele; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2010-01-01

    Ca2+-activated Cl− channels play relevant roles in several physiological processes, including olfactory transduction, but their molecular identity is still unclear. Recent evidence suggests that members of the transmembrane 16 (TMEM16, also named anoctamin) family form Ca2+-activated Cl− channels in several cell types. In vertebrate olfactory transduction, TMEM16b/anoctamin2 has been proposed as the major molecular component of Ca2+-activated Cl− channels. However, a comparison of the functional properties in the whole-cell configuration between the native and the candidate channel has not yet been performed. In this study, we have used the whole-cell voltage-clamp technique to measure functional properties of the native channel in mouse isolated olfactory sensory neurons and compare them with those of mouse TMEM16b/anoctamin2 expressed in HEK 293T cells. We directly activated channels by rapid and reproducible intracellular Ca2+ concentration jumps obtained from photorelease of caged Ca2+ and determined extracellular blocking properties and anion selectivity of the channels. We found that the Cl− channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and DIDS applied at the extracellular side of the membrane caused a similar inhibition of the two currents. Anion selectivity measured exchanging external ions and revealed that, in both types of currents, the reversal potential for some anions was time dependent. Furthermore, we confirmed by immunohistochemistry that TMEM16b/anoctamin2 largely co-localized with adenylyl cyclase III at the surface of the olfactory epithelium. Therefore, we conclude that the measured electrophysiological properties in the whole-cell configuration are largely similar, and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the native olfactory Ca2+-activated Cl− current. PMID:20837642

  16. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells.

    PubMed

    Sagheddu, Claudia; Boccaccio, Anna; Dibattista, Michele; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2010-11-01

    Ca(2+)-activated Cl(-) channels play relevant roles in several physiological processes, including olfactory transduction, but their molecular identity is still unclear. Recent evidence suggests that members of the transmembrane 16 (TMEM16, also named anoctamin) family form Ca(2+)-activated Cl(-) channels in several cell types. In vertebrate olfactory transduction, TMEM16b/anoctamin2 has been proposed as the major molecular component of Ca(2+)-activated Cl(-) channels. However, a comparison of the functional properties in the whole-cell configuration between the native and the candidate channel has not yet been performed. In this study, we have used the whole-cell voltage-clamp technique to measure functional properties of the native channel in mouse isolated olfactory sensory neurons and compare them with those of mouse TMEM16b/anoctamin2 expressed in HEK 293T cells. We directly activated channels by rapid and reproducible intracellular Ca(2+) concentration jumps obtained from photorelease of caged Ca(2+) and determined extracellular blocking properties and anion selectivity of the channels. We found that the Cl(-) channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and DIDS applied at the extracellular side of the membrane caused a similar inhibition of the two currents. Anion selectivity measured exchanging external ions and revealed that, in both types of currents, the reversal potential for some anions was time dependent. Furthermore, we confirmed by immunohistochemistry that TMEM16b/anoctamin2 largely co-localized with adenylyl cyclase III at the surface of the olfactory epithelium. Therefore, we conclude that the measured electrophysiological properties in the whole-cell configuration are largely similar, and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the native olfactory Ca(2+)-activated Cl(-) current.

  17. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  18. Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina

    PubMed Central

    Chun, Myung-Hoon; Oh, Uhtaek; Kim, In-Beom

    2013-01-01

    Calcium (Ca2+)-activated chloride (Cl−) channels (CaCCs) play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca2+-activated Cl− currents (ICl(Ca)) regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca) remains unclear. The transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), has been recently validated as a CaCC and is widely expressed in various secretory epithelia and nervous tissues. Despite the fact that tmem16a was first cloned in the retina, there is little information on its cellular localization and function in the mammalian retina. In this study, we found that ANO1 was abundantly expressed as puncta in 2 synaptic layers. More specifically, ANO1 immunoreactivity was observed in the presynaptic terminals of various retinal neurons, including photoreceptors. ICl(Ca) was first detected in dissociated rod bipolar cells expressing ANO1. ICl(Ca) was abolished by treatment with the Ca2+ channel blocker Co2+, the L-type Ca2+ channel blocker nifedipine, and the Cl− channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and niflumic acid (NFA). More specifically, a recently discovered ANO1-selective inhibitor, T16Ainh-A01, and a neutralizing antibody against ANO1 inhibited ICl(Ca) in rod bipolar cells. Under a current-clamping mode, the suppression of ICl(Ca) by using NPPB and T16Ainh-A01 caused a prolonged Ca2+ spike-like depolarization evoked by current injection in dissociated rod bipolar cells. These results suggest that ANO1 confers ICl(Ca) in retinal neurons and acts as an intrinsic regulator of the presynaptic membrane potential during synaptic transmission. PMID:23840801

  19. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels.

    PubMed

    Salomon, Johanna J; Spahn, Stephan; Wang, Xiaohui; Füllekrug, Joachim; Bertrand, Carol A; Mall, Marcus A

    2016-04-01

    Recent studies identified the SLC26A9 Cl(-) channel as a modifier and potential therapeutic target in cystic fibrosis (CF). However, understanding of the regulation of SLC26A9 in epithelia remains limited and cellular models with stable expression for biochemical and functional studies are missing. We, therefore, generated Fisher rat thyroid (FRT) epithelial cells with stable expression of HA-tagged SLC26A9 via retroviral transfection and characterized SLC26A9 expression and function using Western blotting, immunolocalization, whole cell patch-clamp, and transepithelial bioelectric studies in Ussing chambers. We demonstrate stable expression of SLC26A9 in transfected FRT (SLC26A9-FRT) cells on the mRNA and protein level. Immunolocalization and Western blotting detected SLC26A9 in different intracellular compartments and to a lesser extent at the cell surface. Whole cell patch-clamp recordings demonstrated significantly increased constitutive Cl(-) currents in SLC26A9-FRT compared with control-transduced FRT (Control-FRT) cells (P < 0.01). Similar, transepithelial measurements showed that the basal short circuit current was significantly increased in SLC26A9-FRT vs. Control-FRT cell monolayers (P < 0.01). SLC26A9-mediated Cl(-) currents were increased by cAMP-dependent stimulation (IBMX and forskolin) and inhibited by GlyH-101, niflumic acid, DIDS, and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), as well as RNAi knockdown of WNK1 implicated in epithelial osmoregulation. Our results support that these novel epithelial cells with stable expression of SLC26A9 will be a useful model for studies of pharmacological regulation including the identification of activators of SLC26A9 Cl(-) channels that may compensate deficient cystic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion and serve as an alternative therapeutic target in patients with CF and potentially other muco-obstructive lung diseases.

  20. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    PubMed

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

  1. Elevated Pressure Triggers a Physiological Release of ATP from the Retina: Possible Role for Pannexin Hemichannels

    PubMed Central

    Reigada, David; Lu, Wennan; Zhang, May; Mitchell, Claire H.

    2008-01-01

    Increased hydrostatic pressure can damage neurons, although the mechanisms linking pressure to neurochemical imbalance or cell injury are not fully established. Throughout the body, mechanical perturbations such as shear stress, cell stretching, or changes in pressure can lead to excessive release of ATP. It is thus possible that increased pressure across neural tissues triggers an elevated release of ATP into extracellular space. As stimulation of the P2X7 receptor for ATP on retinal ganglion cells leads to elevation of intracellular calcium and excitotoxic death, we asked whether increased levels of extracellular ATP accompanied an elevation in pressure across the retina. The hydrostatic pressure surrounding bovine retinal eyecups was increased and the ATP content of the vitreal compartment adjacent to the retina was determined. A step increase of only 20 mmHg induced a three-fold increase in the vitreal ATP concentration. The ATP levels correlated closely with the degree of pressure increase over 20–100 mmHg range. The increase was transient at lower pressures but sustained at higher pressures. The rise in vitreal ATP was the same regardless of whether nitrogen or air was used to increase pressure, implying changes in oxygen partial pressure did not contribute. Lactate dehydrogenase activity was not affected by pressure, ruling out a substantial contribution from cell lysis. The ATP increase was largely inhibited by either 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or carbenoxolone (CBX). While this is consistent with physiological release of ATP through pannexins hemichannels, a contribution from anion channels, vesicular release or other mechanisms cannot be ruled out. In conclusion, a step elevation in pressure leads to a physiologic increase in the levels of extracellular ATP bathing retinal neurons. This excess extracellular ATP may link increased pressure to the death of ganglion cells in acute glaucoma, and suggests a role for ATP in the

  2. [Cl-]i modulation of Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells of guinea pig.

    PubMed

    Shimamoto, Chikao; Umegaki, Eiji; Katsu, Ken-ichi; Kato, Masumi; Fujiwara, Shoko; Kubota, Takahiro; Nakahari, Takashi

    2007-10-01

    The effects of intracellular Cl- concentration ([Cl-]i) on acetylcholine (ACh)-stimulated exocytosis were studied in guinea pig antral mucous cells by video microscopy. ACh activated Ca2+-regulated exocytosis (an initial phase followed by a sustained phase). Bumetanide (20 microM) or a Cl- -free (NO3-) solution enhanced it; in contrast, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker) decreased it and eliminated the enhancement induced by bumetanide or NO3- solution. ACh and Ca2+ dose-response studies demonstrated that NO3- solution does not shift their dose-response curves, and ATP depletion studies by dinitrophenol or anoxia demonstrated that exposure of NO3- solution prior to ATP depletion induced an enhanced initial phase followed by a sustained phase, whereas exposure of NO3- solution after ATP depletion induced only a sustained phase. Intracellular Ca2+ concentration ([Ca2+]i) measurements showed that bumetanide and NO3- solution enhanced the ACh-stimulated [Ca2+]i increase. Measurements of [Cl-]i revealed that ACh decreases [Cl-]i and that bumetanide and NO3- solution decreased [Cl-]i and enhanced the ACh-evoked [Cl-]i decrease; in contrast, NPPB increased [Cl-]i and inhibited the [Cl-]i decrease induced by ACh, bumetanide, or NO3- solution. These suggest that [Cl-]i modulates [Ca2+]i increase and ATP-dependent priming. In conclusion, a decrease in [Cl-]i accelerates ATP-dependent priming and [Ca2+]i increase, which enhance Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells.

  3. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line.

    PubMed

    Shuba, Y M; Prevarskaya, N; Lemonnier, L; Van Coppenolle, F; Kostyuk, P G; Mauroy, B; Skryma, R

    2000-10-01

    Patch-clamp recordings were used to study ion currents induced by cell swelling caused by hypotonicity in human prostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl(-) was the primary charge carrier (termed I(Cl,swell)). The selectivity sequence of the underlying volume-regulated anion channels (VRACs) for different anions was Br(-) approximately I(-) > Cl(-) > F(-) > methanesulfonate > glutamate, with relative permeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currents as well as single-channel currents showed moderate outward rectification. Unitary VRAC conductance was determined at 9.6 +/- 1.8 pS. Conventional Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) and DIDS (100 microM) inhibited whole cell I(Cl,swell) in a voltage-dependent manner, with the block decreasing from 39.6 +/- 9.7% and 71.0 +/- 11. 0% at +50 mV to 26.2 +/- 7.2% and 14.5 +/- 6.6% at -100 mV, respectively. Verapamil (50 microM), a standard Ca(2+) antagonist and P-glycoprotein function inhibitor, depressed the current by a maximum of 15%. Protein tyrosine kinase inhibitors downregulated I(Cl,swell) (genistein with an IC(50) of 2.6 microM and lavendustin A by 60 +/- 14% at 1 microM). The protein tyrosine phosphatase inhibitor sodium orthovanadate (500 microM) stimulated I(Cl,swell) by 54 +/- 11%. We conclude that VRACs in human prostate cancer epithelial cells are modulated via protein tyrosine phosphorylation.

  4. K+ and Cl- currents in enterocytes isolated from guinea-pig small intestinal villi.

    PubMed Central

    Sepúlveda, F V; Fargon, F; McNaughton, P A

    1991-01-01

    1. The whole-cell configuration of the patch-clamp technique has been used to investigate the conductance properties of villus enterocytes isolated from guinea-pig small intestinal epithelium. 2. With near physiological ionic gradients inward and outward rectification was observed in the hyperpolarizing and depolarizing voltage domains respectively. 3. Replacement of intra- and extracellular K+ with N-methyl-D-glucamine (NMG) eliminated inward rectification but did not alter outward currents. In symmetrical low Cl- solutions outward currents were reduced but inward rectification was not affected. Under these conditions increases in extracellular K+ shifted both the current-voltage relation and the extrapolated reversal potential as expected for a K(+)-selective current. 4. The inwardly rectifying nature of the K+ current observed here remained unaltered after chelation of internal Mg2+ with ATP or EDTA. 5. Extracellular application of 5 mM-Ba2+ or 50 micrograms ml-1 of the venom of the scorpion Leiurus quinquestriatus abolished the inward K+ current, while 5 mM-extracellular tetraethylammonium (TEA) had little effect. 6. The current remaining in the presence of symmetrical Cl- solutions and in the complete absence of K+ rectified outwardly and reversed at 0 mV. The anionic nature of this current was confirmed by replacing Cl- with different anions. SCN- and Br- carried more current than Cl-, while F- and gluconate were less permeant. 7. Anionic currents of villus guinea-pig enterocytes were not stimulated by cyclic AMP and were strongly and reversibly inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 10(-5) M). 8. The inwardly rectifying K+ current described here shares some, but not all, characteristics with others previously described. It is postulated that this conductance might function to couple K+ permeability and the Na(+)-K+ pump rate in enterocytes. Absorption of chloride may be mediated by the Cl- channels. PMID

  5. Cytosolic [Ca2+] signaling pathway in macula densa cells.

    PubMed

    Peti-Peterdi, J; Bell, P D

    1999-09-01

    Previous micropuncture studies suggested that macula densa (MD) cells might detect variations in luminal sodium chloride concentration ([NaCl]l) through changes in cytosolic calcium ([Ca2+]c). To test this hypothesis, MD [Ca2+]c was measured with fluorescence microscopy using fura 2 in the isolated perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney. Tubules were bathed and perfused with a Ringer solution, [NaCl]l was varied and isosmotically replaced with N-methyl-D-glucamine cyclamate. Control [Ca2+]c, during perfusion with 25 mM NaCl and 150 mM NaCl in the bath, averaged 101. 6 +/- 8.2 nM (n = 21). Increasing [NaCl]l to 150 mM elevated [Ca2+]c by 39.1 +/- 5.2 nM (n = 21, P < 0.01). This effect was concentration dependent between zero and 60 mM [NaCl]l. The presence of either luminal furosemide or basolateral nifedipine or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a potent Cl- channel blocker, significantly reduced resting [Ca2+]c and abolished the increase in [Ca2+]c in response to increased [NaCl]l. Nifedipine failed to produce a similar inhibitory effect when added exclusively to the luminal perfusate. Also, 100 nM BAY K 8644, a voltage-gated Ca2+ channel agonist, added to the bathing solution increased [Ca2+]c by 33.2 +/- 8.1 nM (n = 5, P < 0.05). These observations suggest that MD cells may detect variations in [NaCl]l through a signaling pathway that includes Na+-2Cl--K+ cotransport, basolateral membrane depolarization via Cl- channels, and Ca2+ entry through voltage-gated Ca2+ channels.

  6. Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging.

    PubMed

    Dobiás, J; Chudackova, K; Voldrich, M; Marek, M

    2000-12-01

    Benzoic anhydride and ethyl and propyl esters of 4-hydroxybenzoic acid (ETP and PRP, respectively, also termed parabens) incorporated into low density polyethylene (LDPE) film were studied with regard to migration into food and food simulants at 6 degrees C and 25 degrees C, and changes in selected properties of the film were investigated. Antimicrobials were incorporated into polymer film in concentrations of 5 g/kg and 10 g/kg. The addition of parabens into the polymer was more difficult than benzoic anhydride due to their volatility. For benzoic anhydride, 30-40% and 10-20% of the added amount was found to leach from the film into aqueous and olive oil food simulants, respectively. The migration into both water and olive oil followed a very similar course in the case of parabens. Migration levels over 90% and in the range of 70% to 80%, relative to the amount of agent in the film, were determined for ETP and PRP respectively. The incorporation of antimicrobials into the film significantly changed the functional characteristics of the packaging material, i.e. permeability of oxygen, carbon dioxide and water vapour, tensile strength, coefficient of friction, sealing strength and transparency. Shelf life tests with packaged cheese and toasted bread demonstrated the efficiency of the film containing 10 g/kg of BA against mould growth on the food surface during storage at 6 degrees C.

  7. Direct carbocyclizations of benzoic acids: catalyst-controlled synthesis of cyclic ketones and the development of tandem aHH (acyl Heck-Heck) reactions.

    PubMed

    Miles, Kelsey C; Le, Chi Chip; Stambuli, James P

    2014-09-01

    The formation of exo-methylene indanones and indenones from simple ortho-allyl benzoic acid derivatives has been developed. Selective formation of the indanone or indenone products in these reactions is controlled by choice of ancillary ligand. This new process has a low environmental footprint as the products are formed in high yields using low catalyst loadings, while the only stoichiometric chemical waste generated from the reactants in the transformation is acetic acid. The conversion of the active cyclization catalyst into the Hermman-Beller palladacycle was exploited in a one-pot tandem acyl Heck-Heck (aHH) reaction, and utilized in the synthesis of donepezil.

  8. A triclinic modification of 3,4-dihy-droxy-benzoic acid monohydrate.

    PubMed

    Ng, Seik Weng

    2011-09-01

    The unit cell of the title compound, C(7)H(6)O(4)·H(2)O, features four independent formula units; the individual carb-oxy-lic acid mol-ecules themselves are nearly planar (r.m.s. deviations = 0.0189, 0.0334, 0.0356 and 0.0441 Å). Two independent mol-ecules each form two hydrogen bonds by acid-carbonyl O-H⋯O inter-actions and the dimers are also nearly planar (r.m.s. deviations = 0.039 and 0.049 Å). The two independent dimers are aligned at 44.5 (1)°. Other O-H⋯O inter-actions involving the hy-droxy groups and water mol-ecules give rise to a three-dimensional network.

  9. A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater.

    PubMed

    Boyacı, Ezel; Goryński, Krzysztof; Viteri, C Ricardo; Pawliszyn, Janusz

    2016-03-04

    Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive approaches to separate and quantify FBAs in produced water, both in laboratory and field conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for the determination of FBAs in produced water by pursing two different approaches. First, an automated high throughput TF-SPME method using solvent desorption for fast and simultaneous preparation of multiple samples prior to liquid chromatographic separation and high resolution mass spectrometric detection (LC-MS) of FBAs was demonstrated for routine laboratory analysis. This method was optimized in terms of extraction phase chemistry, sample pH and ionic strength, extraction/desorption times using two representative FBAs (4-FBA and 2,3,4,5-tetra FBA). It incorporates a relatively simple sample pretreatment involving pH adjustment prior to the TF-SPME, and obtained limits of quantification (LOQ) are at the 1.0ngmL(-1) level. Second, the applicability of TF-SPME for fast mass spectrometric (MS) determination of FBAs with omission of derivatization and gas chromatographic (GC) separation was proven. This second method consists of manual extractions of analytes from seawater samples with a thermally stable TF-SPME membrane and direct thermal desorption of the extracted FBAs to a MS via a thermal desorption unit (TDU). It was demonstrated that the TF-SPME extracts and thermally releases analytes quantitatively and with good reproducibility. This approach opens up the possibility for on-site measurements with portable analyzers.

  10. 2-[(2-Acet­oxy­benzo­yl)­oxy]benzoic acid

    PubMed Central

    Solanko, Katarzyna A.; Bond, Andrew D.

    2012-01-01

    The title compound, C16H12O6, is a common impurity of ortho-acetyl­salicylic acid (aspirin). The benzene rings form a dihedral angle of 81.9 (1)° while the acetyl and carboxyl groups form dihedral angles of 74.0 (1) and 26.4 (2)°, respectively, with the benzene rings to which they are bound. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds between the carboxyl groups, forming inversion dimers. PMID:22798785

  11. Crystal structure of 2-(4-chloro-benzamido)-benzoic acid.

    PubMed

    Moreno-Fuquen, Rodolfo; Melo, Vanessa; Ellena, Javier

    2015-11-01

    In the title mol-ecule, C14H10ClNO3, the amide C=O bond is anti to the o-carb-oxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intra-molecular amide-N-H⋯O(carbon-yl) hydrogen bond that closes an S(6) loop. The central amide segment is twisted away from the carb-oxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. The most prominent supra-molecular inter-actions in the crystal packing are carb-oxy-lic acid-H⋯O(carbox-yl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered {⋯HOC=O}2 synthons.

  12. Application of CE with novel dynamic coatings and field-amplified sample injection to the sensitive determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission.

    PubMed

    Dabek-Zlotorzynska, Ewa; Piechowski, Maria

    2007-10-01

    A simple and reliable CE method with direct UV detection has been developed to separate eight isomeric benzoic acids in atmospheric aerosols and vehicular emission without complex sample pretreatment. Optimal electrophoretic conditions, with migration times under 5 min, were obtained by using a 50 mM acetate buffer (pH 4.7) containing a dynamic surface coating EOTrol LN (0.005% w/v). The separations were carried out in a cathode to anode direction (-30 kV) allowing the low cathodal EOF ( approximately 1 x 10(-9) m(2)V(-1)s(-1)) to extend the effective separation by slowing the movement of the studied aromatic acids. Moreover, the sensitivity of the method at 200 nm was enhanced by using a field-amplified sample injection (FASI) with electrokinetic (EK) sample injection (-2 kV, 60 s). Prior to sample injection, a short water plug (3 s at 0.5 psi) was introduced. Under these conditions, the method was capable of detecting the analytes in deionized water with LODs (S/N = 3) as low as 0.1 microg/L for most of the studied acids. In the presence of 10 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 0.26 to 0.62 microg/L. The validation of the method has proven an excellent separation performance and accuracy for the determination of isomeric benzoic acids in the studied matrices.

  13. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: role of dielectric constant of solvent and fumed silica

    NASA Astrophysics Data System (ADS)

    Kumar, R.

    2015-03-01

    In this paper, nano-composite polymer gel electrolytes containing polymethylmethacrylate, dimethylacetamide, diethyl carbonate, fumed silica and ortho-nitro benzoic acid have been synthesized. Electrical conductivity, viscosity, pH and thermal behavior of these electrolytes have been studied. The effect of acid, polymer, fumed silica concentration on conductivity, pH and viscosity has been discussed. The effect of dielectric constant of solvent on conductivity behavior of composite polymer gel electrolytes has also been studied. Two maxima in conductivity behavior have been observed with fumed silica concentration for composite polymer gel electrolytes, which have been explained on the basis of double percolation threshold model. Maximum conductivity of 3.20 × 10-4 and 2.46 × 10-6 S/cm at room temperature has been observed for nano-composite polymer gel electrolytes containing 10 wt% polymethylmethacrylate in 1 M solution of o-nitro benzoic acid in dimethylacetamide and diethyl carbonate respectively. The intensity of first maximum observed in conductivity at low concentration of fumed silica has been found to decrease with the decrease in acid concentration for composite polymer gel electrolytes, while the intensity of second maximum at higher fumed silica concentration remains unaffected. The conductivity of composite gels does not show much change in the temperature range of 20-100 °C and also remains constant with time, making them suitable for use as electrolytes in various devices like fuel cells, proton batteries, electrochromic window applications etc.

  14. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    PubMed

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  15. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS(1) spectra of unlabeled compounds to their (2)H and (13)C labeled analogs, and analysis of collision-induced dissociation data from MS(2) spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  16. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system.

  17. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    PubMed Central

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-01-01

    Objective(s): Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities. PMID:25810885

  18. Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1) and 4-(n-hex-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-12-01

    The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent-yloxy)benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-bis-(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex-yloxy)benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethene mol-ecule. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C-H⋯π and π-π inter-actions [centroid-centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)-3.725 (4) Å for (II)], forming column structures. In (II), the base mol-ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol-ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2 symmetry. Both compounds show liquid-crystal behaviour.

  19. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  20. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    SciTech Connect

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun Shen Xu Jiang Hualiang

    2008-10-10

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{l_brace}[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl{r_brace}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.

  1. Structural, optical, thermal, photoconductivity, laser damage threshold and fluorescence analysis of an organic material: β-P-amino benzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, SenthilKumar; Paulraj, Rajesh; Ramasamy, P.

    2016-02-01

    β-P-amino benzoic acid, an organic single crystal was grown by slow evaporation technique. Single crystal X-ray diffraction studies show that the grown crystal has β-polymorph of P-amino benzoic acid [β-PABA] form and the lattice parameters are a = 6.30 Å, b = 8.61 Å, c = 12.43 Å α = γ = 90° and β = 100.20°. FTIR analysis confirms that bands at 1588 cm-1, 1415 cm-1 are assigned to ring skeletal vibrations of title compound. The molecular structure of the grown crystal has been identified by Nuclear Magnetic Resonance spectral study. The optical absorbance spectrum from 200 to 1100 nm shows that there is an edge absorbance in UV region. Optical band gap of the crystal has been assessed from the absorbance spectrum. The thermal properties of crystals were evaluated from TG-DTA analysis, it exhibits that there is no weight loss up to 187 °C. Laser damage threshold indicates that the grown crystal has no surface damage up to 35 mJ. Photoconductivity and fluorescence spectral experiments are also carried out and the results are discussed.

  2. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2014-06-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measure on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOC), total fatty acids and benzoic acid during the entire sampling period were 1184 ± 241 ng m-3, 597 ± 159 ng m-3 and 1496 ± 511ng m-3 in PKU, and 1050 ± 303 ng m-3, 475 ± 114 ng m-3 and 1278 ± 372 ng m-3 in Yufa. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa, followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at palmitic acid (C16:0), followed by stearic acid (C18:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from northeast, passing over southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from north or northwest sector (mountain areas without serious anthropogenic pollution sources) during cleaner events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measure on the reduction of local air pollution in Beijing. The results suggested that the

  3. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2015-03-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measures on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOCs), total fatty acids and benzoic acid during the entire sampling period were 1184±241, 597±159 and 1496±511 ng m-3 in Peking University (PKU), and 1050±303, 475±114 and 1278±372 ng m-3 in Yufa, Beijing. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at stearic acid (C18:0), followed by palmitic acid (C16:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from the northeast, passing over the southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from the north or northwest sector (mountain areas without serious anthropogenic pollution sources) during less pollution events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measures on the reduction of local air pollution in Beijing. The results suggested

  4. Two di-alkyl-ammonium salts of 2-amino-4-nitro-benzoic acid: crystal structures and Hirshfeld surface analysis.

    PubMed

    Wardell, James L; Jotani, Mukesh M; Tiekink, Edward R T

    2016-12-01

    The crystal structures of two ammonium salts of 2-amino-4-nitro-benzoic acid are described, namely di-methyl-aza-nium 2-amino-4-nitro-benzoate, C2H8N(+)·C7H5N2O4(-), (I), and di-butyl-aza-nium 2-amino-4-nitro-benzoate, C8H20N(+)·C7H5N2O4(-), (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl-ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti-periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl-ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra-molecular chain by charge-assisted amine-N-H⋯O(carboxyl-ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N-O⋯π(arene) and methyl-C-H⋯O(nitro) inter-actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N-H⋯O(carboxyl-ate) hydrogen bonding. The formation of ammonium

  5. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  6. Synthesis, biological evaluation, and structure-activity relationships of 2-[2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication.

    PubMed

    Öberg, Christopher T; Strand, Mårten; Andersson, Emma K; Edlund, Karin; Tran, Nam Phuong Nguyen; Mei, Ya-Fang; Wadell, Göran; Elofsson, Mikael

    2012-04-12

    2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound (Antimicrob. Agents Chemother. 2010, 54, 3871). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 μM and low cell toxicity.

  7. Crystal structure of 4-(3-carb-oxy-pro-pan-amido)-2-hy-droxy-benzoic acid mono-hydrate.

    PubMed

    Tahir, Muhammad Nawaz; Ahmed, Muhammad Naeem; Butt, Arshad Farooq; Shad, Hazoor Ahmad

    2014-12-01

    In the title hydrate, C11H11NO6·H2O, the organic mol-ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.129 Å) and an intra-molecular O-H⋯O hydrogen bond closes an S(6) ring. In the crystal, the benzoic acid group participates in an O-H⋯O hydrogen bond to the water mol-ecule and accepts a similar bond from another water mol-ecule. The other -CO2H group forms a carb-oxy-lic acid inversion dimer, thereby forming an R 2 (2)(8) loop. These bonds, along with N-H⋯O and C-H⋯O inter-actions, generate a three-dimensional network.

  8. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    SciTech Connect

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  9. Lead(II) coordination polymers based on rigid-flexible 3,5-bis-oxyacetate-benzoic acid: Structural transition driven by temperature control

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Qiang; Tian, Yuan

    2017-03-01

    Three Pb(II) complexes {[Pb3(BOABA)2(H2O)]·H2O}n (1), {[Pb4(BOABA)2(μ4-O)(H2O)2]·H2O}n (2), and [Pb3(BOABA)2(H2O)]n (3) (H3BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb4(μ4-O)(COO)6 SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1-3 have been investigated.

  10. A simple method for the determination of benzoic acid based on room temperature phosphorescence of 1-bromopyrene/γ-cyclodextrin complex in water.

    PubMed

    Wang, Jinping; Guo, Xiangfeng; Jia, Lihua

    2017-01-01

    The addition of benzoic acid (BA) to an aqueous solution of 1-bromopyrene (1-BrPy) and γ-cyclodextrin (γ-CD) was found to form a ternary 1-BrPy/γ-CD/BA inclusion complex that exhibited strong and stable room temperature phosphorescence (RTP) without deoxygenation. The effects of several different factors on the RTP emission from the inclusion complex were subsequently investigated. A good linear relationship between the RTP intensity and the concentration of BA over the range of 0-0.70mM was identified (R(2)=0.9917), and the detection limit was determined to be 0.68µm. Application of the new method was successfully proved for the detection of BA in various beverages with satisfactory results.

  11. Novel mixed ligand di-n-butyltin(IV) complexes derived from acylpyrazolones and fluorinated benzoic acids: synthesis, characterization, cytotoxicity and the induction of apoptosis in Hela cancer cells.

    PubMed

    Zhao, Bin; Shang, Xianmei; Xu, Ling; Zhang, Wendian; Xiang, Guangya

    2014-04-09

    Twenty one novel mixed ligand di-n-butyltin(IV) complexes [(n)Bu2SnAL] (A = substituted 4-acyl-5-pyrazolone, and L = fluorinated benzoic acid) were prepared by condensation of di-n-butyltin(IV) oxide with HL and HA in 1:1:1 molar ratio in refluxing methanol. All of the complexes were characterized by elemental analyses, IR, NMR ((1)H, (13)C, (119)Sn) and in four cases by X-ray diffraction. Cytotoxicity of the compounds was studied against two human cancer cell lines (KB and Hela) by means of the MTT assay compared to cisplatin, featuring IC₅₀ values in the low micromolar range. Hela cancer cell apoptosis-induced by 2 was examined by flow cytometry analysis, and preliminary results showed that 2 at concentrations of more than 1.0 μM can induce apoptosis.

  12. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis

    PubMed Central

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5′ promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators. PMID:28154577

  13. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine.

    PubMed

    Floriani, Gisele; Gasparetto, João Cleverson; Pontarolo, Roberto; Gonçalves, Alan Guilherme

    2014-02-01

    Here, an HPLC-DAD method was developed and validated for simultaneous determination of cocaine, two cocaine degradation products (benzoylecgonine and benzoic acid), and the main adulterants found in products based on cocaine (caffeine, lidocaine, phenacetin, benzocaine and diltiazem). The new method was developed and validated using an XBridge C18 4.6mm×250mm, 5μm particle size column maintained at 60°C. The mobile phase consisted of a gradient of acetonitrile and ammonium formate 0.05M - pH 3.1, eluted at 1.0mL/min. The volume of injection was 10μL and the DAD detector was set at 274nm. Method validation assays demonstrated suitable sensitivity, selectivity, linearity, precision and accuracy. For selectivity assay, a MS detection system could be directly adapted to the method without the need of any change in the chromatographic conditions. The robustness study indicated that the flow rate, temperature and pH of the mobile phase are critical parameters and should not be changed considering the conditions herein determined. The new method was then successfully applied for determining cocaine, benzoylecgonine, benzoic acid, caffeine, lidocaine, phenacetin, benzocaine and diltiazem in 115 samples, seized in Brazil (2007-2012), which consisted of cocaine paste, cocaine base and salt cocaine samples. This study revealed cocaine contents that ranged from undetectable to 97.2%, with 97 samples presenting at least one of the degradation products or adulterants here evaluated. All of the studied degradation products and adulterants were observed among the seized samples, justifying the application of the method, which can be used as a screening and quantification tool in forensic analysis.

  14. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis.

    PubMed

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5' promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators.

  15. Percutaneous absorption of nicotinic acid, phenol, benzoic acid and triclopyr butoxyethyl ester through rat and human skin in vitro: further validation of an in vitro model by comparison with in vivo data.

    PubMed

    Hotchkiss, S A; Hewitt, P; Caldwell, J; Chen, W L; Rowe, R R

    1992-10-01

    The in vitro percutaneous absorption of three model compounds, nicotinic acid, phenol and benzoic acid, and the herbicide triclopyr butoxyethyl ester (triclopyr BEE) has been investigated in flow-through diffusion cells using skin from male Fischer 344 rats and humans. After the application of the four chemicals to the epidermal surface of unoccluded full-thickness rat skin, the absorption of each compound across the skin and into the receptor fluid at 72 hr reached 3.7 +/- 0.3, 5.7 +/- 0.6, 26.7 +/- 3.7 and 48.3 +/- 1.2% (mean +/- SD, n = 2-7) of the applied dose for triclopyr BEE, nicotinic acid, phenol and benzoic acid, respectively. After the application of the four chemicals to the epidermal surface of unoccluded full-thickness human skin, the absorption of each compound across the skin and into the receptor fluid at 72 hr was significantly (P < 0.05) less than through rat skin, reaching 0.7 +/- 0.1, 0.7 +/- 0.2, 18.8 +/- 1.3 and 37.8 +/- 6.9% (mean +/- SD, n = 2-7) of the applied dose for triclopyr BEE, nicotinic acid, phenol and benzoic acid, respectively. Occlusion of the skin surface with teflon caps often significantly (P < 0.05) enhanced the percutaneous absorption of the model compounds, although this effect was not uniform, varying with the compound under study and the skin (rat or human) used. When rat skin was occluded with teflon caps, the extent of absorption at 72 hr reached 8.6 +/- 0.8, 36.2 +/- 1.7 and 51.8 +/- 3.3% (mean +/- SD, n = 3-4) for nicotinic acid, phenol and benzoic acid, respectively. Corresponding values for human skin occluded with teflon caps were 3.3 +/- 1.6, 47.1 +/- 0.5 and 65.5 +/- 7.1% (mean +/- SD, n = 3-4). The experiments on the absorption of each model compound through rat and human skin were repeated and there was generally good agreement between the results from the two sets of experiments. The in vitro data reported compare favourably with data obtained by other workers using both in vitro and in vivo methodologies

  16. Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds.

    PubMed

    Zwanenburg, Binne; Mwakaboko, Alinanuswe S

    2011-12-15

    A series of new strigolactone (SL) analogues is derived from simple and cheap starting materials. These SL analogues are designed using a working model. The first analogue is a modified Nijmegen-1, the second contains saccharin as substituent (bio-isosteric replacement of a carbonyl in Nijmegen-1 by a sulfonyl group) and the third one is derived from p-tolylmalondialdehyde. These new SL analogues are appreciably to highly active as germination stimulants of seeds of Striga hermonthica and Orobanche cernua. The SL analogue derived from saccharin is the most active one. A serendipitous and most rewarding finding is that the compound obtained by a direct coupling of saccharin with the chlorobutenolide exhibits a high germination activity especially towards O. cernua seeds. Two other SL mimics are obtained from benzoic and salicylic aid by a direct coupling reaction with chlorobutenolide, both of them are very active germinating agents. These SL mimics represent a new type of germination stimulants. A tentative molecular mechanism for the mode of action of these SL mimics has been proposed.

  17. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF-MS/MS.

    PubMed

    Zhang, Qili; Guan, Jiao; Rong, Rong; Zhao, Yunli; Yu, Zhiguo

    2015-08-10

    A RP-HPLC method was developed and validated for the degradation kinetic study of 2-(2-hydroxypropanamido) benzoic acid (HPABA), a promising anti-inflammatory drug, which would provide a basis for further studies on HPABA. The effects of pH, temperature, buffer concentration and ionic strength on the degradation kinetics of HPABA were discussed. Experimental parameters such as degradation rate constants (k), activation energy (Ea), acid and alkali catalytic constants (k(ac), k(al)), shelf life (t1/2) and temperature coefficient (Q10) were calculated. The results indicated that degradation kinetics of HPABA followed zero-order reaction kinetics; degradation rate constants (k) of HPABA at different pH values demonstrated that HPABA was more stable in neutral and near-neutral conditions; the function of temperature on k obeyed the Arrhenius equation (r = 0.9933) and HPABA was more stable at lower temperature; with the increase of ionic strength and buffer concentration, the stability of HPABA was decreased. The major unknown degradation product of HPABA was identified by UHPLC/TOF-MS/MS with positive electrospray ionization. Results demonstrated that the hydrolysis product was the primary degradation product of HPABA and it was deduced as anthranilic acid.

  18. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    NASA Astrophysics Data System (ADS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.

  19. Application of ChemDraw NMR Tool: Correlation of Program-Generated (Super 13)C Chemical Shifts and pK[subscript a] Values of Para-Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Hongyi Wang

    2005-01-01

    A study uses the ChemDraw nuclear magnetic resonance spectroscopy (NMR) tool to process 15 para-substituted benzoic acids and generate (super 13)C NMR chemical shifts of C1 through C5. The data were plotted against their pK[subscript a] value and a fairly good linear fit was found for pK[subscript a] versus delta[subscript c1].

  20. Dielectric study of equimolar acetaminophen-aspirin, acetaminophen-quinidine, and benzoic acid-progesterone molecular alloys in the glass and ultraviscous states and their relevance to solubility and stability.

    PubMed

    Johari, G P; Kim, S; Shanker, Ravi M

    2010-03-01

    Equimolar mixtures of acetaminophen-aspirin, acetaminophen-quinidine, and benzoic acid-progesterone have been vitrified and dielectric properties of their glassy and ultraviscous alloys have been studied. For 20 K/min heating rate, their T(g)s are 266, 330, and 263 K, respectively. The relaxation has an asymmetric distribution of times, and the distribution parameter increases with increase in temperature. The dielectric relaxation time varies with T according to the Vogel-Fulcher-Tammann equation, log(10)(tau(0)) = A(VFT) + [B(VFT)/(T - T(0))], where A(VFT), B(VFT), and T(0) are empirical constants. The equilibrium permittivity is highest for the aspirin-acetaminophen and lowest for the benzoic acid-progesterone alloy, indicating a substantial interpharmaceutical hydrogen bonding that makes the alloy more stable against crystallization than the pure components. The benzoic acid-progesterone alloy is thermodynamically the most nonideal. It showed cold crystallization on heating, which is attributed to its relatively greater magnitude of the JG relaxation in relation to its alpha-relaxation. It is argued that the difference between the free energy of an alloy and the pure components would have an effect on the solubility. Studies of solution thermodynamics of a glassy molecular alloy may be useful for optimizing choice of components and composition to form molecular alloys and to impact drug delivery.

  1. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    NASA Astrophysics Data System (ADS)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  2. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in zymosan-induced shock

    PubMed Central

    Cuzzocrea, Salvatore; Costantino, Giuseppina; Mazzon, Emanuela; De Sarro, Angela; Caputi, Achille P

    1999-01-01

    The therapeutic efficacy of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase mimetic which scavenges peroxynitrite, was investigated in rats subjected to shock induced by peritoneal injection of zymosan.Our data show that MnTBAP (given at 1, 3 and 10 mg kg−1 intraperitoneally, 1 and 6 h after zymosan injection) significantly reduce in dose dependent manner the development of peritonitis (peritoneal exudation, high nitrate/nitrite and peroxynitrite plasma levels, leukocyte infiltration and histological examination).Furthermore, our data suggest that there is a reduction in the lung, small intestine and liver myeloperoxidase (MPO) activity and lipid peroxidation activity from MnTBAP-treated rats.MnTBAP also reduced the appearance of nitrotyrosine immunoreactivity in the inflamed tissues.Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of zymosan-treated rat.In vivo treatment with MnTBAP significantly reduced in a dose-dependent manner peroxynitrite formation and prevented the appearance of DNA damage, the decrease in mitochondrial respiration and the loss of cellular levels of NAD+.In conclusion our results showed that MnTBAP was effective in preventing the development of zymosan-induced shock. PMID:10578138

  3. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  4. 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene)hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA.

    PubMed

    Sharma, Vibha; Arora, Ekta Kundra; Cardoza, Savio

    2016-05-01

    The Schiff base 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern-Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 10(5)  M(-1). Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6-311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein-Schiff base docking calculations using Argus Lab.

  5. Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid: A DFT approach.

    PubMed

    Kurt, M; Sas, E Babur; Can, M; Okur, S; Icli, S; Demic, S; Karabacak, M; Jayavarthanan, T; Sundaraganesan, N

    2016-01-05

    A complete structural and vibrational analysis of the 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid (TPBA), was carried out by ab initio calculations, at the density functional theory (DFT) method. Molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO) (13)C NMR and (1)H NMR chemical shift values of (TPBA), in the ground state have been calculated by using ab initio density functional theory (DFT/B3LYP) method with 6-311G(d,p) as basis set for the first time. Comparison of the observed fundamental vibrational modes of (TPBA) and calculated results by DFT/B3LYP method indicates that B3LYP level of theory giving yield good results for quantum chemical studies. Vibrational wavenumbers obtained by the DFT/B3LYP method are in good agreement with the experimental data. The study was complemented with a natural bond orbital (NBO) analysis, to evaluate the significance of hyperconjugative interactions and electrostatic effects on such molecular structure. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals analysis and thermodynamic properties of TPBA were investigated using theoretical calculations.

  6. De novo Sequencing and Transcriptome Analysis of Pinellia ternata Identify the Candidate Genes Involved in the Biosynthesis of Benzoic Acid and Ephedrine

    PubMed Central

    Zhang, Guang-hui; Jiang, Ni-hao; Song, Wan-ling; Ma, Chun-hua; Yang, Sheng-chao; Chen, Jun-wen

    2016-01-01

    Background: The medicinal herb, Pinellia ternata, is purported to be an anti-emetic with analgesic and sedative effects. Alkaloids are the main biologically active compounds in P. ternata, especially ephedrine that is a phenylpropylamino alkaloid specifically produced by Ephedra and Catha edulis. However, how ephedrine is synthesized in plants is uncertain. Only the phenylalanine ammonia lyase (PAL) and relevant genes in this pathway have been characterized. Genomic information of P. ternata is also unavailable. Results: We analyzed the transcriptome of the tuber of P. ternata with the Illumina HiSeq™ 2000 sequencing platform. 66,813,052 high-quality reads were generated, and these reads were assembled de novo into 89,068 unigenes. Most known genes involved in benzoic acid biosynthesis were identified in the unigene dataset of P. ternata, and the expression patterns of some ephedrine biosynthesis-related genes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Also, 14,468 simple sequence repeats (SSRs) were identified from 12,000 unigenes. Twenty primer pairs for SSRs were randomly selected for the validation of their amplification effect. Conclusion: RNA-seq data was used for the first time to provide a comprehensive gene information on P. ternata at the transcriptional level. These data will advance molecular genetics in this valuable medicinal plant. PMID:27579029

  7. Theoretical investigation of some specific features of the electronic structure and optical properties of Benzoic Acid 2-Amino-4,6-Dimethylpyrimidine (1:1) co-crystals

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2015-08-01

    Benzoic Acid 2-Amino-4,6-Dimethylpyrimidine (1:1) co-crystal have been comprehensively investigated by means of density functional theory. The electronic band structure show that the conduction band minimum (CBM) and the valence band maximum (VBM) are situated at the center of the Brillouin zone resulting in a direct band gap. Calculation were performed using the full potential linear augmented plane wave plus local orbitals (FPLAPW + lo) method in a scalar relativistic version as embodied in the WIEN 2 k code within the local density approximation (LDA), gradient approximation (PBE- GGA), Engel-Vosko generalized gradient approximation (EV- GGA) and the recently modified Becke-Johnson potential (mBJ). The calculated density of states explore that the VBM is mainly formed by N-p state while the CBM is formed by the strongly hybridized N-p and C-p states. There exists a strong hybridizations between C-s/p, H-s, N-s/p and O-s/p states above and below the Fermi level (EF). Which may led to covalent bonding between the states. To visualizes the charge transfer and the chemical bonding characters, the valence band's electronic charge density distribution were extensively investigated. The optical properties helps to get deep insight into the electronic structure therefore, details analysis to the calculated optical properties were performed. The optical properties confirm the existence of the band gap and the lossless regions.

  8. Synthesis, characterization, crystal structure and theoretical approach of Cu(II) complex with 4-{(Z)-[(2-hydroxybenzoyl)hydrazono]methyl}benzoic acid

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Liang; Liu, Zheng; Liu, Jie; Han, Guo-Cheng; Li, Yan-Hong

    2012-04-01

    The metal complex of [CuL2]·2DMF (L = 4-{(Z)-[(2-hydroxybenzoyl)hydrazono]methyl}benzoic acid, DMF = N,N-dimethylformamide) (1) had been synthesized and characterized by spectral method(IR), UV-Vis electronic absorption spectra, fluorescence spectra, elemental analysis, electrochemistry, thermal analysis (TG, DTG) and single crystal X-ray diffraction techniques. In the complex, the ligands act as univalent anion bidentate and coordination takes place in the enol tautomeric form with the enolic oxygen and azomethine nitrogen atoms. Molecular geometry from X-ray experiment of the title compound in the ground-state has been compared using the density functional method (B3LYP) and LANL2DZ basis set. DFT calculations at B3LYP/LANL2DZ level of theory prove that the electronic spectra of CuL2·2DMF is attributed to intra-complex electronic transitions as well as π-π* electronic transitions. Also, Mulliken charge analysis, natural bond orbitals (NBO), Wiberg bond index and frontier molecular orbitals (FMO) were performed at B3LYP/LANL2DZ level of theory. In addition, complex 1 exhibits strong photoluminescent emission at room temperature. The electrochemical studies reveal that redox of Cu2+/Cu+ in the complex are quasi-reversible processes. The result of TG analysis shows that the title complex was stable under 100.0 °C.

  9. Complexation of U(VI) with benzoic acid at variable temperatures (298-353 K): thermodynamics and crystal structures of U(VI)/benzoate complexes.

    PubMed

    Yang, Yanqiu; Teat, Simon J; Zhang, Zhicheng; Luo, Shunzhong; Rao, Linfeng

    2016-01-07

    Thermodynamics of the U(VI) complexation with benzoic acid (HL) was studied by spectrophotometry at varied temperatures (298-353 K) with constant ionic strength (1.05 mol kg(-1) NaClO4). Two U(VI) benzoate complexes, UO2L(+) and UO2(OH)L(aq), were identified and their formation constants determined. The formation of both complexes is endothermic and driven exclusively by entropy. Two types of U(VI)/benzoate complex crystals were synthesized from aqueous solutions at different pH and ligand/metal ratios. Their structures were determined by single-crystal X-ray diffractometry. One structure is a 1 : 3 U(VI) benzoate complex (Na[UO2(C7H5O2)3]·2H2O), each benzoate holding a bidentate coordination mode to U(VI) in the equatorial plane of UO2(2+). The other is a U(VI) hydroxobenzoate complex with unique μ3-OH bridging ([(UO2)2(C7H5O2)2(μ3-OH)2]·4H2O). In the structure, each UO2(2+) ion holds five coordination oxygens in its equatorial plane, two carboxylate oxygens from two benzoate ligands and three oxygens from three μ3-OH groups.

  10. Protective effects of hemin and tetrakis(4-benzoic acid)porphyrin on bacterial mutagenesis and mouse skin carcinogenesis induced by 7, 12-dimethylbenz[a]anthracene.

    PubMed

    Chung, W Y; Lee, J M; Lee, W Y; Surh, Y J; Park, K K

    2000-12-20

    Porphyrins which are widespread in nature can interfere with the actions of certain carcinogens and mutagens, and have also been used clinically in photodynamic therapy (PDT) of tumors. Porphyrins such as chlorophyll, chlorophyllin (CHL) and hemin are known to inactivate various mutagens by forming complexes with them. Tetrakis(4-benzoic acid)porphyrin (TBAP) has been developed as a photosensitizer for PDT and its metal complex, MnTBAP has been shown to be efficacious in a variety of in vitro and in vivo oxidative stress models of human diseases. In the present study, we have found that TBAP and hemin exert concentration-related inhibition of his(+) reversion in Salmonella typhimurium TA100 induced by 7, 12-dimethylbenz[a]anthracene (DMBA), and significantly reduced both incidence and multiplicity of skin tumors when topically applied prior to treatment of 12-O-tetradecanoylphorbol-13-acetate in female ICR mice. Covalent DNA binding of DMBA in mouse skin was also significantly inhibited by topical application of TBAP or hemin as well as CHL. These results suggest the chemopreventive potential of compounds containing a porphyrin nucleus.

  11. In-capillary derivatization with o-phthalaldehyde in the presence of 3-mercaptopropionic acid for the simultaneous determination of monosodium glutamate, benzoic acid, and sorbic acid in food samples via capillary electrophoresis with ultraviolet detection.

    PubMed

    Aung, Hnin-Pwint; Pyell, Ute

    2016-06-03

    For the rapid simultaneous determination of monosodium glutamate (MSG), benzoic acid (BA), and sorbic acid (SA) in canned food and other processed food samples, we developed a method that combines in-capillary derivatization with separation by capillary electrophoresis. This method employs the rapid derivatization of MSG with o-phthalaldehyde (OPA) in the presence of 3-mercaptopropionic acid (3-MPA) and enables the detection of the resulting OPA-MSG derivative and of non-derivatized BA and SA at 230nm. The composition of the background electrolyte and the parameters of derivatization and separation are as follows: 25mM borax containing 5mM OPA and 6mM 3-MPA, separation voltage 25mV, injection at 30mbar for 20s, and column temperature 25°C. Because of the high reaction rate and suitably adapted effective electrophoretic mobilities, band broadening due to the derivatization reaction at the start of the separation process is kept to a minimum. The optimized method is validated with respect to LOD, LOQ, linearity, recovery, and precision. This method can be applied to real samples such as soy, fish, oyster and sweet and sour chili sauces after application of appropriate clean-up steps. Mechanisms of zone broadening and zone focusing are discussed showing the validity of the employed theoretical approach regarding the dependence of the peak shape for OPA-MSG on the concentration of MSG in the sample.

  12. Quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and benzoic Acid derivatives after identification by LC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A general method was developed for the systematic quantitation of catechins, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and hydroxybenzoic acid derivatives (mainly hydrolyzable tannins) using the UV relative mole response factors (MRRF) of the reference standard from ea...

  13. Peripheral antinociception induced by δ-opioid receptors activation, but not μ- or κ-, is mediated by Ca²⁺-activated Cl⁻ channels.

    PubMed

    Pacheco, Daniela da Fonseca; Pacheco, Cinthia Mara da Fonseca; Duarte, Igor Dimitri Gama

    2012-01-15

    Studies have demonstrated that the L-arginine/NO/cGMP pathway and the potassium and calcium channels are involved in the mechanisms underlying opioid receptor activation. As additional pathways may participate in the observed antinociceptive effects following opioid exposure, the aim of our study was to determine whether Ca(2+)-activated Cl(-) channels (CaCCs) are involved in peripheral antinociception induced by μ-, δ- and κ-opioid receptor activation. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (PGE(2), 2 μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3h following injection. The μ-opioid receptor agonist morphine (200 μg), δ-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80, 80 μg), κ-opioid receptor agonist bremazocine (50 μg), CaCCs blocker niflumic acid (8-64 μg), CaCCs blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 32-128 μg), nitric oxide donor sodium nitroprusside (SNP, 500 μg) and cGMP exogenous analogs dibutyryl cGMP (db-cGMP, 100 μg) were also administered into the paw. The CaCCs blocker niflumic acid and NPPB partially reversed the peripheral antinociception induced by exposure to the SNC80 in a dose-dependent manner. In contrast, niflumic acid did not modify the antinociceptive effect observed following exposure to morphine or bremazocine. Additionally, the peripheral antinociception induced by the NO donor SNP or by db-cGMP was not inhibited by niflumic acid. These results provide evidence for the involvement of CaCCs in the peripheral antinociception induced by SNC80. CaCCs activation does not appear to be involved when μ- and κ-opioid receptors are activated. In addition, we did not observe a link between CaCCs and the L-arginine/NO/GMPc pathway.

  14. Comparison of the crystal structures of methyl 4-bromo-2-(meth-oxy-meth-oxy)benzoate and 4-bromo-3-(meth-oxy-meth-oxy)benzoic acid.

    PubMed

    Suchetan, P A; Suneetha, V; Naveen, S; Lokanath, N K; Krishna Murthy, P

    2016-04-01

    The title compounds, C10H11BrO4, (I), and C9H9BrO4, (II), are derivatives of bromo-hy-droxy-benzoic acids. Compound (II) crystallizes with two independent mol-ecules (A and B) in the asymmetric unit. In both (I) and (II), the O-CH2-O-CH3 side chain is not in its fully extended conformation; the O-C-O-C torsion angle is 67.3 (3) ° in (I), and -65.8 (3) and -74.1 (3)° in mol-ecules A and B, respectively, in compound (II). In the crystal of (I), mol-ecules are linked by C-H⋯O hydrogen bonds, forming C(5) chains along [010]. The chains are linked by short Br⋯O contacts [3.047 (2) Å], forming sheets parallel to the bc plane. The sheets are linked via C-H⋯π inter-actions, forming a three-dimensional architecture. In the crystal of (II), mol-ecules A and B are linked to form R 2 (2)(8) dimers via two strong O-H⋯O hydrogen bonds. These dimers are linked into ⋯A-B⋯A-B⋯A-B⋯ [C 2 (2)(15)] chains along [011] by C-H⋯O hydrogen bonds. The chains are linked by slipped parallel π-π inter-actions [inter-centroid distances = 3.6787 (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the bc plane.

  15. Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin.

    PubMed

    Bao, Feng; DeWitt, Douglas S; Prough, Donald S; Liu, Danxia

    2003-01-15

    To determine whether peroxynitrite at the concentration and duration present after spinal cord injury induces protein oxidation and nitration in vivo, the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) was administered into the gray matter of the rat spinal cord for 5 hr. The cords were removed at 6, 12, 24, and 48 hr after SIN-1 exposure, immunohistochemically stained with antibodies to dinitrophenyl (DNP) and nitrotyrosine (Ntyr), markers of protein oxidation and nitration, respectively, and the immunostained neurons were counted. The percentages of DNP-positive (P = 0.023-0.002) and Ntyr-positive (P < 0.001 for all) neurons were significantly higher in the SIN-1-exposed groups than in the ACSF controls at each time, suggesting that peroxynitrite induced intracellular oxidation and nitration of proteins. The percentages of DNP- and Ntyr-positive neurons were not significantly different over time in either SIN-1- or ACSF-exposed groups (P = 0.20-1.00). The percentage of DNP-positive neurons was 7.6 +/- 3% to 12 +/- 4.2% at 6-24 hr, and it was 14 +/- 2% to 19 +/- 2% at 6-24 hr for Ntyr-positive neurons after SIN-1-exposure, whereas both ranged over 2-3% in ACSF controls. Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP, a broad-spectrum scavenger of reactive species) significantly reduced the percentages of DNP- and Ntyr-positive neurons (P = 0.04 and 0.002, respectively) compared to a SIN-1-exposed, untreated group at 24 hr after SIN-1 exposure. There were no significant differences between MnTBAP-treated and ACSF controls (P = 0.7 for DNP and 0.2 for Ntyr). These results further demonstrate peroxynitrite-induced protein oxidation and nitration and the efficiency of MnTBAP in scavenging peroxynitrite.

  16. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  17. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide.

    PubMed

    London, Bianca King; Claville, Michelle O Fletcher; Babu, Sainath; Fronczek, Frank R; Uppu, Rao M

    2015-10-01

    In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.

  18. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study.

    PubMed

    Franck, Thierry; Mouithys-Mickalad, Ange; Robert, Thierry; Ghitti, Gianangelo; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2013-11-25

    We investigated the antioxidant activities of some phenolic acid derivatives on a cell free system and on cellular and enzymatic models involved in inflammation. The stoichiometric antioxidant activities of phenolic acid derivatives were studied by measuring their capacity to scavenge the radical cation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(+)) and reactive oxygen species (ROS) produced by stimulated neutrophils. The anticatalytic antioxidant capacity of the molecules was evaluated on the activity of myeloperoxidase (MPO), an oxidant enzyme present in and released by the primary granules of neutrophils. The ROS produced by PMA-stimulated neutrophils were measured by lucigenin-enhanced chemiluminescence (CL) and the potential interaction of the molecules with MPO was investigated without interferences due to medium by Specific Immuno-Extraction Followed by Enzyme Detection (SIEFED). The antioxidant activities of the phenolic compounds were correlated to their redox potentials measured by differential pulse voltammetry (DPV), and discussed in relation to their molecular structure. The ability of the phenolic molecules to scavenge ABTS radicals and ROS derived from neutrophils was inversely correlated to their increased redox potential. The number of hydroxyl groups (three) and their position (catechol) were essential for their efficacy as stoichiometric antioxidants or scavengers. On MPO activity, the inhibitory capacity of the molecules was not really correlated with their redox potential. Likewise, for the inhibition of MPO activity the number of OH groups and mainly the elongation of the carboxylic group were essential, probably by facilitating the interaction with the active site or the structure of the enzyme. The redox potential measurement, combined with ABTS and CL techniques, seems to be a good technique to select stoichiometric antioxidants but not anticatalytic ones, as seen for MPO, what rather involves a direct interaction with

  19. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.

    PubMed

    Beerhues, Ludger; Liu, Benye

    2009-01-01

    Type III polyketide synthases (PKSs) generate a diverse array of secondary metabolites by varying the starter substrate, the number of condensation reactions, and the mechanism of ring closure. Among the starter substrates used, benzoyl-CoA is a rare starter molecule. Biphenyl synthase (BIS) and benzophenone synthase (BPS) catalyze the formation of identical linear tetraketide intermediates from benzoyl-CoA and three molecules of malonyl-CoA but use alternative intramolecular cyclization reactions to form 3,5-dihydroxybiphenyl and 2,4,6-trihydroxybenzophenone, respectively. In a phylogenetic tree, BIS and BPS group together closely, indicating that they arise from a relatively recent functional diversification of a common ancestral gene. The functionally diverse PKSs, which include BIS and BPS, and the ubiquitously distributed chalcone synthases (CHSs) form separate clusters, which originate from a gene duplication event prior to the speciation of the angiosperms. BIS is the key enzyme of biphenyl metabolism. Biphenyls and the related dibenzofurans are the phytoalexins of the Maloideae. This subfamily of the Rosaceae includes a number of economically important fruit trees, such as apple and pear. When incubated with ortho-hydroxybenzoyl (salicoyl)-CoA, BIS catalyzes a single decarboxylative condensation with malonyl-CoA to form 4-hydroxycoumarin. A well-known anticoagulant derivative of this enzymatic product is dicoumarol. Elicitor-treated cell cultures of Sorbus aucuparia also formed 4-hydroxycoumarin when fed with the N-acetylcysteamine thioester of salicylic acid (salicoyl-NAC). BPS is the key enzyme of benzophenone metabolism. Polyprenylated benzophenone derivatives with bridged polycyclic skeletons are widely distributed in the Clusiaceae (Guttiferae). Xanthones are regioselectively cyclized benzophenone derivatives. BPS was converted into a functional phenylpyrone synthase (PPS) by a single amino acid substitution in the initiation/elongation cavity. The

  20. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.

    PubMed Central

    Mohamed, A; Ferguson, D; Seibert, F S; Cai, H M; Kartner, N; Grinstein, S; Riordan, J R; Lukacs, G L

    1997-01-01

    The gene product affected in cystic fibrosis, the cystic fibrosis transmembrane conductance regulator (CFTR), is a chlorideselective ion channel that is regulated by cAMP-dependent protein kinase-mediated phosphorylation, ATP binding and ATP hydrolysis. Mutations in the CFTR gene may result in cystic fibrosis characterized by severe pathology (e.g. recurrent pulmonary infection, male infertility and pancreatic insufficiency) involving organs expressing the CFTR. Interestingly, in the kidney, where expression of the CFTR has been reported, impaired ion transport in patients suffering from cystic fibrosis could not be observed. To understand the role of the CFTR in chloride transport in the kidney, we attempted to identify an epithelial cell line that can serve as a model. We demonstrate that the CFTR is expressed constitutively in Madine-Darby canine kidney (MDCK) type I cells, which are thought to have originated from the distal tubule of the dog nephron. We show expression at the mRNA level, using reverse transcriptase-PCR, and at the protein level, using Western blot analysis with three different monoclonal antibodies. Iodide efflux measurements indicate that CFTR expression confers a plasma membrane anion conductance that is responsive to stimulation by cAMP. The cAMP-stimulated iodide release is sensitive to glybenclamide, diphenylamine carboxylic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, but not to 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid, an inhibitor profile characteristic of the CFTR chloride channel. Finally, the polarized localization of the CFTR to the apical plasma membrane was established by iodide efflux measurements and cell-surface biotinylation on MDCK I monolayers. Interestingly, MDCK type II cells, which are thought to have originated from the proximal tubule of the kidney, lack CFTR protein expression and cAMP-stimulated chloride conductance. In conclusion, we propose that MDCK type I and II cells can serve as convenient

  1. Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells.

    PubMed

    Lock, Edward A; Reed, Celia J; Kinsey, Gilbert R; Schnellmann, Rick G

    2007-01-05

    Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak(i)-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak(i)-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A(2) inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak(i)-1 renal cancer cells primarily through a caspase-dependent mechanism and that

  2. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.

    PubMed

    Cranmer, S L; Conant, A R; Gutteridge, W E; Halestrap, A P

    1995-06-23

    Human erythrocytes parasitized with the malarial protozoan Plasmodium falciparum showed rates of L-lactate, D-lactate, and pyruvate uptake many fold greater than control cells. Thus it was necessary to work at 0 degrees C to resolve true initial rates of transport. Studies on the dependence of the rate of transport on substrate concentration implied the presence in parasitized cells of both a saturable mechanism blocked by alpha-cyano-4-hydroxycinnamate (CHC) and a nonsaturable mechanism insensitive to CHC. The former was dominant at physiological substrate concentrations with Km values for pyruvate and D-lactate of 2.3 and 5.2 mM, respectively, with no stereoselectivity for L- over D-lactate. CHC was significantly less effective as an inhibitor of lactate transport in parasitized erythrocytes than in uninfected cells, whereas p-chloromercuribenzenesulfonate, a potent inhibitor in control cells, gave little or no inhibition of lactate transport into parasitized erythrocytes. Inhibition of transport into infected cells was also observed with phloretin, furosemide, niflumic acid, stilbenedisulfonate derivatives, and 5-nitro-2-(3-phenylpropylamino)benzoic acid at concentrations similar to those that inhibit the lactate carrier of control erythrocytes. These compounds were more effective inhibitors of the rapid transport of chloride into infected cells than of lactate transport, whereas CHC was more effective against lactate transport. This implies that different pathways are involved in the parasite-induced transport pathways for lactate and chloride. The transport of L-lactate into infected erythrocytes was also inhibited by D-lactate, pyruvate, 2-oxobutyrate, and 2-hydroxybutyrate. The intracellular accumulation of L-lactate at equilibrium was dependent on the transmembrane pH gradient, suggesting a protogenic transport mechanism. Our data are consistent with lactate and pyruvate having direct access to the malarial parasite, perhaps via the proposed parasitophorous

  3. NSAIDs modulate GABA-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons

    PubMed Central

    ZHAO, LEI; LI, LI; MA, KE-TAO; WANG, YANG; LI, JING; SHI, WEN-YAN; ZHU, HE; ZHANG, ZHONG-SHUANG; SI, JUN-QIANG

    2016-01-01

    The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate γ-aminobutyrate (GABA)-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons (DRG), was examined in the present study. During the preparation of DRG neurons harvested from Sprague-Dawley rats, the whole-cell recording technique was used to record the effect of NSAIDs on GABA-activated inward currents, and the expression levels of the TMEM16A and TMEM16B subunits were revealed. In the event that DRG neurons were pre-incubated for 20 sec with niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) prior to the administration of GABA, the GABA-induced inward currents were diminished markedly in the majority of neurons examined (96.3%). The inward currents induced by 100 µmol/l GABA were attenuated by (0±0.09%; neurons = 4), (5.32±3.51%; neurons = 6), (21.3±4.00%; neurons = 5), (33.8±5.20%; neurons = 17), (52.2±5.10%; neurons = 4) and (61.1±4.12%; neurons = 12) by 0.1, 1, 3, 10, 30 and 100 µmol/l NFA, respectively. The inward currents induced by 100 µmol/l GABA were attenuated by (13.8±6%; neurons = 6), (23.2±14.7%; neurons = 6) and (29.7±9.1%; neurons = 9) by 3, 10 and 30 µmol/l NPPB, respectively. NFA and NPPB dose-dependently inhibited GABA-activated currents with half maximal inhibitory concentration (IC50) values of 6.7 and 11 µmol/l, respectively. The inhibitory effect of 100 µmol/l NFA on the GABA-evoked inward current were also strongly inhibited by nitrendipine (NTDP; an L-type calcium channel blocker), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (a highly selective calcium chelating reagent), caffeine (a widely available Ca2+ consuming drug) and calcium-free extracellular fluid, in a concentration-dependent manner. Immunofluorescent staining indicated that TMEM16A and TMEM16B expression was widely distributed in DRG neurons. The results suggest that NSAIDs may be able to regulate Ca2

  4. Patch Clamp on the Luminal Membrane of Exocrine Gland Acini from Frog Skin (Rana esculenta) Reveals the Presence of Cystic Fibrosis Transmembrane Conductance Regulator–like Cl− Channels Activated by Cyclic AMP

    PubMed Central

    Sørensen, Jakob Balslev; Larsen, Erik Hviid

    1998-01-01

    Chloride channels in the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) constituted a single homogeneous population. In cell-attached patches, channels activated upon exposure to isoproterenol, forskolin, or dibutyryl-cAMP and isobutyl-1-methyl-xanthine rectified in the outward direction with a conductance of 10.0 ± 0.4 pS for outgoing currents. Channels in stimulated cells reversed at 0 mV applied potential, whereas channels in unstimulated cells reversed at depolarized potentials (28.1 ± 6.7 mV), indicating that Cl− was above electrochemical equilibrium in unstimulated, but not in stimulated, cells. In excised inside-out patches with 25 mM Cl− on the inside, activity of small (8-pS) linear Cl−-selective channels was dependent upon bath ATP (1.5 mM) and increased upon exposure to cAMP-dependent protein kinase. The channels displayed a single substate, located just below 2/3 of the full channel amplitude. Halide selectivity was identified as PBr > PI > PCl from the Goldman equation; however, the conductance sequence when either halide was permeating the channel was GCl > GBr >> GI. In inside-out patches, the channels were blocked reversibly by 5-nitro-2-(3-phenylpropylamino)benzoic acid, glibenclamide, and diphenylamine-2-carboxylic acid, whereas 4,4-diisothiocyanatostilbene-2,2-disulfonic acid blocked channel activity completely and irreversibly. Single-channel kinetics revealed one open state (mean lifetime = 158 ± 72 ms) and two closed states (lifetimes: 12 ± 4 and 224 ± 31 ms, respectively). Power density spectra had a double-Lorentzian form with corner frequencies 0.85 ± 0.11 and 27.9 ± 2.9 Hz, respectively. These channels are considered homologous to the cystic fibrosis transmembrane conductance regulator Cl− channel, which has been localized to the submucosal skin glands in Xenopus by immunohistochemistry (Engelhardt, J.F., S.S. Smith, E. Allen, J.R. Yankaskas, D.C. Dawson, and J.M. Wilson. 1994. Am. J. Physiol. 267

  5. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    PubMed

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  6. A chloride channel from lobster walking leg nerves. Characterization of single-channel properties in planar bilayers

    PubMed Central

    1990-01-01

    A novel, small conductance of Cl- channel was characterized by incorporation into planar bilayers from a plasma membrane preparation of lobster walking leg nerves. Under conditions of symmetrical 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, single Cl- channels exhibit rectifying current-voltage (I-V) behavior with a conductance of 19.2 +/- 0.8 pS at positive voltages and 15.1 +/- 1.6 pS in the voltage range of -40 to 0 mV. The channel exhibits a negligible permeability for Na+ compared with Cl- and displays the following sequence of anion permeability relative to Cl- as measured under near bi-ionic conditions: I- (2.7) greater than NO3- (1.8) greater than Br- (1.5) greater than Cl- (1.0) greater than CH3CO2- (0.18) greater than HCO3- (0.10) greater than gluconate (0.06) greater than F- (0.05). The unitary conductance saturates with increasing Cl- concentration in a Michaelis-Menten fashion with a Km of 100 mM and gamma max = 33 pS at positive voltage. The I-V curve is similar in 10 mM Tris or 10 mM HEPES buffer, but substitution of 100 mM NaCl with 100 mM tetraethylammonium chloride on the cis side results in increased rectification with a 40% reduction in current at negative voltages. The gating of the channel is weakly voltage dependent with an open-state probability of 0.23 at -75 mV and 0.64 at +75 mV. Channel gating is sensitive to cis pH with an increased opening probability observed for a pH change of 7.4 to 11 and nearly complete inhibition for a pH change of 7.4 to 6.0. The lobster Cl- channel is reversibly blocked by the anion transport inhibitors, SITS (4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid) and NPPB (5- nitro-2-(3-phenylpropylamino)benzoic acid). Many of these characteristics are similar to those previously described for small conductance Cl- channels in various vertebrate cells, including epithelia. These functional comparisons suggest that this invertebrate Cl- channel is an evolutionary prototype of a widely distributed class of small

  7. Oscillatory Chloride Efflux at the Pollen Tube Apex Has a Role in Growth and Cell Volume Regulation and Is Targeted by Inositol 3,4,5,6-Tetrakisphosphate

    PubMed Central

    Zonia, Laura; Cordeiro, Sofia; Tupý, Jaroslav; Feijó, José A.

    2002-01-01

    Oscillatory growth of pollen tubes has been correlated with oscillatory influxes of the cations Ca2+, H+, and K+. Using an ion-specific vibrating probe, a new circuit was identified that involves oscillatory efflux of the anion Cl− at the apex and steady influx along the tube starting at 12 μm distal to the tip. This spatial coupling of influx and efflux sites predicts that a vectorial flux of Cl− ion traverses the apical region. The Cl− channel blockers 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid completely inhibited tobacco pollen tube growth at 80 and 20 μM, respectively. Cl− channel blockers also induced increases in apical cell volume. The apical 50 μm of untreated pollen tubes had a mean cell volume of 3905 ± 75 μm3. DIDS at 80 μM caused a rapid and lethal cell volume increase to 6206 ± 171 μm3, which is at the point of cell bursting at the apex. DIDS was further demonstrated to disrupt Cl− efflux from the apex, indicating that Cl− flux correlates with pollen tube growth and cell volume status. The signal encoded by inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P4] antagonized pollen tube growth, induced cell volume increases, and disrupted Cl− efflux. Ins(3,4,5,6)P4 decreased the mean growth rate by 85%, increased the cell volume to 5997 ± 148 μm3, and disrupted normal Cl− efflux oscillations. These effects were specific for Ins(3,4,5,6)P4 and were not mimicked by either Ins(1,3,4,5)P4 or Ins(1,3,4,5,6)P5. Growth correlation analysis demonstrated that cycles of Cl− efflux were coupled to and temporally in phase with cycles of growth. A role for Cl− flux in the dynamic cellular events during growth is assessed. Differential interference contrast microscopy and kymographic analysis of individual growth cycles revealed that vesicles can advance transiently to within 2 to 4 μm of the apex during the phase of maximally increasing Cl− efflux, which temporally

  8. Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF.

    PubMed

    Wahl, V; Vogler, S; Grosche, A; Pannicke, T; Ueffing, M; Wiedemann, P; Reichenbach, A; Hauck, S M; Bringmann, A

    2013-08-29

    Osmotic swelling of retinal neurons and glial cells is an important pathogenic factor of retinal edema formation. Here, we show that the neuroprotective factor osteopontin (OPN), which is released from retinal glial (Müller) cells after stimulation of the cells with glial cell line-derived neurotrophic factor (Del Río et al., 2011, Glia 59:821-832), inhibits the swelling of rat Müller cells induced by hypoosmotic exposure of retinal slices in the presence of barium ions and H₂O₂, respectively, and in slices of postischemic retinas. OPN did not inhibit the hypoosmotic swelling of bipolar cells in slices of control and postischemic retinas. The inhibitory effect of OPN on Müller cell swelling was dose-dependent, with a half-maximal effect at ∼0.6 ng/ml. The effect of OPN was abrogated in the presence of pharmacological blockers of vascular endothelial growth factor (VEGF) receptor-2, metabotropic glutamate receptors, and purinergic receptors (P2Y₁, adenosine A1 receptors), as well as of a neutralizing anti-VEGF antibody. The data suggest that OPN induces the release of VEGF, glutamate, ATP, and adenosine from Müller cells. The effect of OPN was also prevented by blockers of voltage-gated sodium channels (tetrodotoxin), T-type voltage-gated calcium channels (kurtoxin), potassium channels (clofilium), and chloride channels 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). The swelling-inhibitory effect of OPN was dependent on intracellular calcium signaling, activation of phospholipase C and protein kinase C, and vesicular exocytosis of glutamate. In retinal slices, Müller glial cells display immunoreactivity of OPN. The data suggest that Müller cell-derived OPN has (in addition to the effects on photoreceptors and retinal neurons) autocrine effects. The neuroprotective effects of OPN may be in part mediated by the prevention of cytotoxic Müller cell swelling and the release of VEGF and adenosine from Müller cells.

  9. Cell swelling-induced ATP release is tightly dependent on intracellular calcium elevations

    PubMed Central

    Boudreault, Francis; Grygorczyk, Ryszard

    2004-01-01

    Mechanical stresses release ATP from a variety of cells by a poorly defined mechanism(s). Using custom-designed flow-through chambers, we investigated the kinetics of cell swelling-induced ATP secretion, cell volume and intracellular calcium changes in epithelial A549 and 16HBE14o− cells, and NIH/3T3 fibroblasts. Fifty per cent hypotonic shock triggered transient ATP release from cell confluent monolayers, which consistently peaked at around 1 min 45 s for A549 and NIH/3T3, and at 3 min for 16HBE14o− cells, then declined to baseline within the next 15 min. Whereas the release time course had a similar pattern for the three cell types, the peak rates differed significantly (294 ± 67, 70 ± 22 and 17 ± 2.8 pmol min−1 (106 cells)−1, for A549, 16HBE14o− and NIH/3T3, respectively). The concomitant volume changes of substrate-attached cells were analysed by a 3-dimensional cell shape reconstruction method based on images acquired from two perpendicular directions. The three cell types swelled at a similar rate, reaching maximal expansion in 1 min 45 s, but differed in the duration of the volume plateau and regulatory volume decrease (RVD). These experiments revealed that ATP release does not correlate with either cell volume expansion and the expected activation of stretch-sensitive channels, or with the activation of volume-sensitive, 5-nitro-2-(3-phenylpropylamino) benzoic acid-inhibitable anion channels during RVD. By contrast, ATP release was tightly synchronized, in all three cell types, with cytosolic calcium elevations. Furthermore, loading A549 cells with the calcium chelator BAPTA significantly diminished ATP release (71% inhibition of the peak rate), while the calcium ionophore ionomycin triggered ATP release in the absence of cell swelling. Lowering the temperature to 10°C almost completely abolished A549 cell swelling-induced ATP release (95% inhibition of the peak rate). These results strongly suggest that calcium-dependent exocytosis plays a

  10. Regulation of chloride secretion across porcine endometrial epithelial cells by prostaglandin E2.

    PubMed

    Deachapunya, C; O'Grady, S M

    1998-04-01

    1. The objective of this study was to investigate the mechanism of PGE2 regulation of Cl- transport across glandular endometrial cells grown in primary culture. 2. Most of the basal short circuit current (Isc) was inhibited by luminal addition of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) or glibenclamide, suggesting the presence of a basally active Cl- conductance in the apical membrane. 3. Basolateral addition of 10 microM PGE2 increased Isc by 41 +/- 3 microA. A similar response was observed when cells were treated with 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Pretreatment of monolayers with NPPB and glibenclamide blocked the PGE2 and cAMP-mediated increase in Isc, suggesting that the effects of PGE2 and cAMP were dependent on the activity of an apical NPPB- and glibenclamide-sensitive conductance. 4. Addition of 50 nM antiPGE2 antibody to the basolateral bathing solution decreased basal Isc by 20 % and shifted the threshold response to exogenous PGE2. This result suggests autocrine regulation of electrogenic Cl- transport by PGE2. 5. Experiments with amphotericin B-permeabilized monolayers revealed that the apical PGE2-activated, NPPB- and glibenclamide-sensitive conductance was Cl- dependent and that the current-voltage relationship and anion permeation properties (SCN->Br- > Cl- > I-) were characteristic of the cystic fibrosis transmembrane conductance regulator (CFTR). 6. Cultured porcine endometrial epithelial cells were specifically labelled with an antibody to a peptide sequence within the regulatory domain of CFTR. 7. The effect of PGE2 was blocked by basolateral addition of bumetanide and furosemide at concentrations that are selective for inhibition of Na+-K+-2Cl-cotransport activity. The effect of bumetanide on Isc was Cl- dependent, suggesting a role for the bumetanide-sensitive transport pathway in Cl- secretion. 8. PGE2 and cAMP also activated an outwardly rectifying basolateral K+ channel which presumably

  11. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA).

    PubMed

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-24

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5⋅L'·(ClO4)2⋅5H2O, has been synthesized [using L as the first ligand, and benzoic acid L' as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, (1)H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu(3+) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L', the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L' could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5⋅L'⋅(ClO4)2⋅5H2O and EuL2.5⋅(ClO4)3⋅3H2O systems.

  12. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-01

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5ṡL‧·(ClO4)2ṡ5H2O, has been synthesized [using L as the first ligand, and benzoic acid L‧ as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, 1H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu3+ ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L‧, the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L‧ could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5ṡL‧ṡ(ClO4)2ṡ5H2O and EuL2.5ṡ(ClO4)3ṡ3H2O systems.

  13. Mn (III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone

    PubMed Central

    2013-01-01

    Background Substantial experimental evidence supports that reactive species mediate secondary damage after traumatic spinal cord injury (SCI) by inducing oxidative stress. Removal of reactive species may reduce secondary damage following SCI. This study explored the effectiveness of a catalytic antioxidant - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) - in removing reactive oxygen species (ROS), reducing oxidative stress, and improving functional recovery in vivo in a rat impact SCI model. The efficiency of MnTBAP was also compared with that of methylprednisolone – the only drug used clinically in treating acute SCI. Results In vivo measurements of time courses of ROS production by microdialysis and microcannula sampling in MnTBAP, methylprednisolone, and saline (as vehicle control)-treated SCI rats showed that both agents significantly reduced the production of hydrogen peroxide, but only MnTBAP significantly reduced superoxide elevation after SCI. In vitro experiments further demonstrated that MnTBAP scavenged both of the preceding ROS, whereas methylprednisolone had no effect on either. By counting the immuno-positive neurons in the spinal cord sections immunohistochemically stained with anti-nitrotyrosine and anti-4-hydroxy-nonenal antibodies as the markers of protein nitration and membrane lipid peroxidation, we demonstrated that MnTBAP significantly reduced the numbers of 4-hydroxy-nonenal-positive and nitrotyrosine-positive neurons in the sections at 1.55 to 2.55 mm and 1.1 to 3.1 mm, respectively, rostral to the injury epicenter compared to the vehicle-treated animals. By behavioral tests (open field and inclined plane tests), we demonstrated that at 4 hours post-SCI treatment with MnTBAP and the standard methylprednisolone regimen both significantly increased test scores compared to those produced by vehicle treatment. However, the outcomes for MnTBAP-treated rats were significantly better than those for methylprednisolone-treated animals

  14. Molecular dynamics simulations of organic crystal dissolution: The lifetime and stability of the polymorphic forms of para-amino benzoic acid in aqueous environment

    NASA Astrophysics Data System (ADS)

    Toroz, D.; Hammond, R. B.; Roberts, K. J.; Harris, S.; Ridley, T.

    2014-09-01

    Para-amino benzoic acid (PABA) manifests crystalline solid-state properties that are typical of a class of chemical compounds with important industrial applications. Hence, it is particularly worthwhile to investigate the lifetime and stability of representative molecular-clusters of two polymorphic forms of PABA in aqueous solution using molecular dynamics simulations. Simulations of 5 ns duration in the isothermal-isobaric ensemble (constant particle number, pressure and temperature (NPT) ensemble) were performed for the two polymorphic forms at three different temperatures 0 °C, 50 °C and 100 °C. The simulations revealed that at 0 °C the representative molecular-clusters of the two polymorphic forms remain ordered while at 50 °C the molecular packing within the clusters becomes partially disordered for both polymorphic forms and at 100 °C the clusters lose long-range order rapidly and come to resemble liquid drops. Care should be taken when assessing the relative stability of polymorphic forms, as a function of temperature, from such computational experiments which explore the dissolution of nano-scale crystals. The long range order of the clusters of the α-form at 50 °C and 100 °C was, respectively, partially and completely lost after 5 ns which merits further investigation given that the α-form is the high-temperature stable polymorph. Importantly, the initial shape of clusters, as well as the number of solute molecules they contained, affected the extent to which order was lost and how rapidly the loss occurred. Given that the classical nucleation theory predicts a finite probability that clusters significantly larger than the critical size, in terms of number of molecules, may dissolve, building clusters containing a greater number of molecules could improve the simulated stability of the α polymorph at 50 °C and 100 °C. Furthermore, the simulations revealed that the selection of a suitable electrostatic potential is very important for the

  15. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  16. Fischer indolisation of N-(α-ketoacyl)anthranilic acids into 2-(indol-2-carboxamido)benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study.

    PubMed

    Proisl, Karel; Kafka, Stanislav; Urankar, Damijana; Gazvoda, Martin; Kimmel, Roman; Košmrlj, Janez

    2014-12-21

    N-(α-ketoacyl)anthranilic acids reacted with phenylhydrazinium chloride in boiling acetic acid to afford 2-(indol-2-carboxamido)benzoic acids in good to excellent yields and 2-indolyl-3,1-benzoxazin-4-ones as by-products. The formation of the latter products could easily be suppressed by a hydrolytic workup. Alternatively, by increasing the reaction temperature and/or time, 2-indolyl-3,1-benzoxazin-4-ones can be obtained exclusively. Optimisations of the reaction conditions as well as the scope and the course of the transformations were investigated. The products were characterized by (1)H, (13)C and (15)N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments ((1)H-(1)H gs-COSY, (1)H-(13)C gs-HSQC, (1)H-(13)C gs-HMBC) with (1)H-(15)N gs-HMBC as a practical tool to determine (15)N NMR chemical shifts at the natural abundance level of (15)N isotope.

  17. Stabilization of two smallest possible diastereomeric β-hairpins in a water soluble tetrapeptide containing non-coded α-amino isobutyric acid (Aib) and m-amino benzoic acid

    NASA Astrophysics Data System (ADS)

    Dutt, Anita; Dutta, Arpita; Kar, Sudeshna; Koley, Pradyot; Drew, Michael G. B.; Pramanik, Animesh

    2009-06-01

    Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H 2N-Ile-Aib-Leu- m-ABA-CO 2H, containing non-coded Aib (α-amino isobutyric acid) and m-ABA ( meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric β-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the β-hairpins with β-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with ϕ: -49.5(5)°, ψ: 135.2(5)° in type II and ϕ: 50.6(6)°, ψ: -137.0(4)° in type II' for occupying the i + 1 position of the β-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between - CO2- and - +NH 3 groups to form dimeric supramolecular β-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of β-hairpin structure in water.

  18. Two di­alkyl­ammonium salts of 2-amino-4-nitro­benzoic acid: crystal structures and Hirshfeld surface analysis

    PubMed Central

    Wardell, James L.; Jotani, Mukesh M.; Tiekink, Edward R. T.

    2016-01-01

    The crystal structures of two ammonium salts of 2-amino-4-nitro­benzoic acid are described, namely di­methyl­aza­nium 2-amino-4-nitro­benzoate, C2H8N+·C7H5N2O4 −, (I), and di­butyl­aza­nium 2-amino-4-nitro­benzoate, C8H20N+·C7H5N2O4 −, (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl­ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti­periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl­ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra­molecular amino-N—H⋯O(carboxyl­ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra­molecular chain by charge-assisted amine-N—H⋯O(carboxyl­ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O⋯π(arene) and methyl-C—H⋯O(nitro) inter­actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N—H⋯O(carboxyl­ate) hydrogen bonding. The formation of ammonium

  19. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  20. Reprint of: Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate.

    PubMed

    De Simone, Angela; Seidl, Claudia; Santos, Cid Aimbiré M; Andrisano, Vincenza

    2014-10-01

    High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC₅₀: 0.19 ± 0.02 μM) and of the natural compound Uleine (IC₅₀: 0.57 ± 0.05) were determined in the optimized on-line hrBACE1-IMER. The IC₅₀ values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.

  1. Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate.

    PubMed

    De Simone, Angela; Seidl, Claudia; Santos, Cid Aimbiré M; Andrisano, Vincenza

    2014-03-15

    High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC50: 0.19±0.02μM) and of the natural compound Uleine (IC50: 0.57±0.05) were determined in the optimized on-line hrBACE1-IMER. The IC50 values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.

  2. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene

    SciTech Connect

    Yin, Fei; Chen, Jing; Liang, Yongfeng; Zou, Yang; Yinzhi, Jiang; Xie, Jingli

    2015-05-15

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.

  3. Synthesis, structural characterization and Hirshfeld analysis studies of three novel co-crystals of trans-4-[(2-amino-3,5-dibrobenzyl) amino] cyclohexanol with hydroxyl benzoic acids

    NASA Astrophysics Data System (ADS)

    Ma, Yu-heng; Lou, Ming; Sun, Qing-yang; Ge, Shu-wang; Sun, Bai-wang

    2015-03-01

    Combination of active pharmaceutical ingredients, trans-4-[(2-amino-3,5-dibrobenzyl) amino] cyclohexanol (AMB) and some organic acids, e.g., p-hydroxybenzoic acid (PHBA), m-hydroxybenzoic acid (MHBA), and 3,4-dihydroxy benzoic acid (DHBA), yield three novel co-crystals characterized by X-ray single-crystal, Fluorescence spectroscopy and thermal analysis (DSC and TGA), which included co-crystal 1 with 2:2: 1 stoichiometry of AMB, PHBA and H2O, co-crystal 2 with 1:1 stoichiometry of AMB and MHBA, and co-crystal 3 with 1:1:1 stoichiometry of AMB, DHBA and CH3OH. Constituents of the co-crystalline phase were also investigated in terms of Hirshfeld surfaces. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including formation of a two-dimensional molecular scaffolding motif. Hirshfeld surfaces and fingerprint plots of three co-crystals show that structures are stabilized by H⋯H, N-H⋯O, H⋯Br and C⋯H intermolecular interactions. Besides, the studies of the solubility showed that this co-crystal strategy could promote the solubility of AMB and follow the order: co-crystal 1 < co-crystal 2 < co-crystal 3.

  4. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  5. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Sathiya Kamatchi, Thangavel; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-01

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H 2L) with [RuHCl(CO)(EPh 3) 3] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex ( 1) crystallizes in the monoclinic space group P2(1)/ c with unit cell dimensions a = 18.6236(17) Å, b = 12.8627(12) Å, c = 21.683(2) Å, α = 90.00, β = 114.626(2), γ = 90.00 V = 4721.8(8) Å, Z = 4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O—H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  6. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide.

    PubMed

    Chitrapriya, Nataraj; Kamatchi, Thangavel Sathiya; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-15

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H(2)L) with [RuHCl(CO)(EPh(3))(3)] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, (1)H NMR and (13)C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex (1) crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a=18.6236(17) Å, b=12.8627(12) Å, c=21.683(2) Å, α=90.00, β=114.626(2), γ=90.00 V=4721.8(8) Å, Z=4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O-H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  7. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  8. A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers

    NASA Astrophysics Data System (ADS)

    Fillaux, François; Cousson, Alain

    2016-11-01

    Measurements via different techniques of the crystal of benzoic acid have led to conflicting conceptions of tautomerism: statistical disorder for diffraction; semiclassical jumps for relaxometry; quantum states for vibrational spectroscopy. We argue that these conflicts follow from the prejudice that nuclear positions and eigenstates are pre-existing to measurements, what is at variance with the principle of complementarity. We propose a self-contained quantum theory. First of all, new single-crystal neutron-diffraction data accord with long-range correlation for proton-site occupancies. Then we introduce a macroscopic-scale quantum-state emerging from phonon condensation, for which nuclear positions and eigenstates are indefinite. As to quantum-measurements, an incoming wave (neutron or photon) entangled with the condensate realizes a transitory state, either in the space of static nuclear-coordinates (diffraction), or in that of the symmetry coordinates (spectroscopy and relaxometry). We derive temperature-laws for proton-site occupancies and for the relaxation rate, which compare favorably with measurements.

  9. Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk­oxy­benzoic acids: 4-meth­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1)

    PubMed Central

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-01-01

    The crystal structures of four hydrogen-bonded co-crystals of 4-alk­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk­oxy­benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth­oxy­benzoic acid mol­ecules and one 1,2-di(pyridin-4-yl)ethene mol­ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol­ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol­ecules. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter­molecular C—H⋯O inter­actions are observed. The 2:1 units of (I) and (II) are linked via C—H⋯O hydrogen bonds, forming tape structures. In (III), the C—H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C—H⋯O inter­actions are observed, but π–π and C—H⋯π inter­actions link the units into a column structure. PMID:27840733

  10. A 2:1 co-crystal of p-nitro­benzoic acid and N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M.; Tiekink, Edward R. T.

    2016-01-01

    The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di­amide mol­ecule is generated by crystallographic inversion symmetry, features a three-mol­ecule aggregate sustained by hydroxyl-O—H⋯N(pyrid­yl) hydrogen bonds. The p-nitro­benzoic acid mol­ecule is non-planar, exhibiting twists of both the carb­oxy­lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di­amide mol­ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di­amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol­ecule aggregates are linked into a linear supra­molecular ladder sustained by amide-N—H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C—H⋯O(amide) inter­actions, which, in turn, are connected into a three-dimensional architecture via π–π stacking inter­actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter­molecular inter­actions involving oxygen atoms as well as the π–π inter­actions. PMID:26870591

  11. A 2:1 co-crystal of p-nitro-benzoic acid and N,N'-bis-(pyridin-3-ylmeth-yl)ethanedi-amide: crystal structure and Hirshfeld surface analysis.

    PubMed

    Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T

    2016-01-01

    The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.

  12. Comparison of the crystal structures of methyl 4-bromo-2-(meth­oxy­meth­oxy)benzoate and 4-bromo-3-(meth­oxy­meth­oxy)benzoic acid

    PubMed Central

    Suchetan, P. A.; Suneetha, V.; Naveen, S.; Lokanath, N. K.; Krishna Murthy, P.

    2016-01-01

    The title compounds, C10H11BrO4, (I), and C9H9BrO4, (II), are derivatives of bromo–hy­droxy–benzoic acids. Compound (II) crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In both (I) and (II), the O—CH2—O—CH3 side chain is not in its fully extended conformation; the O—C—O—C torsion angle is 67.3 (3) ° in (I), and −65.8 (3) and −74.1 (3)° in mol­ecules A and B, respectively, in compound (II). In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds, forming C(5) chains along [010]. The chains are linked by short Br⋯O contacts [3.047 (2) Å], forming sheets parallel to the bc plane. The sheets are linked via C—H⋯π inter­actions, forming a three-dimensional architecture. In the crystal of (II), mol­ecules A and B are linked to form R 2 2(8) dimers via two strong O—H⋯O hydrogen bonds. These dimers are linked into ⋯A–B⋯A–B⋯A–B⋯ [C 2 2(15)] chains along [011] by C—H⋯O hydrogen bonds. The chains are linked by slipped parallel π–π inter­actions [inter-centroid distances = 3.6787 (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the bc plane. PMID:27375868

  13. ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2,5-dimethylpiperazin-1-ylmethyl)benzoic acid], a novel nonpeptide delta receptor agonist, reduces myocardial infarct size without central effects.

    PubMed

    Watson, Michael J; Holt, Jonathon D S; O'Neill, Scott J; Wei, Ke; Pendergast, William; Gross, Garrett J; Gengo, Peter J; Chang, Kwen-Jen

    2006-01-01

    A novel delta-receptor selective compound, ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2, 5-dimethylpiperazin-1-ylmethyl)benzoic acid], was evaluated for activity on infarct size in a rat model of acute myocardial infarction. ARD-353 was characterized as having delta receptor selectivity using radioligand binding and had no apparent selectivity between delta receptor subtypes as determined by [(3)H] cyclic [D-Pen(2),D-Pen(5)]enkephalin (delta(1)) and [(3)H]Deltorphin II (delta(2)) competition binding. ARD-353 also showed selective delta receptor agonist activity in mouse-isolated vas deferens. There was no evidence of any seizure-like convulsions when ARD-353 was administered to mice either i.v. or p.o., implying minimal penetration of the blood-brain barrier. ARD-353 decreased infarct size in a left anterior descending coronary artery (LAD) occlusion model of myocardial infarction. In animals pretreated with ARD-353 (i.v.) and then subjected to 30 min of LAD occlusion followed by 90 min of reperfusion, infarct size was reduced in a dose-dependent manner compared with vehicle-treated controls. The effects of ARD-353 on infarct size were blocked by the delta(1)-opioid selective antagonist 7-benzylidenenaltrexone, indicating a significant role for the delta(1)-opioid receptor in the cardioprotective mechanism of ARD-353. ARD-353 (0.3 mg/kg i.v.) produced significant protection when administered 5 min and 12 and 48 h before ischemic insult or when given immediately after the ischemic insult (at the start of reperfusion). Given the lack of central nervous system effects and beneficial efficacy in the rat model of myocardial ischemia, it is felt that ARD-353 is the first nonpeptide delta-receptor agonist with true potential for clinical use before surgically induced ischemia or in an emergency setting.

  14. Inhibitory effects of chlorophyllin, hemin and tetrakis(4-benzoic acid)porphyrin on oxidative DNA damage and mouse skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate as a possible anti-tumor promoting mechanism.

    PubMed

    Park, Kwang Kyun; Park, Jae Hee; Jung, Youn Joo; Chung, Won Yoon

    2003-12-09

    Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his(+) reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H(2)O(2)/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H(2)O(2)/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H(2)O(2) formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.

  15. Adsorption of Benzoic Compounds onto Stainless Steel Particles

    PubMed

    Suzuki; Shibata; Inoue

    1997-09-15

    Equilibrium experiment was conducted to investigate the factors determining the adsorption of benzoic acid (BA) and its derivatives, m- and p-hydroxy BA, onto SUS316L stainless steel particles of 8-10 &mgr;m diameter and under 100 mesh. Adsorption isotherms of these benzoic compounds were determined in the presence of 0.05 M NaCl at pH 4 and 30°C. The adsorptions of the these compounds were described well by a Langmuirian model for both adsorbents. When the maximum number of the benzoic compound adsorption sites was expressed on the basis of unit surface area (N, mol/m2), the N values were relatively constant, while the greatest value of the affinity (K, ml/&mgr;mol) was obtained for p-hydroxy BA, although its value was in the same range as that of the other two adsorbates. Diffuse-reflectance Fourier transform infrared spectra of the fine adsorbent (8-10 &mgr;m diameter) after equilibration suggest that the adsorption mainly takes place through the carboxyl group of the adsorbate-stainless steel surface interaction for all adsorbates, whereas concomitant interaction occurs in part with participation of the phenolic hydroxyl group for p-OH BA adsorbate, accounting for the difference in adsorption properties. Copyright 1997 Academic Press. Copyright 1997Academic Press

  16. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid)/Multi-Walled Carbon Nanotubes Composite Film

    PubMed Central

    Xu, Xiao-Li; Huang, Fei; Zhou, Guo-Liang; Zhang, Song; Kong, Ji-Lie

    2010-01-01

    A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid)/multi-walled carbon nanotubes composite film [poly(4-ABA)/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA)/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 × 10−9 to 1.0 × 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA)/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay. PMID:22163661

  17. Effects of chloride channel blockers on hypoxic injury in rat proximal tubules.

    PubMed

    Reeves, W B

    1997-05-01

    These studies examined the pathways and consequences of chloride uptake into proximal tubule cells during in vitro hypoxia. The chloride channel blocker diphenylamine-2-carboxylate (DPC) markedly reduced the degree of hypoxia-induced membrane damage as measured by the release of lactate dehydrogenase (LDH). DPC reduced the release of LDH from hypoxic tubules from 38 +/- 2.7% to 16 +/- 1.7% after 30 minutes of hypoxia (P < 0.001, N = 16) and also reduced 36Cl- uptake by hypoxic tubules. The reduction in LDH release was not associated with better preservation of cell ATP content or with protection against hypoxia-induced DNA damage. Other Cl- channel blockers, such as niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and 2-[(2-cyclopentyl-6,7-dichloro-2,3-dihyrdo-2-methyl-1-oxo-1H-in den-5-yl)oxy] acetic acid (IAA-94) provided even greater protection than DPC and were as effective as 2 mM glycine. The Cl- channel blockers appear to act late in the course of hypoxic injury since DNA damage, an early manifestation of injury, is not prevented by the blockers and since addition of the Cl- channel blocker after the hypoxic injury has begun reduces further membrane damage. These results support the conclusion that transport through Cl- channels contributes to hypoxic cell injury in proximal tubular cells.

  18. Tetra-kis(μ-4-tert-butyl-benzoato)-κO:O,O';κO,O':O';κO:O'-bis-[aqua-bis-(4-tert-butyl-benzoato-κO,O')(4-tert-butyl-benzoic acid-κO)praseodymium(III)].

    PubMed

    Dai, Jun; Pan, Rong-Kun; Yang, Juan

    2011-08-01

    The reaction of praseodymium nitrate and 4-tert-butyl-benzoic acid (tBBAH) in aqueous solution yielded the dinuclear title complex, [Pr(2)(C(11)H(13)O(2))(6)(C(11)H(14)O(2))(2)(H(2)O)(2)], which has non-crystallographic C(i) symmetry. The two Pr(III) ions are linked by two bridging and two bridging-chelating tBBA ligands, with a Pr⋯Pr separation of 4.0817 (9) Å. Each Pr(III) ion is nine-coordinated by one chelating tBBA ion, one monodentate tBBAH ligand and one water mol-ecule in a distorted tricapped trigonal-prismatic environment. The complex mol-ecules are linked into infinite chains along the c axis by inter-molecular O-H⋯O hydrogen bonds.

  19. Novel acidic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor with reduced acyl glucuronide liability: the discovery of 4-[4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-yl]benzoic acid (AZD8329).

    PubMed

    Scott, James S; deSchoolmeester, Joanne; Kilgour, Elaine; Mayers, Rachel M; Packer, Martin J; Hargreaves, David; Gerhardt, Stefan; Ogg, Derek J; Rees, Amanda; Selmi, Nidhal; Stocker, Andrew; Swales, John G; Whittamore, Paul R O

    2012-11-26

    Inhibition of 11β-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.

  20. Modeling, Synthesis and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Novel Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254)

    PubMed Central

    Jurutka, Peter W.; Kaneko, Ichiro; Yang, Joanna; Bhogal, Jaskaran S.; Swierski, Johnathon C.; Tabacaru, Christa R.; Montano, Luis A.; Huynh, Chanh C.; Jama, Rabia A.; Mahelona, Ryan D.; Sarnowski, Joseph T.; Marcus, Lisa M.; Quezada, Alexis; Lemming, Brittney; Tedesco, Maria A.; Fischer, Audra J.; Mohamed, Said A.; Ziller, Joseph W.; Ma, Ning; Gray, Geoffrey M.; van der Vaart, Arjan; Marshall, Pamela A.; Wagner, Carl E.

    2014-01-01

    Three unreported analogs of 4-[1-(3,5,5,8,8-pentamethyl-5-6-7-8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), otherwise known as bexarotene, as well as four novel analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254) are described, and evaluated for their retinoid-X-receptor (RXR)-selective agonism. Compound 1 has FDA approval as a treatment for cutaneous T-cell lymphoma (CTCL); though, treatment with 1 can elicit side-effects by disrupting other RXR-heterodimer receptor pathways. Of the 7 modeled novel compounds, all analogs stimulate RXR-regulated transcription in mammalian-2-hybrid and RXRE-mediated assays, possess comparable or elevated biological activity based on EC50 profiles, and retain similar or improved apoptotic activity in CTCL assays compared to 1. All novel compounds demonstrate selectivity for RXR and minimal crossover onto the retinoic-acid-receptor (RAR) compared to all-trans-retinoic acid, with select analogs also reducing inhibition of other RXR-dependent pathways (e.g., VDR-RXR). Our results demonstrate that further improvements in biological potency and selectivity of bexarotene can be achieved through rational drug design. PMID:24180745

  1. Supra­molecular hydrogen-bonding patterns in a 1:1 co-crystal of the N(7)—H tautomeric form of N 6-benzoyl­adenine with 4-hy­droxy­benzoic acid

    PubMed Central

    Swinton Darious, Robert; Thomas Muthiah, Packianathan

    2017-01-01

    The asymmetric unit of the title co-crystal, C12H9N5O·C7H6O3, contains one mol­ecule of N 6-benzoyl­adenine (BA) and one mol­ecule of 4-hy­droxy­benzoic acid (HBA). The N 6-benzoyl­adenine (BA) has an N(7)—H tautomeric form with nonprotonated N-1 and N-3 atoms. This tautomeric form is stabilized by a typical intra­molecular N—H⋯O hydrogen bond between the carbonyl (C=O) group and the N(7)—H hydrogen on the Hoogsteen face of the purine ring, forming a graph-set S(7) ring motif. The primary robust R 2 2(8) ring motif is formed in the Watson–Crick face via N—H⋯O and O—H⋯N hydrogen bonds (involving N1, N6—H and the carboxyl group of HBA). Weak inter­actions, such as, C—H⋯π and π–π are also observed in this crystal structure. PMID:28316815

  2. Elucidation of the biochemical basis for a clinical drug-drug interaction between atorvastatin and 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha.

    PubMed

    Kalgutkar, Amit S; Chen, Danny; Varma, Manthena V; Feng, Bo; Terra, Steven G; Scialis, Renato J; Rotter, Charles J; Frederick, Kosea S; West, Mark A; Goosen, Theunis C; Gosset, James R; Walsky, Robert L; Francone, Omar L

    2013-11-01

    1. 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans. 2. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of CP-778875 on the single dose pharmacokinetics of atorvastatin. Subjects in group A (n = 26) received atorvastatin (40 mg) on days 1 and 9 and CP-778875 (1.0 mg QD) on days 5-12. Group B was designed to examine the effects of multiple doses of atorvastatin on the single dose pharmacokinetics of CP-778875. Subjects in group B (n = 29) received CP-778875 (0.3 mg) on days 1 and 9 and atorvastatin (40 mg QD) on days 5-12. 3. Mean maximum serum concentration (Cmax) and area under the curve of atorvastatin were increased by 45% and 20%, respectively, upon co-administration with CP-778875. Statistically significant increases in the systemic exposure of ortho- and para-hydroxyatorvastatin were also observed upon concomitant dosing with CP-778875. CP-778875 pharmacokinetics, however, were not impacted upon concomitant dosing with atorvastatin. 4.  Inhibition of organic anion transporting polypeptide 1B1 by CP-778875 (IC50 = 2.14 ± 0.40 μM) could be the dominant cause of the pharmacokinetic interaction as CP-778875 did not exhibit significant inhibition of cytochrome P450 3A4/3A5, multidrug resistant protein 1 or breast cancer resistant protein, which are also involved in the hepatobiliary disposition of atorvastatin.

  3. Microporous metal organic framework [M{sub 2}(hfipbb){sub 2}(ted)] (M=Zn, Co; H{sub 2}hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO{sub 2}/N{sub 2} separation properties

    SciTech Connect

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-15

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO{sub 2} is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO{sub 2} from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M{sub 2}(hfipbb){sub 2}(ted)] (M=Zn (1), Co (2); H{sub 2}hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO{sub 2} and N{sub 2} adsorption experiments and IAST calculations are carried out on [Zn{sub 2}(hfipbb){sub 2}(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO{sub 2} strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO{sub 2} over N{sub 2}, making it promising for capturing and separating CO{sub 2} from CO{sub 2}/N{sub 2} mixtures. - Graphical abstract: Microporous [Zn{sub 2}(hfipbb){sub 2}(ted)] demonstrates high adsorption selectivity for CO{sub 2} over N{sub 2} under conditions that mimic flue gas mixtures. Highlights: ► Two new porous MOFs were synthesized and characterized by rational design. ► The small pore size leads to greatly enhanced CO{sub 2}–MOF interaction. ► High adsorption selectivity of the Zn–MOF for CO{sub 2} over N{sub 2} is achieved.

  4. A 2:1 co-crystal of 2-methyl­benzoic acid and N,N′-bis­(pyridin-4-ylmeth­yl)ethanedi­amide: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Syed, Sabrina; Jotani, Mukesh M.; Halim, Siti Nadiah Abdul; Tiekink, Edward R. T.

    2016-01-01

    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol­ecule in a general position and half a di­amide mol­ecule, the latter being located about a centre of inversion. In the acid, the carb­oxy­lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol­ecule [hy­droxy-O—C—C—C(H) torsion angle = −27.92 (17)°]. In the di­amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol­ecular packing, three-mol­ecule aggregates are formed via hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds. These are connected into a supra­molecular layer parallel to (12) via amide-N—H⋯O(carbon­yl) hydrogen bonds, as well as methyl­ene-C—H⋯O(amide) inter­actions. Significant π–π inter­actions occur between benzene/benzene, pyrid­yl/benzene and pyrid­yl/pyridyl rings within and between layers to consolidate the three-dimensional packing. PMID:27006815

  5. Thermometric titration of acids in pyridine.

    PubMed

    Vidal, R; Mukherjee, L M

    1974-04-01

    Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.

  6. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation.

    PubMed Central

    Fritsch, J; Edelman, A

    1996-01-01

    1. Hyperpolarization-activated Cl- currents (ICl,hyp) were investigated in the T84 human adenocarcinoma cell line, using the patch-clamp whole-cell configuration. 2. During whole-cell recording with high-chloride and ATP-containing internal solutions, hyperpolarizing jumps from a holding potential of 0 mV elicited slow inward current relaxations, carried by Cl- and detected at membrane potentials more negative than -40 mV. Analysis of the relative permeabilities to monovalent anions gave the following sequence: Cl- > Br- > I- > glutamate. 3. ICl,hyp was partially inhibited by 1 mM diphenylamine-2-carboxylic acid or 0.1 mM 5-nitro-2-(3-phenylpropylamino)-benzoate, and was completely blocked by Cd2+ (> 300 microM). It was insensitive to 1 mM external 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid or 1 mM Ba2+. 4. ICl,hyp was inhibited by external application of 500 microM cptcAMP (8-(4-chlorophenylthio)-adenosine 3':5'-cyclic monophosphate) or 500 nM of the protein kinase C activator, phorbol 12-myristate, 13-acetate. 5. (i) Omission of ATP from the pipette solution, (ii) ATP replacement by the non-hydrolysable ATP analogue 5'-adenylylimidodiphosphate, and (iii) inhibition of protein kinase C by staurosporine or calphostin C accelerated the activation kinetics of the current and increased its amplitude, but did not alter its pharmacological properties. 6. We conclude that hyperpolarization-activated Cl- channels similar to those of ClC-2 channels (mammalian homologue of Torpedo chloride channel ClC-0) are present in T84 cells, and that their gating properties are modulated by phosphorylation. PMID:8745282

  7. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria.

    PubMed

    van der Woude, B J; de Boer, M; van der Put, N M; van der Geld, F M; Prins, R A; Gottschal, J C

    1994-06-01

    From light-exposed enrichment cultures containing benzoate and a mixture of chlorobenzoates, a pure culture was obtained able to grow with 3-chlorobenzoate (3-CBA) or 3-bromobenzoate (3-BrBA) as the sole growth substrate anaerobically in the light. The thus isolated organism is a photoheterotroph, designated isolate DCP3. It is preliminarily identified as a Rhodopseudomonas palustris strain. It differs from Rhodopseudomonas palustris WS17, the only other known photoheterotroph capable of using 3-CBA for growth, in its independence of benzoate for growth with 3-CBA and in its wider substrate range: if grown on 3-CBA, it can also use 2-CBA, 4-CBA or 3,5-CBA.

  8. 3,5-Bis(benz­yloxy)benzoic acid

    PubMed Central

    Moreno-Fuquen, Rodolfo; Grande, Carlos; Advincula, Rigoberto C.; Tenorio, Juan C.; Ellena, Javier

    2012-01-01

    In the title compound, C21H18O4, the outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The O—CH2 groups form dihedral angles of 4.1 (2) and 10.9 (4)° with the central benzene ring, adopting a syn–anti conformation with respect to this ring. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming chains along [010]. PMID:23284545

  9. Synthesis of Polysubstituted Benzoic Esters from 1,2-Dihydropyridines and Its Application to the Synthesis of Fluorenones.

    PubMed

    Tejedor, David; Prieto-Ramírez, Mary Cruz; Ingold, Mariana; Chicón, Margot; García-Tellado, Fernando

    2016-06-03

    A convenient, instrumentally simple, and efficient methodology to transform 1,2-dihydropyridines into benzoic esters is described. The generated multisubstituted benzoic esters feature different topologies spanning from simple aromatic rings to fused benzocycloalkane systems. As an extension of this methodology, these benzoic esters are efficiently transformed into an array of fluorenone frameworks featuring interesting and novel topological patterns.

  10. Crystal structures of the co-crystalline adduct 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine–4-nitro­benzoic acid (1/1) and the salt 2-amino-5-(4-bromo­phen­yl)-1,3,4-thia­diazol-3-ium 2-carb­oxy-4,6-di­nitro­phenolate

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2014-01-01

    The structures of the 1:1 co-crystalline adduct C8H6BrN3S·C7H5NO4, (I), and the salt C8H7BrN3S+·C7H3N2O7 −, (II), obtained from the inter­action of 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine with 4-nitro­benzoic acid and 3,5-di­nitro­salicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R 2 2(8) (N—H⋯O/O—H⋯O) or (N—H⋯O/N—H⋯O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [the dihedral angles between the thia­diazole ring and the two phenyl rings are 2.1 (3) (intra) and 9.8 (2)° (inter)], while in (I) these angles are 22.11 (15) and 26.08 (18)°, respectively. In the crystal of (I), the heterodimers are extended into a chain along b through an amine N—H⋯Nthia­diazole hydrogen bond but in (II), a centrosymmetric cyclic hetero­tetra­mer structure is generated through N—H⋯O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R 2 2(8) inter­action, conjoined R 4 6(12), R 2 1(6) and S(6) ring motifs. Also present in (I) are π–π inter­actions between thia­diazole rings [minimum ring-centroid separation = 3.4624 (16) Å], as well as short Br⋯Onitro inter­actions in both (I) and (II) [3.296 (3) and 3.104 (3) Å, respectively]. PMID:25484726

  11. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  12. Biosynthesis and metabolism of salicylic acid.

    PubMed Central

    Lee, H I; León, J; Raskin, I

    1995-01-01

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. PMID:11607533

  13. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  14. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells.

    PubMed Central

    Nilius, B; Prenen, J; Szücs, G; Wei, L; Tanzi, F; Voets, T; Droogmans, G

    1997-01-01

    1. We characterized Ca(2+)-activated Cl- currents in calf pulmonary artery endothelial (CPAE) cells by using a combined patch clamp and fura-2 microfluorescence technique to simultaneously measure ionic currents and the intracellular Ca2+ concentration, [Ca2+]i. 2. Various procedures that increased [Ca2+]i, such as stimulation with ATP or ionomycin, or loading the cells with Ca2+ via the patch pipette, activated a strongly outwardly rectifying current with a reversal potential close to the Cl- equilibrium potential. Changing the extracellular Cl- concentration shifted this reversal potential as predicted for a Cl- current. Buffering Ca2+ rises with BAPTA prevented ATP from activating the current. 3. Ca(2+)-activated Cl- currents could be distinguished from volume-activated Cl- currents, which were sometimes coactivated in the same cell. The latter showed much less outward rectification, their activation was voltage independent, and they could be inhibited by exposing the cells to hypertonic solutions. 4. The permeability ratio for the Ca(2+)-activated conductance of the anions iodide:chloride: gluconate was 1.71 +/- 0.06:1:0.39 +/- 0.03 (n = 12). 5. This Ca(2+)-activated Cl- current, ICl, Ca, inactivated rapidly at negative potentials and activated slowly at positive potentials. Outward tail currents were slowly decaying, while inward tail currents decayed much faster. 6. 4,4'-Diisothiocyanatostilbene-2,2'-disulphonic-acid (DIDS) and niflumic acid inhibited Icl,Ca in a voltage-dependent manner, i.e. they exerted a more potent block at positive potentials. The block by N-phenylanthracilic acid (NPA), 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and tamoxifen was voltage independent. Niflumic acid and tamoxifen were the most potent blockers. 7. The single-channel conductance was 7.9 +/- 0.7 pS (n = 15) at 300 mM extracellular Cl-. The channel open probability was high at positive potentials, but very small at negative potentials. 8. It is concluded that [Ca2+]i

  15. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  16. Influence of coffee intake on urinary hippuric acid concentration.

    PubMed

    Ogawa, Masanori; Suzuki, Yoshihiro; Endo, Yoko; Kawamoto, Toshihiro; Kayama, Fujio

    2011-01-01

    Intake of foods and drinks containing benzoic acid influences the urinary hippuric acid (HA) concentration, which is used to monitor toluene exposure in Japan. Therefore, it is necessary to control the intake of benzoic acid before urine collection. Recently, some reports have suggested that components of coffee, such as chlorogenic, caffeic, and quinic acids are metabolized to HA. In this study, we evaluated the influence of coffee intake on the urinary HA concentration in toluene-nonexposed workers who had controlled their benzoic acid intake, and investigated which components of coffee influenced the urinary HA concentration. We collected urine from 15 healthy men who did not handle toluene during working hours, after they had consumed coffee, and we measured their urinary HA concentrations; the benzoic acid intake was controlled in these participants during the study period. The levels of chlorogenic, caffeic, and quinic acids in coffee were analyzed by LC-MS/MS. Urinary HA concentration increased significantly with increasing coffee consumption. Spectrophotometric LC-MS/MS analysis of coffee indicated that it contained chlorogenic and quinic acids at relatively high concentrations but did not contain benzoic acid. Our findings suggest that toluene exposure in coffee-consuming workers may be overestimated.

  17. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens.

    PubMed

    Wang, L F; Dhir, P; Bhatnagar, A; Srivastava, S K

    1997-08-01

    In this study the contribution of osmotic changes to disintegrative globulization of lens cortical fibers was examined. Single fiber cells were isolated by trypsinization of adult rat lens cortex, and morphological changes elicited by exposure to different external solutions were monitored optically. The survival of the fiber-shaped cells was analysed in accordance with the Weibull distribution. Changes in [Ca2+]i were measured using the fluorescent calcium-sensitive dye-Fluo-3. Exposure of isolated fiber cells to Ringer's solution (containing 2 mm Ca2+) led to an exponential increase in [Ca2+]i with a time constant of 10.2+/-0.8 min, and caused disintegrative globulization in 25+/-4 min (=Tg). The process of globulization as well as the rate of increase in [Ca2+]i was delayed by removing Cl- ions from the external media. Globulization was also delayed by adding 20% bovine serum albumin (Tg=107+/-3 min) or chloride channel inhibitors 5, nitro-2-(3-phenylpropylamino) benzoate (NPPB), dideoxyforskolin, niflumic acid, and tamoxifen. When the fiber cells were suspended in isotonic (280 mm sucrose) HEPES-sucrose (HS) or HEPES-EDTA-sucrose (HES) solution, no globulization was observed for an observation time of 120 min. However, exposure to hypotonic (180 mm) HES solution led to disintegration of fiber cells in 75+/-7 min. Disintegration of the fiber induced by hypotonic HES solution could be delayed by either 0. 05 mm leupeptin (Tg=97+/-6 min) or by pre-loading the fibers with BAPTA (Tg=100+/-4 min). Inhibition of membrane calcium transport by 0.5 mm La3+ had no effect on Tg in hypotonic HES. Addition of 2 mm Ca2+ to HES solution accelerated globulization, and Tg was 57+/-4, 69+/-5 and 102+/-6 min for hypo-, iso- and hyper- tonic solutions, respectively. Transient exposure to calcium also accelerated disintegrative globulization of fiber cells exposed subsequently to HES solution. These results suggest that in ionic media, part of the calcium influx in isolated fiber

  18. Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent­yloxy)benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1) and 4-(n-hex­yloxy)benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1)

    PubMed Central

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-01-01

    The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent­yloxy)benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-bis­(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex­yloxy)benzoic acid mol­ecules and one 1,2-bis­(pyridin-4-yl)ethene mol­ecule. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C—H⋯π and π–π inter­actions [centroid–centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)–3.725 (4) Å for (II)], forming column structures. In (II), the base mol­ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol­ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C 2 symmetry. Both compounds show liquid-crystal behaviour. PMID:27980827

  19. Crystal structure of 4-[(E)-(2-carbamo-thio-ylhydrazinyl-idene)meth-yl]benzoic acid.

    PubMed

    Tahir, Muhammad Nawaz; Anwar-Ul-Haq, Muhammad; Choudhary, Muhammad Aziz

    2015-10-01

    The title compound, C9H9N3O2S, is close to planar with an r.m.s. deviation of 0.032 Å. An intra-molecular N-H⋯N hydrogen bond closes an S(5) ring. In the crystal, mol-ecules are connected into inversion dimers of the R 2 (2)(8) type by pairs of O-H⋯O inter-actions. The dimers are further connected by pairs of N-H⋯S inter-actions, which also complete R 2 (2)(8) ring motifs. The chains of dimers are cross-linked by N-H⋯O bonds and hence R 4 (2)(28) rings are completed. Taken together, these inter-actions lead to infinite sheets propagating in the (122) plane.

  20. Syntheses, crystal structure, Hirshfeld surfaces, fluorescence properties, and DFT analysis of benzoic acid hydrazone Schiff bases

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2015-06-01

    Two hydrazone Schiff base analogues, namely, (E)-N‧-(4-hydroxy-3-methoxybenzylidene)benzohydrazide (3a) and (E)-N‧-(4-methoxybenzylidene)benzohydrazide (3b), were synthesized using a mild, efficient method and characterized by 1H NMR, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. X-ray analysis of a single crystal of 3a revealed a tetragonal, space group I4(1)/a structure, with an E-configuration around the azomethine (sbnd C8dbnd N2sbnd) double bond. In this structure, the sbnd NHsbnd and sbnd OH groups act as proton donors and the >Cdbnd O and sbnd Ndbnd groups as proton acceptors, and these facilitate hydrogen bond formation in the crystal state. Plausible intermolecular interactions were studied using 3D Hirshfeld surfaces and related 2D fingerprint plots. The optimized geometry, vibrational frequencies, Mulliken charge distribution, molecular electrostatic potential (MEP) maps, frontier molecular orbitals (FMOs), and associated energies of the ground state and the first single excited state were calculated using density functional theory (DFT) and time-dependant DFT calculations using the B3LYP/6-311G method. Vibrational frequencies calculated in the gaseous phase compared with experimental values measured in the solid state and showed good agreement with each other. The chemical reactivities of 3a and 3b were predicted by mapping MEP surface over optimized geometries and comparing these with MEP map generated over crystal structures. Mulliken charge distribution analysis and MEP map of 3a and 3b revealed that N(1), O(1), O(2) and O(3) atoms could act as electron donors and coordinate with metals and that these represented the most suitable sites for electrophilic attack. In fluorescence spectra, the absorption and emission spectra of 3a and 3b were similar in different polar solvents with few exceptions. In addition, both compounds exhibited dual emission spectra in acetone due to keto-enol tautomerism induced by photoexcitation.

  1. Syntheses, crystal structure, Hirshfeld surfaces, fluorescence properties, and DFT analysis of benzoic acid hydrazone Schiff bases.

    PubMed

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2015-06-15

    Two hydrazone Schiff base analogues, namely, (E)-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide (3a) and (E)-N'-(4-methoxybenzylidene)benzohydrazide (3b), were synthesized using a mild, efficient method and characterized by (1)H NMR, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. X-ray analysis of a single crystal of 3a revealed a tetragonal, space group I4(1)/a structure, with an E-configuration around the azomethine (C8N2) double bond. In this structure, the NH and OH groups act as proton donors and the >CO and N groups as proton acceptors, and these facilitate hydrogen bond formation in the crystal state. Plausible intermolecular interactions were studied using 3D Hirshfeld surfaces and related 2D fingerprint plots. The optimized geometry, vibrational frequencies, Mulliken charge distribution, molecular electrostatic potential (MEP) maps, frontier molecular orbitals (FMOs), and associated energies of the ground state and the first single excited state were calculated using density functional theory (DFT) and time-dependant DFT calculations using the B3LYP/6-311G method. Vibrational frequencies calculated in the gaseous phase compared with experimental values measured in the solid state and showed good agreement with each other. The chemical reactivities of 3a and 3b were predicted by mapping MEP surface over optimized geometries and comparing these with MEP map generated over crystal structures. Mulliken charge distribution analysis and MEP map of 3a and 3b revealed that N(1), O(1), O(2) and O(3) atoms could act as electron donors and coordinate with metals and that these represented the most suitable sites for electrophilic attack. In fluorescence spectra, the absorption and emission spectra of 3a and 3b were similar in different polar solvents with few exceptions. In addition, both compounds exhibited dual emission spectra in acetone due to keto-enol tautomerism induced by photoexcitation.

  2. Crystal structure of 4-(tri­methyl­germ­yl)benzoic acid

    PubMed Central

    Knauer, Lena; Barth, Eva R.; Golz, Christopher; Strohmann, Carsten

    2015-01-01

    The title compound, [Ge(CH3)3(C7H5O2)], was obtained as a by-product in the synthesis of the corresponding aldehyde. Two slightly different mol­ecules are present in the asymmetric unit. In both mol­ecules, the geometry of the aromatic ring plane is distorted by varying intensities. Additionally, the Ge atoms deviate from the mean aromatic ring planes. Whereas the distance of the Ge atom to the ring plane is only 0.101 (4) Å in the first mol­ecule, this distance is increased to 0.210 (4) Å in the second. In the crystal structure, centrosymmetric O—H⋯O hydrogen-bonded dimers are formed. The title compound is isostructural with the Si analogue [Haberecht et al. (2004 ▸). Acta Cryst. E60, o329–0330]. PMID:26090151

  3. Determination of Aspartame, Caffeine, Saccharin, and Benzoic Acid in Beverages by High Performance Liquid Chromatography.

    ERIC Educational Resources Information Center

    Delaney, Michael F.; And Others

    1985-01-01

    Describes a simple and reliable new quantitative analysis experiment using liquid chromatography for the determinaiton of caffeine, saccharin, and sodium benzoate in beverages. Background information, procedures used, and typical results obtained are provided. (JN)

  4. The guanidine and benzoic acid (1:1) complex. The polarized vibrational studies and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Dudzic, D.

    2015-03-01

    The structure of guanidinium benzoate was discovered by Silva et al. On the basis of these X-ray crystallographic studies the detailed DFT investigation are performed. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained. The energy difference between HOMO and LUMO was analyzed. According to theoretical calculations the direction of dipole moments (TDM) for bands observed in infrared spectra are analyzed. Verification of theoretical TDM behaviors is performed on the basis of experimental polarized specular reflection infrared spectra. The detailed assignments of observed bands is presented. Both theoretical and experimental spectra are compared. Crucial role of three different hydrogen bonds is studied in detail. Additionally, on the basis of differential scanning calorimetric study no phase transition was found in investigated crystal in the range 100-400 K.

  5. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  6. Ligand-Accelerated ortho-C–H Alkylation of Arylcarboxylic Acids Using Alkyl Boron Reagents

    PubMed Central

    Thuy-Boun, Peter S.; Villa, Giorgio; Dang, Devin; Richardson, Paul; Su, Shun; Yu, Jin-Quan

    2013-01-01

    A protocol for the Pd(II)-catalyzed ortho-C–H alkylation of phenylacetic and benzoic acids using alkylboron reagents is disclosed. Mono-protected amino acid ligands (MPAA) were found to significantly promote reactivity. Both potassium alkyltrifluoroborates and alkylboronic acids were compatible coupling partners. The possibility of a radical alkyl transfer to Pd(II) was also investigated. PMID:24124892

  7. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Tsukagoshi, Kensuke; Hayasaka, Moriaki; Endo, Tetsuya

    2012-01-01

    We investigated whether the uptake of triclopyr (3, 5, 6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) across the apical membrane of Caco-2 cells was mediated via proton-linked monocarboxylic acid transporters (MCTs). The uptake of triclopyr from the apical membranes was fast, pH-, temperature-, and concentration dependent, required metabolic energy to proceed, and was competitively inhibited by monocarboxylic acids such as benzoic acid and ferulic acid (substrates of L-lactic acid-insensitive MCTs), but not by L-lactic acid. Thus, the uptake of triclopyr in Caco-2 cells appears to be mediated mainly via L-lactic acid-insensitive MCTs. In contrast, the uptake of dicamba (a benzoic acid derivative) was slow, and it was both pH- and temperature dependent. Coincubation with ferulic acid did not decrease the uptake of dicamba, although coincubation with benzoic acid moderately decreased it. The uptake of dicamba appears to be mediated mainly via passive diffusion, which is in contrast to the uptake of benzoic acid via MCTs. We speculate that the substituted groups in dicamba may inhibit uptake via MCTs.

  8. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  9. A Formal Approach to Xylosmin and Flacourtosides E and F: Chemoenzymatic Total Synthesis of the Hydroxylated Cyclohexenone Carboxylic Acid Moiety of Xylosmin.

    PubMed

    Ghavre, Mukund; Froese, Jordan; Murphy, Brennan; Simionescu, Razvan; Hudlicky, Tomas

    2017-02-10

    The hydroxylated cyclohexenone carboxylic acid moiety of xylosmin was synthesized in eight steps from benzoic acid. The key steps in the synthesis involved the enzymatic dihydroxylation of benzoic acid by the whole cell fermentation with Ralstonia eutrophus B9, and Henbest epoxidation. Early attempts led to the synthesis of a C6 epimer of the methyl ester of the hydroxylated cyclohexenone carboxylic acid moiety. The absolute stereochemistry of an advanced intermediate was confirmed by X-ray crystallography. Complete characterization of the previously reported but not fully characterized hydroxylated cyclohexenone carboxylic acid is provided.

  10. Effects of various acids and salts on growth and aflatoxin production by Aspergillus flavus NRRL 3145.

    PubMed

    Uraih, N; Chipley, J R

    1976-01-01

    The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.

  11. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi.

    PubMed

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S; Johnson-Cicalese, Jennifer; Polashock, James J; White, James F

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase.

  12. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  13. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  14. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-01

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L1), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L2) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L3) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL3 > VOL1 > VOL2. Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL3 > VOL2 > VOL1.

  15. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-15

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L(1)), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L(2)) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L(3)) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL(3)>VOL(1)>VOL(2). Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL(3)>VOL(2)>VOL(1).

  16. Solution and gas-phase acidities of all-trans (all-E) retinoic acid: an experimental and computational study.

    PubMed

    Abboud, José-Luis M; Koppel, Ilmar A; Uggerud, Einar; Leito, Ivo; Koppel, Ivar; Sekiguchi, Osamu; Kaupmees, Karl; Saame, Jaan; Kütt, Karl; Mishima, Masaaki

    2015-07-27

    Retinoic acid is of fundamental biological importance. Its acidity was determined in the gas phase and in acetonitrile solution by means of mass spectrometry and UV/Vis spectrophotometry, respectively. The intrinsic acidity is slightly higher than that of benzoic acid. In solution, the situation is opposite. The experimental systems were described theoretically applying quantum chemical methods (wave function theory and density functional theory). This allowed the determination of the molecular structure of the acid and its conjugate base, both in vacuo and in solution, and for computational estimates of its acidity in both phases.

  17. Selective deuteration of (hetero)aromatic compounds via deutero-decarboxylation of carboxylic acids.

    PubMed

    Grainger, Rachel; Nikmal, Arif; Cornella, Josep; Larrosa, Igor

    2012-04-28

    A practical, mild and highly selective protocol for the monodeuteration of a variety of arenes and heteroarenes is presented. Catalytic amounts of Ag(I) salts in DMSO/D(2)O are shown to facilitate the deutero-decarboxylation of ortho-substituted benzoic and heteroaromatic α-carboxylic acids in high yields with excellent levels of deuterium incorporation.

  18. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    SciTech Connect

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPA with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.

  19. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  20. Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure.

    PubMed

    Casado, Juan; Fornaguera, Jordi; Galán, Maria Isabel

    2006-07-01

    The viability of the electro-Fenton degradation of aqueous solutions of benzoic acid, 2,4-dichlorophenoxyacetic acid and oxalic acid has been studied at 20 A using a pilot flow reactor containing an anode and an oxygen diffusion cathode, both of 100 cm(2) section. Pollutants were preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe(2+) with electrogenerated H(2)O(2), allowing mineralization of benzoic acid and 2,4-D. For oxalic acid no electrochemical mineralization was observed. After electrolysis, samples of the different effluents were exposed to sunlight (Helielectro-Fenton process) and almost complete mineralization was reached after ca. 30-50 min without additional cost. Effects of parameters such as electrolysis time, pH and solar irradiation time on the process efficiencies were studied.

  1. Behavior of carboxylic acids upon complexation with beryllium compounds.

    PubMed

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  2. Potential tuberculostatic agents. Topliss application on benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazide series.

    PubMed

    Rando, Daniela G; Sato, Dayse N; Siqueira, Leonardo; Malvezzi, Alberto; Leite, Clarice Q F; do Amaral, Antonia T; Ferreira, Elizabeth I; Tavares, Leoberto C

    2002-03-01

    Nitroaromatic compounds such as nifuroxazide are used in many human enteropathogenic bacteria infections without causing an increase in the plasmidial antibiotic resistance of the aerobic Gram-negative intestinal Enterobacteriaceae. For these reasons, these compounds have been synthesized using the rational approach of Topliss' decision tree. Generally, this approach allows us to obtain the most active derivative from the series in a few steps. These compounds were tested against Mycobacterium tuberculosis in vitro and the most active of the series identified. A new lead for potential tuberculostatic activity has been predicted and will be used in further QSAR studies.

  3. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid.

    PubMed

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-02

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  4. SOLID-LIQUID PHASE EQUILIBRIUM IN BINARY SYSTEMS OF TRIPHENYL ANTIMONY WITH BIPHENYL, NAPHTHALENE, AND BENZOIC ACID.

    DTIC Science & Technology

    PHASE STUDIES, *ORGANOMETALLIC COMPOUNDS, SEMICONDUCTORS, SOLID STATE PHYSICS, ANTIMONY COMPOUNDS, EUTECTICS , ZONE MELTING, HALIDES, BISMUTH, ARSENIC, ELECTRONS, NAPHTHALENES , PHASE DIAGRAMS, SOLIDS.

  5. Cyclopentadithiophene-benzoic acid copolymers as conductive binders for silicon nanoparticles in anode electrodes of lithium ion batteries.

    PubMed

    Wang, Kuo-Lung; Kuo, Tzu-Husan; Yao, Chun-Feng; Chang, Shu-Wei; Yang, Yu-Shuo; Huang, Hsin-Kai; Tsai, Cho-Jen; Horie, Masaki

    2017-02-02

    Cyclopentadithiophene and methyl-2,5-dibromobenzoate have been copolymerised via palladium complex catalysed direct arylation. The methyl ester group in the benzoate unit is converted to the carboxyl group via saponification. The polymers are mixed with Si nanoparticles for use as conducting binders in the fabrication of an anode electrode in lithium ion batteries. The battery with the electrode incorporating the saponified polymer shows much higher specific capacity of up to 1820 mA h g(-1) (total weight) and a higher stability compared with the battery including the polymer before the saponification.

  6. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  7. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051

  8. The "small" conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias).

    PubMed

    Gögelein, H; Schlatter, E; Greger, R

    1987-06-01

    Besides the "larger" Cl- channel, with a single channel conductance of about 45 pS, a "small" channel was observed in the luminal membrane of the dogfish rectal gland. In cell excised (inside out) patches with NaCl solution on both sides, the latter channel had a single channel conductance of 11 +/- 1 pS (n = 21), and its current-voltage relationship was linear in the voltage range +90 to -90 mV. The open state probability increased moderately with negative clamp potentials. Ionic replacement studies revealed a high selectivity of Cl- over gluconate, sulfate, and iodide, whereas bromide was permeable to some extent. Also the channel is impermeable for Na+. The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate did not affect this "small" conductance Cl- channel. It can be concluded that the luminal membrane of stimulated rectal gland cells possesses two types of Cl- channels, which differ markedly in their characteristics.

  9. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  10. Benzenepolycarboxylic acids with potential anti-hemorrhagic properties and structure-activity relationships.

    PubMed

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-12-01

    Previously, we reported the structural requirements of the cinnamic acid relatives for inhibition of snake venom hemorrhagic action. In the present study, we examined the effect of benzenepolycarboxylic acids and substituted benzoic acids against Protobothropsflavoviridis venom-induced hemorrhage. Pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid) was found to be a potent inhibitor of hemorrhage, with an IC(50) value of 0.035 μM. In addition, most of the antihemorrhagic activity of compounds tested in this experiment showed good correlation to acidity.

  11. Investigation of the thermal decomposition of sulfuric acid containing inorganic impurities

    SciTech Connect

    Kogtev, S.E.; Nikandrov, I.S.; Borisenko, A.S.; Peretrutov, A.A.

    1986-09-20

    Oleum is recovered by thermal decomposition of sulfuric acid wastes to sulfur dioxide with conversion of the sulfur dioxide to oleum. The organic substances in sulfuric acid wastes can affect the thermal-decomposition indexes of sulfuric acid wastes. They studied the effect of toluene, nitrotoluene, benzoic acid, and carbon on the yield of sulfur dioxide and also the possibility of reduction of acid vapors by products of pyrolysis and incomplete combustion of hydrocarbons. It is shown that the yield of sulfur dioxide in thermal decomposition of hydrocarbon-containing sulfuric acid wastes can be increased if the process assumes the nature of reductive decomposition.

  12. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana.

    PubMed

    Koo, Yeon Jong; Kim, Myeong Ae; Kim, Eun Hye; Song, Jong Tae; Jung, Choonkyun; Moon, Joon-Kwan; Kim, Jeong-Han; Seo, Hak Soo; Song, Sang Ik; Kim, Ju-Kon; Lee, Jong Seob; Cheong, Jong-Joo; Choi, Yang Do

    2007-05-01

    We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.

  13. Mechanism of L-lactic acid transport in L6 skeletal muscle cells.

    PubMed

    Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2004-10-01

    L-lactic acid transport plays an important role in the regulation of L-lactic acid circulation into and out of muscle. To clarify the transport mechanism of L-lactic acid in skeletal muscle, L-lactic acid uptake was investigated using a L6 cell line. mRNAs of monocarboxylate transporter (MCT) 1, 2 and 4 were found to be expressed in L6 cells. The [(14)C] L-lactic acid uptake by L6 cells increased up to pH of 6.0. The [(14)C] L-lactic acid uptake at pH 6.0 was concentration-dependent with a K(m) of 3.7 mM. This process was reduced by alpha-cyano-4-hydroxycinnamate, a typical MCT1, 2 and 4 inhibitor. These results suggest that an MCT participates in the uptake of L-lactic acid by L6 cells. [(14)C] L-lactic acid uptake was markedly inhibited by monocarboxylic acids and monocarboxylate drugs but not by dicarboxylic acids and amino acids. Moreover, benzoic acid, a substrate for MCT1, competitively inhibited this process with K(i) of 1.7 mM. [(14)C] L-lactic acid efflux in L6 cells was inhibited by alpha-cyano-4-hydroxycinnamate but not by benzoic acid. These results suggest that [(14)C] L-lactic acid efflux in L6 cells is mediated by MCT other than MCT1.

  14. Effects of Quality Composts and Other Organic Amendments and Their Humic and Fulvic Acid Fractions on the Germination and Early Growth of Slickspot Peppergrass (Lepidium Papilliferum) and Switchgrass in Various Experimental Conditions

    DTIC Science & Technology

    2008-09-01

    which appear slightly different from GCC-DOM, and the possible presence of benzoic acid derivatives such as phthalic and salicylic acids . 4...FULVIC ACID FRACTIONS ON THE GERMINATION AND EARLY GROWTH OF SLICKSPOT PEPPERGRASS (LEPIDIUM PAPILLIFERUM) AND SWITCHGRASS IN VARIOUS EXPERIMENTAL...Effects of Quality Composts and Other Organic Amendments and Their Humic and Fulvic Acid Fractions on the Germination and Early Growth of Slickspot

  15. Solid compounds of europium and terbium with some aromatic carboxylic acids

    SciTech Connect

    Chupakhina, R.A.; Biryulina, V.N.; Kasimova, L.V.; Balakhonov, V.G.

    1986-10-20

    By the reactions of europium and terbium hydroxides with aqueous solutions of benzoic, salicylic, phthalic, and phthalaldehydic acids, compounds were obtained with the compositions: for phthalic acid M/sub 2/L/sub 3/ x 3H/sub 2/O, and for the other acids ML/sub 3/ x 3H/sub 2/O, in which M = Eu/sup 3 +/, Tb/sup 3 +/; L is the anion of the corresponding acid. The compounds of europium and terbium with phthalaldehydric acid were prepared for the first time.

  16. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.

    PubMed

    Macpherson, Neil; Shabala, Lana; Rooney, Henrietta; Jarman, Marcus G; Davies, Julia M

    2005-06-01

    The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H(+). Measurement of H(+) extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H(+)-ATPase to expel H(+) when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H(+) and K(+) fluxes showed that net K(+) influx accompanies net H(+) efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K(+) on long-term exposure to benzoic acid. Analysis of S. cerevisiae K(+) transporter mutants revealed that loss of the high affinity K(+) uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.

  17. Aminobenzoic acid diuretics. 7. 3-Substituted 4-phenyl-, 4-arylcarbonyl-, and 4-arylmethyl-5-sulfamoylbenzoic acids and related compounds.

    PubMed

    Nielsen, O B; Bruun, H; Bretting, C; Feit, P W

    1975-01-01

    Various 4-substituted 3-alkylamino-, 3-alkoxy-, 3-alkylthio-, and 3-alkyl-5-sulfamoylbenzoic acids related to known aminobenzoic acid diuretics were synthesized and screened for their diuretic properties in dogs. The tabulated results from a 3-hr test period revealed that generally the diuretic profile and potency could be retained when 3-alkoxy, 3-alkylthio, and 3-phenethyl were substituted for the 3-alkylamino moiety. The high potency of several 3-alkoxy-, 3-alkylthio-, and 3-phenethyl-4-benzoyl-5-sulfamoylbenzoic acids confirmed previous suggestions that the apparent diuretic effect of 4- and 5-alkylamino-6-carboxy-3-phenyl-1,2-benzisothiazole 1,1-dioxides originates from the corresponding 4-benzoyl-5-sulfamoylbenzoic acid derivatives due to an existing equilibrium in plasma. 4-Benzoyl-5-sulfamoyl-3-(3-thenyloxy) benzoic acid (118) is among the most potent benzoic acid diuretics hitherto synthesized and shows significant diuretic activity in dogs at 1 mug/kg. The results obtained with different 3-substituted 4-phenyl-5-sulfamoylbenzoic acids supported the earlier concept regarding the steric influence of the 4-substituent on the diuretic potency of sulfamoylbenzoic acid diuretics.

  18. Density functional theory study of the oligomerization of carboxylic acids.

    PubMed

    Di Tommaso, Devis; Watson, Ken L

    2014-11-20

    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  19. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis.

    PubMed

    Zhu, Qianqian; Xu, Xueqin; Huang, Yuanyuan; Xu, Liangjun; Chen, Guonan

    2012-07-13

    A technique known as field enhancement sample stacking (FESS) and capillary electrophoresis (CE) separation has been developed to analyze and detect organic acids in the three traditional Chinese medicines (such as Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L.). In FESS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. Under the optimized condition, the baseline separation of eight organic acids (linolenic acid, lauric acid, p-coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid and fumaric acid) could be achieved within 20 min. Validation parameters of this method (such as detection limits, linearity and precision) were also evaluated. The detection limits ranged from 0.4 to 60 ng/mL. The results indicated that the proposed method was effective for the separation of mixtures of organic acids. Satisfactory recoveries were also obtained in the analysis of these organic acids in the above traditional Chinese medicine samples.

  20. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  1. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  2. Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs.

    PubMed

    Gerakis, A M; Koupparis, M A; Efstathiou, C E

    1993-01-01

    The effect of various surfactants [the cationics cetyl trimethyl ammonium bromide (CTAB) and cetyl pyridinium chloride (CPC), the anionic sodium dodecyl sulphate (SDS), and the nonionic polysorbate 80 (Tween 80)] on the solubility and ionization constant of some sparingly soluble weak acids of pharmaceutical interest was studied. Benzoic acid (and its 3-methyl-, 3-nitro-, and 4-tert-butyl-derivatives), acetylsalicylic acid, naproxen and iopanoic acid were chosen as model examples. Precise and accurate acid-base titrations in micellar systems were made feasible using a microcomputer-controlled titrator. The response curve, response time and potential drift of the glass electrode in the micellar systems were examined. The cationics CTAB and CPC were found to increase considerably the ionization constant of the weak acids (delta pKa ranged from -0.21 to -3.57), while the anionic SDS showed negligible effect and the nonionic Tween 80 generally decreased the ionization constants. The solubility of the acids in aqueous micellar and acidified micellar solutions was studied spectrophotometrically and it was found increased in all cases. Acetylsalicylic acid, naproxen, benzoic acid and iopanoic acid could be easily determined in raw material and some of them in pharmaceutical preparations by direct titration in CTAB-micellar system instead of using the traditional non-aqueous or back titrimetry. Precisions of 0.3-4.3% RSD and good correlation with the official tedious methods were obtained. The interference study of some excipients showed that a preliminary test should be carried out before the assay of formulations.

  3. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  4. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites

    SciTech Connect

    Young, R.F.; Cheng, S.M.; Fedorak, P.M.

    2006-01-15

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.

  5. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions.

    PubMed

    Lu, Huiying J; Breidt, Frederick; Pérez-Díaz, Ilenys M; Osborne, Jason A

    2011-06-01

    Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.

  6. Synthesis of some 1,8-dioxoacridine carboxylic acid derivatives and the determination of their ionization constants in ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Saygılı, Rukiye; Ulus, Ramazan; Yeşildağ, İbrahim; Kübra İnal, E.; Kaya, Muharrem; Murat Kalfa, O.; Zeybek, Bülent

    2015-03-01

    Four novel compounds of 1,8-dioxoacridine carboxylic acid derivatives (4-(3,3,6,6-tetramethyl-1,8-dioxo-9-phenyl-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-cyanophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(2,4-dichlorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid) were prepared by the reaction of the 4-substitute benzaldehyde (hydrogen, hydroxyl, cyano, and 2,4-dichloro), 4-aminobenzoic acid, and 5,5-dimethylcyclohexane-1,3-dione in the presence of p-dodecylbenzenesulfonic acid. They were characterized by using FT-IR, 1H-NMR, 13C-NMR, GC-MS spectroscopic techniques. The stoichiometric ionization constants of these compounds were determined in ethanol-water mixtures of 50%, 60% and 70% ethanol (v/v) by potentiometric titration method and the ionization constants were calculated with three different ways. The effects of solvent composition and substituent groups on ionization constants of 1,8-dioxoacridine carboxylic acids were also discussed.

  7. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers

    PubMed Central

    Brian, R. C.

    1967-01-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential. Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed. The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour. PMID:16656642

  8. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers.

    PubMed

    Brian, R C

    1967-09-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential.Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed.The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour.

  9. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  10. Electric conductance of dispersions of metal oxides in solutions of weak acids in mixed dioxane-water solvents.

    PubMed

    Kosmulski, Marek; Mączka, Edward

    2012-08-15

    The electric conductance of solutions of sulfuric, oxalic, benzoic, and salicylic acid (up to 0.02 M) in dioxane-water mixed solvents (90% and 93% dioxane by mass) has been studied in the presence and absence of TiO(2) and Al(2)O(3) (0.5-5% by mass). TiO(2) and Al(2)O(3) enhanced the conductance of solutions of organic acids in aqueous dioxane. The conductance is interpreted in terms of adsorption of acid in molecular form, dissolution of ceramic oxides in form of anionic complexes, and leaching of acidic impurities from ceramic oxides.

  11. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  12. Growth and membrane fluidity of food-borne pathogen Listeria monocytogenes in the presence of weak acid preservatives and hydrochloric acid.

    PubMed

    Diakogiannis, Ioannis; Berberi, Anita; Siapi, Eleni; Arkoudi-Vafea, Angeliki; Giannopoulou, Lydia; Mastronicolis, Sofia K

    2013-01-01

    This study addresses a major issue in microbial food safety, the elucidation of correlations between acid stress and changes in membrane fluidity of the pathogen Listeria monocytogenes. In order to assess the possible role that membrane fluidity changes play in L. monocytogenes tolerance to antimicrobial acids (acetic, lactic, hydrochloric acid at low pH or benzoic acid at neutral pH), the growth of the bacterium and the gel-to-liquid crystalline transition temperature point (T m) of cellular lipids of each adapted culture was measured and compared with unexposed cells. The T m of extracted lipids was measured by differential scanning calorimetry. A trend of increasing T m values but not of equal extent was observed upon acid tolerance for all samples and this increase is not directly proportional to each acid antibacterial action. The smallest increase in T m value was observed in the presence of lactic acid, which presented the highest antibacterial action. In the presence of acids with high antibacterial action such as acetic, hydrochloric acid or low antibacterial action such as benzoic acid, increased T m values were measured. The T m changes of lipids were also correlated with our previous data about fatty acid changes to acid adaptation. The results imply that the fatty acid changes are not the sole adaptation mechanism for decreased membrane fluidity (increased T m). Therefore, this study indicates the importance of conducting an in-depth structural study on how acids commonly used in food systems affect the composition of individual cellular membrane lipid molecules.

  13. Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group.

    PubMed

    Gou, Faliang; Jiang, Xu; Fang, Ran; Jing, Huanwang; Zhu, Zhenping

    2014-05-14

    Three new zinc porphyrin dyes attached to ethynyl benzoic acid as an electron transmission and anchoring group have been designed, synthesized, and well-characterized. The performances of their sensitized solar cells have been investigated by optical, photovoltaic, and electrochemical methods. The photoelectric conversion efficiency of the solar cells sensitized by the dye with salicylic acid as an anchoring group demonstrated obvious enhancement when compared with that sensitized by the dye with carboxylic acid as an anchoring group. The density functional theory calculations and the electrochemical impedance spectroscopies revealed that tridentate binding modes could increase the efficiency of electron injection from dyes to the TiO2 nanoparticles by more electron pathways.

  14. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process.

    PubMed

    Yang, Min; Xu, Aihua; Du, Hongzhang; Sun, Chenglin; Li, Can

    2007-01-02

    It has been found that salicylic acid can be removal effectively at the lower temperature of 140 degrees C on perovskite-type oxide LaFeO3 catalyst in the catalytic wet air oxidation (CWAO) process. Under the same condition, the activities for the CWAO of phenol, benzoic acid and sulfonic salicylic acid have been also investigated. The results indicated that, with compared to the very poor activities for phenol and benzoic acid, the activities for salicylic acid and sulfonic salicylic acid were very high, which are attributed to their same intramolecular H-bonding structures. With the role of hard acidity of intramolecular H-bonding, salicylic acid and sulfonic salicylic acid can be adsorbed effectively on the basic center of LaFeO3 catalyst and are easy to take place the total oxidation reaction. However, at temperatures higher than 140 degrees C, the intramolecular H-bonding structure of salicylic acid was destroyed and the activities at 160 and 180 degrees C decreased greatly, which confirms further the key role of intramolecular H-bonding in the CWAO. Moreover, the LaFeO3 catalyst also indicated a superior stability of activity and structure in CWAO of salicylic acid.

  15. Crystal structure of 4-amino­benzoic acid–4-methyl­pyridine (1/1)

    PubMed Central

    Kumar, M. Krishna; Pandi, P.; Sudhahar, S.; Chakkaravarthi, G.; Kumar, R. Mohan

    2015-01-01

    In the title 1:1 adduct, C6H7N·C7H7NO2, the carb­oxy­lic acid group is twisted at an angle of 4.32 (18)° with respect to the attached benzene ring. In the crystal, the carb­oxy­lic acid group is linked to the pyridine ring by an O—H⋯N hydrogen bond, forming a dimer. The dimers are linked by N—H⋯O hydrogen bonds, generating (010) sheets. PMID:25878865

  16. 2-(4-Nitrophenoxy)benzoic acid: a three-dimensional hydrogen-bonded framework in a triclinic structure having Z' = 3.

    PubMed

    Glidewell, Christopher; Low, John N; Skakle, Janet M S; Wardell, James L

    2004-05-01

    The title compound, C(13)H(9)NO(5), crystallizes in space group P-1, with Z' = 3. The molecules are linked by O-H...O hydrogen bonds [H...O = 1.79-1.81 A, O...O = 2.625 (3)-2.648 (3) A and O-H...O = 172-176 degrees ] into two types of R(2)(2)(8) dimer, only one of which is centrosymmetric. An extensive series of soft hydrogen bonds, of C-H...O and C-H...pi(arene) types, links the dimers into a three-dimensional framework.

  17. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. 721.10019 Section 721.10019 Protection of Environment...-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. (a) Chemical substance and significant new uses...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester (PMN P-01-563; CAS No. 174489-76-0) is subject to...

  18. The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid.

    PubMed

    Bryant, Macguire R; Burrows, Andrew D; Fitchett, Christopher M; Hawes, Chris S; Hunter, Sally O; Keenan, Luke L; Kelly, David J; Kruger, Paul E; Mahon, Mary F; Richardson, Christopher

    2015-05-21

    The synthesis, structural and thermal characterisation of a number of coordination complexes featuring the N,O-heteroditopic ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate, HL are reported. The reaction of H2L with cobalt(II) and nickel(II) nitrates at room temperature in basic DMF/H2O solution gave discrete mononuclear coordination complexes with the general formula {[M(HL)2(H2O)4]·2DMF} (M = Co (1), Ni (2)), whereas the reaction with zinc(II) nitrate gave [Zn(HL)2]∞, 3, a coordination polymer with distorted diamondoid topology and fourfold interpenetration. Coordination about the tetrahedral Zn(II) nodes in 3 are furnished by two pyrazolyl nitrogen atoms and two carboxylate oxygen atoms to give a mixed N2O2 donor set. Isotopological coordination polymers of zinc(II), {[Zn(HL)2]·2CH3OH·H2O}∞, 4, and cobalt(II), [Co(HL)2]∞, 5, are formed when the reactions are carried out under solvothermal conditions in methanol (80 °C) and water (180 °C), respectively. The reaction of H2L with cadmium(II) nitrate at room temperature in methanol gives {[Cd(HL)2(MeOH)2]·1.8MeOH}∞6, a 2-D (4,4)-connected coordination polymer, whereas with copper(II) the formation of green crystals that transform into purple crystals is observed. The metastable green phase [Cu3(HL)4(μ2-SO4)(H2O)3]∞, 7, crystallises with conserved binding domains of the heteroditopic ligand and contains two different metal nodes: a dicopper carboxylate paddle wheel motif, and, a dicopper unit bridged by sulfate ions and coordinated by ligand pyrazolyl nitrogen atoms. The resultant purple phase {[Cu(HL)2]·4CH3OH·H2O}∞, 8, however, has single copper ion nodes coordinated by mixed N2O2 donor sets with trans-square planar geometry and is threefold interpenetrated. The desolvation of 8 was followed by powder X-ray diffraction and single crystal X-ray diffraction which show desolvation induces the transition to a more closely packed structure while the coordination geometry about the copper ions and the network topology is retained. Powder X-ray diffraction and microanalysis were used to characterise the bulk purity of the coordination materials 1–6 and 8. The thermal characteristics of 1–2, 4–6 and 8 were studied by TG-DTA. This led to the curious observation of small exothermic events in networks 4, 6, and 8 that appear to be linked to their decomposition. In addition, the solid state structures of H2L and that of its protonated salt, H2L·HNO3, were also determined and revealed that H2L forms a 2-D hydrogen bonded polymer incorporating helical chains formed through N–HO and O–HN interactions, and that [H3L]NO3 forms a 1-D hydrogen-bonded polymer.

  19. Conversion of 2-(4-carboxyphenyl)-6-nitrobenzothiazole to 4-(6-amino-5-hydroxybenzothiazol-2-yl)benzoic Acid by a Recombinant E. coli

    DTIC Science & Technology

    2006-01-01

    J. Nadeau, Z. He and J. C. Spain, J. lnd Microbio/. Biotechnol., 2000, 24, 301-305. 9 J. Sambrook, E. F. Fritsch and T. Maniatis , Molecular ...that helps to promote high molecular weight polymers in polycondensation processes, AB-monomers are also useful starting materials for the synthesis...spectroscopy gave a molecular ion with m/z = 285.96 (100% relative abundance). Thus, all the available spectroscopic data confirm the structure of the

  20. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard

    PubMed Central

    Yin, Chengmiao; Xiang, Li; Wang, Gongshuai; Wang, Yanfang; Shen, Xiang; Chen, Xuesen; Mao, Zhiquan

    2016-01-01

    Apple replant disease (ARD) is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC). We found that the type and concentration of phenolic acid were significantly differed among different seasons, different sampling positions and different soil layers. Major types of phenolic acid in three replanted apple orchards were phlorizin, benzoic acid and vanillic aldehyde. The concentration of phenolic acid was highest in the soil of the previous tree holes and it was increased from the spring to autumn. Moreover, phenolic acid was primarily distributed in 30–60 cm soil layer in the autumn, while it was most abundant in 0–30 cm soil layer in the spring. Our results suggest that phlorizin, benzoic acid and vanillic aldehyde may be the key phenolic acid that brought about ARD in the replanted apple orchard. PMID:27907081

  1. Eight salts constructed from 4-phenylthiazol-2-amine and carboxylic acid derivatives through combination of strong hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhu, Qiaowang; Wei, ShuaiShuai; Wang, Daqi

    2013-10-01

    Eight crystalline organic salts derived from 4-phenylthiazol-2-amine and carboxylic acid derivatives (2-chloronicotinic acid, 3-hydroxy-2-naphthoic acid, p-nitrobenzoic acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, 5-nitrosalicylic acid, 5-sulfosalicylic acid, oxalic acid, and L-malic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. In all of the salts except 6, 7, and 8, the 4-phenylthiazol-2-amine and carboxylic acid components are held together by two fused heterosynthons: a R22(7) heterosynthon and a R22(8) heterosynthon. All supramolecular architectures of the organic salts 1-8 involve extensive Nsbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. The salts displayed 2D/3D framework structure under these weak interactions.

  2. Do carboximide-carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics.

    PubMed

    Kaur, Ramanpreet; Gautam, Raj; Cherukuvada, Suryanarayan; Guru Row, Tayur N

    2015-05-01

    Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular inter-actions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  3. Hydrogen atoms in acetylsalicylic acid (Aspirin): the librating methyl group and probing the potential well in the hydrogen-bonded dimer

    NASA Astrophysics Data System (ADS)

    Wilson, Chick C.

    2001-02-01

    The structure of acetylsalicylic acid (2-(acetoyloxy)benzoic acid; Aspirin) has been studied by variable temperature single crystal neutron diffraction. The usual large torsional librational motion of the terminal methyl group is observed and its temperature dependence analysed using a simple model for the potential, yielding the force constant and barrier height for this motion. In addition, asymmetry of the scattering density of the proton involved in the hydrogen bond forming the carboxylic acid dimer motif is observed at temperatures above 200 K. This asymmetry is discussed in terms of its possible implications for the shape of the hydrogen bonding potential well.

  4. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  5. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  6. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  7. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    PubMed

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  8. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  9. [Effects of UV radiation on the aggregation performance of small molecular organic acids].

    PubMed

    Wang, Wen-Dong; Wang, Ya-Bo; Fan, Qing-Hai; Ding, Zhen-Zhen; Wang, Wen; Song, Shan; Zhang, Yin-Ting

    2014-10-01

    This study systematically investigated the effects of UV radiation on the aggregation of small molecular aliphatic carboxylic acids and phenolic acids by jar test. Experimental results show that solution pH has little effect on the coagulation of small molecular aliphatic carboxylic acids including citric acid, oxalic acid, tartaric acid, and succinic acid. For the solutions pretreated with UV light, the removal rates of the selected aliphatic carboxylic acids in coagulation are higher than that without UV radiation. Further study shows that photochemical reactions occur during UV radiation which decreases the negative charge in aliphatic carboxylic acids, and thereby increases their aggregation properties. Different from aliphatic carboxylic acids, phenol, salicylic acid, and benzoic acid have poor coagulation properties, and UV radiation does not have notable effects on their aggregation in the coagulation process. The coagulation performance of tannic acid is better than the other phenolic acids. At pH = 6, its removal rate is above 90%, which may be contributed to the aliphatic carboxylic acid structure in its molecular. Meanwhile, the large molecular of tannic acid is also easier to be adsorbed by the hydrolysis products of PAC1.

  10. Acidic conjugate of phenols in insects; glucoside phosphate and glucoside sulphate derivatives.

    PubMed

    Ngah, W Z; Smith, J N

    1983-06-01

    Conjugates of p-nitrophenol in nine species of insects were identified by paper chromatography and ionophoresis as the glucoside, the sulphate, the phosphate and the glucoside phosphate. Metabolites with similar properties to the glucoside phosphates were also formed from 8-hydroxyquinoline, 1-naphthol and 4-methylumbelliferone in Tenebrio larvae. Tenebrio larvae also metabolized p-nitrophenol to a compound believed to be p-nitrophenyl glucoside-6-sulphate. None of the nine species of insect used was able to metabolize [14C]benzoic acid to a glucoside-phosphate or glucoside-sulphate conjugate.

  11. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments.

    PubMed Central

    Sousa, M J; Miranda, L; Côrte-Real, M; Leão, C

    1996-01-01

    Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion. PMID:8795203

  12. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj

    2008-03-01

    Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 microM) and high (60 and 120 microM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 microM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.

  13. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  14. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  15. Synthesis and biological activity of novel amino acid-(N'-benzoyl) hydrazide and amino acid-(N'-nicotinoyl) hydrazide derivatives.

    PubMed

    Khattab, Sherine N

    2005-09-30

    The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N;-benzoyl)- and N- Boc-amino acid-(N;-nicotinoyl) hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU) as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N;-benzoyl) hydrazide hydrochloride salts (7a-7e) and amino acid-(N;- nicotinoyl) hydrazide hydrochloride salts (8a-8e). These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  16. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  17. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    PubMed

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  18. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography].

    PubMed

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2012-04-01

    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  19. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism.

    PubMed

    Kallscheuer, Nicolai; Vogt, Michael; Marienhagen, Jan

    2016-12-14

    Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.

  20. Double Blockade of Glioma Cell Proliferation and Migration by Temozolomide Conjugated with NPPB, a Chloride Channel Blocker.

    PubMed

    Park, Miri; Song, Chiman; Yoon, Hojong; Choi, Kee-Hyun

    2016-03-16

    Glioblastoma is the most common and aggressive primary malignant brain tumor. Temozolomide (TMZ), a chemotherapeutic agent combined with radiation therapy, is used as a standard treatment. The infiltrative nature of glioblastoma, however, interrupts effective treatment with TMZ and increases the tendency to relapse. Voltage-gated chloride channels have been identified as crucial regulators of glioma cell migration and invasion by mediating cell shape and volume change. Accordingly, chloride current inhibition by 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), a chloride channel blocker, suppresses cell movement by diminishing the osmotic cell volume regulation. In this study, we developed a novel compound, TMZ conjugated with NPPB (TMZ-NPPB), as a potential anticancer drug. TMZ-NPPB blocked chloride currents in U373MG, a severely invasive human glioma cell line, and suppressed migration and invasion of U373MG cells. Moreover, TMZ-NPPB exhibited DNA modification activity similar to that of TMZ, and surprisingly showed remarkably enhanced cytotoxicity relative to TMZ by inducing apoptotic cell death via DNA damage. These findings indicate that TMZ-NPPB has a dual function in blocking both proliferation and migration of human glioma cells, thereby suggesting its potential to overcome challenges in current glioblastoma therapy.

  1. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-02

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  2. Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating.

    PubMed

    Csanády, László; Töröcsik, Beáta

    2014-02-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current measurements in inside-out patches, we show here that the two effects of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) on CFTR, pore block and gating stimulation, are independent, suggesting action at distinct sites. Furthermore, detailed kinetic analysis revealed that NPPB potently increases Po, also of ΔF508 CFTR, by affecting the stability of gating transition states. This finding is unexpected, because for most ion channels, which gate at equilibrium, altering transition-state stabilities has no effect on Po; rather, agonists usually stimulate by stabilizing open states. Our results highlight how for CFTR, because of its unique cyclic mechanism, gating transition states determine Po and offer strategic targets for potentiator compounds to achieve maximal efficacy.

  3. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  4. An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres.

    PubMed

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2008-09-01

    Fatty acid microspheres based on stearic and palmitic acids are known to form effective taste masking systems, although the mechanisms by which the drug is preferentially released in the lower gastrointestinal tract are not known. The objective of the present study was to identify the mechanisms involved, with a particular view to clarify the role of acid soap formation in the dissolution process. Microspheres were prepared by a spray chilling process. Using benzoic acid as a model drug and an alkaline dissolution medium, a faster drug release was observed in the mixed fatty acid formulation (50:50 stearic:palmitic acid (w/w)) compared to the single fatty acid component systems. Thermal and powder X-ray diffraction studies indicated a greater degree of acid soap formation for the mixed formulation in alkaline media compared to the single fatty acid systems. Particle size and porosity studies indicated a modest reduction in size for the mixed systems and an increase in porosity on immersion in the dissolution medium. It is proposed that the mixed fatty acid system form a mixed crystal system which in turn facilitates interaction with the dissolution medium, thereby leading to a greater propensity for acid soap formation which in turn forms a permeable liquid crystalline phase through which the drug may diffuse. The role of dissolution of palmitic acid into the dissolution medium is also discussed as a secondary mechanism.

  5. Regulating the Skin Permeation Rate of Escitalopram by Ion-pair Formation with Organic Acids.

    PubMed

    Song, Tian; Quan, Peng; Xiang, Rongwu; Fang, Liang

    2016-12-01

    In order to regulate the skin permeation rate (flux) of escitalopram (ESP), ion-pair strategy was used in our work. Five organic acids with different physicochemical properties, benzoic acid (BA), ibuprofen (IB), salicylic acid (SA), benzenesulfonic acid (BSA), and p-aminobenzoic acid (PABA), were employed as counter-ions to regulate the permeation rate of ESP across the rabbit abdominal skin in vitro. The interaction between ESP and organic acids was characterized by FTIR and (13)C NMR spectroscopy. Results showed that all organic acids investigated in this study performed a controlling effect on ESP flux. To further analyze the factors concerned with the permeation capability of ESP-acid complex, a multiple linear regression model was used. It is concluded that the steady-state flux (J) of ESP-acid complexes had a positive correlation with log K o/w (the n-octanol/water partition coefficient of ion-pair complex) and pK a (the acidity of organic acid counter-ion), but a negative correlation with MW (the molecular weight of ion-pair complex). The logK o/w of ion-pair complex is the primary one in all the factors that influence the skin permeation rate of ESP. The results demonstrated that organic acid with appropriate physicochemical properties can be considered as suitable candidate for the transdermal drug delivery of escitalopram.

  6. Crystal structure of olivetolic acid: a natural product from Cetrelia sanguinea (Schaer.)

    PubMed Central

    Ismed, Friardi; Farhan, Aulia; Bakhtiar, Amri; Zaini, Erizal; Nugraha, Yuda Prasetya; Dwichandra Putra, Okky; Uekusa, Hidehiro

    2016-01-01

    The title compound, C12H16O4 (systematic name: 2,4-dihy­droxy-6-pentyl­benzoic acid) is a natural product isolated from C. sanguinea (Schaer.) and is reported to have various pharmacological activities. The mol­ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.096 Å) and features an intra­molecular O—H⋯O hydrogen bond. In the crystal, each olivetolic acid mol­ecule is connected to three neighbours via O—H⋯O hydrogen bonds, generating (10-1) sheets. This crystal is essentially isostructural with a related resorcinolic acid with a longer alkyl chain. PMID:27840714

  7. Pharmacological Properties of Protocatechuic Acid and Its Potential Roles as Complementary Medicine

    PubMed Central

    Semaming, Yoswaris; Pannengpetch, Patchareewan; Chattipakorn, Siriporn C.

    2015-01-01

    This paper reviews the reported pharmacological properties of protocatechuic acid (PCA, 3,4-dihydroxy benzoic acid), a type of phenolic acid found in many food plants such as olives and white grapes. PCA is a major metabolite of anthocyanin. The pharmacological actions of PCA have been shown to include strong in vitro and in vivo antioxidant activity. In in vivo experiments using rats and mice, PCA has been shown to exert anti-inflammatory as well as antihyperglycemic and antiapoptotic activities. Furthermore, PCA has been shown to inhibit chemical carcinogenesis and exert proapoptotic and antiproliferative effects in different cancerous tissues. Moreover, in vitro studies have shown PCA to have antimicrobial activities and also to exert synergistic interaction with some antibiotics against resistant pathogens. This review aims to comprehensively summarize the pharmacological properties of PCA reported to date with an emphasis on its biological properties and mechanisms of action which could be therapeutically useful in a clinical setting. PMID:25737736

  8. Variable Temperature Infrared Spectroscopy Studies of Aromatic Acid Adsorbate Effects on Montmorillonite Dehydration.

    PubMed

    Ingram, Audrey L; Nickels, Tara M; Maraoulaite, Dalia K; White, Robert L

    2017-02-01

    Molecular interactions between benzoic, salicylic, and acetylsalicylic acids and water contained within montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). By using sample perturbation and difference spectroscopy, infrared (IR) spectral variations resulting from the removal of interlayer water are used to characterize aromatic acid local environment changes. Difference spectra features representing functional group perturbations are correlated with changes in IR absorptions associated with -O-H and -C = O stretching vibrations. Results suggest that adsorbate carboxylic acid functionalities participate in extensive hydrogen bonding and that the strengths of these interactions are diminished when clays are dehydrated. The nature of these interactions and their temperature-dependent properties are found to depend on adsorbate structure and concentration as well as the clay interlayer cation.

  9. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  10. Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate.

    PubMed

    Ueno, Yuko; Ajito, Katsuhiro

    2007-07-01

    Terahertz time-domain spectroscopy (THz-TDS) is used to study the intra- and intermolecular vibrational modes of aromatic carboxylic acids, for example, o-phthalic acid, benzoic acid, and salicylic acid, which form either intra- or intermolecular hydrogen bond(s) in different ways. Incorporating the target molecules in nano-sized spaces in mesoporous silicate (SBA-16) is found to be effective for the separate detection of intramolecular hydrogen bonding modes and intermolecular modes. The results are supported by an analysis of the differences in the peak shifts, which depend on temperature, caused by the different nature of the THz absorption. Raman spectra revealed that incorporating the molecules in the nano-sized pores of SBA-16 slightly changes the molecular structures. In the future, THz-TDS using nanoporous materials will be used to analyze the intra- and intermolecular vibrational modes of molecules with larger hydrogen bonding networks such as proteins or DNA.

  11. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.

    PubMed

    Santos, Patrícia S M; Domingues, M Rosário M; Duarte, Armando C

    2016-07-01

    A previous work showed that the night period is important for the occurrence of Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric waters, which originate new chromophoric compounds apparently more complex than the precursors, although the chemical transformations involved in the process are still unknown. In this work were identified by gas chromatography-mass spectrometry (GC-MS) and by electrospray mass spectrometry (ESI-MS) the organic intermediate compounds formed during the Fenton-like oxidation of three aromatic acids from biomass burning (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), the same compounds evaluated in the previous study, in water and in the absence of light, which in turns allows to disclose the chemical reaction pathways involved. The oxidation intermediate compounds found for benzoic acid were 2-hydroxybenzoic, 3-hydroxybenzoic, 4-hydroxybenzoic, 2,3-dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. The oxidation intermediates for 4-hydroxybenzoic acid were 3,4-hydroxybenzoic acid and hydroquinone, while for 3,5-dihydroxybenzoic acid were 2,4,6-trihydroxybenzoic and 3,4,5-trihydroxybenzoic acids, and tetrahydroxybenzene. The results suggested that the hydroxylation of the three small aromatic acids is the main step of Fenton-like oxidation in atmospheric waters during the night, and that the occurrence of decarboxylation is also an important step during the oxidation of the 4-dihydroxybenzoic and 3,5-dihydroxybenzoic acids. In addition, it is important to highlight that the compounds produced are also small aromatic compounds with potential adverse effects on the environment, besides becoming available for further chemical reactions in atmospheric waters.

  12. The Heterogeneous Photocatalytic Decomposition of Benzoic Acid and Adipic Acid on Platinized TiO2 Powder. The Photo-Kolbe Decarboxylative Route to the Breakdown of the Benzene Ring and to the Production to Butane.

    DTIC Science & Technology

    1980-10-29

    photocatalyst design dis- cussed previously, lb’Ic where the rate of reaction at the catalyst powder is determined by the system operating at a potential... photocatalyst half reaction, as opposed to the results on aliphatic carboxylates. The reduction of oxygen on Pt (curve 7) occurs ai. potentials much more positive...semiconductor powders have been shown to behave as photocatalysts and promote the oxidation of sub- strates. 1-6 Irradiation of a semiconductor with

  13. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. I. Preliminary experiments in controlled shaken flasks.

    PubMed

    Dugan, P R

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/L to inoculated 20 or 30% coal refuse slurries. Here 25 mg/L concentrations of SLS, ABS, and ABS + BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited.

  14. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions.

    PubMed

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, Mohamed; Sayadi, Sami

    2006-02-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism before ring fission. Strain IMPC transformed various cinnamic acids with substituent H, OH, CH(3) or OCH(3) in the para- and/or meta-position of the aromatic ring to the corresponding benzoic acids, indicating a specific selection. A beta-oxidation pathway was proposed for these transformations. Phylogenetic analysis of the 16S rRNA gene revealed that this isolate was a member of the genus Halomonas. Strain IMPC was closely related to Halomonas elongata ATCC 33173(T)and Halomonas eurihalina ATCC 49336(T).

  15. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.

    PubMed

    Hanna, K; Lassabatere, L; Bechet, B

    2012-09-15

    In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.

  16. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    NASA Astrophysics Data System (ADS)

    Sangeetha, K.; Guru Prasad, L.; Mathammal, R.

    2016-11-01

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The 1H and 13C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  17. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    PubMed

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  18. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer

    NASA Astrophysics Data System (ADS)

    Begüm Elmas Kimyonok, A.; Ulutürk, Mehmet

    2016-04-01

    The thermal decomposition behavior of terephthalic acid (TA) was investigated by thermogravimetry/differential thermal analysis (TG/DTA) and Curie-point pyrolysis. TG/DTA analysis showed that TA is sublimed at 276°C prior to decomposition. Pyrolysis studies were carried out at various temperatures ranging from 160 to 764°C. Decomposition products were analyzed and their structures were determined by gas chromatography-mass spectrometry (GC-MS). A total of 11 degradation products were identified at 764°C, whereas no peak was observed below 445°C. Benzene, benzoic acid, and 1,1‧-biphenyl were identified as the major decomposition products, and other degradation products such as toluene, benzophenone, diphenylmethane, styrene, benzaldehyde, phenol, 9H-fluorene, and 9-phenyl 9H-fluorene were also detected. A pyrolysis mechanism was proposed based on the findings.

  19. Enhancing proton conduction via doping of supramolecular liquid crystals (4-alkoxybenzoic acids) with imidazole

    NASA Astrophysics Data System (ADS)

    Liang, Ting; Wu, Yong; Tan, Shuai; Yang, Xiaohui; Wei, Bingzhuo

    2015-09-01

    Enhancing proton conduction via doping was first achieved in hydrogen-bonded liquid crystals consisting of benzoic acids. Supramolecular liquid crystals formed by pure 4-alkoxybenzoic acids (nAOBA, n = 8, 10, 12) exhibited the maximum proton conductivity of 5.0 × 10-8 S cm-1. Doping of nAOBA with 25 mol% imidazole (Im0.25) had little impact on mesomorphism but increased proton conductivities by at least 3 orders of magnitude. The liquid crystals formed by nAOBA-Im0.25 exhibited the maximum proton conductivity of 1.9 × 10-4 S cm-1. It was proposed that structure diffusion of imidazole bridged interdimer proton transfer to form continuous conducting pathways in mesomorphic nAOBA-Im0.25.

  20. Inhibition of cold insolubility of an IgA cryoglobulin by decanedicarboxylic acid and related compounds.

    PubMed

    Lalezari, P; Kumar, M; Kumar, K M; Lawrence, C

    1983-11-01

    Cold insolubility of a serum IgA cryoimmunoglobulin was found to be inhibited by the addition of 1.5 mM sodium decanedicarboxylate in vitro. The patient with the cryoglobulin had advanced multiple myeloma complicated by severe hyperviscosity that caused lethargy and episodic loss of consciousness. Decanedicarboxylic acid administered orally resulted in transient relief of symptoms and the loss of cryoprecipitability of the paraprotein. Further in vitro studies revealed that sodium salts of long-chain monocarboxylic acids with a minimum of eight carbons, and dicarboxylic acids with a minimum of 12 carbons inhibited cryoprecipitation. Salts of short-chain carboxylic acids, by contrast, enhanced cryoprecipitation. Sodium phenolate and sodium salts of benzoic acid, 2,4-DNP, phenylpropionic acid, and salicylic acid were also inhibitory. These latter compounds, which have a ring structure, did not cause precipitation at any concentration. It was demonstrated that the presence of a free carboxylic group was required for these activities; conversion of carboxylic acid to amide resulted in the loss of both the inhibitory and cryoprecipitation-enhancing effects. Normal plasma, or plasma from five other patients who had IgG, IgM, or mixed-type cryoglobulinemia, were not affected by any of these compounds. It is suggested that in selected cases of hyperviscosity syndrome associated with cryoglobulinemia, some of these compounds, especially monocarboxylic acids with appropriate chain lengths, or those with a ring structure, may have therapeutic applications.

  1. Extraction of benzene and naphthalene carboxylic acids using quaternary ammonium salts as a model study for the separation of coal oxidation products

    SciTech Connect

    Kawamura, K.; Nagano, H.; Okuwaki, A.

    2005-07-01

    The ion-pair solvent extraction of benzene- and naphthalene-carboxylic acids has been investigated as a model study for the separation of coal oxidation products, which are formed by treatment with alkaline solutions at high temperatures. It was possible that benzene- and naphthalene-dicarboxylic acids are extracted into several types of organic solvents with quaternary ammonium ions. The extraction equilibrium constants (K{sub ex}) for benzoic acid, 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, 1-naphthoic acid, 2-naphthoic acid, 2,3-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid into chloroform were determined at 20{sup o}C. The difference of K{sub ex} among the aromatic acids was sufficiently large for designing a separation method for these aromatic acids. It was unexpected that the extraction of dicarboxylic acids was slower than that of monocarboxylic acids, although the ion-pair formation of aromatic carboxylate ion with quaternary ammonium ion is normally considered as a diffusion control reaction in aqueous phase. Thus, this fact suggests that the phase transfer of the ion-pair from aqueous to organic phase is the rate-determining step. Liner-free-energy relationship was observed for the monocarboxylic acids using different quaternary ammonium salts while that was ambiguous for the dicarboxylic acids. This is due to the steric influence of the counter ions for the magnitude of K{sub ex}.

  2. Application of zirconium-modified silica gel as a stationary phase in the ion-exclusion chromatography of carboxylic acids. I. Separation of benzenecarboxylic acids with tartaric acid as eluent and with UV-photometric detection.

    PubMed

    Ohta, K

    2001-06-22

    The application of zirconium-modified silica gels (Zr-Silicas) as stationary phases for ion-exclusion chromatography with UV-photometric detection (IEC-PD) for mono-, di-, tri- and tetrabenzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, salicylic and benzoic acids) and phenol was carried out using tartaric acid as the eluent. Zr-Silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide [Zr(OCH2CH2CH2CH3)4] in ethanol solution. The effect of the amount of zirconium adsorbed on silica gel on chromatographic behavior of these benzenecarboxylic acids and phenol was investigated. As a result, Zr-Silica adsorbed on 20 mg zirconium g(-1) silica gel was the most suitable stationary phase in the IEC-PD for the simultaneous separation of these benzenecarboxylic acids and phenol. Excellent simultaneous separation and highly sensitive UV detection at 254 nm for these benzenecarboxylic acids and phenol were achieved in 20 min by the IEC-PD using the Zr-Silica column (250x4.6 mm I.D.) and a 10 mM tartaric acid at pH 2.5 as eluent.

  3. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata

    The effect of some metals on the electronic system of benzoic and nicotinic acids has recently been investigated by IR, Raman and UV spectroscopy [1-3]. Benzoic and nicotinic acids are regarded model systems representing a wide group of aromatic ligands which are incorporated into enzymes. In this work the FT-IR (in solid state and in solution), FT-Raman, UV absorption and 1H and 13C NMR spectra of caffeic acid (3,4-dihydroxycinnamic acid) and its salts with lithium, sodium, potassium, rubidium and caesium were registered, assigned and analyzed. The effect of alkali metals on the electronic system of ligands was discussed. Studies of differences in the number and position of bands from the IR, Raman, UV absorption spectra and chemical shifts from NMR spectra allowed to conclude on the distribution of electronic charge in the molecules, the delocalization energy of π electrons and the reactivity of ligands in metal complexes. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** basis set. Bond lengths, angles and dipole moments for the optimized structures of caffeic acid and lithium, sodium, potassium caffeinates were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained. The calculated parameters were compared to the experimental characteristics of investigated compounds. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris.

  4. Effect of organic acids on Salmonella colonization and shedding in weaned piglets in a seeder model.

    PubMed

    Michiels, Joris; Missotten, Joris; Rasschaert, Geertrui; Dierick, Noël; Heyndrickx, Marc; De Smet, Stefaan

    2012-11-01

    Piglets (n = 128) weaned at 21 days of age were used in a 35-day seeder model to evaluate the effects of dietary additives differing in active ingredients, chemical, and physical formulation, and dose on Salmonella colonization and shedding and intestinal microbial populations. Treatments were a negative control (basal diet), the positive control (challenged, basal diet), and six treatments similar to the positive control but supplemented with the following active ingredients (dose excluding essential oils or natural extracts): triglycerides with butyric acid (1.30 g kg(-1)); formic and citric acids and essential oils (2.44 g kg(-1)); coated formic, coated sorbic, and benzoic acids (2.70 g kg(-1)); salts of formic, sorbic, acetic, and propionic acids, their free acids, and natural extracts (2.92 g kg(-1)); triglycerides with caproic and caprylic acids and coated oregano oil (1.80 g kg(-1)); and caproic, caprylic, lauric, and lactic acids (1.91 g kg(-1)). On day 6, half the piglets (seeder pigs) in each group were orally challenged with a Salmonella Typhimurium nalidixic acid-resistant strain (4 × 10(9) and 1.2 × 10(9) log CFU per pig in replicate experiments 1 and 2, respectively). Two days later, they were transferred to pens with an equal number of contact pigs. Salmonella shedding was determined 2 days after challenge exposure and then on a weekly basis. On day 34 or 35, piglets were euthanized to sample tonsils, ileocecal lymph nodes, and ileal and cecal digesta contents. The two additives, both containing short-chain fatty acids and one of them also containing benzoic acid and the other one also containing essential oils, and supplemented at more than 2.70 g kg(-1), showed evidence of reducing Salmonella fecal shedding and numbers of coliforms and Salmonella in cecal digesta. However, colonization of tonsils and ileocecal lymph nodes by Salmonella was not affected. Supplementing butyric acid and medium-chain fatty acids at the applied dose failed to inhibit

  5. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Aoki, Kazuma; Sugimoto, Nobuo

    2016-11-01

    To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m) at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16) were analyzed for normal (C1-C10), branched chain (iC4-iC6), aromatic (benzoic and toluic acid isomers), and hydroxyl (glycolic and lactic) monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC). Acetic acid (C2) was found to be a dominant species (average 125 ng g-1), followed by formic acid (C1) (85.7 ng g-1) and isopentanoic acid (iC5) (20.0 ng g-1). We found a strong correlation (r = 0.88) between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 %) were higher than that in 2011 (3.75 ± 2.62 %), being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r = 0.90) with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss-Ca2+ (0.27) was significantly higher than those (0.00036-0.0018) obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87) between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic acids.

  6. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach.

  7. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    PubMed

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  8. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria.

    PubMed

    Cueva, Carolina; Moreno-Arribas, M Victoria; Martín-Alvarez, Pedro J; Bills, Gerald; Vicente, M Francisca; Basilio, Angela; Rivas, Concepción López; Requena, Teresa; Rodríguez, Juan M; Bartolomé, Begoña

    2010-06-01

    Phenolic acids (benzoic, phenylacetic and phenylpropionic acids) are the most abundant phenolic structures found in fecal water. As an approach towards the exploration of their action in the gut, this paper reports the antimicrobial activity of thirteen phenolic acids towards Escherichia coli, Lactobacillus spp., Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The growth of E. coli ATCC 25922 was inhibited by only four of the phenolic acids tested at a concentration of 1000 microg/mL, whereas pathogenic E. coli O157:H7 (CECT 5947) was susceptible to ten of them. The genetically manipulated E. coli lpxC/tolC strain was highly susceptible to phenolic acids. The growth of lactobacilli (Lactobacillus paraplantarum LCH7, Lactobacillus plantarum LCH17, Lactobacillus fermentum LPH1, L. fermentum CECT 5716, Lactobacillus brevis LCH23, and Lactobacillus coryniformis CECT 5711) and pathogens (S. aureus EP167 and C. albicans MY1055) was also inhibited by phenolic acids, but to varying extents. Only P. aeruginosa PAO1 was not susceptible to any of the phenolic compounds tested. Structure-activity relationships of phenolic acids and some of their diet precursors [(+)-catechin and (-)-epicatechin] were established, based on multivariate analysis of microbial activities. The antimicrobial properties of phenolic acids reported in this paper might be relevant in vivo.

  9. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry

    PubMed Central

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H.; Martens, Stefan; Schwab, Wilfried

    2016-01-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-d-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  10. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry.

    PubMed

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H; Martens, Stefan; Schwab, Wilfried

    2016-04-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F. × ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-D-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols.

  11. Fenton-like oxidation of small aromatic acids from biomass burning in water and in the absence of light: implications for atmospheric chemistry.

    PubMed

    Santos, Patrícia S M; Duarte, Armando C

    2015-01-01

    The oxidation of organic compounds from biomass burning in the troposphere is worthy of concern due to the uncertainty of chemical transformations that occur during the reactions and to the possibility of such compounds producing others more aggressive to the environment in general. In this work was studied the oxidation of relevant atmospheric organic compounds resulting from biomass burning, three small aromatic acids with similar molecular structures (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), in aqueous phase and in the absence of light. The oxidation process used was the Fenton-like reaction and it was evaluated by ultraviolet-visible and molecular fluorescence spectroscopies. The extent of oxidation of the acids depended on the pH of the solution, and the rate of reaction increased as the pH decreased from neutral (5) to acid (4) in atmospheric waters. Even in the absence of light, Fenton-like oxidation of the three acids originated new chromophoric compounds, which tended to be more complex than the reactants. However, after the formation of new compounds they were totally oxidized for 3,5-dihydroxybenzoic acid and only partially degraded for benzoic and 4-hydroxybenzoic acids, at least after 48 h of reaction at pH 4.5. Furthermore, the night period may be sufficient for a full degradation of the 3,5-dihydroxybenzoic acid and of their oxidation products in atmospheric waters. Thus, the results obtained in this study highlight that organic compounds from biomass burning with similar molecular structures may have different behavior regarding to their reactivity and persistence in atmospheric waters, even without light.

  12. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    PubMed

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  13. Hydrothermal Mineral-Assisted Organic Transformations of Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Gould, I.; Williams, L. B.; Hartnett, H. E.; Shock, E.

    2014-12-01

    The purpose of our research is to probe the varieties of reactions possible in a hydrothermal system in which both organic compounds and minerals interact. We performed experiments at physical conditions representative of deep-sea and subsurface systems (300°C and 1000 bar) and analyzed the effect of the mineral magnetite (Fe3O4) in systems with carboxylic acids, either phenylacetic acid or hydrocinnamic acid (a.k.a., phenylpropanoic acid). Control experiments were also conducted with the same organic compounds in the absence of magnetite. Whereas previous studies of carboxylic acid reactivity with minerals have focused exclusively on simple molecules such as acetic acid and valeric acid (Bell et al. 1994; McCollom et al. 2003), the carboxylic acids used in our study differ from previous experimental compounds by the addition of a phenyl ring, which allows for the investigation of the specific mechanistic pathways of product formation. Decarboxylation (i.e., RCO2H → RH + CO2) is one of the major reaction pathways for carboxylic acids in hydrothermal conditions without minerals. Under our experimental conditions, decarboxylation leads to the ~80% conversion of phenylacetic acid into toluene within ~50 hours and the ~8% conversion of hydrocinnamic acid to ethyl benzene within ~190 hours. We found that magnetite had a different effect on the two organic compounds studied. In experiments with phenylacetic acid, the presence of magnetite did not enhance the rate of toluene production from decarboxylation but did activate additional product pathways that include diphenyl alkanes, alkenes, and ketones, as well as benzoic acid, a carboxylic acid one carbon length shorter than the parent compound. Magnetite had even more noticeable effects on the hydrocinnamic acid system leading to an increase of its consumption at 190 hours from ~9% in magnetite's absence to ~35% in the mineral's presence. Products of the experiments with magnetite included an enhanced rate of

  14. Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View

    PubMed Central

    Mira, Nuno P.; Teixeira, Miguel Cacho

    2010-01-01

    Abstract Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted. PMID:20955006

  15. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense.

  16. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  17. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  18. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  19. Design, structural and spectroscopic elucidation of new nitroaromatic carboxylic acids and semicarbazones for the in vitro screening of anti-leishmanial activity

    NASA Astrophysics Data System (ADS)

    Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.

    2015-01-01

    In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.

  20. Transport properties and association behaviour of the zwitterionic drug 5-aminolevulinic acid in water. A precision conductometric study.

    PubMed

    Merclin, Nadia; Beronius, Per

    2004-02-01

    The behavior of the hydrochloride salt of 5-aminolevulinic acid (ALA-HCl) with respect to transport properties and dissociation in aqueous solution at 25 degrees C has been studied using precision conductometry within the concentration range 0.24-5.17mM. The conductivity data are interpreted according to elaborated conductance theory. The carboxyl group appears to be, in practice, undissociated. The dissociation constant, K(a), of the NH(3)(+) form of the amino acid molecules is determined to 6.78x10(-5) (molarity scale); pK(a)=4.17. The limiting molar conductivity of the ALA-H(+) ion, lambda(0)=33.5cm(2)Omega(-1)mol(-1); electric mobility u=3.47x10(-4)cm(2)V(-1)s(-1), is close to the electric mobilites of the acetate and benzoic ions.

  1. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L.

    PubMed

    Gulzar, Aasifa; Siddiqui, M B; Bi, Shazia

    2016-09-01

    The allelopathic potential of leaf aqueous extract (LAE) of Calotropis procera on growth behavior, ultrastructural changes on Cassia sophera L., and cytological changes on Allium cepa L. was investigated. LAE at different concentrations (0.5, 1, 2, and 4 %) significantly reduced the root length, shoot length, and dry biomass of C. sophera. Besides, the ultrastructural changes (through scanning electron microscopy, SEM) induced in epidermal cells of 15-day-old seedlings of Cassia leaf were also noticed. The changes induced were shrinking and contraction of epidermal cells along with the formation of major grooves, canals, and cyst-like structures. The treated samples of epidermal cells no longer seem to be smooth as compared to control. LAE at different concentrations induces chromosomal aberrations and variation in shape of the interphase and prophase nucleus in A. cepa root tip cells when compared with control groups. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts. The most frequent aberrations were despiralization at prophase with the formation of micronuclei, sticky anaphase with bridges, sticky telophase, C-metaphase, etc. The results also show the induction of ghost cells, cells with membrane damage, and cells with heterochromatic nuclei by extract treatment. Upon HPLC analysis, nine phenolic acids (caffeic acid, gentisic acid, catechol, gallic acid, syringic acid, ellagic acid, resorcinol, p-coumaric acid, and p-hydroxy benzoic acid) were identified. Thus, the phenolic acids are mainly responsible for the allelopathic behavior of C. procera.

  2. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  3. A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal

    2014-11-01

    A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.

  4. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  5. Scalable and chromatography-free synthesis of 2-(2-formylalkyl)arenecarboxylic acid derivatives through the supramolecularly controlled hydroformylation of vinylarene-2-carboxylic acids.

    PubMed

    Dydio, Paweł; Reek, Joost N H

    2014-05-01

    This protocol describes how to prepare 2-(2-formylalkyl)-arenecarboxylic acid derivatives, common building blocks for the synthesis of various valuable chemicals (e.g., anti-obesity and Alzheimer's disease treatment pharmaceuticals), by using the fully regioselective hydroformylation of vinyl arene derivatives. This catalytic reaction proceeds cleanly with 100% regioselectivity and chemoselectivity. The procedure is reliably scalable and can be efficiently conducted on a multigram scale. The analytically pure product is easily isolated with a nearly quantitative yield by using a simple acid-base extraction workup and avoids any tedious chromatography. This protocol details the synthesis of a bisphosphite ligand (L1) that is a pivotal element of the catalytic system used, Rh(acac)(CO)2 with ligand L1, starting from commercial building blocks. The protocol also describes a general procedure for the preparative hydroformylation of vinylarene-2-carboxylic acid derivatives to 2-formylalkylarene products, providing a representative example for the hydroformylation of 2-vinylbenzoic acid (1a) to 2-(3-oxopropane)-benzoic acid (2a). The synthesis of L1 (six chemical reactions) uses 2-nitrophenylhydrazine, 4-benzyloxybenzoylchloride and (S)-binol, and takes 5-7 working days. The actual hydroformylation reaction of each vinyl arene derivative takes ∼4 h of active effort over a period of 1-3 d.

  6. Process monitored spectrophotometric titration coupled with chemometrics for simultaneous determination of mixtures of weak acids.

    PubMed

    Liao, Lifu; Yang, Jing; Yuan, Jintao

    2007-05-15

    A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.

  7. Hydrogen-bonded structures of the isomeric compounds of phthalazine with 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrobenzoic acid and 4-chloro-3-nitrobenzoic acid.

    PubMed

    Gotoh, Kazuma; Ishida, Hiroyuki

    2011-11-01

    The structures of three isomeric compounds, C(7)H(4)ClNO(4)·C(8)H(6)N(2), of phthalazine with chloro- and nitro-substituted benzoic acid, namely, 3-chloro-2-nitrobenzoic acid-phthalazine (1/1), (I), 4-chloro-2-nitrobenzoic acid-phthalazine (1/1), (II), and 4-chloro-3-nitrobenzoic acid-phthalazine (1/1), (III), have been determined at 190 K. In the asymmetric unit of each compound, there are two crystallographically independent chloronitrobenzoic acid-phthalazine units, in each of which the two components are held together by a short hydrogen bond between an N atom of the base and a carboxyl O atom. In one hydrogen-bonded unit of (I) and in two units of (II), a weak C-H···O interaction is also observed between the two components. The N···O distances are 2.5715 (15) and 2.5397 (17) Å for (I), 2.5655 (13) and 2.6081 (13) Å for (II), and 2.613 (2) and 2.589 (2) Å for (III). In both hydrogen-bonded units of (I) and (II), the H atoms are each disordered over two positions with (N site):(O site) occupancies of 0.35 (3):0.65 (3) and 0.31 (3):0.69 (3) for (I), and 0.32 (3):0.68 (3) and 0.30 (3):0.70 (3) for (II). The H atoms in the hydrogen-bonded units of (III) are located at the O-atom sites.

  8. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids.

    PubMed

    Alakomi, Hanna-Leena; Puupponen-Pimiä, Riitta; Aura, Anna-Marja; Helander, Ilkka M; Nohynek, Liisa; Oksman-Caldentey, Kirsi-Marja; Saarela, Maria

    2007-05-16

    Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.

  9. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  10. Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemical-rich environment of distillery spent wash and its phytotoxicity.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l(-1)). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.

  11. Advances in methodology for the validation of methods according to the International Organization for Standardization. Application to the determination of benzoic and sorbic acids in soft drinks by high-performance liquid chromatography.

    PubMed

    García, Inmaculada; Ortiz, M Cruz; Sarabia, Luis; Vilches, Carmen; Gredilla, Elisa

    2003-04-11

    Robust chemometric techniques such as least median of squares regression, H15 Huber estimator and Lenth's method are fundamental tools in the validation of analytical methods since they contribute the strategies needed to estimate efficiently parameters such as robustness, linear range, selectivity, accuracy (trueness and precision) and the capability of detection. In addition, the capability of discrimination defined as a generalisation of the capability of detection for any nominal concentration is evaluated. The new strategy proposed is applied to the validation of a chromatographic method for use in systematic analysis.

  12. Microbiological degradation of organic components in oil shale retort water: organic acids.

    PubMed

    Rogers, J E; Riley, R G; Li, S W; Mann, D C; Wildung, R E

    1981-11-01

    The losses of benzoic acid and a homologous series of both mono- and dibasic aliphatic acids in oil shale retort water were monitored with time (21 days) in liquid culture (4% retort water, vol/vol) inoculated with soil. The organic acids constituted approximately 12% of the dissolved organic carbon in retort water, which served as the sole source of carbon and energy in these studies. The levels of the acids in solution were reduced by 80 to 90% within 9 days of incubation. From mass balance calculations, the decrease in dissolved organic carbon with time of incubation was equal to the formation of CO(2) and bacterial cell carbon. The decrease in the level of the acid components, either from degradation to CO(2) or incorporation into bacteria, would account for approximately 70% of the loss in dissolved organic carbon within the first 9 days of incubation and would account for approximately 50% of the loss over the entire 21-day incubation period.

  13. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  14. Polymeric prodrug-functionalized polypropylene films for sustained release of salicylic acid.

    PubMed

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M; Díaz-Gómez, Luis; Concheiro, Angel; Zavala-Lagunes, Edgar; Alvarez-Lorenzo, Carmen; Bucio, Emilio

    2016-09-10

    Medical devices decorated with salicylic acid-based polymer chains (polymeric prodrug) that slowly release this anti-inflammatory and anti-biofilm drug at the implantation site were designed. A "grafting from" method was implemented to directly grow chains of a polymerizable derivative of salicylic acid (2-methacryloyloxy-benzoic acid, 2MBA) onto polypropylene (PP). PP was modified both at bulk and on the surface with poly(2MBA) by means of an oxidative pre-irradiation method ((60)Co source), in order to obtain a grafted polymer in which salicylic acid units were linked by means of labile ester bonds. The grafting percent depended on absorbed dose, reaction time, temperature and monomer concentration. The functionalized films were analyzed regarding structure (FTIR-ATR, SEM-EDX, fluorescence microscopy), temperature stability (TGA), interaction with aqueous medium (water contact angle and swelling), pH-responsive release and cytocompatibility (fibroblasts). In the obtained poly(2MBA)-grafted biomaterial, poly(2MBA) behaved as a polymeric prodrug that regulates salicylic acid release once in contact with aqueous medium, showing pH-dependent release rate.

  15. Biodegradability enhancement of purified terephthalic acid wastewater by coagulation-flocculation process as pretreatment.

    PubMed

    Karthik, Manikavasagam; Dafale, Nishant; Pathe, Pradyumna; Nandy, Tapas

    2008-06-15

    In this work, the coagulation-flocculation process was used as pretreatment for purified terephthalic acid (PTA) wastewater with the objective of improving its overall biodegradability. PTA production generates wastewaters with toxicants p-xylene [1,4-dimethyl-benzene (C8H10)], a major raw material used in the production process, along with some of the intermediates, viz., p-toluic acid, benzoic acid, 4-carboxybenzaldehyde, phthalic acid and terephthalic acid. These compounds affect the bio-oxidation process of wastewater treatment; hence removal of these constituents is necessary, prior to conventional aerobic treatment. This paper addresses the application of coagulation-flocculation process using chemical coagulants, viz., aluminium sulphate (alum), polyaluminium chloride (PAC), ferrous sulphate and ferric chloride in combination with anionic polyelectrolyte. Polyaluminium chloride (PAC) in conjunction with lime and polyelectrolyte removed about 63.1% chemical oxygen demand (COD) and 45.2% biochemical oxygen demand (BOD) from PTA wastewater. Coagulation-flocculation process coupled with aerobic bio-oxidation treatment of PTA wastewater achieved, COD & BOD removals of 97.4% and 99.4%, respectively. The biodegradability enhancement evaluated in terms of the BOD5/COD ratio, increased from 0.45 to 0.67 at the optimum conditions. The results obtained from these studies indicate that the coagulation-flocculation process could be a suitable pretreatment method in reducing toxicity of PTA wastewater whilst enhancing biodegradability for aerobic biological treatment scheme.

  16. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  17. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  18. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  19. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  20. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  1. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  2. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  3. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii☆

    PubMed Central

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Novodvorska, Michaela; Hayer, Kimran; Archer, David B.

    2013-01-01

    Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~ 3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to < 1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~ 100% cross-resistance to other weak-acid preservatives. Tests using 14C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH 5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors

  4. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Novodvorska, Michaela; Hayer, Kimran; Archer, David B

    2013-08-16

    Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to <1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~100% cross-resistance to other weak-acid preservatives. Tests using (14)C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors.

  5. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  6. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  7. Low molecular weight (C1-C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Matsumoto, Kohei; Tachibana, Eri; Aoki, Kazuma

    2012-12-01

    Snowpack samples were collected from a snow pit sequence (6 m in depth) at the Murodo-Daira site near the summit of Mt. Tateyama, central Japan, an outflow region of Asian dusts. The snow samples were analyzed for a homologous series of low molecular weight normal (C1-C10) and branched (iC4-iC6) monocarboxylic acids as well as aromatic (benzoic) and hydroxy (glycolic and lactic) acids, together with major inorganic ions and dissolved organic carbon (DOC). The molecular distributions of organic acids were characterized by a predominance of acetic (range 7.8-76.4 ng g-1-snow, av. 34.8 ng g-1) or formic acid (2.6-48.1 ng g-1, 27.7 ng g-1), followed by propionic acid (0.6-5.2 ng g-1, 2.8 ng g-1). Concentrations of normal organic acids generally decreased with an increase in carbon chain length, although nonanoic acid (C9) showed a maximum in the range of C5-C10. Higher concentrations were found in the snowpack samples containing dust layer. Benzoic acid (0.18-4.1 ng g-1, 1.4 ng g-1) showed positive correlation with nitrate (r = 0.70), sulfate (0.67), Na+ (0.78), Ca2+ (0.86) and Mg+ (0.75), suggesting that this aromatic acid is involved with anthropogenic sources and Asian dusts. Higher concentrations of Ca2+ and SO42- were found in the dusty snow samples. We found a weak positive correlation (r = 0.43) between formic acid and Ca2+, suggesting that gaseous formic acid may react with Asian dusts in the atmosphere during long-range transport. However, acetic acid did not show any positive correlations with major inorganic ions. Hydroxyacids (0.03-5.7 ng g-1, 1.5 ng g-1) were more abundant in the granular and dusty snow. Total monocarboxylic acids (16-130 ng g-1, 74 ng g-1) were found to account for 1-6% of DOC (270-1500 ng g-1, 630 ng g-1) in the snow samples.

  8. Birefringent Pattern Formation in Photoinactive Liquid Crystalline Polymer Films Based on a Photoalignment Technique with Top-Coating of Cinnamic Acid Derivatives via H-Bonds.

    PubMed

    Kawatsuki, Nobuhiro; Fujii, Ryosuke; Fujioka, Yu; Minami, Satoshi; Kondo, Mizuho

    2017-03-07

    The application of a top-coating of 4-methoxy cinnamic acid (MCA) onto a photoinactive liquid crystalline polymeric film containing benzoic acid (BA) side groups (P6BAM) is shown to enable thermally stimulated, photoinduced reorientation of the polymer structure. Annealing the MCA-coated P6BAM films leads to H-bond formation between BA and MCA, which also effectively smooths the film surface. Exposure to linearly polarized (LP) UV light initiates axis-selective photoreaction of the MCA groups; subsequent thermal treatment in the LC temperature range of P6BAM amplifies molecular reorientation of the BA side groups, while simultaneously eliminating the MCA molecules. Selective inkjet coating of MCA provides a facile route for the fabrication of patterned, oriented, and rewritable P6BAM films with multiple controlled alignment directions.

  9. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  10. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance.

  11. Amino acid-permeable anion channels in early mouse embryos and their possible effects on cleavage.

    PubMed

    Sonoda, Momoyo; Okamoto, Fujio; Kajiya, Hiroshi; Inoue, Yoshihito; Honjo, Ko; Sumii, Yoshinari; Kawarabayashi, Tatsuhiko; Okabe, Koji

    2003-03-01

    Effects of several Cl(-) channel blockers on ionic currents in mouse embryos were studied using whole-cell patch-clamp and microelectrode methods. Microelectrode measurements showed that the resting membrane potential of early embryonic cells (1-cell stage) was -23 mV and that reduction of extracellular Cl(-) concentration depolarized the membrane, suggesting that Cl(-) conductance is a major contributor for establishing the resting membrane potential. Membrane currents recorded by whole-cell voltage clamp showed outward rectification and confirmed that a major component of these embryonic currents are carried by Cl(-) ions. A Cl(-) channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), suppressed the outward rectifier current in a voltage- and concentration-dependent manner. Other Cl(-) channel blockers (5-nitro-2-[3-phenylpropyl-amino] benzoic acid and 2-[3-(trifluoromethyl)-anilino] nicotinic acid [niflumic acid]) similarly inhibited this current. Simultaneous application of niflumic acid with DIDS further suppressed the outward rectifier current. Under high osmotic condition, niflumic acid, but not DIDS, inhibited the Cl(-)current, suggesting the presence of two types of Cl(-) channels: a DIDS-sensitive (swelling-activated) channel, and a DIDS-insensitive (niflumic acid-sensitive) Cl(-) channel. Anion permeability of the DIDS-insensitive Cl(-) current differed from that of the compound Cl(-) current: Rank order of anion permeability of the DIDS-sensitive Cl(-) channels was I(-) = Br(-) > Cl(-) > gluconate(-), whereas that of the DIDS-insensitive Cl(-) channel was I(-) = Br(-) > Cl(-) > gluconate(-). These results indicate that early mouse embryos have a Cl(-) channel that is highly permeable to amino acids, which may regulate intracellular amino acid concentration.

  12. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.

  13. Steric structure and thermodynamic aspects of the complexes of dysprosium (III) with aminobenzoic acids in aqueous solutions

    SciTech Connect

    Kondrashina, Yu, G.; Mustafina, A.R.; Vul`fson, S.G.

    1994-10-01

    Steric structures of dysprosium (III) aminobenzoate complexes with the 1:1 and 1:2 molar ratio in aqueous solutions were determined on the basis of pH-metric and paramagnetic birefringence data. An increase in conjugation observed for the series of the acids, viz., benzoic, meta-, ortho-, and para-aminobenzoic acids, results in the increased stability of the complexes with the 1:1 and 1:2 composition. In the case of para-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){sub 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are cubes with the ligands coordinated to one and two edges, respectively. In the case of meta-aminobenzoic acid, the polyhedra [DyL(H{sub 2}O){sub 6}]{sup 2+} and [DyL{sub 2}(H{sub 2}O){sub 4}]{sup +} are a dodecahedron with the ligand coordinated to one edge and a square anti-prism with the ligands coordinated to two edges, respectively. In the case of ortho-aminobenzoic acid, both the 1:1 and 1:2 complexes have structures that are intermediate between the structures of meta- and para-aminobenzoic acids.

  14. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conductance regulator effect on potassium conductance.

    PubMed

    Cho, Won Kyoo; Siegrist, Vicki J; Zinzow, Wendy

    2004-04-09

    Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists coul