Science.gov

Sample records for 5-phosphate isomerase type

  1. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  2. Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids

    PubMed Central

    Faria, Joana; Loureiro, Inês; Santarém, Nuno; Cecílio, Pedro; Macedo-Ribeiro, Sandra; Tavares, Joana; Cordeiro-da-Silva, Anabela

    2016-01-01

    Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes’ replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids. PMID:27230471

  3. A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073.

    PubMed

    Mosberg, Joshua A; Yep, Alejandra; Meredith, Timothy C; Smith, Sara; Wang, Pan-Fen; Holler, Tod P; Mobley, Harry L T; Woodard, Ronald W

    2011-06-01

    Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype.

  4. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    PubMed

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  5. Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.

    PubMed

    Meredith, Timothy C; Woodard, Ronald W

    2005-10-01

    The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.

  6. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications.

    PubMed

    Chiu, Hsiu Ju; Grant, Joanna C; Farr, Carol L; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2014-10-01

    The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Å resolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5'-monophosphate-3-deoxy-D-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of D-ribulose 5-phosphate to D-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections.

  7. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications

    PubMed Central

    Chiu, Hsiu-Ju; Grant, Joanna C.; Farr, Carol L.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2014-01-01

    The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Å resolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5′-monophosphate-3-deoxy-d-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of d-ribulose 5-phosphate to d-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections. PMID:25286848

  8. Concerted Proton Transfer Mechanism of Clostridium thermocellum Ribose-5-phosphate Isomerase

    PubMed Central

    Wang, Jun; Yang, Weitao

    2013-01-01

    Ribose-5-phosphate isomerase (Rpi) catalyzes the interconversion of D-ribose-5-phosphate and D-ribulose-5-phosphate and plays an essential role in the pentose phosphate pathway and the Calvin cycle of photosynthesis. RpiB, one of the two isoforms of Rpi, is also a potential drug target for some pathogenic bacteria. Clostridium thermocellum ribose-5-phosphate isomerase (CtRpi), belonging to RpiB family, has recently been employed to the industrial production of rare sugars because of it fast reactions kinetics and narrow substrate specificity. It is known this enzyme adopts proton transfer mechanism. It was suggested that the deprotonated Cys65 attracts the proton at C2 of substrate to initiate the isomerization reaction and this step is the rate-limiting step. However the elaborate catalytic mechanism is still unclear. We have performed quantum mechanical/molecular mechanical simulations of this rate-limiting step of the reaction catalyzed by CtRpi with the substrate D-ribose. Our results demonstrate that the deprotonated Cys65 is not a stable reactant. Instead, our calculations revealed a concerted proton-transfer mechanism: Asp8, a highly conserved residue in the RpiB family performs as the base to abstract the proton at Cys65 and Cys65 in turn abstracts the proton of the D-ribose simultaneously. Moreover, we found Thr67 cannot catalyze the proton transfer from O2 to O1 of the D-ribose alone. Water molecule(s) may assist this proton transfer with Thr67. Our findings lead to a clear understanding of the catalysis mechanism of RpiB family and should guide the experiments to increase the catalysis efficiency. This study also highlights the importance of initial protonation states of cysteines. PMID:23875675

  9. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    PubMed Central

    2011-01-01

    Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD) phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether. PMID:21995815

  10. Structure of escherichia coli ribose-5-phosphate isomerase : a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.

    SciTech Connect

    Zhang, R.; Andersson, C. E.; Savchenko, A.; Skarina, T.; Evdokimova, E.; Beasley, S.; Arrowsmith, C. H.; Edwards, A.; Joachimiak, A.; Mowbray, S. L.; Biosciences Division; Uppsala Univ.; Univ. Health Network; Univ. of Toronto; Swedish Univ. of Agricultural Sciences

    2003-01-01

    Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 Angstroms resolution (R factor 22.4%, R{sub free} 23.7%). RpiA exhibits an {alpha}/{beta}/({alpha}/{beta})/{beta}/{alpha} fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.

  11. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum.

    PubMed

    Yeom, Soo-Jin; Seo, Eun-Sun; Kim, Yeong-Su; Oh, Deok-Kun

    2011-03-01

    Ribose-5-phosphate isomerase from Clostridium thermocellum converted D-psicose to D-allose, which may be useful as a pharmaceutical compound, with no by-product. The 12 active-site residues, which were obtained by molecular modeling on the basis of the solved three-dimensional structure of the enzyme, were substituted individually with Ala. Among the 12 Ala-substituted mutants, only the R132A mutant exhibited an increase in D-psicose isomerization activity. The R132E mutant showed the highest activity when the residue at position 132 was substituted with Ala, Gln, Ile, Lys, Glu, or Asp. The maximal activity of the wild-type and R132E mutant enzymes for D-psicose was observed at pH 7.5 and 80°C. The half-lives of the wild-type enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 11, 7.0, 4.2, 1.5, and 0.6 h, respectively, whereas those of the R132E mutant enzymes were 13, 8.2, 5.1, 3.1, and 0.9 h, respectively. The specific activity and catalytic efficiency (k(cat)/K(m)) of the R132E mutant for D-psicose were 1.4- and 1.5-fold higher than those of the wild-type enzyme, respectively. When the same amount of enzyme was used, the conversion yield of D-psicose to D-allose was 32% for the R132E mutant enzyme and 25% for the wild-type enzyme after 80 min.

  12. Characterization of ribose-5-phosphate isomerase converting D-psicose to D-allose from Thermotoga lettingae TMO.

    PubMed

    Feng, Zaiping; Mu, Wanmeng; Jiang, Bo

    2013-05-01

    The gene coding for ribose-5-phosphate isomerase (Rpi) from Thermotoga lettingae TMO was cloned and expressed in E. coli. The recombinant enzyme was purified by Ni-affinity chromatography. It converted D-psicose to D-allose maximally at 75 °C and pH 8.0 with a 32 % conversion yield. The k m, turnover number (k cat), and catalytic efficiency (k cat k m (-1) ) for substrate D-psicose were 64 mM, 6.98 min(-1) and 0.11 mM(-1) min(-1) respectively.

  13. Analysis of the arabinose-5-phosphate isomerase of Bacteroides fragilis provides insight into regulation of single-domain arabinose phosphate isomerases.

    PubMed

    Cech, David; Wang, Pan Fen; Holler, Tod P; Woodard, Ronald W

    2014-08-01

    Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and D-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-D-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5'-monophospho-3-deoxy-D-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships.

  14. Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing D-allose from D-psicose.

    PubMed

    Park, Chang-Su; Yeom, Soo-Jin; Kim, Hye-Jung; Lee, Sook-Hee; Lee, Jung-Kul; Kim, Seon-Won; Oh, Deok-Kun

    2007-09-01

    The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted D-psicose into D-allose but it did not convert D-xylose, L-rhamnose, D-altrose or D-galactose. The production of D-allose by RpiB was maximal at pH 7.5 and 65 degrees C for 30 min. The half-lives of the enzyme at 50 degrees C and 65 degrees C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50 degrees C, 165 g D-allose l(-1 ) was produced without by-products from 500 g D-psicose l(-1) after 6 h.

  15. The effect of temperature on ribose-5-phosphate isomerase from a mesophile, Thiobacillus thioparus, and a thermophile, Bacillus caldolyticus.

    PubMed

    Middaugh, C R; MacElroy, R D

    1976-06-01

    The enzyme ribose-5-phosphate isomerase [EC 5.3.1.6] was partially purified from a mesophilic organism, Thiobacillus thioparus, and from an extreme thermophile, Bacillus caldolyticus. The stability and kinetics of the two enzymes were compared with regard to temperature in the presence of a series of neutral salts and alcohols. The thermal stability of both enzymes was altered such that the salts (NH4)2SO4, NaCl, KCl, and LiCl increased stability, while LiBr, CaCl2, methanol, ethanol, and 1-propanol decreased stability. Ethylene glycol had little effect on the mesophilic enzyme, but increased the stability of the thermophilic protein. The kinetics of both enzymes were also affected by the salts and alcohols, and Arrhenius plots of two kinetic parameters, Km and Vmax, displayed discontinuities, or sharp changes in slope, at characteristic temperatures, TD. Neutral salts and alcohols altered the temperature of discontinuity in a sequence similar to that observed in studies of thermal stability. It is suggested that the slope change is due to temperature-dependent alterations in the enzymes at specific, but undefined, loci at the active site, although no evidence is offered for the absence of a larger conformation change in the entire enzyme.

  16. Chemical- and thermal-induced unfolding of Leishmania donovani ribose-5-phosphate isomerase B: a single-tryptophan protein.

    PubMed

    Kaur, Preet Kamal; Supin, Jakka S; Rashmi, S; Singh, Sushma

    2014-08-01

    Ribose-5-phosphate isomerase B (RpiB), a crucial enzyme of pentose phosphate pathway, was proposed to be a potential drug target for visceral leishmaniasis. In this study, we have analyzed the biophysical properties of Leishmania donovani RpiB (LdRpiB) enzyme to gain insight into its unfolding pathway under various chemical and thermal denaturation conditions by using fluorescence and CD spectroscopy. LdRpiB inactivation precedes the structural transition at lower concentrations of both urea and guanidine hydrochloride (GdHCl). 8-Anilinonapthalene 1-sulfonic (ANS) binding experiments revealed the presence of molten globule intermediate at 1.5 M GdHCl and a nonnative intermediate state at 6-M urea concentration. Acrylamide quenching experiments further validated the above findings, as solvent accessibility of tryptophan residues increased with increase in GdHCl and urea concentration. The recombinant LdRpiB was completely unfolded at 6 M GdHCl, whereas the enzyme molecule was resistant to complete unfolding even at 8-M urea concentration. The GdHCl- and urea-mediated unfolding involves a three-state transition process. Thermal-induced denaturation revealed complete loss of enzyme activity at 65 °C with only 20 % secondary structure loss. The formation of the well-ordered β-sheet structures of amyloid fibrils was observed after 55 °C which increased linearly till 85 °C as detected by thioflavin T dye. This study depicts the stability of the enzyme in the presence of chemical and thermal denaturants and stability-activity relationship of the enzyme. The presence of the intermediate states may have major implications in the way the enzyme binds to its natural ligand under various conditions. Also, the present study provides insights into the properties of intermediate entities of this important enzyme.

  17. Mutational and Structural Analysis of Conserved Residues in Ribose-5-Phosphate Isomerase B from Leishmania donovani: Role in Substrate Recognition and Conformational Stability

    PubMed Central

    Kaur, Preet Kamal; Tripathi, Neha; Desale, Jayesh; Neelagiri, Soumya; Yadav, Shailendra; Bharatam, Prasad V.; Singh, Sushma

    2016-01-01

    Ribose-5-phosphate isomerase B from Leishmania donovani (LdRpiB) is one of the potential drug targets against visceral leishmaniasis. In the present study, we have targeted several conserved amino acids for mutational analysis (i.e. Cys69, His11, His102, His138, Asp45, Tyr46, Pro47 and Glu149) to gain crucial insights into their role in substrate binding, catalysis and conformational stability of the enzyme. All the eight LdRpiB variants were cloned, sequenced, expressed and purified. C69S, H102N, D45N and E149A mutants exhibited complete loss of enzyme activity indicating that they are indispensable for the enzyme activity. Kinetic parameters were altered in case of H138N, H11N and P47A variants; however Y46F exhibited similar kinetic behaviour as wild type. All the mutants except H138N exhibited altered protein structure as determined by CD and fluorescence spectral analysis. This data was supported by the atomic level details of the conformational changes and substrate binding using molecular dynamic simulations. LdRpiB also exhibited activity with D-form of various aldose substrates in the order of D-ribose > D-talose > D-allose > D-arabinose. Our study provides insights for better understanding of substrate enzyme interactions which can rationalize the process of drug design against parasite RpiB. PMID:26953696

  18. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    PubMed

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog.

  19. Development of Novel Sugar Isomerases by Optimization of Active Sites in Phosphosugar Isomerases for Monosaccharides

    PubMed Central

    Yeom, Soo-Jin; Kim, Yeong-Su

    2013-01-01

    Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases. PMID:23204422

  20. L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli.

    PubMed

    ENGLESBERG, E; ANDERSON, R L; WEINBERG, R; LEE, N; HOFFEE, P; HUTTENHAUER, G; BOYER, H

    1962-07-01

    Englesberg, E. (University of Pittsburgh, Pittsburgh, Pa.), R L. Anderson, R. Weinberg, N. Lee, P. Hoffee, G. Huttenhauer, and H. Boyer. l-Arabinose-sensitive, l-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. J. Bacteriol. 84:137-146. 1962-l-Arabinose-negative mutants of Escherichia coli B/r, ara-53 and ara-139, are deficient in the enzyme l-ribulose 5-phosphate 4-epimerase; ara-53, further analyzed, accumulates large quantities of l-ribulose 5-phosphate when incubated with l-arabinose. The mutant sites are closely linked to the left of the previously ordered l-arabinose mutant sites, and probably represent the structural gene for l-ribulose 5-phosphate 4-epimerase (gene D) in the l-arabinose operon. The inducible levels of l-arabinose isomerase and l-ribulose 5-phosphate 4-epimerase vary correspondingly as a result of mutation in the structural gene for l-ribulokinase (gene B), further substantiating the dual structural and regulatory function of this gene locus. Ara-53 and ara-139 are strongly inhibited by l-arabinose and give rise to l-arabinose-resistant mutants. The one resistant mutant analyzed still lacks the 4-epimerase but is deficient in l-ribulokinase and has increased l-arabinose isomerase activity, a characteristic of a type of mutation in the B gene. It is proposed that accumulation of l-ribulose 5-phosphate is responsible for the inhibition, and that mutation to resistance will involve mutation in the A, B, C, permease, or repressor genes, thus providing a direct method for isolating these types of l-arabinose-negative mutants. Glucose prevents and cures the l-arabinose inhibition.

  1. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    SciTech Connect

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  2. Type II Isopentenyl Diphosphate Isomerase: Probing the Mechanism with Alkyne/Allene Diphosphate Substrate Analogues†

    PubMed Central

    Sharma, Nagendra K.; Pan, Jian-Jung; Poulter, C. Dale

    2010-01-01

    Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the basic five-carbon building blocks of isoprenoid molecules. Two structurally unrelated classes of IDI are known. Type I IPP isomerase (IDI-1) utilizes a divalent metal in a protonation-deprotonation reaction. In contrast, the type II enzyme (IDI-2) requires reduced flavin, raising the possibility that the reaction catalyzed by IDI-2 involves the net addition/abstraction of a hydrogen atom. As part of our studies of the mechanism of isomerization for IDI-2, we synthesized allene and alkyne substrate analogues for the enzyme. These molecules are predicted to be substantially less reactive toward proton addition than IPP and DMAPP, but have similar reactivities toward hydrogen atom addition. This prediction was verified by calculations of gas phase heats of reaction for addition of a proton and of a hydrogen atom to 1-butyne (3) and 1,2-butadiene (4) to form the 1-buten-2-yl carbocation and radical, respectively, and related affinities for 2-methyl-1-butene (5) and 2-methyl-2-butene (6) using G3MP2B3 and CBS-QB3 protocols. Alkyne 1-OPP and allene 2-OPP were not substrates for Thermus thermophilus IDI-2 or Escherichia coli IDI-1, but instead were competitive inhibitors. The experimental and computational results are consistent with a protonation-deprotonation mechanism for the enzyme-catalyzed isomerization of IPP and DMAPP. PMID:20560533

  3. Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

    PubMed

    Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W

    2010-06-01

    Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.

  4. A novel function of tissue-type transglutaminase: protein disulphide isomerase.

    PubMed Central

    Hasegawa, Go; Suwa, Motoi; Ichikawa, Yasuo; Ohtsuka, Tetsuro; Kumagai, Satoru; Kikuchi, Masashi; Sato, Yoshitaka; Saito, Yuji

    2003-01-01

    We have found that tissue-type transglutaminase (tTG), also called TGc, TGase2 and Galpha(h), has the activity of protein disulphide isomerase (PDI). We have shown that tTG converts completely reduced/denatured inactive RNase A molecule to the native active enzyme. The PDI activity of tTG was strongly inhibited by bacitracin, which is a frequently used inhibitor of conventional PDI activity. It was substantially inhibited by the simultaneous presence of other potential substrate proteins such as completely reduced BSA, but not by native BSA. This activity was especially high in the presence of GSSG, but not GSH. The addition of GSH to the reaction mixture in the presence of GSSG at a fixed concentration up to at least 200-fold excess did not very substantially inhibit the PDI activity. It is possible that tTG can exert PDI activity in a fairly reducing environment like cytosol, where most of tTG is found. It is quite obvious from the following observations that PDI activity of tTG is catalysed by a domain different from that used for the transglutaminase reaction. Although the alkylation of Cys residues in tTG completely abolished the transglutaminase activity, as was expected, it did not affect the PDI activity at all. This PDI activity did not require the presence of Ca(2+). It was not inhibited by nucleotides including GTP at all, unlike the other activity of tTG. PMID:12737632

  5. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.

    PubMed

    Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan

    2016-08-10

    Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization.

  6. Detection of platypus-type L/D-peptide isomerase activity in aqueous extracts of papaya fruit.

    PubMed

    Arakawa, Kensuke; Koh, Jennifer M S; Crossett, Ben; Torres, Allan M; Kuchel, Philip W

    2012-09-01

    Peptide isomerase catalyses the post-translational isomerisation of the L: - to the D: -form of an amino acid residue around the N/C-termini of substrate peptides. To date, some peptide isomerases have been found in a limited number of animal secretions and cells. We show here that papaya extracts have weak peptide isomerase activity. The activity was detected in each 30-100 kDa fraction of the flesh and the seed extracts of unripe and ripe papaya fruit. The definitive activity was confirmed in the ripe papaya extracts, but even then it was much less active than that of the other peptide isomerases previously reported. The activity was markedly inhibited by methanol, and partly so by amastatin and diethyl pyrocarbonate. This is the first report of peptide isomerase activity in a plant and suggests that perhaps every living organism may have some peptide isomerase activity.

  7. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    MedlinePlus

    ... 5'-phosphate-dependent epilepsy pyridoxal 5'-phosphate-dependent epilepsy Enable Javascript to view the expand/collapse boxes. ... All Close All Description Pyridoxal 5'-phosphate-dependent epilepsy is a condition that involves seizures beginning soon ...

  8. Biomedical aspects of pyridoxal 5'-phosphate availability.

    PubMed

    di Salvo, Martino L; Safo, Martin K; Contestabile, Roberto

    2012-01-01

    The biologically active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor in over 160 enzyme activities involved in a number of metabolic pathways, including neurotransmitter synthesis and degradation. In humans, PLP is recycled from food and from degraded PLP-dependent enzymes in a salvage pathway requiring the action of pyridoxal kinase, pyridoxine 5'-phosphate oxidase and phosphatases. Once pyridoxal 5'-phosphate is made, it is targeted to the dozens different apoenzymes that need it as a cofactor. The regulation of the salvage pathway and the mechanism of addition of PLP to the apoenzymes are poorly understood and represent a very challenging research field. Severe neurological disorders, such as convulsions and epileptic encephalopathy, result from a reduced availability of pyridoxal 5'-phosphate in the cell, due to inborn errors in the enzymes of the salvage pathway or other metabolisms and to interactions of drugs with PLP or pyridoxal kinase. Multifactorial neurological pathologies, such as autism, schizophrenia, Alzheimer's disease, Parkinson's disease and epilepsy have also been correlated to inadequate intracellular levels of PLP.

  9. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  10. Template-directed oligomerization of 3-isoadenosine 5'-phosphate

    NASA Technical Reports Server (NTRS)

    Hill, Aubrey R., Jr.; Orgel, Leslie E.; Kumar, Shiv; Leonard, Nelson J.

    1988-01-01

    Template-directed oligomerization of an activated derivative of 3-isoadenosine 5'-phosphate (piA) on polyuridylic acid was studied. The reaction of ImpiA is more efficient than the corresponding reaction of ImpA, and produces 3'-5'-linked oligomers while the reaction of ImpA gives only 2'-5'-linked oligomers. The base pairing between piA and poly(U) in this system is probably of the Hoogsteen type (involving the 6-amino group and N7 of 3-isoadenosine) rather than of the Watson-Crick type.

  11. Synthesis and evaluation of malonate-based inhibitors of phosphosugar-metabolizing enzymes: class II fructose-1,6-bis-phosphate aldolases, type I phosphomannose isomerase, and phosphoglucose isomerase.

    PubMed

    Desvergnes, Stéphanie; Courtiol-Legourd, Stéphanie; Daher, Racha; Dabrowski, Maciej; Salmon, Laurent; Therisod, Michel

    2012-02-15

    In the design of inhibitors of phosphosugar metabolizing enzymes and receptors with therapeutic interest, malonate has been reported in a number of cases as a good and hydrolytically-stable surrogate of the phosphate group, since both functions are dianionic at physiological pH and of comparable size. We have investigated a series of malonate-based mimics of the best known phosphate inhibitors of class II (zinc) fructose-1,6-bis-phosphate aldolases (FBAs) (e.g., from Mycobacterium tuberculosis), type I (zinc) phosphomannose isomerase (PMI) from Escherichia coli, and phosphoglucose isomerase (PGI) from yeast. In the case of FBAs, replacement of one phosphate by one malonate on a bis-phosphorylated inhibitor (1) led to a new compound (4) still showing a strong inhibition (K(i) in the nM range) and class II versus class I selectivity (up to 8×10(4)). Replacement of the other phosphate however strongly affected binding efficiency and selectivity. In the case of PGI and PMI, 5-deoxy-5-malonate-D-arabinonohydroxamic acid (8) yielded a strong decrease in binding affinities when compared to its phosphorylated parent compound 5-phospho-D-arabinonohydroxamic acid (2). Analysis of the deposited 3D structures of the kinetically evaluated enzymes complexed to the phosphate-based inhibitors indicate that malonate could be a good phosphate surrogate only if phosphate is not tightly bound at the enzyme active site, such as in position 7 of compound 1 for FBAs. These observations are of importance for further design of inhibitors of phosphorylated-compounds metabolizing enzymes with therapeutic interest.

  12. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  13. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  14. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  15. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  16. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  17. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys.

    PubMed Central

    Peeters, C C; Evenberg, D; Hoogerhout, P; Käyhty, H; Saarinen, L; van Boeckel, C A; van der Marel, G A; van Boom, J H; Poolman, J T

    1992-01-01

    Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections. PMID:1563770

  18. Functional characterisation of parvulin-type peptidyl prolyl cis-trans isomerase, PinA in Dictyostelium discoideum.

    PubMed

    Haokip, Nemneineng; Naorem, Aruna

    2017-01-08

    Pin1-type parvulins are unique among PPIases that can catalyse an otherwise slow cis-trans isomerisation of phosphorylated peptide bond preceding proline in target proteins. This prolyl isomerisation process can regulate activity, stability and localisation of target proteins and thus control cellular processes like eukaryotic cell proliferation, cell cycle progression and gene regulation. Towards understanding the function of Pin1-type prolyl isomerisation in Dictyostelium discoideum, a slime mould with distinct growth and developmental phases, we identified PinA as a novel Pin1-type parvulin by its ability to complement the temperature sensitivity phenotype associated with a mutation in ESS1 in S. cerevisiae. In D. discoideum, pinA is temporally and spatially regulated during growth and development. PinA is both nuclear as well as cytoplasmic in the growing cells. We further show that loss of pinA (pinA(-)) leads to decreased growth rate, reduced spore formation and abnormal prespore-prestalk patterning. We conclude that PinA is required for normal growth as well as development in D. discoideum.

  19. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

    PubMed

    Kuyper, Marko; Hartog, Miranda M P; Toirkens, Maurice J; Almering, Marinka J H; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2005-02-01

    After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.

  20. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme.

    PubMed

    Balasundaram, D; Tyagi, A K

    1989-08-01

    Arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19) from Mycobacterium smegmatis, TMC 1546 has been purified to homogeneity. The enzyme has a molecular mass of 232 kDa and a subunit mass of 58.9 kDa. The enzyme from mycobacteria is totally dependent on pyridoxal 5'-phosphate for its activity at its optimal pH and, unlike that from Escherichia coli, Mg2+ does not play an active role in the enzyme conformation. The enzyme is specific for arginine (Km = 1.6 mM). The holoenzyme is completely resolved in dialysis against hydroxylamine. Reconstitution of the apoenzyme with pyridoxal 5'-phosphate shows sigmoidal binding characteristics at pH 8.4 with a Hill coefficient of 2.77, whereas at pH 6.2 the binding is hyperbolic in nature. The kinetics of reconstitution at pH 8.4 are apparently sigmoidal, indicating the occurrence of two binding types of differing strengths. A low-affinity (Kd = 22.5 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations and a high-affinity (Kd = 3.0 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations. The restoration of full activity occurred in parallel with the tight binding (high affinity) of pyridoxal 5'-phosphate to the apoenzyme. Along with these characteristics, spectral analyses of holoenzyme and apoenzyme at pH 8.4 and pH 6.2 indicate a pH-dependent modulation of coenzyme function. Based on the pH-dependent changes in the polarity of the active-site environment, pyridoxal 5'-phosphate forms different Schiff-base tautomers at pH 8.4 and pH 6.2 with absorption maxima at 415 nm and 333 nm, respectively. These separate forms of Schiff-base confer different catalytic efficiencies to the enzyme.

  1. Purification and characterization of ribulose-5-phosphate kinase from spinach

    SciTech Connect

    Porter, M.A.; Milanez, S.; Stringer, C.D.; Hartman, F.C.

    1986-02-15

    An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.

  2. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder that ...

  3. A Cluster of Genes Encodes the Two Types of Chalcone Isomerase Involved in the Biosynthesis of General Flavonoids and Legume-Specific 5-Deoxy(iso)flavonoids in Lotus japonicus1

    PubMed Central

    Shimada, Norimoto; Aoki, Toshio; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; Ayabe, Shin-ichi

    2003-01-01

    Leguminous plants produce 5-deoxyflavonoids and 5-deoxyisoflavonoids that play essential roles in legume-microbe interactions. Together with chalcone polyketide reductase and cytochrome P450 2-hydroxyisoflavanone synthase, the chalcone isomerase (CHI) of leguminous plants is fundamental in the construction of these ecophysiologically active flavonoids. Although CHIs of nonleguminous plants isomerize only 6′-hydroxychalcone to 5-hydroxyflavanone (CHIs with this function are referred to as type I), leguminous CHIs convert both 6′-deoxychalcone and 6′-hydroxychalcone to 5-deoxyflavanone and 5-hydroxyflavanone, respectively (referred to as type II). In this study, we isolated multiple CHI cDNAs (cCHI1–cCHI3) from a model legume, Lotus japonicus. In contrast to previous observations, the amino acid sequence of CHI2 was highly homologous to nonleguminous CHIs, whereas CHI1 and CHI3 were the conventional leguminous type. Furthermore, genome sequence analysis revealed that four CHI genes (CHI1–3 and a putative gene, CHI4) form a tandem cluster within 15 kb. Biochemical analysis with recombinant CHIs expressed in Escherichia coli confirmed that CHI1 and CHI3 are type II CHIs and that CHI2 is a type I CHI. The occurrence of both types of CHIs is probably common in leguminous plants, and it was suggested that type II CHIs evolved from an ancestral CHI by gene duplication and began to produce 5-deoxy(iso)flavonoids along with the establishment of the Fabaceae. PMID:12644647

  4. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

    NASA Astrophysics Data System (ADS)

    Czajlik, András; Kovács, Bertalan; Permi, Perttu; Gáspári, Zoltán

    2017-03-01

    Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.

  5. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

    PubMed Central

    Czajlik, András; Kovács, Bertalan; Permi, Perttu; Gáspári, Zoltán

    2017-01-01

    Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies. PMID:28300139

  6. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome.

    PubMed

    Fleischman, Nicholas M; Das, Debanu; Kumar, Abhinav; Xu, Qingping; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Elsliger, Marc-André; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Wilson, Ian A; Toney, Michael D

    2014-08-01

    Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.

  7. Enhancing Terpene Yield from Sugars via Novel Routes to 1-Deoxy-d-Xylulose 5-Phosphate

    PubMed Central

    Kirby, James; Nishimoto, Minobu; Chow, Ruthie W. N.; Baidoo, Edward E. K.; Wang, George; Martin, Joel; Schackwitz, Wendy; Chan, Rossana; Fortman, Jeffrey L.

    2014-01-01

    Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of a dxs deletion in Escherichia coli grown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-type E. coli yajO gene, annotated as a putative xylose reductase, or via various mutations in the native ribB gene. In vitro analysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway in E. coli for production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP. PMID:25326299

  8. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    SciTech Connect

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  9. 1-deoxy-d-xylulose-5-phosphate reductoisomerases and method of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  10. 1-deoxy-D-xylulose-5-phosphate reductoisomerases, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2002-07-16

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  11. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    SciTech Connect

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2016-07-05

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  12. 6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.

    PubMed

    Le, Simone Balzer; Heggeset, Tonje Marita Bjerkan; Haugen, Tone; Nærdal, Ingemar; Brautaset, Trygve

    2017-02-17

    D-Ribulose-5-phosphate-3-epimerase (RPE) and 6-phosphofructokinase (PFK) catalyse two reactions in the ribulose monophosphate (RuMP) cycle in Bacillus methanolicus. The B. methanolicus wild-type strain MGA3 possesses two putative rpe and pfk genes encoded on plasmid pBM19 (rpe1-MGA3 and pfk1-MGA3) and on the chromosome (rpe2-MGA3 and pfk2-MGA3). The wild-type strain PB1 also encodes putative rpe and pfk genes on plasmid pBM20 (rpe1-PB1 and pfk1-PB1*); however, it only harbours a chromosomal pfk gene (pfk2-PB1). Transcription of the plasmid-encoded genes was 10-fold to 15-fold upregulated in cells growing on methanol compared to mannitol, while the chromosomal genes were transcribed at similar levels under both conditions in both strains. All seven gene products were recombinantly produced in Escherichia coli, purified and biochemically characterized. All three RPEs were active as hexamers, catalytically stimulated by Mg(2+) and Mn(2+) and displayed similar K' values (56-75 μM) for ribulose 5-phosphate. Rpe2-MGA3 showed displayed 2-fold lower V max (49 U/mg) and a significantly reduced thermostability compared to the two Rpe1 proteins. Pfk1-PB1* was shown to be non-functional. The PFKs were active both as octamers and as tetramers, were catalytically stimulated by Mg(2+) and Mn(2+), and displayed similar thermostabilities. The PFKs have similar K m values for fructose 6-phosphate (0.61-0.94 μM) and for ATP (0.38-0.82 μM), while Pfk1-MGA3 had a 2-fold lower V max (6.3 U/mg) compared to the two Pfk2 proteins. Our results demonstrate that MGA3 and PB1 exert alternative solutions to plasmid-dependent methylotrophy, including genetic organization, regulation, and biochemistry of RuMP cycle enzymes.

  13. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis.

    PubMed

    Berthelot, Karine; Estevez, Yannick; Deffieux, Alain; Peruch, Frédéric

    2012-08-01

    Even if the isopentenyl diphosphate (IPP) isomerases have been discovered in the 50s, it is only in the last decade that the genetical, enzymatical, structural richness and cellular importance of this large family of crucial enzymes has been uncovered. Present in all living kingdoms, they can be classified in two subfamilies: type 1 and type 2 IPP isomerases, which show clearly distinct characteristics. They all perform the regulatory isomerization of isopentenyl diphosphate into dimethylallyl diphosphate, a key rate-limiting step of the terpenoid biosynthesis, via a protonation/deprotonation mechanism. Due to their importance in the isoprenoid metabolism and the increasing interest of industry devoted to terpenoid production, it is foreseen that the biotechnological development of such enzymes should be under intense scrutiny in the near future.

  14. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  15. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  16. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  17. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  18. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  19. Purification and characterization of pyridoxine 5'-phosphate phosphatase from Sinorhizobium meliloti.

    PubMed

    Tazoe, Masaaki; Ichikawa, Keiko; Hoshino, Tatsuo

    2005-12-01

    Here we report the purification and biochemical characterization of a pyridoxine 5'-phosphate phosphatase involved in the biosynthesis of pyridoxine in Sinorhizobium meliloti. The phosphatase was localized in the cytoplasm and purified to electrophoretic homogeneity by a combination of EDTA/lysozyme treatment and five chromatography steps. Gel-filtration chromatography with Sephacryl S-200 and SDS/PAGE demonstrated that the protein was a monomer with a molecular size of approximately 29 kDa. The protein required divalent metal ions for pyridoxine 5'-phosphate phosphatase activity, and specifically catalyzed the removal of Pi from pyridoxine and pyridoxal 5'-phosphates at physiological pH (about 7.5). It was inactive on pyridoxamine 5'-phosphate and other physiologically important phosphorylated compounds. The enzyme had the same Michaelis constant (K(m)) of 385 muM for pyridoxine and pyridoxal 5'-phosphates, but its specific constant [maximum velocity (V(max))/K(m)] was nearly 2.5 times higher for the former than for the latter.

  20. Exploring the chemistry and evolution of the isomerases

    PubMed Central

    2016-01-01

    Isomerization reactions are fundamental in biology, and isomers usually differ in their biological role and pharmacological effects. In this study, we have cataloged the isomerization reactions known to occur in biology using a combination of manual and computational approaches. This method provides a robust basis for comparison and clustering of the reactions into classes. Comparing our results with the Enzyme Commission (EC) classification, the standard approach to represent enzyme function on the basis of the overall chemistry of the catalyzed reaction, expands our understanding of the biochemistry of isomerization. The grouping of reactions involving stereoisomerism is straightforward with two distinct types (racemases/epimerases and cis-trans isomerases), but reactions entailing structural isomerism are diverse and challenging to classify using a hierarchical approach. This study provides an overview of which isomerases occur in nature, how we should describe and classify them, and their diversity. PMID:26842835

  1. Genetics Home Reference: triosephosphate isomerase deficiency

    MedlinePlus

    ... of triosephosphate isomerase deficiency. Eur J Haematol. 2011 Mar;86(3):265-7. doi: 10.1111/j. ... E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem. ...

  2. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    NASA Astrophysics Data System (ADS)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  3. Kemp Eliminase Activity of Ketosteroid Isomerase.

    PubMed

    Lamba, Vandana; Sanchez, Enis; Fanning, Lauren Rose; Howe, Kathryn; Alvarez, Maria Alejandra; Herschlag, Daniel; Forconi, Marcello

    2017-01-31

    Kemp eliminases represent the most successful class of computationally designed enzymes, with rate accelerations of up to 10(9)-fold relative to the rate of the same reaction in aqueous solution. Nevertheless, several other systems such as micelles, catalytic antibodies, and cavitands are known to accelerate the Kemp elimination by several orders of magnitude. We found that the naturally occurring enzyme ketosteroid isomerase (KSI) also catalyzes the Kemp elimination. Surprisingly, mutations of D38, the residue that acts as a general base for its natural substrate, produced variants that catalyze the Kemp elimination up to 7000-fold better than wild-type KSI does, and some of these variants accelerate the Kemp elimination more than the computationally designed Kemp eliminases. Analysis of the D38N general base KSI variant suggests that a different active site carboxylate residue, D99, performs the proton abstraction. Docking simulations and analysis of inhibition by active site binders suggest that the Kemp elimination takes place in the active site of KSI and that KSI uses the same catalytic strategies of the computationally designed enzymes. In agreement with prior observations, our results strengthen the conclusion that significant rate accelerations of the Kemp elimination can be achieved with very few, nonspecific interactions with the substrate if a suitable catalytic base is present in a hydrophobic environment. Computational design can fulfill these requirements, and the design of more complex and precise environments represents the next level of challenges for protein design.

  4. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Insoluble glucose isomerase enzyme preparations... Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of high fructose corn syrup described in §...

  5. Effect of exogenous hormones on transcription levels of pyridoxal 5'-phosphate biosynthetic enzymes in the silkworm (Bombyx mori).

    PubMed

    Huang, ShuoHao; Yang, HuanHuan; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-01-01

    Vitamin B6 includes 6 pyridine derivatives, among which pyridoxal 5'-phosphate is a coenzyme for over 140 enzymes. Animals acquire their vitamin B6 from food. Through a salvage pathway, pyridoxal 5'-phosphate is synthesized from pyridoxal, pyridoxine or pyridoxamine, in a series of reactions catalyzed by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. The regulation of pyridoxal 5'-phospahte biosynthesis and pyridoxal 5'-phospahte homeostasis are at the center of study for vitamin B6 nutrition. How pyridoxal 5'-phosphate biosynthesis is regulated by hormones has not been reported so far. Our previous studies have shown that pyridoxal 5'-phosphate level in silkworm larva displays cyclic developmental changes. In the current study, effects of exogenous juvenile hormone and molting hormone on the transcription level of genes coding for the enzymes involved in the biosynthesis of pyridoxal 5'-phospahte were examined. Results show that pyridoxal kinase and pyridoxine 5'-phosphate oxidase are regulated at the transcription level by development and are responsive to hormones. Molting hormone stimulates the expression of genes coding for pyridoxal kinase and pyridoxine 5'-phosphate oxidase, and juvenile hormone appears to work against molting hormone. Whether pyridoxal 5'-phosphate biosynthesis is regulated by hormones in general is an important issue for further studies.

  6. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.

    PubMed

    Griswold, Wait R; Toney, Michael D

    2011-09-21

    Pyridoxal 5'-phosphate (PLP; vitamin B(6))-catalyzed reactions have been well studied, both on enzymes and in solution, due to the variety of important reactions this cofactor catalyzes in nitrogen metabolism. Three functional groups are central to PLP catalysis: the C4' aldehyde, the O3' phenol, and the N1 pyridine nitrogen. In the literature, the pyridine nitrogen has traditionally been assumed to be protonated in enzyme active sites, with the protonated pyridine ring providing resonance stabilization of carbanionic intermediates. This assumption is certainly correct for some PLP enzymes, but the structures of other active sites are incompatible with protonation of N1, and, consequently, these enzymes are expected to use PLP in the N1-unprotonated form. For example, aspartate aminotransferase protonates the pyridine nitrogen for catalysis of transamination, while both alanine racemase and O-acetylserine sulfhydrylase are expected to maintain N1 in the unprotonated, formally neutral state for catalysis of racemization and β-elimination. Herein, kinetic results for these three enzymes reconstituted with 1-deazapyridoxal 5'-phosphate, an isosteric analogue of PLP lacking the pyridine nitrogen, are compared to those for the PLP enzyme forms. They demonstrate that the pyridine nitrogen is vital to the 1,3-prototropic shift central to transamination, but not to reactions catalyzed by alanine racemase or O-acetylserine sulfhydrylase. Not all PLP enzymes require the electrophilicity of a protonated pyridine ring to enable formation of carbanionic intermediates. It is proposed that modulation of cofactor electrophilicity plays a central role in controlling reaction specificity in PLP enzymes.

  7. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  8. Pyridoxal 5'-phosphate binding in lysine-modified PAMAM dendrimers: a biomimetic approach.

    PubMed

    Hsien, Kuang-Chan; Chen, Hui-Ting; Chen, Yi-Chen; Chen, Yeh-Long; Lu, Chi-Yu; Kao, Chai-Lin

    2009-08-20

    (G:3-7)-dendri-PAMAM-(APO-Phe-Lys)(x) (2, APO = aminopropanol, Phe = phenylalanine, Lys = lysine) were prepared and used in a binding study with pyridoxal 5'-phosphate. The results revealed a positive dendritic effect, and binding ability was found to vary with the environment. (G:3-7)-dendri-PAMAM-(APO-Phe-Lys)(x) (2) demonstrated better binding ability at higher pH, and protonation of lysine was considered to affect binding. The strongest binding affinity was K(b) = 254.3 mM(-1) at pH 9, which was shown by (G:7)-dendri-PAMAM-(APO-Phe-Lys)(490) (2e).

  9. Acetate selective fluorescent turn-on sensors derived using vitamin B6 cofactor pyridoxal-5-phosphate

    NASA Astrophysics Data System (ADS)

    Sharma, Darshna; Kuba, Aman; Thomas, Rini; Ashok Kumar, S. K.; Kuwar, Anil; Choi, Heung-Jin; Sahoo, Suban K.

    2016-03-01

    Two new Schiff base receptors have been synthesized by condensation of pyridoxal-5-phosphate with 2-aminophenol (L1) or aniline (L2). In DMSO, the receptors showed both chromogenic and 'turn-on' fluorescence responses selectively in the presence of AcO- and F-. However, in mixed DMSO-H2O medium, the receptors showed AcO- selective 'turn-on' fluorescence without any interference from other tested anions including F-. The detection limit for AcO- was found to be 7.37 μM and 22.9 μM using the receptors L1 and L2, respectively.

  10. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism

    SciTech Connect

    Nickbarg, E.B.; Davenport, R.C.; Petsko, G.A.; Knowles, J.R.

    1988-08-09

    An important active-site residue in the glycolytic enzyme triosephosphate isomerase is His-95, which appears to act as an electrophilic component in catalyzing the enolization of the substrates. With the techniques of site-directed mutagenesis, His-95 has been replaced by Gln in the isomerase from Saccharomyces cerevisiae. The mutant isomerase has been expressed in Escherichia coli strain DF502 and purified to homogeneity. The specific catalytic activity of the mutant enzyme is less than that of wild type by a factor of nearly 400. The mutant enzyme can be resolved from the wild-type isomerase on nondenaturing isoelectric focusing gels, and an isomerase activity stain shows that the observed catalytic activity indeed derives from the mutant protein. The mutant enzyme shows the same stereospecificity of proton transfer as the wild type. Tritium exchange experiments similar to those used to define the free energy profile for the wild-type yeast isomerase, together with a new method of analysis involving /sup 14/C and /sup 3/H doubly labeled substrates, have been used to investigate the energetics of the mutant enzyme catalyzed reaction. The deuterium kinetic isotope effects observed with the mutant isomerase using (1(R)-/sup 2/H)dihydroxyacetone phosphate and (2-/sup 2/H)glyceraldehyde 3-phosphate are 2.15 +/- 0.04 and 2.4 +/- 0.1, respectively. These results lead to the conclusion that substitution of Gln for His-95 so impairs the ability of the enzyme to stabilize the reaction intermediate that there is a change in the pathways of proton transfer mediated by the mutant enzyme.

  11. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    PubMed Central

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  12. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma....

  13. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma....

  14. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma....

  15. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma....

  16. Structure and catalytic mechanism of the cytosolic D-ribulose-5-phosphate 3-epimerase from rice.

    PubMed

    Jelakovic, Stefan; Kopriva, Stanislav; Süss, Karl Heinz; Schulz, Georg E

    2003-02-07

    Cytosolic D-ribulose-5-phosphate 3-epimerase from rice was crystallized after EDTA treatment and structurally elucidated by X-ray diffraction to 1.9A resolution. A prominent Zn(2+) site at the active center was established in a soaking experiment. The structure was compared with that of the EDTA-treated crystalline enzyme from the chloroplasts of potato plant leaves showing some structural differences, in particular the "closed" state of a strongly conserved mobile loop covering the substrate at its putative binding site. The previous proposal for the active center was confirmed and the most likely substrate binding position and conformation was derived from the locations of the bound zinc and sulfate ions and of three water molecules. Assuming that the bound zinc ion is an integral part of the enzyme, a reaction mechanism involving a well-stabilized cis-enediolate intermediate is suggested.

  17. Selection of a new whole cell biocatalyst for the synthesis of 2-deoxyribose 5-phosphate.

    PubMed

    Valino, Ana L; Palazzolo, Martín A; Iribarren, Adolfo M; Lewkowicz, Elizabeth

    2012-01-01

    2-deoxyribose 5-phosphate (DR5P) is a key intermediate in the biocatalyzed preparation of deoxyribonucleosides. Therefore, DR5P production by means of simpler, cleaner, and economic pathways becomes highly interesting. One strategy involves the use of bacterial whole cells containing DR5P aldolase as biocatalyst for the aldol addition between acetaldehyde and D: -glyceraldehyde 3-phosphate or glycolytic intermediates that in situ generate the acceptor substrate. In this work, diverse microorganisms capable of synthesizing DR5P were selected by screening several bacteria genera. In particular, Erwinia carotovora ATCC 33260 was identified as a new biocatalyst that afforded 14.1-mM DR5P starting from a cheap raw material like glucose.

  18. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution

    PubMed Central

    Sagong, Hye-Young; Kim, Kyung-Jin

    2017-01-01

    Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity. PMID:28095457

  19. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.

    PubMed

    Banerjee, Aparajita; Wu, Yan; Banerjee, Rahul; Li, Yue; Yan, Honggao; Sharkey, Thomas D

    2013-06-07

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.

  20. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190

    PubMed Central

    Kaneda, Kazuhide; Kuzuyama, Tomohisa; Takagi, Motoki; Hayakawa, Yoichi; Seto, Haruo

    2001-01-01

    A gene cluster encoding five enzymes of the mevalonate pathway had been cloned from Streptomyces sp. strain CL190. This gene cluster contained an additional ORF, orfD, encoding an unknown protein that was detected in some archaebacteria and some Gram-positive bacteria including Staphylococcus aureus. The recombinant product of orfD was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 37 kDa by SDS-polyacrylamide gel electrophoresis and 155 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a tetramer. The purified enzyme contained flavin mononucleotide (FMN) with the amount per tetramer being 1.4 to 1.6 mol/mol. The enzyme catalyzed the isomerization of isopentenyl diphosphate (IPP) to produce dimethylallyl diphosphate (DMAPP) in the presence of both FMN and NADPH. The Escherichia coli plasmid expressing orfD could complement the disrupted IPP isomerase gene in E. coli. These results indicate that orfD encodes an unusual IPP isomerase showing no sequence similarity to those of IPP isomerases identified to date. Based on the difference in enzymatic properties, we classify the IPP isomerases into two types: Type 2 for FMN- and NAD(P)H-dependent enzymes, and type 1 for the others. In view of the critical role of this isomerase in S. aureus and of the different enzymatic properties of mammalian (type 1) and S. aureus (type 2) isomerases, this unusual enzyme is considered to be a suitable molecular target for the screening of antibacterial drugs specific to S. aureus. PMID:11158573

  1. Inhibitory effect of pyridoxal 5'-phosphate on the DNA binding site of ATP-dependent deoxyribonuclease from Bacillus laterosporus.

    PubMed

    Fujiyoshi, T; Nakayama, J; Anai, M

    1981-04-01

    Bacillus laterosporus ATP-dependent deoxyribonuclease has been found to be inhibited by pyridoxal 5'-phosphate. The inhibition is specific for pyridoxal 5'-phosphate and pyridoxal which are required in relatively high concentrations. Pyridoxamine 5'-phosphate, pyridoxamine, and pyridoxine are ineffective. The inhibition is reversed by dilution or dialysis but can be changed to an irreversible inactivation by reduction of the enzyme . pyridoxal 5'-phosphate complex with sodium borohydride. The compound is a competitive inhibitor with respect to DNA but not ATP. Moreover, the presence of DNA substrate protects the enzyme against this inactivation but the presence of ATP shows no effect. The reduced enzyme . pyridoxal 5'-phosphate complex displays a new absorption maximum at 325 nm and a fluorescence emission at 390-400 nm when excited at 325 nm which are characteristic for epsilon-N-(phosphopyridoxyl)lysine. Thus, B. laterosporus DNase appears to have an essential lysine residue at the DNA binding site of the enzyme, and the enzyme possess two different active sites, a DNA binding site and an ATP binding site.

  2. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella

    PubMed Central

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-01-01

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  3. Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase.

    PubMed

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-03-06

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  4. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.

    PubMed

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-12-16

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  5. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  6. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  7. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  8. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  9. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... system is a device intended to measure the activity of the enzyme phosphohexose isomerase in serum. Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma....

  10. Formation of novel nucleosides from free base and sugar phosphate: aqueous reaction of 2-aminopyrimidine and ribose-5-phosphate.

    PubMed

    Mace, D C

    1983-11-30

    The facile formation of glycosylamines suggests that a base liberated by depurination might react at the free C1 position of the sugar phosphate from which it had been hydrolyzed, effectively repurinating the site. Model experiments testing this hypothesis demonstrate that such a reaction does take place. The primary product of a reaction between 2-aminopyrimidine (a model for guanine) and ribose-5-phosphate is characterized by enzymatic and chemical degradation, and UV spectra. It is shown to be a novel nucleoside with the base attached via its exocyclic amino group to the C1 of the ribose-5-phosphate.

  11. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in the silkworm (Bombyx mori).

    PubMed

    Huang, ShuoHao; Han, CaiYun; Ma, ZhenQiao; Zhou, Jie; Zhang, JianYun; Huang, LongQuan

    2017-03-01

    Vitamin B6 comprises six interconvertible pyridine compounds, among which pyridoxal 5'-phosphate (PLP) is a coenzyme for over 140 enzymes. PLP is also a very reactive aldehyde. The most well established mechanism for maintaining low levels of free PLP is its dephosphorylation by phosphatases. A human PLP-specific phosphatase has been identified and characterized. However, very little is known about the phosphatase in other living organisms. In this study, a cDNA clone of putative PLP phosphatase was identified from B. mori and characterized. The cDNA encodes a polypeptide of 343 amino acid residues, and the recombinant enzyme purified from E. coli exhibited properties similar to that of human PLP phosphatase. B. mori has a single copy of the PLPP gene, which is located on 11th chromosome, spans a 5.7kb region and contains five exons and four introns. PLP phosphatase transcript was detected in every larva tissue except hemolymph, and was most highly represented in Malpighian tube. We further down-regulated the gene expression of the PLP phosphatase in 5th instar larvae with the RNA interference. However, no significant changes in the gene expression of PLP biosynthetic enzymes and composition of B6 vitamers were detected as compared with the control.

  12. Pyridoxal 5'-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid.

    PubMed

    Vermeersch, Jacqueline J; Christmann-Franck, Serge; Karabashyan, Leon V; Fermandjian, Serge; Mirambeau, Gilles; Der Garabedian, P Arsène

    2004-01-01

    The present results demonstrate that pyridoxal, pyridoxal 5'-phosphate (PLP) and pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the epsilon-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (K(i) = 40 microM) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532-PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid.

  13. Quantitative effect and regulatory function of cyclic adenosine 5'-phosphate in Escherichia coli.

    PubMed

    Narang, Atul

    2009-09-01

    Cyclic adenosine 5'-phosphate (cAMP) is a global regulator of gene expression in Escherichia coli. Despite decades of intensive study, the quantitative effect and regulatory function of cAMP remain the subjects of considerable debate. Here, we analyse the data in the literature to show that: (a) In carbon-limited cultures (including cultures limited by glucose), cAMP is at near-saturation levels with respect to expression of several catabolic promoters (including lac, ara and gal). It follows that cAMP receptor protein (CRP) cAMP-mediated regulation cannot account for the strong repression of these operons in the presence of glucose. (b) The cAMP levels in carbon-excess cultures are substantially lower than those observed in carbon-limited cultures under these conditions, the expression of catabolic promoters is very sensitive to variation of cAMP levels. (c)=CRPcAMP invariably activates the expression of catabolic promoters, but it appears to inhibit the expression of anabolic promoters. (d) These results suggest that the physiological function of cAMP is to maintain homeostatic energy levels. In carbon-limited cultures, growth is limited by the supply of energy; the cAMP levels therefore increase to enhance energy accumulation by activating the catabolic promoters and inhibiting the anabolic promoters. Conversely, in carbonexcess cultures, characterized by the availability of excess energy, the cAMP levels decrease in order to depress energy accumulation by inhibiting the catabolic promoters and activating the anabolic promoters.

  14. Critical hydrogen bonds and protonation states of pyridoxal 5'-phosphate revealed by NMR.

    PubMed

    Limbach, Hans-Heinrich; Chan-Huot, Monique; Sharif, Shasad; Tolstoy, Peter M; Shenderovich, Ilya G; Denisov, Gleb S; Toney, Michael D

    2011-11-01

    In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.

  15. Changes in plasma pyridoxal 5'-phosphate concentration during pregnancy stages in Japanese women.

    PubMed

    Shibata, Katsumi; Tachiki, Akiko; Mukaeda, Kana; Fukuwatari, Tsutomu; Sasaki, Satoshi; Jinno, Yoshiki

    2013-01-01

    Most Japanese women do not consume the estimated average requirement of vitamin B6 (1.7 mg/d) during pregnancy. Nevertheless, these deficiencies are not reported. We investigated a nutritional biomarker of vitamin B6 in pregnant Japanese women as well as their vitamin B6 intakes. Vitamin B6 intakes in the first, second, and third trimesters of pregnancy, and 1 mo after delivery were 0.79±0.61 (n=56), 0.81±0.29 (n=71), 0.90±0.35 (n=92), and 1.00±0.31 (n=44) mg/d, respectively. Plasma pyridoxal 5'-phosphate (PLP) concentrations in the first, second, and third trimesters of pregnancy, and 1 mo after delivery were 57.1±27.6 (n=56), 23.3±16.7 (n=71), 18.3±12.5 (n=92), and 43.9±33.4 (n=44) nmol/L, respectively. The plasma concentrations significantly decreased in the second and third trimesters of pregnancy compared to values from the first trimester (p<0.05), and these concentrations returned to the values of the first trimester of pregnancy 1 mo after birth.

  16. Metabolite Profiling of Plastidial Deoxyxylulose-5-Phosphate Pathway Intermediates by Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Baidoo, Edward E.K.; Xiao, Yanmei; Dehesh, Katayoon; Keasling, Jay D.

    2016-01-01

    Metabolite profiling is a powerful tool that enhances our understanding of complex regulatory processes and extends to the comparative analysis of plant gene function. However, at present, there are relatively few examples of metabolite profiling being used to characterize the regulatory aspects of the plastidial deoxyxylulose-5-phosphate (DXP) pathway in plants. Since the DXP pathway is one of two pathways in plants that are essential for isoprenoid biosynthesis, it is imperative that robust analytical methods be employed for the characterization of this metabolic pathway. Recently, liquid chromatography-mass spectrometry (LC-MS), in conjunction with traditional molecular biology approaches, established that the DXP pathway metabolite, methylerythritol cyclodiphosphate (MEcPP), previously known solely as an intermediate in the isoprenoid biosynthetic pathway, is a stress sensor that communicates environmental perturbations sensed by plastids to the nucleus, a process referred to as retrograde signaling. In this chapter, we describe two LC-MS methods from this study that can be broadly used to characterize DXP pathway intermediates. PMID:24777790

  17. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    PubMed

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed.

  18. Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5'-phosphate-dependent reaction.

    PubMed

    Thibodeaux, Christopher J; Liu, Hung-Wen

    2011-03-22

    1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.

  19. Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase.

    PubMed

    Mu, Wanmeng; Li, Wenjing; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2014-08-01

    Isomaltulose is a natural isomer of sucrose. It is widely used as a functional sweetener with promising properties, including slower digestion, lower glycemic index, prolonged energy release, lower insulin reaction, and less cariogenicity. It has been approved as a safe sucrose substitute by the Food and Drug Administration of the US; Ministry of Health, Labor and Welfare of Japan; and the Commission of the European Communities. This article presents a review of recent studies on the properties, physiological effects, and food application of isomaltulose. In addition, the biochemical properties of sucrose isomerases producing isomaltulose are compared; the heterologous expression, fermentation optimization, structural determination, and catalysis mechanism of sucrose isomerase are reviewed; and the biotechnological production of isomaltulose from sucrose is summarized.

  20. Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies).

    PubMed

    Phillips, Michael A; Walter, Michael H; Ralph, Steven G; Dabrowska, Paulina; Luck, Katrin; Urós, Eva Maria; Boland, Wilhelm; Strack, Dieter; Rodríguez-Concepción, Manuel; Bohlmann, Jörg; Gershenzon, Jonathan

    2007-10-01

    Conifers produce terpenoid-based oleoresins as constitutive and inducible defenses against herbivores and pathogens. Much information is available about the genes and enzymes of the late steps of oleoresin terpenoid biosynthesis in conifers, but almost nothing is known about the early steps which proceed via the methylerythritol phosphate (MEP) pathway. Here we report the cDNA cloning and functional identification of three Norway spruce (Picea abies) genes encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, and their differential expression in the stems of young saplings. Among them are representatives of both types of plant DXS genes. A single type I DXS gene is constitutively expressed in bark tissue and not affected by wounding or fungal application. In contrast, two distinct type II DXS genes, PaDXS2A and PaDXS2B, showed increased transcript abundance after these treatments as did two other genes of the MEP pathway tested, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) and 4-hydroxyl 3-methylbutenyl diphosphate reductase (HDR). We also measured gene expression in a Norway spruce cell suspension culture system that, like intact trees, accumulates monoterpenes after treatment with methyl jasmonate. These cell cultures were characterized by an up-regulation of monoterpene synthase gene transcripts and enzyme activity after elicitor treatment, as well as induced formation of octadecanoids, including jasmonic acid and 12-oxophytodienoic acid. Among the Type II DXS genes in cell cultures, PaDXS2A was induced by treatment with chitosan, methyl salicylate, and Ceratocystis polonica (a bark beetle-associated, blue-staining fungal pathogen of Norway spruce). However, PaDXS2B was induced by treatment with methyl jasmonate and chitosan, but was not affected by methyl salicylate or C. polonica. Our results suggest distinct functions of the three DXS genes in primary and defensive terpenoid metabolism in Norway

  1. Prevention of Proliferative Vitreoretinopathy by Suppression of Phosphatidylinositol 5-Phosphate 4-Kinases

    PubMed Central

    Ma, Gaoen; Duan, Yajian; Huang, Xionggao; Qian, Cynthia X.; Chee, Yewlin; Mukai, Shizuo; Cui, Jing; Samad, Arif; Matsubara, Joanne Aiko; Kazlauskas, Andrius; D'Amore, Patricia A.; Gu, Shuyan; Lei, Hetian

    2016-01-01

    Purpose Previous studies have shown that vitreous stimulates degradation of the tumor suppressor protein p53 and that knockdown of phosphatidylinositol 5-phosphate 4-kinases (PI5P4Kα and -β) abrogates proliferation of p53-deficient cells. The purpose of this study was to determine whether vitreous stimulated expression of PI5P4Kα and -β and whether suppression of PI5P4Kα and -β would inhibit vitreous-induced cellular responses and experimental proliferative vitreoretinopathy (PVR). Methods PI5P4Kα and -β encoded by PIP4K2A and 2B, respectively, in human ARPE-19 cells were knocked down by stably expressing short hairpin (sh)RNA directed at human PIP4K2A and -2B. In addition, we rescued expression of PI5P4Kα and -β by re-expressing mouse PIP4K2A and -2B in the PI5P4Kα and -β knocked-down ARPE-19 cells. Expression of PI5P4Kα and -β was determined by Western blot and immunofluorescence. The following cellular responses were monitored: cell proliferation, survival, migration, and contraction. Moreover, the cell potential of inducing PVR was examined in a rabbit model of PVR effected by intravitreal cell injection. Results We found that vitreous enhanced expression of PI5P4Kα and -β in RPE cells and that knocking down PI5P4Kα and -β abrogated vitreous-stimulated cell proliferation, survival, migration, and contraction. Re-expression of mouse PIP4Kα and -β in the human PI5P4Kα and -β knocked-down cells recovered the loss of vitreous-induced cell contraction. Importantly, suppression of PI5P4Kα and -β abrogated the pathogenesis of PVR induced by intravitreal cell injection in rabbits. Moreover, we revealed that expression of PI5P4Kα and -β was abundant in epiretinal membranes from PVR grade C patients. Conclusions The findings from this study indicate that PI5P4Kα and -β could be novel therapeutic targets for the treatment of PVR. PMID:27472081

  2. Crystal structures of human IPP isomerase: new insights into the catalytic mechanism.

    PubMed

    Zhang, Cheng; Liu, Lin; Xu, Hang; Wei, Zhiyi; Wang, Yanli; Lin, Yajing; Gong, Weimin

    2007-03-09

    Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.

  3. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    SciTech Connect

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts are not

  4. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi.

    PubMed

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  5. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi

    PubMed Central

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  6. Molecular and industrial aspects of glucose isomerase.

    PubMed Central

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  7. Plant Triose Phosphate Isomerase Isozymes 1

    PubMed Central

    Pichersky, Eran; Gottlieb, Leslie D.

    1984-01-01

    We report the first complete purifications of the cytosolic and plastid isozymes of triose phosphate isomerase (TPI; EC 5.3.1.1) from higher plants including spinach (Spinacia oleracea), lettuce (Lactuca sativa), and celery (Apium graveolens). Both isozymes are composed of two isosubunits with approximate molecular weight of 27,000; in spinach and lettuce the plastid isozyme is 200 to 400 larger than the cytosolic isozyme. The two isozymes, purified from lettuce, had closely similar amino acid compositions with the exception of methionine which was four times more prevalent in the cytosolic isozyme. Partial amino acid sequences from the N-terminus were also obtained for both lettuce TPIs. Nine of the 13 positions sequenced in the two proteins had identical amino acid residues. The partial sequences of the plant proteins showed high similarity to previously sequenced animal TPIs. Immunological studies, using antisera prepared independently against the purified plastid and cytosolic isozymes from spinach, revealed that the cytosolic isozymes from a variety of species formed an immunologically distinct group as did the plastid isozymes. However, both plastid and cytosolic TPIs shared some antigenic determinants. The overall similarity of the two isozymes and the high similarity of their partial amino acid sequences to those of several animals indicate that TPI is a very highly conserved protein. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663420

  8. Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus.

    PubMed

    Macouzet, Martin; Robert, Normand; Lee, Byong H

    2010-08-01

    While the remarkable health effects of conjugated linoleic acid (CLA) catalyzed from alpha-linoleic acid by the enzyme linoleate isomerase (LI, EC 5.2.1.5) are well recognized, how widely this biochemical activity is present and the mechanisms of its regulation in lactic acid bacteria are unknown. Although certain strains of Lactobacillus acidophilus can enrich CLA in fermented dairy products, it is unknown if other strains share this capacity. Due to its immense economic importance, this work aimed to investigate genetic aspects of CLA production in L. acidophilus for the first time. The genomic DNA from industrial and type strains of L. acidophilus were subjected to PCR and immunoblot analyses using the putative LI gene of L. reuteri ATCC 55739 as probe. The CLA production ability was estimated by gas chromatography of the biomass extracts. The presumptive LI gene from L. acidophilus ATCC 832 was isolated and sequenced. The resulting sequence shared 71% identity with that of L. reuteri and at least 99% with reported sequences from other L. acidophilus strains. All the strains accumulated detectable levels of CLA and tested positive by PCR and immunoblotting. However, no apparent correlation was observed between the yields and the hybridization patterns. The results suggest that LI activity might be common among L. acidophilus and related species and provide a new tool for screening potential CLA producers.

  9. Characterization of divergent pseudo-sucrose isomerase from Azotobacter vinelandii: Deciphering the absence of sucrose isomerase activity.

    PubMed

    Jung, Jong-Hyun; Kim, Min-Ji; Jeong, Woo-Soo; Seo, Dong-Ho; Ha, Suk-Jin; Kim, Young Wan; Park, Cheon-Seok

    2017-01-29

    Among members of the glycoside hydrolase (GH) family, sucrose isomerase (SIase) and oligo-1,6-glucosidase (O16G) are evolutionarily closely related even though their activities show different specificities. A gene (Avin_08330) encoding a putative SIase (AZOG: Azotobacterglucocosidase) from the nitrogen-fixing bacterium Azotobacter vinelandii is a type of pseudo-SIase harboring the "RLDRD" motif, a SIase-specific region in 329-333. However, neither sucrose isomerization nor hydrolysis activities were observed in recombinant AZOG (rAZOG). The rAZOG showed similar substrate specificity to Bacillus O16G as it catalyzes the hydrolysis of isomaltulose and isomaltose, which contain α-1,6-glycosidic linkages. Interestingly, rAZOG could generate isomaltose from the small substrate methyl-α-glucoside (MαG) via intermolecular transglycosylation. In addition, sucrose isomers isomaltulose and trehalulose were produced when 250 mM fructose was added to the MαG reaction mixture. The conserved regions I and II of AZOG are shared with many O16Gs, while regions III and IV are very similar to those of SIases. Strikingly, a shuffled AZOG, in which the N-terminal region of SIase containing conserved regions I and II was exchanged with the original enzyme, exhibited a production of sucrose isomers. This study demonstrates an evolutionary relationship between SIase and O16G and suggests some of the main regions that determine the specificity of SIase and O16G.

  10. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  11. Structural determinants of product specificity of sucrose isomerases.

    PubMed

    Ravaud, Stéphanie; Robert, Xavier; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2009-06-18

    The healthy sweetener isomaltulose is industrially produced from the conversion of sucrose by the sucrose isomerase SmuA from Protaminobacter rubrum. Crystal structures of SmuA in native and deoxynojirimycin complexed forms completed with modeling studies unravel the characteristics of the isomaltulose synthases catalytic pocket and their substrate binding mode. Comparison with the trehalulose synthase MutB highlights the role of Arg(298) and Arg(306) active site residues and surface charges in controlling product specificity of sucrose isomerases (isomaltulose versus trehalulose). The results provide a rationale for the specific design of optimized enzymes.

  12. Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker's yeast and deoxyriboaldolase-expressing Escherichia coli.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-06-01

    2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.

  13. Crystal structure and putative mechanism of 3-methylitaconate-delta-isomerase from Eubacterium barkeri.

    PubMed

    Velarde, Milko; Macieira, Sofia; Hilberg, Markus; Bröker, Gerd; Tu, Shang-Min; Golding, Bernard T; Pierik, Antonio J; Buckel, Wolfgang; Messerschmidt, Albrecht

    2009-08-21

    3-Methylitaconate-Delta-isomerase (Mii) participates in the nicotinate fermentation pathway of the anaerobic soil bacterium Eubacterium barkeri (order Clostridiales) by catalyzing the reversible conversion of (R)-3-methylitaconate (2-methylene-3-methylsuccinate) to 2,3-dimethylmaleate. The enzyme is also able to catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) with ca 10-fold higher K(m) but > 1000-fold lower k(cat). The gene mii from E. barkeri was cloned and expressed in Escherichia coli. The protein produced with a C-terminal Strep-tag exhibited the same specific activity as the wild-type enzyme. The crystal structure of Mii from E. barkeri has been solved at a resolution of 2.70 A. The asymmetric unit of the P2(1)2(1)2(1) unit cell with parameters a = 53.1 A, b = 142.3 A, and c = 228.4 A contains four molecules of Mii. The enzyme belongs to a group of isomerases with a common structural feature, the so-called diaminopimelate epimerase fold. The monomer of 380 amino acid residues has two topologically similar domains exhibiting an alpha/beta-fold. The active site is situated in a cleft between these domains. The four Mii molecules are arranged as a tetramer with 222 symmetry for the N-terminal domains. The C-terminal domains have different relative positions with respect to the N-terminal domains resulting in a closed conformation for molecule A and two distinct open conformations for molecules B and D. The C-terminal domain of molecule C is disordered. The Mii active site contains the putative catalytic residues Lys62 and Cys96, for which mechanistic roles are proposed based on a docking experiment of the Mii substrate complex. The active sites of Mii and the closely related PrpF, most likely a methylaconitate Delta-isomerase, have been compared. The overall architecture including the active-site Lys62, Cys96, His300, and Ser17 (Mii numbering) is similar. This positioning of (R)-3-methylitaconate allows Cys96 (as

  14. Peptidyl-prolyl cis-trans isomerases: structure and functions.

    PubMed

    Pliyev, B K; Gurvits, B Y

    1999-07-01

    Peptidyl-prolyl cis-trans isomerases (PPI) catalyze cis-trans isomerization of imide bonds in peptides and proteins. This review summarizes the literature on the structure and functions of PPIs, their involvement in protein folding, and organization of PPI-containing receptors and membrane channels. A possible role of several PPIs in distant interactions between cells is discussed.

  15. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana.

    PubMed

    Jiang, Wenbo; Yin, Qinggang; Wu, Ranran; Zheng, Guangshun; Liu, Jinyue; Dixon, Richard A; Pang, Yongzhen

    2015-12-01

    Flavonoids are important natural products for plant defence and human health. Although almost all the flavonoid pathway genes have been well-documented by biochemical and/or genetic approaches, the role of the Arabidopsis chalcone isomerase-like (CHIL) gene remains unclear. Two chil mutants with a seed colour similar to that of wild-type Arabidopsis have been identified here, but in sharp contrast to the characteristic transparent testa seed phenotype associated with other known flavonoid pathway genes. CHIL loss-of-function mutations led to a strong reduction in the proanthocyanidin and flavonol levels in seeds, but not in the anthocyanin levels in leaves. CHIL over-expression could partially recover the mutant phenotype of the chil mutant and increased both proanthocyanidin and flavonol accumulation in wild-type Arabidopsis. However, the CHIL gene could not rescue the mutant phenotype of TT5 that encodes the intrinsic chalcone isomerase in Arabidopsis. Parallel phenotypical and metabolic analyses of the chil, tt5, chs, and f3h mutants revealed that, genetically, CHIL functions at the same step as TT5. Moreover, it is demonstrated that CHIL co-expresses, co-localizes, and interacts with TT5 in Arabidopsis for flavonoid production. Based on these genetic and metabolic studies, it is concluded that CHIL functions with TT5 to promote flavonoid production, which is a unique enhancer in the flavonoid pathway.

  16. L-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for L-ribose production.

    PubMed

    Xu, Zheng; Sha, Yuanyuan; Liu, Chao; Li, Sha; Liang, Jinfeng; Zhou, Jiahai; Xu, Hong

    2016-11-01

    L-Ribose is a synthetic L-form monosaccharide. It is a building block of many novel nucleotide analog anti-viral drugs. Bio-production of L-ribose relies on a two-step reaction: (i) conversion of L-arabinose to L-ribulose by the catalytic action of L-arabinose isomerase (L-AI) and (ii) conversion of L-ribulose to L-ribose by the catalytic action of L-ribose isomerase (L-RI, EC 5.3.1.B3) or mannose-6-phosphate isomerase (MPI, EC 5.3.1.8, alternately named as phosphomannose isomerase). Between the two enzymes, L-RI is a rare enzyme that was discovered in 1996 by Professor Izumori's group, whereas MPI is an essential enzyme in metabolic pathways in humans and microorganisms. Recent studies have focused on their potentials for industrial production of L-ribose. This review summarizes the applications of L-RI and MPI for L-ribose production.

  17. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    SciTech Connect

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. )

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  18. Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5'-Phosphate (SAICAR) Activates Pyruvate Kinase Isoform M2 (PKM2) in Its Dimeric Form.

    PubMed

    Yan, Ming; Chakravarthy, Srinivas; Tokuda, Joshua M; Pollack, Lois; Bowman, Gregory D; Lee, Young-Sam

    2016-08-23

    Human pyruvate kinase isoform M2 (PKM2) is a glycolytic enzyme isoform implicated in cancer. Malignant cancer cells have higher levels of dimeric PKM2, which is regarded as an inactive form of tetrameric pyruvate kinase. This perceived inactivity has fueled controversy about how the dimeric form of pyruvate kinase might contribute to cancer. Here we investigate enzymatic properties of PKM2(G415R), a variant derived from a cancer patient, which we show by size-exclusion chromatography and small-angle X-ray scattering to be a dimer that cannot form a tetramer in solution. Although PKM2(G415R) binds to fructose 1,6-bisphosphate (FBP), unlike the wild type this PKM2 variant shows no activation by FBP. In contrast, PKM2(G415R) is activated by succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5'-phosphate (SAICAR), an endogenous metabolite that we previously showed correlates with an increased level of cell proliferation and promotes protein kinase activity of PKM2. Our results demonstrate an important and unexpected enzymatic activity of the PKM2 dimer that likely has a key role in cancer progression.

  19. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans.

    PubMed

    Henriquez, Maria Antonia; Soliman, Atta; Li, Genyi; Hannoufa, Abdelali; Ayele, Belay T; Daayf, Fouad

    2016-02-01

    1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.

  20. Characterization of the d-Xylulose 5-Phosphate/d-Fructose 6-Phosphate Phosphoketolase Gene (xfp) from Bifidobacterium lactis

    PubMed Central

    Meile, Leo; Rohr, Lukas M.; Geissmann, Thomas A.; Herensperger, Monique; Teuber, Michael

    2001-01-01

    A d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase (Xfp) from the probiotic Bifidobacterium lactis was purified to homogeneity. The specific activity of the purified enzyme with d-fructose 6-phosphate as a substrate is 4.28 Units per mg of enzyme. Km values for d-xylulose 5-phosphate and d-fructose 6-phosphate are 45 and 10 mM, respectively. The native enzyme has a molecular mass of 550,000 Da. The subunit size upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (90,000 Da) corresponds with the size (92,529 Da) calculated from the amino acid sequence of the isolated gene (named xfp) encoding 825 amino acids. The xfp gene was identified on the chromosome of B. lactis with the help of degenerated nucleotide probes deduced from the common N-terminal amino acid sequence of both the native and denatured enzyme. Comparison of the deduced amino acid sequence of the cloned gene with sequences in public databases revealed high homologies with hypothetical proteins (26 to 55% identity) in 20 microbial genomes. The amino acid sequence derived from the xfp gene contains typical thiamine diphosphate (ThDP) binding sites reported for other ThDP-dependent enzymes. Two truncated putative genes, pta and guaA, were localized adjacent to xfp on the B. lactis chromosome coding for a phosphotransacetylase and a guanosine monophosphate synthetase homologous to products of genes in Mycobacterium tuberculosis. However, xfp is transcribed in B. lactis as a monocistronic operon. It is the first reported and sequenced gene of a phosphoketolase. PMID:11292814

  1. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  2. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    PubMed

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  3. Alteration of the flexible loop in 1-deoxy-D-xylulose-5-phosphate reductoisomerase boosts enthalpy-driven inhibition by fosmidomycin.

    PubMed

    Kholodar, Svetlana A; Tombline, Gregory; Liu, Juan; Tan, Zhesen; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2014-06-03

    1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis used by Mycobacterium tuberculosis and other infectious microorganisms, is absent in humans and therefore an attractive drug target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite great efforts, few analogues with comparable potency have been developed. DXR contains a strictly conserved residue, Trp203, within a flexible loop that closes over and interacts with the bound inhibitor. We report that while mutation to Ala or Gly abolishes activity, mutation to Phe and Tyr only modestly impacts kcat and Km. Moreover, pre-steady-state kinetics and primary deuterium kinetic isotope effects indicate that while turnover is largely limited by product release for the wild-type enzyme, chemistry is significantly more rate-limiting for W203F and W203Y. Surprisingly, these mutants are more sensitive to inhibition by fosmidomycin, resulting in Km/Ki ratios up to 19-fold higher than that of wild-type DXR. In agreement, isothermal titration calorimetry revealed that fosmidomycin binds up to 11-fold more tightly to these mutants. Most strikingly, mutation strongly tips the entropy-enthalpy balance of total binding energy from 50% to 75% and 91% enthalpy in W203F and W203Y, respectively. X-ray crystal structures suggest that these enthalpy differences may be linked to differences in hydrogen bond interactions involving a water network connecting fosmidomycin's phosphonate group to the protein. These results confirm the importance of the flexible loop, in particular Trp203, in ligand binding and suggest that improved inhibitor affinity may be obtained against the wild-type protein by introducing interactions with this loop and/or the surrounding structured water network.

  4. 1-Deoxy-d-Xylulose 5-Phosphate Synthase, the Gene Product of Open Reading Frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus

    PubMed Central

    Hahn, Frederick M.; Eubanks, Lisa M.; Testa, Charles A.; Blagg, Brian S. J.; Baker, Jonathan A.; Poulter, C. Dale

    2001-01-01

    In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and d-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-d-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-d-xylulose 5-phosphate synthase A and B, containing a His6 tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-d-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-d-xylulose 5-phosphate synthase A and B: Kmpyruvate = 0.61 and 3.0 mM, Kmd-glyceraldehyde 3-phosphate = 150 and 120 μM, and Vmax = 1.9 and 1.4 μmol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-d-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11. PMID:11114895

  5. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution.

    PubMed

    Sharif, Shasad; Denisov, Gleb S; Toney, Michael D; Limbach, Hans-Heinrich

    2007-05-16

    The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.

  6. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    PubMed

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  7. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides.

    PubMed

    Wang, Qian; He, Xiao-Mei; Chen, Xi; Zhu, Gang-Tian; Wang, Ren-Qi; Feng, Yu-Qi

    2017-04-01

    Phosphorylation is a crucial post-translational modification, which plays pivotal roles in various biological processes. Analysis of phosphopeptides by mass spectrometry (MS) is intractable on account of their low stoichiometry and the ion suppression from non-phosphopeptides. Thus, enrichment of phosphopeptides before MS analysis is indispensable. In this work, we employed pyridoxal 5'-phosphate (PLP), as an immobilized metal affinity chromatography (IMAC) ligand for the enrichment of phosphopeptides. PLP was grafted onto several substrates such as silica (SiO2), oxidized carbon nanotube (OCNT) and silica coated magnetic nanoparticles (Fe3O4@SiO2). Then the metal ions Fe(3+), Ga(3+) and Ti(4+) were incorporated for the selective enrichment of phosphopeptides. It is indicated that Fe3O4@SiO2-PLP-Ti(4+) has a superior selectivity towards phosphopeptides under as much as 1000-fold interferences of non-phosphopeptides. Further, Fe3O4@SiO2-PLP-Ti(4+) exhibited high efficiency in selective enrichments of phosphopeptides from complex biological samples, including human serum and tryptic digested non-fat milk. Finally, Fe3O4@SiO2-PLP-Ti(4+) was successfully employed in the sample pretreatment for profiling phosphopeptides in a tryptic digest of rat brain proteins. Our experimental results evidenced a great potential of this new chelator-based material in phosphoproteomics study.

  8. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Takahashi, Narumi; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2014-11-01

    A novel enzyme, which catalyzed decarboxylation of l-lysine into cadaverine with release of carbon dioxide and oxidative deamination of l-lysine into l-2-aminoadipic 5-semialdehyde with release of ammonia and hydrogen peroxide, was found from a newly isolated Burkholderia sp. AIU 395. The enzyme was specific to l-lysine and did not exhibit enzyme activities for other l-amino acids, l-lysine derivatives, d-amino acids, and amines. The apparent Km values for l-lysine in the oxidation and decarboxylation reactions were estimated to be 0.44 mM and 0.84 mM, respectively. The molecular mass was estimated to be 150 kDa, which was composed of two identical subunits with molecular mass of 76.5 kDa. The enzyme contained one mol of pyridoxal 5'-phosphate per subunit as a prosthetic group. The enzyme exhibiting decarboxylase and oxidase activities for l-lysine was first reported here, while the deduced amino acid sequence was homologous to that of putative lysine decarboxylases from the genus Burkholderia.

  9. Crystal Structure of 1-Deoxy-D-xylulose 5-Phosphate Synthase, A Crucial Enzyme for Isoprenoids Biosynthesis

    SciTech Connect

    Xiang,S.; Usunow, G.; Busch, G.; Tong, L.

    2007-01-01

    Isopentenyl pyrophosphate (IPP) is a common precursor for the synthesis of all isoprenoids, which have important functions in living organisms. IPP is produced by the mevalonate pathway in archaea, fungi, and animals. In contrast, IPP is synthesized by a mevalonate-independent pathway in most bacteria, algae, and plant plastids. 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the first and the rate-limiting step of the mevalonate-independent pathway and is an attractive target for the development of novel antibiotics, antimalarials, and herbicides. We report here the first structural information on DXS, from Escherichia coli and Deinococcus radiodurans, in complex with the coenzyme thiamine pyrophosphate (TPP). The structure contains three domains (I, II, and III), each of which bears homology to the equivalent domains in transketolase and the E1 subunit of pyruvate dehydrogenase. However, DXS has a novel arrangement of these domains as compared with the other enzymes, such that the active site of DXS is located at the interface of domains I and II in the same monomer, whereas that of transketolase is located at the interface of the dimer. The coenzyme TPP is mostly buried in the complex, but the C-2 atom of its thiazolium ring is exposed to a pocket that is the substrate-binding site. The structures identify residues that may have important roles in catalysis, which have been confirmed by our mutagenesis studies.

  10. Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions.

    PubMed

    Cambrón, G; Sevilla, J M; Pineda, T; Blázquez, M

    1996-03-01

    The present study reports on the absorption and emission properties of the Schiff bases formed by pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions. Species protonated at the imine and ring nitrogen are the most fluorescent in both Schiff bases with a quantum yield of 0.02, i.e., 20-fold the value found for species in alkaline solutions. In agreement with other studies, species protonated at the imine nitrogen shows an emission around 500 nm upon excitation at 415 nm. In contrast to previous observations on other PLP Schiff bases, emissions at 560 nm (PL-Ile) and 540 nm (PLP-Ile) are observed upon excitation at 365 and 415 nm, respectively. The emission at 470 nm found in PLP-Ile Schiff base upon excitation at 355 nm is ascribed to a multipolar monoprotonated species. An estimation for the pK a of the imine in the excited state ( ≈ 8.5) for both Schiff bases is also reached. Our results suggest that fast protonation reactions on the excited state are responsible for the observed fluorescence. These effects, in which the hydrogen bond and the phosphate group seem to play a role, could be extended to understanding coenzyme environments in proteins.

  11. Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender.

    PubMed

    Mendoza-Poudereux, Isabel; Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Segura, Juan

    2014-11-01

    Spike lavender (Lavandula latifolia) is an economically important aromatic plant producing essential oils, whose components (mostly monoterpenes) are mainly synthesized through the plastidial methylerythritol 4-phosphate (MEP) pathway. 1-Deoxy-D-xylulose-5-phosphate (DXP) synthase (DXS), that catalyzes the first step of the MEP pathway, plays a crucial role in monoterpene precursors biosynthesis in spike lavender. To date, however, it is not known whether the DXP reductoisomerase (DXR), that catalyzes the conversion of DXP into MEP, is also a rate-limiting enzyme for the biosynthesis of monoterpenes in spike lavender. To investigate it, we generated transgenic spike lavender plants constitutively expressing the Arabidopsis thaliana DXR gene. Although two out of the seven transgenic T0 plants analyzed accumulated more essential oils than the controls, this is hardly imputable to the DXR transgene effect since a clear correlation between transcript accumulation and monoterpene production could not be established. Furthermore, these increased essential oil phenotypes were not maintained in their respective T1 progenies. Similar results were obtained when total chlorophyll and carotenoid content in both T0 transgenic plants and their progenies were analyzed. Our results then demonstrate that DXR enzyme does not play a crucial role in the synthesis of plastidial monoterpene precursors, suggesting that the control flux of the MEP pathway in spike lavender is primarily exerted by the DXS enzyme.

  12. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5'-phosphate-binding protein YggS.

    PubMed

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-12-01

    Escherichia coli YggS is a highly conserved pyridoxal 5'-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/MS and MS/MS analyses of the compound with propyl chloroformate derivatization, and co-chromatography analysis identified this compound as γ-l-glutamyl-l-2-aminobutyryl-glycine (ophthalmic acid), a glutathione (GSH) analogue in which the l-Cys moiety is replaced by l-2-AB. We also determine the metabolic consequence of the yggS mutation. Absence of YggS initially increases l-2-AB availability, and then causes ophthalmic acid accumulation and CoA limitation in the cell. The expression of a γ-glutamylcysteine synthetase and a glutathione synthetase in a ΔyggS background causes high-level accumulation of ophthalmic acid in the cells (∼1.2 nmol/mg cells) in a minimal synthetic medium. This opens the possibility of a first fermentative production of ophthalmic acid.

  13. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    PubMed

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.

  14. Short communication: empirical and mechanistic evidence for the role of pyridoxal-5'-phosphate in the generation of methanethiol from methionine.

    PubMed

    Wolle, D D; Banavara, D S; Rankin, S A

    2006-12-01

    The catabolism of the sulfur-containing AA Met to form flavor-active volatile sulfur compounds (VSC) is an important mechanism in flavor development during cheese maturation. Numerous enzymes catalyzing AA catabolism require the presence of the cofactor pyri-doxal-5'-phosphate (PLP). In fact, reports have shown that some of these reactions can be catalyzed by PLP alone, albeit at a reduced rate. We hypothesized that, as a specific application in cheese flavor reactions, PLP can react directly with free Met to generate a specific VSC, methanethiol (MTH). In this study, the ability of PLP to catalyze MTH generation from Met was examined under "cheeselike" conditions of salt and pH. Methionine and varying concentrations of PLP were incubated in a buffer (pH 5.2 + 4.0% NaCl) analogous to the aqueous phase of aged Cheddar cheese. Samples were analyzed using headspace solid-phase microextraction, and relative concentrations of VSC were determined by gas chromatography-mass spectrometry. Results showed MTH, dimethyl disulfide, and dimethyl trisulfide production when Met and PLP were incubated together at 7 degrees C (cheese-aging temperature). These results indicate that the production of VSC from Met can occur nonenzymatically as catalyzed by free PLP.

  15. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis.

    PubMed

    Kudoh, Kai; Kawano, Yusuke; Hotta, Shingo; Sekine, Midori; Watanabe, Takafumi; Ihara, Masaki

    2014-07-01

    Cyanobacteria have recently been receiving considerable attention owing to their potential as photosynthetic producers of biofuels and biomaterials. Here, we focused on the production of isoprenoids by cyanobacteria, and aimed to provide insight into metabolic engineering design. To this end, we examined the over-expression of a key enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in the cyanobacterium Synechocystis sp. PCC6803. In the DXS-over-expression strain (Dxs_ox), the mRNA and protein levels of DXS were 4-times and 1.5-times the levels in the wild-type (WT) strain, respectively. The carotenoid content of the Dxs_ox strain (8.4 mg/g dry cell weight [DCW]) was also up to 1.5-times higher than that in the WT strain (5.6 mg/g DCW), whereas the glycogen content dramatically decreased to an undetectable level. These observations suggested that the carotenoid content in the Dxs_ox strain was increased by consuming glycogen, which is a C-storage compound in cyanobacteria. We also quantified the total sugar (145 and 104 mg/g DCW), total fatty acids (31 and 24 mg/g DCW) and total protein (200 and 240 mg/g DCW) content in the WT and Dxs_ox strains, respectively, which were much higher than the carotenoid content. In particular, approximately 54% of the proteins were phycobiliproteins. This study demonstrated the major destinations of carbon flux in cyanobacteria, and provided important insights into metabolic engineering. Target yield can be improved through optimization of gene expression, the DXS protein stabilization, cell propagation depression and restriction of storage compound synthesis.

  16. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes.

    PubMed

    Rodríguez-Bolaños, Monica; Cabrera, Nallely; Perez-Montfort, Ruy

    2016-10-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins.

  17. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes

    PubMed Central

    Rodríguez-Bolaños, Monica; Cabrera, Nallely

    2016-01-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588

  18. Cloning and functional characterization of a chalcone isomerase from Trigonella foenum-graecum L.

    PubMed

    Qin, Jian-chun; Zhu, Lin; Gao, Ming-jun; Wu, Xian; Pan, Hong-yu; Zhang, Yan-sheng; Li, Xiang

    2011-05-01

    Flavonoids belong to a group of plant natural products with variable phenolic structures and play important roles in protection against biotic and abiotic stress. Fenugreek (Trigonella foenum-graecum L.) seeds and stems contain flavonol glycosides and isoflavone derivatives. Up to now, the molecular features of fenugreek flavonoid biosynthesis have not been characterized. Here we present cloning of a cDNA encoding a chalcone isomerase (namely TFGCHI-1) from the leaves of T. foenum-graecum which convert chalcones to flavanones in vitro. Transformation of Arabidopsis loss-of-function TT5 (CHI) mutant with a TFGCHI-1 cDNA complemented TT5 and produced higher levels of flavonol glycosides than wild-type Col-0.

  19. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.

    PubMed

    Sharif, Shasad; Schagen, David; Toney, Michael D; Limbach, Hans-Heinrich

    2007-04-11

    We present a novel series of hydrogen-bonded, polycrystalline 1:1 complexes of Schiff base models of the cofactor pyridoxal-5'-phosphate (PLP) with carboxylic acids that mimic the cofactor in a variety of enzyme active sites. These systems contain an intramolecular OHN hydrogen bond characterized by a fast proton tautomerism as well as a strong intermolecular OHN hydrogen bond between the pyridine ring of the cofactor and the carboxylic acid. In particular, the aldenamine and aldimine Schiff bases N-(pyridoxylidene)tolylamine and N-(pyridoxylidene)methylamine, as well as their adducts, were synthesized and studied using 15N CP and 1H NMR techniques under static and/or MAS conditions. The geometries of the hydrogen bonds were obtained from X-ray structures, 1H and 15N chemical shift correlations, secondary H/D isotope effects on the 15N chemical shifts, or directly by measuring the dipolar 2H-15N couplings of static samples of the deuterated compounds. An interesting coupling of the two "functional" OHN hydrogen bonds was observed. When the Schiff base nitrogen atoms of the adducts carry an aliphatic substituent such as in the internal and external aldimines of PLP in the enzymatic environment, protonation of the ring nitrogen shifts the proton in the intramolecular OHN hydrogen bond from the oxygen to the Schiff base nitrogen. This effect, which increases the positive charge on the nitrogen atom, has been discussed as a prerequisite for cofactor activity. This coupled proton transfer does not occur if the Schiff base nitrogen atom carries an aromatic substituent.

  20. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    PubMed

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  1. Kinetic Characterization and Allosteric Inhibition of the Yersinia pestis 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (MEP Synthase)

    PubMed Central

    Haymond, Amanda; Johny, Chinchu; Dowdy, Tyrone; Schweibenz, Brandon; Villarroel, Karen; Young, Richard; Mantooth, Clark J.; Patel, Trishal; Bases, Jessica; Jose, Geraldine San; Jackson, Emily R.; Dowd, Cynthia S.; Couch, Robin D.

    2014-01-01

    The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development. PMID:25171339

  2. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana.

    PubMed Central

    Vieille, C; Hess, J M; Kelly, R M; Zeikus, J G

    1995-01-01

    The xylA gene coding for xylose isomerase from the hyperthermophile Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 444 residues with a calculated molecular weight of 50,892. The native enzyme was a homotetramer with a molecular weight of 200,000. This xylose isomerase was a member of the family II enzymes (these differ from family I isomerases by the presence of approximately 50 additional residues at the amino terminus). The enzyme was extremely thermostable, with optimal activity above 95 degrees C. The xylose isomerase showed maximum activity at pH 7.1, but it had high relative activity over a broad pH range. The catalytic efficiency (kcat/Km) of the enzyme was essentially constant between 60 and 90 degrees C, and the catalytic efficiency decreased between 90 and 98 degrees C primarily because of a large increase in Km. The T. neapolitana xylose isomerase had a higher turnover number and a lower Km for glucose than other family II xylose isomerases. Comparisons with other xylose isomerases showed that the catalytic and cation binding regions were well conserved. Comparison of different xylose isomerase sequences showed that numbers of asparagine and glutamine residues decreased with increasing enzyme thermostability, presumably as a thermophilic strategy for diminishing the potential for chemical denaturation through deamidation at elevated temperatures. PMID:7646024

  3. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    PubMed

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  4. GPI Mount Scopus--a variant of glucosephosphate isomerase deficiency.

    PubMed

    Shalev, O; Shalev, R S; Forman, L; Beutler, E

    1993-10-01

    Glucosephosphate isomerase (GPI) deficiency is an unusual cause of hereditary nonspherocytic hemolytic anemia. The disease, inherited as an autosomal recessive disorder, is most often manifested by symptoms and signs of chronic hemolysis, ameliorated by splenectomy. We recently diagnosed GPI deficiency in a 23-year-old Ashkenazi Jewish man who displayed the typical clinical course of this disorder. The biophysical characteristics of the GPI variant are slow electrophoretic mobility, presence of only one of the two bands normally present, and extreme thermolability. To the best of our knowledge, this is the first report of GPI deficiency in a patient of Jewish descent, and we propose to designate this enzyme variant "GPI Mount Scopus".

  5. The immunosuppressant SR 31747 blocks cell proliferation by inhibiting a steroid isomerase in Saccharomyces cerevisiae.

    PubMed Central

    Silve, S; Leplatois, P; Josse, A; Dupuy, P H; Lanau, C; Kaghad, M; Dhers, C; Picard, C; Rahier, A; Taton, M; Le Fur, G; Caput, D; Ferrara, P; Loison, G

    1996-01-01

    SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion. PMID:8649379

  6. L-ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans.

    PubMed

    Yeom, Soo-Jin; Kim, Nam-Hee; Park, Chang-Su; Oh, Deok-Kun

    2009-11-01

    Two enzymes, L-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter L-ribose from 500 g/liter L-arabinose at pH 7.0, 70 degrees C, and 1 mM Co(2+) for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter(-1) h(-1).

  7. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method

    SciTech Connect

    Mori, Tadashi; Hidaka, Masafumi; Lin, Yi-Chin; Yoshizawa, Ibuki; Okabe, Takayoshi; Egashira, Shinichiro; Kojima, Hirotatsu; Nagano, Tetsuo; Koketsu, Mamoru; Takamiya, Mari; Uchida, Takafumi

    2011-03-18

    Research highlights: {yields} A Pin1 (prolyl isomerase) inhibitor, TME-001, has been discovered by using a new established high-throughput screening method. {yields} The TME-001 showed a cell-active inhibition with lower cytotoxic effect than known Pin1 inhibitors. {yields} Kinetic analyses revealed that the TME-001 is the first compound that exhibits dual inhibition of Pin1 and another type of prolyl isomerase, cyclophilin. {yields} Thus, similarities of structure and reaction mechanism between Pin1 and cyclophilin are proposed. -- Abstract: Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer's disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC{sub 50} = 6.1 {mu}M) and cyclophilin, another type of PPIase, (IC{sub 50} = 13.7 {mu}M). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.

  8. Characterization of an isopentenyl diphosphate isomerase involved in the juvenile hormone pathway in Aedes aegypti.

    PubMed

    Diaz, Miguel E; Mayoral, Jaime G; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2012-10-01

    Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterward IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg(2+) or Mn(2+) but not Zn(2+) for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.

  9. The yeast mitochondrial citrate transport protein: identification of the Lysine residues responsible for inhibition mediated by Pyridoxal 5'-phosphate.

    PubMed

    Remani, Sreevidya; Sun, Jiakang; Kotaria, Rusudan; Mayor, June A; Brownlee, June M; Harrison, David H T; Walters, D Eric; Kaplan, Ronald S

    2008-12-01

    The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5'-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH(2)CH(2)NH(3) (+)) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine

  10. Characterization of an L-arabinose isomerase from Bacillus subtilis.

    PubMed

    Kim, Jin-Ha; Prabhu, Ponnandy; Jeya, Marimuthu; Tiwari, Manish Kumar; Moon, Hee-Jung; Singh, Raushan Kumar; Lee, Jung-Kul

    2010-02-01

    An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypeptide of 496 amino acid residues. The gene was overexpressed in E. coli and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified enzyme showed the highest catalytic efficiency ever reported, with a k(cat) of 14,504 min(-1) and a k(cat)/K(m) of 121 min(-1) mM(-1) for L-arabinose. A homology model of B. subtilis L-AI was constructed based on the X-ray crystal structure of E. coli L-AI. Molecular dynamics simulation studies of the enzyme with the natural substrate, L-arabinose, and an analogue, D-galactose, shed light on the unique substrate specificity displayed by B. subtilis L-AI only towards L-arabinose. Although L-AIs have been characterized from several other sources, B. subtilis L-AI is distinguished from other L-AIs by its high substrate specificity and catalytic efficiency for L-arabinose.

  11. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  12. Prolyl isomerase Pin1 regulates the osteogenic activity of Osterix.

    PubMed

    Lee, Sung Ho; Jeong, Hyung Min; Han, Younho; Cheong, Heesun; Kang, Bok Yun; Lee, Kwang Youl

    2015-01-15

    Osterix is an essential transcription factor for osteoblast differentiation and bone formation. The mechanism of regulation of Osterix by post-translational modification remains unknown. Peptidyl-prolyl isomerase 1 (Pin1) catalyzes the isomerization of pSer/Thr-Pro bonds and induces a conformational change in its substrates, subsequently regulating diverse cellular processes. In this study, we demonstrated that Pin1 interacts with Osterix and influences its protein stability and transcriptional activity. This regulation is likely due to the suppression of poly-ubiquitination-mediated proteasomal degradation of Osterix. Collectively, our data demonstrate that Pin1 is a novel regulator of Osterix and may play an essential role in the regulation of osteogenic differentiation.

  13. Solution structure of 3-oxo-delta5-steroid isomerase.

    PubMed

    Wu, Z R; Ebrahimian, S; Zawrotny, M E; Thornburg, L D; Perez-Alvarado, G C; Brothers, P; Pollack, R M; Summers, M F

    1997-04-18

    The three-dimensional structure of the enzyme 3-oxo-delta5-steroid isomerase (E.C. 5.3.3.1), a 28-kilodalton symmetrical dimer, was solved by multidimensional heteronuclear magnetic resonance spectroscopy. The two independently folded monomers pack together by means of extensive hydrophobic and electrostatic interactions. Each monomer comprises three alpha helices and a six-strand mixed beta-pleated sheet arranged to form a deep hydrophobic cavity. Catalytically important residues Tyr14 (general acid) and Asp38 (general base) are located near the bottom of the cavity and positioned as expected from mechanistic hypotheses. An unexpected acid group (Asp99) is also located in the active site adjacent to Tyr14, and kinetic and binding studies of the Asp99 to Ala mutant demonstrate that Asp99 contributes to catalysis by stabilizing the intermediate.

  14. Human glucose phosphate isomerase: Exon mapping and gene structure

    SciTech Connect

    Xu, Weiming; Lee, Pauline; Beutler, E.

    1995-10-10

    The structure of the gene for human glucose phosphate isomerase (GPI) has been determined. Three GPI clones were isolated from a human genomic library by using a full-length GPI cDNA probe and were characterized. Oligonucleotides based on the known cDNA sequence were used as primers in amplification and sequence analyses. This led to the identification of the exon-intron junctions. By this approach, 18 exons and 17 introns have been identified. The exons range in size from 44 to 431 nucleotides. The intronic sequences surrounding the exons provide useful information for the identification of mutations that give rise to human GPI deficiency associated with chronic hemolytic anemia. 13 refs., 4 figs., 1 tab.

  15. Three phenotypes of glucosephosphate isomerase in sheep: improved staining recipe.

    PubMed

    Manwell, C; Baker, C M; Graydon, R J

    1985-01-01

    Contrary to results published recently, we observe three, rather than two, phenotypes for the enzyme glucosephosphate isomerase (EC 5.3.1.9) from sheep. The phenotypic electrophoretic patterns conform to the patterns observed for this dimeric enzyme in other species. Genotype frequencies in a flock of Southdowns do not deviate significantly from those predicted under the assumption of the Hardy-Weinberg equilibrium. A remarkable observation is that the electrophoretically distinct phenotypes of GPI are largely or entirely obliterated by the addition of 1-10 mmol/l MgCl2 to the electrophoretic buffers. Modification of the usual staining recipe for GPI result in greater resolution and shorter staining times.

  16. ALS-linked protein disulfide isomerase variants cause motor dysfunction.

    PubMed

    Woehlbier, Ute; Colombo, Alicia; Saaranen, Mirva J; Pérez, Viviana; Ojeda, Jorge; Bustos, Fernando J; Andreu, Catherine I; Torres, Mauricio; Valenzuela, Vicente; Medinas, Danilo B; Rozas, Pablo; Vidal, Rene L; Lopez-Gonzalez, Rodrigo; Salameh, Johnny; Fernandez-Collemann, Sara; Muñoz, Natalia; Matus, Soledad; Armisen, Ricardo; Sagredo, Alfredo; Palma, Karina; Irrazabal, Thergiory; Almeida, Sandra; Gonzalez-Perez, Paloma; Campero, Mario; Gao, Fen-Biao; Henny, Pablo; van Zundert, Brigitte; Ruddock, Lloyd W; Concha, Miguel L; Henriquez, Juan P; Brown, Robert H; Hetz, Claudio

    2016-04-15

    Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.

  17. Cumene peroxide and Fe(2+)-ascorbate-induced lipid peroxidation and effect of phosphoglucose isomerase.

    PubMed

    Agadjanyan, Z S; Dugin, S F; Dmitriev, L F

    2006-09-01

    Malondialdehyde (MDA) is one of cytotoxic aldehydes produced in cells as a result of lipid peroxidation and further MDA metabolism in cytoplasm is not known. In our experiments the liver fraction 10,000 g containing phosphoglucose isomerase and enzymes of the glyoxalase system was used and obtained experimental data shows that in this fraction there is an aggregate of reactions taking place both in membranes (lipid peroxidation) and outside membranes. MDA accumulation is relatively slow because MDA is a substrate of aldehyde isomerase (MDA <--> methylglyoxal). The well known enzyme phosphoglucose isomerase acts as an aldehyde isomerase (Michaelis constant for this enzyme Km = 133 +/- 8 microM). MDA conversion to methylglyoxal and further to neutral product D-lactate (with GSH as a cofactor) occurs in cytoplasm and D-lactate should be regarded as the end product of two different parametabolic reactions: lipid peroxidation or protein glycation.

  18. Activation of Colicin M by the FkpA Prolyl Cis-Trans Isomerase/Chaperone*

    PubMed Central

    Helbig, Stephanie; Patzer, Silke I.; Schiene-Fischer, Cordelia; Zeth, Kornelius; Braun, Volkmar

    2011-01-01

    Colicin M (Cma) is specifically imported into the periplasm of Escherichia coli and kills the cells. Killing depends on the periplasmic peptidyl prolyl cis-trans isomerase/chaperone FkpA. To identify the Cma prolyl bonds targeted by FkpA, we replaced the 15 proline residues individually with alanine. Seven mutant proteins were fully active; Cma(P129A), Cma(P176A), and Cma(P260A) displayed 1%, and Cma(P107A) displayed 10% of the wild-type activity. Cma(P107A), Cma(P129A), and Cma(P260A), but not Cma(P176A), killed cells after entering the periplasm via osmotic shock, indicating that the former mutants were translocation-deficient; Cma(P129A) did not bind to the FhuA outer membrane receptor. The crystal structures of Cma and Cma(P176A) were identical, excluding inactivation of the activity domain located far from Pro-176. In a new peptidyl prolyl cis-trans isomerase assay, FkpA isomerized the Cma prolyl bond in peptide Phe-Pro-176 at a high rate, but Lys-Pro-107 and Leu-Pro-260 isomerized at only <10% of that rate. The four mutant proteins secreted into the periplasm via a fused signal sequence were toxic but much less than wild-type Cma. Wild-type and mutant Cma proteins secreted or translocated across the outer membrane by energy-coupled import or unspecific osmotic shock were only active in the presence of FkpA. We propose that Cma unfolds during transfer across the outer or cytoplasmic membrane and refolds to the active form in the periplasm assisted by FkpA. Weak refolding of Cma(P176A) would explain its low activity in all assays. Of the four proline residues identified as being important for Cma activity, Phe-Pro-176 is most likely targeted by FkpA. PMID:21149455

  19. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    PubMed

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency.

  20. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance.

    PubMed

    Jaeken, J; Pirard, M; Adamowicz, M; Pronicka, E; van Schaftingen, E

    1996-11-01

    Isoelectrofocusing of serum sialotransferrins from patients with untreated hereditary fructose intolerance (HFI) shows a cathodal shift similar to that in carbohydrate-deficient glycoprotein (CDG) syndrome type I and in untreated galactosemia. This report is on serum lysosomal enzyme abnormalities in untreated HFI that are identical to those found in CDG syndrome type I but different from those in untreated galactosemia. CDG syndrome type I is due to phosphomannomutase deficiency, a defect in the early glycosylation pathway. It was found that fructose 1-phosphate is a potent competitive inhibitor (Ki congruent to 40 microM) of phosphomannose isomerase (EC 5.3.1.8), the first enzyme of the N-glycosylation pathway thus explaining the N-glycosylation disturbances in HFI.

  1. Probing the location and function of the conserved histidine residue of phosphoglucose isomerase by using an active site directed inhibitor N-bromoacetylethanolamine phosphate.

    PubMed Central

    Meng, M.; Chane, T. L.; Sun, Y. J.; Hsiao, C. D.

    1999-01-01

    Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the interconversion of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting an intrahydrogen transfer between C1 and C2. A conserved histidine exists throughout all phosphoglucose isomerases and was hypothesized to be the base catalyzing the isomerization reaction. In the present study, this conserved histidine, His311, of the enzyme from Bacillus stearothermophilus was subjected to mutational analysis, and the mutational effect on the inactivation kinetics by N-bromoacetylethanolamine phosphate was investigated. The substitution of His311 with alanine, asparagine, or glutamine resulted in the decrease of activity, in k(cat)/K(M), by a factor of 10(3), indicating the importance of this residue. N-bromoacetylethanolamine phosphate inactivated irreversibly the activity of wild-type phosphoglucose isomerase; however, His311 --> Ala became resistant to this inhibitor, indicating that His311 is located in the active site and is responsible for the inactivation of the enzyme by this active site-directed inhibitor. The pKa of His311 was estimated to be 6.31 according to the pH dependence of the inactivation. The proximity of this value with the pKa value of 6.35, determined from the pH dependence of k(cat)/K(M), supports a role of His311 as a general base in the catalysis. PMID:10595547

  2. Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Voronovsky, Andriy Y; Ryabova, Olena B; Verba, Olena V; Ishchuk, Olena P; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2005-11-01

    The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol at high temperatures. H. polymorpha xylose reductase and xylitol dehydrogenase are involved during the first steps of this fermentation. In this article, expression of bacterial xylA genes coding for xylose isomerases from Escherichia coli or Streptomyces coelicolor in the yeast H. polymorpha was shown. The expression was achieved by integration of the xylA genes driven by the promoter of the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase gene ( HpGAP) into the H. polymorpha genome. Expression of the bacterial xylose isomerase genes restored the ability of the H. polymorpha Deltaxyl1 mutant to grow in a medium with xylose as the sole carbon source. This mutant has a deletion of the XYL1 gene encoding xylose reductase and is not able to grow in the xylose medium. The H. polymorpha Deltaxyl1(xylA) transformants displayed xylose isomerase activities, which were near 20% of that of the bacterial host strain. The transformants did not differ from the yeast wild-type strain with respect to ethanol production in xylose medium.

  3. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  4. A mutant pyruvate dehydrogenase E1 subunit allows survival of Escherichia coli strains defective in 1-deoxy-D-xylulose 5-phosphate synthase.

    PubMed

    Sauret-Güeto, Susanna; Urós, Eva María; Ibáñez, Ester; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-02-06

    The 2-C-methyl-D-erythritol 4-phosphate pathway has been proposed as a promising target to develop new antimicrobial agents. However, spontaneous mutations in Escherichia coli were observed to rescue the otherwise lethal loss of the first two enzymes of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), with a relatively high frequency. A mutation in the gene encoding the E1 subunit of the pyruvate dehydrogenase complex was shown to be sufficient to rescue the lack of DXS but not DXR in vivo, suggesting that the mutant enzyme likely allows the synthesis of DXP or an alternative substrate for DXR.

  5. Hyphal tip extension in Aspergillus nidulans requires the manA gene, which encodes phosphomannose isomerase.

    PubMed Central

    Smith, D J; Payton, M A

    1994-01-01

    A strain of Aspergillus nidulans carrying a temperature-sensitive mutation in the manA gene produces cell walls depleted of D-mannose and forms hyphal tip balloons at the restrictive temperature (B.P. Valentine and B.W. Bainbridge, J. Gen. Microbiol. 109:155-168, 1978). We have isolated and characterized the manA gene and physically located it between 3.5 and 5.5 kb centromere distal of the riboB locus on chromosome VIII. The manA gene contains four introns and encodes a 50.6-kDa protein which has significant sequence identity to type I phosphomannose isomerase proteins from other eukaryotes. We have constructed by integrative transformation a null mutation in the manA gene which can only be maintained in a heterokaryotic strain with wild-type manA+ nuclei. Thus, a manA null mutation is lethal in A. nidulans. The phenotype of the mutation was analyzed in germinating conidia. Such conidia are able to commence germination but swell abnormally, sometimes producing a misshapen germ tube, before growth ceases. The reason for the lethality is probably the lack of synthesis of mannose-containing cell wall polymers that must be required for normal cell wall development in growing hyphae. Images PMID:8065336

  6. Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes.

    PubMed

    Araujo, Thaís L S; Zeidler, Julianna D; Oliveira, Percíllia V S; Dias, Matheus H; Armelin, Hugo A; Laurindo, Francisco R M

    2017-02-01

    Extracellular protein disulfide isomerase (PDIA1) pool mediates thrombosis and vascular remodeling, however its externalization mechanisms remain unclear. We performed systematic pharmacological screening of secretory pathways affecting extracellular PDIA1 in endothelial cells (EC). We identified cell-surface (csPDIA1) and secreted non-particulated PDIA1 pools in EC. Such Golgi bypass also occurred for secreted PDIA1 in EC at baseline or after PMA, thrombin or ATP stimulation. Inhibitors of Type I, II and III unconventional routes, secretory lysosomes and recycling endosomes, including syntaxin-12 deletion, did not impair EC PDIA1 externalization. This suggests predominantly Golgi-independent unconventional secretory route(s), which were GRASP55-independent. Also, these data reinforce a vesicular-type traffic for PDIA1. We further showed that PDIA1 traffic is ATP-independent, while actin or tubulin cytoskeletal disruption markedly increased EC PDIA1 secretion. Clathrin inhibition enhanced extracellular soluble PDIA1, suggesting dynamic cycling. Externalized PDIA1 represents <2% of intracellular PDIA1. PDIA1 was robustly secreted by physiological levels of arterial laminar shear in EC and supported alpha 5 integrin thiol oxidation. Such results help clarify signaling and homeostatic mechanisms involved in multiple (patho)physiological extracellular PDIA1 functions.

  7. Characterization of Triosephosphate Isomerase Mutants with Reduced Enzyme Activity in Mus Musculus

    PubMed Central

    Merkle, S.; Pretsch, W.

    1989-01-01

    Four heterozygous triosephosphate isomerase (TPI) mutants with approximately 50% reduced activity in blood compared to wild type were detected in offspring of 1-ethyl-1-nitrosourea treated male mice. Breeding experiments displayed an autosomal, dominant mode of inheritance for the mutations. All mutations were found to be homozygous lethal at an early postimplantation stage of embryonic development, probably due to a total lack of TPI activity and consequently to the inability to utilize glucose as a source of metabolic energy. Although activity alteration was also found in liver, lung, kidney, spleen, heart, brain and muscle the TPI deficiency in heterozygotes has no influence on the following physiological traits: hematological parameters, plasma glucose, glucose consumption of blood cells, body weight and organo-somatic indices of liver, spleen, heart, kidney and lung. Biochemical investigations of TPI in the four mutant lines indicated no difference of physicochemical properties compared to the wild type. Results from immunoinactivation assays indicate that the decrease of enzyme activity corresponds to a decrease in the level of an immunologically active moiety. It is suggested that the mutations have affected the Tpi-1 structural locus and resulted in alleles which produce no detectable enzyme activity and no immunologically cross-reacting material. The study furthermore suggests one functional TPI gene per haploid genome in the erythrocyte and seven other tested organs of the mouse. PMID:2693209

  8. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5'-phosphate (PLP)-dependent enzyme reactions.

    PubMed

    Lambrecht, Jennifer A; Flynn, Jeffrey M; Downs, Diana M

    2012-01-27

    The YjgF/YER057c/UK114 family of proteins is conserved in all domains of life, suggesting that the role of these proteins arose early and was maintained throughout evolution. Metabolic consequences of lacking this protein in Salmonella enterica and other organisms have been described, but the biochemical function of YjgF remained unknown. This work provides the first description of a conserved biochemical activity for the YjgF protein family. Our data support the conclusion that YjgF proteins have enamine/imine deaminase activity and accelerate the release of ammonia from reactive enamine/imine intermediates of the pyridoxal 5'-phosphate-dependent threonine dehydratase (IlvA). Results from structure-guided mutagenesis experiments suggest that YjgF lacks a catalytic residue and that it facilitates ammonia release by positioning a critical water molecule in the active site. YjgF is renamed RidA (reactive intermediate/imine deaminase A) to reflect the conserved activity of the protein family described here. This study, combined with previous physiological studies on yjgF mutants, suggests that intermediates of pyridoxal 5'-phosphate-mediated reactions may have metabolic consequences in vivo that were previously unappreciated. The conservation of the RidA/YjgF family suggests that reactive enamine/imine metabolites are of concern to all organisms.

  9. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    SciTech Connect

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.; Larimer, F.W.

    1998-09-01

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

  10. Antimicrobial mechanism of theaflavins: They target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway

    PubMed Central

    Hui, Xian; Yue, Qiao; Zhang, Dan-Dan; Li, Heng; Yang, Shao-Qing; Gao, Wen-Yun

    2016-01-01

    1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is the first committed enzyme in the 2-methyl-D-erythritol 4-phosphate (MEP) terpenoid biosynthetic pathway and is also a validated antimicrobial target. Theaflavins, which are polyphenolic compounds isolated from fermented tea, possess a wide range of pharmacological activities, especially an antibacterial effect, but little has been reported on their modes of antimicrobial action. To uncover the antibacterial mechanism of theaflavins and to seek new DXR inhibitors from natural sources, the DXR inhibitory activity of theaflavins were investigated in this study. The results show that all four theaflavin compounds could specifically suppress the activity of DXR, with theaflavin displaying the lowest effect against DXR (IC50 162.1 μM) and theaflavin-3,3′-digallate exhibiting the highest (IC50 14.9 μM). Moreover, determination of inhibition kinetics of the theaflavins demonstrates that they are non-competitive inhibitors of DXR against 1-deoxy-D-xylulose 5-phosphate (DXP) and un-competitive inhibitors with respect to NADPH. The possible interactions between DXR and the theaflavins were simulated via docking experiments. PMID:27941853

  11. Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis.

    PubMed

    Walker, Adam K; Farg, Manal A; Bye, Chris R; McLean, Catriona A; Horne, Malcolm K; Atkin, Julie D

    2010-01-01

    Amyotrophic lateral sclerosis is a rapidly progressing fatal neurodegenerative disease characterized by the presence of protein inclusions within affected motor neurons. Endoplasmic reticulum stress leading to apoptosis was recently recognized to be an important process in the pathogenesis of sporadic human amyotrophic lateral sclerosis as well as in transgenic models of mutant superoxide dismutase 1-linked familial amyotrophic lateral sclerosis. Endoplasmic reticulum stress occurs early in disease, indicating a critical role in pathogenesis, and involves upregulation of an important endoplasmic reticulum chaperone, protein disulphide isomerase. We aimed to investigate the involvement of protein disulphide isomerase in endoplasmic reticulum stress induction, protein aggregation, inclusion formation and toxicity in amyotrophic lateral sclerosis. Motor neuron-like NSC-34 cell lines were transfected with superoxide dismutase 1 and protein disulphide isomerase encoding vectors and small interfering RNA, and examined by immunocytochemistry and immunoblotting. Expression of mutant superoxide dismutase 1 induced endoplasmic reticulum stress, predominantly in cells bearing mutant superoxide dismutase 1 inclusions but also in a proportion of cells expressing mutant superoxide dismutase 1 without visible inclusions. Over-expression of protein disulphide isomerase decreased mutant superoxide dismutase 1 aggregation, inclusion formation, endoplasmic reticulum stress induction and toxicity, whereas small interfering RNA targeting protein disulphide isomerase increased mutant superoxide dismutase 1 inclusion formation, indicating a protective role for protein disulphide isomerase against superoxide dismutase 1 misfolding. Aberrant modification of protein disulphide isomerase by S-nitrosylation of active site cysteine residues has previously been shown as an important process in neurodegeneration in Parkinson's and Alzheimer's disease brain tissue, but has not been described in

  12. Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia.

    PubMed

    Reyes-Vivas, Horacio; de la Mora-de la Mora, Ignacio; Castillo-Villanueva, Adriana; Yépez-Mulia, Lilian; Hernández-Alcántara, Gloria; Figueroa-Salazar, Rosalia; García-Torres, Itzhel; Gómez-Manzo, Saúl; Méndez, Sara T; Vanoye-Carlo, América; Marcial-Quino, Jaime; Torres-Arroyo, Angélica; Oria-Hernández, Jesús; Gutiérrez-Castrellón, Pedro; Enríquez-Flores, Sergio; López-Velázquez, Gabriel

    2014-12-01

    Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.

  13. Giardial Triosephosphate Isomerase as Possible Target of the Cytotoxic Effect of Omeprazole in Giardia lamblia

    PubMed Central

    Reyes-Vivas, Horacio; de la Mora-de la Mora, Ignacio; Castillo-Villanueva, Adriana; Yépez-Mulia, Lilian; Hernández-Alcántara, Gloria; Figueroa-Salazar, Rosalia; García-Torres, Itzhel; Gómez-Manzo, Saúl; Méndez, Sara T.; Vanoye-Carlo, América; Marcial-Quino, Jaime; Torres-Arroyo, Angélica; Oria-Hernández, Jesús; Gutiérrez-Castrellón, Pedro; Enríquez-Flores, Sergio

    2014-01-01

    Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia. PMID:25223993

  14. Microbial sucrose isomerases: producing organisms, genes and enzymes.

    PubMed

    Goulter, Ken C; Hashimi, Saeed M; Birch, Robert G

    2012-01-05

    Sucrose isomerase (SI) activity is used industrially for the conversion of sucrose into isomers, particularly isomaltulose or trehalulose, which have properties advantageous over sucrose for some food uses. All of the known microbial SIs are TIM barrel proteins that convert sucrose without need for any cofactors, with varying kinetics and product specificities. The current analysis was undertaken to bridge key gaps between the information in patents and scientific publications about the microbes and enzymes useful for sucrose isomer production. This analysis shows that microbial SIs can be considered in 5 structural classes with corresponding functional distinctions that broadly align with the taxonomic differences between producing organisms. The most widely used bacterial strain for industrial production of isomaltulose, widely referred to as "Protaminobacter rubrum" CBS 574.77, is identified as Serratia plymuthica. The strain producing the most structurally divergent SI, with a high product specificity for trehalulose, widely referred to as "Pseudomonas mesoacidophila" MX-45, is identified as Rhizobium sp. Each tested SI-producer is shown to have a single SI gene and enzyme, so the properties reported previously for the isolated proteins can reasonably be associated with the products of the genes subsequently cloned from the same isolates and SI classes. Some natural isolates with potent SI activity do not catabolize the isomer under usual production conditions. The results indicate that their industrial potential may be further enhanced by selection for variants that do not catabolize the sucrose substrate.

  15. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    SciTech Connect

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-04-20

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.

  16. Purification and characterization of corticosteroid side chain isomerase

    SciTech Connect

    Marandici, A.; Monder, C. )

    1990-02-06

    Corticosteroid side chain isomerase of rat liver catalyzes the interconversion of the ketol (20-oxo-21-ol) and (20-hydroxy-21-al) forms of the corticosteroid side chain. The enzyme has now been purified to apparent homogeneity from rat liver cytosol by sequential chromatography on anionic, hydroxylapatite, and gel filtration columns. Ketol-aldol isomerization is followed by measuring the exchange of tritium from 21-tritiated steroids with water. The native enzyme is a dimer of MW 44,000. The isoelectric point is 4.8 {plus minus} 0.1 pH units. The purified enzyme is stimulated by Co{sup 3+} or Ni{sup 2+}. The enzyme utilizes 11-deoxycorticosterone, corticosterone, and 17-deoxycortisol as substrate but not cortisol, tetrahydrocortisol, and prednisolone. Tritium-water exchange of (21S)-(21-{sup 3}H)DOC is a pseudo-first-order reaction; 21-{sup 3}H exchange from the 21R isomer proceeds with first-order kinetics only after a lag associated with its epimerization to the 21S form.

  17. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  18. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties.

    PubMed

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-05-30

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis.

  19. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    SciTech Connect

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.; Pegan, Scott D.

    2012-04-18

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for future therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.

  20. Molecular simulations of solute transport in xylose isomerase crystals.

    PubMed

    Malek, Kourosh; Coppens, Marc-Olivier

    2008-02-07

    Cross-linked enzyme crystals (CLECs) enclose an extensive regular matrix of chiral solvent-filled nanopores, via which ions and solutes travel in and out. Several cross-linked enzyme crystals have recently been used for chiral separation and as biocatalysts. We studied the dynamics of solute transport in orthorhombic d-xylose isomerase (XI) crystals by means of Brownian dynamics (BD) and molecular dynamics (MD) simulations, which show how the protein residues influence the dynamics of solute molecules in confined regions inside the lattice. In the BD simulations, coarse-grained beads represent solutes of different sizes. The diffusion of S-phenylglycine molecules inside XI crystals is investigated by long-time MD simulations. The computed diffusion coefficients within a crystal are found to be orders of magnitude lower than in bulk water. The simulation results are compared to the recent experimental studies of diffusion and reaction inside XI crystals. The insights obtained from simulations allow us to understand the nature of solute-protein interactions and transport phenomena in CLECs, which is useful for the design of novel nanoporous biocatalysts and bioseparations based on CLECs.

  1. Plant phosphomannose isomerase as a selectable marker for rice transformation

    PubMed Central

    Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo

    2016-01-01

    The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847

  2. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    DOE PAGES

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; ...

    2015-04-20

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligandmore » positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.« less

  3. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision.

    PubMed

    Kiser, Philip D; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-06-01

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.

  4. The flexibility and dynamics of protein disulfide isomerase

    PubMed Central

    Wells, Stephen A.; Emilio Jimenez‐Roldan, J.; Bhattacharyya, Moitrayee; Vishweshwara, Saraswathi; Freedman, Robert B.

    2016-01-01

    ABSTRACT We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc. PMID:27616289

  5. Expression and Localization of Plant Protein Disulfide Isomerase.

    PubMed Central

    Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.

    1993-01-01

    A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974

  6. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis.

    PubMed

    Park, Nam Il; Xu, Hui; Li, Xiaohua; Kim, Sun-Ju; Park, Sang Un

    2011-09-01

    A complementary DNA (cDNA) encoding Scutellaria baicalensis chalcone isomerase (SbCHI) was isolated using rapid amplification of cDNA ends polymerase chain reaction. After the treatment of wounding or methyl jasmonate, SbCHI transcripts were increased in S. baicalensis cell suspensions. SbCHI-overexpressed and SbCH-silenced transgenic hairy root lines were established by using an Agrobacterium rhizogenes-mediated system. SbCHI-overexpressed hairy root lines not only enhanced SbCHI gene expression but also produced more flavones (i.e., baicalin, baicalein, and wogonin) than the control hairy root line. In contrast, SbCHI-silenced hairy root lines reduced SbCHI transcripts and flavone production compared to those of the control hairy roots. In addition, the amount of wogonin in all hairy root cultures was increased compared to that of wild-type roots of S. baicalensis. Finally, this study showed the importance of CHI in flavone biosynthesis and the efficiency of metabolic engineering in S. baicalensis hairy roots.

  7. Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction.

    PubMed

    Li, Sha; Cai, Heng; Qing, Yujia; Ren, Ben; Xu, Hong; Zhu, Hongyang; Yao, Jun

    2011-01-01

    The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K (m) of 257 mmol/l and V (max) of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a "batch"-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.

  8. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  9. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice.

    PubMed

    Sharma, Vandana; Nayak, Jonamani; DeRossi, Charles; Charbono, Adriana; Ichikawa, Mie; Ng, Bobby G; Grajales-Esquivel, Erika; Srivastava, Anand; Wang, Ling; He, Ping; Scott, David A; Russell, Joseph; Contreras, Emily; Guess, Cherise M; Krajewski, Stan; Del Rio-Tsonis, Katia; Freeze, Hudson H

    2014-04-01

    Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.

  10. Effects of a Buried Cysteine-To-Serine Mutation on Yeast Triosephosphate Isomerase Structure and Stability

    PubMed Central

    Hernández-Santoyo, Alejandra; Domínguez-Ramírez, Lenin; Reyes-López, César A.; González-Mondragón, Edith; Hernández-Arana, Andrés; Rodríguez-Romero, Adela

    2012-01-01

    All the members of the triosephosphate isomerase (TIM) family possess a cystein residue (Cys126) located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM) at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132–138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns. PMID:22949845

  11. Phosphate–Induced Renal Fibrosis Requires the Prolyl Isomerase Pin1

    PubMed Central

    Shiizaki, Kazuhiro; Kuro-o, Makoto; Malter, James S.

    2016-01-01

    Tubulo-interstitial fibrosis is a common, destructive endpoint for a variety of kidney diseases. Fibrosis is well correlated with the loss of kidney function in both humans and rodents. The identification of modulators of fibrosis could provide novel therapeutic approaches to reducing disease progression or severity. Here, we show that the peptidyl-prolyl isomerase Pin1 is an important molecular contributor that facilitates renal fibrosis in a well-characterized animal model. While wild-type mice fed a high phosphate diet (HPD) for 8–12 weeks developed calcium deposition, macrophage infiltration and extracellular matrix (ECM) accumulation in the kidney interstitium, Pin1 null mice showed significantly less pathology. The serum Pi in both WT and KO mice were significantly increased by the HPD, but the serum Ca was slightly decreased in KO compared to WT. In addition, both WT and KO HPD mice had less weight gain but exhibited normal organ mass (kidney, lung, spleen, liver and heart). Unexpectedly, renal function was not initially impaired in either genotype irrespective of the HPD. Our results suggest that diet containing high Pi induces rapid renal fibrosis before a significant impact on renal function and that Pin1 plays an important role in the fibrotic process. PMID:26914452

  12. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato.

    PubMed

    Kang, Jin-Ho; McRoberts, John; Shi, Feng; Moreno, Javier E; Jones, A Daniel; Howe, Gregg A

    2014-03-01

    Flavonoids and terpenoids are derived from distinct metabolic pathways but nevertheless serve complementary roles in mediating plant interactions with the environment. Here, we show that glandular trichomes of the anthocyanin free (af) mutant of cultivated tomato (Solanum lycopersicum) fail to accumulate both flavonoids and terpenoids. This pleiotropic metabolic deficiency was associated with loss of resistance to native populations of coleopteran herbivores under field conditions. We demonstrate that Af encodes an isoform (SlCHI1) of the flavonoid biosynthetic enzyme chalcone isomerase (CHI), which catalyzes the conversion of naringenin chalcone to naringenin and is strictly required for flavonoid production in multiple tissues of tomato. Expression of the wild-type SlCHI1 gene from its native promoter complemented the anthocyanin deficiency in af. Unexpectedly, the SlCHI1 transgene also complemented the defect in terpenoid production in glandular trichomes. Our results establish a key role for SlCHI1 in flavonoid production in tomato and reveal a link between CHI1 and terpenoid production. Metabolic coordination of the flavonoid and terpenoid pathways may serve to optimize the function of trichome glands in dynamic environments.

  13. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    PubMed

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-03-11

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min(-1). The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  14. Synthesis of hydrolysis-resistant pyridoxal 5'-phosphate analogs and their biochemical and X-ray crystallographic characterization with the pyridoxal phosphatase chronophin.

    PubMed

    Knobloch, Gunnar; Jabari, Nauras; Stadlbauer, Sven; Schindelin, Hermann; Köhn, Maja; Gohla, Antje

    2015-06-15

    A set of phosphonic acid derivatives (1-4) of pyridoxal 5'-phosphate (PLP) was synthesized and characterized biochemically using purified murine pyridoxal phosphatase (PDXP), also known as chronophin. The most promising compound 1 displayed primarily competitive PDXP inhibitory activity with an IC50 value of 79μM, which was in the range of the Km of the physiological substrate PLP. We also report the X-ray crystal structure of PDXP bound to compound 3, which we solved to 2.75Å resolution (PDB code 5AES). The co-crystal structure proves that compound 3 binds in the same orientation as PLP, and confirms the mode of inhibition to be competitive. Thus, we identify compound 1 as a PDXP phosphatase inhibitor. Our results suggest a strategy to design new, potent and selective PDXP inhibitors, which may be useful to increase the sensitivity of tumor cells to treatment with cytotoxic agents.

  15. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  16. Enzymes do what is expected (chalcone isomerase versus chorismate mutase).

    PubMed

    Hur, Sun; Bruice, Thomas C

    2003-02-12

    Madicago sativa chalcone isomerase (CI) catalyzes the isomerization of chalcone to flavanone, whereas E. coli chorismate mutase (CM) catalyzes the pericyclic rearrangement of chorismate to prephenate. Covalent intermediates are not formed in either of the enzyme-catalyzed reactions, K(M) and k(cat) are virtually the same for both enzymes, and the rate constants (k(o)) for the noncatalyzed reactions in water are also the same. This kinetic identity of both the enzymatic and the nonenzymatic reactions is not shared by a similarity in driving forces. The efficiency (DeltaG(o)() - DeltaG(cat)()) for the CI mechanism involves transition-state stabilization through general-acid catalysis and freeing of three water molecules trapped in the E.S species. The contribution to lowering DeltaG(cat)() by an increase in near attack conformer (NAC) formation in E.S as compared to S in water is not so important. In the CM reaction, the standard free energy for NAC formation in water is 8.4 kcal/mol as compared to 0.6 kcal/mol in E.S. Because the value of (DeltaG(o)() - DeltaG(cat)()) is 9 kcal/mol, the greater percentage of NACs accounts for approximately 90% of the kinetic advantage of the CM reaction. There is no discernible transition-state stabilization in the CM reaction. These results are discussed. In anthropomorphic terms, each enzyme has had to do what it must to have a biologically relevant rate of reaction.

  17. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae.

    PubMed

    Farquhar, R; Honey, N; Murant, S J; Bossier, P; Schultz, L; Montgomery, D; Ellis, R W; Freedman, R B; Tuite, M F

    1991-12-01

    Protein disulfide isomerase (PDI) is an enzyme involved in the catalysis of disulfide bond formation in secretory and cell-surface proteins. Using an oligodeoxyribonucleotide designed to detect the conserved 'thioredoxin-like' active site of vertebrate PDIs, we have isolated a gene encoding PDI from the lower eukaryote, Saccharomyces cerevisiae. The nucleotide sequence and deduced open reading frame of the cloned gene predict a 530-amino-acid (aa) protein of Mr 59,082 and a pI of 4.1, physical properties characteristic of mammalian PDIs. Furthermore, the aa sequence shows 30-32% identity with mammalian and avian PDI sequences and has a very similar overall organisation, namely the presence of two approx. 100-aa segments, each of which is repeated, with the most significant homologies to mammalian and avian PDIs being in the regions (a, a') that contain the conserved 'thioredoxin-like' active site. The N-terminal region has the characteristics of a cleavable secretory signal sequence and the C-terminal four aa (-His-Asp-Glu-Leu) are consistent with the protein being a component of the S. cerevisiae endoplasmic reticulum. Transformants carrying multiple copies of this gene (designated PDI1) have tenfold higher levels of PDI activity and overproduce a protein of the predicted Mr. The PDI1 gene is unique in the yeast genome and encodes a single 1.8-kb transcript that is not found in stationary phase cells. Disruption of the PDI1 gene is haplo-lethal indicating that the product of this gene is essential for viability.

  18. Identification of fibrillogenic regions in human triosephosphate isomerase

    PubMed Central

    Carcamo-Noriega, Edson N.

    2016-01-01

    Background. Amyloid secondary structure relies on the intermolecular assembly of polypeptide chains through main-chain interaction. According to this, all proteins have the potential to form amyloid structure, nevertheless, in nature only few proteins aggregate into toxic or functional amyloids. Structural characteristics differ greatly among amyloid proteins reported, so it has been difficult to link the fibrillogenic propensity with structural topology. However, there are ubiquitous topologies not represented in the amyloidome that could be considered as amyloid-resistant attributable to structural features, such is the case of TIM barrel topology. Methods. This work was aimed to study the fibrillogenic propensity of human triosephosphate isomerase (HsTPI) as a model of TIM barrels. In order to do so, aggregation of HsTPI was evaluated under native-like and destabilizing conditions. Fibrillogenic regions were identified by bioinformatics approaches, protein fragmentation and peptide aggregation. Results. We identified four fibrillogenic regions in the HsTPI corresponding to the β3, β6, β7 y α8 of the TIM barrel. From these, the β3-strand region (residues 59–66) was highly fibrillogenic. In aggregation assays, HsTPI under native-like conditions led to amorphous assemblies while under partially denaturing conditions (urea 3.2 M) formed more structured aggregates. This slightly structured aggregates exhibited residual cross-β structure, as demonstrated by the recognition of the WO1 antibody and ATR-FTIR analysis. Discussion. Despite the fibrillogenic regions present in HsTPI, the enzyme maintained under native-favoring conditions displayed low fibrillogenic propensity. This amyloid-resistance can be attributed to the three-dimensional arrangement of the protein, where β-strands, susceptible to aggregation, are protected in the core of the molecule. Destabilization of the protein structure may expose inner regions promoting β-aggregation, as well as the

  19. Purification, characterization and catalytic properties of human sterol 8-isomerase.

    PubMed Central

    Nes, W David; Zhou, Wenxu; Dennis, Allen L; Li, Haoxia; Jia, Zhonghua; Keith, Richard A; Piser, Timothy M; Furlong, Stephen T

    2002-01-01

    CHO 2, encoding human sterol 8-isomerase (hSI), was introduced into plasmids pYX213 or pET23a. The resulting native protein was overexpressed in erg 2 yeast cells and purified to apparent homogeneity. The enzyme exhibited a K (m) of 50 microM and a turnover number of 0.423 s(-1) for zymosterol, an isoelectric point of 7.70, a native molecular mass of 107000 Da and was tetrameric. The structural features of zymosterol provided optimal substrate acceptability. Biomimetic studies of acid-catalysed isomerization of zymosterol resulted in formation of cholest-8(14)-enol, whereas the enzyme-generated product was a Delta(7)-sterol, suggesting absolute stereochemical control of the reaction by hSI. Using (2)H(2)O and either zymosterol or cholesta-7,24-dienol as substrates, the reversibility of the reaction was confirmed by GC-MS of the deuterated products. The positional specific incorporation of deuterium at C-9alpha was established by a combination of (1)H- and (13)C-NMR analyses of the enzyme-generated cholesta-7,24-dienol. Kinetic analyses indicated the reaction equilibrium ( K (eq)=14; DeltaG(o')=-6.5 kJ/mol) for double-bond isomerization favoured the forward direction, Delta(8) to Delta(7). Treatment of hSI with different high-energy intermediate analogues produced the following dissociation constants ( K (i)): emopamil (2 microM)=tamoxifen (1 microM)=tridemorph (1 microM)<25-azacholesterol (21 microM)

  20. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

    PubMed

    Brat, Dawid; Boles, Eckhard; Wiedemann, Beate

    2009-04-01

    In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.

  2. Evolutionary genomics of Colias Phosphoglucose Isomerase (PGI) introns.

    PubMed

    Wang, Baiqing; Mason Depasse, J; Watt, Ward B

    2012-02-01

    Little is known of intron sequences' variation in cases where eukaryotic gene coding regions undergo strong balancing selection. Phosphoglucose isomerase, PGI, of Colias butterflies offers such a case. Its 11 introns include many point mutations, insertions, and deletions. This variation changes with intron position and length, and may leave little evidence of homology within introns except for their first and last few basepairs. Intron position is conserved between PGIs of Colias and the silkmoth, but no intron sequence homology remains. % GC content and length are functional properties of introns which can affect whole-gene transcription; we find a relationship between these properties which may indicate selection on transcription speed. Intragenic recombination is active in these introns, as in coding sequences. The small extent of linkage disequilibrium (LD) in the introns decays over a few hundred basepairs. Subsequences of Colias introns match subsequences of other introns, untranslated regions of cDNAs, and insect-related transposons and pathogens, showing that a diverse pool of sequence fragments is the source of intron contents via turnover due to deletion, recombination, and transposition. Like Colias PGI's coding sequences, the introns evolve reticulately with little phylogenetic signal. Exceptions are coding-region allele clades defined by multiple amino acid variants in strong LD, whose introns are closely related but less so than their exons. Similarity of GC content between introns and flanking exons, lack of small introns despite mutational bias toward deletion, and findings already mentioned suggest constraining selection on introns, possibly balancing transcription performance against advantages of higher recombination rate conferred by intron length.

  3. Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A.

    PubMed Central

    Lee, C Y; Zeikus, J G

    1991-01-01

    Glucose isomerases produced by Thermoanaerobacter strain B6A and Clostridium thermosulfurogenes strain 4B were purified 10-11-fold to homogeneity and their physicochemical and catalytic properties were determined. Both purified enzymes displayed very similar properties (native Mr 200,000, tetrameric subunit composition, and apparent pH optima 7.0-7.5). The enzymes were stable at pH 5.5-12.0, and maintained more than 90% activity after incubation at high temperature (85 degrees C) for 1 h in the presence of metal ions. The N-terminal amino acid sequences of both thermostable glucose isomerases were Met-Asn-Lys-Tyr-Phe-Glu-Asn and were not similar to that of the thermolabile Bacillus subtilis enzyme. The glucose isomerase from C. thermosulfurogenes and Thermoanaerobacter displayed pI values of 4.9 and 4.8, and their kcat. and Km values for D-glucose at 65 degrees C were 1040 and 1260 min-1 and 140 and 120 mM respectively. Both enzymes displayed higher kcat. and lower Km values for D-xylose than for D-glucose. The C. thermosulfurogenes enzyme required Co2+ or Mg2+ for thermal stability and glucose isomerase activity, and Mn2+ or these metals for xylose isomerase activity. Crystals of C. thermosulfurogenes glucose isomerase were formed at room temperature by the hanging-drop method using 16-18% poly(ethylene glycol) (PEG) 4000 in 0.1 M-citrate buffer. Images Fig. 1. Fig. 5. PMID:1996956

  4. Biosynthesis of benzofuran derivatives in root cultures of Tagetes patula via phenylalanine and 1-deoxy-D-xylulose 5-phosphate.

    PubMed

    Margl, Lilla; Ettenhuber, Christian; Gyurján, István; Zenk, Meinhart H; Bacher, Adelbert; Eisenreich, Wolfgang

    2005-04-01

    Root cultures of Tagetes patula L. cv. Carmen were grown with a mixture of unlabeled glucose and [U-(13)C(6)]glucose or [1-(13)C(1)]glucose as carbon source. Isoeuparin and (-)-4-hydroxytremetone were isolated by solvent extraction of the cultured tissue, purified by chromatography and analysed by (1)H and (13)C NMR spectroscopy. Amino acids obtained by hydrolysis of protein from the same experiments were used for the reconstruction of the labelling patterns in central metabolic intermediates. These labelling patterns were used for the prediction of isotopolog compositions in the benzofuranone derivatives via different hypothetical pathways. Comparison with the experimentally observed isotopolog distributions showed that the benzenoid ring and the acetoxy group are exclusively or predominantly (>98%) derived from phenylalanine and not from acetyl-CoA via a polyketide-type biosynthesis. The isopropylidene side chain and two carbon atoms of the furan and dihydrofuran moiety, respectively, originate from an isoprenoid building block obtained exclusively or predominantly (>98%) via the deoxyxylulose phosphate pathway. The exomethylene atom of the isopropylidene side chain is biosynthetically equivalent to the (Z)-methyl group of dimethylallyl diphosphate. The data indicate that isoeuparin and (-)-4-hydroxytremetone are assembled from 4-hydroxyacetophenone and dimethylallyl diphosphate via prenyl-substituted 4-hydroxyacetophenone and dihydrobenzofurans as intermediates.

  5. Method for the assay of glucose isomerase activity in complex fermentation mixtures

    SciTech Connect

    Boguslawski, G.; Bertch, S.W.

    1980-10-01

    A method for the determination of glucose isomerase activity is described. The method employs D-sorbitol dehydrogenase for conversion of fructose, formed in the glucose isomerase reaction, to sorbitol, with the concomitant oxidation of reduced nicotinamide adenine dinucleotide. The assay technique is simple, sensitive, and accurate. The few interferences by some sugars and components of a complex fermentation medium are easily corrected for. The method compares favorably with such alternative procedures as the cysteine--H/sub 2/SO/sub 4/ or hydrochloric acid methods of fructose determination.

  6. Interruption of the phosphoglucose isomerase gene results in glucose auxotrophy in Mycobacterium smegmatis.

    PubMed Central

    Tuckman, D; Donnelly, R J; Zhao, F X; Jacobs, W R; Connell, N D

    1997-01-01

    Two glycerol utilization mutants of Mycobacterium smegmatis that were unable to utilize most carbon sources except glucose were isolated. Supplementation of these media with small amounts of glucose restored growth in the mutants; these strains are therefore glucose auxotrophs. The mutant phenotype is complemented by the gene encoding phosphoglucose isomerase (pgi), and direct measurement of enzyme activities in the mutants suggests that this gene product is absent in the auxotrophic strains. Mapping of the mutant allele by Southern analysis demonstrates the presence of a 1-kb deletion extending into the coding sequence of pgi. The possible roles of phosphoglucose isomerase in mycobacterial cell wall synthesis and metabolic regulation are discussed. PMID:9098072

  7. Interruption of the phosphoglucose isomerase gene results in glucose auxotrophy in Mycobacterium smegmatis.

    PubMed

    Tuckman, D; Donnelly, R J; Zhao, F X; Jacobs, W R; Connell, N D

    1997-04-01

    Two glycerol utilization mutants of Mycobacterium smegmatis that were unable to utilize most carbon sources except glucose were isolated. Supplementation of these media with small amounts of glucose restored growth in the mutants; these strains are therefore glucose auxotrophs. The mutant phenotype is complemented by the gene encoding phosphoglucose isomerase (pgi), and direct measurement of enzyme activities in the mutants suggests that this gene product is absent in the auxotrophic strains. Mapping of the mutant allele by Southern analysis demonstrates the presence of a 1-kb deletion extending into the coding sequence of pgi. The possible roles of phosphoglucose isomerase in mycobacterial cell wall synthesis and metabolic regulation are discussed.

  8. Induction of chalcone isomerase in elicitor-treated bean cells. Comparison of rates of synthesis and appearance of immunodetectable enzyme.

    PubMed

    Robbins, M P; Dixon, R A

    1984-11-15

    Chalcone isomerase, an enzyme involved in the formation of flavonoid-derived compounds in plants, has been purified nearly 600-fold from cell suspension cultures of dwarf French bean (Phaseolus vulgaris L.). Chromatofocussing yielded a single form of the enzyme of apparent pI 5.0. This preparation was used to raise rabbit anti-(chalcone isomerase) serum. Changes in the rate of synthesis of chalcone isomerase have been investigated by indirect immunoprecipitation of enzyme labelled in vivo with [35S]methionine in elicitor-treated cultures of P. vulgaris. Elicitor, heat-released from cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose disease of bean, causes increased synthesis of the isomerase, with maximum synthetic rate occurring 11-12 h after exposure to elicitor. Immune blotting studies indicate that the elicitor-mediated increase in extractable activity of the isomerase is associated with increased appearance of immunodetactable isomerase protein of Mr 27 000. However, the maximum level of immunodetectable isomerase was attained approximately 6 h earlier than maximum extractable activity. Furthermore, a 2.8-fold increase in enzyme activity above basal levels at 12 h after elicitor-treatment was associated with a corresponding 5.8-fold increase in immunodetectable enzyme. It is concluded that elicitor induces the synthesis of both active and inactive chalcone isomerase of Mr 27 000, and that some activation of inactive enzyme occurs during the elicitor-mediated increase in isomerase activity. The presence of a pool of inactive chalcone isomerase in bean cell cultures has recently been suggested on the basis of density labelling experiments utilising 2H from 2H2O [Dixon et al. (1983) Planta (Berl.) 159, 561-569].

  9. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  10. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    PubMed

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.

  11. L-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5'-phosphate-binding lysine residue by site-directed mutagenesis.

    PubMed Central

    Liu, J Q; Dairi, T; Kataoka, M; Shimizu, S; Yamada, H

    1997-01-01

    We have isolated the gene encoding L-allo-threonine aldolase (L-allo-TA) from Aeromonas jandaei DK-39, a pyridoxal 5'-phosphate (PLP)-dependent enzyme that stereospecifically catalyzes the interconversion of L-allo-threonine and glycine. The gene contains an open reading frame consisting of 1,014 nucleotides corresponding to 338 amino acid residues. The protein molecular weight was estimated to be 36,294, which is in good agreement with the subunit molecular weight of the enzyme determined by polyacrylamide gel electrophoresis. The enzyme was overexpressed in recombinant Escherichia coli cells and purified to homogeneity by one hydrophobic column chromatography step. The predicted amino acid sequence showed no significant similarity to those of the currently known PLP-dependent enzymes but displayed 40 and 41% identity with those of the hypothetical GLY1 protein of Saccharomyces cerevisiae and the GLY1-like protein of Caenorhabditis elegans, respectively. Accordingly, L-allo-TA might represent a new type of PLP-dependent enzyme. To determine the PLP-binding site of the enzyme, all of the three conserved lysine residues of L-allo-TA were replaced by alanine by site-directed mutagenesis. The purified mutant enzymes, K51A and K224A, showed properties similar to those of the wild type, while the mutant enzyme K199A was catalytically inactive, with corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys199 of L-allo-TA probably functions as an essential catalytic residue forming an internal Schiff base with PLP of the enzyme to catalyze the reversible aldol reaction. PMID:9171400

  12. Structural Effects of Protein Aging: Terminal Marking by Deamidation in Human Triosephosphate Isomerase

    PubMed Central

    de la Mora-de la Mora, Ignacio; Torres-Larios, Alfredo; Enríquez-Flores, Sergio; Méndez, Sara-Teresa; Castillo-Villanueva, Adriana; Gómez-Manzo, Saúl; López-Velázquez, Gabriel; Marcial-Quino, Jaime; Torres-Arroyo, Angélica; García-Torres, Itzhel; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2015-01-01

    Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs. PMID:25884638

  13. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    PubMed

    Lara-Gonzalez, Samuel; Estrella, Priscilla; Portillo, Carmen; Cruces, María E; Jimenez-Sandoval, Pedro; Fattori, Juliana; Migliorini-Figueira, Ana C; Lopez-Hidalgo, Marisol; Diaz-Quezada, Corina; Lopez-Castillo, Margarita; Trasviña-Arenas, Carlos H; Sanchez-Sandoval, Eugenia; Gómez-Puyou, Armando; Ortega-Lopez, Jaime; Arroyo, Rossana; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2015-01-01

    The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  14. Carotenoid isomerase is key determinant of petal color of Calendula officinalis.

    PubMed

    Kishimoto, Sanae; Ohmiya, Akemi

    2012-01-02

    Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462-464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO.

  15. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis

    PubMed Central

    Lara-Gonzalez, Samuel; Estrella, Priscilla; Portillo, Carmen; Cruces, María E.; Jimenez-Sandoval, Pedro; Fattori, Juliana; Migliorini-Figueira, Ana C.; Lopez-Hidalgo, Marisol; Diaz-Quezada, Corina; Lopez-Castillo, Margarita; Trasviña-Arenas, Carlos H.; Sanchez-Sandoval, Eugenia; Gómez-Puyou, Armando; Ortega-Lopez, Jaime; Arroyo, Rossana; Benítez-Cardoza, Claudia G.; Brieba, Luis G.

    2015-01-01

    The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding. PMID:26618356

  16. Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect.

    PubMed

    Tanaka, Leonardo Y; Araújo, Haniel A; Hironaka, Gustavo K; Araujo, Thaís L S; Takimura, Celso K; Rodriguez, Andres I; Casagrande, Annelise S; Gutierrez, Paulo S; Lemos-Neto, Pedro Alves; Laurindo, Francisco R M

    2016-03-01

    Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of β1-integrin, and levels of reduced cell-surface β1-integrin, were diminished after PDI antibody treatment, implicating β1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream β1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to

  17. Cytosolic Triosephosphate Isomerase from Arabidopsis thaliana Is Reversibly Modified by Glutathione on Cysteines 127 and 218

    PubMed Central

    Dumont, Sébastien; Bykova, Natalia V.; Pelletier, Guillaume; Dorion, Sonia; Rivoal, Jean

    2016-01-01

    In plant cells, an increase in cellular oxidants can have multiple effects, including the promotion of mixed disulfide bonds between glutathione and some proteins (S-glutathionylation). The present study focuses on the cytosolic isoform of the glycolytic enzyme triosephosphate isomerase (cTPI) from Arabidopsis thaliana and its reversible modification by glutathione. We used purified recombinant cTPI to demonstrate the enzyme sensitivity to inhibition by N-ethylmaleimide, hydrogen peroxide and diamide. Treatment of cTPI with diamide in the presence of reduced glutathione (GSH) led to a virtually complete inhibition of its enzymatic activity by S-glutathionylation. Recombinant cTPI was also sensitive to the oxidized form of glutathione (GSSG) in the micromolar range. Activity of cTPI was restored after reversion of S-glutathionylation by two purified recombinant A. thaliana cytosolic glutaredoxins (GRXs). GRXs-mediated deglutathionylation of cTPI was dependent on a GSH-regenerating system. Analysis of cTPI by mass spectrometry after S-glutathionylation by GSSG revealed that two Cys residues (Cys127 and Cys218) were modified by glutathione. The role of these two residues was assessed using site-directed mutagenesis. Mutation of Cys127 and Cys218 to Ser separately or together caused different levels of decrease in enzyme activity, loss of stability, as well as alteration of intrinsic fluorescence, underlining the importance of these Cys residues in protein conformation. Comparison of wild-type and mutant proteins modified with biotinyl glutathione ethyl ester (BioGEE) showed partial binding with single mutants and total loss of binding with the double mutant, demonstrating that both Cys residues were significantly S-glutathionylated. cTPI modification with BioGEE was reversed using DTT. Our study provides the first identification of the amino acid residues involved in cTPI S-glutathionylation and supports the hypothesis that this reversible modification could be part

  18. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    PubMed

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  19. Structural effects of protein aging: Terminal marking by deamidation in human triosephosphate isomerase

    SciTech Connect

    Torres-Larios, Alfredo; Enríquez-Flores, Sergio; Méndez, Sara -Teresa; Castillo-Villanueva, Adriana; Gómez-Manzo, Saúl; Velázquez, Gabriel López-; Marcial-Quino, Jaime; Torres-Arroyo, Angélica; García-Torres, Itzhel; Reyes-Vivas, Horacio; Oria-Hernández, Jesús; de la Mora-de la Mora, Ignacio

    2015-04-17

    Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.

  20. Structural effects of protein aging: Terminal marking by deamidation in human triosephosphate isomerase

    DOE PAGES

    Torres-Larios, Alfredo; Enríquez-Flores, Sergio; Méndez, Sara -Teresa; ...

    2015-04-17

    Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme formore » which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.« less

  1. Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes.

    PubMed Central

    Li, J; Zhao, J; Rose, A B; Schmidt, R; Last, R L

    1995-01-01

    Phosphoribosylanthranilate isomerase (PAI) catalyzes the third step of the tryptophan biosynthetic pathway. Arabidopsis PAI cDNAs were cloned from a cDNA expression library by complementation of an Escherichia coli trpC- PAI deficiency mutation. Genomic DNA blot hybridization analysis detected three nonallelic genes encoding PAI in the Arabidopsis genome. DNA sequence analysis of cDNA and genomic clones indicated that the PAI1 and PAI2. All three PAI polypeptides possess an N-terminal putative plastid target sequence, suggesting that these enzymes all function in plastids. The PAI1 gene is flanked by nearly identical direct repeats of approximately 350 nucleotides. Our results indicate that, in contrast to most microorganisms, the Arabidopsis PAI protein is not fused with indole-3-glycerolphosphate synthase, which catalyzes the next step in the pathway. Yeast artificial chromosome hybridization studies indicated that the PAI2 gene is tightly linked to the anthranilate synthase alpha subunit 1 (ASA1) gene on chromosome 5. PAI1 was mapped to the top of chromosome 1 using recombinant inbred lines, and PAI3 is loosely linked to PAI1. cDNA restriction mapping and sequencing and RNA gel blot hybridization analysis indicated that all three genes are transcribed in wild-type plants. The expression of antisense PAI1 RNA significantly reduced the immunologically observable PAI protein and enzyme activity in transgenic plants. The plants expressing antisense RNA also showed two phenotypes consistent with a block early in the pathway: blue fluorescence under UV light and resistance to the anthranilate analog 6-methylanthranilate. The extreme nucleotide conservation between the unlinked PAI1 and PAI2 loci suggests that this gene family is actively evolving. PMID:7773017

  2. Identification of Triosephosphate Isomerase as a Novel Allergen in Octopus fangsiao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 28 kDa-protein was purified from octopus (Octopus fangsiao) and identified to be triosephosphate isomerase (TIM). The purified TIM is a glycoprotein with 1.7% carbohydrates and the isoelectric point is 7.6. TIM aggregated after heating above 45 °C, and the secondary structure was altered in extre...

  3. Positive selection sites in tertiary structure of Leguminosae chalcone isomerase 1.

    PubMed

    Wang, R K; Zhan, S F; Zhao, T J; Zhou, X L; Wang, C E

    2015-03-20

    Isoflavonoids and the related synthesis enzyme, chalcone isomerase 1 (CHI1), are unique in the Leguminosae, with diverse biological functions. Among the Leguminosae, the soybean is an important oil, protein crop, and model plant. In this study, we aimed to detect the generation pattern of Leguminosae CHI1. Genome-wide sequence analysis of CHI in 3 Leguminosae and 3 other closely related model plants was performed; the expression levels of soybean chalcone isomerases were also analyzed. By comparing positively selected sites and their protein structures, we retrieved the evolution patterns for Leguminosae CHI1. A total of 28 CHI and 7 FAP3 (CHI4) genes were identified and separated into 4 clades: CHI1, CHI2, CHI3, and FAP3. Soybean genes belonging to the same chalcone isomerase subfamily had similar expression patterns. CHI1, the unique chalcone isomerase subfamily in Leguminosae, showed signs of significant positive selection as well as special expression characteristics, indicating an accelerated evolution throughout its divergence. Eight sites were identified as undergoing positive selection with high confidence. When mapped onto the tertiary structure of CHI1, these 8 sites were observed surrounding the enzyme substrate only; some of them connected to the catalytic core of CHI. Thus, we inferred that the generation of Leguminosae CHI1 is dependent on the positively selected amino acids surrounding its catalytic substrate. In other words, the evolution of CHI1 was driven by specific selection or processing conditions within the substrate.

  4. Characterization of the Highly Efficient Sucrose Isomerase from Pantoea dispersa UQ68J and Cloning of the Sucrose Isomerase Gene

    PubMed Central

    Wu, Luguang; Birch, Robert G.

    2005-01-01

    Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35°C, and it produced a high ratio of isomaltulose to trehalulose (>22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50°C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35°C and produced a lower ratio of isomaltulose to trehalulose (<8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the Km was 39.9 mM, the Vmax was 638 U mg−1, and the Kcat/Km was 1.79 × 104 M−1 s−1, compared to a Km of 76.0 mM, a Vmax of 423 U mg−1, and a Kcat/Km of 0.62 × 104 M−1 s−1 for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose. PMID:15746363

  5. Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene.

    PubMed

    Wu, Luguang; Birch, Robert G

    2005-03-01

    Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35 degrees C, and it produced a high ratio of isomaltulose to trehalulose (>22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50 degrees C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35 degrees C and produced a lower ratio of isomaltulose to trehalulose (<8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the Km was 39.9 mM, the Vmax was 638 U mg(-1), and the Kcat/Km was 1.79 x 10(4) M(-1) s(-1), compared to a Km of 76.0 mM, a Vmax of 423 U mg(-1), and a Kcat/Km of 0.62 x 10(4) M(-1) s(-1) for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.

  6. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis.

    PubMed

    Duan, Xuguo; Cheng, Sheng; Ai, Yixin; Wu, Jing

    2016-01-01

    The sucrose isomerase of Serratia plymuthica AS9 (AS9 PalI) was expressed in Escherichia coli BL21(DE3) and characterized. The half-life of AS9 PalI was 20 min at 45°C, indicating that it was unstable. In order to improve its thermostability, six amino acid residues with higher B-factors were selected as targets for site-directed mutagenesis, and six mutants (E175N, K576D, K174D, G176D, S575D and N577K) were designed using the RosettaDesign server. The E175N and K576D mutants exhibited improved thermostability in preliminary experiments, so the double mutant E175N/K576D was constructed. These three mutants (E175N, K576D, E175N/K576D) were characterized in detail. The results indicate that the three mutants exhibit a slightly increased optimal temperature (35°C), compared with that of the wild-type enzyme (30°C). The mutants also share an identical pH optimum of 6.0, which is similar to that of the wild-type enzyme. The half-lives of the E175N, K576D and E175N/K576D mutants were 2.30, 1.78 and 7.65 times greater than that of the wild-type enzyme at 45°C, respectively. Kinetic studies showed that the Km values for the E175N, K576D and E175N/K576D mutants decreased by 6.6%, 2.0% and 11.0%, respectively, and their kcat/Km values increased by 38.2%, 4.2% and 19.4%, respectively, compared with those of the wild-type enzyme. After optimizing the conditions for isomaltulose production at 45°C, we found that the E175N, K576D and E175N/K576D mutants displayed slightly improved isomaltulose yields, compared with the wild-type enzyme. Therefore, the mutants produced in this study would be more suitable for industrial biosynthesis of isomaltulose.

  7. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis

    PubMed Central

    Ai, Yixin; Wu, Jing

    2016-01-01

    The sucrose isomerase of Serratia plymuthica AS9 (AS9 PalI) was expressed in Escherichia coli BL21(DE3) and characterized. The half-life of AS9 PalI was 20 min at 45°C, indicating that it was unstable. In order to improve its thermostability, six amino acid residues with higher B-factors were selected as targets for site-directed mutagenesis, and six mutants (E175N, K576D, K174D, G176D, S575D and N577K) were designed using the RosettaDesign server. The E175N and K576D mutants exhibited improved thermostability in preliminary experiments, so the double mutant E175N/K576D was constructed. These three mutants (E175N, K576D, E175N/K576D) were characterized in detail. The results indicate that the three mutants exhibit a slightly increased optimal temperature (35°C), compared with that of the wild-type enzyme (30°C). The mutants also share an identical pH optimum of 6.0, which is similar to that of the wild-type enzyme. The half-lives of the E175N, K576D and E175N/K576D mutants were 2.30, 1.78 and 7.65 times greater than that of the wild-type enzyme at 45°C, respectively. Kinetic studies showed that the Km values for the E175N, K576D and E175N/K576D mutants decreased by 6.6%, 2.0% and 11.0%, respectively, and their kcat/Km values increased by 38.2%, 4.2% and 19.4%, respectively, compared with those of the wild-type enzyme. After optimizing the conditions for isomaltulose production at 45°C, we found that the E175N, K576D and E175N/K576D mutants displayed slightly improved isomaltulose yields, compared with the wild-type enzyme. Therefore, the mutants produced in this study would be more suitable for industrial biosynthesis of isomaltulose. PMID:26886729

  8. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    SciTech Connect

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  9. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    PubMed

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions.

  10. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  11. A novel fully validated LC-MS/MS method for quantification of pyridoxal-5'-phosphate concentrations in samples of human whole blood.

    PubMed

    Ghassabian, Sussan; Griffiths, Lyn; Smith, Maree T

    2015-09-01

    Quantification of pyridoxal-5'-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20μL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was >92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80°C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.

  12. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution.

    PubMed

    Heine, Andreas; Luz, John G; Wong, Chi-Huey; Wilson, Ian A

    2004-10-29

    The crystal structure of the bacterial (Escherichia coli) class I 2-deoxyribose-5-phosphate aldolase (DERA) has been determined by Se-Met multiple anomalous dispersion (MAD) methods at 0.99A resolution. This structure represents the highest-resolution X-ray structure of an aldolase determined to date and enables a true atomic view of the enzyme. The crystal structure shows the ubiquitous TIM alpha/beta barrel fold. The enzyme contains two lysine residues in the active site. Lys167 forms the Schiff base intermediate, whereas Lys201, which is in close vicinity to the reactive lysine residue, is responsible for the perturbed pK(a) of Lys167 and, hence, also a key residue in the reaction mechanism. DERA is the only known aldolase that is able to use aldehydes as both aldol donor and acceptor molecules in the aldol reaction and is, therefore, of particular interest as a biocatalyst in synthetic organic chemistry. The uncomplexed DERA structure enables a detailed comparison with the substrate complexes and highlights a conformational change in the phosphate-binding site. Knowledge of the enzyme active-site environment has been the basis for exploration of catalysis of non-natural substrates and of mutagenesis of the phosphate-binding site to expand substrate specificity. Detailed comparison with other class I aldolase enzymes and DERA enzymes from different organisms reveals a similar geometric arrangement of key residues and implies a potential role for water as a general base in the catalytic mechanism.

  13. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival.

    PubMed

    García-Alcázar, Manuel; Giménez, Estela; Pineda, Benito; Capel, Carmen; García-Sogo, Begoña; Sánchez, Sibilla; Yuste-Lisbona, Fernando J; Angosto, Trinidad; Capel, Juan; Moreno, Vicente; Lozano, Rafael

    2017-03-28

    Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.

  14. Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts.

    PubMed

    Teige, M; Melzer, M; Süss, K H

    1998-03-01

    The amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase have been purified from stroma extracts of spinach chloroplasts using ammonium sulfate fractionation and FPLC. For the native enzymes, a molecular mass of 180 kDa for epimerase and 160 kDa for transketolase was found and the molecular masses of the subunits was determined to be 23 kDa for epimerase and 74 kDa for transketolase. Protein sequencing of the purified chloroplast enzymes revealed the NH2-terminal amino acid sequences of mature epimerase (NH2-TSRVDKFSKSDIIVSP) and transketolase (NH2-AAVEALESTDTDQLVEG). The enzymic properties of both enzymes such as Km values or pH optima, were found to be very similar to those for epimerases and transketolases from other sources, including yeast and animal cells. In contrast to the light-activated enzymes of the Calvin cycle, the activity of these amphibolic enzymes was not redox-dependent. Immunogold electron microscopy on spinach leaf thin sections revealed that about 90% of the total epimerase and transketolase, and 96% of the total chloroplast H+-ATP synthase portion CF1 are associated with thylakoid membranes in situ. Ribulose-1,5-bisphosphate carboxylase/oxygenase, in contrast, was evenly distributed throughout chloroplasts. These and other results indicate that minor chloroplast enzymes are arranged in a thin layer on thylakoid membrane surfaces in vivo.

  15. Molecular cloning and characterization of three cDNAs encoding 1-deoxy-d-xylulose-5-phosphate synthase in Aquilaria sinensis (Lour.) Gilg.

    PubMed

    Xu, Yanhong; Liu, Juan; Liang, Liang; Yang, Xin; Zhang, Zheng; Gao, Zhihui; Sui, Chun; Wei, Jianhe

    2014-09-01

    Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. The major constituents of agarwood oils are sesquiterpenes, which are obtained from isopentenyl diphosphate and dimethylallyl diphosphate precursors through the plastidial methylerythritol phosphate (MEP) pathway and/or the cytosolic mevalonate pathway. 1-deoxy-d-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme for sesquiterpene synthesis in the MEP pathway. In this study, 3 cDNAs of DXS genes were cloned and characterized from the Aquilaria sinensis (Lour.) Gilg. These genes represent 3 phylogenetically distinct clades conserved among plants. Functional complementation in a DXS-deficient Escherichia coli strain EcAB4-2 demonstrated that they are active DXS, which rescued the E. coli mutant. Their expression profiles in different tissues and in response to different treatments were analyzed by real-time PCR. All 3 genes are highly expressed in stem, followed by leaf and root. AsDXS1 was significantly stimulated by mechanical, chemical, and H2O2 treatment, whereas AsDXS2 and AsDXS3 only responded to chemical treatment and mechanical treatment, respectively. All three genes were oscillation in respond to MJ treatment, with expression peaks occurring at different time points. Our results suggest the conservation of DXS in evolution and imply their distinct functions in primary and defensive sesquiterpene metabolism in A. sinensis.

  16. Inhibition of green tea and the catechins against 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway.

    PubMed

    Hui, Xian; Liu, Hui; Tian, Fang-Lin; Li, Fei-Fei; Li, Heng; Gao, Wen-Yun

    2016-09-01

    1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is the first committed enzyme in the MEP terpenoid biosynthetic pathway and also a validated antimicrobial target. Green tea which is rich in polyphenolic components such as the catechins, possesses a plenty of pharmacological activities, in particular an antibacterial effect. To uncover the antibacterial mechanism of green tea and to seek new DXR inhibitors from natural sources, the DXR inhibitory activity of green tea and its main antimicrobial catechins were investigated in this study. The results show that the raw extract of green tea and its ethyl acetate fraction are able to suppress DXR activity explicitly. Further determination of the DXR inhibitory capacity of eight catechin compounds demonstrates that the most active compound is gallocatechin gallate that is able to inhibit around 50% activity of DXR at 25μM. Based on these data, the primary structure-activity relationship of the catechins against DXR is discussed. This study would be very helpful to elucidate the antimicrobial mechanism of green tea and the catechins and also would be very useful to direct the rational utilization of them as food additives.

  17. Colorimetric determination of the purity of 3'-phospho adenosine 5'-phosphosulfate and natural abundance of 3'-phospho adenosine 5'-phosphate at picomole quantities.

    PubMed

    Lin, E S; Yang, Y S

    1998-11-01

    This work presents novel colorimetric methods not only to measure 3'-phospho adenosine 5'-phosphate (PAP) and 3'-phospho adenosine 5'-phosphosulfate (PAPS) in the range of picomoles, but also to determine the purity of PAPS or PAP contaminants in PAPS in the range of nanomoles. These methods exploit the availability of overexpressed phenol sulfotransferase (PST) and the fact that sulfuryl group transfer requires the use of PAP or PAPS as a cofactor or cosubstrate. Experimental results indicate that absorption at 400 nm due to the production of 4-nitrophenol (pNP) is catalyzed by PST when the sulfuryl group transfers from 4-nitrophenylsulfate (pNPS) to PAP or to 2-napthol. In the absence of an acceptor substrate, PAPS is hydrolyzed to PAP by PST and is determined by sulfation with pNPS before and after this reaction. The change of absorption of pNP at 400 nm corresponds to the amount of PAP that is hydrolyzed from PAPS. Moreover, a standard curve is constructed using authentic PAP and PAP-free PST. Furthermore, this curve is used to determine the amount of PAP in extracts of pig liver, rat liver, and Escherichia coli.

  18. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

    PubMed Central

    García-Alcázar, Manuel; Giménez, Estela; Pineda, Benito; Capel, Carmen; García-Sogo, Begoña; Sánchez, Sibilla; Yuste-Lisbona, Fernando J.; Angosto, Trinidad; Capel, Juan; Moreno, Vicente; Lozano, Rafael

    2017-01-01

    Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants. PMID:28350010

  19. Formation of Schiff bases of O-phosphorylethanolamine and O-phospho-D,L-serine with pyridoxal 5'-phosphate. experimental and theoretical studies.

    PubMed

    Vilanova, Bartolomé; Gallardo, Jessica M; Caldés, Catalina; Adrover, Miquel; Ortega-Castro, Joaquín; Muñoz, Francisco; Donoso, Josefa

    2012-03-01

    Pyridoxal 5'-phosphate (PLP) is a B(6) vitamer acting as an enzyme cofactor in various reactions of aminoacid metabolism and inhibiting glycation of biomolecules. Nonenzymatic glycation of aminophospholipids alters the stability of lipid bilayers and cell function as a result. Similarly to protein glycation, aminophospholipid glycation initially involves the formation of a Schiff base. In this work, we studied the formation of Schiff bases between PLP and two compounds mimicking the polar head of natural aminophospholipids, namely: O-phosphorylethanolamine and O-phospho-D,L-serine. Based on the results, the pH-dependence of the microscopic constants of the two PLP-aminophosphate systems studied is identical with that for PLP-aminoacid systems. However, the rate and equilibrium formation constants for the Schiff bases of the aminophosphates are low relative to those for the aminoacids. A theoretical study by density functional theory of the formation mechanism for the Schiff bases of PLP with the two aminophospholipid analogues confirmed that the activation energy of formation of the Schiff bases is greater with aminophosphates; on the other hand, that of hydrolysis is essentially similar with aminoacids and aminophosphates.

  20. The crystal structure of the Pseudomonas dacunhae aspartate-beta-decarboxylase dodecamer reveals an unknown oligomeric assembly for a pyridoxal-5'-phosphate-dependent enzyme.

    PubMed

    Lima, Santiago; Sundararaju, Bakthavatsalam; Huang, Christina; Khristoforov, Roman; Momany, Cory; Phillips, Robert S

    2009-04-24

    The Pseudomonas dacunhael-aspartate-beta-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the beta-decarboxylation of l-aspartate to produce l-alanine and CO(2). This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an l-Asp/l-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 A resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.

  1. Defining critical residues for substrate binding to 1-deoxy-d-xylulose 5-phosphate synthase: Active site substitutions stabilize the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate

    PubMed Central

    Kakalis, Lazaros; Jordan, Frank; Meyers, Caren L. Freel

    2014-01-01

    1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner, and is the first step in the essential pathway to isoprenoids in human pathogens. Understanding the mechanism of this unique enzyme is critical for developing new anti-infective agents that selectively target isoprenoid biosynthesis. The present study uses mutagenesis and a combination of protein fluorescence, circular dichroism and kinetics experiments to investigate the roles of Arg-420, Arg-478 and Tyr-392 in substrate binding and catalysis. The results support a random sequential, preferred order mechanism and predict Arg-420 and Arg-478 are involved in binding of the acceptor substrate, d-GAP. d-Glyceraldehyde, an alternative acceptor substrate lacking the phosphoryl group predicted to interact with Arg-420 and Arg-478, also accelerates decarboxylation of the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate (LThDP) on DXP synthase, indicating this binding interaction is not absolutely required, and the hydroxyaldehyde sufficiently triggers decarboxylation. Unexpectedly, Tyr-392 contributes to d-GAP affinity and is not required for LThDP formation or its d-GAP-promoted decarboxylation. Time-resolved CD spectroscopy and NMR experiments indicate LThDP is significantly stabilized on R420A and Y392F variants compared to wild type DXP synthase in the absence of acceptor substrate, yet these substitutions do not appear to impact the rate of d-GAP-promoted LThDP decarboxylation in the presence of high d-GAP, and LThDP formation remains the rate-limiting step. These results suggest a role of these residues to promote d-GAP binding which in turn facilitates decarboxylation, and further highlight interesting differences between DXP synthase and other ThDP-dependent enzymes. PMID:24767541

  2. mRNA and Protein levels of rat pancreas specific protein disulphide isomerase are downregulated during Hyperglycemia.

    PubMed

    Gupta, Rajani; Bhar, Kaushik; Sen, Nandini; Bhowmick, Debajit; Mukhopadhyay, Satinath; Panda, Koustubh; Siddhanta, Anirban

    2016-02-01

    Diabetes (Type I and Type II) which affects nearly every organ in the body is a multi-factorial non-communicable disorder. Hyperglycemia is the most characteristic feature of this disease. Loss of beta cells is common in both types of diabetes whose detailed cellular and molecular mechanisms are yet to be elucidated. As this disease is complex, identification of specific biomarkers for its early detection, management and devising new therapies is challenging. Based on the fact that functionally defective proteins provide the biochemical basis for many diseases, in this study, we tried to identify differentially expressed proteins during hyperglycemia. For that, hyperglycemia was induced in overnight fasted rats by intra-peritoneal injection of streptozotocin (STZ). The pancreas was isolated from control and treated rats for subsequent analyses. The 2D-gel electrophoresis followed by MALDI-TOF-MS-MS analyses revealed several up- and down-regulated proteins in hyperglycemic rat pancreas including the downregulation of a pancreas specific isoform of protein disulphide isomerase a2 (Pdia2).This observation was validated by western blot. Quantitative PCR experiments showed that the level of Pdia2 mRNA is also proportionally reduced in hyperglycemic pancreas.

  3. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  4. Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5'-phosphate imprinted polymer modified high throughput electrochemical sensor.

    PubMed

    Patra, Santanu; Roy, Ekta; Das, Ranajit; Karfa, Paramita; Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K

    2015-11-15

    The present work describes the fabrication of a selective and sensitive molecularly imprinted polymer (MIP)-based electrochemical sensor using a combination of surface imprinting and nanotechnology. The fabricated sensor was used for the detection of two major components of vitamin B6 i.e. pyridoxine (Py) and pyridoxal-5'-phosphate (PLP) using the same MIP format. Herein, acrylic acid modified zero valent iron nanoparticles were combined with the copper nanoparticle, resulting in vinyl groups modified bimetallic Fe/Cu magnetic nanoparticles (BMNPs). These BMNPs have high surface to volume ratios, higher electro-catalytic activity, and are therefore, a suitable platform to synthesize specific MIP cavities for Py and PLP. Herein, two different MIP formats (for Py and PLP) were synthesized on the surface of vinyl silane modified pencil graphite electrodes by activator regenerated by an electron transfer-atom transfer radical polymerization (ARGET-ATRP) method. The sensor shows a good analytical performance for the detection of Py and PLP by a square wave stripping voltammetric technique (SWSV). The limit of detection (LOD) was calculated to be 0.040 µg L(-1) and 0.043 µg L(-1) for Py and PLP, respectively, at signal to noise ratio of 3. The sensors are highly selective for the templates and can detect them from multivitamin tablets, corn flakes, energy drinks, cerebrospinal fluid (CSF) and blood samples (serum, plasma and whole blood) without any interfering effect, suggesting the clinical applicability of the fabricated sensor. The sensor can also be used as better alternative to the commercially available ELISA kits which are rather complex, less sensitive and difficult to handle.

  5. Molecular cloning, characterization and expression analysis of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Aquilaria sinensis (Lour.) Gilg.

    PubMed

    Liu, Juan; Xu, Yanhong; Liang, Liang; Wei, Jianhe

    2015-06-01

    The major constituents of agarwood oils are sesquiterpenes that are obtained from isoprenoid precursors through the plastidial methylerythritol phosphate (MEP) pathway and the cytosolic mevalonate pathway. In this study, a novel full-length cDNA of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), which was the second key enzyme in the plastid MEP pathway of sesquiterpenes biosynthesis was isolated from the stem of Aquilaria sinensis (Lour.) Gilg by the methods of reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique for the first time, and named as AsDXR. The full-length cDNA of AsDXR was 1768 bp, containing a 1437 bp open reading frame (ORF) encoding a polypeptide of 478 amino acids with a molecular weight of 51.859 kD and the theoretical isoelectric point of 6.29. Comparative and bioinformatic analysis of the deduced AsDXR protein showed extensive homology with DXRs from other plant species, especially Theobroma cacao and Gossypium barbadense, and contained a conserved transit peptide for plastids, and extended pro-rich region and a highly conserved NADPH-binding motif owned by all plant DXRs. Southern blot analysis indicated that AsDXR belonged to a small gene family. Tissue expression pattern analysis revealed that AsDXR expressed strongly in root and stem, but weakly in leaf. Additionally, AsDXR expression was found to be activated by exogenous elicitor of MeJA (methyl jasmonate). The contents of three sesquiterpenes (α-guaiene, α-humulene and Δ-guaiene) were significantly induced by MeJA. This study enables us to further elucidate the role of AsDXR in the biosynthesis of agarwood sesquiterpenes in A. sinensis at the molecular level.

  6. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity

    PubMed Central

    Banerjee, Aparajita; Preiser, Alyssa L.

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. PMID:27548482

  7. C-H activation in pyridoxal-5'-phosphate Schiff bases: the role of the imine nitrogen. A combined experimental and computational study.

    PubMed

    Casasnovas, Rodrigo; Adrover, Miquel; Ortega-Castro, Joaquin; Frau, Juan; Donoso, Josefa; Muñoz, Francisco

    2012-09-06

    The origins of C-H activation in pyridoxal-5'-phosphate (PLP) Schiff bases and modulation of reaction specificity in PLP-enzymes are still not completely understood. There are no available studies that compare the reactivity of C4' carbons in ketimine Schiff bases with that of Cα carbons in their aldimine counterparts, which is essential to unravel the mechanisms that govern the evolution of their common carbanionic intermediates. Second-order rate constants for phosphate-catalyzed proton/deuterium exchange reactions in D(2)O of C4' carbons suffer a 10(5)-fold increase due to Schiff base formation (k(B) = 5.3 × 10(1) M(-1) s(-1)) according to NMR measurements. The C4' carbon acidity is also increased to pK(a) = 9.8, which is significantly higher than that of Cα in PLP-aldimines. DFT calculations reveal the role of each heteroatom in modulating the electrophilicity of C4' and Cα carbons. Specifically, the protonation state of pyridine nitrogen is the main factor in determining the absolute carbon acidity in aldimines (pK(a) of Cα varies from ∼14 to ∼23) and ketimines (pK(a) of C4' varies from ∼12 to ∼18), whereas the protonation state of both imine nitrogen and O3' phenol oxygen modulates the relative acidities of Cα and C4' from 1.5 to 7.5 pK(a) units. Our results provide an explanation to the modulation of reaction specificity observed in different PLP-enzymes based on the differences in the protonation state of the cofactor and H-bonding patterns in the active site.

  8. A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate.

    PubMed

    Puhl, Aaron A; Greiner, Ralf; Selinger, L Brent

    2008-01-01

    Although it is becoming well known that myo-inositol polyphosphates and the enzymes involved in their metabolism play a critical role in eukaryotic systems, little is understood of their significance in prokaryotic systems. A novel protein tyrosine phosphatase (PTP)-like inositol polyphosphatase (IPPase) gene has been cloned from Selenomonas ruminantium subsp. lactilytica (phyAsrl). The deduced amino acid sequence of PhyAsrl is most similar to a PTP-like IPPase from the anaerobic bacterium S. ruminantium (35% identity), but also shows similarity (19-30% identity) to various other putative prokaryotic PTPs. Recombinant PhyAsrl could dephosphorylate myo-inositol hexakisphosphate (Ins P(6)) in vitro, and maximal activity was displayed at an ionic strength of 200 mM, a pH of 4.5, and a temperature of 55 degrees C. In order to elucidate its substrate specificity and pathway of Ins P(6) dephosphorylation, a combination of kinetic and high-performance ion-pair chromatography studies were conducted. The data indicated that PhyAsrl has a general specificity for polyphosphorylated myo-inositol substrates, but can also dephosphorylate molecules containing high energy pyrophosphate bonds in vitro. PhyAsrl is unique from other microbial IPPases in that it preferentially cleaves the 5-phosphate position of Ins P(6). Furthermore, it can produce Ins(2)P via a highly unique and ordered pathway of sequential dephosphorylation: Ins P(6), Ins(1,2,3,4,6)P(5), D-Ins(1,2,3,6)P(4), Ins(1,2,3)P(3), and D/L-Ins(1,2)P(2). Finally, reverse transcription PCR was used to determine that phyAsrl is constitutively expressed, and together with bioinformatic analysis, was used to gain an understanding of its physiological significance.

  9. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.

    PubMed

    Banerjee, Aparajita; Preiser, Alyssa L; Sharkey, Thomas D

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity.

  10. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv

    PubMed Central

    Mathur, Divya; Anand, Kanchan; Mathur, Deepika; Jagadish, Nirmala; Suri, Anil; Garg, Lalit C.

    2007-01-01

    Phosphoglucose isomerase is a ubiquitous enzyme that catalyzes the isomerization of d-glucopyranose-6-phosphate to d-fructofuranose-6-phosphate. The present investigation reports the expression, purification, crystallization and preliminary crystallographic studies of the phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv, which shares 46% sequence identity with that of its human host. The recombinant protein, which was prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group I212121, with unit-cell parameters a = 109.0, b = 119.8, c = 138.9 Å. PMID:17401215

  11. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  12. TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology.

    PubMed

    Horna-Terrón, Elena; Pradilla-Dieste, Alberto; Sánchez-de-Diego, Cristina; Osada, Jesús

    2014-12-17

    Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target.

  13. Purification of Δ(5)-3-ketosteroid isomerase from Digitalis lanata.

    PubMed

    Meitinger, Nadine; Geiger, Daniel; Augusto, Thierry W; Maia de Pádua, Rodrigo; Kreis, Wolfgang

    2015-01-01

    The isomerization of 5-pregnene-3,20-dione into 4-pregnene-3,20-dione was investigated to shed further light on cardenolide biosynthesis and to characterize the enzymes involved in cardenolide formation. It was shown that the Δ(5)-3-ketosteroid isomerase of Digitalis lanata, which catalyzes this isomerization, is an individual enzyme and not, as previously thought, associated with Δ(5)-3β-hydroxysteroid dehydrogenase. The enzyme was purified by fractionated ammonium sulfate precipitation, hydrophobic interaction chromatography and gel filtration. The purification protocol resulted in a 68.1-fold enriched specific enzyme activity with a yield of 2.2%. After an additional chromatofocusing step the 3KSI activity appeared as a single protein band at 17kDa in SDS-PAGE. Plant 3KSI displayed similar properties to microbial 3-ketosteroid isomerases.

  14. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  15. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase

    PubMed Central

    dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-01-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å. PMID:23695585

  16. A Quasi-Laue Neutron Crystallographic Study of D-Xylose Isomerase

    NASA Technical Reports Server (NTRS)

    Meilleur, Flora; Snell, Edward H.; vanderWoerd, Mark; Judge, Russell A.; Myles, Dean A. A.

    2006-01-01

    Hydrogen atom location and hydrogen bonding interaction determination are often critical to explain enzymatic mechanism. Whilst it is difficult to determine the position of hydrogen atoms using X-ray crystallography even with subatomic (less than 1.0 Angstrom) resolution data available, neutron crystallography provides an experimental tool to directly localise hydrogeddeuteriwn atoms in biological macromolecules at resolution of 1.5-2.0 Angstroms. Linearisation and isomerisation of xylose at the active site of D-xylose isomerase rely upon a complex hydrogen transfer. Neutron quasi-Laue data were collected on Streptomyces rubiginosus D-xylose isomerase crystal using the LADI instrument at ILL with the objective to provide insight into the enzymatic mechanism (Myles et al. 1998). The neutron structure unambiguously reveals the protonation state of His 53 in the active site, identifying the model for the enzymatic pathway.

  17. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin.

    PubMed

    Li, Feng-Xia; Jin, Zhi-Ping; Zhao, De-Xiu; Cheng, Li-Qin; Fu, Chun-Xiang; Ma, Fengshan

    2006-03-01

    Saussurea involucrata is a medicinal plant well known for its flavonoids, including apigenin, which has been shown to significantly inhibit tumorigenesis. Since naturally occurring apigenin is in very low abundance, we took a transgenic approach to increase apigenin production by engineering the flavonoid pathway. A construct was made to contain the complete cDNA sequence of the Saussurea medusa chalcone isomerase (CHI) gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Using an Agrobacterium rhizogenes-mediated transformation system, the chi overexpression cassette was incorporated into the genome of S. involucrata, and transgenic hairy root lines were established. CHI converts naringenin chalcone into naringenin that is the precursor of apigenin. We observed that transgenic hairy root lines grew faster and produced higher levels of apigenin and total flavonoids than wild-type hairy roots did. Over a culture period of 5 weeks, the best-performing line (C46) accumulated 32.1 mgL(-1) apigenin and 647.8 mgL(-1) total flavonoids, or 12 and 4 times, respectively, higher than wild-type hairy roots did. The enhanced productivity corresponded to elevated CHI activity, confirming the key role that CHI played for total flavonoids and apigenin synthesis and the efficiency of the current metabolic engineering strategy.

  18. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    PubMed Central

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-01-01

    SUMMARY Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, over-expressing Pin1 reduces Fbw7 abundance and suppresses Fbw7’s ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis and Pin1 may be a promising drug target for anti-cancer therapy. PMID:22608923

  19. FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2017-01-01

    Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities. PMID:28378777

  20. Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides.

    PubMed

    Kwon, Hyun-Jung; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2010-07-01

    The specific activity and catalytic efficiency (k(cat)/K(m)) of the recombinant putative protein from Providencia stuartii was the highest for D-lyxose among the aldose substrates, indicating that it is a D-lyxose isomerase. Gel filtration analysis suggested that the native enzyme is a dimer with a molecular mass of 44 kDa. The maximal activity for D-lyxose isomerization was observed at pH 7.5 and 45 degrees C in the presence of 1 mM Mn(2+). The enzyme exhibited high isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left-hand configuration, such as D-lyxose, D-mannose, L-ribose, D-talose, and L-allose (listed in decreasing order of activity). The enzyme exhibited the highest activity for D-xylulose among all pentoses and hexoses. Thus, D-lyxose was produced at 288 g/l from 500 g/l D-xylulose by D-lyxose isomerase at pH 7.5 and 45 degrees C for 2 h, with a conversion yield of 58% and a volumetric productivity of 144 g l(-1) h(-1). The observed k(cat)/K(m) (920 mM(-1) s(-1)) of P. stuartiid-lyxose isomerase for D-xylulose is higher than any of the k(cat)/K(m) values previously reported for sugar and sugar phosphate isomerases with monosaccharide substrates. These results suggest that the enzyme will be useful as an industrial producer of D-lyxose.

  1. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production.

    PubMed

    Chaves, Julie E; Romero, Paloma Rueda; Kirst, Henning; Melis, Anastasios

    2016-12-01

    Heterologous production of isoprene (C5H8) hydrocarbons in cyanobacteria, emanating from sunlight, CO2, and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the "isopentenyl diphosphate isomerase" gene (FNI) from Streptococcus pneumoniae, using isoprene production as a "reporter process" for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the "reporter isoprene" rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.

  2. Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols.

    PubMed

    Braune, Annett; Engst, Wolfram; Elsinghorst, Paul W; Furtmann, Norbert; Bajorath, Jürgen; Gütschow, Michael; Blaut, Michael

    2016-11-01

    The enzyme catalyzing the ring-contracting conversion of the flavanonol taxifolin to the auronol alphitonin in the course of flavonoid degradation by the human intestinal anaerobe Eubacterium ramulus was purified and characterized. It stereospecifically catalyzed the isomerization of (+)-taxifolin but not that of (-)-taxifolin. The Km for (+)-taxifolin was 6.4 ± 0.8 μM, and the Vmax was 108 ± 4 μmol min(-1) (mg protein)(-1) The enzyme also isomerized (+)-dihydrokaempferol, another flavanonol, to maesopsin. Inspection of the encoding gene revealed its complete identity to that of the gene encoding chalcone isomerase (CHI) from E. ramulus Based on the reported X-ray crystal structure of CHI (M. Gall et al., Angew Chem Int Ed 53:1439-1442, 2014, http://dx.doi.org/10.1002/anie.201306952), docking experiments suggest the substrate binding mode of flavanonols and their stereospecific conversion. Mutation of the active-site histidine (His33) to alanine led to a complete loss of flavanonol isomerization by CHI, which indicates that His33 is also essential for this activity. His33 is proposed to mediate the stereospecific abstraction of a proton from the hydroxymethylene carbon of the flavanonol C-ring followed by ring opening and recyclization. A flavanonol-isomerizing enzyme was also identified in the flavonoid-converting bacterium Flavonifractor plautii based on its 50% sequence identity to the CHI from E. ramulus IMPORTANCE: Chalcone isomerase was known to be involved in flavone/flavanone conversion by the human intestinal bacterium E. ramulus Here we demonstrate that this enzyme moreover catalyzes a key step in the breakdown of flavonols/flavanonols. Thus, a single isomerase plays a dual role in the bacterial conversion of dietary bioactive flavonoids. The identification of a corresponding enzyme in the human intestinal bacterium F. plautii suggests a more widespread occurrence of this isomerase in flavonoid-degrading bacteria.

  3. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    PubMed

    Chen, Deliang; Savidge, Tor

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrate electric field-dependent acceleration of biological catalysis using ketosteroid isomerase as a prototypic example. These findings were not extended to aqueous solution because water by itself has field fluctuations that are too large and fast to provide a catalytic effect. Given physiological context, when water electrostatic interactions are considered, electric fields play a less important role in the catalysis.

  4. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    PubMed

    Natarajan, Aditya; Yabukarski, Filip; Lamba, Vandana; Schwans, Jason P; Sunden, Fanny; Herschlag, Daniel

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrated a strong correlation between reaction rate and the carbonyl stretching frequency of a product analog bound to ketosteroid isomerase oxyanion hole mutants and concluded that the active-site electric field provides 70% of catalysis. Alternative comparisons suggest a smaller contribution, relative to the corresponding solution reaction, and highlight the importance of atomic-level descriptions.

  5. Biochemical characterization of phosphoglucose isomerase and genetic variants from mouse and Drosophila melanogaster.

    PubMed

    Charles, D; Lee, C Y

    1980-01-16

    A simple and unique procedure was developed to purify phosphoglucose isomerase variants from the whole mouse body extracts and Drosophila homogenate. It involved the use of an 8-(6-aminohexyl)-amino-ATP-Sepharose column followed by a preparative isoelectric focusing. In each case, the enzyme in the homogenate was adsorbed by ionic interaction on the ATP-Sepharose column. Substantial purification was achieved by the affinity elution with the substrate-glucose-6-phosphate. Mouse and Drosophila phosphoglucose isomerase as well as the corresponding variants were shown to be dimers of similar molecular weight and to exhibit similar kinetic properties. The isoelectric points for the variants from DBA/2J and C57BL/6J mice were determined to be 8.4 and 8.7 respectively, while they were 6.8 and 6.3 respectively for Drosophila and 4/4 variants. Differential thermal stability was observed for the two mouse variants but not for the Drosophila ones. Amino acid composition analysis was performed for both mouse and Drosophila enzymes. Rabbit antisera for mouse (DBA/2J) and Drosophila (2/2) enzymes were raised. Within each species, complete immunological identity was observed between the variants. The antisera were used to characterize the null mutants of phosphoglucose isomerase identified in the mouse and Drosophila populations. By rocket immunoelectrophoresis, the null allele of the naturally occurring heterozygous null variant of Drosophila was shown to express no cross-reacting materials (CRM).

  6. Induction of L-arabinose isomerase in gamma-irradiated Escherichia coli

    SciTech Connect

    Chatterjee, A.; Bhattacharya, A.K.

    1986-11-01

    Gamma irradiation of Escherichia coli B/r caused a dose-dependent inhibition of the capacity of the cells to synthesize L-arabinose isomerase in response to the inducer. At higher doses (18 krad and above), postirradiation incubation led to further inhibition of the capacity to synthesize L-arabinose isomerase, whereas cells receiving lower doses recovered from the damage to the enzyme synthesizing system following incubation. Cyclic AMP partially reversed the inhibitory effect on L-arabinose isomerase induction produced immediately after irradiation by all gamma-ray doses (up to 30 krad), but the enhanced inhibitory effect caused by induction in cells irradiated at higher doses could not be reversed by the nucleotide. It is suggested that although catabolite repression is partly responsible for causing the inhibition of the enzyme synthesizing capacity of the cells observed immediately after gamma irradiation, the enhanced inhibition caused by incubating cells irradiated at higher doses is not due to interference with the control mechanism regulated by catabolite repression.

  7. Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies, Bemisia argentifolii, and Erwinia rhapontici.

    PubMed

    Salvucci, Michael E

    2003-06-01

    Isomaltulose [alpha-D-glucopyranosyl-(1,6)-D-fructofuranose] and trehalulose [alpha-D-glucopyranosyl-(1,1)-D-fructofuranose] are commercially valuable sucrose-substitutes that are produced in several microorganisms by the palI gene product, a sucrose isomerase. Trehalulose also occurs in the silverleaf whitefly, Bemisia argentifoli, as the major carbohydrate in the insect's honeydew. To determine if the enzyme that synthesizes trehalulose in whiteflies was similar to the well-characterized sucrose isomerase from microbial sources, the properties of the enzymes from whiteflies and the bacterium, Erwinia rhapontici, were compared. Partial purification of both enzymes showed that the enzyme from whiteflies was a 116 kD membrane-associated polypeptide, in contrast to the enzyme from E. rhapontici, which was soluble and 66 kD. The enzyme from E. rhapontici converted sucrose to isomaltulose and trehalulose in a 5:1 ratio, whereas the enzyme from whiteflies produced only trehalulose. Unlike the E. rhapontici enzyme, the whitefly enzyme did not convert isomaltulose to trehalulose, but both enzymes catalyzed the transfer of fructose to trehalulose using sucrose as the glucosyl donor. The results indicate that trehalulose synthase from whiteflies is structurally and functionally distinct from the sucrose isomerases described in bacteria. The whitefly enzyme is the first reported case of an enzyme that converts sucrose to exclusively trehalulose.

  8. The folding pathway of glycosomal triosephosphate isomerase: structural insights into equilibrium intermediates.

    PubMed

    Guzman-Luna, Valeria; Garza-Ramos, Georgina

    2012-06-01

    The guanidine hydrochloride-induced conformational transitions of glycosomal triosephosphate isomerase (TIM) were monitored with functional, spectroscopic, and hydrodynamic measurements. The equilibrium folding pathway was found to include two intermediates (N(2) ↔I(2) ↔2M↔2U). According to this model, the conformational stability parameters of TIM are as follows: ΔG(I2-N2) = 5.5 ± 0.6, ΔG(2M-I2) =19.6 ± 1.6, and ΔG(2U-2M) = 14.7 ± 3.1 kcal mol(-1) . The I(2) state is compact (α(SR) = 0.8); it is able to bind 8-anilinonaphthalene-1-sulfonic acid ANS and it is composed of ∼45% of α-helix and tertiary structure content compared with the native enzyme; however, it is unable to bind the transition-state analog 2-phosphoglycolate. Conversely, the 2M state lacks detectable tertiary contacts, possesses ∼10% of the native α-helical content, is significantly expanded (α(SR) = 0.2), and has low affinity for ANS. We studied the effect of mutating cysteine residues on the structure and stability of I(2) and 2M. Three mutants were made: C39A, C126A, and C39A/C126A. The replacement of C39, which is located at β(2) , was found to be neutral. The I(2) -C126A state, however, was prone to aggregation and exhibited an emission maximum that was 3-nm red-shifted compared with the I(2) -wild type, indicating solvent exposure of W90 at β(4) . Our results suggest that the I(2) state comprises the (βα)(1-4) β(5) module in which the conserved C126 residue located at β(5) defines the boundary of the folded segment. We propose a folding pathway that highlights the remarkable thermodynamic stability of this glycosomal enzyme.

  9. Rhein exhibits antitumorigenic effects by interfering with the interaction between prolyl isomerase Pin1 and c-Jun.

    PubMed

    Cho, Jin Hyoung; Chae, Jung-Il; Shim, Jung-Hyun

    2017-03-01

    The Pin1 protein (or peptidyl-prolyl cis/trans isomerase) specifically catalyzes the cis/trans isomerization of phosphorylated serine/threonine-proline (Ser/Thr-Pro) bonds and plays an important role in many cellular events through the effects of conformational change in the function of c-Jun, its biological substrate. Pin1 expression is involved in essential cellular pathways that mediate cell proliferation, cell cycle progression, tumorigenesis and apoptosis by altering their stability and function, and it is overexpressed in various types of tumors. Pin1 phosphorylation has been regarded as a marker of Pin1 isomerase activity, and the phosphorylation of Ser/Thr-Pro on protein substrates is prerequisite for its binding activity with Pin1 and subsequent isomerization. Since phosphorylation of proteins on Ser/Thr-Pro is a key regulatory mechanism in the control of cell proliferation and transformation, Pin1 has become an attractive molecule in cancer research. Many inhibitors of Pin1 have been discovered, including several classes of both designed inhibitors and natural products. Anthraquinone compounds possess antitumor properties and have therefore been applied in human and veterinary therapeutics as active substances in medicinal products. Among the anthraquinones, rhein (4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid) is a monomeric anthraquinone derivative found mainly in plants in the Polygonaceae family, such as rhubarb and Polygonum cuspidatum. Recent studies have shown that rhein has numerous pharmacological activities, including antitumor effects. Here, we demonstrated the antitumorigenic effect of rhein using cell proliferation assay, anchorage-independent cell transformation, pull-down assay, luciferase promoter activity, fluorescence-activated cell sorting and western blot analysis. The rhein/Pin1 association was found to play a regulatory role in cell proliferation and neoplastic cell transformation and the binding of phosphorylated c-Jun (Ser

  10. Irreversible inhibition of delta 5-3-oxosteroid isomerase by 2-substituted progesterones.

    PubMed Central

    Penning, T M

    1985-01-01

    2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) were synthesized and screened as irreversible active-site-directed inhibitors of the delta 5-3-oxosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Both compounds were found to inhibit the purified bacterial enzyme in a time-dependent manner. In either case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond had formed between the inhibitor and the enzyme. Inactivation mediated by compounds (I) and (II) followed pseudo-first-order kinetics, and at higher inhibitor concentrations saturation was observed. The competitive inhibitor 17 beta-oestradiol offered protection against the inactivation mediated by both compounds, and initial-rate studies indicated that compounds (I) and (II) can also act as competitive inhibitors yielding Ki values identical with those generated during inactivation experiments. 2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) thus appear to be active-site-directed. To compare the reactivity of these 2-substituted progesterones with other irreversible inhibitors of the isomerase, 3 beta-spiro-oxiranyl-5 alpha-pregnan-20 beta-ol (III) was synthesized as the C21 analogue of 3 beta-spiro-oxiranyl-5 alpha-androstan-17 beta-ol, which is a potent inactivator of the isomerase [Pollack, Kayser & Bevins (1979) Biochem. Biophys. Res. Commun. 91, 783-790]. Comparison of the bimolecular rate constants for inactivation (k+3/Ki) mediated by compounds (I)-(III) indicated the following order of reactivity: (III) greater than (II) greater than (I). 2-Mercaptoethanol offers complete protection against the inactivation of the isomerase mediated by 2 alpha-cyanoprogesterone (I). Under the conditions of inactivation compound (I) appears to be completely stable, and no evidence could be obtained for enolate ion formation in the presence or absence of enzyme. It is suggested that cyanoprogesterone inactivates

  11. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum

    PubMed Central

    Zhang, Ya-Zhou; Wei, Zhen-Zhen; Liu, Cai-Hong; Chen, Qing; Xu, Bin-Jie; Guo, Zhen-Ru; Cao, Yong-Li; Wang, Yan; Han, Ya-Nan; Chen, Chen; Feng, Xiang; Qiao, Yuan-Yuan; Zong, Lu-Juan; Zheng, Ting; Deng, Mei; Jiang, Qian-Tao; Li, Wei; Zheng, You-Liang; Wei, Yu-Ming; Qi, Peng-Fei

    2017-01-01

    Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA. PMID:28387243

  12. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes

    PubMed Central

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    Background While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Methodology/Principal Findings Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Conclusion and Significance Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity. PMID:28036348

  13. The Flavonoid Biosynthetic Enzyme Chalcone Isomerase Modulates Terpenoid Production in Glandular Trichomes of Tomato1[C][W][OPEN

    PubMed Central

    Kang, Jin-Ho; McRoberts, John; Shi, Feng; Moreno, Javier E.; Jones, A. Daniel; Howe, Gregg A.

    2014-01-01

    Flavonoids and terpenoids are derived from distinct metabolic pathways but nevertheless serve complementary roles in mediating plant interactions with the environment. Here, we show that glandular trichomes of the anthocyanin free (af) mutant of cultivated tomato (Solanum lycopersicum) fail to accumulate both flavonoids and terpenoids. This pleiotropic metabolic deficiency was associated with loss of resistance to native populations of coleopteran herbivores under field conditions. We demonstrate that Af encodes an isoform (SlCHI1) of the flavonoid biosynthetic enzyme chalcone isomerase (CHI), which catalyzes the conversion of naringenin chalcone to naringenin and is strictly required for flavonoid production in multiple tissues of tomato. Expression of the wild-type SlCHI1 gene from its native promoter complemented the anthocyanin deficiency in af. Unexpectedly, the SlCHI1 transgene also complemented the defect in terpenoid production in glandular trichomes. Our results establish a key role for SlCHI1 in flavonoid production in tomato and reveal a link between CHI1 and terpenoid production. Metabolic coordination of the flavonoid and terpenoid pathways may serve to optimize the function of trichome glands in dynamic environments. PMID:24424324

  14. Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

    PubMed Central

    Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.

    2013-01-01

    Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164

  15. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol.

    PubMed

    Madhavan, Anjali; Tamalampudi, Sriappareddy; Ushida, Kazunari; Kanai, Daisuke; Katahira, Satoshi; Srivastava, Aradhana; Fukuda, Hideki; Bisaria, Virendra S; Kondo, Akihiko

    2009-04-01

    The cDNA sequence of the gene for xylose isomerase from the rumen fungus Orpinomyces was elucidated by rapid amplification of cDNA ends. The 1,314-nucleotide gene was cloned and expressed constitutively in Saccharomyces cerevisiae. The deduced polypeptide sequence encoded a protein of 437 amino acids which showed the highest similarity to the family II xylose isomerases. Further, characterization revealed that the recombinant enzyme was a homodimer with a subunit of molecular mass 49 kDa. Cell extract of the recombinant strain exhibited high specific xylose isomerase activity. The pH optimum of the enzyme was 7.5, while the low temperature optimum at 37 degrees C was the property that differed significantly from the majority of the reported thermophilic xylose isomerases. In addition to the xylose isomerase gene, the overexpression of the S. cerevisiae endogenous xylulokinase gene and the Pichia stipitis SUT1 gene for sugar transporter in the recombinant yeast facilitated the efficient production of ethanol from xylose.

  16. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  17. Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase.

    PubMed

    Kim, Baek-Joong; Hong, Seung-Hye; Shin, Kyung-Chul; Jo, Ye-Seul; Oh, Deok-Kun

    2014-11-01

    The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cat/K m of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cat/K m of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.

  18. Inhibition of RPE65 Retinol Isomerase Activity by Inhibitors of Lipid Metabolism*

    PubMed Central

    Eroglu, Abdulkerim; Gentleman, Susan; Poliakov, Eugenia; Redmond, T. Michael

    2016-01-01

    RPE65 is the isomerase catalyzing conversion of all-trans-retinyl ester (atRE) into 11-cis-retinol in the retinal visual cycle. Crystal structures of RPE65 and site-directed mutagenesis reveal aspects of its catalytic mechanism, especially retinyl moiety isomerization, but other aspects remain to be determined. To investigate potential interactions between RPE65 and lipid metabolism enzymes, HEK293-F cells were transfected with expression vectors for visual cycle proteins and co-transfected with either fatty acyl:CoA ligases (ACSLs) 1, 3, or 6 or the SLC27A family fatty acyl-CoA synthase FATP2/SLCA27A2 to test their effect on isomerase activity. These experiments showed that RPE65 activity was reduced by co-expression of ACSLs or FATP2. Surprisingly, however, in attempting to relieve the ACSL-mediated inhibition, we discovered that triacsin C, an inhibitor of ACSLs, also potently inhibited RPE65 isomerase activity in cellulo. We found triacsin C to be a competitive inhibitor of RPE65 (IC50 = 500 nm). We confirmed that triacsin C competes directly with atRE by incubating membranes prepared from chicken RPE65-transfected cells with liposomes containing 0–1 μm atRE. Other inhibitors of ACSLs had modest inhibitory effects compared with triascin C. In conclusion, we have identified an inhibitor of ACSLs as a potent inhibitor of RPE65 that competes with the atRE substrate of RPE65 for binding. Triacsin C, with an alkenyl chain resembling but not identical to either acyl or retinyl chains, may compete with binding of the acyl moiety of atRE via the alkenyl moiety. Its inhibitory effect, however, may reside in its nitrosohydrazone/triazene moiety. PMID:26719343

  19. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues.

    PubMed

    Chanitnun, Kankiya; Pinphanichakarn, Pairoh

    2012-07-01

    Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  20. Overexpression, purification, crystallization and preliminary X-ray crystal analysis of Bacillus pallidus d-arabinose isomerase

    PubMed Central

    Takeda, Kosei; Yoshida, Hiromi; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2008-01-01

    d-Arabinose isomerase catalyzes the isomerization of d-arabinose to d-ribulose. Bacillus pallidus d-arabinose isomerase has broad substrate specificity and can catalyze the isomerization of d-arabinose, l-fucose, l-xylose, l-galactose and d-­altrose. Recombinant B. pallidus d-arabinose isomerase was overexpressed, purified and crystallized. A crystal of the enzyme was obtained by the sitting-drop method at room temperature and belonged to the orthorhombic space group P21212, with unit-cell parameters a = 144.9, b = 127.9, c = 109.5 Å. Diffraction data were collected to 2.3 Å resolution. PMID:18931442

  1. Redox-coupled structural changes of the catalytic a' domain of protein disulfide isomerase.

    PubMed

    Inagaki, Koya; Satoh, Tadashi; Yagi-Utsumi, Maho; Le Gulluche, Anne-Charlotte; Anzai, Takahiro; Uekusa, Yoshinori; Kamiya, Yukiko; Kato, Koichi

    2015-09-14

    Protein disulfide isomerase functions as a folding catalyst in the endoplasmic reticulum. Its b' and a' domains provide substrate-binding sites and undergo a redox-dependent domain rearrangement coupled to an open-closed structural change. Here we determined the first solution structure of the a' domain in its oxidized form and thereby demonstrate that oxidation of the a' domain induces significant conformational changes not only in the vicinity of the active site but also in the distal b'-interfacial segment. Based on these findings, we propose that this conformational transition triggers the domain segregation coupled with the exposure of the hydrophobic surface.

  2. Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae.

    PubMed

    Alonso, A; Pascual, C; Romay, C; Herrera, L; Kotyk, A

    1989-01-01

    The rate of hexose transport was approximately 60% lower for both the high- and the low-affinity components of hexose uptake when a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae was preincubated with glucose, as compared with preincubation with water. Similarly the Jmax value of the high-affinity system of the mutant was 25-35% of the corresponding Jmax value for normal cells incubated with glucose. Accumulation of glucose 6-phosphate or of some other metabolite, such as fructose 6-phosphate or trehalose, may be responsible for this striking inhibition.

  3. A coleopteran triosephosphate isomerase: X-ray structure and phylogenetic impact of insect sequences.

    PubMed

    Knobeloch, D; Schmidt, A; Scheerer, P; Krauss, N; Wessner, H; Scholz, Ch; Küttner, G; von Rintelen, T; Wessel, A; Höhne, W

    2010-02-01

    A coleopteran triosephosphate isomerase (TIM) from Tenebrio molitor (yellow mealworm beetle) was recombinantly expressed in Escherichia coli and characterized with respect to thermal stability, kinetic parameters and oligomeric state. The enzyme was successfully crystallized and the structure determined by X-ray analysis to 2.0 A resolution. This is the first example of an invertebrate TIM. We compare structural features with known structures of TIMs from microorganisms, plants and vertebrates, and discuss the utility of the Tenebrio TIM sequence, together with several newly sequenced insect TIMs, for molecular phylogenetic analysis.

  4. Steroidomimetic aminomethyl spiroacetals as novel inhibitors of the enzyme Δ8,7-sterol isomerase in cholesterol biosynthesis.

    PubMed

    Krojer, Melanie; Müller, Christoph; Bracher, Franz

    2014-02-01

    Grundmann's ketone is converted to a spiroacetal containing a 5-hydroxymethyl-5-nitro-1,3-dioxane moiety whose hydroxymethyl group can be esterified or directly substituted with primary and secondary amines. Among the resulting aminomethyl spiroacetals, several ones bearing diamino residues were found to be inhibitors of the enzyme Δ8,7-isomerase in cholesterol biosynthesis. The complex bicyclic building block derived from Grundmann's ketone could be replaced by a properly substituted tetraline scaffold, without noteworthy loss in activity. This opens the opportunity to perform further structural modifications for the design of new steroidomimetic inhibitors of human Δ8,7-isomerase.

  5. Structure of human peptidyl-prolyl cis–trans isomerase FKBP22 containing two EF-hand motifs

    PubMed Central

    Boudko, Sergei P; Ishikawa, Yoshihiro; Nix, Jay; Chapman, Michael S; Bächinger, Hans Peter

    2014-01-01

    The FK506-binding protein (FKBP) family consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl-prolyl cis–trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF-hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP-type domain as well as of the EF-hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand-containing FKBPs. The EF-hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP-type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF-hand motifs. PMID:24272907

  6. Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition.

    PubMed Central

    Zydowsky, L. D.; Etzkorn, F. A.; Chang, H. Y.; Ferguson, S. B.; Stolz, L. A.; Ho, S. I.; Walsh, C. T.

    1992-01-01

    Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin. PMID:1338979

  7. NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity.

    PubMed

    Erlejman, Alejandra G; De Leo, Sonia A; Mazaira, Gisela I; Molinari, Alejandro M; Camisay, María Fernanda; Fontana, Vanina; Cox, Marc B; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-09-19

    Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity.

  8. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    PubMed

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  9. Control of carotenoid biosynthesis through a heme-based cis-trans isomerase

    PubMed Central

    Beltrán, Jesús; Kloss, Brian; Hosler, Jonathan P.; Geng, Jiafeng; Liu, Aimin; Modi, Anuja; Dawson, John H.; Sono, Masanori; Shumskaya, Maria; Ampomah-Dwamena, Charles; Love, James D.; Wurtzel, Eleanore T.

    2015-01-01

    Plants synthesize carotenoids essential for plant development and survival. These metabolites also serve as essential nutrients for human health. The biosynthetic pathway leading to all plant carotenoids occurs in chloroplasts and other plastids and requires 15-cis-ζ-carotene isomerase (Z-ISO). It was not certain whether isomerization was achieved by Z-ISO alone or in combination with other enzymes. Here we show that Z-ISO is a bona fide enzyme and integral membrane protein. Z-ISO independently catalyzes the cis-to-trans isomerization of the 15–15′ C=C bond in 9,15,9′-cis-ζ-carotene to produce the substrate required by the following biosynthetic pathway enzyme. We discovered that isomerization depends upon a ferrous heme b cofactor that undergoes redox-regulated ligand-switching between the heme iron and alternate Z-ISO amino acid residues. Heme b-dependent isomerization of a large, hydrophobic compound in a membrane is unprecedented. As an isomerase, Z-ISO represents a new prototype for heme b proteins and potentially utilizes a novel chemical mechanism. PMID:26075523

  10. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    PubMed

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  11. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation

    PubMed Central

    Marsolier, J.; Perichon, M.; DeBarry, JD.; Villoutreix, BO.; Chluba, J.; Lopez, T.; Garrido, C.; Zhou, XZ.; Lu, KP.; Fritsch, L.; Ait-Si-Ali, S.; Mhadhbi, M; Medjkane, S.; Weitzman, JB.

    2014-01-01

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack the genetic and epigenetic machinery to change phenotypic states. Amongst the Apicomplexa phylum of obligate intracellular parasites which cause veterinary and human diseases, Theileria is the only genus which transforms its mammalian host cells1. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-12. The transformed phenotypes are reversed by treatment with the theilericidal drug Buparvaquone3. We used comparative genomics to identify a homologue of the Peptidyl Prolyl Isomerase Pin1 (designated TaPin1) in T. annulata which is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPin1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7 leading to its degradation and subsequent stabilization of c-Jun which promotes transformation. We performed in vitro analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPin1 is directly inhibited by the anti-parasite drug Buparvaquone (and other known Pin1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerisation is thus a conserved mechanism which is important in cancer and is used by Theileria parasites to manipulate host oncogenic signaling. PMID:25624101

  12. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA

    SciTech Connect

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2006-01-01

    The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution. Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source.

  13. Protein disulfide isomerase homolog TrPDI2 contributing to cellobiohydrolase production in Trichoderma reesei.

    PubMed

    Wang, Guokun; Lv, Pin; He, Ronglin; Wang, Haijun; Wang, Lixian; Zhang, Dongyuan; Chen, Shulin

    2015-09-01

    The majority of the cysteine residues in the secreted proteins form disulfide bonds via protein disulfide isomerase (PDI)-mediated catalysis, stabilizing the enzyme activity. The role of PDI in cellulase production is speculative, as well as the possibility of PDI as a target for improving enzyme production efficiency of Trichoderma reesei, a widely used producer of enzyme for the production of lignocellulose-based biofuels and biochemicals. Here, we report that a PDI homolog, TrPDI2 in T. reesei exhibited a 36.94% and an 11.81% similarity to Aspergillus niger TIGA and T. reesei PDI1, respectively. The capability of TrPDI2 to recover the activity of reduced and denatured RNase by promoting refolding verified its protein disulfide isomerase activity. The overexpression of Trpdi2 increased the secretion and the activity of CBH1 at the early stage of cellulase induction. In addition, both the expression level and redox state of TrPDI2 responded to cellulase induction in T. reesei, providing sustainable oxidative power to ensure cellobiohydrolase maturation and production. The results suggest that TrPDI2 may contribute to cellobiohydrolase secretion by enhancing the capability of disulfide bond formation, which is essential for protein folding and maturation.

  14. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    SciTech Connect

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-02-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2{sub 1}3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M.

  15. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates.

  16. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei.

    PubMed

    Lopez-Zavala, Alonso A; Carrasco-Miranda, Jesus S; Ramirez-Aguirre, Claudia D; López-Hidalgo, Marisol; Benitez-Cardoza, Claudia G; Ochoa-Leyva, Adrian; Cardona-Felix, Cesar S; Diaz-Quezada, Corina; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R; Brieba, Luis G

    2016-12-01

    Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation.

  17. Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction

    PubMed Central

    Fonseca, Catia; Soiffer, Robert; Ho, Vincent; Vanneman, Matthew; Jinushi, Masahisa; Ritz, Jerome; Neuberg, Donna; Stone, Richard; DeAngelo, Dan

    2009-01-01

    The identification of cancer antigens that contribute to transformation and are linked with immune-mediated tumor destruction is an important goal for immunotherapy. Toward this end, we screened a murine renal cell carcinoma cDNA expression library with sera from mice vaccinated with irradiated tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor (GM-CSF). Multiple nonmutated, overexpressed proteins that function in tumor cell migration, protein/nucleic acid homeostasis, metabolism, and stress responses were detected. Among these, the most frequently recognized clone was protein disulfide isomerase (PDI). High titer antibodies to human PDI were similarly induced in an acute myeloid leukemia patient who achieved a complete response after vac-cination with irradiated, autologous GM-CSF–secreting tumor cells in the setting of nonmyeloablative allogeneic bone marrow transplantation. Moreover, ERp5, a closely related disulfide isomerase involved in major histocompatibility complex (MHC) class I chain-related protein A (MICA) shedding, also evoked potent humoral reactions in diverse solid and hematologic malignancy patients who responded to GM-CSF–secreting tumor cell vaccines or antibody blockade of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4). Together, these findings reveal the unexpected immunogenicity of PDIs and raise the possibility that these gene products might serve as targets for therapeutic monoclonal antibodies. PMID:19008459

  18. Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation of Mycobacterium tuberculosis 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Inhibitors

    PubMed Central

    2011-01-01

    Cinnamaldehyde derivatives were synthesized in good to excellent yields in one step by a mild and selective, base-free palladium(II)-catalyzed oxidative Heck reaction starting from acrolein and various arylboronic acids. Prepared α,β-unsaturated aldehydes were used for synthesis of novel α-aryl substituted fosmidomycin analogues, which were evaluated for their inhibition of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase. IC50 values between 0.8 and 27.3 μM were measured. The best compound showed activity comparable to that of the most potent previously reported α-aryl substituted fosmidomycin-class inhibitor. PMID:21936546

  19. FrnE, a Cadmium-Inducible Protein in Deinococcus radiodurans, Is Characterized as a Disulfide Isomerase Chaperone In Vitro and for Its Role in Oxidative Stress Tolerance In Vivo

    PubMed Central

    Khairnar, Nivedita P.; Joe, Min-Ho; Misra, H. S.; Lim, Sang-Yong

    2013-01-01

    Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ∼15- and ∼3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ∼2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42°C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation. PMID:23603741

  20. Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Chen, Ye; Leary, Julie A.

    2005-02-01

    A mass spectrometry based method for the direct determination of kinetic constants for phosphoglucose isomerase (PGI) and phosphomannose isomerase (PMI) is described. PGI catalyzes the interconversion between glucose-6-phosphate (Glc6P) and fructose-6-phosphate (Fru6P) and PMI performs the same function between mannose-6-phosphate (Man6P) and Fru6P. These two enzymes are essential in the pathways of glycolytic or oxidative metabolism of carbohydrates and have been considered as potential therapeutic targets. Traditionally, they are assayed either by spectrophotometric detection of Glc6P with one or more coupling enzymes or by a colorimetric detection of Fru6P. However, no suitable assay for Man6P has been developed yet to study the reaction of PMI in the direction from Fru6P to Man6P. In the work presented herein, a general assay for the isomeric substrate-product pair between Glc6P and Fru6P or between Man6P and Fru6P was developed, with the aim of directly studying the kinetics of PGI and PMI in both directions. The 6-phosphorylated aldose and ketose isomers were distinguished based on their corresponding tandem mass spectra (MS2) obtained on a quadrupole ion trap mass spectrometer, and a multicomponent quantification method was utilized to determine the composition of binary mixtures. Using this method, the conversion between Fru6P and Glc6P and that between Fru6P and Man6P are directly monitored. The equilibrium constants for the reversible reactions catalyzed by PGI and PMI are measured to be 0.3 and 1.1, respectively, and the kinetic parameters for both substrates of PGI and PMI are also determined. The values of KM and Vmax for Fru6P as substrate of PMI are reported to be 0.15 mM and 7.78 [mu]mol/(min mg), respectively. All other kinetic parameters measured correlate well with those obtained using traditional methods, demonstrating the accuracy and reliability of this assay.

  1. Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco.

    PubMed

    Li, F; Jin, Z; Qu, W; Zhao, D; Ma, F

    2006-01-01

    Chalcone isomerase (CHI; EC 5.5.1.6) is a key enzyme in the flavonoid biosynthesis pathway. We isolated a CHI gene (SmCHI) from a cDNA library derived from Saussurea medusa (Asteraceae) cell cultures. The cDNA and genomic sequences of SmCHI are the same; in other words, this gene is intronless. The coding region of the gene is 699 bp long, and its deduced protein consists of 232 amino acids with a predicted molecular mass of 24 kDa and a pI of 4.7. The deduced amino acid sequence of SmCHI shares 79.3% identity with CHI from Callistephus chinensis, a familial relative to S. medusa; this homology is higher than those with CHI's from any other plant species. A functional bioassay for SmCHI was performed by transforming Nicotiana tabacum plants in the sense or antisense orientation under the regulation of the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic tobacco plants overexpressing sense SmCHI produced up to fivefold total flavonoids over wild-type tobacco plants, mainly due to an enhanced accumulation of rutin. Transgenic tobacco plants with antisense SmCHI accumulated smaller amounts of flavonoids; this is apparently brought about by suppressed expression of the endogenous CHI gene. CHI activities also positively correlated with the amounts of total flavonoids accumulated in the transgenic plants. It is concluded that overexpression of SmCHI can be used as a useful approach to increase flavonoid production in transgenic plants.

  2. Mutations in domain a′ of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A

    PubMed Central

    Ruoppolo, Margherita; Orrù, Stefania; Talamo, Fabio; Ljung, Johanna; Pirneskoski, Annamari; Kivirikko, Kari I.; Marino, Gennaro; Koivunen, Peppi

    2003-01-01

    Protein disulfide isomerase (PDI, EC 5.3.4.1), an enzyme and chaperone, catalyses disulfide bond formation and rearrangements in protein folding. It is also a subunit in two proteins, the enzyme collagen prolyl 4-hydroxylase and the microsomal triglyceride transfer protein. It consists of two catalytically active domains, a and a′, and two inactive ones, b and b′, all four domains having the thioredoxin fold. Domain b′ contains the primary peptide binding site, but a′ is also critical for several of the major PDI functions. Mass spectrometry was used here to follow the folding pathway of bovine pancreatic ribonuclease A (RNase A) in the presence of three PDI mutants, F449R, Δ455–457, and abb′, and the individual domains a and a′. The first two mutants contained alterations in the last α helix of domain a′, while the third lacked the entire domain a′. All mutants produced genuine, correctly folded RNase A, but the appearance rate of 50% of the product, as compared to wild-type PDI, was reduced 2.5-fold in the case of PDI Δ455–457, 7.5-fold to eightfold in the cases of PDI F449R and PDI abb′, and over 15-fold in the cases of the individual domains a and a′. In addition, PDI F449R and PDI abb′ affected the distribution of folding intermediates. Domains a and a′ catalyzed the early steps in the folding but no disulfide rearrangements, and therefore the rate observed in the presence of these individual domains was similar to that of the spontaneous process. PMID:12717017

  3. Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.

    PubMed

    Chen, Bing; Shao, Jingru; Zhuang, Huifu; Wen, Jianfan

    2017-02-20

    Intron evolution, including its dynamics in the evolutionary transitions and diversification of eukaryotes, remains elusive. Inadequate taxon sampling due to data shortage, unclear phylogenetic framework, and inappropriate outgroup application might be among the causes. Besides, the integrity of all the introns within a gene was often neglected previously. Taking advantage of the ancient conserved triosephosphate isomerase gene (tim), the relatively robust phylogeny of Metazoa, and choanoflagellates as outgroup, the evolutionary dynamics of tim intron location pattern (ILP) in Metazoa was investigated. From 133 representative species of ten phyla, 30 types of ILPs were identified. A most common one, which harbors the maximum six intron positions, is deduced to be the common ancestral tim ILP of Metazoa, which almost had formed in their protozoan ancestor and was surprisingly retained and passed down till to each ancestors of metazoan phyla. In the subsequent animal diversification, it underwent different evolutionary trajectories: within Deuterostomia, it was almost completely retained only with changes in a few species with relatively recently fast-evolving histories, while within the rapidly radiating Protostomia, besides few but remarkable retention, it usually displayed extensive intron losses and a few gains. Therefore, a common ancestral exon-intron arrangement pattern of an animal gene is definitely discovered; besides the 'intron-rich view' of early animal genes being confirmed, the novel insight that high exon-intron re-arrangements of genes seem to be associated with the relatively recently rapid evolution of lineages/species/genomes but have no correlation with the ancient major evolutionary transitions in animal evolution, is revealed.

  4. The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein*

    PubMed Central

    Torres, Mauricio; Medinas, Danilo B.; Matamala, José Manuel; Woehlbier, Ute; Cornejo, Víctor Hugo; Solda, Tatiana; Andreu, Catherine; Rozas, Pablo; Matus, Soledad; Muñoz, Natalia; Vergara, Carmen; Cartier, Luis; Soto, Claudio; Molinari, Maurizio; Hetz, Claudio

    2015-01-01

    Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease. PMID:26170458

  5. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    PubMed Central

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic interaction chromatography, catalyzed the interconversion of IPP and dimethylallyl diphosphate. Thus, the photosynthesis gene cluster encodes all of the enzymes required to incorporate IPP into the ultimate carotenoid and bacteriochlorophyll metabolites in R. capsulatus. More recent searches uncovered additional putative open reading frames for IPP isomerase in seed-bearing plants (Oryza sativa, Arabadopsis thaliana, and Clarkia breweri), a worm (Caenorhabiditis elegans), and another eubacterium (Escherichia coli). The R. capsulatus enzyme is the smallest of the IPP isomerases to be identified thus far and may consist mostly of a fundamental catalytic core for the enzyme. PMID:8550491

  6. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Identification by chemical derivatization and peptide mapping.

    PubMed

    Vangrysperre, W; Ampe, C; Kersters-Hilderson, H; Tempst, P

    1989-10-01

    Group-specific chemical modifications of D-xylose isomerase from Streptomyces violaceruber indicated that complete loss of activity is fully correlated with the acylation of a single histidine. Active-site protection, by the ligand combination of xylitol plus Mg2+, completely blocked diethyl pyrocarbonate derivatization of this particular residue [Vangrysperre, Callens, Kersters-Hilderson & De Bruyne (1988) Biochem. J. 250, 153-160]. Differential peptide mapping between D-xylose isomerase, which has previously been treated with diethyl pyrocarbonate in the presence or absence of xylitol plus Mg2+, allowed specific isolation and sequencing of a peptide containing this active-site histidine. For this purpose we used two essentially new techniques: first, a highly reproducible peptide cleavage protocol for protease-resistant, carbethoxylated proteins with guanidinium hydrochloride as denaturing agent and subtilisin for proteolysis; and second, reverse-phase liquid chromatography with dual-wavelength detection at 214 and 238 nm, and calculation of absorbance ratios. It allowed us to locate the single active-site histidine at position 54 in the primary structure of Streptomyces violaceoruber D-xylose isomerase. The sequence around this residue is conserved in D-xylose isomerases from a diversity of micro-organisms, suggesting that this is a structurally and/or functionally essential part of the molecule.

  7. Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection.

    PubMed Central

    Moro, A; Ruiz-Cabello, F; Fernández-Cano, A; Stock, R P; González, A

    1995-01-01

    Macrophage infectivity potentiators are membrane proteins described as virulence factors in bacterial intracellular parasites, such as Legionella and Chlamydia. These factors share amino acid homology to eukaryotic peptidyl-prolyl cis-trans isomerases that are inhibited by FK506, an inhibitor of signal transduction in mammalian cells with potent immunosuppressor activity. We report here the characterization of a protein released into the culture medium by the infective stage of the protozoan intracellular parasite Trypanosoma cruzi. The protein possesses a peptidyl-prolyl cis-trans isomerase activity that is inhibited by FK506 and its non-immunosuppressing derivative L-685,818. The corresponding gene presents sequence homology with bacterial macrophage infectivity potentiators. The addition of the protein, produced heterologously in Escherichia coli, to cultures of trypomastigotes and simian epithelial or HeLa cells enhances invasion of the mammalian cells by the parasites. Antibodies raised in mice against the T.cruzi isomerase greatly reduce infectivity. A similar reduction of infectivity is obtained by addition to the cultures of FK506 and L-685,818. We concluded that the T.cruzi isomerase is involved in cell invasion. Images PMID:7540135

  8. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  9. 40 CFR 174.527 - Phosphomannose isomerase in all plants; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants are exempt from the requirement of a tolerance when used as plant-incorporated protectant inert... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosphomannose isomerase in all plants... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR...

  10. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    PubMed Central

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-01-01

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions. PMID:27618008

  11. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    PubMed

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  12. Purification and characterization of two isoforms of isopentenyl-diphosphate isomerase from elicitor-treated Cinchona robusta cells.

    PubMed

    Ramos-Valdivia, A C; van der Heijden, R; Verpoorte, R; Camara, B

    1997-10-01

    In Cinchona robusta (Rubiaceae) cell suspension cultures, the activity of the enzyme isopentenyl-diphosphate isomerase (isopentenyl-POP isomerase) is transiently induced after addition of a homogenate of the phytopathogenic fungus Phytophthora cinnamomi. The enzyme catalyses the interconversion of isopentenyl-POP and dimethylallyl diphosphate (dimethylallyl-POP) and may be involved in the biosynthesis of anthraquinone phytoalexins that accumulate rapidly after elicitation of Cinchona cells. From elicitor-treated C. robusta cells, two isoforms of isopentenyl-POP isomerase have been purified to apparent homogeneity in four chromatographic steps. The purified forms are monomeric enzymes of 34 kDa (isoform I) and 29 kDa (isoform II), with Km values for isopentenyl-POP of 5.1 microM and 1.0 microM, respectively. Both isoforms require Mn2+ or Mg2+ as cofactor, isoform II showing a preference for Mn2+ with maximum activity at 1.5-2 mM. Isoform I was most active in the presence of 0.5-1.5 mM Mg2+ or in the presence of 0.5 mM Mn2+. A pH optimum of 7-7.8 was found for both forms and both were competitively inhibited by geranyl diphosphate (Ki 96 microM for isoform I) and the transition state analogue 2-(dimethylamino)ethyl diphosphate. Rechromatography of purified isoforms did not indicate any interconversion of both forms. Western blot analysis, using antibodies raised against isopentenyl-POP isomerase purified from Capsicum annuum, showed the presence of both isoforms in the crude protein extracts from C. robusta cells. Isoform II was specifically induced by elicitation, non-treated cells contained low activity of this isoform. The possible role of isopentenyl-POP isomerase in the biosynthesis of anthraquinones is discussed.

  13. Mannose production from fructose by free and immobilized D-lyxose isomerases from Providencia stuartii.

    PubMed

    Park, Chang-Su; Kwon, Hyun-Jung; Yeom, Soo-Jin; Oh, Deok-Kun

    2010-09-01

    A recombinant D-lyxose isomerase from Providencia stuartii was immobilized on Duolite A568 beads which gave the highest conversion of D-fructose to D-mannose among the various immobilization beads evaluated. Maximum activities of both the free and immobilized enzymes for fructose isomerization were at pH 7.5 and 45 degrees C in the presence of 1 mM Mn(2+). Enzyme half-lives were 14 and 30 h at 35 degrees C and 3.4 and 5.1 h at 45 degrees C, respectively. The immobilized enzyme in 300 g fructose/l (replaced hourly), produced 75 g mannose/l at 35 degrees C = 25% (w/w) yield with a productivity of 75 g mannose l(-1) h(-1) after 23 cycles.

  14. Production of ethanol from D-xylose by using D-xylose isomerase and yeasts

    SciTech Connect

    Gong, C.S.; Chem, L.F.; Flickinger, M.C.; Chiang, L.C.; Tsao, G.T.

    1981-02-01

    D-xylulose, an intermediate of D-xylose catabolism, was observed to be fermentable to ethanol and carbon dioxide in a yield of greater than 80% by yeasts (including industrial bakers' yeast) under fermentative conditions. This conversion appears to be carried out by many yeasts known for D-glucose fermentation. In some yeasts, xylitol, in addition to ethanol, was produced from D-xylulose. Fermenting yeasts are also able to produce ethanol from D-xylose when D-xylose isomerizing enzyme is present. The results indicate that ethanol could be produced from D-xylose in a yield of greater than 80% by a two-step process. First. D-xylose is converted to D-xylulose by xylose isomerase. D-xylulose is then fermented to ethanol by yeasts.

  15. Inheritance and subcellular localization of triose-phosphate isomerase in dwarf mountain pine (Pinus mugo).

    PubMed

    Odrzykoski, I J

    2001-01-01

    Several trees with expected heterozygous phenotype for triose-phosphate isomerase (TPI) were discovered in a population of dwarf mountain pine (Pinus mugo Turra) from southern Poland. As the inheritance of this enzyme in pines has not been reported, segregation of allelic variants was tested in eight trees with putative heterozygous phenotypes for two loci, TpiA and TPIB: Linkage between these and some other isozyme loci were studied and evidence for linkage has been found between TpiA and PgdA (r = 0.10) and between TpiB and DiaD (r = 0.36), but in single trees only. The subcellular localization of TPI isozymes was determined by comparing isoenzymes from the total extract with those found in fraction enriched in plastids, prepared by differential gradient centrifugation of cellular organelles. The more slowly migrating TPI-B isozyme is located in plastids.

  16. Domain a' of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation.

    PubMed

    Cheng, Han; Wang, Lei; Wang, Chih-chen

    2010-07-01

    alpha-Synuclein (alpha Syn) is the main component of Lewy bodies formed in midbrain dopaminergic neurons which is a pathological characteristic of Parkinson's disease. It has been recently showed to induce endoplasmic reticulum (ER) stress and impair ER functions. However, the mechanism of how ER responds to alpha Syn toxicity is poorly understood. In the present study, we found that protein disulfide isomerase (PDI), a stress protein abundant in ER, effectively inhibits alpha Syn fibril formation in vitro. In PDI molecule with a structure of abb'xa'c, domain a' was found to be essential and sufficient for PDI to inhibit alpha Syn fibril formation. PDI was further found to be more avid for binding with intermediate species formed during alpha Syn fibril formation, and the binding was more intensive in the later lag phase. Our results provide new insight into the role of PDI in protecting ER from the deleterious effects of misfolded protein accumulation in many neurodegenerative diseases.

  17. Drosophila peptidyl-prolyl isomerase Pin1 modulates circadian rhythms via regulating levels of PERIOD.

    PubMed

    Kang, So Who; Lee, Euna; Cho, Eunjoo; Seo, Ji Hye; Ko, Hyuk Wan; Kim, Eun Young

    2015-07-31

    In animal circadian clock machinery, the phosphorylation program of PERIOD (PER) leads to the spatio-temporal regulation of diverse PER functions, which are crucial for the maintenance of ~24-hr circadian rhythmicity. The peptidyl-prolyl isomerase PIN1 modulates the diverse functions of its substrates by inducing conformational changes upon recognizing specific phosphorylated residues. Here, we show that overexpression of Drosophila pin1, dodo (dod), lengthens the locomotor behavioral period. Using Drosophila S2 cells, we demonstrate that Dod associates preferentially with phosphorylated species of PER, which delays the phosphorylation-dependent degradation of PER. Consistent with this, PER protein levels are higher in flies overexpressing dod. Taken together, we suggest that Dod plays a role in the maintenance of circadian period by regulating PER metabolism.

  18. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

    PubMed

    Fried, Stephen D; Bagchi, Sayan; Boxer, Steven G

    2014-12-19

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.

  19. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus.

    PubMed

    Tanaka, Yoshikazu; Amano, Arisa; Morisaki, Masateru; Sato, Yuka; Sasaki, Takashi

    2016-02-01

    Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.

  20. Triosephosphate Isomerase Gene Characterization and Potential Zoonotic Transmission of Giardia duodenalis

    PubMed Central

    Sulaiman, Irshad M.; Fayer, Ronald; Bern, Caryn; Gilman, Robert H.; Trout, James M.; Schantz, Peter M.; Das, Pradeep; Lal, Altaf A.

    2003-01-01

    To address the source of infection in humans and public health importance of Giardia duodenalis parasites from animals, nucleotide sequences of the triosephosphate isomerase (TPI) gene were generated for 37 human isolates, 15 dog isolates, 8 muskrat isolates, 7 isolates each from cattle and beavers, and 1 isolate each from a rat and a rabbit. Distinct genotypes were found in humans, cattle, beavers, dogs, muskrats, and rats. TPI and small subunit ribosomal RNA (SSU rRNA) gene sequences of G. microti from muskrats were also generated and analyzed. Phylogenetic analysis on the TPI sequences confirmed the formation of distinct groups. Nevertheless, a major group (assemblage B) contained most of the human and muskrat isolates, all beaver isolates, and the rabbit isolate. These data confirm that G. duodenalis from certain animals can potentially infect humans and should be useful in the detection, differentiation, and taxonomy of Giardia spp. PMID:14718089

  1. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    PubMed Central

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.; Song, Albert S.; Boomsma, Wouter; Bandyopadhyay, Pradip K.; Gruber, Christian W.; Purcell, Anthony W.; Yandell, Mark; Olivera, Baldomero M.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea. PMID:26957604

  2. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.

    PubMed

    Merico, A; Rodrigues, F; Côrte-Real, M; Porro, D; Ranzi, B M; Compagno, C

    2001-06-30

    The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852.

  3. Assisted refolding of recombinant prochymosin with the aid of protein disulphide isomerase.

    PubMed Central

    Tang, B; Zhang, S; Yang, K

    1994-01-01

    Protein disulphide isomerase (PDI) was shown to be able to accelerate the refolding of unfolded recombinant prochymosin and to enhance the overall yield of active protein. Unlike previous reports in this study PDI was found to be active at pH values as high as 11. The coincidence of the similar apparent optimum pH values of uncatalysed and PDI-catalysed reactions suggests that conditions favourable to spontaneous refolding of proteins may help PDI to catalyse thiol/disulphide interchange. Under the conditions described here no exogenously added dithiothreitol was required for PDI-catalysed renaturation, implying that the disulphide form of PDI was reduced to its active form by the free thiol groups in prochymosin molecules. PMID:8037666

  4. Novel approach for identifying key residues in enzymatic reactions: proton abstraction in ketosteroid isomerase.

    PubMed

    Ito, Mika; Brinck, Tore

    2014-11-20

    We propose a computationally efficient approach for evaluating the individual contributions of many different residues to the catalytic efficiency of an enzymatic reaction. This approach is based on the fragment molecular orbital (FMO) method, and it defines the energy of a deletion form, i.e., the energy of the system when a particular residue is deleted. Using this approach, we found that, among 10 investigated residues, three, Tyr14, Asp99, and Tyr55, in this order, significantly reduce the activation energy of the proton abstraction from a substrate, cyclopent-2-enone, catalyzed by ketosteroid isomerase (KSI). The relative activation energies estimated in this study are in good agreement with available previous experimental and theoretical data obtained for the similar proton abstraction with a native substrate and substitution mutants of KSI. It was thus indicated that the new approach is efficient for rationally evaluating the catalytic effects of multiple residues on an enzymatic reaction.

  5. Thermodynamics of Enzyme-Catalyzed Reactions: Part 5. Isomerases and Ligases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1995-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the isomerase and ligase classes of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 176 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  6. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  7. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    PubMed

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress.

  8. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway.

    PubMed

    Wang, Rongliang; Li, Lulu; Zhang, Biao; Gao, Xiaolian; Wang, Dongmei; Hong, Jiong

    2013-08-01

    To improve the xylose fermentation ability of Kluyveromyces marxianus, a xylose assimilation pathway through xylose isomerase was constructed. The genes encoding xylose reductase (KmXyl1) and xylitol dehydrogenase (KmXyl2) were disrupted in K. marxianus YHJ010 and the resultant strain was named YRL002. A codon-optimized xylose isomerase gene from Orpinomyces was transformed into K. marxianus YRL002 and expressed under GAPDH promoter. The transformant was adapted in the SD medium containing 1 % casamino acid with 2 % xylose as sole carbon source. After 32 times of trans-inoculation, a strain named YRL005, which can grow at a specific growth rate of 0.137/h with xylose as carbon source, was obtained. K. marxianus YRL005 could ferment 30.15 g/l of xylose and produce 11.52 g/l ethanol with a yield of 0.38 g/g, production rate of 0.069 g/l/h at 42 °C, and also could ferment 16.60 g/l xylose to produce 5.21 g/l ethanol with a yield of 0.31 g/g, and production rate of 0.054 g/l h at 45 °C. Co-fermentation with 2 % glucose could not improve the amount and yield of ethanol fermented from xylose obviously, but it could improve the production rate. Furthermore, K. marxianus YRL005 can ferment with the corn cob hydrolysate, which contained 20.04 g/l xylose to produce 8.25 g/l ethanol. It is a good platform to construct thermo-tolerant xylose fermentation yeast.

  9. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    PubMed

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  10. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  11. Structural Basis of Human Triosephosphate Isomerase Deficiency: Mutation E104D is Related to Alterations of a Conserved Water Network at the Dimer Interface

    SciTech Connect

    Rodríguez-Almazan, Claudia; Arreola, Rodrigo; Rodriguez-Larrea, David; Aguirre-Lopez, Beatriz; Gomez-Puyou, Marietta Tuena de; Perez-Montfort, Ruy; Costas, Miguel; Gomez-Puyou, Armando; Torres-Larios, Alfredo

    2010-01-07

    Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood. Here, we show that the purified, recombinant mutant enzyme E104D, while exhibiting normal catalytic activity, shows impairments in the formation of active dimers and low thermostability and monomerizes under conditions in which the wild type retains its dimeric form. The crystal structure of the E104D mutant at 1.85 {angstrom} resolution showed that its global structure was similar to that of the wild type; however, residue 104 is part of a conserved cluster of 10 residues, five from each subunit. An analysis of the available high resolution structures of TIM dimers revealed that this cluster forms a cavity that possesses an elaborate conserved network of buried water molecules that bridge the two subunits. In the E104D mutant, a disruption of contacts of the amino acid side chains in the conserved cluster leads to a perturbation of the water network in which the water-protein and water-water interactions that join the two monomers are significantly weakened and diminished. Thus, the disruption of this solvent system would stand as the underlying cause of the deficiency.

  12. Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface.

    PubMed

    Rodríguez-Almazán, Claudia; Arreola, Rodrigo; Rodríguez-Larrea, David; Aguirre-López, Beatriz; de Gómez-Puyou, Marietta Tuena; Pérez-Montfort, Ruy; Costas, Miguel; Gómez-Puyou, Armando; Torres-Larios, Alfredo

    2008-08-22

    Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood. Here, we show that the purified, recombinant mutant enzyme E104D, while exhibiting normal catalytic activity, shows impairments in the formation of active dimers and low thermostability and monomerizes under conditions in which the wild type retains its dimeric form. The crystal structure of the E104D mutant at 1.85 A resolution showed that its global structure was similar to that of the wild type; however, residue 104 is part of a conserved cluster of 10 residues, five from each subunit. An analysis of the available high resolution structures of TIM dimers revealed that this cluster forms a cavity that possesses an elaborate conserved network of buried water molecules that bridge the two subunits. In the E104D mutant, a disruption of contacts of the amino acid side chains in the conserved cluster leads to a perturbation of the water network in which the water-protein and water-water interactions that join the two monomers are significantly weakened and diminished. Thus, the disruption of this solvent system would stand as the underlying cause of the deficiency.

  13. Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose.

    PubMed

    Park, Ha-Young; Park, Chang-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2007-10-15

    We purified recombinant galactose 6-phosphate isomerase (LacAB) from Lactococcus lactis using HiTrap Q HP and Phenyl-Sepharose columns. The purified LacAB had a final specific activity of 1.79units/mg to produce d-allose. The molecular mass of native galactose 6-phosphate isomerase was estimated at 135.5kDa using Sephacryl S-300 gel filtration, and the enzyme exists as a hetero-octamer of LacA and LacB subunits. The activity of galactose 6-phosphate isomerase was maximal at pH 7.0 and 30 degrees C, and enzyme activity was independent of metal ions. When 100g/L of d-psicose was used as the substrate, 25g/L of d-allose and 13g/L of d-altrose were simultaneously produced at pH 7.0 and 30 degrees C after 12h of incubation. The enzyme had broad specificity for various aldoses and ketoses. The interconversion of sugars with the same configuration except at the C2 position was driven by using a large amount of enzyme in extended reactions. The interconversion occurred via two isomerization reactions, i.e., the interconversion of d-allose<-->d-psicose<-->d-altrose, and d-allose to d-psicose reaction was faster than d-altrose to d-psicose reaction.

  14. The Mechanism of the Reaction Catalyzed by Uronate Isomerase Illustrates How an Isomerase May Have Evolved from a Hydrolase within the Amidohydrolase Superfamily

    SciTech Connect

    Nguyen, T.; Fedorov, A; Williams, L; Fedorov, E; Li, Y; Xu, C; Almo, S; Raushel, F

    2009-01-01

    Uronate isomerase (URI) catalyzes the reversible isomerization of d-glucuronate to d-fructuronate and of d-galacturonate to d-tagaturonate. URI is a member of the amidohydrolase superfamily (AHS), a highly divergent group of enzymes that catalyze primarily hydrolytic reactions. The chemical mechanism and active site structure of URI were investigated in an attempt to improve our understanding of how an active site template that apparently evolved to catalyze hydrolytic reactions has been reforged to catalyze an isomerization reaction. The pH-rate profiles for kcat and kcat/Km for URI from Escherichia coli are bell-shaped and indicate that one group must be unprotonated and another residue must be protonated for catalytic activity. Primary isotope effects on the kinetic constants with [2-2H]-d-glucuronate and the effects of changes in solvent viscosity are consistent with product release being the rate-limiting step. The X-ray structure of Bh0493, a URI from Bacillus halodurans, was determined in the presence of the substrate d-glucuronate. The bound complex showed that the mononuclear metal center in the active site is ligated to the C-6 carboxylate and the C-5 hydroxyl group of the substrate. This hydroxyl group is also hydrogen bonded to Asp-355 in the same orientation as the hydroxide or water is bound in those members of the AHS that catalyze hydrolytic reactions. In addition, the C-2 and C-3 hydroxyl groups of the substrate are hydrogen bonded to Arg-357 and the carbonyl group at C-1 is hydrogen bonded to Tyr-50. A chemical mechanism is proposed that utilizes a proton transfer from C-2 of d-glucuronate to C-1 that is initiated by the combined actions of Asp-355 from the end of ?-strand 8 and the C-5 hydroxyl of the substrate that is bound to the metal ion. The formation of the proposed cis-enediol intermediate is further facilitated by the shuttling of the proton between the C-2 and C-1 oxygens by the conserved Tyr-50 and/or Arg-355.

  15. Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes.

    PubMed

    Goepfert, Simon; Vidoudez, Charles; Tellgren-Roth, Christian; Delessert, Syndie; Hiltunen, J Kalervo; Poirier, Yves

    2008-12-01

    Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom.

  16. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao.

    PubMed

    Yang, Yang; Chen, Zhong-Wei; Hurlburt, Barry K; Li, Gui-Ling; Zhang, Yong-Xia; Fei, Dan-Xia; Shen, Hai-Wang; Cao, Min-Jie; Liu, Guang-Ming

    2017-02-13

    Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A71G74S69D75T73F72V67) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis.

  17. Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis

    PubMed Central

    Lu, Ying; Yu, Shan-Shan; Zong, Ming; Fan, Sha-Sha; Lu, Tian-Bao; Gong, Ru-Han; Sun, Li-Shan; Fan, Lie-Ying

    2017-01-01

    The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI. PMID:28067317

  18. Molecular dynamics simulations of "loop closing" in the enzyme triose phosphate isomerase.

    PubMed

    Brown, F K; Kollman, P A

    1987-12-05

    We present molecular dynamics simulations on the active site region of dimeric triose phosphate isomerase (TIM) using the co-ordinates of native chicken muscle TIM as a starting point and performing simulations with no substrate, with dihydroxyacetone phosphate (DHAP), the natural substrate, and with dihydroxyacetone sulfate (DHAS), a substrate analog. Whereas most of the protein moves less than 1 A during the simulation, some residues in the active site loop move more than 8 A during the 10.5 picoseconds of dynamics for each of the simulations. Most interestingly, the nature of the loop motion depends on the substrate, with the largest motion found in the presence of DHAP, and only in the presence of DHAP does the loop move to "close off" the active site pocket. The final structure found for the DHAP-chicken TIM complex is qualitatively similar to that described by Alber et al. for DHAP-yeast TIM. Simulations on the monomeric protein gives insight into why the molecule is active only as a dimer.

  19. Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons

    PubMed Central

    Balastik, Martin; Zhou, Xiao Zhen; Alberich-Jorda, Meritxell; Weissova, Romana; Žiak, Jakub; Pazyra-Murphy, Maria F.; Cosker, Katharina E; Machonova, Olga; Kozmikova, Iryna; Chen, Chun-Hau; Pastorino, Lucia; Asara, John M.; Cole, Adam; Sutherland, Calum; Segal, Rosalind A.; Lu, Kun Ping

    2015-01-01

    SUMMARY Axon guidance relies on precise translation of the gradients of the extracellular signals into local changes of cytoskeletal dynamics, but the molecular mechanisms regulating dose-dependent responses of growth cones are still poorly understood. Here we show that during embryonic development in growing axons low level of Semaphorin3A stimulation is buffered by the prolyl isomerase Pin1. We demonstrate, that Pin1 stabilizes CDK5-phosphorylated CRMP2A, the major isoform of CRMP2 in distal axons. Consequently, Pin1 knockdown or knockout reduces CRMP2A level specifically in distal axons and inhibits axon growth, which can be fully rescued by Pin1 or CRMP2A expression. Moreover, Pin1 knockdown or knockout increases sensitivity to Sema3A-induced growth cone collapse in vitro and in vivo leading to developmental abnormalities in axon guidance. These results identify an important isoform-specific function and regulation of CRMP2A in controlling axon growth, and uncover Pin1-catalyzed prolyl isomerization as a regulatory mechanism in axon guidance. PMID:26489457

  20. Evaluating the catalytic contribution from the oxyanion hole in ketosteroid isomerase.

    PubMed

    Schwans, Jason P; Sunden, Fanny; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2011-12-21

    Prior site-directed mutagenesis studies in bacterial ketosteroid isomerase (KSI) reported that substitution of both oxyanion hole hydrogen bond donors gives a 10(5)- to 10(8)-fold rate reduction, suggesting that the oxyanion hole may provide the major contribution to KSI catalysis. But these seemingly conservative mutations replaced the oxyanion hole hydrogen bond donors with hydrophobic side chains that could lead to suboptimal solvation of the incipient oxyanion in the mutants, thereby potentially exaggerating the apparent energetic benefit of the hydrogen bonds relative to water-mediated hydrogen bonds in solution. We determined the functional and structural consequences of substituting the oxyanion hole hydrogen bond donors and several residues surrounding the oxyanion hole with smaller residues in an attempt to create a local site that would provide interactions more analogous to those in aqueous solution. These more drastic mutations created an active-site cavity estimated to be ~650 Å(3) and sufficient for occupancy by 15-17 water molecules and led to a rate decrease of only ~10(3)-fold for KSI from two different species, a much smaller effect than that observed from more traditional conservative mutations. The results underscore the strong context dependence of hydrogen bond energetics and suggest that the oxyanion hole provides an important, but moderate, catalytic contribution relative to the interactions in the corresponding solution reaction.

  1. The Ess1 prolyl isomerase: Traffic cop of the RNA polymerase II transcription

    PubMed Central

    Hanes, Steven D.

    2014-01-01

    Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5–Pro6 bonds, and to a lesser extent pSer2–Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs. PMID:24530645

  2. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus.

    PubMed

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz, Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos

    2011-06-01

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 μmol min⁻¹ mg protein⁻¹, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  3. Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Ko, Byung Sam; Jeong, Gwon-Young; Jang, Han-Bit; Han, Jae-Gun; Jeong, Kyung-Hwan; Lee, Hyeon-Yong; Won, Yonggwan; Kim, Il-Chul

    2012-01-01

    Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.

  4. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice

    PubMed Central

    Sharma, Shweta; Mustafiz, Ananda; Singla-Pareek, Sneh L.; Shankar Srivastava, Prem; Sopory, Sudhir Kumar

    2012-01-01

    As compared with plant system, triose phosphate isomerase (TPI), a crucial enzyme of glycolysis, has been well studied in animals. In order to characterize TPI in plants, a full-length cDNA encoding OscTPI was cloned from rice and expressed in E. coli. The recombinant OscTPI was purified to homogeneity and it showed Km value of 0.1281 ± 0.025 µM, and the Vmax value of 138.7 ± 16 µmol min−1mg−1 which is comparable to the kinetic values studied in other plants. The OscTPI was found to be exclusively present in the cytoplasm when checked with the various methods. Functional assay showed that OscTPI could complement a TPI mutation in yeast. Real time PCR analysis revealed that OscTPI transcript level was regulated in response to various abiotic stresses. Interestingly, it was highly induced under different concentration of methylglyoxal (MG) stress in a concentration dependent manner. There was also a corresponding increase in the protein and the enzyme activity of OscTPI both in shoot and root tissues under MG stress. Our result shows that increases in MG leads to the increase in TPI which results in decrease of DHAP and consequently decrease in the level of toxic MG. PMID:22902706

  5. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration

    PubMed Central

    Woehlbier, Ute; Rozas, Pablo; Andreu, Catherine; Medinas, Danilo; Valdés, Pamela; Osorio, Fabiola; Mercado, Gabriela; Vidal, René L.; Kerr, Bredford; Court, Felipe A.; Hetz, Claudio

    2015-01-01

    ERp57 (also known as grp58 and PDIA3) is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER) stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson’s disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration. PMID:26361352

  6. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.

    PubMed

    Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.

  7. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA.

    PubMed

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2006-01-01

    Palatinose (isomaltulose, alpha-D-glucosylpyranosyl-1,6-D-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 A, and diffract to 1.95 A resolution on a synchrotron-radiation source.

  8. Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species.

    PubMed

    Nam, Cheon-Hyeon; Seo, Dong-Ho; Jung, Jong-Hyun; Koh, Young-Jin; Jung, Jae-Sung; Heu, Sunggi; Oh, Chang-Sik; Park, Cheon-Seok

    2014-02-05

    Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature.

  9. Mannose Phosphate Isomerase Regulates Fibroblast Growth Factor Receptor Family Signaling and Glioma Radiosensitivity

    PubMed Central

    Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C.; Sambrooks, Cecilia Lopez; Contessa, Joseph N.

    2014-01-01

    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post- translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization. PMID:25314669

  10. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57

    PubMed Central

    Gaucci, Elisa; Raimondo, Domenico; Grillo, Caterina; Cervoni, Laura; Altieri, Fabio; Nittari, Giulio; Eufemi, Margherita; Chichiarelli, Silvia

    2016-01-01

    Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane-associated receptor, which has been discovered as the disulfide isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We first studied the interaction through bioinformatics and fluorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb’-ERp57, containing the first three domains, and a’-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a’ domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10−9 M. PMID:27897272

  11. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival

    PubMed Central

    Pandey, Saurabh; Tripathi, Deeksha; Khubaib, Mohd; Kumar, Ashutosh; Sheikh, Javaid A.; Sumanlatha, Gaddam; Ehtesham, Nasreen Z.; Hasnain, Seyed E.

    2017-01-01

    Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses. PMID:28261567

  12. A direct, continuous, sensitive assay for protein disulphide-isomerase based on fluorescence self-quenching.

    PubMed

    Raturi, Arun; Vacratsis, Panayiotis O; Seslija, Dana; Lee, Lana; Mutus, Bulent

    2005-10-15

    PDI (protein disulphide-isomerase) activity is generally monitored by insulin turbidity assay or scrambled RNase assay, both of which are performed by UV-visible spectroscopy. In this paper, we present a sensitive fluorimetric assay for continuous determination of disulphide reduction activity of PDI. This assay utilizes the pseudo-substrate diabz-GSSG [where diabz stands for di-(o-aminobenzoyl)], which is formed by the reaction of isatoic anhydride with the two free N-terminal amino groups of GSSG. The proximity of two benzoyl groups leads to quenching of the diabz-GSSG fluorescence by approx. 50% in comparison with its non-disulphide-linked form, abz-GSH (where abz stands for o-aminobenzoyl). Therefore the PDI-dependent disulphide reduction can be monitored by the increase in fluorescence accompanying the loss of proximity-quenching upon conversion of diabz-GSSG into abz-GSH. The apparent K(m) of PDI for diabz-GSSG was estimated to be approx. 15 muM. Unlike the insulin turbidity assay and scrambled RNase assay, the diabz-GSSG-based assay was shown to be effective in determining a single turnover of enzyme in the absence of reducing agents with no appreciable blank rates. The assay is simple to perform and very sensitive, with an estimated detection limit of approx. 2.5 nM PDI, enabling its use for the determination of platelet surface PDI activity in crude sample preparations.

  13. [Bioconversion of D-fructose to D-allose by novel isomerases].

    PubMed

    Bai, Wei; Zhu, Yueming; Men, Yan; Li, Xiaobo; Izumori, Ken; Sun, Yuanxia

    2012-04-01

    Rare sugar is a kind of important low-energy monosaccharide that is rarely found in nature and difficult to synthesize chemically. D-allose, a six-carbon aldose, is an important rare sugar with unique physiological functions. It is radical scavenging active and can inhibit cancer cell proliferation. To obtain D-allose, the microorganisms deriving D-psicose 3-epimerase (DPE) and L-rhamnose isomerase (L-RhI) have drawn intense attention. In this paper, DPE from Clostridium cellulolyticum H10 was cloned and expressed in Bacillus subtilis, and L-RhI from Bacillus subtilis 168 was cloned and expressed in Escherichia coli BL21 (DE3). The obtained crude DPE and L-RhI were then purified through a HisTrap HP affinity chromatography column and an anion-exchange chromatography column. The purified DPE and L-RhI were employed for the production of rare sugars at last, in which DPE catalyzed D-fructose into D-psicose while L-RhI converted D-psicose into D-allose. The conversion of D-fructose into D-psicose by DPE was 27.34%, and the conversion of D-psicose into D-allose was 34.64%.

  14. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle

    SciTech Connect

    Kiser, Philip D.; Golczak, Marcin; Lodowski, David T.; Chance, Mark R.; Palczewski, Krzysztof

    2009-12-01

    Vertebrate vision is maintained by the retinoid (visual) cycle, a complex enzymatic pathway that operates in the retina to regenerate the visual chromophore, 11-cis-retinal. A key enzyme in this pathway is the microsomal membrane protein RPE65. This enzyme catalyzes the conversion of all-trans-retinyl esters to 11-cis-retinol in the retinal pigment epithelium (RPE). Mutations in RPE65 are known to be responsible for a subset of cases of the most common form of childhood blindness, Leber congenital amaurosis (LCA). Although retinoid isomerase activity has been attributed to RPE65, its catalytic mechanism remains a matter of debate. Also, the manner in which RPE65 binds to membranes and extracts retinoid substrates is unclear. To gain insight into these questions, we determined the crystal structure of native bovine RPE65 at 2.14-{angstrom} resolution. The structural, biophysical, and biochemical data presented here provide the framework needed for an in-depth understanding of the mechanism of catalytic isomerization and membrane association, in addition to the role mutations that cause LCA have in disrupting protein function.

  15. Triosephosphate Isomerase and Filamin C Share Common Epitopes as Novel Allergens of Procambarus clarkii.

    PubMed

    Yang, Yang; Zhang, Yong-Xia; Liu, Meng; Maleki, Soheila J; Zhang, Ming-Li; Liu, Qing-Mei; Cao, Min-Jie; Su, Wen-Jin; Liu, Guang-Ming

    2017-02-01

    Triosephosphate isomerase (TIM) is a key enzyme in glycolysis and has been identified as an allergen in saltwater products. In this study, TIM with a molecular mass of 28 kDa was purified from the freshwater crayfish (Procambarus clarkii) muscle. A 90-kDa protein that showed IgG/IgE cross-reactivity with TIM was purified and identified as filamin C (FLN c), which is an actin-binding protein. TIM showed similar thermal and pH stability with better digestion resistance compared with FLN c. The result of the surface plasmon resonance (SPR) experiment demonstrated the infinity of anti-TIM polyclonal antibody (pAb) to both TIM and FLN c. Five linear and 3 conformational epitopes of TIM, as well as 9 linear and 10 conformational epitopes of FLN c, were mapped by phage display. Epitopes of TIM and FLN c demonstrated the sharing of certain residues; the occurrence of common epitopes in the two allergens accounts for their cross-reactivity.

  16. Mapping of domains on HIV envelope protein mediating association with calnexin and protein-disulfide isomerase.

    PubMed

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M; Fenouillet, Emmanuel

    2010-04-30

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.

  17. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation

    NASA Astrophysics Data System (ADS)

    Taggart, L. E.; McMahon, S. J.; Butterworth, K. T.; Currell, F. J.; Schettino, G.; Prise, K. M.

    2016-05-01

    Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.

  18. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast

    PubMed Central

    Rustighi, Alessandra; Zannini, Alessandro; Tiberi, Luca; Sommaggio, Roberta; Piazza, Silvano; Sorrentino, Giovanni; Nuzzo, Simona; Tuscano, Antonella; Eterno, Vincenzo; Benvenuti, Federica; Santarpia, Libero; Aifantis, Iannis; Rosato, Antonio; Bicciato, Silvio; Zambelli, Alberto; Del Sal, Giannino

    2014-01-01

    Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse, and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically, following interaction with Pin1, Notch1 and Notch4, key regulators of cell fate, escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7α. Functionally, we show that Fbxw7α acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity, but the establishment of a Notch/Pin1 active circuitry opposes this effect, thus promoting breast CSCs self-renewal, tumor growth and metastasis in vivo. In human breast cancers, despite Fbxw7α expression, high levels of Pin1 sustain Notch signaling, which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes, through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers. PMID:24357640

  19. Arabidopsis Responds to Alternaria alternata Volatiles by Triggering Plastid Phosphoglucose Isomerase-Independent Mechanisms1[OPEN

    PubMed Central

    Sánchez-López, Ángela María; Bahaji, Abdellatif; De Diego, Nuria; Baslam, Marouane; Li, Jun; Almagro, Goizeder; García-Gómez, Pablo; Ricarte-Bermejo, Adriana; Novák, Ondřej; Spíchal, Lukáš; Ciordia, Sergio; Mena, María Carmen

    2016-01-01

    Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata. We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms. PMID:27663407

  20. Cyclic Peptidyl Inhibitors against Human Peptidyl-Prolyl Isomerase Pin1

    PubMed Central

    Liu, Tao; Liu, Yu; Kao, Hung-Ying; Pei, Dehua

    2010-01-01

    Peptidyl-prolyl isomerase Pin1 regulates the function and/or stability of phosphoproteins by altering the conformation of specific pSer/pThr-Pro peptide bonds. In this work, a cyclic peptide library was synthesized and screened against the catalytic domain of human Pin1. The selected inhibitors contained a consensus motif of D-pThr-Pip-Nal (where Pip is L-piperidine-2-carboxylic acid and Nal is L-2-naphthylalanine). Representative compounds were tested for binding to Pin1 by isothermal titration calorimetry and inhibition of Pin1 activity and the most potent inhibitors had KD (and KI) values in the low nanomolar range. Treatment of breast cancer cells with the inhibitors, which were rendered membrane permeable by attachment of an octaarginine sequence, inhibited cell proliferation and increased the protein levels of two previously established Pin1 substrates, PML and SMRT. Finally, a second generation of cell permeable Pin1 inhibitors was designed by replacing the noncritical residues within the cyclic peptide ring with arginine residues and shown to have anti-proliferative activity against the cancer cells. PMID:20180533

  1. Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation

    PubMed Central

    Bowley, Sheryl R.; Fang, Chao; Merrill-Skoloff, Glenn; Furie, Barbara C.; Furie, Bruce

    2017-01-01

    Protein disulfide isomerase (PDI), secreted by platelets and endothelial cells on vascular injury, is required for thrombus formation. Using PDI variants that form mixed disulfide complexes with their substrates, we identify by kinetic trapping multiple substrate proteins, including vitronectin. Plasma vitronectin does not bind to αvβ3 or αIIbβ3 integrins on endothelial cells and platelets. The released PDI reduces disulfide bonds on plasma vitronectin, enabling vitronectin to bind to αVβ3 and αIIbβ3. In vivo studies of thrombus generation in mice demonstrate that vitronectin rapidly accumulates on the endothelium and the platelet thrombus following injury. This process requires PDI activity and promotes platelet accumulation and fibrin generation. We hypothesize that under physiologic conditions in the absence of secreted PDI, thrombus formation is suppressed and maintains a quiescent, patent vasculature. The release of PDI during vascular injury may serve as a regulatory switch that allows activation of proteins, among them vitronectin, critical for thrombus formation. PMID:28218242

  2. Local variability of the phosphoglycerate kinase-triosephosphate isomerase fusion protein from Thermotoga maritima MSB 8.

    PubMed

    Wassenberg, D; Wuhrer, M; Beaucamp, N; Schurig, H; Wozny, M; Reusch, D; Fabry, S; Jaenicke, R

    2001-04-01

    The pgk-tpi gene locus of Thermotoga maritima encodes both phosphoglycerate kinase (PGK) and a bienzyme complex consisting of a fusion protein of PGK with triosephosphate isomerase (TIM). No separate tpi gene for TIM is present in T. maritima. A frame-shift at the end of the pgk gene has been previously proposed as a mechanism to regulate the expression of the two protein variants [Schurig et al., EMBO J. 14 (1995), 442-451]. Surprisingly, the complete T. maritima genome was found to contain a pgk-tpi sequence not requiring the proposed frameshift mechanism. To clarify the apparent discrepancy, a variety of DNA sequencing techniques were applied, disclosing an anomalous local variability in the pgk-tpi fusion region. The comparison of different DNA samples and the mass spectrometric analysis of the amino acid sequence of the natural fusion protein from T. maritima MSB8 confirmed the local variability of the DNA variants. Since not all peptide masses could be assigned, further variations are conceivable, suggesting an even higher heterogeneity of the T. maritima MSB8 strain.

  3. Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate.

    PubMed

    Zhou, Rui; Cheng, Lailiang

    2008-06-16

    Apple leaf cytosolic phosphoglucose isomerase (PGI, EC 5.3.1.9) was purified to an apparent homogeneity with a specific activity of 2456 units/mg protein, and chloroplastic PGI was partially purified to a specific activity of 72 units/mg protein to characterize their biochemical properties. These two isoforms showed differential responses to heat treatment; incubation at 50 degrees C for 10 min resulted in a complete loss of the chloroplastic PGI activity, whereas the cytosolic PGI only lost 50% of its activity. Apple cytosolic PGI is a dimeric enzyme with a molecular mass of 66 kDa for each monomer. The activity of both isoforms was strongly inhibited by erythrose 4-phosphate (E4P) with a K(i) of 1.2 and 3.0 microM for the cytosolic PGI and chloroplastic PGI, respectively. Sorbitol 6-phosphate (Sor6P), an intermediate in sorbitol biosynthesis, was found to be a competitive inhibitor for both cytosolic and chloroplastic PGIs with a K(i) of 61 and 40 microM, respectively. PGIs from both spinach and tomato leaves were also inhibited by Sor6P in a similar manner. The possible physiological significance of this finding is discussed.

  4. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity

    PubMed Central

    Gaspar, Renato Simões

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690

  5. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins

    PubMed Central

    Hoffstrom, Benjamin G.; Kaplan, Anna; Letso, Reka; Schmid, Ralf; Turmel, Gregory J.; Lo, Donald C.; Stockwell, Brent R.

    2010-01-01

    A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction, and oxidation of disulfides. Through a small-molecule-screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated-ER-membranes and trigger apoptotic cell death, via mitochondrial outer membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI provides a new mechanism linking protein misfolding and apoptotic cell death. PMID:21079601

  6. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression

    PubMed Central

    Franciosa, G; Diluvio, G; Gaudio, F Del; Giuli, M V; Palermo, R; Grazioli, P; Campese, A F; Talora, C; Bellavia, D; D'Amati, G; Besharat, Z M; Nicoletti, C; Siebel, C W; Choy, L; Rustighi, A; Sal, G Del; Screpanti, I; Checquolo, S

    2016-01-01

    Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4+CD8+ DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL. PMID:26876201

  7. Human Eosinophil Leukocytes Express Protein Disulfide Isomerase in Secretory Granules and Vesicles: Ultrastructural Studies.

    PubMed

    Dias, Felipe F; Amaral, Kátia B; Carmo, Lívia A S; Shamri, Revital; Dvorak, Ann M; Weller, Peter F; Melo, Rossana C N

    2014-06-01

    Protein disulfide isomerase (PDI) has fundamental roles in the oxidative folding of proteins in the endoplasmic reticulum (ER) of eukaryotic cells. The study of this molecule has been attracting considerable attention due to its association with other cell functions and human diseases. In leukocytes, such as neutrophils, PDI is involved with cell adhesion, signaling and inflammation. However, the expression of PDI in other leukocytes, such as eosinophils, important cells in inflammatory, allergic and immunomodulatory responses, remains to be defined. Here we used different approaches to investigate PDI expression within human eosinophils. Western blotting and flow cytometry demonstrated high PDI expression in both unstimulated and CCL11/eotaxin-1-stimulated eosinophils, with similar levels in both conditions. By using an immunogold electron microscopy technique that combines better epitope preservation and secondary Fab-fragments of antibodies linked to 1.4-nm gold particles for optimal access to microdomains, we identified different intracellular sites for PDI. In addition to predictable strong PDI labeling at the nuclear envelope, other unanticipated sites, such as secretory granules, lipid bodies and vesicles, including large transport vesicles (eosinophil sombrero vesicles), were also labeled. Thus, we provide the first identification of PDI in human eosinophils, suggesting that this molecule may have additional/specific functions in these leukocytes.

  8. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57

    NASA Astrophysics Data System (ADS)

    Gaucci, Elisa; Raimondo, Domenico; Grillo, Caterina; Cervoni, Laura; Altieri, Fabio; Nittari, Giulio; Eufemi, Margherita; Chichiarelli, Silvia

    2016-11-01

    Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane-associated receptor, which has been discovered as the disulfide isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We first studied the interaction through bioinformatics and fluorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb’-ERp57, containing the first three domains, and a’-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a’ domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10‑9 M.

  9. Molecular dynamics study of triosephosphate isomerase from Trypanosoma cruzi in water/decane mixtures.

    PubMed

    Díaz-Vergara, Norma; Piñeiro, Angel

    2008-03-20

    A comprehensive study of the triosephosphate isomerase from the parasite Trypanosoma cruzi (TcTIM) in water, in decane, and in three water/decane mixtures was performed using molecular dynamics (MD) simulations in a time scale of 40 ns. The structure and dynamics of the enzyme, as well as the solvent molecules' distribution and mobility, were analyzed in detail. In the presence of decane, the amplitudes of the most important internal motions of the enzyme backbone were observed to depend on the solvent concentration: the higher the water concentration, the greater the amplitudes. Contrary to this trend, the amplitudes of the TcTIM motions in pure water were similar to those of the simulation with the lowest water concentration. The enzyme was observed to be almost motionless in pure decane due to a sharp increase of the number of intramolecular hydrogen bonds. This caused a contraction of the enzyme structure accompanied by a loss of secondary structure and of a decrease of the hydrophilic solvent accessible surface. A similar behavior, although to a lesser extent, was observed in the simulation at the lowest water concentration. Our results suggest that the presence of decane molecules located at specific sites of the enzyme might accelerate its internal movements, although a minimum number of water molecules is needed for the protein to keep its structure and dynamics. Altogether, this work provides new insight into protein and water behavior in organic solvents as well as into the dynamics of TcTIM itself.

  10. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  11. Mapping of Domains on HIV Envelope Protein Mediating Association with Calnexin and Protein-disulfide Isomerase*

    PubMed Central

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M.; Fenouillet, Emmanuel

    2010-01-01

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents. PMID:20202930

  12. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus

    SciTech Connect

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz Jr., Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos

    2012-02-06

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 {micro}mol min{sup -1} mg protein{sup -1}, respectively. The resolution of the diffracted crystal was estimated to be 2.4 {angstrom} and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  13. Microbial Peptidyl-Prolyl cis/trans Isomerases (PPIases): Virulence Factors and Potential Alternative Drug Targets

    PubMed Central

    2014-01-01

    SUMMARY Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted. PMID:25184565

  14. A theoretical study to establish the relationship between the three-dimensional structure of triose-phosphate isomerase of Giardia duodenalis and point mutations in the respective gene.

    PubMed

    Nolan, Matthew J; Hofmann, Andreas; Jex, Aaron R; Gasser, Robin B

    2010-10-01

    Predicting how point mutations in genes alter the tertiary and quarternary structure of proteins is central to a number of areas of molecular biology and has implications in relation to the function and evolution of molecules. In the present study, we theoretically assessed the effects of 20 point mutations detected previously in a region of the triose-phosphate isomerase gene (tpi) of the protozoan Giardia duodenalis on the three-dimensional structure of the 'wild-type' protein (TPI). Amino acid substitutions arising from codon variations were mainly located at surface-accessible sites or in hydrophobic pockets of TPI. None of the substitutions was predicted to exert a significant change to the fold or functionality of the enzyme, with the exception of one alteration (Arg100). Almost all substitutions were either conservative or semi-conservative, and retained or even improved the expected stability of the fold. Overall, the findings provide support for the "neutral theory", which contends that evolution at the molecular level is not solely shaped by "Darwinian selection but also by random drift of selectively neutral or nearly neutral mutants".

  15. Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores.

    PubMed

    Li, Zijie; Li, Yi; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-08-01

    Saccharomyces cerevisiae spores are dormant cells, which can tolerate various types of environmental stress. In our previous work, we successfully developed biological and chemical methods for enzyme immobilization based on the structures of S. cerevisiae spore wall. In this study, we employed biological and chemical approaches for the immobilization of D-xylose isomerase (XI) from Thermus thermophilus and D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens with yeast spores, respectively. The enzymatic properties of both immobilized XI and DPEase were characterized and the immobilized enzymes exhibit higher thermostability, broader pH tolerance, and good repeatability compared with free enzymes. Furthermore, we established a two-step approach for the bioconversion of D-glucose to D-psicose using immobilized enzymes. To improve the conversion yield, a multi-pot strategy was adopted for D-psicose production by repeating the two-step process continually. As a result, the yield of D-psicose was obviously improved and the highest yield reached about 12.0 %.

  16. Chicken FK506-binding protein, FKBP65, a member of the FKBP family of peptidylprolyl cis-trans isomerases, is only partially inhibited by FK506.

    PubMed Central

    Zeng, B; MacDonald, J R; Bann, J G; Beck, K; Gambee, J E; Boswell, B A; Bächinger, H P

    1998-01-01

    The chicken FK506-binding protein FKBP65, a peptidylprolyl cis-trans isomerase, is a rough endoplasmic reticulum protein that contains four domains homologous to FKBP13, another rough endoplasmic reticulum PPIase. Analytical ultracentrifugation suggests that in FKBP65 these four domains are arranged in a linear extended structure with a length of about 26 nm and a diameter of about 3 nm. All four domains are therefore expected to be accessible to substrates. The specificity of FKBP65 towards a number of peptide substrates was determined. The specific activity of FKBP65 is generally lower than that of FKBP12 when expressed as a per domain activity. The substrate specificity of FKBP65 also differs from that of FKBP12. Inhibition studies show that only one of the four domains can be inhibited by FK506, a powerful inhibitor of all other known FKBPs. Furthermore, the same domain seems to be susceptible to inhibition by cyclosporin A. No other FKBPs were shown to be inhibited by cyclosporin A. It is also shown that FKBP65 can catalyse the re-folding of type III collagen in vitro with a kcat/Km = 4.3 x 10(3) M-1.s-1. PMID:9461498

  17. Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by Triosephosphate Isomerase

    PubMed Central

    2015-01-01

    Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170–173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186–3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12–13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial

  18. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate.

    PubMed

    Patel, Hetalben; Nemeria, Natalia S; Brammer, Leighanne A; Freel Meyers, Caren L; Jordan, Frank

    2012-11-07

    The thiamin diphosphate (ThDP)-dependent enzyme 1-deoxy-D-xylulose 5-phosphate (DXP) synthase carries out the condensation of pyruvate as a 2-hydroxyethyl donor with d-glyceraldehyde-3-phosphate (d-GAP) as acceptor forming DXP. Toward understanding catalysis of this potential anti-infective drug target, we examined the pathway of the enzyme using steady state and presteady state kinetic methods. It was found that DXP synthase stabilizes the ThDP-bound predecarboxylation intermediate formed between ThDP and pyruvate (C2α-lactylThDP or LThDP) in the absence of D-GAP, while addition of D-GAP enhanced the rate of decarboxylation by at least 600-fold. We postulate that decarboxylation requires formation of a ternary complex with both LThDP and D-GAP bound, and the central enzyme-bound enamine reacts with D-GAP to form DXP. This appears to be the first study of a ThDP enzyme where the individual rate constants could be evaluated by time-resolved circular dichroism spectroscopy, and the results could have relevance to other ThDP enzymes in which decarboxylation is coupled to a ligation reaction. The acceleration of the rate of decarboxylation of enzyme-bound LThDP in the presence of D-GAP suggests a new approach to inhibitor design.

  19. Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E.

    PubMed

    Bernal, Patricia; Segura, Ana; Ramos, Juan-Luis

    2007-07-01

    In Gram-negative bacteria, cell membrane fluidity is influenced by phospholipid head group composition and linked fatty acids. Exposure of Pseudomonas putida to stressing agents results in short- and long-term modifications in membrane lipids. The main adaptive change observed in response to organic solvents in the short term is the cis- to trans-isomerization of unsaturated fatty acids in a reaction mediated by cis/trans-isomerase (CTI); whereas in the long term an increase in cardiolipin content takes place. Despite the interest of these genes in the context of stress responses, the transcriptional regulation of the cti and cls genes has not been studied before. The cti and cls (cardiolipin synthase) genes in the solvent-tolerant P. putida DOT-T1E strain form monocistronic units and are expressed from sigma-70 promoters. Expression from the cls promoter is sixfold higher in the stationary phase than in the log phase, and expression of the cls gene is not influenced by solvents. The cti gene is expressed at fairly constant levels in the log and stationary phase, but its level of expression is moderately upregulated in response to toluene. We used fluorescence polarization assays to show that mutants deficient in the cti gene exhibit less rigid membranes than the wild-type strain, whereas mutants with a knockout in the cls gene exhibit increased membrane rigidity. A double cti/cls mutant has similar membrane rigidity as the wild-type strain, which points towards a compensatory effect of the mutations with regard to membrane fluidity. However, the cls and cls/cti mutants were more sensitive to solvents than the wild-type and the cti mutant because of the impaired functioning of efflux drug transporters.

  20. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation

    PubMed Central

    Stopa, Jack D.; Neuberg, Donna; Puligandla, Maneka; Furie, Bruce; Zwicker, Jeffrey I.

    2017-01-01

    BACKGROUND: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. METHODS: We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies. RESULTS: Following oral administration of 1,000 mg isoquercetin to healthy adults, the measured peak plasma quercetin concentration (9.2 μM) exceeded its IC50 for inhibition of PDI by isoquercetin in vitro (2.5 ± 0.4 μM). Platelet-dependent thrombin generation decreased by 51% in the healthy volunteers compared with baseline (P = 0.0004) and by 64% in the anti-phospholipid antibody cohort (P = 0.015) following isoquercetin ingestion. To understand how PDI affects thrombin generation, we evaluated substrates of PDI identified using an unbiased mechanistic-based substrate trapping approach. These studies identified platelet factor V as a PDI substrate. Isoquercetin blocked both platelet factor Va and thrombin generation with an IC50 of ~5 μM. Inhibition of PDI by isoquercetin ingestion resulted in a 53% decrease in the generation of platelet factor Va (P = 0.001). Isoquercetin-mediated inhibition was reversed with addition of exogenous factor Va. CONCLUSION: These studies show that oral administration of isoquercetin inhibits PDI activity in plasma and diminishes platelet-dependent thrombin generation predominantly by blocking the generation of platelet factor Va. These pharmacodynamic and mechanistic observations represent an important step in the development of a novel class of antithrombotic agents targeting PDI. TRIAL REGISTRATION: Clinicaltrials.gov (NCT01722669) FUNDING: National Heart

  1. Enhanced Direct Ethanol Production by Cofactor Optimization of Cell Surface-Displayed Xylose Isomerase in Yeast.

    PubMed

    Sasaki, Yusuke; Takagi, Toshiyuki; Motone, Keisuke; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2017-04-10

    Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d-xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC-displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co(2+) ), especially enhanced the activity by 46-fold. Co(2+) also contributed to d-xylose fermentation, and ethanol yields and xylose consumption rates were improved by 6.0- and 2.7-fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC-displaying yeast showed the faster d-xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co-culture system. A xylan-degrading yeast strain was established by displaying two kinds of xylanases; endo-1,4-β-xylanase (Xyn11B) from Saccharophagus degradans, and β-xylosidase (XlnD) from Aspergillus niger. The yeast co-culture system enabled fine-tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)-displaying yeast and XylC-displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 10(13) : 1.39 × 10(13) : 2.78 × 10(13) molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co-culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. This article is protected by copyright. All rights reserved.

  2. Cloning, expression, and transcription analysis of L-arabinose isomerase gene from Mycobacterium smegmatis SMDU.

    PubMed

    Takata, Goro; Poonperm, Wayoon; Rao, Devendar; Souda, Akane; Nishizaki, Tomoe; Morimoto, Kenji; Izumori, Ken

    2007-12-01

    The L-arabinose metabolic gene cluster, araA, araB, araD, araG, araH and araR, encoding L-arabinose isomerase (L-AI) and its accessory proteins was cloned from Mycobacterium smegmatis SMDU and sequenced. The deduced amino acid sequence of araA displayed highest identity with that of Bacillus subtilis (52%). These six genes comprised the L-arabinose operon, and its genetic arrangement was similar to that of B. subtilis. The L-AI gene (araA), encoding a 501 amino acid protein with a calculated molecular mass of 54,888 Da, was expressed in Escherichia coli. The productivity and overall enzymatic properties of the recombinant L-AI were almost same as the authentic L-AI from M. smegmatis. Although the recombinant L-AI showed high substrate specificity, as did L-AI from other organisms, this enzyme catalyzed not only isomerization of L-arabinose-L-ribulose and D-galactose-D-tagatose but also isomerization of L-altrose-L-psicose and L-erythrulose-L-threose. In combination with L-AI from M. smegmatis, L-threose and L-altrose can be produced from cheap and abundant erythritol and D-fructose respectively, indicating that this enzyme has great potential for biological application in rare sugar production. Transcription analysis using various sugars revealed that this enzyme was significantly induced not only by L-arabinose and D-galactose but also by L-ribose, galactitol, L-ribulose, and L-talitol. This different result of transcription mediated by sugars from that of E. coli suggests that the transcriptional regulation of araA from M. smegmatis against sugar is loose compared with that from E. coli, and that it depends on the hydroxyl configuration at C2, C3 and C4 positions of sugars.

  3. Stability of Arthrobacter D-xylose isomerase to denaturants and heat.

    PubMed Central

    Rangarajan, M; Asboth, B; Hartley, B S

    1992-01-01

    There was no inactivation of Mg(2+)-containing Arthrobacter D-xylose isomerase up to 1 h in 0-8 M-urea at 22 degrees C, but over this range there was rapid reversible dissociation into fully active dimers with a midpoint around 4 M-urea, as shown by gradient urea gels with an activity stain, and by ion-exchange chromatography and gel filtration in urea buffers. These dimers must have the A-B* conformation, since the tetramer could dissociate into A-A*, A-B or A-B* dimer conformations, but only residues across the A-B* interface contribute to the active site. The kinetics of inactivation of the Mg(2+)-containing enzyme in 8 M-urea at higher temperatures suggest a partially unfolded Mg-A-B* dimer intermediate with 50% activity, followed by irreversible inactivation coincident with the appearance of unfolded monomer. In 0-4 M guanidinium chloride, a similar reversible dissociation into active dimers occurs, but activity falls, suggesting that A-A* and/or A-B dimers might be part of the mixture. Low concentrations of SDS also give active dimers leading to unfolded monomers, but SDS above 1% (w/v) provides relative stabilization. The apoenzyme is least thermostable (t 1/2 at 80 degrees C, pH 7, = 0.06 h) but Mg2+ stabilizes strongly (t 1/2 = 5.5 h) and Co2+ even more so. Competitive inhibitors or substrates provide a small further stabilization, but this effect is more marked at 80 degrees C, pH 5.5. Together with a marked decrease in optimum pH with temperature, this allows batch isomerizations of glucose under these conditions that produce clean but sweeter syrups. Images Fig. 2. Fig. 8. PMID:1497626

  4. Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole.

    PubMed

    Kraut, Daniel A; Sigala, Paul A; Pybus, Brandon; Liu, Corey W; Ringe, Dagmar; Petsko, Gregory A; Herschlag, Daniel

    2006-04-01

    A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing pK(a) models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50-0.76 ppm/pK(a) unit, suggesting a bond shortening of 0.02 A/pK(a) unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (DeltaDeltaG = -0.2 kcal/mol/pK(a) unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (DeltaDeltaH = -2.0 kcal/mol/pK(a) unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of 300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution.

  5. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone.

    PubMed

    Hennig, L; Christner, C; Kipping, M; Schelbert, B; Rücknagel, K P; Grabley, S; Küllertz, G; Fischer, G

    1998-04-28

    In contrast to FK506 binding proteins and cyclophilins, the parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases; E.C. 5.2.1.8) cannot be inhibited by either FK506 or cyclosporin A. We have found that juglone, 5-hydroxy-1,4-naphthoquinone, irreversibly inhibits the enzymatic activity of several parvulins, like the E. coli parvulin, the yeast Ess1/Ptf1, and human Pin1, in a specific manner, thus allowing selective inactivation of these enzymes in the presence of other PPIases. The mode of action was studied by analyzing the inactivation kinetics and the nature of products of the reaction of E. coli parvulin and its Cys69Ala variant with juglone. For all parvulins investigated, complete inactivation was obtained by a slow process that is characterized by pseudo-first-order rate constants in the range of 5.3 x 10(-)4 to 4. 5 x 10(-)3 s-1. The inactivated parvulin contains two juglone molecules that are covalently bound to the side chains of Cys41 and Cys69 because of a Michael addition of the thiol groups to juglone. Redox reactions did not contribute to the inactivation process. Because thiol group modification was shown to proceed 5-fold faster than the rate of enzyme inactivation, it was considered as a necessary but not sufficient condition for inactivation. When measured by far-UV circular dichroism (CD), the rate of structural alterations following thiol group modification parallels exactly the rate of inactivation. Thus, partial unfolding of the active site of the parvulins was thought to be the cause of the deterioration of PPIase activity.

  6. Iron Binding Properties of Recombinant Class A Protein Disulfide Isomerase from Arabidopsis thaliana.

    PubMed

    Remelli, William; Santabarbara, Stefano; Carbonera, Donatella; Bonomi, Francesco; Ceriotti, Aldo; Casazza, Anna Paola

    2017-04-07

    The protein disulfide isomerase (PDI) family comprises a wide set of enzymes mainly involved in thiol-disulfide exchange reactions in the endoplasmic reticulum. Class A PDIs (PDI-A) constitute the smallest members of the family, consisting of a single thioredoxin (TRX) module without any additional domains. To date, their catalytic activity and cellular function are still poorly understood. To gain insight into the role of higher-plant class A PDIs, the biochemical properties of rAtPDI-A, the recombinant form of Arabidopsis thaliana PDI-A, have been investigated. As expressed, rAtPDI-A has only little oxidoreductase activity, but it appears to be capable of binding an iron-sulfur (Fe-S) cluster, most likely a [2Fe-2S] center, at the interface between two protein monomers. A mutational survey of all cysteine residues of rAtPDI-A indicates that only the second and third cysteines of the CXXXCKHC stretch, containing the putative catalytic site CKHC, are primarily involved in cluster coordination. A key role is also played by the lysine residue. Its substitution with glycine, which restores the canonical PDI active site CGHC, does not influence the oxidoreductase activity of the protein, which remains marginal, but strongly affects the binding of the cluster. It is therefore proposed that the unexpected ability of rAtPDI-A to accommodate an Fe-S cluster is due to its very unique CKHC motif, which is conserved in all higher-plant class A PDIs, differentiating them from all other members of the PDI family.

  7. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    PubMed

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation.

  8. Endothelial cells microparticle-associated protein disulfide isomerase promotes platelet activation in metabolic syndrome

    PubMed Central

    Li, Yi-hui; Song, Dai-jun; Chen, Tong-shuai; Zhang, Wei; Zhong, Ming; Zhang, Yun; Xing, Yan-qiu; Wang, Zhi-hao

    2016-01-01

    Background Metabolic syndrome (MetS) is a common challenge in the world, and the platelet activation is enhanced in MetS patients. However, the fundamental mechanism that underlies platelet activation in MetS remains incompletely understood. Endothelial cells are damaged seriously in MetS patients, then they release more endothelial microparticles (EMPs). After all, whether the EMPs participate in platelet activation is still obscure. If they were, how did they work? Results We demonstrated that the levels of EMPs, PMPs (platelet derived microparticles) and microparticle-carried-PDI activity increased in MetS patients. IR endothelial cells released more EMPs, the EMP-PDI was more activated. EMPs can enhance the activation of CD62P, GPIIb/IIIa and platelet aggregation and this process can be partly inhibited by PDI inhibitor such as RL90 and rutin. Activated platelets stimulated by EMPs expressed more PDI on cytoplasm and released more PMPs. Materials and Methods We obtained plasma from 23 MetS patients and 8 normal healthy controls. First we built insulin resistance (IR) model of human umbilical vein endothelial cells (HUVECs), and then we separated EMPs from HUVECs culture medium and used these EMPs to stimulate platelets. Levels of microparticles, P-selectin(CD62P), Glycoprotein IIb/IIIa (GPIIb/IIIa) were detected by flow cytometry and levels of EMPs were detected by enzyme-linked immunosorbent assay (ELISA). The protein disulfide isomerase (PDI) activity was detected by insulin transhydrogenase assay. Platelet aggregation was assessed by turbidimetry. Conclusion EMPs can promote the activation of GPIIb/IIIa in platelets and platelet aggregation by the PDI which is carried on the surface of EMPs. PMID:27825126

  9. Post-Streptococcal Auto-Antibodies Inhibit Protein Disulfide Isomerase and Are Associated with Insulin Resistance

    PubMed Central

    Aran, Adi; Weiner, Karin; Lin, Ling; Finn, Laurel Ann; Greco, Mary Ann; Peppard, Paul; Young, Terry; Ofran, Yanay; Mignot, Emmanuel

    2010-01-01

    Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33%) and without (67%) markers of recent streptococcal infections [anti-Streptolysin O (ASLO) or anti-DNAse B (ADB)]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI), an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61) and PDI (P328-338). The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001). Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001), and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039) and insulin resistance (Homeostatic Model Assessment (HOMA) 4.1 vs. 3.1, n = 1215, p = 0.004), in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances. PMID:20886095

  10. The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons

    PubMed Central

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S.; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117–4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP+-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP+-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD. PMID:23754278

  11. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves.

    PubMed

    Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2002-10-01

    Oaks emit large amounts of isoprene, a compound that plays an important role in tropospheric chemistry. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) catalyzes the isomerization of isopentenyl diphosphate (IDP) to dimethylallyl diphosphate (DMADP), and in isoprene-emitting plants, isoprene synthase (IS) converts the DMADP to isoprene. To study the role of IDI in isoprene biosynthesis of oak leaves, we compared IDI and IS activities in pedunculate oak (Quercus robur L.) and pubescent oak (Quercus pubescens Willd.) with the isoprene emission rates of these species. We developed a non-radioactive enzyme assay to detect IDI activity in crude leaf extracts of Q. robur. The substrate dependency of IDI activity showed biphasic kinetics with Michaelis constants (K(m)(IDP)) of 0.7 +/- 0.2 micro M for a high-affinity phase and 39.5 +/- 6.9 micro M for a low-affinity phase, potentially attributable to different IDI isoforms. Under standard assay conditions, the temperature optimum for IDI activity was about 42 degrees C, but IDI activity was detectable up to 60 degrees C. A sharp pH optimum appeared around pH 7, with 20 mM Mg(2+) also required for IDI activity. Neither IDI activity nor IS activity showed diurnal variation in Q. robur leaves. The sum of IDI activities showed a significant linear correlation with IS activity in both Q. robur and Q. pubescens leaves, and both enzyme activities showed a linear relationship to isoprene emission factors in leaves of these oak species, indicating the possible involvement of IDI in isoprene biosynthesis by oak leaves.

  12. Blastomyces Virulence Adhesin-1 Protein Binding to Glycosaminoglycans Is Enhanced by Protein Disulfide Isomerase

    PubMed Central

    Beaussart, Audrey; Brandhorst, Tristan

    2015-01-01

    ABSTRACT Blastomyces adhesin-1 (BAD-1) protein mediates the virulence of the yeast Blastomyces dermatitidis, in part by binding host lung tissue, the extracellular matrix, and cellular receptors via glycosaminoglycans (GAGs), such as heparan sulfate. The tandem repeats that make up over 90% of BAD-1 appear in their native state to be tightly folded into an inactive conformation, but recent work has shown that they become activated and adhesive upon reduction of a disulfide linkage. Here, atomic force microscopy (AFM) of a single BAD-1 molecule interacting with immobilized heparin revealed that binding is enhanced upon treatment with protein disulfide isomerase and dithiothreitol (PDI/DTT). PDI/DTT treatment of BAD-1 induced a plateau effect in atomic force signatures that was consistent with sequential rupture of tandem binding domains. Inhibition of PDI in murine macrophages blunted BAD-1 binding to heparin in vitro. Based on AFM, we found that a short Cardin-Weintraub sequence paired with a WxxWxxW sequence in the first, degenerate repeat at the N terminus of BAD-1 was sufficient to initiate heparin binding. Removal of half of the 41 BAD-1 tandem repeats led to weaker adhesion, illustrating their role in enhanced binding. Mass spectroscopy of the tandem repeat revealed that the PDI-induced interaction with heparin is characterized by ruptured disulfide bonds and that cysteine thiols remain reduced. Further binding studies showed direct involvement of thiols in heparin ligation. Thus, we propose that the N-terminal domain of BAD-1 governs the initial association with host GAGs and that proximity to GAG-associated host PDI catalyzes activation of additional binding motifs conserved within the tandem repeats, leading to enhanced avidity and availability of reduced thiols. PMID:26396244

  13. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    PubMed

    Zhu, Chong; Luo, Nana; He, Miao; Chen, Guanxing; Zhu, Jiantang; Yin, Guangjun; Li, Xiaohui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2014-01-01

    Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene

  14. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    PubMed

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  15. Residual triose phosphate isomerase activity and color measurements to determine adequate cooking of ground beef patties.

    PubMed

    Sair, A I; Booren, A M; Berry, B W; Smith, D M

    1999-02-01

    The objectives were to (i) compare the use of triose phosphate isomerase (TPI) activity and internal color scores for determination of cooking adequacy of beef patties and (ii) determine the effect of frozen storage and fat content on residual TPI activity in ground beef. Ground beef patties (24.4% fat) were cooked to five temperatures ranging from 60.0 to 82.2 degrees C. TPI activity decreased as beef patty cooking temperature was increased from 60.0 to 71.1 degrees C; however, no difference (P > 0.05) in activity (6.3 U/kg meat) was observed in patties cooked to 71.1 degrees C and above. Degree of doneness color scores, a* values and b* values, of ground beef patties decreased as internal temperature was increased from 60.0 to 71.1 degrees C; however, temperature had no effect on L* values. TPI activity in raw ground beef after five freeze-thaw cycles did not differ from the control. Three freeze-thaw cycles of raw ground beef resulted in a 57.2% decrease in TPI activity after cooking. TPI activity of cooked beef increased during 2 months of frozen storage, but TPI activity in ground beef stored for 3 months or longer did not differ from the unfrozen control. While past research has shown color to be a poor indicator of adequate thermal processing, our results suggest that undercooked ground beef patties could be distinguished from those that had been adequately cooked following U.S. Department of Agriculture guidelines using residual TPI activity as a marker.

  16. QM/MM modelling of ketosteroid isomerase reactivity indicates that active site closure is integral to catalysis.

    PubMed

    van der Kamp, Marc W; Chaudret, Robin; Mulholland, Adrian J

    2013-07-01

    Ketosteroid isomerase (Δ⁵-3-keto steroid isomerase or steroid Δ-isomerase) is a highly efficient enzyme at the centre of current debates on enzyme catalysis. We have modelled the reaction mechanism of the isomerization of 3-oxo-Δ⁵-steroids into their Δ⁴-conjugated isomers using high-level combined quantum mechanics/molecular mechanics (QM/MM) methods, and semi-empirical QM/MM molecular dynamics simulations. Energy profiles were obtained at various levels of QM theory (AM1, B3LYP and SCS-MP2). The high-level QM/MM profile is consistent with experimental data. QM/MM dynamics simulations indicate that active site closure and desolvation of the catalytic Asp38 occur before or during formation of dienolate intermediates. These changes have a significant effect on the reaction barrier. A low barrier to reaction is found only when the active site is closed, poising it for catalysis. This conformational change is thus integral to the whole process. The effects on the barrier are apparently largely due to changes in solvation. The combination of high-level QM/MM energy profiles and QM/MM dynamics simulation shows that the reaction involves active site closure, desolvation of the catalytic base, efficient isomerization and re-opening of the active site. These changes highlight the transition between the ligand binding/releasing form and the catalytic form of the enzyme. The results demonstrate that electrostatic interactions (as a consequence of pre-organization of the active site) are crucial for stabilization during the chemical reaction step, but closure of the active site is essential for efficient catalysis to occur.

  17. Disulfide isomerase-like protein AtPDIL1–2 is a good candidate for trichlorophenol phytodetoxification

    PubMed Central

    Peng, Ri-He; Qiu, Jin; Tian, Yong-Sheng; Gao, Jian-jie; Han, Hong-juan; Fu, Xiao-Yan; Zhu, Bo; Xu, Jing; Wang, Bo; Li, Zhen-jun; Wang, Li-juan; Yao, Quan-Hong

    2017-01-01

    Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1–2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b′ domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants. PMID:28059139

  18. Using Unnatural Amino Acids to Probe the Energetics of Oxyanion Hole Hydrogen Bonds in the Ketosteroid Isomerase Active Site

    PubMed Central

    2015-01-01

    Hydrogen bonds are ubiquitous in enzyme active sites, providing binding interactions and stabilizing charge rearrangements on substrate groups over the course of a reaction. But understanding the origin and magnitude of their catalytic contributions relative to hydrogen bonds made in aqueous solution remains difficult, in part because of complexities encountered in energetic interpretation of traditional site-directed mutagenesis experiments. It has been proposed for ketosteroid isomerase and other enzymes that active site hydrogen bonding groups provide energetic stabilization via “short, strong” or “low-barrier” hydrogen bonds that are formed due to matching of their pKa or proton affinity to that of the transition state. It has also been proposed that the ketosteroid isomerase and other enzyme active sites provide electrostatic environments that result in larger energetic responses (i.e., greater “sensitivity”) to ground-state to transition-state charge rearrangement, relative to aqueous solution, thereby providing catalysis relative to the corresponding reaction in water. To test these models, we substituted tyrosine with fluorotyrosines (F-Tyr’s) in the ketosteroid isomerase (KSI) oxyanion hole to systematically vary the proton affinity of an active site hydrogen bond donor while minimizing steric or structural effects. We found that a 40-fold increase in intrinsic F-Tyr acidity caused no significant change in activity for reactions with three different substrates. F-Tyr substitution did not change the solvent or primary kinetic isotope effect for proton abstraction, consistent with no change in mechanism arising from these substitutions. The observed shallow dependence of activity on the pKa of the substituted Tyr residues suggests that the KSI oxyanion hole does not provide catalysis by forming an energetically exceptional pKa-matched hydrogen bond. In addition, the shallow dependence provides no indication of an active site electrostatic

  19. Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity.

    PubMed

    Alvarez, Guzmán; Aguirre-López, Beatriz; Varela, Javier; Cabrera, Mauricio; Merlino, Alicia; López, Gloria V; Lavaggi, María Laura; Porcal, Williams; Di Maio, Rossanna; González, Mercedes; Cerecetto, Hugo; Cabrera, Nallely; Pérez-Montfort, Ruy; de Gómez-Puyou, Marieta Tuena; Gómez-Puyou, Armando

    2010-12-01

    Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), an enzyme in the glycolytic pathway that exhibits high catalytic rates of glyceraldehyde-3-phosphate- and dihydroxyacetone-phosphate-isomerization only in its dimeric form, was screened against an in-house chemical library containing nearly 230 compounds belonging to different chemotypes. After secondary screening, twenty-six compounds from eight different chemotypes were identified as screening positives. Four compounds displayed selectivity for TcTIM over TIM from Homo sapiens and, concomitantly, in vitro activity against T. cruzi.

  20. Differential viability of phosphoglucose isomerase allozyme genotypes of marine snails in nonionic detergent and crude oil-surfactant mixtures.

    PubMed

    Lavie, B; Nevo, E; Zoller, U

    1984-10-01

    The effects of a nonionic detergent and of crude oil-detergent mixtures in aqueous solutions on the allozyme frequencies of phosphoglucose isomerase (Pgi) genotypes were tested in the Mediterranean marine gastropods Monodonta turbinata and M. turbiformis. Our results indicate differential survivorship of electrophoretical Pgi allozyme genotypes for both detergent alone and for crude oil-detergent mixtures. These results reflect the adaptive nature of some Pgi genotypes in these marine gastropods and seem inconsistent with the neutral theory of allozyme polymorphisms. Furthermore, these findings suggest that allozyme variants demonstrate a differential tolerance to these organic pollutants and can, therefore, be used as detectors of organic pollutants in the sea.

  1. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.

    PubMed

    Ota, Miki; Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Miyake, Hideo; Tamaru, Yutaka; Ueda, Mitsuyoshi

    2013-01-01

    Xylose isomerase (XI) is a key enzyme in the conversion of D-xylose, which is a major component of lignocellulosic biomass, to D-xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI-related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell-surface display system, and the xylose assimilation and fermentation properties of this XI-displaying yeast were examined. XI-displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions.

  2. Synthetic Lethality of Retinoblastoma Mutant Cells in the Drosophila Eye by Mutation of a Novel Peptidyl Prolyl Isomerase Gene

    PubMed Central

    Edgar, Kyle A.; Belvin, Marcia; Parks, Annette L.; Whittaker, Kellie; Mahoney, Matt B.; Nicoll, Monique; Park, Christopher C.; Winter, Christopher G.; Chen, Feng; Lickteig, Kim; Ahmad, Ferhad; Esengil, Hanife; Lorenzi, Matthew V.; Norton, Amanda; Rupnow, Brent A.; Shayesteh, Laleh; Tabios, Mariano; Young, Lynn M.; Carroll, Pamela M.; Kopczynski, Casey; Plowman, Gregory D.; Friedman, Lori S.; Francis-Lang, Helen L.

    2005-01-01

    Mutations that inactivate the retinoblastoma (Rb) pathway are common in human tumors. Such mutations promote tumor growth by deregulating the G1 cell cycle checkpoint. However, uncontrolled cell cycle progression can also produce new liabilities for cell survival. To uncover such liabilities in Rb mutant cells, we performed a clonal screen in the Drosophila eye to identify second-site mutations that eliminate Rbf− cells, but allow Rbf+ cells to survive. Here we report the identification of a mutation in a novel highly conserved peptidyl prolyl isomerase (PPIase) that selectively eliminates Rbf− cells from the Drosophila eye. PMID:15744054

  3. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489.

    PubMed Central

    Liu, S Y; Wiegel, J; Gherardini, F C

    1996-01-01

    An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed

  4. L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans.

    PubMed

    Kim, Kyoung-Rok; Seo, Eun-Sun; Oh, Deok-Kun

    2014-01-01

    L-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the L-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l L-ribose from 300 g/l L-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co(2+), with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h(-1) produced an average of 100 g/l L-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for L-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from L-arabinose as the substrate.

  5. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    PubMed

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  6. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  7. Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures

    PubMed Central

    van Ooyen, Jan

    2015-01-01

    Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum, a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum, a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA, which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum. In vitro, FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l-glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum ΔfkpA, giving insight into the transcriptional response upon mild heat stress when FkpA is absent. PMID:26341203

  8. Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures.

    PubMed

    Kallscheuer, Nicolai; Bott, Michael; van Ooyen, Jan; Polen, Tino

    2015-11-01

    Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum, a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum, a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA, which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum. In vitro, FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l-glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum ΔfkpA, giving insight into the transcriptional response upon mild heat stress when FkpA is absent.

  9. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    PubMed

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  10. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase.

    PubMed

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Yu, Xiaohong; Hao, Xiaolong; Huang, Qiang; Xiao, Jianbo; Cui, Lijie; Kai, Guoyin

    2014-09-01

    Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance tanshinone production. Over-expression of SmHMGR or SmDXR in hairy root lines can significantly enhance the yield of tanshinone. Transgenic hairy root lines co-expressing HMGR and DXR (HD lines) produced evidently higher levels of total tanshinone (TT) compared with the control and single gene transformed lines. The highest tanshinone production was observed in HD42 with the concentration of 3.25 mg g(-1) DW. Furthermore, the transgenic hairy roots showed higher antioxidant activity than control. In addition, transgenic hairy root harboring HMGR and DXR (HD42) exhibited higher tanshinone content after elicitation by yeast extract and/or Ag(+) than before. Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg g(-1) DW by YE, Ag(+), and YE-Ag(+) treatment compared with non-induced HD42, respectively. The content of cryptotanshinone and dihydrotanshinone was effectively elevated upon elicitor treatments, whereas there was no obvious promotion effect for the other two compounds tanshinone I and tanshinone IIA. Our results provide a useful strategy to improve tanshinone content as well as other natural active products by combination of genetic engineering with elicitors.

  11. Cloning and Characterization of 1-Deoxy-d-Xylulose 5-Phosphate Synthase from Streptomyces sp. Strain CL190, Which Uses both the Mevalonate and Nonmevalonate Pathways for Isopentenyl Diphosphate Biosynthesis

    PubMed Central

    Kuzuyama, Tomohisa; Takagi, Motoki; Takahashi, Shunji; Seto, Haruo

    2000-01-01

    In addition to the ubiquitous mevalonate pathway, Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-d-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. The dxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a Vmax of 370 U per mg of protein and Kms of 65 μM for pyruvate and 120 μM for d-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with a Km value of 35 mM for d-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties. PMID:10648511

  12. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5'-phosphate oxidoreductase.

    PubMed Central

    Blanc, V; Lagneaux, D; Didier, P; Gil, P; Lacroix, P; Crouzet, J

    1995-01-01

    In Streptomyces pristinaespiralis, two enzymes are necessary for conversion of pristinamycin IIB (PIIB) to pristinamycin IIA (PIIA), the major component of pristinamycin (D. Thibaut, N. Ratet, D. Bisch, D. Faucher, L. Debussche, and F. Blanche, J. Bacteriol. 177:5199-5205, 1995); these enzymes are PIIA synthase, a heterodimer composed of the SnaA and SnaB proteins, which catalyzes the oxidation of PIIB to PIIA, and the NADH:riboflavin 5'-phosphate oxidoreductase (hereafter called FMN reductase), the SnaC protein, which provides the reduced form of flavin mononucleotide for the reaction. By using oligonucleotide probes designed from limited peptide sequence information of the purified proteins, the corresponding genes were cloned from a genomic library of S. pristinaespiralis. SnaA and SnaB showed no significant similarity with proteins from databases, but SnaA and SnaB had similar protein domains. Disruption of the snaA gene in S. pristinaespiralis led to accumulation of PIIB. Complementation of a S. pristinaespiralis PIIA-PIIB+ mutant with the snaA and snaB genes, cloned in a low-copy-number plasmid, partially restored production of PIIA. The deduced amino acid sequence of the snaC gene showed no similarity to the sequences of other FMN reductases but was 39% identical with the product of the actVB gene of the actinorhodin cluster of Streptomyces coelicolor A(3)2, likely to be involved in the dimerization step of actinorhodin biosynthesis. Furthermore, an S. coelicolor A(3)2 mutant blocked in this step was successfully complemented by the snaC gene, restoring the production of actinorhodin. PMID:7665509

  13. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    PubMed

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  14. Discovery of protein disulfide isomerase P5 inhibitors that reduce the secretion of MICA from cancer cells.

    PubMed

    Horibe, Tomohisa; Torisawa, Aya; Okuno, Yukiko; Kawakami, Koji

    2014-07-21

    In order to regulate the activity of P5, which is a member of the protein disulfide isomerase family, we screened a chemical compound library for P5-specific inhibitors, and identified two candidate compounds (anacardic acid and NSC74859). Interestingly, anacardic acid inhibited the reductase activity of P5, but did not inhibit the activity of protein disulfide isomerase (PDI), thiol-disulfide oxidoreductase ERp57, or thioredoxin. NSC74859 inhibited all these enzymes. When we examined the effects of these compounds on the secretion of soluble major histocompatibility complex class-I-related gene A (MICA) from cancer cells, anacardic acid was found to decrease secretion. In addition, anacardic acid was found to reduce the concentration of glutathione up-regulated by the anticancer drug 17-demethoxygeldanamycin in cancer cells. These results suggest that anacardic acid can both inhibit P5 reductase activity and decrease the secretion of soluble MICA from cancer cells. It might be a novel and potent anticancer treatment by targeting P5 on the surface of cancer cells.

  15. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.

    PubMed

    Li, Yanjun; Zhu, Yueming; Liu, Anjun; Sun, Yuanxia

    2011-05-01

    D-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert D-galactose into the valuable D-tagatose using L-arabinose isomerase (L-AI). In this study, a thermophilic strain possessing L-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding L-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). L-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more D-tagatose from D-galactose by raising the reaction temperatures and adding borate. A 60% conversion of D-galactose to D-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k (cat) /K (m)) for D-galactose with borate was 9.47 mM(-1) min(-1), twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for D-galactose, suggesting its great potential for producing D-tagatose.

  16. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    SciTech Connect

    Gowda, Giri; Sagurthi, Someswar Rao; Savithri, H. S.; Murthy, M. R. N.

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  17. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation

    PubMed Central

    Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd

    2008-01-01

    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased — and, under conditions of decreased platelet adhesion, PDI inhibition reduced — fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet–secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury. PMID:18274674

  18. Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7

    SciTech Connect

    van Staalduinen, L.; Park, C; Yeom, S; Adams-Cioaba, M; Oh, D; Jia, C

    2010-01-01

    Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.

  19. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    SciTech Connect

    Olchowy, Jaroslaw; Milewski, Slawomir

    2005-11-01

    The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to space group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.

  20. Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase.

    PubMed

    Rhimi, Moez; Chouayekh, Hichem; Gouillouard, Isabelle; Maguin, Emmanuelle; Bejar, Samir

    2011-02-01

    Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process.

  1. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    SciTech Connect

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  2. The Wheat Peptidyl Prolyl cis-trans-Isomerase FKBP77 Is Heat Induced and Developmentally Regulated1

    PubMed Central

    Kurek, Isaac; Aviezer, Keren; Erel, Noa; Herman, Eliot; Breiman, Adina

    1999-01-01

    We isolated a cDNA encoding a 568-amino acid, heat-stress-induced peptidyl prolyl isomerase belonging to the FK506-binding-protein (FKBP) family. The open reading frame encodes for a peptidyl prolyl isomerase that possesses three FKBP-12-like domains, a putative tetratricopeptide motif, and a calmodulin-binding domain. Specific antibodies showed that the open reading frame encodes a heat-induced 77-kD protein, the wheat FKBP77 (wFKBP77), which exhibits 84% identity with the wFKBP73 and 42% identity with the human FKBP59. Because of the high similarity in sequence to wFKBP73, wFKBP77 was designated as the heat-induced isoform. The wFKBP77 mRNA steady-state level was 14-fold higher at 37°C than at 25°C. The wFKBP77 transcript abundance was the highest in mature embryos that had imbibed and 2-d-old green shoots exposed to 37°C, and decreased to 6% in 6-d-old green shoots. The transcript level returned to the level detected at 25°C after recovery of the embryos for 90 min at 25°C. We compared wFKBP73 and wFKBP77 with the heat-shock proteins having cognate and heat-stress-induced counterparts. PMID:9952466

  3. Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella.

    PubMed

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55-59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results

  4. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires

    PubMed Central

    Pemberton, Trevor J

    2006-01-01

    Background The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i) the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii) evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii) whilst the cyclophilins and parvulins have evolved to perform conserved functions, the FKBPs have

  5. Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus.

    PubMed

    Nakasako, Masayoshi; Maeno, Aya; Kurimoto, Eiji; Harada, Takushi; Yamaguchi, Yoshiki; Oka, Toshihiko; Takayama, Yuki; Iwata, Aya; Kato, Koichi

    2010-08-17

    Protein disulfide isomerase (PDI) acts as folding catalyst and molecular chaperone for disulfide-containing proteins through the formation, breakage, and rearrangement of disulfide bonds. PDI has a modular structure comprising four thioredoxin domains, a, b, b', and a', followed by a short segment, c. The a and a' domains have an active site cysteine pair for the thiol-disulfide exchange reaction, which alters PDI between the reduced and oxidized forms, and the b' domain provides a primary binding site for substrate proteins. Although the structures and functions of PDI have studied, it is still argued whether the overall conformation of PDI depends on the redox state of the active site cysteine pair. Here, we report redox-dependent conformational and solvation changes of PDI from a thermophilic fungus elucidated by small-angle X-ray scattering (SAXS) analysis. The redox state and secondary structures of PDI were also characterized by nuclear magnetic resonance and circular dichroic spectroscopy, respectively. The oxidized form of PDI showed SAXS differences from the reduced form, and the low-resolution molecular models restored from the SAXS profiles differed between the two forms regarding the positions of the a'-c region relative to the a-b-b' region. The normal mode analysis of the crystal structure of yeast PDI revealed that the inherent motions of the a-b-b' and a'-c regions expose the substrate binding surface of the b' domain. The apparent molecular weight of the oxidized form estimated from SAXS was 1.1 times larger than that of the reduced form, whereas the radius of gyration (ca. 33 A) was nearly independent of the redox state. These results suggest that the conformation of PDI is controlled by the redox state of the active site cysteine residues in the a and a' domains and that the conformational alternation accompanies solvation changes in the active site cleft formed by the a, b, b', and a' domains. On the basis of the results presented here, we

  6. Molecular epidemiology of giardiasis among Orang Asli in Malaysia: application of the triosephosphate isomerase gene

    PubMed Central

    2014-01-01

    Background Giardia duodenalis is a flagellate parasite which has been considered the most common protozoa infecting human worldwide. Molecular characterization of G. duodenalis isolates have revealed the existence of eight groups (Assemblage A to H) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals. Methods This cross-sectional study was conducted to identify assemblage’s related risk factors of G. duodenalis among Orang Asli in Malaysia. Stool samples were collected from 611 individuals aged between 2 and 74 years old of whom 266 were males and 345 were females. Socioeconomic data were collected through a pre-tested questionnaire. All stool samples were processed with formalin-ether sedimentation and Wheatley’s trichrome staining techniques for the primary identification of G. duodenalis. Molecular identification was carried out by the amplification of a triosephosphate isomerase gene using nested-PCR assay. Results Sixty-two samples (10.2%) were identified as assemblage A and 36 (5.9%) were assemblage B. Risk analysis based on the detected assemblages using univariate and logistic regression analyses identified subjects who have close contact with household pets i.e. dogs and cats (OR = 2.60; 95% CI = 1.42, 4.78; P = 0.002) was found to be significant predictor for assemblage A. On the other hand, there were three significant risk factors caused by assemblage B: (i) children ≤15 years old (OR = 2.33; 95% CI = 1.11, 4.87; P = 0.025), (ii) consuming raw vegetables (OR = 2.82; 95% CI = 1.27, 6.26; P = 0.011) and (iii) the presence of other family members infected with giardiasis (OR = 6.31; 95% CI = 2.99, 13.31; P < 0.001). Conclusions The present study highlighted that G. duodenalis infection among Orang Asli was caused by both assemblages with significant high prevalence of assemblage A. Therefore, taking precaution after having contact with household

  7. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    PubMed Central

    López-Castillo, Laura M.; Jiménez-Sandoval, Pedro; Baruch-Torres, Noe; Trasviña-Arenas, Carlos H.; Díaz-Quezada, Corina; Lara-González, Samuel; Winkler, Robert; Brieba, Luis G.

    2016-01-01

    In plants triosephosphate isomerase (TPI) interconverts glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs) and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI) and chloroplast TPI (pdTPI) share more than 60% amino acid identity and assemble as (β-α)8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively) and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218). Site directed mutagenesis of residues pdTPI-C15, cTPI-C13, and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS) and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218). Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to the

  8. Fatty Acid Transport Protein 4 (FATP4) Prevents Light-Induced Degeneration of Cone and Rod Photoreceptors by Inhibiting RPE65 Isomerase

    PubMed Central

    Li, Songhua; Lee, Jungsoo; Zhou, Yongdong; Gordon, William C.; Hill, James M.; Bazan, Nicolas G.; Miner, Jeffrey H.; Jin, Minghao

    2013-01-01

    While Rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hyper susceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage. PMID:23407971

  9. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome

    PubMed Central

    Przysiecka, Łucja; Książkiewicz, Michał; Wolko, Bogdan; Naganowska, Barbara

    2015-01-01

    Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine

  10. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase.

    PubMed Central

    Beaucamp, N.; Hofmann, A.; Kellerer, B.; Jaenicke, R.

    1997-01-01

    Triosephosphate isomerase (TIM), from the hyperthermophilic bacterium Thermotoga maritima, has been shown to be covalently linked to phosphoglycerate kinase (PGK) forming a bifunctional fusion protein with TIM as the C-terminal portion of the subunits of the tetrameric protein (Schurig et al., EMBO J 14:442-451, 1995). To study the effect of the anomalous state of association on the structure, stability, and function of Thermotoga TIM, the isolated enzyme was cloned and expressed in Escherichia coli, and compared with its wild-type structure in the PGK-TIM fusion protein. After introducing a start codon at the beginning of the tpi open reading frame, the gene was expressed in E.c.BL21(DE3)/ pNBTIM. The nucleotide sequence was confirmed and the protein purified as a functional dimer of 56.5 kDa molecular mass. Spectral analysis, using absorption, fluorescence emission, near- and far-UV circular dichroism spectroscopy were used to compare the separated Thermotoga enzyme with its homologs from mesophiles. The catalytic properties of the enzyme at approximately 80 degrees C are similar to those of its mesophilic counterparts at their respective physiological temperatures, in accordance with the idea that under in vivo conditions enzymes occupy corresponding states. As taken from chaotropic and thermal denaturation transitions, the separated enzyme exhibits high intrinsic stability, with a half-concentration of guanidinium-chloride at 3.8 M, and a denaturation half-time at 80 degrees C of 2 h. Comparing the properties of the TIM portion of the PGK-TIM fusion protein with those of the isolated recombinant TIM, it is found that the fusion of the two enzymes not only enhances the intrinsic stability of TIM but also its catalytic efficiency. PMID:9336838

  11. Loss of Cytosolic Phosphoglucose Isomerase Affects Carbohydrate Metabolism in Leaves and Is Essential for Fertility of Arabidopsis1[C][W][OPEN

    PubMed Central

    Kunz, Hans-Henning; Zamani-Nour, Shirin; Häusler, Rainer E.; Ludewig, Katja; Schroeder, Julian I.; Malinova, Irina; Fettke, Joerg; Flügge, Ulf-Ingo; Gierth, Markus

    2014-01-01

    Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover. PMID:25104722

  12. Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B.

    PubMed Central

    Kim, S W; Joo, S; Choi, G; Cho, H S; Oh, B H; Choi, K Y

    1997-01-01

    In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate. PMID:9401033

  13. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed

    SciTech Connect

    Chen, W.P.; Anderson, A.W.

    1980-03-01

    The hemicellulose fraction of ryegrass straw was extracted with NaOH and used for the production of glucose isomerase by Streptomyces flavogriseus. The level of hemicellulose extracted increased proportionately with increasing NaOH concentration up to about 4%, then the rate of increase slowed down. Hemicellulose extraction was facilitated by the combined application of heat and NaOH. Approximately 15% hemicellulose (12% as pentosan) could be obtained by treating straw with 4% NaOH for either 3 hours at 90/sup 0/C or 24 hour at room temperature. The highest level (3.04 units/ml culture) of intracellular glucose isomerase was obtained when the organism was grown at 30 degrees Centigrade for two days on 2% straw hemicellulose. The organism also produced a high yield of glucose isomerase on xylose or xylan. The NaOH treated straw residue, after removal of hemicellulose, had approximately 75% higher digestibility and 20% higher feed efficiency for weanling meadow voles than untreated straw, but almost the equivalent to that obtained by NaOH treatment without removal of the hemicellulose. Thus, the residue could be used as animal feed. A process for the production of glucose isomerase and animal feed from ryegrass straw was also proposed.

  14. Microbial conversion of L-arabinose to xylitol by coexpression of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microbial strain has been developed that can produce xylitol from L-arabinose at a high yield by transforming Escherichia coli with a new xylitol biosynthetic pathway consisting of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase. An E. coli strain that heterologously expre...

  15. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae strains expressing xylose isomerase (XI) produce some of the highest reported ethanol yields from xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are not functional, require additional strain modification, and have low affinity for xylose...

  16. Identification of a novel tandemly repeated sequence present in an intron of the glucose phosphate isomerase (GPI) gene in mouse and man

    SciTech Connect

    Faik, P.; Walker, J.I.H.; Morgan, M.J. )

    1994-05-01

    Glucose phosphate isomerase (GPI, glucose 6-phosphate ketol-isomerase, EC 5.3.1.9) is a housekeeping gene expressed in all tissues and organisms that utilize glycolysis and gluconeogenesis. Deficiency in humans leads to a rare form of nonspherocytic hemolytic anemia. The authors have isolated a 3.2-kb mouse cDNA containing glucose phosphate isomerase coding sequence and a 2.1-kb intronic sequence and a large proportion of the human gene (approaching 55 kb) in four phage [lambda] recombinants. A 4-kb intronic fragment from the human gene showing homology to the mouse intronic sequence has been isolated and sequenced. The fragment contains approximately 1.5 kb of sequence that is composited of 30 repeat units of a novel 50-kb tandemly repeated unit. The mouse intronic sequence contains 18 similar units. The human consensus sequence differs from the mouse consensus sequence at only 7 positions out of 50 (positions 16, 26, 27, 42, 43, 47, and 48). A probe containing the repeat element detects polymorphisms, specific to glucose phosphate isomerase, in human DNA. The repeat element does not appear to be present at any other loci in human DNA. The conservation of this intronic repeat element extends to pig and Chinese hamster. 26 refs., 4 figs.

  17. Levels of Alpha-Glycerophosphate Dehydrogenase, Triosephosphate Isomerase and Lactic Acid Dehydrogenase in Muscles of the Cockroach, ’Periplaneta americana’ L.,

    DTIC Science & Technology

    The level of alpha-glycerophosphate dehydrogenase is slightly higher in leg muscle than in thoracic muscle of the American cockroach, Periplaneta ... americana . Triosephosphate isomerase in leg muscle is about twice that of thoracic muscle. There is little lactic acid dehydrogenase in both muscles. (Author)

  18. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.

    PubMed

    Ha, Suk-Jin; Kim, Soo Rin; Choi, Jin-Ho; Park, Myeong Soo; Jin, Yong-Su

    2011-10-01

    Efficient fermentation of xylose, which is abundant in hydrolysates of lignocellulosic biomass, is essential for producing cellulosic biofuels economically. While heterologous expression of xylose isomerase in Saccharomyces cerevisiae has been proposed as a strategy to engineer this yeast for xylose fermentation, only a few xylose isomerase genes from fungi and bacteria have been functionally expressed in S. cerevisiae. We cloned two bacterial xylose isomerase genes from anaerobic bacteria (Bacteroides stercoris HJ-15 and Bifidobacterium longum MG1) and introduced them into S. cerevisiae. While the transformant with xylA from B. longum could not assimilate xylose, the transformant with xylA from B. stercoris was able to grow on xylose. This result suggests that the xylose isomerase (BsXI) from B. stercoris is functionally expressed in S. cerevisiae. The engineered S. cerevisiae strain with BsXI consumed xylose and produced ethanol with a good yield (0.31 g/g) under anaerobic conditions. Interestingly, significant amounts of xylitol (0.23 g xylitol/g xylose) were still accumulated during xylose fermentation even though the introduced BsXI might not cause redox imbalance. We investigated the potential inhibitory effects of the accumulated xylitol on xylose fermentation. Although xylitol inhibited in vitro BsXI activity significantly (K(I) = 5.1 ± 1.15 mM), only small decreases (less than 10%) in xylose consumption and ethanol production rates were observed when xylitol was added into the fermentation medium. These results suggest that xylitol accumulation does not inhibit xylose fermentation by engineered S. cerevisiae expressing xylA as severely as it inhibits the xylose isomerase reaction in vitro.

  19. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    PubMed

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  20. Acceleration of an Aromatic Claisen Rearrangement via a Designed Spiroligozyme Catalyst that Mimics the Ketosteroid Isomerase Catalytic Dyad

    PubMed Central

    2015-01-01

    A series of hydrogen-bonding catalysts have been designed for the aromatic Claisen rearrangement of a 1,1-dimethylallyl coumarin. These catalysts were designed as mimics of the two-point hydrogen-bonding interaction present in ketosteroid isomerase that has been proposed to stabilize a developing negative charge on the ether oxygen in the migration of the double bond.1 Two hydrogen bond donating groups, a phenol alcohol and a carboxylic acid, were grafted onto a conformationally restrained spirocyclic scaffold, and together they enhance the rate of the Claisen rearrangement by a factor of 58 over the background reaction. Theoretical calculations correctly predict the most active catalyst and suggest that both preorganization and favorable interactions with the transition state of the reaction are responsible for the observed rate enhancement. PMID:24456160

  1. Nuclear magnetic resonance characterization of the N-terminal thioredoxin-like domain of protein disulfide isomerase.

    PubMed Central

    Kemmink, J.; Darby, N. J.; Dijkstra, K.; Scheek, R. M.; Creighton, T. E.

    1995-01-01

    A genetically engineered protein consisting of the 120 residues at the N-terminus of human protein disulfide isomerase (PDI) has been characterized by 1H, 13C, and 15N NMR methods. The sequence of this protein is 35% identical to Escherichia coli thioredoxin, and it has been found also to have similar patterns of secondary structure and beta-sheet topology. The results confirm that PDI is a modular, multidomain protein. The last 20 residues of the N-terminal domain of PDI are some of those that are similar to part of the estrogen receptor, yet they appear to be an intrinsic part of the thioredoxin fold. This observation makes it unlikely that any of the segments of PDI with similarities to the estrogen receptor comprise individual domains. PMID:8580850

  2. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    PubMed Central

    Olchowy, Jaroslaw; Jedrzejczak, Robert; Milewski, Slawomir; Rypniewski, Wojciech

    2005-01-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to space group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers. PMID:16511216

  3. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    PubMed

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  4. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    PubMed

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery.

  5. BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    PubMed

    Fried, Stephen D; Boxer, Steven G

    2015-08-28

    Natarajan et al. and Chen and Savidge comment that comparing the electric field in ketosteroid isomerase's (KSI's) active site to zero overestimates the catalytic effect of KSI's electric field because the reference reaction occurs in water, which itself exerts a sizable electrostatic field. To compensate, Natarajan et al. argue that additional catalytic weight arises from positioning of the general base, whereas Chen and Savidge propose a separate contribution from desolvation of the general base. We note that the former claim is not well supported by published results, and the latter claim is intriguing but lacks experimental basis. We also take the opportunity to clarify some of the more conceptually subtle aspects of electrostatic catalysis.

  6. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus) microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    PubMed Central

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-01-01

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells. PMID:23202941

  7. Role of the 52 KDa thioredoxin protein disulfide isomerase of Toxoplasma gondii during infection to human cells.

    PubMed

    Moncada, Diego; Arenas, Aylan; Acosta, Alejandro; Molina, Diego; Hernández, Alejandro; Cardona, Néstor; Gomez-Yepes, Mónica; Gomez-Marin, Jorge E

    2016-05-01

    Toxoplasma protein disulfide isomerase (PDI) is a 52 KDa thioredoxin of interest because have a great immunogenicity for humans. We cloned and produced a recombinant protein (recTgPDI) used to test its effect during infection to different human cell lines (epithelial and retinal). We also determine if there were differences in gen expression during in vitro infection. Expression of the gen was lower after entry into the host cells. PDI's inhibitors bacitracin and nitroblue tetrazolium reduced the percent of infected cells and small amounts of recTgPDI proteins interfered with the invasion step. All these results support a role of Toxoplasma PDI during the first steps of infection (adhesion and invasion). Toxoplasma PDI is a protein linked to early steps of invasion, it would be of importance to identify the host proteins substrates during invasion steps.

  8. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    SciTech Connect

    Kovalevsky, Andrey; Hanson, B. Leif; Mason, Sax A.; Forsyth, V. Trevor; Fisher, Zoe; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Langan, Paul

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  9. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    PubMed

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  10. Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift.

    PubMed

    Fenn, Timothy D; Ringe, Dagmar; Petsko, Gregory A

    2004-06-01

    Xylose isomerase (E.C. 5.3.1.5) catalyzes the interconversion of aldose and ketose sugars and has an absolute requirement for two divalent cations at its active site to drive the hydride transfer rates of sugar isomerization. Evidence suggests some degree of metal movement at the second metal site, although how this movement may affect catalysis is unknown. The 0.95 A resolution structure of the xylitol-inhibited enzyme presented here suggests three alternative positions for the second metal ion, only one of which appears positioned in a catalytically competent manner. To complete the reaction, an active site hydroxyl species appears appropriately positioned for hydrogen transfer, as evidenced by precise bonding distances. Conversely, the 0.98 A resolution structure of the enzyme with glucose bound in the alpha-pyranose state only shows one of the metal ion conformations at the second metal ion binding site, suggesting that the linear form of the sugar is required to promote the second and third metal ion conformations. The two structures suggest a strong degree of conformational flexibility at the active site, which seems required for catalysis and may explain the poor rate of turnover for this enzyme. Further, the pyranose structure implies that His53 may act as the initial acid responsible for ring opening of the sugar to the aldose form, an observation that has been difficult to establish in previous studies. The glucose ring also appears to display significant segmented disorder in a manner suggestive of ring opening, perhaps lending insight into means of enzyme destabilization of the ground state to promote catalysis. On the basis of these results, we propose a modified version of the bridged bimetallic mechanism for hydride transfer in the case of Streptomyces olivochromogenes xylose isomerase.

  11. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    PubMed

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  12. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  13. Conversion of 5(10)-oestrene-3 beta,17 beta-diol to 19-nor-4-ene-3-ketosteroids by luteal cells in vitro: possible involvement of the 3 beta-hydroxysteroid dehydrogenase/isomerase.

    PubMed

    Lee, C M; Tekpetey, F R; Armstrong, D T; Khalil, M W

    1991-05-01

    We have previously suggested that in porcine granulosa cells, a putative intermediate, 5(10)-oestrene-3,17-dione is involved in 4-oestrene-3,17-dione (19-norandrostenedione; 19-norA) and 4-oestren-17 beta-ol-3-one (19-nortestosterone: 19-norT) formation from C19 aromatizable androgens. In this study, luteal cells prepared from porcine, bovine and rat corpora lutea by centrifugal elutriation were used as a source of 3 beta-hydroxysteroid dehydrogenase/isomerase in order to investigate the role of this enzyme in the biosynthesis of 19-norsteroids. Small porcine luteal cells made mainly 19-norT and large porcine luteal cells 19-norA from 5(10)-oestrene-3 beta,17 beta-diol, the reduced product of the putative intermediate 5(10)-oestrene-3,17-dione. However, neither small nor large cells metabolized androstenedione to 19-norsteroids. Serum and serum plus LH significantly stimulated formation of both 19-norA and 19-norT from 5(10)-oestrene-3 beta,17 beta-diol, compared with controls. Inhibitors of the 3 beta-hydroxysteroid dehydrogenase/isomerase (trilostane and cyanoketone) significantly reduced formation of 19-norT in small porcine luteal cells and 19-norA in large porcine luteal cells, although they were effective at different concentrations in each cell type. In parallel incubations, formation of [4-14C]androstenedione from added [4-14C]dehydroepiandrosterone was also inhibited by cyanoketone in both small and large porcine luteal cells in a dose-dependent manner; however, trilostane (up to 100 mumol/l) did not inhibit androstenedione formation in large porcine luteal cells. In addition, the decrease in progesterone synthesis induced by trilostane and cyanoketone (100 mumol/l each) was accompanied by a parallel accumulation of pregnenolone in both cell types. These results suggest that 3 beta-hydroxysteroid dehydrogenase/isomerase, or a closely related enzyme, present in small and large porcine luteal cells can convert added 5(10)-3 beta-hydroxysteroids into 19-nor-4

  14. Triose phosphate isomerase from the coelacanth. An approach to the rapid determination of an amino acid sequence with small amounts of material.

    PubMed

    Kolb, E; Harris, J I; Bridgen, J

    1974-02-01

    The preparation and purification of cyanogen bromide fragments from [(14)C]carboxymethylated coelacanth triose phosphate isomerase is presented. The automated sequencing of these fragments, the lysine-blocked tryptic peptides derived from them, and also of the intact protein, is described. Combination with results from manual sequence analysis has given the 247-residue amino acid sequence of coelacanth triose phosphate isomerase in 4 months, by using 100mg of enzyme. (Two small adjacent peptides were placed by homology with the rabbit enzyme.) Comparison of this sequence with that of the rabbit muscle enzyme shows that 207 (84%) of the residues are identical. This slow rate of evolutionary change (corresponding to two amino acid substitutions per 100 residues per 100 million years) is similar to that found for glyceraldehyde 3-phosphate dehydrogenase. The reliability of sequence information obtained by automated methods is discussed.

  15. In silico analysis suggests that PH0702 and PH0208 encode for methylthioribose-1-phosphate isomerase and ribose-1,5-bisphosphate isomerase, respectively, rather than aIF2Bβ and aIF2Bδ.

    PubMed

    Gogoi, Prerana; Srivastava, Ambuj; Jayaprakash, Prajisha; Jeyakanthan, Jeyaraman; Kanaujia, Shankar Prasad

    2016-01-01

    The overall process of protein biosynthesis across all domains of life is similar; however, detailed insights reveal a range of differences in the proteins involved. For decades, the process of protein translation in archaea has been considered to be closer to eukaryotes than to bacteria. In archaea, however, several homologues of eukaryotic proteins involved in translation initiation have not yet been identified; one of them being the initiation factor eIF2B consisting of five subunits (α, β, γ, δ and ε). Three open reading frames (PH0440, PH0702 and PH0208) in Pyrococcus horikoshii have been proposed to encode for the α-, β- and δ-subunits of aIF2B, respectively. The crystal structure of PH0440 shows similarity toward the α-subunit of eIF2B. However, the capability of PH0702 and PH0208 to function as the β- and δ-subunits of eIF2B, respectively, remains uncertain. In this study, we have taken up the task of annotating PH0702 and PH0208 using bioinformatics methods. The phylogenetic analysis of protein sequences belonging to IF2B-like family along with PH0702 and PH0208 revealed that PH0702 belonged to methylthioribose-1-phosphate isomerase (MTNA) group of proteins, whereas, PH0208 was found to be clustered in the group of ribose-1,5-bisphosphate isomerase (R15PI) proteins. A careful analysis of protein sequences and structures available for eIF2B, MTNA and R15PI confirms that PH0702 and PH0208 contain residues essential for the enzymatic activity of MTNA and R15PI, respectively. Additionally, the protein PH0208 comprises of the residues required for the dimer formation which is essential for the biological activity of R15PI. This prompted us to examine all eIF2B-like proteins from archaea and to annotate their function. The results reveal that majority of these proteins are homologues of the α-subunit of eIF2B, even though they lack the residues essential for their functional activity. A better understanding of the mechanism of GTP exchange during

  16. Identification of the Thiol Isomerase-binding Peptide, Mastoparan, as a Novel Inhibitor of Shear-induced Transforming Growth Factor β1 (TGF-β1) Activation*

    PubMed Central

    Brophy, Teresa M.; Coller, Barry S.; Ahamed, Jasimuddin

    2013-01-01

    TGF-β1 is a disulfide-bonded homodimeric protein produced by platelets and other cells that plays a role in many physiologic and pathologic processes. TGF-β1 is secreted as an inactive large latent complex (LLC) comprised of TGF-β1, latency-associated peptide, and latent TGF-β binding protein 1. We previously demonstrated that shear force can activate LLC and that thiol-disulfide exchange contributes to the process. We have now investigated the role of thiol isomerases in the activation of LLC in platelet releasates (PR) and recombinant LLC. The wasp venom peptide mastoparan, which inhibits the chaperone activity of PDI, inhibited stirring- and shear-induced activation of latent TGF-β1 by 90 and 75% respectively. To identify the proteins that bind to mastoparan either directly or indirectly, PR were chromatographed on a mastoparan affinity column. Latent TGF-β binding protein 1, latency-associated peptide, TGF-β1, clusterin, von Willebrand factor, multimerin-1, protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72 eluted specifically from the column. Anti-PDI RL90 attenuated the inhibitory effect of mastoparan on LLC activation. Furthermore, reduced PDI inhibited activation of PR LLC, whereas oxidized PDI had no effect. We conclude that thiol isomerases and thiol-disulfide exchange contribute to TGF-β1 activation and identify a number of molecules that may participate in the process. PMID:23463512

  17. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle.

    PubMed

    Rank, Nathan E; Bruce, Douglas A; McMillan, David M; Barclay, Colleen; Dahlhoff, Elizabeth P

    2007-03-01

    Eastern Sierra Nevada populations of the willow beetle Chrysomela aeneicollis commonly experience stressfully high and low environmental temperatures that may influence survival and reproduction. Allele frequencies at the enzyme locus phosphoglucose isomerase (PGI) vary across a climatic latitudinal gradient in these populations, with PGI allele 1 being most common in cooler regions and PGI allele 4 in warmer ones. PGI genotypes differ in heat and cold tolerance and in expression of a 70 kDa heat shock protein. Here we examine genetic, behavioral and environmental factors affecting a performance character, running speed, for willow beetles, and assess effects of consecutive cold and heat exposure on running speed and expression of Hsp70 in the laboratory. In nature, running speed depends on air temperature and is higher for males than females. Mating beetles ran faster than single beetles, and differences among PGI genotypes in male running speed depended on the presence of females. In the laboratory, exposure to cold reduced subsequent running speed, but the amount of this reduction depended on PGI genotype and previous thermal history. Effects of exposure to heat also depended on life history stage and PGI genotype. Adults possessing allele 1 ran fastest after a single exposure to stressful temperature, whereas those possessing allele 4 ran faster after repeated exposure. Larvae possessing allele 4 ran fastest after a single stressful exposure, but running speed generally declined after a second exposure to stressful temperature. The ranking of PGI genotypes after the second exposure depended on whether a larva had been exposed to cold or heat. Effects of temperature on Hsp70 expression also varied among PGI genotypes and depended on type of exposure, especially for adults (single heat exposure, two cold exposures: PGI 1-1>1-4>4-4; other multiple extreme exposures: 4-4>1-4>1-1). There was no consistent association between alleles at other polymorphic enzyme loci

  18. The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni.

    PubMed Central

    Nam, Gyu Hyun; Cha, Sun-Shin; Yun, Young Sung; Oh, Yun Hee; Hong, Bee Hak; Lee, Heung-Soo; Choi, Kwan Yong

    2003-01-01

    KSI (ketosteroid isomerase) from Comamonas testosteroni is a homodimeric enzyme that catalyses the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers at a reaction rate equivalent to the diffusion-controlled limit. Based on the structural analysis of KSI at a high resolution, the conserved cis-Pro39 residue was proposed to be involved in the proper positioning of Asp38, a critical catalytic residue, since the residue was found not only to be structurally associated with Asp38, but also to confer a structural rigidity on the local active-site geometry consisting of Asp38, Pro39, Val40, Gly41 and Ser42 at the flexible loop between b-strands B1 and B2. In order to investigate the structural role of the conserved cis-Pro39 residue near the active site of KSI, Pro39 was replaced with alanine or glycine. The free energy of activation for the P39A and P39G mutants increased by 10.5 and 16.7 kJ/mol (2.5 and 4.0 kcal/mol) respectively, while DG(U)H2O (the free-energy change for unfolding in the absence of urea at 25.00+/-0.02 degrees C) decreased by 31.0 and 35.6 kJ/mol (7.4 and 8.5 kcal/mol) respectively, compared with the wild-type enzyme. The crystal structure of the P39A mutant in complex with d-equilenin [d-1,3,5(10),6,8-estrapentaen-3-ol-17-one], a reaction intermediate analogue, determined at 2.3 A (0.23 nm) resolution revealed that the P39A mutation significantly disrupted the proper orientations of both d-equilenin and Asp38, as well as the local active-site geometry near Asp38, which resulted in substantial decreases in the activity and stability of KSI. Upon binding 1-anilinonaphthalene-8-sulphonic acid, the fluorescence intensities of the P39A and P39G mutants were increased drastically, with maximum wavelengths blue-shifted upon binding, indicating that the mutations might alter the hydrophobic active site of KSI. Taken together, our results demonstrate that the conserved cis-Pro39 residue plays a crucial role in the proper

  19. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase

    PubMed Central

    2014-01-01

    Background Yeasts tolerant to toxic inhibitors from steam-pretreated lignocellulose with xylose co-fermentation capability represent an appealing approach for 2nd generation ethanol production. Whereas rational engineering, mutagenesis and evolutionary engineering are established techniques for either improved xylose utilisation or enhancing yeast tolerance, this report focuses on the simultaneous enhancement of these attributes through mutagenesis and evolutionary engineering of Saccharomyces cerevisiae harbouring xylose isomerase in anoxic chemostat culture using non-detoxified pretreatment liquor from triticale straw. Results Following ethyl methanesulfonate (EMS) mutagenesis, Saccharomyces cerevisiae strain D5A+ (ATCC 200062 strain platform), harbouring the xylose isomerase (XI) gene for pentose co-fermentation was grown in anoxic chemostat culture for 100 generations at a dilution rate of 0.10 h-1 in a medium consisting of 60% (v/v) non-detoxified hydrolysate liquor from steam-pretreated triticale straw, supplemented with 20 g/L xylose as carbon source. In semi-aerobic batch cultures in the same medium, the isolated strain D5A+H exhibited a slightly lower maximum specific growth rate (μmax = 0.12 ± 0.01 h-1) than strain TMB3400, with no ethanol production observed by the latter strain. Strain D5A+H also exhibited a shorter lag phase (4 h vs. 30 h) and complete removal of HMF, furfural and acetic acid from the fermentation broth within 24 h, reaching an ethanol concentration of 1.54 g/L at a yield (Yp/s) of 0.06 g/g xylose and a specific productivity of 2.08 g/gh. Evolutionary engineering profoundly affected the yeast metabolism, given that parental strain D5A+ exhibited an oxidative metabolism on xylose prior to strain development. Conclusions Physiological adaptations confirm improvements in the resistance to and conversion of inhibitors from pretreatment liquor with simultaneous enhancement of xylose to ethanol fermentation. These data

  20. Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase.

    PubMed

    Wang, Lei; Li, Sheng-jian; Sidhu, Ateesh; Zhu, Li; Liang, Yi; Freedman, Robert B; Wang, Chih-chen

    2009-01-02

    Protein-disulfide isomerase (PDI), a critical enzyme responsible for oxidative protein folding in the eukaryotic endoplasmic reticulum, is composed of four thioredoxin domains a, b, b', a', and a linker x between b' and a'. Ero1-Lalpha, an oxidase for human PDI (hPDI), has been determined to have one molecular flavin adenine dinucleotide (FAD) as its prosthetic group. Oxygen consumption assays with purified recombinant Ero1-Lalpha revealed that it utilizes oxygen as a terminal electron acceptor producing one disulfide bond and one molecule of hydrogen peroxide per dioxygen molecule consumed. Exogenous FAD is not required for recombinant Ero1-Lalpha activity. By monitoring the reactivation of denatured and reduced RNase A, we reconstituted the Ero1-Lalpha/hPDI oxidative folding system in vitro and determined the enzymatic activities of hPDI in this system. Mutagenesis studies suggested that the a' domain of hPDI is much more active than the a domain in Ero1-Lalpha-mediated oxidative folding. A domain swapping study revealed that one catalytic thioredoxin domain to the C-terminal of bb'x, whether a or a', is essential in Ero1-Lalpha-mediated oxidative folding. These data, combined with a pull-down assay and isothermal titration calorimetry measurements, enabled the minimal element for binding with Ero1-Lalpha to be mapped to the b'xa' fragment of hPDI.

  1. An amphiphilic selenide catalyst behaves like a hybrid mimic of protein disulfide isomerase and glutathione peroxidase 7.

    PubMed

    Arai, Kenta; Moriai, Kenji; Ogawa, Akinobu; Iwaoka, Michio

    2014-12-01

    Protein disulfide isomerase (PDI) and glutathione peroxidase 7 (GPx7) cooperatively promote the oxidative folding of disulfide (SS)-containing proteins in endoplasmic reticulum by recognizing the nascent proteins to convert them into the native folds by means of SS formation and SS isomerization and by catalyzing reoxidation of reduced PDI with H2O2, respectively. In this study, new amphiphilic selenides with a long-chain alkyl group were designed as hybrid mimics of PDI and GPx7 and were applied to the refolding of reduced hen egg-white lysozyme (HEL-R). Competitive SS formation at pH 4 using HEL-R and glutathione (GSH) in the presence of the selenide catalyst and H2O2 showed that the amphiphilic selenides can preferentially catalyze SS formation of HEL-R, probably on account of hydrophobic interactions between the protein and the catalyst. In contrast, simple water-soluble selenides did not exhibit such behavior. In addition, when the pH of the solution was adjusted to 8.5 after the SS formation, surviving GSH promoted the SS isomerization of misfolded HEL to recover the native SS linkages. Thus, the amphiphilic selenides designed here could mimic the function of the PDI-GPx7 system. The combination of a water-soluble selenide and a long-chain alkyl group would be a useful motif in designing medicines for both protein misfolding diseases and antioxidant therapy.

  2. Crystallization and preliminary X-ray crystallographic analysis of l-arabinose isomerase from thermophilic Geobacillus kaustophilus

    PubMed Central

    Cao, Thinh-Phat; Choi, Jin Myung; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sung-Keun; Jun, Youngsoo; Lee, Dong-Woo; Lee, Sung Haeng

    2014-01-01

    l-Arabinose isomerase (AI), which catalyzes the isomerization of l-arabinose to l-ribulose, can also convert d-galactose to d-tagatose, a natural sugar replacer, which is of commercial interest in the food and healthcare industries. Intriguingly, mesophilic and thermophilic AIs showed different substrate preferences and metal requirements in catalysis and different thermostabilities. However, the catalytic mechanism of thermophilic AIs still remains unclear. Therefore, thermophilic Geobacillus kaustophilus AI (GKAI) was overexpressed, purified and crystallized, and a preliminary X-ray diffraction data set was obtained. Diffraction data were collected from a GKAI crystal to 2.70 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 224.12, b = 152.95, c = 91.28 Å, β = 103.61°. The asymmetric unit contained six molecules, with a calculated Matthews coefficient of 2.25 Å3 Da−1 and a solvent content of 45.39%. The three-dimensional structure determination of GKAI is currently in progress by molecular replacement and model building. PMID:24419630

  3. Substrate-Induced Unfolding of Protein Disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from Its Holotoxin

    PubMed Central

    Taylor, Michael; Burress, Helen; Banerjee, Tuhina; Ray, Supriyo; Curtis, David; Tatulian, Suren A.; Teter, Ken

    2014-01-01

    To generate a cytopathic effect, the catalytic A1 subunit of cholera toxin (CT) must be separated from the rest of the toxin. Protein disulfide isomerase (PDI) is thought to mediate CT disassembly by acting as a redox-driven chaperone that actively unfolds the CTA1 subunit. Here, we show that PDI itself unfolds upon contact with CTA1. The substrate-induced unfolding of PDI provides a novel molecular mechanism for holotoxin disassembly: we postulate the expanded hydrodynamic radius of unfolded PDI acts as a wedge to dislodge reduced CTA1 from its holotoxin. The oxidoreductase activity of PDI was not required for CT disassembly, but CTA1 displacement did not occur when PDI was locked in a folded conformation or when its substrate-induced unfolding was blocked due to the loss of chaperone function. Two other oxidoreductases (ERp57 and ERp72) did not unfold in the presence of CTA1 and did not displace reduced CTA1 from its holotoxin. Our data establish a new functional property of PDI that may be linked to its role as a chaperone that prevents protein aggregation. PMID:24516389

  4. A comparative study of biochemical and immunological properties of triosephosphate isomerase from Taenia solium and Sus scrofa.

    PubMed

    Jiménez, Lucía; Fernández-Velasco, D Alejandro; Willms, Kaethe; Landa, Abraham

    2003-04-01

    We produced the Taenia solium triosephosphate isomerase (TPI) in Escherichia coli and compared its biochemical and immunological properties with those of the commercial TPI from Sus scrofa. Taenia solium TPI is a homodimer composed of two 27-kDa monomers, with a specific activity of 5,683 U/mg and a Km value of 0.758, and S. scrofa TPI is also dimeric with similar monomeric molecular weight, specific activity of 4,227 U/mg, and a Km value of 0.51. The catalytic parameters for the isomerization of glyceraldehyde 3-phosphate, affinity between TPI monomers, and kinetic thermal denaturation and inactivation were similar for both enzymes. Anti-T. solium TPI antibodies cross-react weakly with Schistosoma mansoni TPI but do not cross-react with S. scrofa, human, or protozoan TPIs. These antibodies inhibited T. solium TPI activity but did not affect S. scrofa enzymatic activity. Immunizations with 1 microg of the T. solium TPI reduced 52% of cysticerci in a mouse-Taenia crassiceps model 1 mo after challenge. Our findings show that T. solium and S. scrofa TPIs possess similar biochemical and enzymatic properties but do not share immunological properties because anti-T. solium TPI antibodies did not recognize S. scrofa TPI. Inhibition of enzyme activity by anti-TPI antibodies suggests that they can be used as inhibitors of the enzyme.

  5. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

    PubMed

    Wasylenko, Thomas M; Stephanopoulos, Gregory

    2015-03-01

    Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.

  6. The evolutionary origins of eukaryotic protein disulfide isomerase domains: new evidence from the Amitochondriate protist Giardia lamblia.

    PubMed

    McArthur, A G; Knodler, L A; Silberman, J D; Davids, B J; Gillin, F D; Sogin, M L

    2001-08-01

    A phylogenetic analysis of protein disulfide isomerase (PDI) domain evolution was performed with the inclusion of recently reported PDIs from the amitochondriate protist Giardia lamblia, yeast PDIs that contain a single thioredoxin-like domain, and PDIs from a diverse selection of protists. We additionally report and include two new giardial PDIs, each with a single thioredoxin-like domain. Inclusion of protist PDIs in our analyses revealed that the evolutionary history of the endoplasmic reticulum may not be simple. Phylogenetic analyses support common ancestry of all eukaryotic PDIs from a thioredoxin ancestor and independent duplications of thioredoxin-like domains within PDIs throughout eukaryote evolution. This was particularly evident for Acanthamoeba PDI, Dictyostelium PDI, and mammalian erp5 domains. In contrast, gene duplication, instead of domain duplication, produces PDI diversity in G. lamblia. Based on our results and the known diversity of PDIs, we present a new hypothesis that the five single-domain PDIs of G. lamblia may reflect an ancestral mechanism of protein folding in the eukaryotic endoplasmic reticulum. The PDI complement of G. lamblia and yeast suggests that a combination of PDIs may be used as a redox chain analogous to that known for bacterial Dsb proteins.

  7. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase

    PubMed Central

    Spath, Brigitte; Fischer, Cornelia; Stolz, Moritz; Ayuk, Francis A.; Kröger, Nicolaus; Bokemeyer, Carsten; Ruf, Wolfram

    2013-01-01

    Lymphocyte depletion with antithymocyte globulin (ATG) can be complicated by systemic coagulation activation. We found that ATG activated tissue factor procoagulant activity (TF PCA) on monocytic cells more potently than other stimuli that decrypt TF, including cell disruption, TF pathway inhibitor inhibition, and calcium ionophore treatment. Induction of TF PCA by ATG was dependent on lipid raft integrity and complement activation. We showed that ATG-mediated TF activation required complement activation until assembly of the C5b-7 membrane insertion complex, but not lytic pore formation by the membrane attack complex C5b-9. Consistently, induction of TF PCA by ATG did not require maximal phosphatidylserine membrane exposure and was not correlated with the magnitude of complement-induced lytic cell injury. Blockade of free thiols, an inhibitory monoclonal antibody to protein disulfide isomerase (PDI), and the small-molecule PDI antagonist quercetin-3-rutinoside prevented ATG-mediated TF activation, and C5 complement activation resulted in oxidation of cell surface PDI. This rapid and potent mechanism of cellular TF activation represents a novel connection between the complement system and cell surface PDI-mediated thiol-disulfide exchange. Delineation of this clinically relevant mechanism of activation of the extrinsic coagulation pathway during immunosuppressive therapy with ATG may have broader implications for vascular thrombosis associated with inflammatory disorders. PMID:23315166

  8. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    PubMed

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  9. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production

    PubMed Central

    Sigdel, Sujan; Singh, Ranjitha; Kim, Tae-Su; Li, Jinglin; Kim, Sang-Yong; Kim, In-Won; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2015-01-01

    The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8) was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P). The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications. PMID:26171785

  10. Polymorphisms in protein disulfide isomerase are associated with sporadic amyotrophic lateral sclerosis in the Chinese Han population.

    PubMed

    Yang, Qin; Guo, Zhi-bao

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease that targets the motor system; it is caused by the loss of motor neurons in the spinal cord, brain stem, and cerebral cortex. However, the etiology of ALS remains unknown, although genetic factors may play an important role in its development. The purpose of this study was to investigate the association between common polymorphisms in protein disulfide isomerase (PDI) with sporadic amyotrophic lateral sclerosis (SALS) in a Chinese Han population. Two single nucleotide polymorphisms (SNPs) in P4HB (rs876016 and rs2070872) were genotyped in 322 patients with SALS and 265 control subjects using polymerase chain reaction-restriction fragment length polymorphism. Our results showed that SNPs rs876016 and rs2070872 were significantly associated with ALS. The minor allele frequencies of rs876016 (C) and rs2070872 (G) were significantly higher in patients with sporadic ALS than in control subjects (P = 0.035 and 0.003, respectively). The genotype frequencies of rs876016 and rs2070872 were significantly different between SALS patients and control subjects (genotypic P < 0.001). Individuals carrying rs876016/ rs2070872 C/G genotypes were associated with a significantly increased risk of SALS. These results suggest that common variants in PDI might contribute to the development of SALS in the Chinese Han population.

  11. Proapoptotic Activities of Protein Disulfide Isomerase (PDI) and PDIA3 Protein, a Role of the Bcl-2 Protein Bak*

    PubMed Central

    Zhao, Guoping; Lu, Huayi; Li, Chi

    2015-01-01

    Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling. PMID:25697356

  12. A role for prolyl isomerase PIN1 in the phosphorylation-dependent modulation of PRRXL1 function.

    PubMed

    Soares-Dos-Reis, Ricardo; Pessoa, Ana Sofia; Dias, Ana Filipa; Falcão, Miguel; Matos, Mariana Raimundo; Vitorino, Rui; Monteiro, Filipe Almeida; Lima, Deolinda; Reguenga, Carlos

    2017-02-20

    Prrxl1 encodes for a paired-like homeodomain transcription factor essential for the correct establishment of the dorsal root ganglion - spinal cord nociceptive circuitry during development. Prrxl1-null mice display gross anatomical disruption of this circuitry, which translates to a markedly diminished sensitivity to noxious stimuli. Here, by the use of an immunoprecipitation and mass spectrometry approach, we identify five highly conserved phosphorylation sites (T110, S119, S231, S233 and S251) in PRRXL1 primary structure. Four are phospho-S/T-P sites, which suggest a role for the prolyl isomerase PIN1 in regulating PRRXL1. Accordingly, PRRXL1 physically interacts with PIN1 and displays diminished transcriptional activity in a Pin1-null cell line. Additionally, these S/T-P sites seem to be important for PRRXL1 conformation, and their point mutation to alanine or aspartate down-regulates PRRXL1 transcriptional activity. Altogether, our findings provide evidence for a putative novel role of PIN1 in the development of the nociceptive system and indicate phosphorylation-mediated conformational changes as a mechanism for regulating the PRRXL1 role in the process.

  13. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase.

    PubMed

    Krügel, Undine; He, Hong-Xia; Gier, Konstanze; Reins, Jana; Chincinska, Izabela; Grimm, Bernhard; Schulze, Waltraud X; Kühn, Christina

    2012-01-01

    Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.

  14. Potentiation of the reductase activity of protein disulphide isomerase (PDI) by 19-nortestosterone, bacitracin, fluoxetine, and ammonium sulphate.

    PubMed

    Hassan, Maya Haj; Alvarez, Eva; Cahoreau, Claire; Klett, Danièle; Lecompte, François; Combarnous, Yves

    2011-10-01

    Protein disulphide isomerase (PDI) in the endoplasmic reticulum catalyzes the rearrangement of disulphide bridges during folding of secreted proteins. It binds various molecules that inhibit its activity. But here, we looked for molecules that would potentiate its activity. PDI reductase activity was measured in vitro using di-eosin-oxidized glutathione as substrate. Its classical inhibitor bacitracin was found to exert a biphasic effect: stimulatory at low concentrations (∼10(-6) M) and inhibitory only at higher concentrations (∼10(-4)-10(-3) M). The weak oestrogenic molecule bisphenol A was found to exert a weak inhibitory effect on PDI reductase activity relative to the strong oestrogens, ethynylestradiol, and diethylstilbestrol. Like 19-nortestosterone, fluoxetine was found to exert a potentiating effect on PDI reductase activity and their potentiating effects could be reversed by increasing concentrations of oestrogens. In conclusion, this paper provides the first identification of potentiators of PDI activity that are potential pharmaceuticals against pathologies affecting protein folding such as Alzheimer's disease.

  15. Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy

    PubMed Central

    Cui, Guozhen; Shan, Luchen; Guo, Lin; Chu, Ivan Keung; Li, Guohui; Quan, Quan; Zhao, Yun; Chong, Cheong Meng; Zhang, Zaijun; Yu, Pei; Hoi, Maggie Pui Man; Sun, Yewei; Wang, Yuqiang; Lee, Simon MingYuen

    2015-01-01

    Protein disulfide isomerase (PDI) family members including PDI and ERp57 emerge as novel targets for anti-thrombotic treatments, but chemical agents with selectivity remain to be explored. We previously reported a novel derivative of danshensu (DSS), known as ADTM, displayed strong cardioprotective effects against oxidative stress-induced cellular injury in vitro and acute my