Science.gov

Sample records for 5-point scale ranging

  1. The Response Scale for the Intellectual Disability Module of the WHOQOL: 5-Point or 3-Point?

    ERIC Educational Resources Information Center

    Fang, J.; Fleck, M. P.; Green, A.; McVilly, K.; Hao, Y.; Tan, W.; Fu, R.; Power, M.

    2011-01-01

    Objective: To deal with the question of whether a 5-point response Likert scale should be changed to a 3-point scale when used in the field testing of people with intellectual disabilities (IDs), which was raised after the pilot study of World Health Organization Quality of Life (WHOQOL)-DIS, a module being developed with the World Health…

  2. Measuring the Mathematical Attitudes of Elementary Students: The Effects of a 4-Point or 5-Point Likert-Type Scale

    ERIC Educational Resources Information Center

    Adelson, Jill L.; McCoach, D. Betsy

    2010-01-01

    The purpose of this study was to compare how students in Grades 3 to 6 respond to a mathematics attitudes instrument with a 4-point Likert-type scale compared with one with an additional neutral point (a 5-point Likert-type scale). The 606 participating students from six elementary and middle schools randomly received either the 4-point or 5-point…

  3. Enhanced Graphics for Extended Scale Range

    NASA Technical Reports Server (NTRS)

    Hanson, Andrew J.; Chi-Wing Fu, Philip

    2012-01-01

    Enhanced Graphics for Extended Scale Range is a computer program for rendering fly-through views of scene models that include visible objects differing in size by large orders of magnitude. An example would be a scene showing a person in a park at night with the moon, stars, and galaxies in the background sky. Prior graphical computer programs exhibit arithmetic and other anomalies when rendering scenes containing objects that differ enormously in scale and distance from the viewer. The present program dynamically repartitions distance scales of objects in a scene during rendering to eliminate almost all such anomalies in a way compatible with implementation in other software and in hardware accelerators. By assigning depth ranges correspond ing to rendering precision requirements, either automatically or under program control, this program spaces out object scales to match the precision requirements of the rendering arithmetic. This action includes an intelligent partition of the depth buffer ranges to avoid known anomalies from this source. The program is written in C++, using OpenGL, GLUT, and GLUI standard libraries, and nVidia GEForce Vertex Shader extensions. The program has been shown to work on several computers running UNIX and Windows operating systems.

  4. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.

  5. Scale insect host ranges are broader in the tropics.

    PubMed

    Hardy, Nate B; Peterson, Daniel A; Normark, Benjamin B

    2015-12-01

    The specificity of the interactions between plants and their consumers varies considerably. The evolutionary and ecological factors underlying this variation are unclear. Several potential explanatory factors vary with latitude, for example plant species richness and the intensity of herbivory. Here, we use comparative phylogenetic methods to test the effect of latitude on host range in scale insects. We find that, on average, scale insects that occur in lower latitudes are more polyphagous. This result is at odds with the general pattern of greater host-plant specificity of insects in the tropics. We propose that this disparity reflects a high cost for host specificity in scale insects, stemming from unusual aspects of scale insect life history, for example, passive wind-driven dispersal. More broadly, the strong evidence for pervasive effects of geography on host range across insect groups stands in stark contrast to the weak evidence for constraints on host range due to genetic trade-offs. PMID:26701757

  6. Scaling properties in the production range of shear dominated flows.

    PubMed

    Casciola, C M; Gualtieri, P; Jacob, B; Piva, R

    2005-07-01

    In large Reynolds number turbulence, isotropy is recovered as the scale is reduced and homogeneous-isotropic scalings are eventually observed. This picture is violated in many cases, e.g., wall bounded flows, where, due to the shear, different scaling laws emerge. This effect has been ascribed to the contamination of the inertial range by the larger anisotropic scales. The issue is addressed here by analyzing both numerical and experimental data for a homogeneous shear flow. In fact, under strong shear, the alteration of the scaling exponents is not induced by the contamination from the anisotropic sectors. Actually, the exponents are universal properties of the isotropic component of the structure functions of shear dominated flows. The implications are discussed in the context of turbulence near solid walls, where improved closure models would be advisable. PMID:16090687

  7. Short Range Correlations, Inclusive Electron-Nucleus Scattering, and Scaling

    SciTech Connect

    Day, Donal

    2008-10-13

    The presence of high momentum components in the nuclear wavefunction has been of great interest for many years. Unfortunately high momentum components, associated with the short range correlations (SRC), have been difficult to isolate unambiquously. Inclusive electron scattering cross sections in the quasielastic region have been measured over a wide range of energy and momentum transfers from very light to very heavy nuclei and the scaling analyses of these data can provide useful information on the presence of SRCs and more.

  8. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    SciTech Connect

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-11-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ{sub e}, followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW.

  9. Space-use scaling and home range overlap in primates

    PubMed Central

    Pearce, Fiona; Carbone, Chris; Cowlishaw, Guy; Isaac, Nick J. B.

    2013-01-01

    Space use is an important aspect of animal ecology, yet our understanding is limited by a lack of synthesis between interspecific and intraspecific studies. We present analyses of a dataset of 286 estimates of home range overlap from 100 primate species, with comparable samples for other space-use traits. To the best of our knowledge, this represents the first multispecies study using overlap data estimated directly from field observations. We find that space-use traits in primates are only weakly related to body mass, reflecting their largely arboreal habits. Our results confirm a theory that home range overlap explains the differences in allometric scaling between population density and home range size. We then test a suite of hypotheses to explain home range overlap, both among and within species. We find that overlap is highest for larger-bodied species living in large home ranges at high population densities, where annual rainfall is low, and is higher for arboreal than terrestrial species. Most of these results are consistent with the economics of resource defence, although the predictions of one specific theory of home range overlap are not supported. We conclude that home range overlap is somewhat predictable, but the theoretical basis of animal space use remains patchy. PMID:23193124

  10. Inertial range ESS scaling deteriorates with increasing Reynolds number

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Sinhuber, Michael; Bewley, Gregory; Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander

    2013-11-01

    We examined the scaling of velocity structure functions in turbulence generated by a classical biplanar grid of crossed bars in the Variable Density Turbulence Tunnel in Göttingen. The flow had neither a mean shear nor strong anisotropy. Despite this, the structure functions did not exhibit power-law scaling unless Extended Self-Similarity (ESS) was employed. The ESS exponents were remarkably stable at Taylor Reynolds numbers between 100 and 1600. That is, at higher Reynolds numbers than in any other comparable flow. However, the extent to which ESS applied at small scales deteriorated as the Reynolds number increased. The experiments were performed in pressurized sulfur hexafluoride gas at pressures between 1 and 15 bar. The data were acquired with both classical hot wires, and with the NSTAP anemometers developed at Princeton.

  11. Diel Surface Temperature Range Scales with Lake Size.

    PubMed

    Woolway, R Iestyn; Jones, Ian D; Maberly, Stephen C; French, Jon R; Livingstone, David M; Monteith, Donald T; Simpson, Gavin L; Thackeray, Stephen J; Andersen, Mikkel R; Battarbee, Richard W; DeGasperi, Curtis L; Evans, Christopher D; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C; Rusak, James A; Ryves, David B; Scott, Daniel R; Shilland, Ewan M; Smyth, Robyn L; Staehr, Peter A; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  12. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  13. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  14. Single parameter scaling for 1d systems with scale-free long-range correlated disordered potentials

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Petersen, Greg

    2013-03-01

    Disordered optical lattices have renewed the interest in localization physics under power-law long-range correlated disorder potentials. For these systems, insight can be gained by combining numerical data and analytic expressions based on scaling laws. Thus, the absence of a transition in short-range correlated disordered systems can been proved by verifying the validity of the single parameter scaling (SPS) hypothesis for the distribution function of the dimensionless conductance. In this talk we discuss this hypothesis for a system with scale-free long-range correlated disorder potentials of the form ~ 1 /rα as a function of the correlation exponent α. We present results for the 1st (the β-function) and 2nd (variance) cumulants of the distribution function, and show a violation of SPS at an energy scale ESPS, that scales with an α-renormalized disorder strength. Calculations for the localization length reveals the existence of a crossover scale Ecross between two regions as correlations increase. An increased number of more extended-like states appear near the band-center while states near the band edges experience reduced localization lengths. We confirm previously predicted scaling behavior near the band edge and center. Supported by NSF-MWN/CIAM and NSF-PIRE.

  15. New host and expanded geographic range of the stellate scale, Vinsonia stellifera (Westwood) (Hemiptera: Coccidae: Ceroplastinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stellate scale, Vinsonia stellifera (Westwood), is a polyphagous wax scale with a distribution spanning across the tropics and subtropics of both the northern and southern hemispheres. This insect feeds on a wide range of plant taxa and can occur in high densities on a single plant. As a resul...

  16. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird.

    PubMed Central

    Fritz, Hervé; Said, Sonia; Weimerskirch, Henri

    2003-01-01

    Foraging animals are expected to adjust their path according to the hierarchical spatial distribution of food resources and environmental factors. Studying such behaviour requires methods that allow for the detection of changes in pathways' characteristics across scales, i.e. a definition of scale boundaries and techniques to continuously monitor the precise movement of the animal over a sufficiently long period. We used a recently developed application of fractals, the changes in fractal dimension within a path and applied it to foraging trips over scales ranging across five orders of magnitude (10 m to 1000 km), using locations of wandering albatrosses (Diomedea exulans) recorded at 1 s intervals with a miniaturized global positioning system. Remarkably, all animals consistently showed the same pattern: the use of three scale-dependent nested domains where they adjust tortuosity to different environmental and behavioural constraints. At a small scale (ca. 100 m) they use a zigzag movement as they continuously adjust for optimal use of wind; at a medium scale (1-10 km), the movement shows changes in tortuosity consistent with food-searching behaviour; and at a large scale (greater than 10 km) the movement corresponds to commuting between patches and is probably influenced by large-scale weather systems. Our results demonstrate the possibility of identifying the hierarchical spatial scales at which long-ranging animals adjust their foraging behaviour, even in featureless environments such as oceans, and hence how to relate their movement patterns to environmental factors using an objective mathematical approach. PMID:12816652

  17. Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko

    PubMed Central

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts. PMID:22053186

  18. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  19. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.

    PubMed

    Palva, J Matias; Zhigalov, Alexander; Hirvonen, Jonni; Korhonen, Onerva; Linkenkaer-Hansen, Klaus; Palva, Satu

    2013-02-26

    Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics. PMID:23401536

  20. Extension of continental lithosphere - A model for two scales of basin and range deformation

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Parmentier, E. M.; Fletcher, R. C.

    1986-04-01

    The development of a model for deformation in an extending continental lithosphere that is stratified in density and strength is described. The lithosphere model demonstrates that the necking instabilities at two wavelengths originate due to a strong upper crust, a mantle layer, and a weak lower crust. It is observed that the dominant wavelengths of necking are controlled by layer thickness and the strength of the layers control the amplitude of the instabilities. The model is applied to the Basin and Range Province of the western U.S. where deformations in ranges and tile domains are detected. The relation between the Bouguer gravity anomaly and the deformations is studied. The data reveal that the horizontal scale of short wavelength necking correlates with the spacings of individual basins and ranges, and the longer wavelength corresponds to the width of tilt domains. The control of the Basin and Range deformation by two scales of extensional instability is proposed.

  1. Radiative scaling of the nocturnal boundary layer and the diurnal temperature range

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.

    2006-04-01

    A radiative scaling for the warm season nocturnal boundary layer (NBL) is proposed, based on the daily mean surface net longwave radiation flux. Using this scaling, a conceptual model is proposed for the NBL, with parameters estimated from multiple linear regression of model data from the European Centre reanalysis, averaged over river basins from the tropics to high latitudes. A radiative temperature scale, computed from surface net longwave radiation flux and the slope of the Stefan-Boltzmann law, primarily determines the strength of the NBL and the amplitude of the diurnal temperature range, although the length of the nighttime period and the surface wind stress play important subsidiary roles. A related radiative velocity scale or radiative conductance, the duration of the nighttime period and the ratio of the scaled surface heat flux (which increases with wind stress) to the NBL strength determine the depth of the NBL. From an observational perspective, this suggests that the diurnal temperature range may give a useful estimate of surface net longwave radiation flux. From a modeling perspective, this provides a framework for relating model physical parameterizations, especially the coupling at night between the surface, the ground and the atmosphere, to observables, the diurnal temperature range and the strength and depth of the NBL. The model is then applied to estimate the nocturnal rise in concentration of gases such as CO2 and radon that are emitted at the surface.

  2. Global-Scale Relationships between Colonization Ability and Range Size in Marine and Freshwater Fish

    PubMed Central

    Strona, Giovanni; Galli, Paolo; Montano, Simone; Seveso, Davide; Fattorini, Simone

    2012-01-01

    Although fish range sizes are expected to be associated with species dispersal ability, several studies failed to find a clear relationship between range size and duration of larval stage as a measure of dispersal potential. We investigated how six characteristics of the adult phase of fishes (maximum body length, growth rate, age at first maturity, life span, trophic level and frequency of occurrence) possibly associated with colonization ability correlate with range size in both freshwater and marine species at global scale. We used more than 12 million point records to estimate range size of 1829 freshwater species and 10068 marine species. As measures of range size we used both area of occupancy and extent of occurrence. Relationships between range size and species traits were assessed using Canonical Correlation Analysis. We found that frequency of occurrence and maximum body length had a strong influence on range size measures, which is consistent with patterns previously found (at smaller scales) in several other taxa. Freshwater and marine fishes showed striking similarities, suggesting the existence of common mechanisms regulating fish biogeography in the marine and freshwater realms. PMID:23185338

  3. Global-scale relationships between colonization ability and range size in marine and freshwater fish.

    PubMed

    Strona, Giovanni; Galli, Paolo; Montano, Simone; Seveso, Davide; Fattorini, Simone

    2012-01-01

    Although fish range sizes are expected to be associated with species dispersal ability, several studies failed to find a clear relationship between range size and duration of larval stage as a measure of dispersal potential. We investigated how six characteristics of the adult phase of fishes (maximum body length, growth rate, age at first maturity, life span, trophic level and frequency of occurrence) possibly associated with colonization ability correlate with range size in both freshwater and marine species at global scale. We used more than 12 million point records to estimate range size of 1829 freshwater species and 10068 marine species. As measures of range size we used both area of occupancy and extent of occurrence. Relationships between range size and species traits were assessed using Canonical Correlation Analysis. We found that frequency of occurrence and maximum body length had a strong influence on range size measures, which is consistent with patterns previously found (at smaller scales) in several other taxa. Freshwater and marine fishes showed striking similarities, suggesting the existence of common mechanisms regulating fish biogeography in the marine and freshwater realms. PMID:23185338

  4. Dynamic model with scale-dependent coefficients in the viscous range

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.

    1996-01-01

    The standard dynamic procedure is based on the scale-invariance assumption that the model coefficient C is the same at the grid and test-filter levels. In many applications this condition is not met, e.g. when the filter-length, delta, approaches the Kolmogorov scale, and C(delta approaches eta) approaches O. Using a priori tests, we show that the standard dynamic model yields the coefficient corresponding to the test-filter scale (alpha delta) instead of the grid-scale (delta). Several approaches to account for scale dependence are examined and/or tested in large eddy simulation of isotropic turbulence: (a) take the limit alpha approaches 1; (b) solve for two unknown coefficients C(Delta) and C(alpha delta) in the least-square-error formulation; (c) the 'bi-dynamic model', in which two test-filters (e.g. at scales 2(delta) and 4(delta) are employed to gain additional information on possible scale-dependence of the coefficient, and an improved estimate for the grid-level coefficient is obtained by extrapolation, (d) use theoretical predictions for the ratio C(alpha delta)/C(delta) and dynamically solve for C(delta). None of these options is found to be entirely satisfactory, although the last approach appears applicable to the viscous range.

  5. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  6. Ranging and site fidelity in northern pigtailed macaques (Macaca leonina) over different temporal scales.

    PubMed

    José-Domínguez, Juan Manuel; Savini, Tommaso; Asensio, Norberto

    2015-08-01

    Space-use patterns are crucial to understanding the ecology, evolution, and conservation of primates, but detailed ranging data are scarce for many species, especially those in Southeast Asia. Researchers studying site fidelity to either home ranges or core areas have focused mainly on territorial species, whereas less information is available for non-territorial species. We analyzed the ranging patterns and site fidelity of one wild troop of northern pigtailed macaques over 16 months at different temporal scales. We used characteristic hull polygons in combination with spatial statistics to estimate home ranges and core areas. The total home range and core areas were 449 ha and 190 ha, respectively. Average daily path length was 2,246 m. The macaques showed a high defendabili--ty index according to the expected ranging of a non-territorial species in which movement does not theoretically permit the defense of a large territory. Overall, the study troop ranged more extensively than conspecific groups and closely related species studied elsewhere. These differences may reflect variable troop size, degree of terrestriality and habitat characteristics, but could also reflect methodological differences. The location, size and shape of home ranges and core areas, and extent of daily path lengths changed on a monthly basis resulting in low site fidelity between months. The macaques also showed clear shifts in the location of daily home ranges with low site fidelity scores between consecutive days. Daily home range and daily path length were related to seasonality, with greater values during the fruit-abundant period. Low site fidelity associated with lack of territoriality is consistent with macaques structuring their movement based on available food sources. However, ranging patterns and site fidelity can also be explained by macaques feeding on the move, a foraging strategy that hinders frequent and long visits to the same location. PMID:25864438

  7. Long-range corrected density functional theory with linearly-scaled HF exchange

    NASA Astrophysics Data System (ADS)

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-01

    Long-range corrected density functional theory (LC-DFT) attracts many chemists' attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  8. Long-range corrected density functional theory with linearly-scaled HF exchange

    SciTech Connect

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-31

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  9. Dark matter, long-range forces, and large-scale structure

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami; Frieman, Joshua A.

    1992-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.

  10. Understanding the spatial complexity of surface hoar from slope to range scale

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.

    2015-12-01

    Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.

  11. Natural length scales define the range of applicability of the Richards equation for capillary flows

    NASA Astrophysics Data System (ADS)

    Or, Dani; Lehmann, Peter; Assouline, Shmuel

    2015-09-01

    The rapid expansion of remotely sensed spatial information and enhanced computational capabilities fuel raising scientific and public expectations for reliable hydrologic predictions across time and spatial scales. Process-based hydrologic models often rely on the Richards equation (RE) formalism to represent unsaturated flow processes at multiple scales which raises the much debated question: does the underlying physics in the RE formulation apply at large scales of practical interest? The study analyses recent findings from different unsaturated flow processes (soil evaporation, internal redistribution, and capillary flow from point sources) revealing inherent characteristic length scales that delineate the spatial range of applicability of the RE. These length scales reflect the role of intrinsic porous medium properties that shape liquid phase continuity and interplay of forces that drive and resist unsaturated flow. The study revisits some of the key assumptions in the RE and their ramifications for numerical discretization. An intrinsic length scale for hydraulic continuity deduced from pore size distribution has been shown to control soil evaporation dynamics (i.e., stage 1 to stage 2 transition), to provide upper bounds for regional evaporative losses, and governs the dynamics of internal redistribution toward field capacity. For large-scale hydrologic applications, we show that the spatial extent of lateral flow interactions under most natural capillary gradients rarely exceed a few meters. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the conditions for coexistence of stationarity, hydraulic continuity, and capillary gradients—essential ingredients for physically consistent application of the RE.

  12. Short-range interactions and scaling near integer quantum Hall transitions

    SciTech Connect

    Wang, Ziqiang; Fisher, Matthew P. A.; Girvin, S. M.; Chalker, J. T.

    2000-03-15

    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency {omega} and temperature T is determined by the scaling variable {omega}/T{sup p} (where p is the exponent for the temperature dependence of the inelastic scattering rate) and not by {omega}/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent p and the thermal exponent z{sub T} in terms of the scaling dimension -{alpha}<0 of the interaction strength and the dynamical exponent z (which has the value z=2), obtaining p=1+2{alpha}/z and z{sub T}=2/p. (c) 2000 The American Physical Society.

  13. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  14. Harmonizing the RR Lyrae and Clump Distance Scales-Stretching the Short Distance Scale to Intermediate Ranges?

    SciTech Connect

    Popowski, P.

    2000-01-31

    I explore the consequences of making the RR Lyrae and clump giant distance scales consistent in the solar neighborhood, Galactic bulge and Large Magellanic Cloud (LMC). I employ two major assumptions: (1) that the absolute magnitude -metallicity, M{sub V}(RR) - [Fe/H], relation for RR Lyrae stars is universal, and (2) that absolute I-magnitudes of clump giants, M{sub I}(RC), in Baade's Window can be inferred from the local Hipparcos calibration of clump giants' magnitudes. A comparison between the solar neighborhood and Baade's Window sets M{sub V}(RR) at [Fe/H] = -1.6 in the range (0.59 {+-} 0.05, 0.70 {+-} 0.05), somewhat brighter than the statistical parallax solution. A comparison between Baade's Window and the LMC sets the M{sub I}{sup LMC}(RC) in the range (-0.33 {+-} 0.09, -0.53 {+-} 0.09). The distance modulus to the LMC is {mu}{sup LMC} {element_of} (18.24 {+-} 0.08, 18.44 {+-} 0.07). I argue that the currently available information slightly favors the short distance scale but is insufficient to select the correct solutions with high confidence.

  15. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales.

    PubMed

    Fleming, Chris H; Calabrese, Justin M; Mueller, Thomas; Olson, Kirk A; Leimgruber, Peter; Fagan, William F

    2014-05-01

    Understanding animal movement is a key challenge in ecology and conservation biology. Relocation data often represent a complex mixture of different movement behaviors, and reliably decomposing this mix into its component parts is an unresolved problem in movement ecology. Traditional approaches, such as composite random walk models, require that the timescales characterizing the movement are all similar to the usually arbitrary data-sampling rate. Movement behaviors such as long-distance searching and fine-scale foraging, however, are often intermixed but operate on vastly different spatial and temporal scales. An approach that integrates the full sweep of movement behaviors across scales is currently lacking. Here we show how the semivariance function (SVF) of a stochastic movement process can both identify multiple movement modes and solve the sampling rate problem. We express a broad range of continuous-space, continuous-time stochastic movement models in terms of their SVFs, connect them to relocation data via variogram regression, and compare them using standard model selection techniques. We illustrate our approach using Mongolian gazelle relocation data and show that gazelle movement is characterized by ballistic foraging movements on a 6-h timescale, fast diffusive searching with a 10-week timescale, and asymptotic diffusion over longer timescales. PMID:24739204

  16. Spinodals, scaling, and ergodicity in a threshold model with long-range stress transfer

    SciTech Connect

    Ferguson, C.D.; Klein, W.; Rundle, J.B.

    1999-08-01

    We present both theoretical and numerical analyses of a cellular automaton version of a slider-block model or threshold model that includes long-range interactions. Theoretically we develop a coarse-grained description in the mean-field (infinite range) limit and discuss the relevance of the metastable state, limit of stability (spinodal), and nucleation to the phenomenology of the model. We also simulate the model and confirm the relevance of the theory for systems with long- but finite-range interactions. Results of particular interest include the existence of Gutenberg-Richter-like scaling consistent with that found on real earthquake fault systems, the association of large events with nucleation near the spinodal, and the result that such systems can be described, in the mean-field limit, with techniques appropriate to systems in equilibrium. {copyright} {ital 1999} {ital The American Physical Society}

  17. Small-scale materials blast testing using gram-range explosives and air-shock loading

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Settles, Gary

    2006-11-01

    Many material properties are unknown under the high strain rates of shock wave impulse from an explosion in air. Actual blast testing is required for this, but full-scale explosive tests are expensive and dangerous, and yield limited data. Here we explore the possibility that gram-range explosive charges can be used for such testing in an ordinary laboratory setting. The explosion is characterized by high-speed digital shadowgraphy and piezoelectric pressure records of shock speed and overpressure duration. These data yield an explosive impulse describing the strength of shock loading at various standoff distances from a material sample (typically 25cm diameter). Simultaneously, twin high-speed digital cameras and surface tracking software provide material displacement and strain rate data during the test. In principle, these data and the measured shock loading provide a means to find dynamic material properties by an inverse computational approach. A scaling analysis also relates the gram-range blast test to a large-scale blast from the same or a different explosive.

  18. Short-Range Gravity Experiment Newton-IVh at millimeter scale

    NASA Astrophysics Data System (ADS)

    Sakuta, Tomomi; Hatori, Mirei; Kishi, Reiko; Murakami, Haruna; Ninomiya, Kazufumi; Nishio, Hironori; Saiba, Shuntaro; Murata, Jiro; Newton Collaboration

    2014-09-01

    A large extra dimensional model predicts deviations from the Newtonian gravity at short distances below millimeters. Present NEWTON project at Rikkyo University aims an experimental test to Newton's inverse-square law at the millimeter scale. In order to examine the gravitational force at short range scale around millimeter, we have developed a new apparatus NEWTON-IVh using a torsion pendulum with a pico-precision displacement sensor using digital image analysis system, which was originally developed for a high energy collider experiment at RHIC. We determine the gravitational force by measuring the twisting angle of the torsion pendulum when the gravitational sources are moved around the torsion pendulum. In this presentation, the development status and the results of the NEWTON-IVh experiment will be reported.

  19. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  20. Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems

    SciTech Connect

    Scrinzi, Armin

    2010-05-15

    We introduce infinite range exterior complex scaling (irECS) which provides for complete absorption of outgoing flux in numerical solutions of the time-dependent Schroedinger equation with strong infrared fields. This is demonstrated by computing high harmonic spectra and wave-function overlaps with the exact solution for a one-dimensional model system and by three-dimensional calculations for the H atom and an Ne atom model. We lay out the key ingredients for correct implementation and identify criteria for efficient discretization.

  1. Laboratory study of sonic booms and their scaling laws. [ballistic range simulation

    NASA Technical Reports Server (NTRS)

    Toong, T. Y.

    1974-01-01

    This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.

  2. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Preston, Alix M.

    2012-05-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open corner cubes and mirror coatings that have dust mitigation properties.

  3. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Preston, Alix

    2012-01-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open comer cubes and mirror coatings that have dust mitigation properties.

  4. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  5. Quantifying the relationships between precipitation and atmospheric radiative cooling on a range of scales

    NASA Astrophysics Data System (ADS)

    Naegele, A. C.; Randall, D. A.

    2014-12-01

    In the global energy budget, the radiative cooling of the atmosphere is approximately balanced by latent heating; this implies a positive temporal correlation between the globally averaged atmospheric radiative cooling rate (ARC) and the globally averaged precipitation rate. The high clouds associated with precipitating weather systems tend to reduce the ARC, and so act to damp fluctuations of the global hydrologic cycle. In contrast, on the regional scale, high clouds cause the precipitation rate and the ARC to be negatively correlated in both space and time. The radiative warming associated with the high clouds promotes regional-scale rising motion and so feeds back to enhance the regional precipitation rate. We have used precipitation data from the Global Precipitation Climatology Project and radiative flux data (used to calculate the ARC) from the Clouds and the Earth's Radiant Energy System (CERES) project to investigate the relationships between the ARC and the precipitation rate on a range of spatial and temporal scales. Results show that the ARC and the precipitation rate are positively correlated globally and in middle and high latitudes, and negatively correlated in the tropics.

  6. Spatial scale dependence of the long-range memory properties of Earth surface temperature

    NASA Astrophysics Data System (ADS)

    Fredriksen, H.; Rypdal, K.; Rypdal, M.; Løvsletten, O.

    2013-12-01

    We present a study of the long-range memory properties of the Earth surface temperature. Different spatial scales are analyzed, and it is observed that the persistence of the time series increases with increasing spatial scale. It is also observed that sea surface temperatures are more persistent than land temperatures. The analysis is performed by coarse-graining gridded temperature data, starting out with boxes of 5 x 5 degrees, and then averaging them up to global scales. As a measure of the strength of persistence we have the Hurst exponent, which we have estimated using methods like wavelet variance and maximum likelihood. In the search of an explanation for the differences in the degree of persistence we have studied the strength of the cross-covariances between the temperatures at different locations. If this is strong it will have an impact on the autocovariance function for the average temperature within the area studied. In this way we can see that the spatial covariance is closely linked to the temporal covariance.

  7. Cross-scale integration of knowledge for predicting species ranges: a metamodeling framework

    PubMed Central

    Talluto, Matthew V.; Boulangeat, Isabelle; Ameztegui, Aitor; Aubin, Isabelle; Berteaux, Dominique; Butler, Alyssa; Doyon, Frédérik; Drever, C. Ronnie; Fortin, Marie-Josée; Franceschini, Tony; Liénard, Jean; McKenney, Dan; Solarik, Kevin A.; Strigul, Nikolay; Thuiller, Wilfried; Gravel, Dominique

    2016-01-01

    Aim Current interest in forecasting changes to species ranges have resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller-scale processes such as growth, fecundity, and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. Location Eastern North America (as an example). Methods Our framework builds a metamodel that is constrained by the results of multiple sub-models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence-absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. Results For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. Main conclusions We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off-the-shelf software. The framework has wide potential for use in species distribution modelling and can

  8. Bedload transport flux fluctuations over a wide range of time scales

    NASA Astrophysics Data System (ADS)

    Ma, H.; Fu, X.; Ancey, C.

    2014-12-01

    Bedload transport is a highly fluctuating process. Our previous study (Ma et al., 2014) demonstrated a three-regime relation of the variance of bedload transport flux across a wide range of sampling time scales. This study further explored the fluctuation spectrum of at-a-point bedload transport flux with different sampling times. We derived out analytical solutions of the third- and fourth-order moments of bedload transport flux, based on a physically-based formulation (Ancey et al., 2008; Ma et al., 2014). A formulation of the probability density function of bedload transport flux was constructed based on the 1st through 4th order moments. Experimental data were used to test against the solutions of both the moments and PDF. Interestingly, the higher order statistical moments were found to exhibit the three-regime pattern as well. This study contributes to a comprehensive understanding of bedload transport flux fluctuation and emphasizes its timescale-dependent features resulting from the discrete nature and correlated motion of bedload material. The correlated structures of bedload transport, such as bed forms and particle clusters, deserve to be further exploration in future studies. Keywords: bedload transport; stochastic theory; high order moment; fluctuation; time scale; PDF. Ancey, C., Davison, A. C., Bohm, T., Jodeau, M., and Frey, P. Entrainment and motion of coarse particles in a shallow water stream down a steep slope, Journal of Fluid Mechanics, 2008, 595, 83-114, doi: 10.1017/S0022112007008774. Ma, H. B., Heyman, J., Fu, X. D., Mettra, F., Ancey, C. and Parker, G. Bedload transport over a broad range of time scales: determination of three regimes of fluctuations. Journal of Geophysical Research-Earth Surface, 2014. (under review)

  9. Identifying Space Use at Foraging Arena Scale within the Home Ranges of Large Herbivores.

    PubMed

    Owen-Smith, Norman; Martin, Jodie

    2015-01-01

    An intermediate spatiotemporal scale of food procurement by large herbivores is evident within annual or seasonal home ranges. It takes the form of settlement periods spanning several days or weeks during which foraging activity is confined to spatially discrete foraging arenas, separated by roaming interludes. Extended by areas occupied for other activities, these foraging arenas contribute towards generating the home range structure. We delineated and compared the foraging arenas exploited by two African large herbivores, sable antelope (a ruminant) and plains zebra (a non-ruminant), using GPS-derived movement data. We developed a novel approach to specifically delineate foraging arenas based on local change points in distance relative to adjoining clusters of locations, and compared its output with modifications of two published methods developed for home range estimation and residence time estimation respectively. We compared how these herbivore species responded to seasonal variation in food resources and how they differed in their spatial patterns of resource utilization. Sable antelope herds tended to concentrate their space use locally, while zebra herds moved more opportunistically over a wider set of foraging arenas. The amalgamated extent of the foraging arenas exploited by sable herds amounted to 12-30 km2, compared with 22-100 km2 for the zebra herds. Half-day displacement distances differed between settlement periods and roaming interludes, and zebra herds generally shifted further over 12h than sable herds. Foraging arenas of sable herds tended to be smaller than those of zebra, and were occupied for period twice as long, and hence exploited more intensively in days spent per unit area than the foraging arenas of zebra. For sable both the intensity of utilization of foraging arenas and proportion of days spent in foraging arenas relative to roaming interludes declined as food resources diminished seasonally, while zebra showed no seasonal variation

  10. Identifying Space Use at Foraging Arena Scale within the Home Ranges of Large Herbivores

    PubMed Central

    Owen-Smith, Norman; Martin, Jodie

    2015-01-01

    An intermediate spatiotemporal scale of food procurement by large herbivores is evident within annual or seasonal home ranges. It takes the form of settlement periods spanning several days or weeks during which foraging activity is confined to spatially discrete foraging arenas, separated by roaming interludes. Extended by areas occupied for other activities, these foraging arenas contribute towards generating the home range structure. We delineated and compared the foraging arenas exploited by two African large herbivores, sable antelope (a ruminant) and plains zebra (a non-ruminant), using GPS-derived movement data. We developed a novel approach to specifically delineate foraging arenas based on local change points in distance relative to adjoining clusters of locations, and compared its output with modifications of two published methods developed for home range estimation and residence time estimation respectively. We compared how these herbivore species responded to seasonal variation in food resources and how they differed in their spatial patterns of resource utilization. Sable antelope herds tended to concentrate their space use locally, while zebra herds moved more opportunistically over a wider set of foraging arenas. The amalgamated extent of the foraging arenas exploited by sable herds amounted to 12-30 km2, compared with 22-100 km2 for the zebra herds. Half-day displacement distances differed between settlement periods and roaming interludes, and zebra herds generally shifted further over 12h than sable herds. Foraging arenas of sable herds tended to be smaller than those of zebra, and were occupied for period twice as long, and hence exploited more intensively in days spent per unit area than the foraging arenas of zebra. For sable both the intensity of utilization of foraging arenas and proportion of days spent in foraging arenas relative to roaming interludes declined as food resources diminished seasonally, while zebra showed no seasonal variation

  11. Scaling properties of long-range correlated noisy signals: appplication to financial markets

    NASA Astrophysics Data System (ADS)

    Carbone, Anna; Castelli, Giuliano

    2003-05-01

    Long-range correlation properties of financial stochastic time series y have been investigated with the main aim to demonstrate the ability of a recently proposed method to extract the scaling parameters of a stochastic series. According to this technique, the Hurst coefficient H is calculated by means of the following function: EQUATION where yn(i)is the moving average of y(i), defined as EQUATION the moving average window and Nmax is the dimension of the stochastic series. The method is called Detrending Moving Average Analysis (DMA) on account of the several analogies with the well-known Detrended Fluctuation Analysis (DFA). The DMA technique has been widely tested on stochastic series with assigned H generated by suitable algorithms. It has been demonstrated that the ability of the proposed technique relies on very general grounds: the function EQUATION generates indeed a sequence of clusters with power-law distribution of amplitudes and lifetimes. In particular the exponent of the distribution of cluster lifetime varies as the fractal dimension 2 - H of the series, as expected on the basis of the box-counting method. In the present paper we will report on the scaling coefficients of real data series (the BOBL and DAX German future) calculated by the DMA technique.

  12. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and

  13. Imaging of Non-Resolved Objects Using the Fine Scale Optical Range

    NASA Astrophysics Data System (ADS)

    Pollock, T.; Grubb, P. M.

    2012-09-01

    The Fine Scale Optical Range (FiScOR) has been designed and assembled at the Space Engineering Research Center(SERC) at Texas A&M University to study the efficacy of on-orbit debris characterization using small space-based cameras. Physically, this facility permits imaging of small, one to two centimeter models of simple or complex shapes from a distance sufficiently great to produce image sizes of about one pixel. The objects are designed in 3D CAD and produced in plastic by 3D printing. They are then surfaced with real materials such as multi-layer insulation (MLI) and silicon solar cell fragments. Details, such as slight faceting in solar cell arrays, are achieved to dimensions as fine as 200 micrometers. Mechanisms are provided to rotate and translate the object. Illumination sources approximating the solar spectrum are used. Light curves are recorded using CCD or CMOS cameras which may be cooled or operated at ambient temperature. This research supports a more extensive body of work for the Air Force Research Lab and others examining image processing with noise terms for cameras imaging in visible and near-visible light, and assessing operational effects using synthetic space images created in the lab. For the study reported herein, a few simple objects (cubes, cylinders, etc.), two satellite models, and some shapes representing debris were imaged using a high frame rate color (Bayer mask) camera. Data obtained were compared with Phong models, and to a limited extent, with night sky images obtained using the 0.8m telescope near Stephenville, TX and smaller instruments located near College Station, TX. In some tests, low lighting levels were used to permit estimation of the maximum range at which an equivalent orbiting object would be detected by a particular camera/lens combination. Results demonstrating the potential contribution of this approach to non resolved space object characterization will be presented.

  14. Impact of long-range wavelength-scale distortion on fine-structure constant measurements.

    NASA Astrophysics Data System (ADS)

    Dumont, Vincent; Webb, John Kelvin

    2015-08-01

    New ideas in unification theories suggest space-time variations of dimensionless physical constants may exist and that they might be within reach of current instrumental precision available from the world's best observatories. State-of-the-art observations already hint at such an effect. If confirmed, fundamental revisions in standard physics would be required.Accurate calibrations are of course crucial in searches for space-time variations of dimensionless physical constants using spectroscopic observations from the world's best observatories. Several recent studies reveal wavelength distortions in optical echelle spectrographs. These are not yet understood and they have not yet been measured using the actual science data used to derive constraints on space-time variation of alpha (critical since they appear to vary with time). In this work we study the impact of such distortions on measurements of the fine structure constant, alpha, observed at high redshift using high-resolution quasar spectroscopy.We have carried out extensive high-performance computing calculations that quantify the effect accurately for the first time, using the same quasar spectra used to measure alpha at high redshift. The spectra we use were obtained using the Keck telescope in Hawaii and the European Southern Observatory's VLT.We explain the detailed methodologies required, using instrumental configuration information from each wavelength setting used in forming a final summed spectrum. Our results show that whilst long-range wavelength-scale distortions do exist, and hence contribute an additional systematic error, these systematics (measured directly from the science exposures themselves) are small and unlikely to explain the spatial variations alpha of reported recently.

  15. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.

    PubMed

    Park, Hae-Won; Kim, Sangbae

    2015-04-01

    This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground

  16. On KLT and SYM-supergravity relations from 5-point 1-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu; Schnitzer, Howard J.

    2011-01-01

    We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2( n - 2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color mathcal{N} = 4 SYM 5-point amplitude has leading IR divergence of 1/ ɛ, which is essential for the applications of this paper. We also propose a relation between the subleading-color mathcal{N} = 4 SYM and mathcal{N} = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.

  17. Scaling of dynamic thermoelectric harvesting devices in the 1-100 cm3 range

    NASA Astrophysics Data System (ADS)

    Kiziroglou, M. E.; Elefsiniotis, A.; Kokorakis, N.; Wright, S. W.; Toh, T. T.; Mitcheson, P. D.; Schmid, U.; Becker, Th.; Yeatman, E. M.

    2015-05-01

    Aircraft sensors are typically cable powered, imposing a significant weight overhead. The exploitation of temperature variations during flight by a phase change material (PCM) based heat storage thermoelectric energy harvester, as an alternative power source in aeronautical applications, has recently been flight tested. In this work, a scaled-down and a scaled-up prototype are presented. Output energy of 4.1 J per gram of PCM from a typical flight cycle is demonstrated for the scaled-down device, and 3.2 J per gram of PCM for the scaled-up device. The observed performance improvement with scaling down is attributed to the reduction in temperature inhomogeneity inside the PCM. As an application demonstrator for dynamic thermoelectric harvesting devices, the output of a thermoelectric module is used to directly power a microcontroller for the generation of a pulse width modulation signal.

  18. European Invasion of North American Pinus strobus at Large and Fine Scales: High Genetic Diversity and Fine-Scale Genetic Clustering over Time in the Adventive Range

    PubMed Central

    Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka

    2013-01-01

    Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from

  19. Reflective Thinking Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Basol, Gulsah; Evin Gencel, Ilke

    2013-01-01

    The purpose of this study was to adapt Reflective Thinking Scale to Turkish and investigate its validity and reliability over a Turkish university students' sample. Reflective Thinking Scale (RTS) is a 5 point Likert scale (ranging from 1 corresponding Agree Completely, 3 to Neutral, and 5 to Not Agree Completely), purposed to measure…

  20. Joint Cross-Range Scaling and 3D Geometry Reconstruction of ISAR Targets Based on Factorization Method.

    PubMed

    Lei Liu; Feng Zhou; Xue-Ru Bai; Ming-Liang Tao; Zi-Jing Zhang

    2016-04-01

    Traditionally, the factorization method is applied to reconstruct the 3D geometry of a target from its sequential inverse synthetic aperture radar images. However, this method requires performing cross-range scaling to all the sub-images and thus has a large computational burden. To tackle this problem, this paper proposes a novel method for joint cross-range scaling and 3D geometry reconstruction of steadily moving targets. In this method, we model the equivalent rotational angular velocity (RAV) by a linear polynomial with time, and set its coefficients randomly to perform sub-image cross-range scaling. Then, we generate the initial trajectory matrix of the scattering centers, and solve the 3D geometry and projection vectors by the factorization method with relaxed constraints. After that, the coefficients of the polynomial are estimated from the projection vectors to obtain the RAV. Finally, the trajectory matrix is re-scaled using the estimated rotational angle, and accurate 3D geometry is reconstructed. The two major steps, i.e., the cross-range scaling and the factorization, are performed repeatedly to achieve precise 3D geometry reconstruction. Simulation results have proved the effectiveness and robustness of the proposed method. PMID:26886991

  1. Perturbations Analysis of L4 and L5 Points Orbits in Sun-Earth System

    NASA Astrophysics Data System (ADS)

    Utashima, Masayoshi

    2000-09-01

    Each celestial body system such as Sun-Earth system, Earth-Moon system, Sun-Jupiter system, and so on has five Lagrangian points. Until now, only L1 point in the Sun-Earth system has been utilized for solar observatory mission. A new solar observatory positioned at L5 point in the Sun-Earth system and a SpaceGuard Space Telescope positioned at L4 or L5 point in the Sun-Earth system are proposed as new missions in the near future. Spacecraft motion near these L4 and L5 points are described in reference I based on the circular restricted three body problem. This report studied effects of the eccentricity of the Earth, the gravity of planets, and the solar radiation pressure to orbits near the L4 and L5 points in the Sun-Earth system. In chapter 2, results of brief paper survey were shown. In chapter 3, effects of the eccentricity of the Earth orbit were studied. It was known from analytical treatment that the point which forms an equilateral triangle with the Sun and the instant position of the Earth becomes L4, or L5 point in the elliptical restricted three body problem. Periodic orbits around the L4 or L5 point mentioned above could be realized by adjusting the initial velocities. In chapter 4, effects of the gravity of planets were studied. Both direct and indirect terms were included for the gravity of planets. It was found that the short periodic terms of the semi-major axis due to the tidal force by planets are dominant. They depend upon the difference between the celestial longitudes of a planet and the Earth at the epoch, and most effects of planets could also be cancelled by adjusting the initial velocity. The magnitude of adjustment is less than 1 m/s. In chapter 5, the combined effects of the Earth's eccentricity and planetary gravities were studied, and it was confirmed that those combined effects could be accurately approximately as the simple superposition. In chapter 6, an L5 mission orbit with the minimum fuel for transfer was briefly stated, and

  2. A method for estimating spikelet number per panicle: Integrating image analysis and a 5-point calibration model

    NASA Astrophysics Data System (ADS)

    Zhao, Sanqin; Gu, Jiabing; Zhao, Youyong; Hassan, Muhammad; Li, Yinian; Ding, Weimin

    2015-11-01

    Spikelet number per panicle (SNPP) is one of the most important yield components used to estimate rice yields. The use of high-throughput quantitative image analysis methods for understanding the diversity of the panicle has increased rapidly. However, it is difficult to simultaneously extract panicle branch and spikelet/grain information from images at the same resolution due to the different scales of these traits. To use a lower resolution and meet the accuracy requirement, we proposed an interdisciplinary method that integrated image analysis and a 5-point calibration model to rapidly estimate SNPP. First, a linear relationship model between the total length of the primary branch (TLPB) and the SNPP was established based on the physiological characteristics of the panicle. Second, the TLPB and area (the primary branch region) traits were rapidly extracted by developing image analysis algorithm. Finally, a 5-point calibration method was adopted to improve the universality of the model. The number of panicle samples that the error of the SNPP estimates was less than 10% was greater than 90% by the proposed method. The estimation accuracy was consistent with the accuracy determined using manual measurements. The proposed method uses available concepts and techniques for automated estimations of rice yield information.

  3. A method for estimating spikelet number per panicle: Integrating image analysis and a 5-point calibration model

    PubMed Central

    Zhao, Sanqin; Gu, Jiabing; Zhao, Youyong; Hassan, Muhammad; Li, Yinian; Ding, Weimin

    2015-01-01

    Spikelet number per panicle (SNPP) is one of the most important yield components used to estimate rice yields. The use of high-throughput quantitative image analysis methods for understanding the diversity of the panicle has increased rapidly. However, it is difficult to simultaneously extract panicle branch and spikelet/grain information from images at the same resolution due to the different scales of these traits. To use a lower resolution and meet the accuracy requirement, we proposed an interdisciplinary method that integrated image analysis and a 5-point calibration model to rapidly estimate SNPP. First, a linear relationship model between the total length of the primary branch (TLPB) and the SNPP was established based on the physiological characteristics of the panicle. Second, the TLPB and area (the primary branch region) traits were rapidly extracted by developing image analysis algorithm. Finally, a 5-point calibration method was adopted to improve the universality of the model. The number of panicle samples that the error of the SNPP estimates was less than 10% was greater than 90% by the proposed method. The estimation accuracy was consistent with the accuracy determined using manual measurements. The proposed method uses available concepts and techniques for automated estimations of rice yield information. PMID:26542412

  4. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales

    PubMed Central

    Pelletier, Jon D.

    2002-01-01

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  5. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    PubMed

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  6. HOST PLANT RANGE OF LOBATE LAC SCALE, PARATACHARDINA LOBATA, IN FLORIDA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lobate lac scale (Paratacharidina lobata) is a serious pest of woody native and ornamental plants in Florida and the Bahamas. This insect, which is native to India and Sri Lanka, was known to attack many plants the number of plants it attacked in Florida was unknown. Field observation and field ...

  7. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased. PMID:23803847

  8. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile

    USGS Publications Warehouse

    Sepulveda, Maximiliano; Pelican, Katherine; Cross, Paul C.; Eguren, Antonieta; Singer, Randall S.

    2015-01-01

    Domestic dogs can play a variety of important roles for farmers. However, when in proximity to conservation areas, the presence of rural free-ranging dogs can be problematic due to the potential for predation of, competition with, or transmission of infectious disease to local threatened fauna. We used a frequent location radio tracking technology to study rural free-ranging dog movements and habitat use into sensitive conservation habitats. To achieve a better understanding of foray behaviors in dogs we monitored dogs (n = 14) in rural households located in an isolated area between the Valdivian Coastal Reserve and the Alerce Costero National Park in southern Chile. Dogs were mostly located near households (<200 m) but exhibited a diurnal pattern of directed excursions (forays) away from their home locations. Dogs spent, on average, 5.3% of their time in forays with average per dog foray distances from the house ranging 0.5–1.9 km (maximum distance detected 4.3 km). Foraying behavior was positively associated with pasture habitat compared to forest habitat including protected lands. Foraying dogs rarely used forest habitat and, when entered, trails and/or roads were selected for movement. Our study provides important information about how dogs interact in a fine-scale with wildlife habitat, and, in particular, protected lands, providing insight into how dog behavior might drive wildlife interactions, and, in turn, how an understanding of dog behavior can be used to manage these interactions.

  9. Construct Validity of the Wechsler Abbreviated Scale of Intelligence and Wide Range Intelligence Test: Convergent and Structural Validity

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Konold, Timothy R.; Collins, Jason M.; Wilson, Greg

    2009-01-01

    The Wechsler Abbreviated Scale of Intelligence (WASI; Psychological Corporation, 1999) and the Wide Range Intelligence Test (WRIT; Glutting, Adams, & Sheslow, 2000) are two well-normed brief measures of general intelligence with subtests purportedly assessing verbal-crystallized abilities and nonverbal-fluid-visual abilities. With a sample of 152…

  10. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  11. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.

    PubMed

    Blackbourn, Luke A K; Tran, Chuong V

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total

  12. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime

    NASA Astrophysics Data System (ADS)

    Blackbourn, Luke A. K.; Tran, Chuong V.

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r0, with an emphasis on the latter. The regime of small r0 corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum Eb(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r0. In particular, for fully developed turbulence with r0 in the range [1/4,1/4096], Eb(k) is found to scale as kα, where α ≳-1, including α >0. The extent of such a shallow spectrum is limited, becoming broader as r0 is decreased. The slope α increases as r0 is decreased, appearing to tend to +1 in the limit of small r0. This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k-1 of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total-energy spectrum

  13. The range of Alfvénic turbulence scales in the topside auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Golovchanskaya, I. V.; Kozelov, B. V.

    2016-01-01

    The minimal scale of the Alfvénic turbulence transverse to the external magnetic field in the topside auroral ionosphere is investigated using electric field observations of the FAST spacecraft (the resolution 512 s-1). The events in which the power law form of the electric fluctuation spectra with a 2.0-2.5 slope (typical of Alfvénic turbulence) remains unchanged down to acoustic gyroradius ρs or ion gyroradius ρi local values are illustrated for the first time. In this case, the character of spectrum variation does not change at the electron inertial length λe, which is much larger than ρs and ρi for FAST altitudes (apogee ~4000 km). We have tried to explain this experimental fact by consideration of the known scenarios of the appearance of a small transverse scale in an Alfvénic perturbation. It has been noted that the effects of front steepening in an inertial Alfvén wave with a finite amplitude, which propagates at an angle smaller than (me/mi)1/2 with respect to the transverse direction, can result in small transverse scales comparable with acoustic gyroradius appearing in a perturbation.

  14. Seismic images of the Brooks Range, Arctic Alaska, reveal crustal- scale duplexing

    USGS Publications Warehouse

    Fuis, G.S.; Levander, A.R.; Lutter, W.J.; Wissinger, E.S.; Moore, T.E.; Christensen, N.I.

    1995-01-01

    An integrated set of seismic reflection and refraction data collected across the Brooks Range, Arctic Alaska, in 1990, has yielded a composite image of this Mesozoic and Cenozoic fold-and-thrust belt that reveals duplexing to lower-crustal depths. Interpretations from this image are discussed. The position of the thickest crust may indicate that either the duplexed crust above the decollement was thrust onto and depressed the plate beneath the North Slope or the protracted tectonic history of the Brooks Range has left structures not simply explainable in terms of a single collisional event. -from Authors

  15. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface.

    PubMed

    Davies, John E; Ajami, Elnaz; Moineddin, Rahim; Mendes, Vanessa C

    2013-05-01

    We sought to deconvolute the effects of sub-micron topography and microtopography on the phenomena of bone bonding and interfacial stability of endosseous implants. To address this experimentally, we implanted custom-made titanium alloy implants of varying surface topographical complexity in rat femora, for 6, 9 or 12 days. The five surfaces were polished, machined, dual acid etched, and two forms of grit blasted and acid etched; each surface type was further modified with the deposition of nanocrystals of calcium phosphate to make a total of 10 materials groups (n = 10 for each time point; total 300 implants). At sacrifice, we subjected the bone-implant interface to a mechanical disruption test. We found that even the smoothest surfaces, when modified with sub-micron scale crystals, could be bone-bonding. However, as locomotor loading through bone to the implant increased with time of healing, such interfaces failed while others, with sub-micron features superimposed on surfaces of increasing microtopographical complexity remained intact under loading. We demonstrate here that higher order, micron or coarse-micron, topography is a requirement for longer-term interfacial stability. We show that each of these topographical scale-ranges represents a scale-range seen in natural bone tissue. Thus, what emerges from an analysis of our findings is a new means by which biologically-relevant criteria can be employed to assess the importance of implant surface topography at different scale-ranges. PMID:23415644

  16. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    PubMed Central

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-01-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development. PMID:27283037

  17. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  18. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies.

    PubMed

    Dasbiswas, K; Alster, E; Safran, S A

    2016-01-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range "macroscopic modes" in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development. PMID:27283037

  19. Assessing short to medium range ensemble streamflow forecast approaches in small to medium scale watersheds across CONUS

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Newman, A. J.; Brekke, L. D.; Arnold, J. R.; Clark, M. P.

    2014-12-01

    As part of the Hydrologic Ensemble Forecast Service, the US National Weather Service River Forecasting Centers have implemented short to medium range ensemble streamflow forecasts. Hydrologic models are forced with meteorological forecast ensembles derived using a downscaling and calibration technique, MEFP, that leverages correlations at multiple temporal scales between large scale GEFS forecast ensemble mean and local scale observed precipitation and temperature. Strengths of MEFP include its use of multi-decade hindcast for calibration of local scale forecasts and production of verification information, but possible weaknesses include the use of precipitation and temperature ensemble mean information only, which requires the statistical synthesis of ensemble members. We explore whether using a larger set of atmospheric predictors and full ensemble members from the GEFS can lead to greater meteorological and hydrological predictability. Using 30+ year streamflow hindcasts, we evaluate 1-15 day streamflow predictions using the Snow-17/Sacramento hydrologic modeling approach in small to medium-sized watersheds across CONUS. We compare the MEFP approach and performance with regressive and analog-based statistical downscaling and calibration methods that rely on a range of atmospheric predictors to produce watershed-scale ensemble forecasts. This presentation describes the strengths and weaknesses of the two approaches.

  20. Surprising Long Range Effects of Local Shoreline Stabilization in a Large-Scale Coastline Model

    NASA Astrophysics Data System (ADS)

    Slott, J.; Murray, B.; Valvo, L.; Ashton, A.

    2004-12-01

    As coastlines continue to retreat and threaten communities, roads, and other infrastructure, humans increasingly employ shoreline stabilization techniques to maintain the shoreline in its current position. Examples of shoreline stabilization techniques include beach nourishment and seawall construction. During beach nourishment, sand is typically dredged from locations offshore and placed on the beach. Seawalls or revetments, on the other hand, are hardened concrete structures which prevent the shoreline from retreating further yet do not add sand to the nearshore system. Coastal engineers and scientists have only addressed the local and relatively short-term effects of shoreline stabilization. Can beach nourishment or seawalls affect coastline behavior tens or hundreds of kilometers away in the longer term? We adapted a recently developed model of large-scale, long-term shoreline change to address such questions. On predominately sandy shorelines, waves breaking at oblique angles to the shoreline orientation drives the alongshore transport of sediment. Though traditionally believed to smooth out shoreline features, Ashton, et. al. (2001) have shown that alongshore-driven sediment transport can cause more complex shoreline evolution. Their model showed the spontaneous formation of large-scale features such as capes and cuspate forelands (e.g. the shape of the coastline of the Carolinas) using simple sediment transport relationships. This model accounts for non-local shoreline interactions, such as wave "shadowing." In this work, we have further developed the large-scale shoreline model to include the effects that shoreline stabilization techniques have on shoreline position and sediment supply. In one set of experiments, we chose an initial shoreline with cape-like features separated by approximately 100 kilometers, roughly similar to that of the coast off the Carolinas. In each individual experiment, we nourished a different 10 kilometer section of coastline. In

  1. Scaling behavior of the contact process in networks with long-range connections.

    PubMed

    Juhász, Róbert; Odor, Géza

    2009-10-01

    We present simulation results for the contact process on regular cubic networks that are composed of a one-dimensional lattice and a set of long edges with unbounded length. Networks with different sets of long edges are considered that are characterized by different shortest-path dimensions and random-walk dimensions. We provide numerical evidence that an absorbing phase transition occurs at some finite value of the infection rate and the corresponding dynamical critical exponents depend on the underlying network. Furthermore, the time-dependent quantities exhibit log-periodic oscillations in agreement with the discrete scale invariance of the networks. In case of spreading from an initial active seed, the critical exponents are found to depend on the location of the initial seed and break the hyperscaling law of the directed percolation universality class due to the inhomogeneity of the networks. However, if the cluster-spreading quantities are averaged over initial sites, the hyperscaling law is restored. PMID:19905289

  2. Long-range pulselength scaling of 351nm laser damage thresholds

    NASA Astrophysics Data System (ADS)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  3. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.

    PubMed

    Putnam, Nicholas H; O'Connell, Brendan L; Stites, Jonathan C; Rice, Brandon J; Blanchette, Marco; Calef, Robert; Troll, Christopher J; Fields, Andrew; Hartley, Paul D; Sugnet, Charles W; Haussler, David; Rokhsar, Daniel S; Green, Richard E

    2016-03-01

    Long-range and highly accurate de novo assembly from short-read data is one of the most pressing challenges in genomics. Recently, it has been shown that read pairs generated by proximity ligation of DNA in chromatin of living tissue can address this problem, dramatically increasing the scaffold contiguity of assemblies. Here, we describe a simpler approach ("Chicago") based on in vitro reconstituted chromatin. We generated two Chicago data sets with human DNA and developed a statistical model and a new software pipeline ("HiRise") that can identify poor quality joins and produce accurate, long-range sequence scaffolds. We used these to construct a highly accurate de novo assembly and scaffolding of a human genome with scaffold N50 of 20 Mbp. We also demonstrated the utility of Chicago for improving existing assemblies by reassembling and scaffolding the genome of the American alligator. With a single library and one lane of Illumina HiSeq sequencing, we increased the scaffold N50 of the American alligator from 508 kbp to 10 Mbp. PMID:26848124

  4. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage

    PubMed Central

    Putnam, Nicholas H.; O'Connell, Brendan L.; Stites, Jonathan C.; Rice, Brandon J.; Blanchette, Marco; Calef, Robert; Troll, Christopher J.; Fields, Andrew; Hartley, Paul D.; Sugnet, Charles W.; Haussler, David; Rokhsar, Daniel S.; Green, Richard E.

    2016-01-01

    Long-range and highly accurate de novo assembly from short-read data is one of the most pressing challenges in genomics. Recently, it has been shown that read pairs generated by proximity ligation of DNA in chromatin of living tissue can address this problem, dramatically increasing the scaffold contiguity of assemblies. Here, we describe a simpler approach (“Chicago”) based on in vitro reconstituted chromatin. We generated two Chicago data sets with human DNA and developed a statistical model and a new software pipeline (“HiRise”) that can identify poor quality joins and produce accurate, long-range sequence scaffolds. We used these to construct a highly accurate de novo assembly and scaffolding of a human genome with scaffold N50 of 20 Mbp. We also demonstrated the utility of Chicago for improving existing assemblies by reassembling and scaffolding the genome of the American alligator. With a single library and one lane of Illumina HiSeq sequencing, we increased the scaffold N50 of the American alligator from 508 kbp to 10 Mbp. PMID:26848124

  5. The Tampa Scale of Kinesiophobia and neck pain, disability and range of motion: a narrative review of the literature

    PubMed Central

    Hudes, Karen

    2011-01-01

    Background: The Tampa Scale of Kinesiophobia (TSK) that was developed in 1990 is a 17 item scale originally developed to measure the fear of movement related to chronic lower back pain. Objective: To review the literature regarding TSK and neck pain, perceived disability and range of motion of the cervical spine. Methods: Medline, MANTIS, Index to Chiropractic Literature and CINAHL were searched. Results: A total of 16 related articles were found and divided into four categories: TSK and Neck Pain; TSK, Neck Pain and Disability; TSK, Neck Pain, Disability and Strength; and TSK, Neck Pain and Surface Electromyography. Conclusion: The fear avoidance model can be applied to neck pain sufferers and there is value from a psychometric perspective in using the TSK to assess kinesiophobia. Future research should investigate if, and to what extent, other measureable factors commonly associated with neck pain, such as decreased range of motion, correlate with kinesiophobia. PMID:21886284

  6. Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement

    NASA Astrophysics Data System (ADS)

    Graf, Urs; Buehler, Christof; Betz, Michael; Zuber, Herbert; Anliker, M.

    1994-08-01

    A new versatile system for the measurement of time-resolved fluorescence emission spectra of biomolecules is presented. Frequency doubling and tripling of a Ti:Sapphire laser allows excitation over a wide wavelength range. The influence of increasing the spectral resolution on the time resolution has been investigated. System performance can be optimized for best resolution in the spectral or time domain, respectively. System performance can be optimized for best resolution in the spectral or time domain, respectively. The currently achieved temporal resolution is 6 psec, and the best spectral resolution is 3 nm. Long fluorescence decays can be resolved with optimal time resolution by way of taking into account the flyback of the streak camera. With the system described, the core complex ((alpha) (beta) )3APCLC8.9 of the phycobilisome from the photosynthetic cyanobacteria Mastigocladus laminosus has been analyzed. Lifetime analysis clearly demonstrated the influence of the linker polypeptide on the phycobiliprotein complex and the identity of native and reconstituted complex.

  7. The scaling relations of early-type dwarf galaxies across a range of environments

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Janz, Joachim; Forbes, Duncan A.; Benson, Andrew J.; Mould, Jeremy

    2015-11-01

    We present the results of a Keck-ESI study of dwarf galaxies across a range of environment: the Perseus Cluster, the Virgo Cluster, the NGC 1407 group, and the NGC 1023 group. 18 dwarf ellipticals (dEs) are targeted for spectroscopy, three for the first time. We confirm cluster membership for one Virgo dE, and group membership for one dE in the NGC 1023 group, and one dE in the NGC 1407 group for the first time. Regardless of environment, the dEs follow the same size-magnitude and σ-luminosity relation. Two of the Virgo dwarfs, VCC 1199 and VCC 1627, have among the highest central velocity dispersions (σ0 = 58.4 and 49.2 km s-1) measured for dwarfs of their luminosity (MR ≈ -17). Given their small sizes (Re < 300 pc) and large central velocity dispersions, we classify these two dwarfs as compact ellipticals (cEs) rather than dEs. Group dEs typically have higher mean dynamical-to-stellar mass ratios than the cluster dEs, with Mdyn/M⋆ = 5.1 ± 0.6 for the group dwarfs, versus Mdyn/M⋆ = 2.2 ± 0.5 for the cluster sample, which includes two cEs. We also search for trends in Mdyn/M⋆ versus distance from M87 for the Virgo Cluster population, and find no preference for dwarfs with high values of Mdyn/M⋆ to reside in the cluster outskirts dyn centre.

  8. Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Eddington, P. K.

    1985-01-01

    Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.

  9. Biogeochemical Drivers of Sugar Maple Mortality at the Species-Range Scale

    NASA Astrophysics Data System (ADS)

    Perry, C. H.; Zimmerman, P. L.

    2012-12-01

    The decline of sugar maple in the northern United States is causing concern in the resource management community, and several studies have identified soil properties that are linked to the observation of dead/dying trees (Hallett et al. 2006; Horsley et al. 2000; Long et al. 2009; St.Clair et al. 2008). Unfortunately, the sample of trees supporting these studies tends to be purposive in nature; soil properties generally are assessed only on those plots where dead trees are observed. In this study, we used more than 200 plots from the USDA Forest Service's FIADB (USDA Forest Service 2012; Woudenberg et al. 2010), including the phase 3 soils data (O'Neill et al. 2005; Woodall et al. 2010), to analyze a broader population of sugar maple (alive and dead) across a wide range of soil types. This population of plots has a highly skewed, zero-inflated distribution: the number of plots in the sample without dead trees is an order of magnitude greater than the number of plots with dead trees. One effective method of analysis is a two-stage approach. In the first stage, the response variable is the presence or absence of dead sugar maple; the inferential space is the entire population of plots with sugar maple trees. The second stage uses the relative abundance of dead sugar maple as the response variable; in this case, inference is restricted to those plots where dead sugar maple trees are observed. In both sets of models, basal area and geology are significant predictors of dead sugar maple. The most significant soil variables vary between these two inferential spaces. Our model of the presence/absence of sugar maple death included the molar ratio of Mg:Mn; when conditional on the presence of dead sugar maple, our model includes the molar ratio of Ca:Al, along with exchangeable Na and Mg percentages. Multimodel inference (Burnham and Anderson 2002) assists the assessment of predictors within and between the two stages.

  10. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  11. Improving the Rapid Refresh and High Resolution Rapid Refresh physics to better perform across a wide range of spatial scales

    NASA Astrophysics Data System (ADS)

    Olson, Joseph; Grell, Georg

    2014-05-01

    Model development at NOAA/GSD spans a wide range of spatial scales: global scale (Flow-following finite-volume Icosohedral Model, FIM; 10-250 km grid spacing), continental scale (RAP; 13 km grid spacing), CONUS scale (HRRR; 3 km grid spacing), and regional modeling (experimental nesting at 1 km grid spacing over complex terrain). As the model resolution changes, the proportion of resolved vs unresolved physical processes changes; therefore, physical parameterizations need to adapt to different model resolutions to more accurately handle the unresolved processes. The Limited Area Model (LAM) component of the Grey Zone Experiment was designed to assess the change in behavior of numerical weather prediction models between 16 and 1 km by simulating a cold-air outbreak over the North Atlantic and North Sea. The RAP and HRRR model physics were tested in this case study in order to examine the change in behavior of the model physics at 16, 8, 4, 2, and 1 km grid spacings with and without the use a convective parameterization. The primary purpose of these tests is to better understand the change in behavior of the boundary layer and convective schemes across the grey zone, such that further targeted modifications can then help improve general performance at various scales. The RAP currently employs a modified form of the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which is an improved TKE-based scheme tuned to match large-eddy simulations. Modifications have been performed to better match observations at 13 km (RAP) grid spacing but more multi-scale testing is required before modifications are introduced to make it scale-aware. A scale-aware convective parameterization, the Grell-Freitas scheme (both deep- and shallow-cumulus scheme), has been developed to better handle the transition in behavior of the sub-grid scale convective processes through the grey zone. This study examines the change in behavior of both schemes across the grey zone. Their transitional behavior

  12. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.

    PubMed

    Stadhouders, Ralph; Kolovos, Petros; Brouwer, Rutger; Zuin, Jessica; van den Heuvel, Anita; Kockx, Christel; Palstra, Robert-Jan; Wendt, Kerstin S; Grosveld, Frank; van Ijcken, Wilfred; Soler, Eric

    2013-03-01

    Chromosome conformation capture (3C) technology is a powerful and increasingly popular tool for analyzing the spatial organization of genomes. Several 3C variants have been developed (e.g., 4C, 5C, ChIA-PET, Hi-C), allowing large-scale mapping of long-range genomic interactions. Here we describe multiplexed 3C sequencing (3C-seq), a 4C variant coupled to next-generation sequencing, allowing genome-scale detection of long-range interactions with candidate regions. Compared with several other available techniques, 3C-seq offers a superior resolution (typically single restriction fragment resolution; approximately 1-8 kb on average) and can be applied in a semi-high-throughput fashion. It allows the assessment of long-range interactions of up to 192 genes or regions of interest in parallel by multiplexing library sequencing. This renders multiplexed 3C-seq an inexpensive, quick (total hands-on time of 2 weeks) and efficient method that is ideal for the in-depth analysis of complex genetic loci. The preparation of multiplexed 3C-seq libraries can be performed by any investigator with basic skills in molecular biology techniques. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments. The protocol describes all materials, critical steps and bioinformatics tools required for successful application of 3C-seq technology. PMID:23411633

  13. Characterization of Multi-Scale Atmospheric Conditions Associated with Extreme Precipitation in the Transverse Ranges of Southern California

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Kaplan, M.; Ralph, F. M.

    2015-12-01

    The east-west oriented Transverse Ranges of Southern California have historically experienced shallow landslides and debris flows that threaten life and property. Steep topography, soil composition, and frequent wildfires make this area susceptible to mass wasting. Extreme rainfall often acts as a trigger for these events. This work characterizes atmospheric conditions at multiple scales during extreme (>99th percentile) 1-day precipitation events in the major sub-ranges of the Transverse Ranges. Totals from these 1-day events generally exceed the established sub-daily intensity-duration thresholds for shallow landslides and debris flows in this region. Daily extreme precipitation values are derived from both gridded and station-based datasets over the period 1958-2014. For each major sub-range, extreme events are clustered by atmospheric feature and direction of moisture transport. A composite analysis of synoptic conditions is produced for each cluster to create a conceptual model of atmospheric conditions favoring extreme precipitation. The vertical structure of the atmosphere during these extreme events is also examined using observed and modeled soundings. Preliminary results show two atmospheric features to be of importance: 1) closed and cutoff low-pressure systems, areas of counter-clockwise circulation that can produce southerly flow orthogonal to the Transverse Range ridge axes; and 2) atmospheric rivers that transport large quantities of water vapor into the region. In some cases, the closed lows and atmospheric rivers work in concert with each other to produce extreme precipitation. Additionally, there is a notable east-west dipole of precipitation totals during some extreme events between the San Gabriel and Santa Ynez Mountains where extreme values are observed in one range and not the other. The cause of this relationship is explored. The results of this work can help forecasters and emergency responders determine the likelihood that an event will

  14. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation.

    PubMed

    Kekenes-Huskey, P M; Gillette, A K; McCammon, J A

    2014-05-01

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded

  15. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation

    SciTech Connect

    Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.; Department of Chemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0636

    2014-05-07

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in

  16. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation

    NASA Astrophysics Data System (ADS)

    Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.

    2014-05-01

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded

  17. A long-range laser velocimeter for the National Full-Scale Aerodynamics Complex: New developments and experimental application

    NASA Technical Reports Server (NTRS)

    Reinath, Michael S.

    1989-01-01

    A long-range laser velocimeter (LV) developed for remote operation from within the flow fields of the large wind tunnels of the National Full-Scale Aerodynamics Complex is described. Emphasis is placed on recent improvements in optical hardware as well as recent additions to data acquisition and processing techniques. The system has been upgraded from a dual-beam, single-color LV with focal range to 10 m, to a dual-beam, two-color LV with focal range to 20 m. At the new extended measurement range (between 10 and 20 m), signals are photon-resolved, and a photon correlation technique is applied to acquire and process the LV signals. This technique permits recovery of the velocity probability distributions at a particular measurement location from which the mean components of velocity and the corresponding normal stress components of turbulence are obtained. The method used for data reduction is outlined in detail, and a discussion of measurement accuracy is made. To study the performance of the LV and verify the measurement accuracy, laboratory measurements were made in the flow field of a 10 cm-diameter, 30-m/sec axisymmetric jet. A discussion of the requirements and techniques used to seed the flow is made, and boundary-layer surveys of mean velocity and turbulence intensity of the streamwise component and the component normal to the surface are presented.

  18. Application of the reduction of scale range in a Lorentz boosted frame to the numerical simulation of particle acceleration devices.

    SciTech Connect

    Vay, J; Fawley, W M; Geddes, C G; Cormier-Michel, E; Grote, D P

    2009-05-05

    It has been shown that the ratio of longest to shortest space and time scales of a system of two or more components crossing at relativistic velocities is not invariant under Lorentz transformation. This implies the existence of a frame of reference minimizing an aggregate measure of the ratio of space and time scales. It was demonstrated that this translated into a reduction by orders of magnitude in computer simulation run times, using methods based on first principles (e.g., Particle-In-Cell), for particle acceleration devices and for problems such as: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. Since then, speed-ups ranging from 75 to more than four orders of magnitude have been reported for the simulation of either scaled or reduced models of the above-cited problems. In it was shown that to achieve full benefits of the calculation in a boosted frame, some of the standard numerical techniques needed to be revised. The theory behind the speed-up of numerical simulation in a boosted frame, latest developments of numerical methods, and example applications with new opportunities that they offer are all presented.

  19. Population structure over a broad spatial scale driven by nonanthropogenic factors in a wide-ranging migratory mammal, Alaskan caribou.

    PubMed

    Mager, Karen H; Colson, Kevin E; Groves, Pam; Hundertmark, Kris J

    2014-12-01

    Wide-ranging mammals face significant conservation threats, and knowledge of the spatial scale of population structure and its drivers is needed to understand processes that maintain diversity in these species. We analysed DNA from 655 Alaskan caribou (Rangifer tarandus granti) from 20 herds that vary in population size, used 19 microsatellite loci to document genetic diversity and differentiation in Alaskan caribou, and examined the extent to which genetic differentiation was associated with hypothesized drivers of population subdivision including landscape features, population size and ecotype. We found that Alaskan caribou are subdivided into two hierarchically structured clusters: one group on the Alaska Peninsula containing discrete herds and one large group on the Mainland lacking differentiation between many herds. Population size, geographic distance, migratory ecotype and the Kvichak River at the nexus of the Alaska Peninsula were associated with genetic differentiation. Contrary to previous hypotheses, small Mainland herds were often differentiated genetically from large interconnected herds nearby, and genetic drift coupled with reduced gene flow may explain this pattern. Our results raise the possibility that behaviour helps to maintain genetic differentiation between some herds of different ecotypes. Alaskan caribou show remarkably high diversity and low differentiation over a broad geographic scale. These results increase information for the conservation of caribou and other migratory mammals threatened by population reductions and landscape barriers and may be broadly applicable to understanding the spatial scale and ecological drivers of population structure in widespread species. PMID:25403098

  20. Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges

    NASA Astrophysics Data System (ADS)

    Motl, Bradley; Oakley, Jason; Ranjan, Devesh; Weber, Chris; Anderson, Mark; Bonazza, Riccardo

    2009-12-01

    A universal scaling law for the Richtmyer-Meshkov instability is validated with experimental results covering a wide range of density ratios and shock strengths. These results include the first membraneless, gas-phase, interface experiments for A >0.5 and M >1.5. The shock-accelerated, sinusoidal interface experiments are conducted in a vertical shock tube with a large square cross section and cover the experimental parameter space: 0.29scaling are the correct ones. Correct scaling is obtained by including a growth-reduction factor that accounts for diffusion at the interface. Planar imaging techniques are used to diagnose the instability development for a nearly single-mode interface, and results are reported for eight scenarios (including three distinct gas pairs) that span the linear and nonlinear growth regimes. Images from the strongly shocked, high A experiments are the first to provide evidence of bubble-growth suppression due to shock proximity.

  1. Sensitivity to initial conditions of a d -dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling

    NASA Astrophysics Data System (ADS)

    Bagchi, Debarshee; Tsallis, Constantino

    2016-06-01

    We introduce a generalized d -dimensional Fermi-Pasta-Ulam model in the presence of long-range interactions, and perform a first-principle study of its chaos for d =1 ,2 ,3 through large-scale numerical simulations. The nonlinear interaction is assumed to decay algebraically as dij -α (α ≥0 ) , {di j} being the distances between N oscillator sites. Starting from random initial conditions we compute the maximal Lyapunov exponent λmax as a function of N . Our N ≫1 results strongly indicate that λmax remains constant and positive for α /d >1 (implying strong chaos, mixing, and ergodicity), and that it vanishes like N-κ for 0 ≤α /d <1 (thus approaching weak chaos and opening the possibility of breakdown of ergodicity). The suitably rescaled exponent κ exhibits universal scaling, namely that (d +2 )κ depends only on α /d and, when α /d increases from zero to unity, it monotonically decreases from unity to zero, remaining so for all α /d >1 . The value α /d =1 can therefore be seen as a critical point separating the ergodic regime from the anomalous one, κ playing a role analogous to that of an order parameter. This scaling law is consistent with Boltzmann-Gibbs statistics for α /d >1 , and possibly with q statistics for 0 ≤α /d <1 .

  2. Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges

    PubMed Central

    Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

    2010-01-01

    Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For

  3. Using Cosmogenic Nuclides and Geochemical Mass Balance Measurements to Characterize Millennial-Scale Denudation Rates in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Garber, J. L.; Wohl, E. E.; Riebe, C. S.

    2012-12-01

    Multiple authors have delineated the CO Front Range landscape into distinct elevational zones with respect to contemporary geomorphologic processes, landscape development, and sediment dynamics in bedrock canyons. Several studies have estimated denudation rates using rates of post-fire erosion, alpine soil erosion, beaver dam sedimentation, and cosmogenic tor erosion, but comparison is limited due to differences in the time scale captured by different measurements. We address this gap by using cosmogenic 10Be to measure denudation rates in three process domains: flat Front Range summits, five unglaciated watersheds above the terminal moraine, and five watersheds below the moraine. These data are coupled with soil and rock geochemistry data from the flats, and a basin of homogenous bedrock type, to constrain long-term chemical erosion rates and eolian dust influx into the headwaters of the Front Range. Two paired bedrock outcrop and soil samples were taken on flat summits in Rocky Mountain National Park. Bedrock samples were taken from a low-lying bedrock outcrop and large boulder with accompanying colluvial soil samples from the surrounding surface. Fluvial sediment was collected for 10Be analysis from the outlets of 10 watersheds. We also conducted soil surveys in each basin to examine relationships between physical characteristics and depths of soil, and hillslope position. To constrain long-term chemical weathering rates and estimate eolian inputs, we analyzed 30 soil and 5 bedrock samples using X Ray Fluorescence (XRF) in each basin. We estimated eolian input by assuming the silt fraction of peak soils were derived from dust, as well as using dust chemistry reported in the literature. Basin-averaged denudation rates will be compared to basin morphometric parameters. These data will provide insight into long term landscape evolution of the Front Range, as well as sequestration of atmospheric carbon via chemical weathering, and eolian deposition.

  4. Participatory monitoring and evaluation to aid investment in natural resource manager capacity at a range of scales.

    PubMed

    Brown, Peter R; Jacobs, Brent; Leith, Peat

    2012-12-01

    Natural resource (NR) outcomes at catchment scale rely heavily on the adoption of sustainable practices by private NR managers because they control the bulk of the NR assets. Public funds are invested in capacity building of private landholders to encourage adoption of more sustainable natural resource management (NRM) practices. However, prioritisation of NRM funding programmes has often been top-down with limited understanding of the multiple dimensions of landholder capacity leading to a failure to address the underlying capacity constraints of local communities. We argue that well-designed participatory monitoring and evaluation of landholder capacity can provide a mechanism to codify the tacit knowledge of landholders about the social-ecological systems in which they are embedded. This process enables tacit knowledge to be used by regional NRM bodies and government agencies to guide NRM investment in the Australian state of New South Wales. This paper details the collective actions to remove constraints to improved NRM that were identified by discrete groups of landholders through this process. The actions spanned geographical and temporal scales, and responsibility for them ranged across levels of governance. PMID:22270584

  5. Multi-scale responses of vegetation to removal of horse grazing from Great Basin (USA) mountain ranges

    USGS Publications Warehouse

    Beever, E.A.; Tausch, R.J.; Thogmartin, W.E.

    2008-01-01

    Although free-roaming equids occur on all of the world's continents except Antarctica, very few studies (and none in the Great Basin, USA) have either investigated their grazing effects on vegetation at more than one spatial scale or compared characteristics of areas from which grazing has been removed to those of currently grazed areas. We compared characteristics of vegetation at 19 sites in nine mountain ranges of the western Great Basin; sites were either grazed by feral horses (Equus caballus) or had had horses removed for the last 10-14 years. We selected horse-occupied and horse-removed sites with similar aspect, slope, fire history, grazing pressure by cattle (minimal to none), and dominant vegetation (Artemisia tridentata). During 1997 and 1998, line-intercept transects randomly located within sites revealed that horse-removed sites exhibited 1.1-1.9 times greater shrub cover, 1.2-1.5 times greater total plant cover, 2-12 species greater plant species richness, and 1.9-2.9 times greater cover and 1.1-2.4 times greater frequency of native grasses than did horse-occupied sites. In contrast, sites with horses tended to have more grazing-resistant forbs and exotic plants. Direction and magnitude of landscape-scale results were corroborated by smaller-scale comparisons within horse-occupied sites of horse-trail transects and (randomly located) transects that characterized overall site conditions. Information-theoretic analyses that incorporated various subsets of abiotic variables suggested that presence of horses was generally a strong determinant of those vegetation-related variables that differed significantly between treatments, especially frequency and cover of grasses, but also species richness and shrub cover and frequency. In contrast, abiotic variables such as precipitation, site elevation, and soil erodibility best predicted characteristics such as forb cover, shrub frequency, and continuity of the shrub canopy. We found species richness of plants

  6. Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range

    NASA Astrophysics Data System (ADS)

    Ward, Dylan J.; Anderson, Robert S.; Haeussler, Peter J.

    2012-03-01

    Parts of the Alaska Range (Alaska, USA) stand in prominent exception to the “glacial buzzsaw hypothesis,” which postulates that terrain raised above the ELA is rapidly denuded by glaciers. In this paper, we discuss the role of a strong contrast in rock type in the development of this exceptional terrain. Much of the range is developed on pervasively fractured flysch, with local relief of 1000-1500 m, and mean summit elevations that are similar to modern snow line elevations. In contrast, Cretaceous and Tertiary plutons of relatively intact granite support the range's tallest mountains (including Mt. McKinley, or Denali, at 6194 m), with 2500-5000 m of local relief. The high granitic peaks protrude well above modern snow lines and support many large glaciers. We focus on the plutons of the Denali massif and the Kichatna Mountains, to the west. We use field observations, satellite photos, and digital elevation data to demonstrate how exhumation of these plutons affects glacier longitudinal profiles, the glacial drainage network, and the effectiveness of periglacial processes. In strong granite, steep, smooth valley walls are maintained by detachment of rock slabs along sheeting joints. These steep walls act as low-friction surfaces (“Teflon”), efficiently shedding snow. Simple scaling calculations show that this avalanching may greatly enhance the health of the modern glaciers. We conclude that, in places such as Denali, unusual combinations of rapid tectonic uplift and great rock strength have created the highest relief in North America by enhancing glacial erosion in the valleys while preserving the peaks.

  7. Quantifying the scaling properties and the crossover between the inertial and dissipation ranges in solar wind turbulence with CLUSTER magnetic field observations.

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Kiyani, K. H.; Dunlop, M. W.

    2007-12-01

    The CLUSTER high resolution magnetometer observations in the solar wind cover timescales that potentially span the inertial and dissipation ranges of local intermittent turbulence. One may anticipate a crossover in behaviour from intermittent MHD turbulence to that dominated by ion kinetic effects. Theoretical predictions for the dissipation range typically center around the power spectrum, and these include either a modified turbulent cascade with an associated range of power law scaling, or a phenomenology dominated by damping implying an exponential rolloff. Motivated by the need to distinguish these predictions, we perform statistical analyses (PDF rescaling and generalized structure functions) to quantify the scaling of fluctuations as we pass though the crossover from inertial range to dissipation range phenomenology. In particular we explore whether deviations from power law scaling are of a form that can be removed by Extended Self Similarity, so that scaling is manifested in ratios of the structure functions.

  8. Scale of the equilibration volume in eclogites: insights from a new micro-mapping approach - Example of Atbashi range, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2014-05-01

    Understanding geodynamic processes in subduction zones and mountains belts relies on the reconstruction of precise pressure-temperature paths (P-T paths) from metamorphic rocks. Most P-T paths are obtained using quantitative thermobarometry such as forward thermodynamics models. The question of the scale of the equilibration volume is of prime importance because its chemistry is used as input for the calculation of P-T sections. In chemically homogeneous rocks the bulk rock may be obtained either by ICP-MS or XRF analysis on whole rocks. For chemically heterogeneous rocks, containing different mineral assemblages and/or a high proportion of zoned minerals, the concept of local effective bulk (LEB) is essential. In the last 10 years, X-ray micro-mapping methods have been developed in this aim. Here we show how standardized X-ray maps can be used to estimate the equilibration volume at the pressure peak in an eclogite sample. The study area lies in the Atbashi range, in Kyrgyzstan, along the South-Tianshan carboniferous suture of the Central Asian Orogenic Belt with the Tarim block. We use the micro-mapping approach to unravel the P-T path of a mafic eclogite containing mm-scale garnet porphyroblasts. Quantitative compositional maps of a garnet and its surrounding matrix are obtained from standardized X-ray maps processed with the XMapTools program (Lanari et al, 2014). By using these maps we measured the LEB corresponding to the different stages of garnet growth. The equilibration volume is then modeled using the local compositions (extrapolated in 3D) combined with Gibbs free energy minimization. Our model suggests that equilibrium conditions are attained for chemistry made of 90% of garnet and 10% of matrix. P-T sections are calculated from the core of the garnet to the rim taking into account the fractionation at each stage of garnet growth by changing the bulk composition. We obtained the following P-T path: (1) garnet core crystallization during prograde stage

  9. Observing Coronal Mass Ejections from the Sun-Earth L5 Point

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; St Cyr, O. C.

    2013-12-01

    Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere and are known to be responsible for severe space weather. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). The STEREO mission viewed CMEs from points away from the Sun-Earth line and demonstrated the importance of such observations in understanding the three-dimensional structure of CMEs and their true kinematics. In this paper, we show that it is advantageous to observe CMEs from the Sun-Earth L5 point in studying CMEs that affect Earth. In particular, these observations are important in identifying that part of the CME that is likely to arrive at Earth. L5 observations are critical for several aspects of CME studies such as: (i) they can also provide near-Sun space speed of CMEs, which is an important input for modeling Earth-arriving CMEs, (ii) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, and (iii) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, which may not be possible from the Sun-Earth line. We also discuss how the L5 vantage point compares with the Sun-Earth L4 point for observing Earth-affecting CMEs. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C., MacDowall, R. J., Maksimovic, M., Sittler, E., et al. (2011b), Earth-Affecting Solar Causes Observatory (EASCO): a mission at

  10. Intraspecific Differences in Lipid Content of Calanoid Copepods across Fine-Scale Depth Ranges within the Photic Layer

    PubMed Central

    Zarubin, Margarita; Farstey, Viviana; Wold, Anette; Falk-Petersen, Stig; Genin, Amatzia

    2014-01-01

    Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12–15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy. PMID:24667529

  11. Intraspecific differences in lipid content of calanoid copepods across fine-scale depth ranges within the photic layer.

    PubMed

    Zarubin, Margarita; Farstey, Viviana; Wold, Anette; Falk-Petersen, Stig; Genin, Amatzia

    2014-01-01

    Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy. PMID:24667529

  12. Long-range seasonal streamflow forecasting over the Iberian Peninsula using large-scale atmospheric and oceanic information

    NASA Astrophysics Data System (ADS)

    Hidalgo-Muñoz, J. M.; Gámiz-Fortis, S. R.; Castro-Díez, Y.; Argüeso, D.; Esteban-Parra, M. J.

    2015-05-01

    Identifying the relationship between large-scale climate signals and seasonal streamflow may provide a valuable tool for long-range seasonal forecasting in regions under water stress, such as the Iberian Peninsula (IP). The skill of the main teleconnection indices as predictors of seasonal streamflow in the IP was evaluated. The streamflow database used was composed of 382 stations, covering the period 1975-2008. Predictions were made using a leave-one-out cross-validation approach based on multiple linear regression, combining Variance Inflation Factor and Stepwise Backward selection to avoid multicollinearity and select the best subset of predictors. Predictions were made for four forecasting scenarios, from one to four seasons in advance. The correlation coefficient (RHO), Root Mean Square Error Skill Score (RMSESS), and the Gerrity Skill Score (GSS) were used to evaluate the forecasting skill. For autumn streamflow, good forecasting skill (RHO>0.5, RMSESS>20%, GSS>0.4) was found for a third of the stations located in the Mediterranean Andalusian Basin, the North Atlantic Oscillation of the previous winter being the main predictor. Also, fair forecasting skill (RHO>0.44, RMSESS>10%, GSS>0.2) was found in stations in the northwestern IP (16 of these located in the Douro and Tagus Basins) with two seasons in advance. For winter streamflow, fair forecasting skill was found for one season in advance in 168 stations, with the Snow Advance Index as the main predictor. Finally, forecasting was poorer for spring streamflow than for autumn and winter, since only 16 stations showed fair forecasting skill in with one season in advance, particularly in north-western of IP.

  13. Buoyancy effects on the scaling characteristics of atmospheric boundary-layer wind fields in the mesoscale range.

    PubMed

    Kiliyanpilakkil, V P; Basu, S; Ruiz-Columbié, A; Araya, G; Castillo, L; Hirth, B; Burgett, W

    2015-09-01

    We have analyzed long-term wind speed time series from five field sites up to a height of 300 m from the ground. Structure function-based scaling analysis has revealed that the scaling exponents in the mesoscale regime systematically depend on height. This anomalous behavior is likely caused by the buoyancy effects. In the framework of the extended self-similarity, the relative scaling exponents portray quasiuniversal behavior. PMID:26465554

  14. The CryoMET project - combining deterministic and probabilistic downscaling to model snow depth over a wide range of scales

    NASA Astrophysics Data System (ADS)

    Westermann, S.; Berntsen, T.; Etzelmüller, B.; Gisnås, K.; Hagen, J. O.; Kristjansson, J. E.; Schuler, T.; Stordal, F.

    2012-12-01

    Snow is a crucial factor in arctic and high-mountain ecosystems, e.g. for the thermal regime of permafrost and the mass balance on glaciers. However, the snow depth and properties can vary considerably on small scales due to wind redistribution, which for instance leads to distinctly different soil temperatures in permafrost areas on distances of tens of meters. The spatial resolution of standard atmospheric models is clearly insufficient to capture such small-scale variability. CryoMET is a new collaborative project between atmospheric modeling, glacier and permafrost research groups funded by the Norwegian Research Council. It seeks to bridge the scale gap between coarsely-resolved Earth System Models providing climate projections and the process and impact scales on the ground, on which permafrost temperatures and glacier mass balance are projected to change. CryoMET will explore a seamless downscaling procedure for the variables snow depth and snow water equivalent. In a first step, we use the state-of-the-art regional model PolarWRF to downscale atmospheric variables, including precipitation, air temperature and wind speed, to the so-called interface scale, where these variables are constant to a good approximation. In CryoMET, we aim for a spatial resolution of 1 to 3 km, which is determined by the topography of the project's target areas in Norway and Svalbard. In a second step, we will employ probabilistic downscaling of the average snow water equivalent at the interface scale (as delivered by PolarWRF) using snow redistribution models, which can resolve small-scale variations of snow depth due to wind drift down to the meter scale. With probability density functions of snow depth, we can infer the distribution of environmental parameters affected by snow within one grid cell at the interface scale, e.g. of permafrost temperatures. Thus, CryoMET ultimately aims for a scaling concept capable of bridging up to five orders of magnitude in space without

  15. Noninvariance of Space- and Time-Scale Ranges under a Lorentz Transformation and the Implications for the Study of Relativistic Interactions

    SciTech Connect

    Vay, J.-L.

    2007-03-30

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived, for example, for the following cases: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. The implications for experimental, theoretical, and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such system000.

  16. On the non-invariance of space and time scale ranges under Lorentztransformation, and its implications for the study of relativisticinteractions

    SciTech Connect

    Vay, J.-L.

    2007-01-16

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems.

  17. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    SciTech Connect

    Vay, J.-L.; Vay, J.-L.

    2007-11-12

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems.

  18. Thermodynamical features of Verlinde's approach for a non-commutative Schwarzschild-anti-deSitter black hole in a broad range of scales

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid

    2014-09-01

    We try to study the thermodynamical features of a non-commutative inspired Schwarzschild-anti-de Sitter black hole in the context of the entropic gravity model, particularly for the model that is employed in a broad range of scales, from the short distances to the large distances. At small length scales, the Newtonian force fails because one finds a linear relation between the entropic force and the distance. In addition, there are some deviations from the standard Newtonian gravity at large length scales.

  19. Scaling Hyporheic Flow and Biogeochemical Reactions across a Wide Range of Flow and Sediment Conditions in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; O'Connor, B. L.

    2008-12-01

    Aquatic ecosystems are strongly influenced by advective transport from surface water into shallow sediments of the hyporheic zone. The delivery of energy and nutrient-rich materials to microbially and geochemically reactive sediment stimulates high rates of biogeochemical reactions that influence the overall metabolism of the ecosystem as well as influencing the chemistry of downstream receiving waters. Predicting hyporheic flow is difficult because of the potential involvement of many physical processes, including diffusion, shear, bedform-scale advective pumping, bed mobility and bioturbation, turbulence penetration, and head potential- driven groundwater exchange. We used published data from carefully controlled laboratory flume experiments to develop a scaling relationship that predicts hyporheic exchange based on physical descriptors (e.g. shear stress velocity, roughness height, and sediment permeability) that summarize fluid- flow and sediment characteristics. We tested the scaling relationship's predictions by comparing them with more time and labor intensive measurements of solute and reactive tracer transport made in situ in hyporheic zones. In situ measurements were acquired using the USGS MINIPOINT sampler, which allows detailed subsurface measurements without significant disturbance of sediment or the ambient surface or subsurface water fluxes. Fieldwork was undertaken in several streams that varied widely in surface water flow velocities, grain type, median grain size, sediment porosity, sediment organic content, sediment hydraulic conductivity, and groundwater specific discharge. The comparison generally supported the predictive capability of the scaling relationship in complex field settings. The value of the scaling relationship is also indicated for improving rate measurements of biogeochemical reactions in hyporheic zones (e.g. oxygen uptake, denitrification, and manganese oxidation), as well as for estimating the cumulative influence of

  20. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need 21st Century Conservation Options

    PubMed Central

    Fortini, Lucas B.; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben H.; Jacobi, James D.

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations. PMID:26509270

  1. Large-scale range collapse of Hawaiian forest birds under climate change and the need 21st century conservation options

    USGS Publications Warehouse

    Fortini, Lucas; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben; Jacobi, James D.

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  2. Crossover scaling of apparent first-order wetting in two-dimensional systems with short-ranged forces.

    PubMed

    Parry, Andrew O; Malijevský, Alexandr

    2016-06-01

    Recent analyses of wetting in the semi-infinite two-dimensional Ising model, extended to include both a surface coupling enhancement and a surface field, have shown that the wetting transition may be effectively first-order and that surprisingly the surface susceptibility develops a divergence described by an anomalous exponent with value γ_{11}^{eff}=3/2. We reproduce these results using an interfacial Hamiltonian model making a connection with previous studies of two-dimensional wetting, and we show that they follow from the simple crossover scaling of the singular contribution to the surface free-energy, which describes the change from apparent first-order to continuous (critical) wetting due to interfacial tunneling. The crossover scaling functions are calculated explicitly within both the strong-fluctuation and intermediate-fluctuation regimes, and they determine uniquely and more generally the value of γ_{11}^{eff}, which is nonuniversal for the latter regime. The location and the rounding of a line of pseudo-prewetting transitions occurring above the wetting temperature and off bulk coexistence, together with the crossover scaling of the parallel correlation length, are also discussed in detail. PMID:27415336

  3. Crossover scaling of apparent first-order wetting in two-dimensional systems with short-ranged forces

    NASA Astrophysics Data System (ADS)

    Parry, Andrew O.; Malijevský, Alexandr

    2016-06-01

    Recent analyses of wetting in the semi-infinite two-dimensional Ising model, extended to include both a surface coupling enhancement and a surface field, have shown that the wetting transition may be effectively first-order and that surprisingly the surface susceptibility develops a divergence described by an anomalous exponent with value γ11eff=3/2 . We reproduce these results using an interfacial Hamiltonian model making a connection with previous studies of two-dimensional wetting, and we show that they follow from the simple crossover scaling of the singular contribution to the surface free-energy, which describes the change from apparent first-order to continuous (critical) wetting due to interfacial tunneling. The crossover scaling functions are calculated explicitly within both the strong-fluctuation and intermediate-fluctuation regimes, and they determine uniquely and more generally the value of γ11eff, which is nonuniversal for the latter regime. The location and the rounding of a line of pseudo-prewetting transitions occurring above the wetting temperature and off bulk coexistence, together with the crossover scaling of the parallel correlation length, are also discussed in detail.

  4. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  5. Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size.

    PubMed

    Ono, Yusuke; Mayama, Hiroyuki; Furó, István; Sagidullin, Alexander I; Matsushima, Keiichiro; Ura, Haruo; Uchiyama, Tomoyuki; Tsujii, Kaoru

    2009-08-01

    We have succeeded in creating Menger sponge-like fractal body, i.e., porous-silica samples with Menger sponge-like fractal geometries, by a novel template method utilizing template particles of alkylketene dimer (AKD) and a sol-gel synthesis of tetramethyl orthosilicate (TMOS). We report here the first experimental results on characterization and structural investigations of the fractal porous-silica samples prepared with various conditions such as calcination temperature and packing condition of the template particles. In order to characterize the fractal porous-silica samples, pore volume distribution, porosity and specific surface area were measured over an extremely wide scale from 1 nm to 100 microm by means of mercury porosimetry, (1)H NMR cryoporometry, nitrogen gas adsorption experiments together with direct evaluations of cross-sectional fractal dimension D(cs), and size limits of D(cs). We have found that the pore volume distribution and specific surface area of the fractal porous-silica samples can be discussed in terms of different fractal porous structures at different scale regions. PMID:19406424

  6. Ultrasonic Elastography Research Based on a Multicenter Study: Adding Strain Ratio after 5-Point Scoring Evaluation or Not

    PubMed Central

    Yao, Ji-Yi; Li, Lu-Jing; Peng, Yu-lan; Wang, Yi; Liu, Li-sha; Xiao, Ying; Liu, Shou-jun; Wu, Chang-jun; Jiang, Yu-xin; Parajuly, Shyam Sundar; Xu, Ping; Hao, Yi; Li, Jing; Luo, Bao-Ming; Zhi, Hui

    2016-01-01

    Background This study aimed to confirm whether strain ratio should be added after evaluation of lesions with 5-point elasticity scoring for differentiating benign and malignant breast lesions on ultrasonographic elastography(UE). Materials and Methods From June 2010 to March 2012, 1080 consecutive female patients with breast lesions were recruited into a multicenter retrospective study, which involved 8 centers across China. Each institutional ethic review board approved the study, and all the patients gave written informed consent. All the patients underwent the UE procedure and the strain ratios were calculated and the final diagnosis was made by histological findings. The sensitivity, specificity, accuracy, PPV and NPV were calculated for each of the two evaluation systems and the areas under the ROC curve were compared. Results The strain ratios of benign lesions (mean, 2.6±2.0) and malignant lesions (mean,7.9±5.8) were significantly different (p <0.01). When the cutoff point was 3.01, strain ratio method had 79.8% sensitivity, 82.8% specificity, and 81.3% accuracy, while the 5-point scoring method had 93.1% sensitivity, 73.0% specificity, and 76.8% accuracy. The areas under the ROC curve with the strain ratio method and 5-point scoring method were 0.863 and 0.865, respectively(p>0.05). The strain ratio method shows better a diagnosis performance of the lesions with elasticity score 3 and 4. Conclusions Although the two UE methods have similar diagnostic performance, separate calculation of the strain ratios seems compulsory, especially for the large solid breast lesions and the lesions with elasticity score 3 and 4. PMID:26863208

  7. Spin tests of a low-wing monoplane to investigate scale effect in the model test range, May 1941

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.

    1976-01-01

    Concurrent tests were performed on a 1/16 and a 1/20 scale model (wing spans of 2.64 and 2.11 ft. respectively) of a modern low wing monoplane in the NACA 15 foot free-spinning wind tunnel. Results are presented in the form of charts that afford a direct comparison between the spins of the two models for a number of different conditions. Qualitatively, the same characteristic effects of control disposition, mass distribution, and dimensional modifications were indicated by both models. Quantitatively, the number of turns for recover and the steady spin parameters, with the exception of the inclination of the wing to the horizontal, were usually in good agreement.

  8. Lineage Range Estimation Method Reveals Fine-Scale Endemism Linked to Pleistocene Stability in Australian Rainforest Herpetofauna

    PubMed Central

    Rosauer, Dan F.; Catullo, Renee A.; VanDerWal, Jeremy; Moussalli, Adnan; Moritz, Craig

    2015-01-01

    Areas of suitable habitat for species and communities have arisen, shifted, and disappeared with Pleistocene climate cycles, and through this shifting landscape, current biodiversity has found paths to the present. Evolutionary refugia, areas of relative habitat stability in this shifting landscape, support persistence of lineages through time, and are thus crucial to the accumulation and maintenance of biodiversity. Areas of endemism are indicative of refugial areas where diversity has persisted, and endemism of intraspecific lineages in particular is strongly associated with late-Pleistocene habitat stability. However, it remains a challenge to consistently estimate the geographic ranges of intraspecific lineages and thus infer phylogeographic endemism, because spatial sampling for genetic analyses is typically sparse relative to species records. We present a novel technique to model the geographic distribution of intraspecific lineages, which is informed by the ecological niche of a species and known locations of its constituent lineages. Our approach allows for the effects of isolation by unsuitable habitat, and captures uncertainty in the extent of lineage ranges. Applying this method to the arc of rainforest areas spanning 3500 km in eastern Australia, we estimated lineage endemism for 53 species of rainforest dependent herpetofauna with available phylogeographic data. We related endemism to the stability of rainforest habitat over the past 120,000 years and identified distinct concentrations of lineage endemism that can be considered putative refugia. These areas of lineage endemism are strongly related to historical stability of rainforest habitat, after controlling for the effects of current environment. In fact, a dynamic stability model that allows movement to track suitable habitat over time was the most important factor in explaining current patterns of endemism. The techniques presented here provide an objective, practical method for estimating

  9. Scaling up close-range surveys, a challenge for the generalization of as-built data in industrial applications

    NASA Astrophysics Data System (ADS)

    Hullo, J.-F.; Thibault, G.

    2014-06-01

    As-built CAD data reconstructed from Terrestrial Laser Scanner (TLS) data are used for more than two decades by Electricité de France (EDF) to prepare maintenance operations in its facilities. But today, the big picture is renewed: "as-built virtual reality" must address a huge scale-up to provide data to an increasing number of applications. In this paper, we first present a wide multi-sensor multi-purpose scanning campaign performed in a 10 floor building of a power plant in 2013: 1083 TLS stations (about 40.109 3D points referenced under a 2 cm tolerance) and 1025 RGB panoramic images (340.106 pixels per point of view). As expected, this very large survey of high precision measurements in a complex environment stressed sensors and tools that were developed for more favourable conditions and smaller data sets. The whole survey process (tools and methods used from acquisition and processing to CAD reconstruction) underwent a detailed follow-up in order to state on the locks to a possible generalization to other buildings. Based on these recent feedbacks, we have highlighted some of these current bottlenecks in this paper: sensors denoising, automation in processes, data validation tools improvements, standardization of formats and (meta-) data structures.

  10. Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2010-02-01

    This paper deals with the problem of discrete time option pricing using the multifractional Black-Scholes model with transaction costs. Using a mean self-financing delta hedging argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, we show that scaling and long range dependence have a significant impact on option pricing.

  11. High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions.

    PubMed

    Liu, Qiang; Chen, Ji; Li, Yingru; Shi, Gaoquan

    2016-08-23

    Strain sensors with large stretchability, broad sensing range, and high sensitivity are highly desirable because of their potential applications in electronic skins and health monitoring systems. In this paper, we report a high-performance strain sensor with a fish-scale-like graphene-sensing layer. This strain sensor can be fabricated via stretching/releasing the composite films of reduced graphene oxide and elastic tape, making the process simple, cheap, energy-saving, and scalable. It can be used to detect both stretching and bending deformations with a wide sensing range (up to 82% strain), high sensitivity (a gauge factor of 16.2 to 150), ultralow limit of detection (<0.1% strain), and excellent reliability and stability (>5000 cycles). Therefore, it is attractive and promising for practical applications, such as for the full-range detection of human motions. PMID:27463116

  12. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola)

    PubMed Central

    Crespo, Ariñe; Rodrigues, Marcos; Telletxea, Ibon; Ibáñez, Rubén; Díez, Felipe; Tobar, Joseba F.; Arizaga, Juan

    2016-01-01

    Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola) tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats) required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal. PMID:27002975

  13. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola).

    PubMed

    Crespo, Ariñe; Rodrigues, Marcos; Telletxea, Ibon; Ibáñez, Rubén; Díez, Felipe; Tobar, Joseba F; Arizaga, Juan

    2016-01-01

    Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola) tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats) required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal. PMID:27002975

  14. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014

    NASA Astrophysics Data System (ADS)

    Appleby, Graham; Rodríguez, José; Altamimi, Zuheir

    2016-06-01

    Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

  15. Integrated chip-scale Si3N4 wavemeter with narrow free spectral range and high stability.

    PubMed

    Xiang, Chao; Tran, Minh A; Komljenovic, Tin; Hulme, Jared; Davenport, Michael; Baney, Doug; Szafraniec, Bogdan; Bowers, John E

    2016-07-15

    We designed, fabricated, and characterized an integrated chip-scale wavemeter based on an unbalanced Mach-Zehnder interferometer with 300 MHz free spectral range. The wavemeter is realized in the Si3N4 platform, allowing for low loss with ∼62  cm of on-chip delay. We also integrated an optical hybrid to provide phase information. The main benefit of a fully integrated wavemeter, beside its small dimensions, is increased robustness to vibrations and temperature variations and much improved stability over fiber-based solutions. PMID:27420522

  16. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  17. Sensitivity to initial conditions of a d-dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling.

    PubMed

    Bagchi, Debarshee; Tsallis, Constantino

    2016-06-01

    We introduce a generalized d-dimensional Fermi-Pasta-Ulam model in the presence of long-range interactions, and perform a first-principle study of its chaos for d=1,2,3 through large-scale numerical simulations. The nonlinear interaction is assumed to decay algebraically as d_{ij}^{-α} (α≥0), {d_{ij}} being the distances between N oscillator sites. Starting from random initial conditions we compute the maximal Lyapunov exponent λ_{max} as a function of N. Our N≫1 results strongly indicate that λ_{max} remains constant and positive for α/d>1 (implying strong chaos, mixing, and ergodicity), and that it vanishes like N^{-κ} for 0≤α/d<1 (thus approaching weak chaos and opening the possibility of breakdown of ergodicity). The suitably rescaled exponent κ exhibits universal scaling, namely that (d+2)κ depends only on α/d and, when α/d increases from zero to unity, it monotonically decreases from unity to zero, remaining so for all α/d>1. The value α/d=1 can therefore be seen as a critical point separating the ergodic regime from the anomalous one, κ playing a role analogous to that of an order parameter. This scaling law is consistent with Boltzmann-Gibbs statistics for α/d>1, and possibly with q statistics for 0≤α/d<1. PMID:27415261

  18. Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape.

    PubMed

    Vincent, Grégoire; Sabatier, Daniel; Rutishauser, Ervan

    2014-06-01

    Airborne laser scanning provides continuous coverage mapping of forest canopy height and thereby is a powerful tool to scale-up above-ground biomass (AGB) estimates from stand to landscape. A critical first step is the selection of the plot variables which can be related to light detection and ranging (LiDAR) statistics. A universal approach was previously proposed which combines local and regional estimates of basal area (BA) and wood density with LiDAR-derived canopy height to map carbon at a regional scale (Asner et al. in Oecologia 168:1147-1160, 2012). Here we explore the contribution of stem diameter distribution, specific wood density and height-diameter (H-D) allometry to forest stand AGB and propose an alternative model. By applying the new model to a large tropical forest data set we show that an appropriate choice of input variables is essential to minimize prediction error of stand AGB which will propagate at larger scale. Stem number (N) and average stem cross-sectional area should be used instead of BA when scaling from tree to plot. Stand quadratic mean diameter above the census threshold diameter size should be preferred over stand mean diameter as it reduces the prediction error of stand AGB by a factor of ten. Wood density should be weighted by stem volume per species instead of BA. LiDAR-derived statistics should prove useful for estimating local H-D allometries as well as mapping N and the mean quadratic diameter above 10 cm at the landscape level. Prior stratification into forest types is likely to improve both estimation procedures significantly and is considered the foremost current challenge. PMID:24615493

  19. Millennial-scale Denudation Rates of the Santa Lucia Mountains, CA: Implications for Landscape Thresholds from a Steep, High Relief, Coastal Mountain Range

    NASA Astrophysics Data System (ADS)

    Young, H.; Hilley, G. E.; Kiefer, K.; Blisniuk, K.

    2015-12-01

    We report new, 10-Be-derived denudation rates measured from river sands in basins of the Santa Lucia Range, central California. The Santa Lucia Mountains of the California Coast Range are an asymmetrical northwest-southeast trending range bounded by the San Gregorio-Hosgri (SG-HFZ ) and Rinconada-Reliz faults. This area provides an additional opportunity to analyze the relationships between topographic form, denudation rates, and mapped underlying geologic substrate in an actively deforming landscape. Analysis of in situ-produced 10-Be from alluvial sand samples collected in the Santa Lucia Mountains has yielded measurements of spatially varying basin-scale denudation rates. Despite the impressive relief of the Santa Lucia's, denudation rates within catchments draining the coastal side of the range are uniformly low, generally varying between ~90 m/Myr and ~350 m/Myr, with one basin eroding at ~500 m/Myr. Preliminary data suggest the lowest erosion rates are located within the northern interior of the range in sedimentary and granitic lithologies, while higher rates are located directly along the coast in metasedimentary bedrock. This overall trend is punctuated by a single high denudation rate, which is hosted by a watershed whose geometry suggests that it previously has, and continues to experience divide migration as it captures the adjacent watershed's area. Spatial distribution of basins with higher denudation rates is inferred to indicate a zone of uplift adjacent to the SG-HFZ. We compare erosion rates to basin mean channel steepness index, extracted from a 10 m digital elevation model. Denudation rate generally increases with channel steepness index until ~250 m/Myr, at which point the relationship becomes invariant, suggesting a non-linear erosion model may best characterize this region. These hypotheses will be tested further as additional denudation rate results are analyzed.

  20. Rain gauge - radar rainfall reanalysis of operational and research data in the Cévennes-Vivarais region, France, estimation error analysis over a wide range of scales.

    NASA Astrophysics Data System (ADS)

    Wijbrans, Annette; Delrieu, Guy; Nord, Guillaume; Boudevillain, Brice; Berne, Alexis; Grazioli, Jacopo; Confoland, Audrey

    2014-05-01

    In the Cévennes -Vivarais region in France, flash-flood events can occur due to high intensity precipitation events. These events are described in a detailed quantitative precipitation estimates, to be able to better characterize the hydrological response to these rain events in a number of small-scale nested watersheds (<100 km² typically), sampling various landscapes of the Mediterranean region. Radar - rain gauge merging methods described by Delrieu et al (2013) are applied to the 9 events of the autumn of 2012. Rainfall data is merged for both the operational networks in the Cévennes-Vivarais region in France on a 160 x 200 km window, as well as a research network, in the same region on a window of 15x30 km. The radar and rain gauge data of the operational network are collected from three organisms (Météo-France, Service de Prévision des Crues du Grand Delta and EdF/DTG). The research network contains high resolution data are from research rainfall observation systems deployed within the Enhanced Observation Period (autumn 2012-2015) of the HyMeX project (www.hymex.org). This project aims at studying the hydrological cycle in the Mediterranean with emphases on the hydro-meteorological extremes and their evolution in the coming decades. Rain gauge radar merging is performed using a kriging with external drift (KED) technique, and compared to the ordinary kriging (OK) of the rain gauges and the radar products on the same time scale using a cross-validation technique. Also a method is applied to quantify kriging estimation variances for both kriging techniques at the two spatial scales, in order to analyse the error characteristics of the interpolation methods at a scale range of 0.1 - 100 km² and 0.2 - 12 h. The combined information of the reanalysis of the data of the operational network and the research network gives a view on the error structure of rainfall estimations over several orders of magnitudes in spatial scale. This allows understanding of the

  1. Scales

    ScienceCinema

    Murray Gibson

    2010-01-08

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  2. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  3. Understanding green roof spatial dynamics: results from a scale based hydrologic study and introduction of a low-cost method for wide-range monitoring

    NASA Astrophysics Data System (ADS)

    Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida

    2014-05-01

    used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.

  4. Communication Scale for Older Adults (CSOA).

    PubMed

    Kaplan, H; Bally, S; Brandt, F; Busacco, D; Pray, J

    1997-06-01

    The communication Self-Assessment Scales for Older Adults (CSOA) are comprised of a 41-item Communication Strategies scale and a 31-item Communication Attitudes scale. Three-point and 5-point response formats are available. The scales were standardized on a population of 135 independent-living adults with hearing loss, ranging in age from 60 to 88 years. Item analysis, internal consistency reliability, test-retest reliability, normative data, and 95 percent confidence intervals are presented. A sample case illustrates how the scales can be used to evaluate the communication strategies and attitudes of an individual client. In addition, data are presented to show changes in the use of communication strategies and attitudes of a group of clients 3 months and 9 months after completion of aural rehabilitation programs. PMID:9188077

  5. Scaling of Nucleic Acid Assays on Microelectrophoresis Array Devices: High-Dynamic Range Multi-gene Readout from less than 10 Transcripts

    PubMed Central

    Ueberfeld, Joern; Ehrlich, Daniel J.

    2009-01-01

    In this paper we describe progress in using the prodigious data-collecting ability of multilane microelectrophoresis instruments to bear on problems in scaled nucleic acid assays. We emphasize compound stacking and Solid-Support loading as means to concentrate <100 pg samples for direct injection. Reaction Mapping is applied to readout of quantitative polymerase chain reaction (qPCR) gene-expression and as a way to practically overcome difficulty in interpreting amplification curves of multiplexed qPCR at 20–50 gene/well complexity. We demonstrate multiplexed readout of gene expression over an abundancy range of 9Log2 units starting with reverse-transcribed samples as small as 5 molecules in each sample. PMID:19544490

  6. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  7. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  8. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales.

    PubMed

    Merriman, Dawn K; Xue, Yi; Yang, Shan; Kimsey, Isaac J; Shakya, Anisha; Clay, Mary; Al-Hashimi, Hashim M

    2016-08-16

    Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features. PMID:27232530

  9. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    USGS Publications Warehouse

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  10. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  11. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010

    NASA Astrophysics Data System (ADS)

    Diapouli, E.; Popovicheva, O.; Kistler, M.; Vratolis, S.; Persiantseva, N.; Timofeev, M.; Kasper-Giebl, A.; Eleftheriadis, K.

    2014-10-01

    Smoke aerosol emitted by large scale wildfires in the European part of Russia and Ukraine, was transported to Athens, Greece during August 2010 and detected at an urban background site. Measurements were conducted for physico-chemical characterization of the aged aerosol and included on-line monitoring of PM10 and carbonaceous particles mass concentrations, as well as number size distributions and aerosol optical properties. In addition TSP filter samples were analyzed for major inorganic ions, while morphology and composition of particles was studied by individual particle analysis. Results supported the long-range transport of smoke plumes from Ukraine and Russia burning areas indicated by back trajectory analysis. An increase of 50% and 40% on average in organic (OC) and elemental carbon (EC) concentrations respectively, and more than 95% in carbonate carbon (CC) levels was observed for the biomass burning (BB) transport period of August with respect to the previous month of July. Mean 24-h OC/EC ratio was found in the range 3.2-8.5. Single scattering albedo (SSA) was also increased, indicating abundance of light scattering constituents and/or shift of size distributions towards larger particles. Increase in particle size was further supported by a decreasing trend in absorption Angström exponent (AAE). Ion analysis showed major contribution of secondary species (ammonium sulfate and nitrate) and soil components (Ca2+, Mg2+). Non-sea salt K+ exhibited very good correlation with secondary species, indicating the long-range transport of BB smoke as a possible common source. Individual particle analysis of the samples collected during BB-transport event in Athens revealed elevated number of soot externally mixed with fly ash Ca-rich particles. This result is in agreement with the increased OC and CC levels measured, thus pointing towards the main components comprising the aged BB aerosol microstructure.

  12. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    , whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.

  13. Systematic errors in the simulation of the Asian summer monsoon: the role of rainfall variability on a range of time and space scales

    NASA Astrophysics Data System (ADS)

    Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven

    2015-04-01

    Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale

  14. A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems

    USGS Publications Warehouse

    Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.

    2012-01-01

    Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.

  15. A province-scale block model of Walker Lane and western Basin and Range crustal deformation constrained by GPS observations (Invited)

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Bormann, J.; Blewitt, G.; Kreemer, C.

    2013-12-01

    The Walker Lane in the western Great Basin of the western United States is an 800 km long and 100 km wide zone of active intracontinental transtension that absorbs ~10 mm/yr, about 20% of the Pacific/North America plate boundary relative motion. Lying west of the Sierra Nevada/Great Valley microplate (SNGV) and adjoining the Basin and Range Province to the east, deformation is predominantly shear strain overprinted with a minor component of extension. The Walker Lane responds with faulting, block rotations, structural step-overs, and has distinct and varying partitioned domains of shear and extension. Resolving these complex deformation patterns requires a long term observation strategy with a dense network of GPS stations (spacing ~20 km). The University of Nevada, Reno operates the 373 station Mobile Array of GPS for Nevada transtension (MAGNET) semi-continuous network that supplements coverage by other networks such as EarthScope's Plate Boundary Observatory, which alone has insufficient density to resolve the deformation patterns. Uniform processing of data from these GPS mega-networks provides a synoptic view and new insights into the kinematics and mechanics of Walker Lane tectonics. We present velocities for thousands of stations with time series between 3 to 17 years in duration aligned to our new GPS-based North America fixed reference frame NA12. The velocity field shows a rate budget across the southern Walker Lane of ~10 mm/yr, decreasing northward to ~7 mm/yr at the latitude of the Mohawk Valley and Pyramid Lake. We model the data with a new block model that estimates rotations and slip rates of known active faults between the Mojave Desert and northern Nevada and northeast California. The density of active faults in the region requires including a relatively large number of blocks in the model to accurately estimate deformation patterns. With 49 blocks, our the model captures structural detail not represented in previous province-scale models, and

  16. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    USGS Publications Warehouse

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  17. The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults

    PubMed Central

    Wang, Chenguang; Allegaert, Karel; Peeters, Mariska Y M; Tibboel, Dick; Danhof, Meindert; Knibbe, Catherijne A J

    2014-01-01

    Aim For scaling clearance between adults and children, allometric scaling with a fixed exponent of 0.75 is often applied. In this analysis, we performed a systematic study on the allometric exponent for scaling propofol clearance between two subpopulations selected from neonates, infants, toddlers, children, adolescents and adults. Methods Seven propofol studies were included in the analysis (neonates, infants, toddlers, children, adolescents, adults1 and adults2). In a systematic manner, two out of the six study populations were selected resulting in 15 combined datasets. In addition, the data of the seven studies were regrouped into five age groups (FDA Guidance 1998), from which four combined datasets were prepared consisting of one paediatric age group and the adult group. In each of these 19 combined datasets, the allometric scaling exponent for clearance was estimated using population pharmacokinetic modelling (nonmem 7.2). Results The allometric exponent for propofol clearance varied between 1.11 and 2.01 in cases where the neonate dataset was included. When two paediatric datasets were analyzed, the exponent varied between 0.2 and 2.01, while it varied between 0.56 and 0.81 when the adult population and a paediatric dataset except for neonates were selected. Scaling from adults to adolescents, children, infants and neonates resulted in exponents of 0.74, 0.70, 0.60 and 1.11 respectively. Conclusions For scaling clearance, ¾ allometric scaling may be of value for scaling between adults and adolescents or children, while it can neither be used for neonates nor for two paediatric populations. For scaling to neonates an exponent between 1 and 2 was identified. PMID:23772816

  18. Broad-Scale Latitudinal Variation in Female Reproductive Success Contributes to the Maintenance of a Geographic Range Boundary in Bagworms (Lepidoptera: Psychidae)

    PubMed Central

    Rhainds, Marc; Fagan, William F.

    2010-01-01

    Background Geographic range limits and the factors structuring them are of great interest to biologists, in part because of concerns about how global change may shift range boundaries. However, scientists lack strong mechanistic understanding of the factors that set geographic range limits in empirical systems, especially in animals. Methodology/Principal Findings Across dozens of populations spread over six degrees of latitude in the American Midwest, female mating success of the evergreen bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) declines from ∼100% to ∼0% near the edge of the species range. When coupled with additional latitudinal declines in fecundity and in egg and pupal survivorship, a spatial gradient of bagworm reproductive success emerges. This gradient is associated with a progressive decline in local abundance and an increased risk of local population extinction, up to a latitudinal threshold where extremely low female fitness meshes spatially with the species' geographic range boundary. Conclusions/Significance The reduction in fitness of female bagworms near the geographic range limit, which concords with the abundant centre hypothesis from biogeography, provides a concrete, empirical example of how an Allee effect (increased pre-reproductive mortality of females in sparsely populated areas) may interact with other demographic factors to induce a geographic range limit. PMID:21152445

  19. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  20. Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range

    USGS Publications Warehouse

    Benowitz, J.A.; Layer, P.W.; Armstrong, P.; Perry, S.E.; Haeussler, P.J.; Fitzgerald, P.G.; VanLaningham, S.

    2011-01-01

    40Ar/39Ar, apatite fission-track, and apatite (U-Th)/He thermochronological techniques were used to determine the Neogene exhumation history of the topographically asymmetric eastern Alaska Range. Exhumation cooling ages range from ~33 Ma to ~18 Ma for 40Ar/39Ar biotite, ~18 Ma to ~6 Ma for K-feldspar minimum closure ages, and ~15 Ma to ~1 Ma for apatite fission-track ages, and apatite (U-Th)/He cooling ages range from ~4 Ma to ~1 Ma. There has been at least ~11 km of exhumation adjacent to the north side of Denali fault during the Neogene inferred from biotite 40Ar/39Ar thermochronology. Variations in exhumation history along and across the strike of the fault are influenced by both far-field effects and local structural irregularities. We infer deformation and rapid exhumation have been occurring in the eastern Alaska Range since at least ~22 Ma most likely related to the continued collision of the Yakutat microplate with the North American plate. The Nenana Mountain region is the late Pleistocene to Holocene (~past 1 Ma) primary locus of tectonically driven exhumation in the eastern Alaska Range, possibly related to variations in fault geometry. During the Pliocene, a marked increase in climatic instability and related global cooling is temporally correlated with an increase in exhumation rates in the eastern Alaska Range north of the Denali fault system.

  1. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need for 21st Century Conservation Options [corrected].

    PubMed

    Fortini, Lucas B; Vorsino, Adam E; Amidon, Fred A; Paxton, Eben H; Jacobi, James D

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations. PMID:26509270

  2. Large scale 20mm photography for range resources analysis in the Western United States. [Casa Grande, Arizona, Mercury, Nevada, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.

    1977-01-01

    Large scale 70mm aerial photography is a valuable supplementary tool for rangeland studies. A wide assortment of applications were developed varying from vegetation mapping to assessing environmental impact on rangelands. Color and color infrared stereo pairs are useful for effectively sampling sites limited by ground accessibility. They allow an increased sample size at similar or lower cost than ground sampling techniques and provide a permanent record.

  3. Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black-Scholes model with transaction costs

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2011-05-01

    This paper deals with the problem of discrete time option pricing using the fractional Black-Scholes model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, the relation between scaling and implied volatility smiles is discussed.

  4. Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?

    PubMed

    van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph

    2012-12-01

    The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case. PMID:23368181

  5. Calibrating ADL-IADL scales to improve measurement accuracy and to extend the disability construct into the preclinical range: a systematic review

    PubMed Central

    2011-01-01

    Background Interest in measuring functional status among nondisabled older adults has increased in recent years. This is, in part, due to the notion that adults identified as 'high risk' for functional decline portray a state that is potentially easier to reverse than overt disability. Assessing relatively healthy older adults with traditional self-report measures (activities of daily living) has proven difficult because these instruments were initially developed for institutionalised older adults. Perhaps less evident, are problems associated with change scores and the potential for 'construct under-representation', which reflects the exclusion of important features of the construct (e.g., disability). Furthermore, establishing a formal hierarchy of functional status tells more than the typical simple summation of functional loss, and may have predictive value to the clinician monitoring older adults: if the sequence task difficulty is accelerated or out of order it may indicate the need for interventions. Methods This review identified studies that employed item response theory (IRT) to examine or revise functional status scales. IRT can be used to transform the ordinal nature of functional status scales to interval level data, which serves to increase diagnostic precision and sensitivity to clinical change. Furthermore, IRT can be used to rank items unequivocally along a hierarchy based on difficulty. It should be noted that this review is not concerned with contrasting IRT with more traditional classical test theory methodology. Results A systematic search of four databases (PubMed, Embase, CINAHL, and PsychInfo) resulted in the review of 2,192 manuscripts. Of these manuscripts, twelve met our inclusion/exclusion requirements and thus were targeted for further inspection. Conclusions Manuscripts presented in this review appear to summarise gerontology's best efforts to improve construct validity and content validity (i.e., ceiling effects) for scales measuring

  6. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs.

    PubMed

    Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F

    2013-05-28

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094

  7. A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry.

    PubMed

    Colonnier, Fabien; Manecy, Augustin; Juston, Raphaël; Mallot, Hanspeter; Leitel, Robert; Floreano, Dario; Viollet, Stéphane

    2015-04-01

    In this study, a miniature artificial compound eye (15 mm in diameter) called the curved artificial compound eye (CurvACE) was endowed for the first time with hyperacuity, using similar micro-movements to those occurring in the fly's compound eye. A periodic micro-scanning movement of only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold greater resolution than that imposed by the interommatidial angle. In this study, we developed a new algorithm merging the output of 35 local processing units consisting of adjacent pairs of artificial ommatidia. The local measurements performed by each pair are processed in parallel with very few computational resources, which makes it possible to reach a high refresh rate of 500 Hz. An aerial robotic platform with two degrees of freedom equipped with the active CurvACE placed over naturally textured panels was able to assess its linear position accurately with respect to the environment thanks to its efficient gaze stabilization system. The algorithm was found to perform robustly at different light conditions as well as distance variations relative to the ground and featured small closed-loop positioning errors of the robot in the range of 45 mm. In addition, three tasks of interest were performed without having to change the algorithm: short-range odometry, visual stabilization, and tracking contrasting objects (hands) moving over a textured background. PMID:25712307

  8. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

    PubMed Central

    Wiley, Anne E.; Ostrom, Peggy H.; Welch, Andreanna J.; Fleischer, Robert C.; Gandhi, Hasand; Southon, John R.; Stafford, Thomas W.; Penniman, Jay F.; Hu, Darcy; Duvall, Fern P.; James, Helen F.

    2013-01-01

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ15N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094

  9. Drift Rather than Selection Dominates MHC Class II Allelic Diversity Patterns at the Biogeographical Range Scale in Natterjack Toads Bufo calamita

    PubMed Central

    Zeisset, Inga; Beebee, Trevor J. C.

    2014-01-01

    Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with neutral genetic diversity at microsatellite loci in natterjack toad (Bufo (Epidalea) calamita) populations across the whole of the species’ biogeographical range. Variation at both classes of loci was high in the glacial refugium areas (REF) and much lower in postglacial expansion areas (PGE), especially in range edge populations. Although there was clear evidence that the MHC locus was influenced by positive selection in the past, congruence with the neutral markers suggested that historical demographic events were the main force shaping MHC variation in the PGE area. Both neutral and adaptive genetic variation declined with distance from glacial refugia. Nevertheless, there were also some indications from differential isolation by distance and allele abundance patterns that weak effects of selection have been superimposed on the main drift effect in the PGE zone. PMID:24937211

  10. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link. PMID:25430129

  11. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    SciTech Connect

    Tamborini, D. Portaluppi, D.; Villa, F.; Tosi, A.; Tisa, S.

    2014-11-15

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  12. Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2010-02-01

    This paper deals with the problem of discrete time option pricing by the fractional Black-Scholes model with transaction costs. By a mean self-financing delta-hedging argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price C(t,St) of an option under transaction costs is obtained as timestep δt=((, which can be used as the actual price of an option. In fact, C(t,St) is an adjustment to the volatility in the Black-Scholes formula by using the modified volatility σ√{2}(( to replace the volatility σ, where {k}/{σ}<(, H>{1}/{2} is the Hurst exponent, and k is a proportional transaction cost parameter. In addition, we also show that timestep and long-range dependence have a significant impact on option pricing.

  13. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  14. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Watanabe, Naoki

    2015-01-01

    Single-molecule speckle (SiMS) microscopy has been a powerful method to analyze actin dynamics in live cells by tracking single molecule of fluorescently labeled actin. Recently we developed a new SiMS method, which is easy-to-use for inexperienced researchers and achieves high spatiotemporal resolution. In this method, actin labeled with fluorescent DyLight dye on lysines is employed as a probe. Electroporation-mediated delivery of DyLight-actin (DL-actin) into cells enables to label cells with 100% efficiency at the optimal density. DL-actin labels cellular actin filaments including formin-based structures with improved photostability and brightness compared to green fluorescent protein-actin. These favorable properties of DL-actin extend time window of the SiMS analysis. Furthermore, the new SiMS method enables nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm. With these advantages, our new SiMS microscopy method will help researchers to investigate various actin remodeling processes. In this chapter, we introduce the methods for preparation of DL-actin probes, electroporation to deliver DL-actin, the SiMS imaging and data analysis. PMID:25640423

  15. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science

    NASA Astrophysics Data System (ADS)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; Pinto, R.; Auchère, F.; Harrison, R. A.; Eyles, C.; Gan, W.; Lamy, P.; Xia, L.; Eastwood, J. P.; Kong, L.; Wang, J.; Wimmer-Schweingruber, R. F.; Zhang, S.; Zong, Q.; Soucek, J.; An, J.; Prech, L.; Zhang, A.; Rochus, P.; Bothmer, V.; Janvier, M.; Maksimovic, M.; Escoubet, C. P.; Kilpua, E. K. J.; Tappin, J.; Vainio, R.; Poedts, S.; Dunlop, M. W.; Savani, N.; Gopalswamy, N.; Bale, S. D.; Li, G.; Howard, T.; DeForest, C.; Webb, D.; Lugaz, N.; Fuselier, S. A.; Dalmasse, K.; Tallineau, J.; Vranken, D.; Fernández, J. G.

    2016-08-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  16. INSTANT: a Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Sciences

    NASA Astrophysics Data System (ADS)

    Lavraud, B.; Liu, Y.

    2015-12-01

    We present a small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather sciences. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission concept is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. The INSTANT concept would be the first to (1) obtain measurements of coronal magnetic fields from space, and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would, in addition, uniquely track the whole chain of fundamental processes driving space weather. We present the science requirements, payload and mission profile which fulfill ambitious science objectives within small mission programmatic boundary conditions.

  17. Concurrent Validity of the Slosson Full-Range Intelligence Test: Comparison with the Wechsler Intelligence Scale for Children--Third Edition and the Woodcock Johnson Tests of Achievement-Revised.

    ERIC Educational Resources Information Center

    Bell, Nancy L.; Rucker, Marggi; Finch, A. J., Jr.; Alexander, Joanne

    2002-01-01

    Examines the concurrent validity of the Slosson Full-Range Intelligence Test (S-FRIT) by comparing S-FRIT scores to the scores of the Wechsler Intelligence Scale for Children-Third Edition (WISC-III) and the Woodcock-Johnson Tests of Achievement-Revised (WJ-R). Results revealed that the S-FRIT scores were more related to overall intelligence,…

  18. A large, long-lived structure near the trojan L5 point in the post common-envelope binary SDSS J1021+1744

    NASA Astrophysics Data System (ADS)

    Irawati, P.; Richichi, A.; Bours, M. C. P.; Marsh, T. R.; Sanguansak, N.; Chanthorn, K.; Hermes, J. J.; Hardy, L. K.; Parsons, S. G.; Dhillon, V. S.; Littlefair, S. P.

    2016-03-01

    SDSS J1021+1744 is a detached, eclipsing white dwarf/M dwarf binary discovered in the Sloan Digital Sky Survey (SDSS). Outside the primary eclipse, the light curves of such systems are usually smooth and characterized by low-level variations caused by tidal distortion and heating of the M star component. Early data on SDSS J1021+1744 obtained in 2012 June were unusual in showing a dip in flux of uncertain origin shortly after the white dwarf's eclipse. Here we present high-time resolution, multiwavelength observations of 35 more eclipses over 1.3 yr, showing that the dip has a lifetime extending over many orbits. Moreover the `dip' is in fact a series of dips that vary in depth, number and position, although they are always placed in the phase interval 1.06-1.26 after the white dwarf's eclipse, near the L5 point in this system. Since SDSS J1021+1744 is a detached binary, it follows that the dips are caused by the transit of the white dwarf by material around the Lagrangian L5 point. A possible interpretation is that they are the signatures of prominences, a phenomenon already known from H α observations of rapidly rotating single stars as well as binaries. What makes SDSS J1021+1744 peculiar is that the material is dense enough to block continuum light. The dips appear to have finally faded out around 2015 May after the first detection by Parsons et al. in 2012, suggesting a lifetime of years.

  19. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  20. Meso-scale cooling effects of high albedo surfaces: Analysis of meteorological data from White Sands National Monument and White Sands Missile Range

    SciTech Connect

    Fishman, B.; Taha, H.; Akbari, H.

    1994-05-20

    Urban summer daytime temperatures often exceed those of the surrounding rural areas. Summer ``urban heat islands`` are caused by dark roofs and paved surfaces as well as the lack of vegetation. Researchers at Lawrence Berkeley Laboratory are interested in studying the effects of increasing the albedo of roof tops and paved surfaces in order to reduce the impacts of summer urban heat islands. Increasing the albedo of urban surfaces may reduce this heat island effect in two ways, directly and indirectly. The direct effect involves reducing surface temperature and, therefore, heat conduction through the building envelope. This effect of surface albedo on surface temperatures is better understood and has been quantified in several studies. The indirect effect is the impact of high albedo surfaces on the near surface air temperatures. Although the indirect effect has been modeled for the Los Angeles basin by Sailor, direct field observations are required. The objective of this report is to investigate the meso-scale climate of a large high albedo area and identify the effects of albedo on the near surface air temperature. To accomplish this task, data from several surface weather stations at White Sands, New Mexico were analyzed. This report is organized into six sections in addition to this introduction. The first gives the general geological, topographic, and meteorological background of White Sands. The second is a discussion of the basic surface meteorology of the White Sands region. This section is followed by a general discussion of the instrumentation and available data. The fourth section is a description of the method used for data analyis. The fifth section which presents the results of this analysis. Finally, the last section is the summary and conclusion, where a discussion of the results is presented.

  1. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L.

    PubMed Central

    2012-01-01

    Background Factors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. Results Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. Conclusions The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1) that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2) that the genetic discontinuities at secondary contact zones (and elsewhere) are maintained despite

  2. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  3. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome. PMID:22667655

  4. Gravity Fields Generation In The Universe By The Large Range of Scales Convection Systems In Planets, Stars, Black Holes and Galaxies Based On The "Convection Bang Hypothesis"

    NASA Astrophysics Data System (ADS)

    Gholibeigian, H.; Amirshahkarami, A.; Gholibeigian, K.

    2015-12-01

    In our vision it is believed that the Big Bang was Convection Bang (CB). When CB occurred, a gigantic large-scale forced convection system (LFCS) began to create space-time including gravitons and gluons in more than light speed. Then, simultaneously by a swirling wild wind, created inflation process including many quantum convection loops (QCL) in locations which had more density of temperature and energetic particles like gravitons. QCL including fundamental particles, grew and formed black holes (BHs) as the core of galaxies. LFCSs of heat and mass in planets, stars, BHs and galaxies generate gravity and electromagnetic fields and change the properties of matter and space-time around the systems. Mechanism: Samples: 1- Due to gravity fields of Sun and Moon, Earth's inner core is dislocated toward them and rotates around the Earth's center per day and generates LFCSs, Gholibeigian [AGU, 2012]. 2- Dislocated Sun's core due to gravity fields of planets/ Jupiter, rotates around the Sun's center per 25-35 days and generates LFCSs, Gholibeigian [EGU, 2014]. 3- If a planet/star falls into a BH, what happens? It means, its dislocated core rotates around its center in less than light speed and generates very fast LFCS and friction, while it is rotating/melting around/inward the center of BH. Observable Factors: 1- There is not logical relation between surface gravity fields of planets/Sun and their masses (general relativity); see Planetary Fact Sheet/Ratio to Earth Values-NASA: Earth: mass/gravity =1/1, Jupiter=317.8/2.36, Neptune=17.1/1.12, Saturn=95.2/0.916, Moon=0.0128/0.166, Sun=333000/28. 2- Convective systems in thunderstorms help bring ozone down to Earth [Brian-Kahn]. 3- In 12 surveyed BHs, produced gravity force & magnetic field strength were matched (unique LFCS source) [PhysOrg - June 4, 2014]. Justification: After BB/CB, gravitons were created without any other masses and curvature of space-time (general relativity), but by primary gigantic convection

  5. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    NASA Astrophysics Data System (ADS)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  6. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents.

    PubMed

    Mailler, R; Gasperi, J; Coquet, Y; Deshayes, S; Zedek, S; Cren-Olivé, C; Cartiser, N; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2015-04-01

    The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (<60%), such as ibuprofen, paracetamol or estrone, while 9 are very well removed (>80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to μg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing

  7. Analysis of long-wavelength signals in InSAR to resolve large-scale deformation: Application to the Western Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Amelung, F.; Greene, F.; Wdowinski, S.

    2012-12-01

    We present the contemporary velocity field in the western Basin and Range province observed by satellite radar imagery. We use 18 years of ERS 1,2 and Envisat data to study 5 descending swaths nearly 600 to 700 km long. We followed the Small Baseline Subset (SBAS) algorithm to generate time series of ground displacements and average velocities. We only exploit pixels of the interferograms, which remain coherent through time in the SAR dataset. Our time-series mean velocity maps show a broad area of uplift located in Central Nevada Seismic Belt (CNSB) with velocities as high as 2 to 3 mm/yr. Previous studies based on 9 years of SAR data explained this uplift as postseismic mantle relaxation after a sequence of four earthquakes (M ~ 7) that occurred in the first half of the 20th century. After increasing the spatial and temporal coverage of SAR imagery, results indicate that the velocity is slowing down during the decade covered by Envisat and post-2000 ERS 2 acquisitions. Unfortunately, long-wavelength noise is introduced to InSAR data from uncertainties in the satellite orbits, and an improper estimation and removal of these artifacts can lead to significant error in the estimated displacements. To understand how these errors affect our results we produce time-series in non-deforming areas and analyze long-wavelength residuals in terms of vertical and horizontal baseline errors, however ERS SAR imagery in non-deforming areas is limited in temporal and spatial coverage. We thus extend our analysis of ERS data using InSAR time-series near the Nevada-Utah border, were we expect to observe low rates of deformation. Finally we perform an analysis of short and long-wavelength signals for all the overlapping areas of the adjacent tracks localized between CNSB and the Nevada-Utah border. The error distribution in areas with low rates or no deformation is valuable for the assessment of the apparent deformation signal observed at CNSB.

  8. Range and range rate system

    NASA Technical Reports Server (NTRS)

    Graham, Olin L. (Inventor); Russell, Jim K. (Inventor); Epperly, Walter L. (Inventor)

    1988-01-01

    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera.

  9. Free-Flight Tests of 0.11-Scale North American F-100 Airplane Wings to Investigate the Possibility of Flutter in Transonic Speed Range at Varying Angles of Attack

    NASA Technical Reports Server (NTRS)

    O'Kelly, Burke R.

    1954-01-01

    Free-flight tests in the transonic speed range utilizing rocketpropelled models have been made on three pairs of 0.11-scale North American F-100 airplane wings having an aspect ratio of 3.47, a taper ratio of 0.308, 45 degree sweepback at the quarter-chord line, and thickness ratios of 31 and 5 percent to investigate the possibility of flutte r. Data from tests of two other rocket-propelled models which accidentally fluttered during a drag investigation of the North American F-100 airplane are also presented. The first set of wings (5 percent thick) was tested on a model which was disturbed in pitch by a moving tail and reached a maximum Mach number of 0.85. The wings encountered mild oscillations near the first - bending frequency at high lift coefficients. The second set of wings 9 percent thick was tested up to a maximum Mach number of 0.95 at (2) angles of attack provided by small rocket motors installed in the nose of the model. No oscillations resembling flutter were encountered during the coasting flight between separation from the booster and sustainer firing (Mach numbers from 0.86 to 0.82) or during the sustainer firing at accelerations of about 8g up to the maximum Mach number of the test (0.95). The third set of wings was similar to the first set and was tested up to a maximum Mach number of 1.24. A mild flutter at frequencies near the first-bending frequency of the wings was encountered between a Mach number of 1.15 and a Mach number of 1.06 during both accelerating and coasting flight. The two drag models, which were 0.ll-scale models of the North American F-100 airplane configuration, reached a maximum Mach number of 1.77. The wings of these models had bending and torsional frequencies which were 40 and 89 percent, respectively, of the calculated scaled frequencies of the full-scale 7-percent-thick wing. Both models experienced flutter of the same type as that experienced-by the third set of wings.

  10. Approach to spatialize local to long-range atmospheric metal input (Cd, Cu, Hg, Pb) in epiphytic lichens over a meso-scale area (Pyrénées-Atlantiques, southwestern France).

    PubMed

    Barre, Julien P G; Deletraz, Gaëlle; Frayret, Jérôme; Pinaly, Hervé; Donard, Olivier F X; Amouroux, David

    2015-06-01

    Geographically based investigations into atmospheric bio-monitoring usually provide information on concentration or occurrence data and spatial trends of specific contaminants over a specified study area. In this work, an original approach based on geographic information system (GIS) was used to establish metal contents (Hg, Cu, Pb, and Cd) in epiphytic lichens from 90 locations as atmospheric bio-monitors over a meso-scale area (Pyrénées-Atlantiques, southwestern France). This approach allows the integration of the heterogeneity of the territory and optimization of the sampling sites based on both socioeconomical and geophysical parameters (hereafter defined as urban, industrial, agricultural, and forested areas). The sampling strategy was first evaluated in several sites (n = 15) over different seasons and years in order to follow the temporal variability of the atmospheric metal input in lichens. The results demonstrate that concentration ranges remain constant over different sampling periods in "rural" areas (agricultural and forested). Higher variability is observed in the "anthropized" urban and industrial areas in relation to local atmospheric inputs. In this context, metal concentrations in lichens over the whole study show that (1) Hg and Cd are homogeneous over the whole territory (0.14 ± 0.04 and 0.38 ± 0.26 mg/kg, respectively), whereas (2) Cu and Pb are more concentrated in "anthropized" areas (9.3 and 11.9 mg/kg, respectively) than in "rural" ones (6.8 and 6.0 mg/kg, respectively) (Kruskall-Wallis, K(Cu) = 13.7 and K(Pb) = 9.7, p < 0.00001). They also showed a significant local enrichment for all metals in many locations in the Pays Basque (West) mainly due to metal and steel industrial activities. This confirms the local contribution of this contamination source over a wider geographic scale. A multiple linear regression model was applied to give an integrated spatialization of the data. This showed significant

  11. Impacts of long-range transport and local emissions on California near-surface ozone and sulfur oxides during the ARCTAS period--A multi-scale modeling study

    NASA Astrophysics Data System (ADS)

    Huang, M.; Carmichael, G. R.; Spak, S.; Adhikary, B.; Kulkarni, S.; Cheng, Y.; Wei, C.; Tang, Y.; Parrish, D. D.; Oltmans, S. J.; D'Allura, A.; Wennberg, P. O.; Huey, L. G.; Dibb, J. E.; Jimenez, J. L.; Weinheimer, A. J.; Kaduwela, A.; Cai, C.; Wong, M.; Pierce, R.; Al-Saadi, J. A.; Streets, D. G.; Zhang, Q.

    2010-12-01

    Chronic ozone (O3) problems over California (CA) and other states at the U. S. west coast are affected by both long-range transport and local emissions. Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of the long-range transported background from the eastern Pacific as well as the contribution of local emission sources on CA near-surface O3 levels during the ARCTAS experiment conducted in 2008. The coastal O3 vertical structures and coastal-inland transport patterns and are compared during spring (April) and summer (June-July) times by using correlation and trajectory studies. The sensitivity of model-predicted O3 to lateral boundary conditions (LBC) during summertime transport events is shown high and model predictions can be improved by using real-time global LBC that assimilated satellite observations and the NASA DC-8 flight observations. To discuss climate impacts on the long-range and coastal-inland transport patterns, we discuss sensitivity simulations by only replacing the meteorological fields and average LBCs respectively with situations in a 2002 case when the sea surface temperature (SST) anomaly differed from the ARCTAS periods. Biogenic, wildfire and maritime emissions to CA near-surface O3 levels are quantified by sensitivity simulations. Results vary in different model configurations but generally CA biogenic and fire emissions contribute 3-4 ppb to near-surface O3 over the South Coast (SC), with larger contribution to the Central Valley (up to ~12-15 ppb). Maritime emissions modify the NOx-VOC limitations and increase the mean flight-time (up to 3 ppb) and daily maximum O3 (up to 7-9 ppb) over the SC where one third of the cargo containers to the U. S. arrive. The contributions of transport and local emissions on California’s increasing sulfur oxides (SOx=SO2+SO4) ambient concentrations are also discussed. During the ARCTAS-CARB period the enhanced near-surface SOx levels

  12. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    . Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.

  13. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  14. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  15. Inertial Range Dynamics in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1996-01-01

    L'vov and Falkovich have shown that the dimensionally possible inertial range scaling laws for Boussinesq turbulence, Kolmogorov and Bolgiano scaling, describe steady states with constant flux of kinetic energy and of entropy respectively. These scaling laws are treated as similarity solutions of the direct interaction approximation for Boussinesq turbulence. The Kolmogorov scaling solution corresponds to a weak perturbation by gravity of a state in which the temperature is a passive scalar but in which a source of temperature fluctuations exists. Using standard inertial range balances, the renormalized viscosity and conductivity, turbulent Prandtl number, and spectral scaling law constants are computed for Bolgiano scaling.

  16. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    PubMed

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  17. Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot

    USGS Publications Warehouse

    Wells, Ray; Bukry, David; Friedman, Richard; Pyle, Douglas; Duncan, Robert; Haeussler, Peter; Wooden, Joe

    2014-01-01

    Siletzia is a basaltic Paleocene and Eocene large igneous province in coastal Oregon, Washington, and southern Vancouver Island that was accreted to North America in the early Eocene. New U-Pb magmatic, detrital zircon, and 40Ar/39Ar ages constrained by detailed field mapping, global nannoplankton zones, and magnetic polarities allow correlation of the volcanics with the 2012 geologic time scale. The data show that Siletzia was rapidly erupted 56–49 Ma, during the Chron 25–22 plate reorganization in the northeast Pacific basin. Accretion was completed between 51 and 49 Ma in Oregon, based on CP11 (CP—Coccolith Paleogene zone) coccoliths in strata overlying onlapping continental sediments. Magmatism continued in the northern Oregon Coast Range until ca. 46 Ma with the emplacement of a regional sill complex during or shortly after accretion. Isotopic signatures similar to early Columbia River basalts, the great crustal thickness of Siletzia in Oregon, rapid eruption, and timing of accretion are consistent with offshore formation as an oceanic plateau. Approximately 8 m.y. after accretion, margin parallel extension of the forearc, emplacement of regional dike swarms, and renewed magmatism of the Tillamook episode peaked at 41.6 Ma (CP zone 14a; Chron 19r). We examine the origin of Siletzia and consider the possible role of a long-lived Yellowstone hotspot using the reconstruction in GPlates, an open source plate model. In most hotspot reference frames, the Yellowstone hotspot (YHS) is on or near an inferred northeast-striking Kula-Farallon and/or Resurrection-Farallon ridge between 60 and 50 Ma. In this configuration, the YHS could have provided a 56–49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed contemporaneously on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time

  18. Incorporating maps of leaf chlorophyll in a thermal-based two-source energy balance scheme for mapping coupled fluxes of carbon and water exchange at a range of scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A light-use efficiency (LUE) based model of canopy resistance was recently implemented within a thermal-based Two-Source Energy Balance (TSEB) scheme facilitating coupled simulations of land-surface fluxes of water, energy and CO2 exchange from field to regional scales (Anderson et al., 2008). The L...

  19. Value-Eroding Teacher Behaviors Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Arseven, Zeynep; Kiliç, Abdurrahman; Sahin, Seyma

    2016-01-01

    In the present study, it is aimed to develop a valid and reliable scale for determining value-eroding behaviors of teachers, hence their values of judgment. The items of the "Value-eroding Teacher Behaviors Scale" were designed in the form of 5-point likert type rating scale. The exploratory factor analysis (EFA) was conducted to…

  20. Preparing Attitude Scale to Define Students' Attitudes about Environment, Recycling, Plastic and Plastic Waste

    ERIC Educational Resources Information Center

    Avan, Cagri; Aydinli, Bahattin; Bakar, Fatma; Alboga, Yunus

    2011-01-01

    The aim of this study is to introduce an attitude scale in order to define students? attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of…

  1. Nuclear scales

    SciTech Connect

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  2. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W., Jr.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  3. Telemetry Ranging: Concepts

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2015-11-01

    Telemetry ranging is a proposed alternative to conventional two-way ranging for determining the two-way time delay between a Deep Space Station (DSS) and a spacecraft. The advantage of telemetry ranging is that the ranging signal on the uplink is not echoed to the downlink, so that telemetry alone modulates the downlink carrier. The timing information needed on the downlink, in order to determine the two-way time delay, is obtained from telemetry frames. This article describes the phase and timing estimates required for telemetry ranging, and how two-way range is calculated from these estimates. It explains why the telemetry ranging architecture does not require the spacecraft transponder to have a high-frequency or high-quality oscillator, and it describes how a telemetry ranging system can be infused in the Deep Space Network.

  4. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  5. SAR ambiguous range suppression.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  6. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  7. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  8. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements.

    PubMed

    Markovic, B; Tamborini, D; Villa, F; Tisa, S; Tosi, A; Zappa, F

    2012-07-01

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB(rms). The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps(rms) (i.e., 36 ps(FWHM)) and in photon timing mode it is still better than 70 ps(FWHM). The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc. PMID:22852708

  9. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    NASA Astrophysics Data System (ADS)

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2012-07-01

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSBrms. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 psrms (i.e., 36 psFWHM) and in photon timing mode it is still better than 70 psFWHM. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  10. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    SciTech Connect

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2012-07-15

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  11. Developing a Scale for Quality of Using Learning Strategies

    ERIC Educational Resources Information Center

    Tasci, Guntay; Yurdugul, Halil

    2016-01-01

    This study aims to develop a measurement tool to measure the quality of using learning strategies. First, the quality of using learning strategies was described based on the literature. The 32 items in the 5-point Likert scale were then administered to 320 prospective teachers, and they were analysed with exploratory factor analysis using…

  12. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  13. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  14. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  15. Final report on CCT-K6: Comparison of local realisations of dew-point temperature scales in the range -50 °C to +20 °C

    NASA Astrophysics Data System (ADS)

    Bell, S.; Stevens, M.; Abe, H.; Benyon, R.; Bosma, R.; Fernicola, V.; Heinonen, M.; Huang, P.; Kitano, H.; Li, Z.; Nielsen, J.; Ochi, N.; Podmurnaya, O. A.; Scace, G.; Smorgon, D.; Vicente, T.; Vinge, A. F.; Wang, L.; Yi, H.

    2015-01-01

    A key comparison in dew-point temperature was carried out among the national standards held by NPL (pilot), NMIJ, INTA, VSL, INRIM, MIKES, NIST, NIM, VNIIFTRI-ESB and NMC. A pair of condensation-principle dew-point hygrometers was circulated and used to compare the local realisations of dew point for participant humidity generators in the range -50 °C to +20 °C. The duration of the comparison was prolonged by numerous problems with the hygrometers, requiring some repairs, and several additional check measurements by the pilot. Despite the problems and the extended timescale, the comparison was effective in providing evidence of equivalence. Agreement with the key comparison reference value was achieved in the majority of cases, and bilateral degrees of equivalence are also reported. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  17. Cross-scale morphology

    USGS Publications Warehouse

    Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.

    2013-01-01

    The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.

  18. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  19. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  20. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  1. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period. PMID:12167846

  2. The Arabic Scale of Death Anxiety (ASDA): Its Development, Validation, and Results in Three Arab Countries

    ERIC Educational Resources Information Center

    Abdel-Khalek, Ahmed M.

    2004-01-01

    The Arabic Scale of Death Anxiety (ASDA) was constructed and validated in a sample of undergraduates (17-33 yrs) in 3 Arab countries, Egypt (n = 418), Kuwait (n = 509), and Syria (n = 709). In its final form, the ASDA consists of 20 statements. Each item is answered on a 5-point intensity scale anchored by 1: No, and 5: Very much. Alpha…

  3. The X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.

    1998-01-01

    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.

  4. Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Finger, M. H.

    1990-01-01

    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.

  5. Snowy Range Wilderness, Wyoming

    SciTech Connect

    Houston, R.S.; Bigsby, P.R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness was undertaken by the USGS and USBM in 1976-1978 and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, we conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  6. Full range resistive thermometers

    NASA Astrophysics Data System (ADS)

    Olivieri, E.; Rotter, M.; De Combarieu, M.; Forget, P.; Marrache-Kikuchi, C.; Pari, P.

    2015-12-01

    Resistive thermometers are widely used in low temperature physics, thanks to portability, simplicity of operation and reduced size. The possibility to precisely follow the temperature from room temperature down to the mK region is of major interest for numerous applications, although no single thermometer can nowadays cover this entire temperature range. In this article we report on a method to realize a full range thermometer, capable to measure, by itself, temperatures in the whole above-cited temperature range, with constant sensitivity and sufficient precision for the typical cryogenic applications. We present here the first results for three different full range thermometer prototypes. A detailed description of the set-up used for measurements and characterization is also reported.

  7. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  8. Long-range atmospheric predictability

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas Josef

    This study investigated the prospects and limits of global atmospheric predictability on the long range (beyond 2 weeks). Forecasting the atmosphere at this range is very challenging since elements of both weather and climate prediction enter the problem. The basic questions were: (1) how large is long-range predictability with perfect model and data; (2) how sensitive is such predictability to uncertainties in model and data; (3) which atmospheric processes are related to this predictability? These questions were answered through numerical experiments with an atmospheric general circulation model which is forced with different combinations of initial and boundary conditions. In particular, four tasks were accomplished: First, temporal variations of predictability and its relationship to initial and boundary conditions were examined. On average, initial conditions dominated predictability for the first 4 weeks, improved predictability for 6 weeks, and influenced predictability for 8 weeks. These time scales varied with season, region, and strength of the external forcing. Second, the global 3-dimensional structure of predictability was examined. Boundary forcing dominated over the tropics, and over the two main teleconnection regions in the North and South Pacific. Initial conditions influenced predictability almost everywhere, in particular when the external forcing was weak. This was mostly related to atmospheric persistence, which in turn was linked to low-frequency variability of major atmospheric modes. Third, predictability in the tropics was investigated for monthly means. Boundary forcing is generally dominating for this time scale, and its quality is crucial. The atmospheric response was strongly asymmetric to SST forcing, which suggests that tropical convection has a positive self-amplifying feedback. Initial conditions were also important, in particular over the Eastern Hemisphere. This was related to strong persistence of the divergent circulation and

  9. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  10. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  11. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  12. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  13. Modeling brain circuitry over a wide range of scales

    PubMed Central

    Fua, Pascal; Knott, Graham W.

    2015-01-01

    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation. PMID:25904852

  14. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  15. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  16. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  17. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  18. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  19. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  20. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  1. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  2. Space-Based Range

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  3. The Dissipation Range in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1999-01-01

    The dissipation range energy balance of the direct interaction approximation is applied to rotating turbulence when rotation effects persist well into the dissipation range. Assuming that RoRe (exp 1/2) is much less than 1 and that three-wave interactions are dominant, the dissipation range is found to be concentrated in the wavevector plane perpendicular to the rotation axis. This conclusion is consistent with previous analyses of inertial range energy transfer in rotating turbulence, which predict the accumulation of energy in those scales.

  4. Extended inertial range phenomenology of magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, William H.; Zhou, YE

    1989-01-01

    A phenomenological treatment of the inertial range of isotropic statistically steady magnetohydrodynamic turbulence is presented, extending the theory of Kraichnan (1965). The role of Alfven wave propagation is treated on equal footing with nonlinear convection, leading to a simple generalization of the relations between the times characteristic of wave propagation, convection, energy transfer, and decay of triple correlations. The theory leads to a closed-form steady inertial range spectral law that reduces to the Kraichnan and Kolmogorov laws in appropriate limits. The Kraichnan constant is found to be related in a simple way to the Kolmogorov constant; for typical values of the latter constant, the former has values in the range 1.22-1.87. Estimates of the time scale associated with spectral transfer of energy also emerge from the new approach, generalizing previously presented 'golden rules' for relating the spectral transfer time scale to the Alfven and eddy-turnover time scales.

  5. Medium Range Forecasts Representation (and Long Range Forecasts?)

    NASA Astrophysics Data System (ADS)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  6. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  7. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  8. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  9. Organic sonobuoy ranging

    NASA Astrophysics Data System (ADS)

    Felgate, Nick

    2002-11-01

    It is important that military vessels periodically check their passive signatures for vunerabilities. Traditionally, this is undertaken on a fixed range (e.g., AUTEC, BUTEC) with low noise conditions. However, for operational and cost reasons it is desirable to be able to undertake such measurements while the asset is operating in other areas using expendable buoys deployed by the vessel itself. As well as the wet-end hardware for such organic sonobuoy ranging systems (e.g., calibrated sonobuoys, calibrated data uplink channels), careful consideration is needed of the signal-processing required in the harsher environmental conditions of the open ocean. In particular, it is noted that the open ocean is usually much noisier, and the propagation conditions more variable. To overcome signal-to-noise problems, techniques such as Doppler-correction, zero-padding/peak-picking, and noise estimation/correction techniques have been developed to provide accurate and unbiased estimates of received levels. To estimate propagation loss for source level estimation, a model of multipath effects has been included with the ability for analysts to compare predicted and observed received levels against time/range and adjust modeling parameters (e.g., surface loss, bottom loss, source depth) to improve the fit.

  10. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  11. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  12. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  13. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  14. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  15. Monocular visual ranging

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  16. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  17. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  18. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  19. The Development of Will Perception Scale and Practice in a Psycho-Education Program with Its Validity and Reliability

    ERIC Educational Resources Information Center

    Yener, Özen

    2014-01-01

    In this research, we aim to develop a 5-point likert scale and use it in an experimental application by performing its validity and reliability in order to measure the will perception of teenagers and adults. With this aim, firstly the items have been taken either in the same or changed way from various scales and an item pool including 61 items…

  20. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  1. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  2. LANDSCAPE CONNECTIVITY: DIFFERENT FUNCTIONS AT DIFFERENT SCALES

    EPA Science Inventory

    Connectivity is more than corridors, and corridors are more than linear strips of habitat. ather, connectivity involves linkages of habitats, species, communities, and ecological processes at spatial scales ranging from fencerows to biomes, and at temporal scales ranging from dai...

  3. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  4. Evaluation of biogeographical factors in the native range to improve the success of biological control agents in the introduced range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biogeographical factors associated with Arundo donax in its native range were evaluated in reference to its key herbivore, an armored scale, Rhizaspidiotus donacis. Climate modeling from location data in Spain and France accurately predicted the native range of the scale in the warmer, drier parts o...

  5. Observation of scaling violations in scaled momentum distributions at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mań Czak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zsolararnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; MacDonald, N.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Lancaster, M.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-11-01

    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of x and Q2 using the ZEUS detector. The evolution of the scaled momentum, xp, with Q2, in the range 10 to 1280 GeV2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2.

  6. Evaluation of Social Cognitive Scaling Response Options in the Physical Activity Domain

    ERIC Educational Resources Information Center

    Rhodes, Ryan E.; Matheson, Deborah Hunt; Mark, Rachel

    2010-01-01

    The purpose of this study was to compare the reliability, variability, and predictive validity of two common scaling response formats (semantic differential, Likert-type) and two numbers of response options (5-point, 7-point) in the physical activity domain. Constructs of the theory of planned behavior were chosen in this analysis based on its…

  7. The development of a noise annoyance scale for rating residential noises

    NASA Astrophysics Data System (ADS)

    Ryu, Jong Kwan; Jeon, Jin Yong

    2005-09-01

    In this study, 5-point and 7-point verbal noise annoyance scales were developed. The 5-point annoyance scale for outside environmental noise was developed from a survey conducted in four Korean cities. An auditory experiment using residential noises such as airborne, bathroom drainage, and traffic noises was conducted to compare the effectiveness of the 5-point and 7-point scales for rating residential indoor noise. Result showed that the 7-point scale yielded more detailed responses to indoor residential noise. In addition, auditory experiments were conducted to develop a noise annoyance scale for the classification of common residential noises. The modifiers used in the scales were selected according to the method proposed by ICBEN (International Commission on the Biological 12Effect of Noise) Team 6. As a result, the difference between the intensity of 21 modifiers investigated in the survey and the auditory experiment was very small. It was also found that the intensity of the selected modifiers in the 7-point noise annoyance scale was highly correlated with noise levels, and that the intensity difference between each pair of successive levels in the 7-point annoyance scale was almost identical.

  8. Recent results on short-range gravity experiment

    NASA Astrophysics Data System (ADS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-10-01

    According to the ADD model [1], deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  9. Reference Ranges & What They Mean

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Reference Ranges and What They Mean Share this page: Was this page helpful? Overview | Reference range defined | Where are the reference ranges? | Limits ...

  10. Development of emotional stability scale

    PubMed Central

    Chaturvedi, M.; Chander, R.

    2010-01-01

    Background: Emotional stability remains the central theme in personality studies. The concept of stable emotional behavior at any level is that which reflects the fruits of normal emotional development. The study aims at development of an emotional stability scale. Materials and Methods: Based on available literature the components of emotional stability were identified and 250 items were developed, covering each component. Two-stage elimination of items was carried out, i.e. through judges’ opinions and item analysis. Results: Fifty items with highest ‘t’ values covering 5 dimensions of emotional stability viz pessimism vs. optimism, anxiety vs. calm, aggression vs. tolerance., dependence vs. autonomy., apathy vs. empathy were retained in the final scale. Reliability as checked by Cronbach's alpha was .81 and by split half method it was .79. Content validity and construct validity were checked. Norms are given in the form of cumulative percentages. Conclusion: Based on the psychometric principles a 50 item, self-administered 5 point Lickert type rating scale was developed for measurement of emotional stability. PMID:21694789

  11. Critical Hamiltonians with long range hopping

    NASA Astrophysics Data System (ADS)

    Levitov, L. S.

    1999-11-01

    Critical states are studied by a real space RG in the problem with strong diagonal disorder and long range power law hopping. The RG ow of the distribution of coupling parameters is characterized by a family of non-trivial fix points. We consider the RG flow of the distribution of participation ratios of eigenstates. Scaling of participation ratios is sensitive to the nature of the RG fix point. For some fix points, scaling of participation ratios is characterized by a distribution of exponents, rather than by a single exponent.The RG method can be generalized to treat certain fermionic Hamiltonians with disorder and long range hopping. We derive the RG for a model of interacting two-level systems. Besides couplings, in this problem the RG includes the density of states. The density of states is renormalized so that it develops a singularity near zero energy.

  12. Increasing dual band infrared zoom ranges

    NASA Astrophysics Data System (ADS)

    Vizgaitis, Jay

    2015-09-01

    Pixel binning actively changes the pixel size of a detector element in an optical system. When combined with a fixed focal length lens it has the same effect on field of view as changing the focal length of a lens with a fixed pixel size. The change in pixel size scales the instantaneous field of view, and if the size of the FPA scales equally, so does the field of view. This capability can be combined with traditional optical zoom lenses to significantly increase the overall zoom range of an optical system. In a multi-spectral, dual band zoom lens, the combination of optical and pixel zoom reduces the complexity of the optics while significantly increasing the overall zoom range. The benefits of combining both optical and pixel zoom in a dual band infrared system is explored in this paper.

  13. Comparing the theoretical versions of the Beaufort scale, the T-Scale and the Fujita scale

    NASA Astrophysics Data System (ADS)

    Meaden, G. Terence; Kochev, S.; Kolendowicz, L.; Kosa-Kiss, A.; Marcinoniene, Izolda; Sioutas, Michalis; Tooming, Heino; Tyrrell, John

    2007-02-01

    2005 is the bicentenary of the Beaufort Scale and its wind-speed codes: the marine version in 1805 and the land version later. In the 1920s when anemometers had come into general use, the Beaufort Scale was quantified by a formula based on experiment. In the early 1970s two tornado wind-speed scales were proposed: (1) an International T-Scale based on the Beaufort Scale; and (2) Fujita's damage scale developed for North America. The International Beaufort Scale and the T-Scale share a common root in having an integral theoretical relationship with an established scientific basis, whereas Fujita's Scale introduces criteria that make its intensities non-integral with Beaufort. Forces on the T-Scale, where T stands for Tornado force, span the range 0 to 10 which is highly useful world wide. The shorter range of Fujita's Scale (0 to 5) is acceptable for American use but less convenient elsewhere. To illustrate the simplicity of the decimal T-Scale, mean hurricane wind speed of Beaufort 12 is T2 on the T-Scale but F1.121 on the F-Scale; while a tornado wind speed of T9 (= B26) becomes F4.761. However, the three wind scales can be uni-fied by either making F-Scale numbers exactly half the magnitude of T-Scale numbers [i.e. F'half = T / 2 = (B / 4) - 4] or by doubling the numbers of this revised version to give integral equivalence with the T-Scale. The result is a decimal formula F'double = T = (B / 2) - 4 named the TF-Scale where TF stands for Tornado Force. This harmonious 10-digit scale has all the criteria needed for world-wide practical effectiveness.

  14. Causality and the effective range expansion

    SciTech Connect

    Hammer, H.-W.; Lee, Dean

    2010-10-15

    We derive the generalization of Wigner's causality bounds and Bethe's integral formula for the effective range parameter to arbitrary dimension and arbitrary angular momentum. We also discuss the impact of these constraints on the separation of low- and high-momentum scales and universality in low-energy scattering. Some of our results were summarized earlier in a letter publication. In this work, we present full derivations and several detailed examples.

  15. Inertial range turbulence in kinetic plasmas

    SciTech Connect

    Howes, Gregory G.

    2008-05-15

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) The conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

  16. Pulse spreading and range correction analysis for satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Schwartz, Jon A.

    1990-01-01

    The pulse spreading resulting from light detection and ranging measurements of the range to earth-orbiting satellites is described. An analysis quantifying this pulse spreading and the calculation of corrections to be applied to the lidar range determination of satellites is detailed.

  17. Pulse spreading and range correction analysis for satellite laser ranging.

    PubMed

    Schwartz, J A

    1990-09-01

    The pulse spreading resulting from light detection and ranging measurements of the range to earth-orbiting satellites is described. An analysis quantifying this pulse spreading and the calculation of corrections to be applied to the lidar range determination of satellites is detailed. PMID:20567459

  18. Maslowian Scale.

    ERIC Educational Resources Information Center

    Falk, C.; And Others

    The development of the Maslowian Scale, a method of revealing a picture of one's needs and concerns based on Abraham Maslow's levels of self-actualization, is described. This paper also explains how the scale is supported by the theories of L. Kohlberg, C. Rogers, and T. Rusk. After a literature search, a list of statements was generated…

  19. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  20. Dissipation range turbulent cascades in plasmas

    SciTech Connect

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-05-15

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  1. Fundamentals of Zoological Scaling.

    ERIC Educational Resources Information Center

    Lin, Herbert

    1982-01-01

    The following animal characteristics are considered to determine how properties and characteristics of various systems change with system size (scaling): skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing-flapping, and maximum sizes of flying and hovering…

  2. Scaling up Education Reform

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.; Richards, Evan; Kustusch, Mary Bridget; Ding, Lin; Beichner, Robert J.

    2008-01-01

    The SCALE-UP (Student-Centered Activities for Large Enrollment for Undergraduate Programs) project was developed to implement reforms designed for small classes into large physics classes. Over 50 schools across the country, ranging from Wake Technical Community College to Massachusetts Institute of Technology (MIT), have adopted it for classes of…

  3. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  4. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  5. Conductance measurement circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Von Esch, Myron (Inventor)

    1994-01-01

    A conductance measurement circuit to measure conductance of a solution under test with an output voltage proportional to conductance over a 5-decade range, i.e., 0.01 uS to 1000 uS or from 0.1 uS to 10,000 uS. An increase in conductance indicates growth, or multiplication, of the bacteria in the test solution. Two circuits are used each for an alternate half-cycle time periods of an alternate squarewave in order to cause alternate and opposite currents to be applied to the test solution. The output of one of the two circuits may be scaled for a different range optimum switching frequency dependent upon the solution conductance and to enable uninterrupted measurement over the complete 5-decade range. This circuitry provides two overlapping ranges of conductance which can be read simultaneously without discontinuity thereby eliminating range switching within the basic circuitry. A VCO is used to automatically change the operating frequency according to the particular value of the conductance being measured, and comparators indicate which range is valid and also facilitate computer-controlled data acquisition. A multiplexer may be used to monitor any number of solutions under test continuously.

  6. Sequential ranging: How it works

    NASA Technical Reports Server (NTRS)

    Baugh, Harold W.

    1993-01-01

    This publication is directed to the users of data from the Sequential Ranging Assembly (SRA), and to others who have a general interest in range measurements. It covers the hardware, the software, and the processes used in acquiring range data; it does not cover analytical aspects such as the theory of modulation, detection, noise spectral density, and other highly technical subjects. In other words, it covers how ranging is done, but not the details of why it works. The publication also includes an appendix that gives a brief discussion of PN ranging, a capability now under development.

  7. Itch assessment scale for the pediatric burn survivor.

    PubMed

    Morris, Vershanna; Murphy, Leticia M; Rosenberg, Marta; Rosenberg, Laura; Holzer, Charles E; Meyer, Walter J

    2012-01-01

    The objective of the study is to evaluate the validity and reliability of the Itch Man Scale developed in 2000 by Blakeney and Marvin in assessing the intensity of itch in the pediatric burn patient. Forty-five patients (31 males and 14 females; average age 9.9 ± 5.0 years; and % TBSA burned 41 ± 25%) with an established itch complaint were studied. They were asked to describe the severity of their itch by two independent raters to determine test-retest reliability. Individuals aged 6 years or older were assessed using parental informants. Concurrent validity was determined by comparing three scales to quantify the level of itch: the Itch Man Scale (a 5-point Likert scale), the 5-D Itch Scale (adapted from a scale for peripheral neuropathy), and the Visual Analog Scale for itch. Itch Man Scale ratings collected from independent raters showed a strong correlation (r = .912, P < .0001). The Itch Man Scale also correlated significantly with the Visual Analog Scale, the gold standard for measurement of pruritus (r = .798, P < .0001). The total summated score of the Duration, Degree, Direction, and Disability domains from the 5-D Itch Scale had a significant correlation with the Itch Man Scale (r = .614, P < .0001). The Degree domain is the only individual component with a significant correlation (r = .757, P < .0001). The Itch Man Scale is a reliable and valid tool to assess itching in pediatric burn patients and to quantify postburn pruritus. PMID:22561307

  8. Positron range estimations with PeneloPET

    NASA Astrophysics Data System (ADS)

    Cal-González, J.; Herraiz, J. L.; España, S.; Corzo, P. M. G.; Vaquero, J. J.; Desco, M.; Udias, J. M.

    2013-08-01

    Technical advances towards high resolution PET imaging try to overcome the inherent physical limitations to spatial resolution. Positrons travel in tissue until they annihilate into the two gamma photons detected. This range is the main detector-independent contribution to PET imaging blurring. To a large extent, it can be remedied during image reconstruction if accurate estimates of positron range are available. However, the existing estimates differ, and the comparison with the scarce experimental data available is not conclusive. In this work we present positron annihilation distributions obtained from Monte Carlo simulations with the PeneloPET simulation toolkit, for several common PET isotopes (18F, 11C, 13N, 15O, 68Ga and 82Rb) in different biological media (cortical bone, soft bone, skin, muscle striated, brain, water, adipose tissue and lung). We compare PeneloPET simulations against experimental data and other simulation results available in the literature. To this end the different positron range representations employed in the literature are related to each other by means of a new parameterization for positron range profiles. Our results are generally consistent with experiments and with most simulations previously reported with differences of less than 20% in the mean and maximum range values. From these results, we conclude that better experimental measurements are needed, especially to disentangle the effect of positronium formation in positron range. Finally, with the aid of PeneloPET, we confirm that scaling approaches can be used to obtain universal, material and isotope independent, positron range profiles, which would considerably simplify range correction.

  9. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm‑3) and beef (~1.0 g cm‑3) were embedded with Cu or 68Zn foils of several volumes (10–50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1–5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20–40 min of scan time using various delay times (30–150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  10. Characterizing proton-activated materials to develop PET-mediated proton range verification markers.

    PubMed

    Cho, Jongmin; Ibbott, Geoffrey S; Kerr, Matthew D; Amos, Richard A; Stingo, Francesco C; Marom, Edith M; Truong, Mylene T; Palacio, Diana M; Betancourt, Sonia L; Erasmus, Jeremy J; DeGroot, Patricia M; Carter, Brett W; Gladish, Gregory W; Sabloff, Bradley S; Benveniste, Marcelo F; Godoy, Myrna C; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials ((18)O, Cu, and (68)Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm(-3)) and beef (~1.0 g cm(-3)) were embedded with Cu or (68)Zn foils of several volumes (10-50 mm(3)). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers. PMID:27203621

  11. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  12. Fluid dynamics: Swimming across scales

    NASA Astrophysics Data System (ADS)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  13. Two-Range Electrical Thermometer

    NASA Technical Reports Server (NTRS)

    Bridges, W. F.

    1987-01-01

    Thermocouple and resistance thermometer expand thermometer scale. Switch thrown up to connect platinum resistance temperature detector or down to connect (platinum/rhodium)/platinum thermocouple to meter. Thermocouple integral part of platinum resistance temperature detector wiring.

  14. Ranging Behaviour of Commercial Free-Range Laying Hens.

    PubMed

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  15. Short range gravity and T-Violation

    NASA Astrophysics Data System (ADS)

    Tanaka, Saki

    2014-09-01

    A torsion balance experiment Newton-IVh at Rikkyo University, aiming to test gravitational inverse square law at millimeter scale, and the MTV-G experiment searching a strong gravity at around nuclei utilizing detector setup for a T-Violation (the MTV) experiment at TRIUMF will be introduced. In addition, comparison with the LHC results on search for the large extra dimension and the sensitivity of the short range gravity experiments will be discussed on the contexts of conventional Yukawa and power law parameterizations. The experimental constraints obtained from atomic spectroscopy including anti-protonic helium atom, together with our results at Rikkyo University on the test of universality of free fall in centimeter scale, will also be discussed as a test of inverse square law and composition depending gravity, which can be investigated at antimatter gravity experiments.

  16. The lunar laser ranging experiment.

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Currie, D. G.; Poultney, S. K.; Dicke, R. H.; Eckhardt, D. H.; Kaula, W. M.; Mulholland, J. D.; Plotkin, H. H.; Silverberg, E. C.; Faller, J. E.

    1973-01-01

    The scientific objectives achievable through high-accuracy range measurements to lunar retroreflectors are considered. A specific study of design questions related to the operation of retroreflectors on the lunar surface indicated that a reflector panel containing a number of solid fused silica corner reflectors would be capable of maintaining essentially diffraction limited performance under direct solar illumination. Initial Apollo 11 observations are discussed together with the installation of additional lunar retroreflectors in connection with the Luna 17, Apollo 14, Apollo 15, and Luna 21 missions. Range measurements at the McDonald Observatory are considered along with new results from lunar range data, and prospects regarding future lunar ranging stations.

  17. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…

  18. Parallel Computing in SCALE

    SciTech Connect

    DeHart, Mark D; Williams, Mark L; Bowman, Stephen M

    2010-01-01

    The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement

  19. Scaling Rules!

    NASA Astrophysics Data System (ADS)

    Malkinson, Dan; Wittenberg, Lea

    2015-04-01

    Scaling is a fundamental issue in any spatially or temporally hierarchical system. Defining domains and identifying the boundaries of the hierarchical levels may be a challenging task. Hierarchical systems may be broadly classified to two categories: compartmental and continuous ones. Examples of compartmental systems include: governments, companies, computerized networks, biological taxonomy and others. In such systems the compartments, and hence the various levels and their constituents are easily delineated. In contrast, in continuous systems, such as geomorphological, ecological or climatological ones, detecting the boundaries of the various levels may be difficult. We propose that in continuous hierarchical systems a transition from one functional scale to another is associated with increased system variance. Crossing from a domain of one scale to the domain of another is associated with a transition or substitution of the dominant drivers operating in the system. Accordingly we suggest that crossing this boundary is characterized by increased variance, or a "variance leap", which stabilizes, until crossing to the next domain or hierarchy level. To assess this we compiled sediment yield data from studies conducted at various spatial scales and from different environments. The studies were partitioned to ones conducted in undisturbed environments, and those conducted in disturbed environments, specifically by wildfires. The studies were conducted in plots as small as 1 m2, and watersheds larger than 555000 ha. Regressing sediment yield against plot size, and incrementally calculating the variance in the systems, enabled us to detect domains where variance values were exceedingly high. We propose that at these domains scale-crossing occurs, and the systems transition from one hierarchical level to another. Moreover, the degree of the "variance leaps" characterizes the degree of connectivity among the scales.

  20. The Issue of Range Restriction in Bookmark Standard Setting

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2015-01-01

    This article uses data from a large-scale assessment program to illustrate the potential issue of range restriction with the Bookmark method in the context of trying to set cut scores to closely align with a set of college and career readiness benchmarks. Analyses indicated that range restriction issues existed across different response…

  1. Range Restriction and Attenuation Corrections.

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Mendoza, Jorge L.

    The present paper reviews the techniques commonly used to correct an observed correlation coefficient for the simultaneous influence of attenuation and range restriction effects. It is noted that the procedure which is currently in use may be somewhat biased because it treats range restriction and attenuation as independent restrictive influences.…

  2. Institutional Long-Range Planning.

    ERIC Educational Resources Information Center

    Bolin, John G.

    This booklet presents a general outline for conducting a long-range planning study that can be adapted for use by any institution of higher education. The basic components of an effective long-range plan should include: (1) purposes of the plan, which define the scope of the study and provide the setting in which it will be initiated; (2) a set of…

  3. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  4. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  5. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  6. [Close-range retinoscopy using integrated optic range finding].

    PubMed

    Kulnig, W

    1983-12-01

    A new type of retinoscope is described which permits all the theoretical advantages of close-range retinoscopy to be exploited in practice thanks to an integrated rangefinder which employs the coincident-image principle. PMID:6668884

  7. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  8. How far do animals go? Determinants of day range in mammals.

    PubMed

    Carbone, Chris; Cowlishaw, Guy; Isaac, Nick J B; Rowcliffe, J Marcus

    2005-02-01

    Day range (daily distance traveled) is an important measure for understanding relationships between animal distributions and food resources. However, our understanding of variation in day range across species is limited. Here we present a day range model and compare predictions against a comprehensive analysis of mammalian day range. As found in previous studies, day range scales near the 1/4 power of body mass. Also, consistent with model predictions, taxonomic groups differ in the way day range scales with mass, associated with the most common diet types and foraging habitats. Faunivores have the longest day ranges and steepest body mass scaling. Frugivores and herbivores show intermediate and low scaling exponents, respectively. Day range in primates did not scale with mass, which may be consistent with the prediction that three-dimensional foraging habitats lead to lower exponents. Day ranges increase with group size in carnivores but not in other taxonomic groups. PMID:15729658

  9. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  10. Climatology: Contrails reduce daily temperature range

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  11. Home range analysis using a mechanistic home range model

    SciTech Connect

    Moorcroft, P.R. . Dept. of Ecology and Evolutionary Biology); Lewis, M.A. . Dept. of Mathematics) Crabtree, R.L. . Dept. of Fish and Wildlife Resources)

    1999-07-01

    The traditional models used to characterize animal home ranges have no mechanistic basis underlying their descriptions of space use, and as a result, the analysis of animal home ranges has primarily been a descriptive endeavor. In this paper, the authors characterize coyote (Canis latrans) home range patterns using partial differential equations for expected space use that are formally derived from underlying descriptions of individual movement behavior. To the authors' knowledge, this is the first time that mechanistic models have been used to characterize animal home ranges. The results provide empirical support for a model formulation of movement response to scent marks, and suggest that having relocation data for individuals in adjacent groups is necessary to capture the spatial arrangement of home range boundaries. The authors then show how the model fits can be used to obtain predictions for individual movement and scent marking behavior and to predict changes in home range patterns. More generally, the findings illustrate how mechanistic models permit the development of a predictive theory for the relationship between movement behavior and animal spatial distribution.

  12. Development of the Chinese version of the Oro-facial Esthetic Scale.

    PubMed

    Zhao, Y; He, S L

    2013-09-01

    The aim of this study was to investigate the psychometric properties of the Oro-facial Esthetic Scale among Chinese-speaking patients. The original Oro-facial Esthetic Scale was cross-culturally adapted in accordance with the international standards to develop a Chinese version (OES-C). Unlike the original Oro-facial Esthetic Scale, the version employed in this study used a 5-point Likert scale with items rated from unsatisfactory to most satisfactory. Psychometric evaluation included the reliability and validity of the OES-C. The reliability of the OES-C was determined through internal consistency and test-retest methods. The validity of OES-C was analysed by content validity, discriminative validity, construct validity and convergent validity. The corrected item-total correlation coefficients of the OES-C ranged from 0·859 to 0·910. The inter-item correlation coefficients between each two of the eight items of the OES-C ranged from 0·766 to 0·922. The values of ICC ranged from 0·79 (95% CI = 0·54-0·98) to 0·93 (95% CI = 0·87-0·99), indicating an excellent agreement. Construct validity was proved by the presence of one-factor structure that accounted for 83·507% of the variance and fitted well into the model. Convergent validity was confirmed by the association between OES-C scores and self-reported oral aesthetics and three questions from the Oral Health Impact Profile related to aesthetics (correlation coefficients ranged from -0·830 to -0·702, P < 0·001). OES-C scores discriminated aesthetically impaired patients from healthy controls. This study provides preliminary evidence concerning the reliability and validity of the OES-C. The results show that the OES-C may be a useful tool for assessment of oro-facial esthetics in China. PMID:23829233

  13. Preservation of long range temporal correlations under extreme random dilution

    NASA Astrophysics Data System (ADS)

    Mirzayof, Dror; Ashkenazy, Yosef

    2010-12-01

    Many natural time series exhibit long range temporal correlations that may be characterized by power-law scaling exponents. However, in many cases, the time series have uneven time intervals due to, for example, missing data points, noisy data, and outliers. Here we study the effect of randomly missing data points on the power-law scaling exponents of time series that are long range temporally correlated. The Fourier transform and detrended fluctuation analysis (DFA) techniques are used for scaling exponent estimation. We find that even under extreme dilution of more than 50%, the value of the scaling exponent remains almost unaffected. Random dilution is also applied on heart interbeat interval time series. It is found that dilution of 70%-80% of the data points leads to a reduction of only 8% in the scaling exponent; it is also found that it is possible to discriminate between healthy and heart failure subjects even under extreme dilution of more than 90%.

  14. Scaling satan.

    PubMed

    Wilson, K M; Huff, J L

    2001-05-01

    The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others. PMID:11577971

  15. Small-scale strength

    SciTech Connect

    Anderson, J.L.

    1995-11-01

    In the world of power project development there is a market for smaller scale cogeneration projects in the range of 1MW to 10MW. In the European Union alone, this range will account for about $25 Billion in value over the next 10 years. By adding the potential that exists in Eastern Europe, the numbers are even more impressive. In Europe, only about 7 percent of needed electrical power is currently produced through cogeneration installations; this is expected to change to around 15 percent by the year 2000. Less than one year ago, two equipment manufacturers formed Dutch Power Partners (DPP) to focus on the market for industrial cogeneration throughout Europe.

  16. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  17. The eclipse of species ranges.

    PubMed

    Hemerik, Lia; Hengeveld, Rob; Lippe, Ernst

    2006-01-01

    This paper distinguishes four recognisably different geographical processes in principle causing species to die out. One of these processes, the one we dub "range eclipse", holds that one range expands at the expense of another one, thereby usurping it. Channell and Lomolino (2000a, Journal of Biogeography 27: 169-179; 2000b, Nature 403: 84-87; see also Lomolino and Channell, 1995, Journal of Mammalogy 76: 335-347) measured the course of this process in terms of the proportion of the total range remaining in its original centre, thereby essentially assuming a homogeneous distribution of animals over the range. However, part of their measure seems mistaken. By giving a general, analytical formulation of eclipsing ranges, we estimate the exact course of this process. Also, our formulation does not partition a range into two spatially equal parts, its core and its edge, but it assumes continuity. For applying this model to data on the time evolution of species, individual time series should be available for each of them. For practical purposes we give an alternative way of plotting and interpreting such time series. Our approach, being more sensitive than Channell and Lomolino's, gives a less optimistic indication of range eclipses than theirs once these have started. PMID:17318329

  18. Alternative wavelengths for laser ranging

    NASA Technical Reports Server (NTRS)

    Hamal, Karel

    1993-01-01

    The following are considered to be necessary to accomplish multicolor laser ranging: the nature of the atmospheric dispersion and absorption, the satellite/lunar/ground retro-array characteristics, and ground/satellite ranging machine performance. The energy balance and jitter budget have to be considered as well. It is concluded that the existing satellite/laser retroreflectors seem inadequate for future experiments. The Raman Stokes/Anti-Stokes (0.68/0.43 micron) plus solid state detector appear to be promising instrumentation that satisfy the ground/satellite and satellite/ground ranging machine requirements on the precision, compactness, and data processing.

  19. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  20. Antenna induced range smearing in MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.; Johnston, P. E.

    1984-01-01

    There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.

  1. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  2. Long range hopping mobility platform.

    SciTech Connect

    Spletzer, Barry Louis; Fischer, Gary John

    2003-03-01

    Sandia National Laboratories has developed a mesoscale hopping mobility platform (Hopper) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating tall obstacles and rough terrain that are prohibitive for other small ground base vehicles. The Defense Advanced Research Projects Administration (DARPA) provided the funding for the hopper project.

  3. Intentionally Short Range Communications (ISRC)

    NASA Astrophysics Data System (ADS)

    Yen, J.; Poirier, P.; Obrien, M. E.; Gibeson, L.

    1993-05-01

    This document details the feasibility studies conducted for the Intentionally Short Range Communications (ISRC) project. The short-range limitation arises from the need for low probability of intercept (LPI), low probability of detection (LPD) communication links. The detection of an undecipherable transmission would still provide an enemy with information regarding transmitter location. The technologies being studied are ultraviolet (UV) lamps, UV lasers, infrared (IR) lasers, millimeter waves (MMW), and direct sequence spread spectrum.

  4. Environmental complexity across scales: mechanism, scaling and the phenomenological fallacy

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun

    2015-04-01

    Ever since Van Leeuwenhoek used a microscope to discover "new worlds in a drop of water" we have become used to the idea that "zooming in" - whether in space or in time - will reveal new processes, new phenomena. Yet in the natural environment - geosystems - this is often wrong. For example, in the temporal domain, a recent publication has shown that from hours to hundreds of millions of years the conventional scale bound view of atmospheric variability was wrong by a factor of over a quadrillion (10**15). Mandelbrot challenged the "scale bound" ideology and proposed that many natural systems - including many geosystems - were instead better treated as fractal systems in which the same basic mechanism acts over potentially huge ranges of scale. However, in its original form Mandelbrot's isotropic scaling (self-similar) idea turned out to be too naïve: geosystems are typically anisotropic so that shapes and morphologies (e.g. of clouds landmasses) are not the same at different resolutions. However it turns out that the scaling idea often still applies on condition that the notion of scale is generalized appropriately (using the framework of Generalized Scale Invariance). The overall result is that unique processes, unique dynamical mechanisms may act over huge ranges of scale even though the morphologies systematically change with scale. Therefore the common practice of inferring mechanism from shapes, forms, morphologies is unjustified, the "phenomenological fallacy". We give examples of the phenomenological fallacy drawn from diverse areas of geoscience.

  5. Computational Analysis of the Large Scale Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, ROdrick V.

    2011-01-01

    This presentation describes two computational fluid dynamic (CFD) analyses done in support of a supersonic inlet test performed at NASA Glenn Research Center in the fall of 2010. The large-scale-low-boom supersonic inlet was designed for a small supersonic aircraft that would cruise at a Mach number of 1.6. It uses an axisymmetric, external compression spike to reduce the Mach number to 0.65 at the fan face. The inlet was tested in the 8x6 supersonic wind tunnel at NASA GRC using conventional pressure probes, pressure sensitive paint, and high-speed schlieren. Two CFD analyses of the inlet were performed before the test, and compared to the experimental data afterwards. Both analyses used the WIND-US code. First, an axisymmetric analysis of the inlet, diffuser, cold pipe, and mass flow plug was performed to predict the performance of the entire system in the wind tunnel. Then a 3-D analysis of the inlet with all its interior struts was performed to predict details of the flow field and effects of angle of attack. Test results showed that the inlet had excellent performance, with a peak total pressure recovery of 96 percent, and a buzz point far outside the engine operating range. The computations agreed very well with the data, with predicted recoveries within 0.3 - 0.5 points of the measurements.

  6. Magnetic intermittency of solar wind turbulence in the dissipation range

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua

    2016-04-01

    The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.

  7. Current Trends in Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.

    2010-01-01

    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster

  8. Range expansion through fragmented landscapes under a variable climate

    PubMed Central

    Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J

    2013-01-01

    Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124

  9. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  10. APOLLO: millimeter lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Murphy, T. W., Jr.; Adelberger, E. G.; Battat, J. B. R.; Hoyle, C. D.; Johnson, N. H.; McMillan, R. J.; Stubbs, C. W.; Swanson, H. E.

    2012-09-01

    Lunar laser ranging (LLR) has for decades stood at the forefront of tests of gravitational physics, including tests of the equivalence principle (EP). Current LLR results on the EP achieve a sensitivity of Δa/a ≈ 10-13 based on few-centimeter data/model fidelity. A recent push in LLR, called APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) produces millimeter-quality data. This paper demonstrates the few-millimeter range precision achieved by APOLLO, leading to an expectation that LLR will be able to extend EP sensitivity by an order-of-magnitude to Δa/a ˜ 10-14, once modeling efforts improve to this level.

  11. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  12. Wide range magnetic electron spectrograph

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Wang, L.-J.; Moore, J. H.; Hoffman, R. A.

    1989-01-01

    An electron spectrogrpah is described that covers electron energies from 400 eV to 200 keV with an energy resolution of 10 percent. This overlaps the range of electrostatic deflection devices at low energy and solid state detectors at high energy. The spectrograph uses magnetic deflection of the electrons to achieve energy separation and images the full range of energies on a single plane. The magnetic circuit uses the fringing field of two axially located magnets to attain the large energy range. Six separate electron beams can be dispersed in the field, each entering the circuit from a different angle. This is a particular advantage when measuring plasma electron three-dimensional velocity distributions. The angular response of the instrument is particularly favorable and the stray magnetic field is sufficiently low to meet spacecraft requirements.

  13. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  14. The ontogeny of home ranges: evidence from coral reef fishes

    PubMed Central

    Welsh, J. Q.; Goatley, C. H. R.; Bellwood, D. R.

    2013-01-01

    The concept of home ranges is fundamental to ecology. Numerous studies have quantified how home ranges scale with body size across taxa. However, these relationships are not always applicable intraspecifically. Here, we describe how the home range of an important group of reef fish, the parrotfishes, scales with body mass. With masses spanning five orders of magnitude, from the early postsettlement stage through to adulthood, we find no evidence of a response to predation risk, dietary shifts or sex change on home range expansion rates. Instead, we document a distinct ontogenetic shift in home range expansion with sexual maturity. Juvenile parrotfishes displayed rapid home range growth until reaching approximately 100–150 mm length. Thereafter, the relationship between home range and mass broke down. This shift reflected changes in colour patterns, social status and reproductive behaviour associated with the transition to adult stages. While there is a clear relationship between body mass and home ranges among adult individuals of different species, it does not appear to be applicable to size changes within species. Ontogenetic changes in parrotfishes do not follow expected mass–area scaling relationships. PMID:24174108

  15. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  16. Back Home on the Range.

    ERIC Educational Resources Information Center

    Breining, Greg

    1992-01-01

    Presents the history of the buffalo's demise and reemergence in the United States and Canada. Discusses the problems facing herds today caused by a small genetic pool, disease, range concerns, lack of predation, and culling. Points out the benefits of buffalo raising as compared to cattle raising, including the marketing advantages. (MCO)

  17. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  18. Long range fast tool servo

    NASA Astrophysics Data System (ADS)

    Moorefield, G. M., II; Dow, Thomas A.; Falter, Karl J.; Ro, Paul I.

    1993-05-01

    The PEC's MAC 100 Fast Tool Servo (FTS) System has demonstrated the efficacy of fabricating off-axis parabolic segments on axis by utilizing a fast tool motion to machine non-rotationally symmetric surfaces. The key to this technique was a servo for the tool motion that had a high-bandwidth coupled with a small range of motion. The Keck telescope, with its thirty-six (36) 1-meter diameter segments, would have been an excellent application for this technology. Since this technology was not available at the time of construction, each mirror segment was fabricated to its desired shape by loading it to a specified deformed shape and polishing it to a spherical contour, then removing the bending loads to allow the segment to relax to the desired asymmetric shape. If the segments of this optic had been constructed on axis with an FTS, the fabrication of the most extreme segment would have required only about 200 micrometers of non-rotational symmetry. However, the demand for larger displacement actuators is being driven by new applications with nonrotationally symmetric components in the millimeter range. This report describes the search for a suitable actuator for a long range fast tool servo system that would allow the fabrication of non-rotationally symmetric optical surfaces with a 1 mm range of servo motion. To allow cost-effective machining of these surfaces, the actuator must also possess a 50 Hz bandwidth (minimum) and 25 nanometer resolution.

  19. About White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.

  20. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  1. Mobile Lunar Laser Ranging Station

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  2. Monitoring vegetation conditions from LANDSAT for use in range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.; Deering, D. W.; Rouse, J. W., Jr.; Schell, J. A.

    1975-01-01

    A summary of the LANDSAT Great Plains Corridor projects and the principal results are presented. Emphasis is given to the use of satellite acquired phenological data for range management and agri-business activities. A convenient method of reducing LANDSAT MSS data to provide quantitative estimates of green biomass on rangelands in the Great Plains is explained. Suggestions for the use of this approach for evaluating range feed conditions are presented. A LANDSAT Follow-on project has been initiated which will employ the green biomass estimation method in a quasi-operational monitoring of range readiness and range feed conditions on a regional scale.

  3. Scaling laws for laser-induced filamentation

    NASA Astrophysics Data System (ADS)

    Zhokhov, P. A.; Zheltikov, A. M.

    2014-04-01

    Despite all the complexity of the underlying nonlinear physics, the filamentation of ultrashort optical field wave forms is shown to obey a set of physically transparent scaling laws. This scaling is applicable within a remarkably broad range of laser powers, pulse widths, gas pressures, and propagation paths, suggesting specific recipes for the power scaling of filamentation-based pulse compression.

  4. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  5. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  6. Short-range communication system

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  7. Propagator for finite range potentials

    SciTech Connect

    Cacciari, Ilaria; Moretti, Paolo

    2006-12-15

    The Schroedinger equation in integral form is applied to the one-dimensional scattering problem in the case of a general finite range, nonsingular potential. A simple expression for the Laplace transform of the transmission propagator is obtained in terms of the associated Fredholm determinant, by means of matrix methods; the particular form of the kernel and the peculiar aspects of the transmission problem play an important role. The application to an array of delta potentials is shown.

  8. Range Expansion of Heterogeneous Populations

    NASA Astrophysics Data System (ADS)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-01

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  9. Range determination for scannerless imaging

    DOEpatents

    Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  10. Multidimensional scaling

    PubMed Central

    Papesh, Megan H.; Goldinger, Stephen D.

    2012-01-01

    The concept of similarity, or a sense of "sameness" among things, is pivotal to theories in the cognitive sciences and beyond. Similarity, however, is a difficult thing to measure. Multidimensional scaling (MDS) is a tool by which researchers can obtain quantitative estimates of similarity among groups of items. More formally, MDS refers to a set of statistical techniques that are used to reduce the complexity of a data set, permitting visual appreciation of the underlying relational structures contained therein. The current paper provides an overview of MDS. We discuss key aspects of performing this technique, such as methods that can be used to collect similarity estimates, analytic techniques for treating proximity data, and various concerns regarding interpretation of the MDS output. MDS analyses of two novel data sets are also included, highlighting in step-by-step fashion how MDS is performed, and key issues that may arise during analysis. PMID:23359318

  11. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  12. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  13. Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence

    SciTech Connect

    Chapman, S. C.; Nicol, R. M.

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum - with turbulent fluctuations down by a factor of approx2 in power - provides a test of this invariance.

  14. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance. PMID:20366193

  15. Climate and topography explain range sizes of terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  16. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  17. Synchronous Phase-Resolving Flash Range Imaging

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce

    2007-01-01

    An apparatus, now undergoing development, for range imaging based on measurement of the round-trip phase delay of a pulsed laser beam is described. The apparatus would operate in a staring mode. A pulsed laser would illuminate a target. Laser light reflected from the target would be imaged on a verylarge- scale integrated (VLSI)-circuit image detector, each pixel of which would contain a photodetector and a phase-measuring circuit. The round-trip travel time for the reflected laser light incident on each pixel, and thus the distance to the portion of the target imaged in that pixel, would be measured in terms of the phase difference between (1) the photodetector output pulse and (2) a local-oscillator signal that would have a frequency between 10 and 20 MHz and that would be synchronized with the laser-pulse-triggering signal.

  18. Short Range Correlations and the EMC Effect

    SciTech Connect

    L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor

    2011-02-01

    This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate xB, 0.35≤xB≤0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at xB≥1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F2n/F2p, the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.

  19. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  20. High dynamic range video transmission and display using standard dynamic range technologies

    NASA Astrophysics Data System (ADS)

    Léonce, A.; Hsu, Tao-i.; Wickramanayake, D. S.; Edirisinghe, E. A.

    2012-06-01

    This paper presents a novel system that makes effective use of High Dynamic Range (HDR) image data to improve and maintain the best viewing quality of video broadcast on current mobile display devices. The proposed approach combines bilateral filtering with an adaptive tone mapping method used to enable the enhancement of the perceptual quality of the video frames at the display device. The bilateral filter separates the frame into large-scale and detail layers. The large-scale layer is divided into bright, mid-tone and dark regions, which are each processed by an appropriate tone mapping function. Ambient and backlight sensors at the display device provide information about current illumination conditions, which are used to intelligently and dynamically vary the levels and thresholds of post-processing applied at the decoder, thereby maintaining a constant level of perceived quality.

  1. Inertial Range Behavior of Anisotropic Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Fernandez, Eduardo

    2001-10-01

    Toward the inner scale of turbulence in the warm diffuse component of the local interstellar medium, the electron density is expected to change from passive to active. Using an anisotropic reduced MHD model augmented with electron density evolution under advection and compression along the local field, we study the inertial range interactions of density, flow, and magnetic field in the long and short wavelength regimes of passive and active electron density evolution [1]. Employing numerical simulation and statistical closure theory we find that even for strong anisotropy, Alfvénic decorrelation alone mediates energy transfer in the equation for the magnetic field. Alfvénic interactions couple magnetic field to the flow at long wavelengths and magnetic field to density at short wavelengths. The coupling, which drives equipartition between the coupled fields, decorrelates on the Alfvén time scale. The fluid straining decorrelation, or eddy turnover rate, affects only the cascade of internal energy at long wavelengths, and the cascade of kinetic energy at short wavelengths. This interplay between Alfvénic and fluid straining decorrelations across a spectrum with long and short wavelength ranges indicates that a single decorrelation rate cannot apply to all interactions. The spectra associated with these processes have indices of -3/2 for magnetic and kinetic energy, and -7/4 for internal energy in the long wavelength regime; and -2 for magnetic and internal energy, and -5/3 for kinetic energy in the short wavelength regime. 1. P.W. Terry, et al., Phys. Plasmas 8, 2707 (2001).

  2. SPACE BASED INTERCEPTOR SCALING

    SciTech Connect

    G. CANAVAN

    2001-02-01

    Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributed launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.

  3. Parallel Track Initiation for Optical Space Surveillance Using Range and Range Rate Bounds

    NASA Astrophysics Data System (ADS)

    Schumacher, P.; Roscoe, C.; Wilkins, M.

    2013-09-01

    As new optical sensors come online and more optical observations become available for space objects previously too small or too far away to detect, the space surveillance community is presented with the computationally challenging problem of generating initial orbit solutions (data association hypotheses) for a large number of short-arc line-of-sight observations. Traditional methods of angles-only orbit determination do not scale well to large problems because of the large number of combinations of observations that must be evaluated, since these methods require at least 3 observations for each initial orbit determination (IOD). On the other hand, if unique ranges are known (or assumed) then IOD can be performed with 2 observations using a Lambert-based approach. Furthermore, if angles and angle rates are available and range and range rate are both known (or assumed) then a complete orbit solution can be obtained for a single observation and the IOD computational load is only O(N). One possible method to deal with line-of-sight data is to assign a number of range hypotheses to each angles-only observation and develop data association hypotheses to be either confirmed or eliminated for each one. This approach would allow the use of the already proven Search and Determine (SAD) algorithm and software that was designed for generating and testing data association hypotheses for position-type observations typical of radar sensors. If the number of range hypotheses can be limited then this method will be more computationally efficient than performing pure angles-only IOD. If angle rates are available or can be derived from the observation data then another possible approach is to assign range and range rate hypotheses to each angle-angle rate pair and develop data association hypotheses based on their corresponding orbit solutions, which will be extremely efficient if the range-range rate hypothesis set can be limited. For both of these methods, once range and range

  4. Memory and long-range correlations in chess games

    NASA Astrophysics Data System (ADS)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.

    2014-01-01

    In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.

  5. An elastica arm scale.

    PubMed

    Bosi, F; Misseroni, D; Dal Corso, F; Bigoni, D

    2014-09-01

    The concept of a 'deformable arm scale' (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free to slide in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes designed to demonstrate the feasibility of the system show a high accuracy in the measurement of load within a certain range of use. Finally, we show that the presented results are strongly related to snaking of confined beams, with implications for locomotion of serpents, plumbing and smart oil drilling. PMID:25197248

  6. Fundamentals of zoological scaling

    NASA Astrophysics Data System (ADS)

    Lin, Herbert

    1982-01-01

    Most introductory physics courses emphasize highly idealized problems with unique well-defined answers. Though many textbooks complement these problems with estimation problems, few books present anything more than an elementary discussion of scaling. This paper presents some fundamentals of scaling in the zoological domain—a domain complex by any standard, but one also well suited to illustrate the power of very simple physical ideas. We consider the following animal characteristics: skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing flapping, and maximum sizes of animals that fly and hover. These relationships are compared to zoological data and everyday experience, and match reasonably well.

  7. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  8. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Médéric; Mahadevan, L.

    2014-10-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimetres to 30 metres, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα, where Re = UL/ν >> 1 and Sw = ωAL/ν, with α = 4/3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  9. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  10. Short Range Correlations in Nuclei

    SciTech Connect

    L. B. Weinstein

    2006-11-01

    Short range correlations (SRC) are an extremely important part of nuclear structure. They are responsible for the high momentum part of the nuclear wavefunction. Instantaneous densities can significantly exceed the average neutron star density. Recent (e,e[prime]) measurements at Jefferson Lab have shown that SRC are universal in nuclei from deuterium to gold, that the probability of two-nucleon SRC is 5-25%, and that the probability of three-nucleon SRC is less than 1%. Recent (e,e[prime]pn) measurements have measured the SRC probabilities as a function of proton momentum and have measured the joint NN momentum distributions.

  11. Extended-range tiltable micromirror

    DOEpatents

    Allen, James J.; Wiens, Gloria J.; Bronson, Jessica R.

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  12. BENTON RANGE ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Rains, Richard L.

    1984-01-01

    On the basis of a mineral survey, two parts of the Benton Range Roadless Area, California are considered to have mineral-resource potential. The central and southern part of the roadless area, near several nonoperating mines, has a probable potential for tungsten and gold-silver mineralization in tactite zones. The central part of the area has a substantiated resource potential for gold and silver in quartz veins. Detailed mapping and geochemical sampling for tungsten, gold, and silver in the central and southern part of the roadless area might indicate targets for shallow drilling exploration.

  13. Long-range electron transfer

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2005-01-01

    Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor–bridge–acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein–protein complexes. PMID:15738403

  14. Live Fire Range Environmental Assessment

    SciTech Connect

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  15. Range-Measuring Video Sensors

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  16. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected

  17. Concordance among anticholinergic burden scales

    PubMed Central

    Naples, Jennifer G.; Marcum, Zachary A.; Perera, Subashan; Gray, Shelly L.; Newman, Anne B.; Simonsick, Eleanor M.; Yaffe, Kristine; Shorr, Ronald I.; Hanlon, Joseph T.

    2015-01-01

    Background There is no gold standard to assess potential anticholinergic burden of medications. Objectives To evaluate concordance among five commonly used anticholinergic scales. Design Cross-sectional secondary analysis. Setting Pittsburgh, PA, and Memphis, TN. Participants 3,055 community-dwelling older adults aged 70–79 with baseline medication data from the Health, Aging, and Body Composition study. Measurements Any use, weighted scores, and total standardized daily dosage were calculated using five anticholinergic measures (i.e., Anticholinergic Cognitive Burden [ACB] Scale, Anticholinergic Drug Scale [ADS], Anticholinergic Risk Scale [ARS], Drug Burden Index anticholinergic component [DBI-ACh], and Summated Anticholinergic Medications Scale [SAMS]). Concordance was evaluated with kappa statistics and Spearman rank correlations. Results Any anticholinergic use in rank order was 51% for the ACB, 43% for the ADS, 29% for the DBI-ACh, 23% for the ARS, and 16% for the SAMS. Kappa statistics for all pairwise use comparisons ranged from 0.33 to 0.68. Similarly, concordance as measured by weighted kappa statistics ranged from 0.54 to 0.70 among the three scales not incorporating dosage (ADS, ARS, and ACB). Spearman rank correlation between the DBI-ACh and SAMS was 0.50. Conclusions Only low to moderate concordance was found among the five anticholinergic scales. Future research is needed to examine how these differences in measurement impact their predictive validity with respect to clinically relevant outcomes, such as cognitive impairment. PMID:26480974

  18. Energy Expenditure Ranges and Muscular Work Grades

    PubMed Central

    Brown, J. R.; Crowden, G. P.

    1963-01-01

    This paper is based on the findings of a field study which was planned to ascertain by metabolic measurement the rates of energy expenditure of men and women on productive effort at work in modern factories. The investigation which is described was carried out during a period of peace-time full employment, mainly in factories associated with the Slough Industrial Health Service in which a nutritional survey of the calorie intake of male operatives had been made by the Ministry of Health and the Medical Research Council in 1952. The rates of energy expenditure of 70 men and 54 women in 27 occupational groups were measured by indirect calorimetric methods. On the basis of the criteria for the classification of work according grades to its heaviness, adopted by the Factory Department of the Ministry of Labour, muscular work grades have been ascribed to the occupations studied. From the distribution of 390 metabolic measurements, ranges of energy expenditure have been computed for occupations classed as sedentary, light, moderate, heavy, or very heavy, Observation of recurrent phase variations in types of productive effort in the work-cycle indicated that wider work grades, such as light-to-moderate or moderate-to-heavy, are needed to cover the energy expenditure rates of men and women in many occupations. The data obtained in this study have enabled a table termed the “Slough Scales” to be compiled giving ranges of energy expenditure and pulmonary ventilation rates for the various work grades ascribed to occupations. The mean rates of energy expenditure of 257 workers (in industries in different parts of England and Scotland) which have been calculated from data published by other investigators have been found to fall within the ranges specified in these scales for the work grades of their occupations. It is felt, therefore, that the Slough Scales represent a reasonably true appraisal of the relation between the Ministry of Labour occupational work grades and the

  19. Identifying characteristic scales in the human genome

    NASA Astrophysics Data System (ADS)

    Carpena, P.; Bernaola-Galván, P.; Coronado, A. V.; Hackenberg, M.; Oliver, J. L.

    2007-03-01

    The scale-free, long-range correlations detected in DNA sequences contrast with characteristic lengths of genomic elements, being particularly incompatible with the isochores (long, homogeneous DNA segments). By computing the local behavior of the scaling exponent α of detrended fluctuation analysis (DFA), we discriminate between sequences with and without true scaling, and we find that no single scaling exists in the human genome. Instead, human chromosomes show a common compositional structure with two characteristic scales, the large one corresponding to the isochores and the other to small and medium scale genomic elements.

  20. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  1. Wide Range SET Pulse Measurement

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  2. Space - The long range future

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1985-01-01

    Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.

  3. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  4. Short-range interactions versus long-range correlations in bird flocks.

    PubMed

    Cavagna, Andrea; Del Castello, Lorenzo; Dey, Supravat; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2015-07-01

    Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the presence of long range velocity correlations between individuals, which allow them to influence each other over the large scales, keeping a high level of group coordination. A crucial question is to understand what is the mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy (ME) approach to infer from experimental data of natural flocks the effective interactions between individuals. Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact that ME gives a short-range interaction even though its experimental input is the long-range correlation function, shows that the method is able to discriminate the relevant information encoded in such correlations and single out a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree of anisotropy of mutual interactions. PMID:26274201

  5. Short-range interactions versus long-range correlations in bird flocks

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Dey, Supravat; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2015-07-01

    Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the presence of long range velocity correlations between individuals, which allow them to influence each other over the large scales, keeping a high level of group coordination. A crucial question is to understand what is the mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy (ME) approach to infer from experimental data of natural flocks the effective interactions between individuals. Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact that ME gives a short-range interaction even though its experimental input is the long-range correlation function, shows that the method is able to discriminate the relevant information encoded in such correlations and single out a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree of anisotropy of mutual interactions.

  6. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE PAGESBeta

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  7. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    SciTech Connect

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomers and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.

  8. Scaling Exponents in Financial Markets

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Kim, Cheol-Hyun; Kim, Soo Yong

    2007-03-01

    We study the dynamical behavior of four exchange rates in foreign exchange markets. A detrended fluctuation analysis (DFA) is applied to detect the long-range correlation embedded in the non-stationary time series. It is for our case found that there exists a persistent long-range correlation in volatilities, which implies the deviation from the efficient market hypothesis. Particularly, the crossover is shown to exist in the scaling behaviors of the volatilities.

  9. Understanding synthesis imaging dynamic range

    NASA Astrophysics Data System (ADS)

    Braun, R.

    2013-03-01

    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution to the visibility data is associated with a relevant correlation timescale and frequency bandwidth so that the net impact on a complete observation can be assessed when a particular effect is not captured in the instrumental calibration. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain the magnitude of the calibration challenges that they must overcome to achieve thermal noise limited performance. We conclude that calibration challenges are increased in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15 m class dishes rather than the 25 m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more with the choice of an (alt,az,pol) mount, although a larger dish diameter offers the best prospects for risk mitigation. Many improvements to imaging performance can be anticipated at the expense of greater complexity in calibration algorithms. However, a fundamental limitation is ultimately imposed by an insufficient number of data constraints relative to calibration variables. The upcoming aperture array systems will be operating in a regime that has never previously been addressed, where a wide range of effects are expected to exceed the thermal noise by two to three orders of magnitude. Achieving routine thermal noise limited imaging performance with these systems presents an extreme challenge. The magnitude of that challenge is inversely related to the aperture array station diameter.

  10. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  11. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  12. The scale invariant generator technique for quantifying anisotropic scale invariance

    NASA Astrophysics Data System (ADS)

    Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.

    1999-11-01

    Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.

  13. A method of approximating range size of small mammals

    USGS Publications Warehouse

    Stickel, L.F.

    1965-01-01

    In summary, trap success trends appear to provide a useful approximation to range size of easily trapped small mammals such as Peromyscus. The scale of measurement can be adjusted as desired. Further explorations of the usefulness of the plan should be made and modifications possibly developed before adoption.

  14. Free-choice feeding of free-range meat chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative feeding methods should be considered for free-range, organic, and other alternative poultry production. The number of small- and medium-scale producers raising specialty chickens for local and regional markets is growing and many of these producers do not have access to the nutritional ...

  15. DEMONSTRATION OF A LONG RANGE TRACER SYSTEM USING PERFLUOROCARBONS

    EPA Science Inventory

    Regional-scale tracer experiments are needed to validate atmospheric dispersion aspects of air pollution models. The capability of a new system, using perfluorocarbon tracers (PFTs), for long-range dispersion experiments at reasonable cost, was demonstrated in two experiments. Tw...

  16. Airloads investigation of an 0.030-scale model of the space shuttle vehicle 140A/B launch configuration (model 47-OTS) in the arc 11-foot unitary plan wind tunnel for Mach range 0.6 to 1.4 (IA14A), Volume 2

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1975-01-01

    Results of tests conducted on an 0.030-scale launch configuration model of the space shuttle vehicle 140A/B in the NASA/ARC 11-foot unitary plan wind tunnel are presented. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 1.4. Surface pressure distributions were obtained simultaneously with six-component stability and control force data on the complete launch configuration. The configuration consisted of the orbiter, an external tank, two solid rocket boosters, and associated intercomponent attach hardware. Angles of attack and sideslip from -10 degrees to +10 degrees were investigated.

  17. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution. PMID:21928945

  18. Evaluation of the Single-Item Self-Rating Adherence Scale for Use in Routine Clinical Care of People Living with HIV

    PubMed Central

    Feldman, BJ; Fredericksen, RJ; Crane, PK; Safren, SA; Mugavero, MJ; Willig, James H; Simoni, JM; Wilson, IB; Saag, MS; Kitahata, MM; Crane, HM

    2012-01-01

    The Self-Rating Scale Item (SRSI) is a single-item self-report adherence measure that uses adjectives in a 5-point Likert scale, from “very poor” to “excellent,” to describe medication adherence over the past 4 weeks. This study investigated the SRSI in 2,399 HIV-infected patients in routine care at two outpatient primary HIV clinics. Correlations between the SRSI and four commonly used adherence items ranged from 0.37–0.64. Correlations of adherence barriers, such as depression and substance use, were comparable across all adherence items. General estimating equations suggested the SRSI is as good as or better than other adherence items (p’s <0.001 vs. <0.001–0.99) at predicting adherence-related clinical outcomes, such as HIV viral load and CD4+ cell count. These results and the SRSI’s low patient burden suggest its routine use could be helpful for assessing adherence in clinical care and should be more widespread, particularly where more complex instruments may be impractical. PMID:23108721

  19. Multimodal dispersal during the range expansion of the tropical house gecko Hemidactylus mabouia

    PubMed Central

    Short, Kristen H; Petren, Kenneth

    2011-01-01

    Dispersal influences both the ecological and evolutionary dynamics of range expansion. While some studies have demonstrated a role for human-mediated dispersal during invasion, the genetic effects of such dispersal remain to be understood, particularly in terrestrial range expansions. In this study, we investigated multimodal dispersal during the range expansion of the invasive gecko Hemidactylus mabouia in Florida using 12 microsatellite loci. We investigated dispersal patterns at the regional scale (metropolitan areas), statewide scale (state of Florida), and global scale (including samples from the native range). Dispersal was limited at the smallest, regional scale, within metropolitan areas, as reflected by the presence of genetic structure at this scale, which is in agreement with a previous study in this same invasion at even smaller spatial scales. Surprisingly, there was no detectable genetic structure at the intermediate statewide scale, which suggests dispersal is not limited across the state of Florida. There was evidence of genetic differentiation between Florida and other areas where H. mabouia occurs, so we concluded that at the largest scale, dispersal was limited. Humans likely contributed to patterns of dispersal at all three scales but in different ways. Infrequent low-volume dispersal has occurred within regions, frequent high-volume dispersal has occurred across the state, and infrequent long-distance dispersal has occurred among continents at the global scale. This study highlights the importance of considering different modes of dispersal at multiple spatial scales to understand the dynamics of invasion and range expansion. PMID:22393494

  20. Wide-range voltage modulation

    SciTech Connect

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  1. Multiscale Nature of the Dissipation Range in Gyrokinetic Simulations of Alfvénic Turbulence.

    PubMed

    Told, D; Jenko, F; TenBarge, J M; Howes, G G; Hammett, G W

    2015-07-10

    Nonlinear energy transfer and dissipation in Alfvén wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range k(⊥)ρ(I)≳1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfvénic turbulence. PMID:26207474

  2. Scaling properties of marathon races

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose; Rodriguez, Eduardo

    2006-06-01

    Some regularities in popular marathon races are identified in this paper. It is found for high-performance participants (i.e., racing times in the range [2:15,3:15] h), the average velocity as a function of the marathoner's ranking behaves as a power-law, which may be suggesting the presence of critical phenomena. Elite marathoners with racing times below 2:15 h can be considered as outliers with respect to this behavior. For the main marathon pack (i.e., racing times in the range [3:00,6:00] h), the average velocity as a function of the marathoner's ranking behaves linearly. For this racing times, the interpersonal velocity, defined as the difference of velocities between consecutive runners, displays a continuum of scaling behavior ranging from uncorrelated noise for small scales to correlated 1/f-noise for large scales. It is a matter of fact that 1/f-noise is characterized by correlations extended over a wide range of scales, a clear indication of some sort of cooperative effect.

  3. Front Range of the Rockies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR images from May 12, 2001 (Terra orbit 7447) include portions of southern Wyoming, central Colorado, and western Nebraska. The top view is from the instrument's vertical-viewing (nadir) camera. The bottom image is a stereo 'anaglyph' generated using data from the nadir and 46-degree-forward cameras. Viewing the anaglyph with red/blue glasses (red filter over your left eye) gives a 3-D effect. To facilitate stereo viewing, the images have been oriented with north at the left. Each image measures 422 kilometers x 213 kilometers.

    The South Platte River enters just to the right of center at the top of the images. It wends its way westward (down), then turns southward (right) where it flows through the city of Denver. Located at the western edge of the Great Plains, Denver is nicknamed the 'Mile High City', a consequence of its 1609-meter (5280-foot) elevation above sea level. It shows up in the imagery as a grayish patch surrounded by numerous agricultural fields to the north and east. Denver is situated just east of the Front Range of the Rocky Mountains, located in the lower right of the images. The Rockies owe their present forms to tectonic uplift and sculpting by millions of years of erosion. Scattered cumulus clouds floating above the mountain peaks are visible in these images, and stand out most dramatically in the 3-D stereo view.

    To the north of Denver, other urban areas included within these images are Boulder, Greeley, Longmont, and Fort Collins, Colorado; Cheyenne and Laramie, Wyoming; and Scottsbluff, Nebraska.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  4. Contribution of laser ranging to Earth's sciences

    NASA Astrophysics Data System (ADS)

    Exertier, Pierre; Bonnefond, Pascal; Deleflie, Florent; Barlier, François; Kasser, Michel; Biancale, Richard; Ménard, Yves

    2006-11-01

    Satellite and Lunar Laser Ranging (SLR and LLR, respectively) are based on a direct measurement of a distance by exactly measuring the time transit of a laser beam between a station and a space target. These techniques have proven to be very efficient methods for contributing to the tracking of both artificial satellites and the Moon, and for determining accurately their orbit and the associated geodynamical parameters, although hampered by the non-worldwide coverage and the meteorological conditions. Since more than 40 years, the French community (today 'Observatoire de la Côte d'Azur', CNES, 'Observatoire de Paris', and IGN) is largely involved in the technological developments as well as in the scientific achievements. The role of the laser technique has greatly evolved thanks to the success of GPS and DORIS; the laser technique teams have learnt to focus their effort in fields where this technique is totally specific and irreplaceable. The role of SLR data in the determination of terrestrial reference systems and in the modelling of the first terms of the gravity field (including the terrestrial constant GM that defines the scale of orbits) has to be emphasized, which is of primary importance in orbitography, whatever the tracking technique used. In addition, the role of LLR data (with two main stations, at Mac Donald (United States) and Grasse (France), since 30 years) has been of particular importance for improving solar system ephemeris and contributing to some features of fundamental physics (equivalence principle). Today, the role of the SLR technique is ( i) to determine and to maintain the scale factor of the global terrestrial reference frame, ( ii) to strengthen the vertical component (including velocity) of the positioning, which is crucial for altimetry missions and tectonic motions, ( iii) to locate the geocenter with respect to the Earth's crust, ( iv) to avoid any secular and undesirable drift of geodetic systems thanks to a very good accuracy

  5. Space Based Range Demonstration and Certification (SBRDC)

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert

    2005-01-01

    This viewgraph presentation describes the development, utilization and testing of technologies for range safety and range user systems. The contents include: 1) Space Based Range (SBR) Goals and Objectives; 2) Today s United States Range; 3) Future Range; 4) Another Vision for the Future Range; 5) STARS Project Goals; 6) STARS Content; 7) STARS Configuration Flight Demonstrations 1 & 2; 8) Spaceport And Range Technologies STARS Objectives and Results; 9) Spaceport And Range Technologies STARS FD2 Objectives; 10) Range Safety Hardware; 11) Range User Hardware; and 12) Past/Future Flight Demo Plans

  6. Understanding Mountain Range Spatial Variability of Surface Hoar

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.

    2014-12-01

    Surface hoar, once buried often produce a persistent weak layer that is a common instability problem in the snow pack in SW Montana and many other areas around the world. Surface hoar is a common weak layer type in avalanche accidents in a continental and intermountain snowpack. It is however relatively well understood that aspect plays an important role in the spatial location of the growth, and survival of these grain forms, due to the unequal distribution of incoming radiation. However this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at larger, mountain range spatial scales. In this paper we present a unique data set including over one hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, detailed site scale observations (e.g. Sky view plots) we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale meteorological differences, site scale differences, and local scale lapse rates can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at this large, mountain range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.

  7. Earthquake Apparent Stress Scaling

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Mayeda, K.; Ruppert, S.

    2002-12-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of recent papers finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Another set of recent papers finds the apparent stress increases with magnitude (e.g. Kanamori et al., 1993 Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We have just started a project to reexamine this issue by analyzing aftershock sequences in the Western U.S. and Turkey using two different techniques. First we examine the observed regional S-wave spectra by fitting with a parametric model (Walter and Taylor, 2002) with and without variable stress drop scaling. Because the aftershock sequences have common stations and paths we can examine the S-wave spectra of events by size to determine what type of apparent stress scaling, if any, is most consistent with the data. Second we use regional coda envelope techniques (e.g. Mayeda and Walter, 1996; Mayeda et al, 2002) on the same events to directly measure energy and moment. The coda techniques corrects for path and site effects using an empirical Green function technique and independent calibration with surface wave derived moments. Our hope is that by carefully analyzing a very large number of events in a consistent manner using two different techniques we can start to resolve this apparent stress scaling issue. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  8. Earthquake Apparent Stress Scaling

    NASA Astrophysics Data System (ADS)

    Mayeda, K.; Walter, W. R.

    2003-04-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of recent papers finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Another set of recent papers finds the apparent stress increases with magnitude (e.g. Kanamori et al., 1993 Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We have just started a project to reexamine this issue by applying the same methodology to a series of datasets that spans roughly 10 orders in seismic moment, M0. We will summarize recent results using a coda envelope methodology of Mayeda et al, (2003) which provide the most stable source spectral estimates to date. This methodology eliminates the complicating effects of lateral path heterogeneity, source radiation pattern, directivity, and site response (e.g., amplification, f-max and kappa). We find that in tectonically active continental crustal areas the total radiated energy scales as M00.25 whereas in regions of relatively younger oceanic crust, the stress drop is generally lower and exhibits a 1-to-1 scaling with moment. In addition to answering a fundamental question in earthquake source dynamics, this study addresses how one would scale small earthquakes in a particular region up to a future, more damaging earthquake. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  9. Scaling Applications in hydrology

    NASA Astrophysics Data System (ADS)

    Gebremichael, Mekonnen

    2010-05-01

    Besides downscaling applications, scaling properties of hydrological fields can be used to address a variety of research questions. In this presentation, we will use scaling properties to address questions related to satellite evapotranspiration algorithms, precipitation-streamflow relationships, and hydrological model calibration. Most of the existing satellite-based evapotranspiration (ET) algorithms have been developed using fine-resolution Landsat TM and ASTER data. However, these algorithms are often applied to coarse-resolution MODIS data. Our results show that applying the satellite-based algorithms, which are developed at ASTER resolution, to MODIS resolution leads to ET estimates that (1) preserve the overall spatial pattern (spatial correlation in excess of 0.90), (2) increase the spatial standard deviation and maximum value, (3) have modest conditional bias: underestimate low ET rates (< 1 mm/day) and overestimate high ET rates; the overestimation is within 20%. The results emphasize the need for exploring alternatives for estimation of ET from MODIS. Understanding the relationship between the scaling properties of precipitation and streamflow is important in a number of applications. We present the results of a detailed river flow fluctuation analysis on daily records from 14 stations in the Flint River basin in Georgia in the United States with focus on effect of watershed area on long memory of river flow fluctuations. The areas of the watersheds draining to the stations range from 22 km2 to 19,606 km2. Results show that large watersheds have more persistent flow fluctuations and stronger long-term (time greater than scale break point) memory than small watersheds while precipitation time series shows weak long-term correlation. We conclude that a watershed acts as a 'filter' for a 'white noise' precipitation with more significant filtering in case of large watersheds. Finally, we compare the scaling properties of simulated and observed spatial soil

  10. Matera Laser Ranging Observatory (MLRO): An overview

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Decker, Winfield M.; Crooks, Henry A.; Bianco, Giuseppe

    1993-01-01

    The Agenzia Spaziale Italiana (ASI) is currently under negotiation with the Bendix Field Engineering Corporation (BFEC) of the Allied Signal Aerospace Company (ASAC) to build a state-of-the-art laser ranging observatory for the Centro di Geodesia Spaziale, in Matera, Italy. The contract calls for the delivery of a system based on a 1.5 meter afocal Cassegrain astronomical quality telescope with multiple ports to support a variety of experiments for the future, with primary emphasis on laser ranging. Three focal planes, viz. Cassegrain, Coude, and Nasmyth will be available for these experiments. The open telescope system will be protected from dust and turbulence using a specialized dome which will be part of the building facilities to be provided by ASI. The fixed observatory facility will be partitioned into four areas for locating the following: laser, transmit/receive optics, telescope/dome enclosure, and the operations console. The optical tables and mount rest on a common concrete pad for added mechanical stability. Provisions will be in place for minimizing the effects of EMI, for obtaining maximum cleanliness for high power laser and transmit optics, and for providing an ergonomic environment fitting to a state-of-the-art multipurpose laboratory. The system is currently designed to be highly modular and adaptable for scaling or changes in technology. It is conceived to be a highly automated system with superior performance specifications to any currently operational system. Provisions are also made to adapt and accommodate changes that are of significance during the course of design and integration.

  11. Gribov copies and anomalous scaling

    SciTech Connect

    Holdom, B.

    2008-12-15

    Nonperturbative and lattice methods indicate that Gribov copies modify the infrared behavior of gauge theories and cause a suppression of gluon propagation. We investigate whether this can be implemented in a modified perturbation theory. The minimal modification proceeds via a nonlocal generalization of the Fadeev-Popov ghost that automatically decouples from physical states. The expected scale invariance of the physics associated with Gribov copies leads to the emergence of a nontrivial infrared fixed point. For a range of a scaling exponent the gauge bosons exhibit unparticlelike behavior in the infrared. The confining regime of interest for QCD requires a larger scaling exponent, but then the severity of ghost dominance upsets naive power counting for the infrared scaling behavior of amplitudes.

  12. Scaling behaviour of entropy estimates

    NASA Astrophysics Data System (ADS)

    Schürmann, Thomas

    2002-02-01

    Entropy estimation of information sources is highly non-trivial for symbol sequences with strong long-range correlations. The rabbit sequence, related to the symbolic dynamics of the nonlinear circle map at the critical point as well as the logistic map at the Feigenbaum point, is known to produce long memory tails. For both dynamical systems the scaling behaviour of the block entropy of order n has been shown to increase ∝log n. In contrast to such probabilistic concepts, we investigate the scaling behaviour of certain non-probabilistic entropy estimation schemes suggested by Lempel and Ziv (LZ) in the context of algorithmic complexity and data compression. These are applied in a sequential manner with the scaling variable being the length N of the sequence. We determine the scaling law for the LZ entropy estimate applied to the case of the critical circle map and the logistic map at the Feigenbaum point in a binary partition.

  13. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572

  14. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents. PMID:27588876

  15. Quantitative Scaling of Magnetic Avalanches

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bohn, F.; Corrêa, M. A.; Sommer, R. L.; Le Doussal, P.; Wiese, K. J.

    2016-08-01

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples—which are characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  16. Long-range forecasting of intermittent streamflow

    NASA Astrophysics Data System (ADS)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  17. Long-range forecasting of intermittent streamflow

    NASA Astrophysics Data System (ADS)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-11-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  18. Updating the Cognitive Performance Scale.

    PubMed

    Morris, John N; Howard, Elizabeth P; Steel, Knight; Perlman, Christopher; Fries, Brant E; Garms-Homolová, Vjenka; Henrard, Jean-Claude; Hirdes, John P; Ljunggren, Gunnar; Gray, Len; Szczerbińska, Katarzyna

    2016-01-01

    This study presents the first update of the Cognitive Performance Scale (CPS) in 20 years. Its goals are 3-fold: extend category options; characterize how the new scale variant tracks with the Mini-Mental State Examination; and present a series of associative findings. Secondary analysis of data from 3733 older adults from 8 countries was completed. Examination of scale dimensions using older and new items was completed using a forward-entry stepwise regression. The revised scale was validated by examining the scale's distribution with a self-reported dementia diagnosis, functional problems, living status, and distress measures. Cognitive Performance Scale 2 extends the measurement metric from a range of 0 to 6 for the original CPS, to 0 to 8. Relating CPS2 to other measures of function, living status, and distress showed that changes in these external measures correspond with increased challenges in cognitive performance. Cognitive Performance Scale 2 enables repeated assessments, sensitive to detect changes particularly in early levels of cognitive decline. PMID:26251111

  19. Short-range Gravity experiment using digital image analysis

    NASA Astrophysics Data System (ADS)

    Ninomiya, Kazufumi; Kishi, Reiko; Murakami, Haruna; Nishio, Hironori; Ogawa, Naruya; Taketani, Atsushi; Murata, Jiro

    2013-08-01

    According to a large extra dimension model, a deviation from Newton's inverse square law is expected at below sub-millimeter range. We have developed an experimental set up using a torsion balance pendulum and an online digital-image analysis system, aiming to test the Newtonian inverse square law at below millimeter scale. In addition, composition dependence of gravitational constant G is also tested at a millimeter scale, motivated to test the weak equivalence principle. In this paper, current status and results are described.

  20. Development of an Interview-Based Geriatric Depression Rating Scale.

    ERIC Educational Resources Information Center

    Jamison, Christine; Scogin, Forrest

    1992-01-01

    Developed interview-based Geriatric Depression Rating Scale (GDRS) and administered 35-item GDRS to 68 older adults with range of affective disturbance. Found scale to have internal consistency and split-half reliability comparable to those of Hamilton Rating Scale for Depression and Geriatric Depression Scale. Concurrent validity, construct…

  1. The Measurement of Temperature; Part i: Temperature Scales

    ERIC Educational Resources Information Center

    Forrest, A. M.

    1974-01-01

    Discusses the inter-relationships between some important temperature scales such as the Celsius scale, the Kelvin Thermodynamic scale, and the International Practical Temperature Scale (IPTS). Included is a description of the 1968 IPTS with emphasis on innovations introduced in the range below 273.15 k. (CC)

  2. Signal integration enhances the dynamic range in neuronal systems

    NASA Astrophysics Data System (ADS)

    Gollo, Leonardo L.; Mirasso, Claudio; Eguíluz, Víctor M.

    2012-04-01

    The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.

  3. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  4. An elastica arm scale

    PubMed Central

    Bosi, F.; Misseroni, D.; Dal Corso, F.; Bigoni, D.

    2014-01-01

    The concept of a ‘deformable arm scale’ (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free to slide in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes designed to demonstrate the feasibility of the system show a high accuracy in the measurement of load within a certain range of use. Finally, we show that the presented results are strongly related to snaking of confined beams, with implications for locomotion of serpents, plumbing and smart oil drilling. PMID:25197248

  5. Fluctuation scaling, Taylor's law, and crime.

    PubMed

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation. PMID:25271781

  6. Education, Wechler's Full Scale IQ and "g."

    ERIC Educational Resources Information Center

    Colom, Roberto; Abad, Francisco J.; Garcia, Luis F.; Juan-Espinosa, Manuel

    2002-01-01

    Investigated whether average Full Scale IQ (FSIQ) differences can be attributed to "g" using the Spanish standardization sample of the Wechsler Adult Intelligence Scale III (WAIS III) (n=703 females and 666 men). Results support the conclusion that WAIS III FSIQ does not directly or exclusively measure "g" across the full range of population…

  7. Internal Structure of the Reflective Functioning Scale

    ERIC Educational Resources Information Center

    Taubner, Svenja; Horz, Susanne; Fischer-Kern, Melitta; Doering, Stephan; Buchheim, Anna; Zimmermann, Johannes

    2013-01-01

    The Reflective Functioning Scale (RFS) was developed to assess individual differences in the ability to mentalize attachment relationships. The RFS assesses mentalization from transcripts of the Adult Attachment Interview (AAI). A global score is given by trained coders on an 11-point scale ranging from antireflective to exceptionally reflective.…

  8. Dynamics of convective scale interaction

    NASA Technical Reports Server (NTRS)

    Purdom, James F. W.; Sinclair, Peter C.

    1988-01-01

    Several of the mesoscale dynamic and thermodynamic aspects of convective scale interaction are examined. An explanation of how sounding data can be coupled with satellite observed cumulus development in the warm sector and the arc cloud line's time evolution to develop a short range forecast of expected convective intensity along an arc cloud line. The formative, mature and dissipating stages of the arc cloud line life cycle are discussed. Specific properties of convective scale interaction are presented and the relationship between arc cloud lines and tornado producing thunderstorms is considered.

  9. Basis Construction for Range Estimation by Phase Unwrapping

    NASA Astrophysics Data System (ADS)

    Akhlaq, Assad; McKilliam, R. G.; Subramanian, R.

    2015-11-01

    We consider the problem of estimating the distance, or range, between two locations by measuring the phase of a sinusoidal signal transmitted between the locations. This method is only capable of unambiguously measuring range within an interval of length equal to the wavelength of the signal. To address this problem signals of multiple different wavelengths can be transmitted. The range can then be measured within an interval of length equal to the least common multiple of these wavelengths. Estimation of the range requires solution of a problem from computational number theory called the closest lattice point problem. Algorithms to solve this problem require a basis for this lattice. Constructing a basis is non-trivial and an explicit construction has only been given in the case that the wavelengths can be scaled to pairwise relatively prime integers. In this paper we present an explicit construction of a basis without this assumption on the wavelengths. This is important because the accuracy of the range estimator depends upon the wavelengths. Simulations indicate that significant improvement in accuracy can be achieved by using wavelengths that cannot be scaled to pairwise relatively prime integers.

  10. Universal relations for range corrections to Efimov features

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Braaten, Eric; Phillips, Daniel R.; Platter, Lucas

    2015-09-01

    In a three-body system of identical bosons interacting through a large S -wave scattering length a , there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range rs. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentum scale at a rate proportional to rs/a . The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a . The accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.

  11. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  12. BOLD Subjective Value Signals Exhibit Robust Range Adaptation

    PubMed Central

    Cox, Karin M.

    2014-01-01

    Many theories of decision making assume that choice options are assessed along a common subjective value (SV) scale. The neural correlates of SV are widespread and reliable, despite the wide variation in the range of values over which decisions are made (e.g., between goods worth a few dollars, in some cases, or hundreds of dollars, in others). According to adaptive coding theories (Barlow, 1961), an efficient value signal should exhibit range adaptation, such that neural activity maintains a fixed dynamic range, and the slope of the value response varies inversely with the range of values within the local context. Although monkey data have demonstrated range adaptation in single-unit correlates of value (Padoa-Schioppa, 2009; Kobayashi et al., 2010), whether BOLD value signals exhibit similar range adaptation is unknown. To test for this possibility, we presented human participants with choices between a fixed immediate and variable delayed payment options. Across two conditions, the delayed options' SVs spanned either a narrow or wide range. SV-tracking activity emerged in the posterior cingulate, ventral striatum, anterior cingulate, and ventromedial prefrontal cortex. Throughout this network, we observed evidence consistent with the predictions of range adaptation: the SV response slope increased in the narrow versus wide range, with statistically significant slope changes confirmed for the posterior cingulate and ventral striatum. No regions exhibited a reliably increased BOLD activity range in the wide versus narrow condition. Our observations of range adaptation present implications for the interpretation of BOLD SV responses that are measured across different contexts or individuals. PMID:25471589

  13. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  14. Combined Search for Lorentz Violation in Short-Range Gravity

    NASA Astrophysics Data System (ADS)

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G.; Long, J. C.; Weisman, E.; Xu, Rui; Kostelecký, V. Alan

    2016-08-01

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10-9 m2 , improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.

  15. Combined Search for Lorentz Violation in Short-Range Gravity.

    PubMed

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan

    2016-08-12

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9}  m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings. PMID:27563946

  16. Freely cooling granular gases with short-ranged attractive potentials

    SciTech Connect

    Murphy, Eric; Subramaniam, Shankar

    2015-04-15

    We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.

  17. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  18. Emergent long-range couplings in arrays of fluid cells

    SciTech Connect

    Abraham, Douglas Bruce

    2014-08-07

    We present a system exhibiting extraordinarily long-range cooperative effects, on a length scale far exceeding the bulk correlation length. We give a theoretical explanation of these phenomena based on the mesoscopic picture of phase coexistence in finite systems, which is confirmedly Monte Carlo (MC) simulation studies. Our work demonstrates that such action-at-a-distance can occur in classical systems involving simple or complex fluids, such as colloid-polymer mixtures, or ferromagnets.

  19. Range-limited centrality measures in complex networks

    NASA Astrophysics Data System (ADS)

    Ercsey-Ravasz, Mária; Lichtenwalter, Ryan N.; Chawla, Nitesh V.; Toroczkai, Zoltán

    2012-06-01

    Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimum weight paths with path weights not larger than wℓ=ℓΔ, ℓ=1,2...,L=R/Δ. These measures provide a systematic description on the positioning importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to and including the whole network. They are more informative than traditional centrality measures, as network transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted. We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-mentioned scaling behavior. These observations were made on model networks and on a large social network inferred from cell-phone trace logs (˜5.5×106 nodes and ˜2.7×107 edges). Finally, we apply these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality measures in

  20. Range-limited centrality measures in complex networks.

    PubMed

    Ercsey-Ravasz, Mária; Lichtenwalter, Ryan N; Chawla, Nitesh V; Toroczkai, Zoltán

    2012-06-01

    Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimum weight paths with path weights not larger than w(ℓ)=ℓΔ, ℓ=1,2...,L=R/Δ. These measures provide a systematic description on the positioning importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to and including the whole network. They are more informative than traditional centrality measures, as network transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted. We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-mentioned scaling behavior. These observations were made on model networks and on a large social network inferred from cell-phone trace logs (∼5.5×10(6) nodes and ∼2.7×10(7) edges). Finally, we apply these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality

  1. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  2. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  3. Lead exposure at uncovered outdoor firing ranges

    SciTech Connect

    Goldberg, R.L.; Hicks, A.M.; O'Leary, L.M.; London, S. )

    1991-06-01

    Excessive lead exposure in shooting instructors at indoor firing ranges and covered outdoor firing ranges has been documented. The City of Los Angeles assessed exposure of its full-time shooting instructors at uncovered outdoor ranges via air monitoring and blood lead-level measurements. Results of these tests revealed that significant lead exposure and absorption can occur at outdoor firing ranges. The use of copper-jacketed ammunition may decrease air lead levels and decrease lead absorption by range instructors.

  4. Scale-free texture of the fast solar wind.

    PubMed

    Hnat, B; Chapman, S C; Gogoberidze, G; Wicks, R T

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ~1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range. PMID:22304144

  5. Scaling Properties of Shoreline Change: Process Implications

    NASA Astrophysics Data System (ADS)

    Murray, A.; Lazarus, E.; Ashton, A. D.; Tebbens, S. F.; Burroughs, S. M.

    2011-12-01

    Using shoreline-change measurements of two open-ocean reaches of the North Carolina Outer Banks, U.S.A., we explore an existing premise that shoreline change on a sandy coast is a self-affine signal, wherein patterns of change are scale-invariant. Wavelet analysis confirms that the mean variance (spectral power) of shoreline change can be approximated by a power law at alongshore scales from tens of m up to a few kilometers. In some systems, a power law reflects the presence of a unifying process or interaction that spans the scales of the power law. Classic examples include turbulent fluids, networks of interacting faults/Earthquakes, and fluvially sculpted landscapes. However, an approximately linear portion of a spectrum in a log-log plot does not necessarily indicate a scale-free, dominant process, as the shoreline-change spectrum exemplifies; distinct processes dominate different scale ranges within the range of the approximate power law. Why an amalgamation scale-dependent processes often produces an approximately linear portion of a spectrum remains an intriguing question. The shoreline-change spectra also illustrates the point that deviations from approximate power-law scaling can also be interesting. At scales of kilometers to tens of kilometers, the spectra exhibit a maximum of the variance (not related to finite-domain-size effects). Both the magnitude of the variance in this broad peak, and the spatial scale at which that maximum occurs, increase when shoreline change is measured over longer time scales (up to decadal). The scaling relationship between the time and spatial scales of this peak suggest a large-scale diffusion of coastline shape (possibly driven by gradients in alongshore sediment flux related to large-scale coastline curvature). Recent analysis of shoreline curvature and change in curvature for shoreline changes spanning hurricane-related wave events shows that large-scale coastline-shape anti-diffusion can occur during extreme storms

  6. Basalt Weathering Rates Across Scales

    NASA Astrophysics Data System (ADS)

    Navarresitchler, A.; Brantley, S.

    2006-12-01

    Weathering of silicate minerals is a known sink for atmospheric CO2. An estimated 30%-35% of the consumption of CO2 from continental silicate weathering can be attributed to basalt weathering (Dessert et al., 2003). To assess basalt weathering rates we examine weathering advance rates of basalt (w, mm/yr) reported at four scales: denudation rates from basalt watersheds (tens of kilometers), rates of soil formation from soil profiles developed on basaltic parent material of known age (meters), rates of weathering rind formation on basalt clasts (centimeters), and laboratory dissolution rates (millimeters). Basalt weathering advance rates calculated for watersheds range between 0.36 and 9.8x10-3 mm/yr. The weathering advance rate for a basalt soil profile in Hawaii is 8.0x10-3 mm/yr while advance rates for clasts range from 5.6x10-6 to 2.4x10-4 mm/yr. Batch and mixed flow laboratory experiments performed at circum- neutral pH yield advance rates of 2.5x10^{-5} to 3.4x10-7 mm/yr when normalized to BET surface area. These results show increasing advance rates with both increasing scale (from laboratory to watersheds) and increasing temperature. If we assume that basalt weathers at an intrinsic rate that applies to all scales then we conclude that variations in weathering advance rates arise from variations in surface area measurement at different scales (D); therefore, basalt weathering is a fractal system. We measure a fractal dimension (dr) of basalt weathering of 2.2. For Euclidean geometries, measured surface area does not vary with the scale at which it is measured and dr equals 2. For natural surfaces, surface area is related to the scale at which it is measured. As scale increases, the minimum size of the surface irregularities that are measurable also increases. The ratio between BET and geometric normalized laboratory dissolution rates has been defined as a roughness parameter, λ, which ranges from ~10-100. We extend the definition of this roughness parameter

  7. Range-wide patterns of greater sage-grouse persistence

    USGS Publications Warehouse

    Aldridge, C.L.; Nielsen, S.E.; Beyer, H.L.; Boyce, M.S.; Connelly, J.W.; Knick, S.T.; Schroeder, M.A.

    2008-01-01

    Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human

  8. NASA Range Safety Annual Report 2007

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2007-01-01

    As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.

  9. Microprocessor realizations of range rate filters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance of five digital range rate filters is evaluated. A range rate filter receives an input of range data from a radar unit and produces an output of smoothed range data and its estimated derivative range rate. The filters are compared through simulation on an IBM 370. Two of the filter designs are implemented on a 6800 microprocessor-based system. Comparisons are made on the bases of noise variance reduction ratios and convergence times of the filters in response to simulated range signals.

  10. CO2 laser ranging systems study

    NASA Technical Reports Server (NTRS)

    Filippi, C. A.

    1975-01-01

    The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.

  11. 2006 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda

    2007-01-01

    Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.

  12. Scaling of extreme rainfall areas at a planetary scale.

    PubMed

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2015-07-01

    Event magnitude and area scaling relationships for rainfall over different regions of the world have been presented in the literature for relatively short durations and over relatively small areas. In this paper, we present the first ever results on a global analysis of the scaling characteristics of extreme rainfall areas for durations ranging from 1 to 30 days. Broken power law models are fit in each case. The past work has been focused largely on the time and space scales associated with local and regional convection. The work presented here suggests that power law scaling may also apply to planetary scale phenomenon, such as frontal and monsoonal systems, and their interaction with local moisture recycling. Such features may have persistence over large areas corresponding to extreme rain and regional flood events. As a result, they lead to considerable hazard exposure. A caveat is that methods used for empirical power law identification have difficulties with edge effects due to finite domains. This leads to problems with robust model identification and interpretability of the underlying relationships. We use recent algorithms that aim to address some of these issues in a principled way. Theoretical research that could explain why such results may emerge across the world, as analyzed for the first time in this paper, is needed. PMID:26232980

  13. Scaling of extreme rainfall areas at a planetary scale

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2015-07-01

    Event magnitude and area scaling relationships for rainfall over different regions of the world have been presented in the literature for relatively short durations and over relatively small areas. In this paper, we present the first ever results on a global analysis of the scaling characteristics of extreme rainfall areas for durations ranging from 1 to 30 days. Broken power law models are fit in each case. The past work has been focused largely on the time and space scales associated with local and regional convection. The work presented here suggests that power law scaling may also apply to planetary scale phenomenon, such as frontal and monsoonal systems, and their interaction with local moisture recycling. Such features may have persistence over large areas corresponding to extreme rain and regional flood events. As a result, they lead to considerable hazard exposure. A caveat is that methods used for empirical power law identification have difficulties with edge effects due to finite domains. This leads to problems with robust model identification and interpretability of the underlying relationships. We use recent algorithms that aim to address some of these issues in a principled way. Theoretical research that could explain why such results may emerge across the world, as analyzed for the first time in this paper, is needed.

  14. Scaling relations in two-dimensional relativistic hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Lehner, Luis; Oz, Yaron

    2015-12-01

    We derive exact scaling relations for two-dimensional relativistic hydrodynamic turbulence in the inertial range of scales. We consider both the energy cascade towards large scales and the enstrophy cascade towards small scales. We illustrate these relations by numerical simulations of turbulent weakly compressible flows. Intriguingly, the fluid-gravity correspondence implies that the gravitational field in black hole/black brane spacetimes with anti-de Sitter asymptotics should exhibit similar scaling relations.

  15. Scaling: An Items Module

    ERIC Educational Resources Information Center

    Tong, Ye; Kolen, Michael J.

    2010-01-01

    "Scaling" is the process of constructing a score scale that associates numbers or other ordered indicators with the performance of examinees. Scaling typically is conducted to aid users in interpreting test results. This module describes different types of raw scores and scale scores, illustrates how to incorporate various sources of information…

  16. Small scale bipolar nickel-hydrogen testing

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1988-01-01

    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value.

  17. Test of the Gravitational Inverse Square Law at Millimeter Ranges

    NASA Astrophysics Data System (ADS)

    Yang, Shan-Qing; Zhan, Bi-Fu; Wang, Qing-Lan; Shao, Cheng-Gang; Tu, Liang-Cheng; Tan, Wen-Hai; Luo, Jun

    2012-02-01

    We report a new test of the gravitational inverse square law at millimeter ranges by using a dual-modulation torsion pendulum. An I-shaped symmetric pendulum and I-shaped symmetric attractors were adopted to realize a null experimental design. The non-Newtonian force between two macroscopic tungsten plates is measured at separations ranging down to 0.4 mm, and the validity of the null experimental design was checked by non-null Newtonian gravity measurements. We find no deviations from the Newtonian inverse square law with 95% confidence level, and this work establishes the most stringent constraints on non-Newtonian interaction in the ranges from 0.7 to 5.0 mm, and a factor of 8 improvement is achieved at the length scale of several millimeters.

  18. Cooperation enhanced by moderate tolerance ranges in myopically selective interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojie; Wang, Long

    2009-10-01

    We present a mode of myopically selective interaction to study the evolutionary prisoner’s dilemma game in scale-free networks. Each individual has a reputation-based tolerance range and only tends to interact with the neighbors whose reputation is within its tolerance range. Moreover, its reputation is assessed in response to the interactions in the neighborhood. Interestingly, we show that moderate values of tolerance range can result in the best promotion of cooperation due to the emergence of group selection mechanism. Furthermore, we study the effects of weighting factor in the assessment rule of reputation on the evolution of cooperation. We also show how cooperation evolves in some extended situations, where an interaction stimulus payment is considered for individuals, and where the strategy and reputation of individuals can spread simultaneously. Our results may enhance the understanding of evolutionary dynamics in graph-structured populations where individuals conditionally play with their neighbors according to some myopic selection criteria.

  19. 2012 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    This report provides a NASA Range Safety (NRS) overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program (RSP) activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2012 NASA Range Safety Annual Report include a program overview and 2012 highlights; Range Safety Training; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  20. 2009 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This year, NASA Range Safety transitioned to a condensed annual report to allow for Secretariat support to the Range Safety Group, Risk Committee. Although much shorter than in previous years, this report contains full-length articles concerning various subject areas, as well as links to past reports. Additionally, summaries from various NASA Range Safety Program activities that took place throughout the year are presented, as well as information on several projects that may have a profound impact on the way business will be done in the future. The sections include a program overview and 2009 highlights; Range Safety Training; Range Safety Policy; Independent Assessments Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  1. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  2. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  3. Dolphin "packet" use during long-range echolocation tasks.

    PubMed

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude. PMID:23464048

  4. Proton range verification through prompt gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Verburg, Joost M.; Seco, Joao

    2014-12-01

    We present an experimental study of a novel method to verify the range of proton therapy beams. Differential cross sections were measured for 15 prompt gamma-ray lines from proton-nuclear interactions with 12C and 16O at proton energies up to 150 MeV. These cross sections were used to model discrete prompt gamma-ray emissions along proton pencil-beams. By fitting detected prompt gamma-ray counts to these models, we simultaneously determined the beam range and the oxygen and carbon concentration of the irradiated matter. The performance of the method was assessed in two phantoms with different elemental concentrations, using a small scale prototype detector. Based on five pencil-beams with different ranges delivering 5 × 108 protons and without prior knowledge of the elemental composition at the measurement point, the absolute range was determined with a standard deviation of 1.0-1.4 mm. Relative range shifts at the same dose level were detected with a standard deviation of 0.3-0.5 mm. The determined oxygen and carbon concentrations also agreed well with the actual values. These results show that quantitative prompt gamma-ray measurements enable knowledge of nuclear reaction cross sections to be used for precise proton range verification in the presence of tissue with an unknown composition.

  5. Development of a digital receiver for range imaging atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masayuki K.; Fujita, Toshiyuki; Abdul Aziz, Noor Hafizah Binti; Gan, Tong; Hashiguchi, Hiroyuki; Yu, Tian-You; Yamamoto, Mamoru

    2014-10-01

    In this paper, we describe a new digital receiver developed for a 1.3-GHz range imaging atmospheric radar. The digital receiver comprises a general-purpose software-defined radio receiver referred to as the Universal Software Radio Peripheral 2 (USRP2) and a commercial personal computer (PC). The receiver is designed to collect received signals at an intermediate frequency (IF) of 130 MHz with a sample rate of 10 MS s-1. The USRP2 digitizes IF received signals, produces IQ time series, and then transfers the IQ time series to the PC through Gigabit Ethernet. The PC receives the IQ time series, performs range sampling, carries out filtering in the range direction, decodes the phase-modulated received signals, integrates the received signals in time, and finally saves the processed data to the hard disk drive (HDD). Because only sequential data transfer from the USRP2 to the PC is available, the range sampling is triggered by transmitted pulses leaked to the receiver. For range imaging, the digital receiver performs real-time signal processing for each of the time series collected at different frequencies. Further, the receiver is able to decode phase-modulated oversampled signals. Because the program code for real-time signal processing is written in a popular programming language (C++) and widely used libraries, the signal processing is easy to implement, reconfigure, and reuse. From radar experiments using a 1-μs subpulse width and 1-MHz frequency span (i.e., 2-MHz frequency bandwidth), we demonstrate that range imaging in combination with oversampling, which was implemented for the first time by the digital receiver, is able to resolve the fine-scale structure of turbulence with a vertical scale as small as 100 m or finer.

  6. 33 CFR 62.41 - Ranges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids...

  7. 33 CFR 62.41 - Ranges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids...

  8. 33 CFR 62.41 - Ranges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids...

  9. 33 CFR 62.41 - Ranges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids...

  10. 33 CFR 62.41 - Ranges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids...

  11. 36 CFR 222.9 - Range improvements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Range improvements. 222.9 Section 222.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Grazing and Livestock Use on the National Forest System § 222.9 Range improvements. (a) The Chief, Forest Service, is authorized to install...

  12. Inertial ranges and resistive instabilities in two-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Politano, H.; Pouquet, A.; Sulem, P. L.

    1989-12-01

    Direct numerical simulations of decaying two-dimensional magnetohydrodynamic flows at Reynolds numbers of several thousand are performed, using resolutions of 1024-squared collocation points. An inertial range extending to about one decade is observed, with spectral properties depending on the velocity-magnetic field correlation. At very small scales, resistive tearing destabilizes current sheets generated by the inertial dynamics and leads to the formation of small-scale magnetic islands, which may then grow and reach the size of inertial scales.

  13. Object Detection in Cluttered Range Images Using Edgel Geometry

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Kobayashi, Yoshinori; Kuno, Yoshinori

    In this paper, we present an object detection technique that uses scale invariant local edgel structures and their properties to locate multiple object categories within a range image in the presence of partial occlusion, cluttered background, and significant scale changes. The fragmented local edgels (key-edgel, ek) are efficiently extracted from a 3D edge map by separating them at their corner points. The 3D edge maps are reliably constructed by combining both boundary and fold edges of 3D range images. Each key-edgel is described using our scale invariant descriptors that encode local geometric configuration by joining the edgel to adjacent edgels at its start and end points. Using key-edgels and their descriptors, our model generates promising hypothetical locations in the image. These hypotheses are then verified using more discriminative features. The discriminative feature consists of a bag-of-words histogram constructed by key-edgels and their descriptors, and a pyramid histogram of orientation gradients. To find the similarities between different feature types in a discriminative stage, we use an exponential χ2 merging kernel function. Our merging kernel outperforms the conventional rbf kernel of the SVM classifier. The approach is evaluated based on ten diverse object categories in a real-world environment.

  14. Mobility at the scale of meters.

    PubMed

    Surovell, Todd A; O'Brien, Matthew

    2016-05-01

    When archeologists discuss mobility, we are most often referring to a phenomenon that operates on the scale of kilometers, but much of human mobility, at least if measured in terms of frequency of movement, occurs at much smaller scales, ranging from centimeters to tens of meters. Here we refer to the movements we make within the confines of our homes or places of employment. With respect to nomadic peoples, movements at this scale would include movements within campsites. Understanding mobility at small scales is important to archeology because small-scale mobility decisions are a critical factor affecting spatial patterning observed in archeological sites. In this paper, we examine the factors affecting small-scale mobility decisions in a Mongolian reindeer herder summer camp and the implications of those decisions with regard to archeological spatial patterning. PMID:27312186

  15. Spatial memory and navigation by honeybees on the scale of the foraging range

    PubMed

    Dyer

    1996-01-01

    Honeybees and other nesting animals face the problem of finding their way between their nest and distant feeding sites. Many studies have shown that insects can learn foraging routes in reference to both landmarks and celestial cues, but it is a major puzzle how spatial information obtained from these environmental features is encoded in memory. This paper reviews recent progress by my colleagues and me towards understanding three specific aspects of this problem in honeybees: (1) how bees learn the spatial relationships among widely separated locations in a familiar terrain; (2) how bees learn the pattern of movement of the sun over the day; and (3) whether, and if so how, bees learn the relationships between celestial cues and landmarks. PMID:9317523

  16. Utilization of satellite data and regional scale numerical models in short range weather forecasting

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1985-01-01

    Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.

  17. National Bureau of Standards (NBS) temperature scale in the range 15 to 200 mk. Final report

    SciTech Connect

    Colwell, J.H.; Fogle, W.E.; Soulen, R.J.

    1984-01-01

    The authors have studied the reproducibility upon thermal cycling of several types of thermometers. A Josephson junction noise thermometer, a CMN thermometer, and an SRM 768 superconductive fixed-point device were very consistent, while a germanium and a carbon resistance thermometer showed significant irreproducibility.

  18. Accuracy analysis of optical ranging in atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-wu; Huang, Yin-bo; Mei, Hai-ping; Rao, Rui-zhong

    2009-07-01

    Optical ranging is one of the most precise techniques for distance measurement. The effects of the density variation of atmosphere, aerosols and clouds on optical ranging precision are generally considered, a new method is proposed for calculating the ranging precision in the presence of aerosol particles and clouds. The size distribution spectrum models for aerosols and clouds in the Optical Properties of Aerosols and Clouds Package (OPAC) are adopted. Results show that aerosols and clouds could introduce errors of several centimeters to several ten meters to the ranging. The relationship between the ranging precision and the relative humidity, the zenith angle of ranging direction and the optical wavelength is also analyzed. The ranging error doesn't have an obvious relationship with the wavelength, but depends on the zenith angle, especially for the angle larger than 70 degree. The ranging error depends on the relative humidity as well. The ranging error induced by aerosols increases gradually with the increase of the relative humidity when the relative humidity is less than 80%, but it increases rapidly when the relative humidity is larger than 80%. Our results could provide a theoretical basis and reference for the application of optical ranging.

  19. Tonopah Test Range capabilities: technical manual

    SciTech Connect

    Manhart, R.L.

    1982-11-01

    This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

  20. Overview of the X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, D.; Sakahara, R.; Kremer, S.

    1998-01-01

    On July 1, 1996, the National Aeronautics and Space Administration signed a Cooperative Agreement No. NCC8-115 with Lockheed Martin Skunk Works to develop and flight test the X-33, a scaled version of a reusable launch vehicle. The development of an Extended Test Range, with range instrumentation providing continuous vehicle communications from Edwards Air Force Base Ca. to landing at Malmstrom Air Force Base Montana, was required to flight test the mach 15 vehicle over 950 nautical miles. The cooperative agreement approach makes Lockheed Martin Skunk Works responsible for the X-33 program. When additional Government help was required, Lockheed "subcontracted" to NASA Field Centers for certain work. It was through this mechanism that Dryden Flight Research Center became responsible for the Extended Test Range. The Extended Test Range Requirements come from two main sources: 1) Range Safety and 2) Lockheed Martin Skunk Works. The range safety requirements were the most challenging to define and meet. The X-33 represents a vehicle that launches like a rocket, reenters the atmosphere and lands autonomously like an aircraft. Historically, rockets have been launched over the oceans to allow failed rockets to be destroyed using explosive devices. Such approaches had to be reconsidered for the X-33 flying over land. Numerous range requirements come from Lockheed Martin Skunk Works for interface definitions with the vehicle communication subsystems and the primary ground operations center, defined the Operations Control Center. Another area of considerable interest was the reentry plasma shield that causes "blackout" of the radio frequency signals, such as the range safety commands. Significant work was spent to analyze and model the blackout problem using a cooperative team of experts from across the country. The paper describes the Extended Test Range a, an unique Government/industry team of personnel and range assets was established to resolve design issues and

  1. Long-range infrasound monitoring of eruptive volcanoes.

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Innocenti, Lorenzo; Ulivieri, Giacomo; Lacanna, Giorgio; Ripepe, Maurizio

    2016-04-01

    The efficient long-range propagation in the atmosphere makes infrasound of active volcanoes extremely promising and opens new perspectives for volcano monitoring at large scale. In favourable propagation conditions, long-range infrasound observations can be used to track the occurrence and the duration of volcanic eruptions also at remote non-monitored volcanoes, but its potential to infer volcanic eruptive source term is still debated. We present results of comparing five years of infrasound of eruptive activity at Mt.Etna volcano (Italy) recorded both at local (~5 km) and at regional distances (~600 km) from the source. Infrasound of lava fountains at Etna volcano, occurring in between 2010 and 2015, are analysed in terms of the local and regional wavefield record, and by comparing to all available volcanic source terms (i.e. plume height and mass eruption rates). Besides, the potential of near real-time notification of ongoing volcanic activity at Etna volcano at a regional scale is investigated. In particular we show how long range infrasound, in the case of Etna volcano, can be used to promptly deliver eruption notification and reliability is constrained by the results of the local array. This work is performed in the framework of the H2020 ARISE2 project funded by the EU in the period 2015-2018.

  2. Calibration Modeling Methodology to Optimize Performance for Low Range Applications

    NASA Technical Reports Server (NTRS)

    McCollum, Raymond A.; Commo, Sean A.; Parker, Peter A.

    2010-01-01

    Calibration is a vital process in characterizing the performance of an instrument in an application environment and seeks to obtain acceptable accuracy over the entire design range. Often, project requirements specify a maximum total measurement uncertainty, expressed as a percent of full-scale. However in some applications, we seek to obtain enhanced performance at the low range, therefore expressing the accuracy as a percent of reading should be considered as a modeling strategy. For example, it is common to desire to use a force balance in multiple facilities or regimes, often well below its designed full-scale capacity. This paper presents a general statistical methodology for optimizing calibration mathematical models based on a percent of reading accuracy requirement, which has broad application in all types of transducer applications where low range performance is required. A case study illustrates the proposed methodology for the Mars Entry Atmospheric Data System that employs seven strain-gage based pressure transducers mounted on the heatshield of the Mars Science Laboratory mission.

  3. Range filtering for sequential GPS receivers

    NASA Technical Reports Server (NTRS)

    Paielli, Russell

    1987-01-01

    The filtering of the satellite range and range-rate measurements from single channel sequential Global Positioning System receivers is usually done with an extended Kalman filter which has state variables defined in terms of an orthogonal navigation reference frame. An attractive suboptimal alternative is range-domain filtering, in which the individual satellite measurements are filtered separately before they are combined for the navigation solution. The main advantages of range-domain filtering are decreased processing and storage requirements and simplified tuning. Several range filter mechanization alternatives are presented, along with an innovative approach for combining the filtered range-domain quantities to determine the navigation state estimate. In addition, a method is outlined for incorporating measurements from auxiliary sensors such as altimeters into the navigation state estimation scheme similarly to the satellite measurements. A method is also described for incorporating inertial measurements into the navigation state estimator as a process driver.

  4. Ladar range image denoising by a nonlocal probability statistics algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Zhi-Wei; Li, Qi; Xiong, Zhi-Peng; Wang, Qi

    2013-01-01

    According to the characteristic of range images of coherent ladar and the basis of nonlocal means (NLM), a nonlocal probability statistics (NLPS) algorithm is proposed in this paper. The difference is that NLM performs denoising using the mean of the conditional probability distribution function (PDF) while NLPS using the maximum of the marginal PDF. In the algorithm, similar blocks are found out by the operation of block matching and form a group. Pixels in the group are analyzed by probability statistics and the gray value with maximum probability is used as the estimated value of the current pixel. The simulated range images of coherent ladar with different carrier-to-noise ratio and real range image of coherent ladar with 8 gray-scales are denoised by this algorithm, and the results are compared with those of median filter, multitemplate order mean filter, NLM, median nonlocal mean filter and its incorporation of anatomical side information, and unsupervised information-theoretic adaptive filter. The range abnormality noise and Gaussian noise in range image of coherent ladar are effectively suppressed by NLPS.

  5. Reindeer ranges inventory in western Alaska

    NASA Technical Reports Server (NTRS)

    George, T. H.

    1981-01-01

    The use of LANDSAT data as a tool for reindeer range inventory on the tundra of northwestern Alaska is addressed. The specific goal is to map the range resource and estimate plant productivity of the Seward Peninsula. Information derived from these surveys is needed to develop range management plans for reindeer herding and to evaluate potential conflicting use between reindeer and caribou. The development of computer image classification techniques is discussed.

  6. An algorithm for segmenting range imagery

    SciTech Connect

    Roberts, R.S.

    1997-03-01

    This report describes the technical accomplishments of the FY96 Cross Cutting and Advanced Technology (CC&AT) project at Los Alamos National Laboratory. The project focused on developing algorithms for segmenting range images. The image segmentation algorithm developed during the project is described here. In addition to segmenting range images, the algorithm can fuse multiple range images thereby providing true 3D scene models. The algorithm has been incorporated into the Rapid World Modelling System at Sandia National Laboratory.

  7. Long-range neural synchrony in behavior.

    PubMed

    Harris, Alexander Z; Gordon, Joshua A

    2015-07-01

    Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed. PMID:25897876

  8. Clutter rejection limitations from ambiguous range clutter

    NASA Astrophysics Data System (ADS)

    Reilly, J. Patrick

    Limitations on achievable clutter rejection due to ambiguous range clutter are described. The profile of clutter power versus range is shown to limit achievable clutter rejection. Ambiguous range effects are discussed in the context of sea clutter, using a model that includes propagation conditions, and rain clutter. Limitations in moving target indication systems are illustrated for sea clutter, where propagation is subject to evaporation ducts. Benefits of fill pulses are illustrated for rain and sea clutter.

  9. Long-range neural synchrony in behavior

    PubMed Central

    Harris, Alexander Z.; Gordon, Joshua A.

    2015-01-01

    Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally-relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception; hippocampal-prefrontal synchrony during working memory; and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed. PMID:25897876

  10. Complete Condensation of Zero Range Process in Fitness Networks

    NASA Astrophysics Data System (ADS)

    Su, Gui-Feng; Li, Xiao-Wen; Zhang, Xiao-Bing; Zhang, Yi; Li, Xue

    2015-12-01

    In current paper we study the so-called “complete condensation” of zero range process on the fitness network. It is found that under the high temperature limit, the condensation behavior on the fitness model converges to that of the scale-free network, as expected. However, at some temperatures below the critical temprature of Bose-Einstein condensate phase on the fitness network, the complete condensation occurs as well for some values of δ > δc, which is impossible on scale-free network according to the criterion. Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM) of China, and National Natural Science Foundation of China under Grant No. 11505115

  11. 2010 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2010-01-01

    this report provides a NASA Range Safety overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed in the 2010 NASA Range Safety Annual Report include a program overview and 2010 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again, the web-based format was used to present the annual report.

  12. Compact range test applications, phase 2

    NASA Astrophysics Data System (ADS)

    Davis, Francis L.

    1992-01-01

    Georgia Tech Research Institute (GTRI) has designed and fabricated a large outdoor Compact Antenna Range for the U.S. Army Electronic Proving Ground (USAEPG). This range enables USAEPG to test antenna systems of large ground vehicles or aircraft that weigh up to 70 tons and are up to 50 feet in size over a frequency range of 6 to 40 GHz. Ongoing investigation and study are being conducted to determine the compatibility and adaptability of this antenna pattern measurement range to measure other system parameters such as target return signals and system responses to specialized electromagnetic environments.

  13. Effect of Velocity in Icing Scaling Tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Bond, Thomas H. (Technical Monitor)

    2003-01-01

    This paper presents additional results of a study first published in 1999 to determine the effect of scale velocity on scaled icing test results. Reference tests were made with a 53.3-cm-chord NACA 0012 airfoil model in the NASA Glenn Icing Research Tunnel at an airspeed of 67 m/s, an MVD of 40 microns, and an LWC of 0.6 g/cu m. Temperature was varied to provide nominal freezing fractions of 0.8, 0.6, and 0.5. Scale tests used both 35.6- and 27.7-cm-chord 0012 models for 2/3- and 1/2-size scaling. Scale test conditions were found using the modified Ruff (AEDC) scaling method with the scale velocity determined in five ways. Four of the scale velocities were found by matching the scale and reference values of water-film thickness, velocity, Weber number, and Reynolds number. The fifth scale velocity was simply the average of those found by matching the Weber and Reynolds numbers. The resulting scale velocities ranged from 85 to 220 percent of the reference velocity. For a freezing fraction of 0.8, the value of the scale velocity had no effect on how well the scale ice shape simulated the reference shape. For nominal freezing fractions of 0.5 and 0.6, the best simulation of the reference shape was achieved when the scale velocity was the average of the constant-Weber-number and the constant-Reynolds-number velocities.

  14. On Quantitative Rorschach Scales.

    ERIC Educational Resources Information Center

    Haggard, Ernest A.

    1978-01-01

    Two types of quantitative Rorschach scales are discussed: first, those based on the response categories of content, location, and the determinants, and second, global scales based on the subject's responses to all ten stimulus cards. (Author/JKS)

  15. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  16. Optimum Response Categories for the Religious Motivation Scale

    ERIC Educational Resources Information Center

    Kraska, Chad

    2011-01-01

    Likert response scales are widely used in the social sciences, typically to measure attitudes and personality. This study seeks to understand the optimal number of categories to include in a Likert scale measuring attitudes. Therefore, the author examined four versions of an attitude measure, the Religious Motivation Scale, ranging from a 4- to…

  17. Fossil preservation and the stratigraphic ranges of taxa

    NASA Technical Reports Server (NTRS)

    Foote, M.; Raup, D. M.

    1996-01-01

    The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of

  18. Long-range energy transport in photosystem II

    NASA Astrophysics Data System (ADS)

    Roden, Jan J. J.; Bennett, Doran I. G.; Whaley, K. Birgitta

    2016-06-01

    We simulate the long-range inter-complex electronic energy transfer in photosystem II - from the antenna complex, via a core complex, to the reaction center - using a non-Markovian (ZOFE) quantum master equation description that allows the electronic coherence involved in the energy transfer to be explicitly included at all length scales. This allows us to identify all locations where coherence is manifested and to further identify the pathways of the energy transfer in the full network of coupled chromophores using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation - localized, coherent initial excitation versus delocalized, incoherent initial excitation - and find that the overall energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we systematically vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the natural parameters lie in a (broad) region that enables optimal transfer efficiency and that the overall long-range energy transfer on a ns time scale appears to be very robust with respect to variations in the vibronic coupling of up to an order of magnitude. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency, with the latter falling sharply for couplings outside the optimal range. Comparison of our full quantum simulations to results obtained with a "classical" rate equation based on a modified-Redfield/generalized-Förster description previously used to simulate energy transfer dynamics in the entire photosystem II complex shows good agreement for the overall time scales of excitation energy transport.

  19. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  20. The Positivity Scale

    ERIC Educational Resources Information Center

    Caprara, Gian Vittorio; Alessandri, Guido; Eisenberg, Nancy; Kupfer, A.; Steca, Patrizia; Caprara, Maria Giovanna; Yamaguchi, Susumu; Fukuzawa, Ai; Abela, John

    2012-01-01

    Five studies document the validity of a new 8-item scale designed to measure "positivity," defined as the tendency to view life and experiences with a positive outlook. In the first study (N = 372), the psychometric properties of Positivity Scale (P Scale) were examined in accordance with classical test theory using a large number of college…