Science.gov

Sample records for 50-100 nm thick

  1. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution

    NASA Astrophysics Data System (ADS)

    Yanagi, Itaru; Fujisaki, Koji; Hamamura, Hirotaka; Takeda, Ken-ichi

    2017-01-01

    Recently, dielectric breakdown of solid-state membranes in solution has come to be known as a powerful method for fabricating nanopore sensors. This method has enabled a stable fabrication of nanopores down to sub-2 nm in diameter, which can be used to detect the sizes and structures of small molecules. Until now, the behavior of dielectric breakdown for nanopore creation in SiN membranes with thicknesses of less than 10 nm has not been studied, while the thinner nanopore membranes are preferable for nanopore sensors in terms of spatial resolution. In the present study, the thickness dependence of the dielectric breakdown of sub-10-nm-thick SiN membranes in solution was investigated using gradually increased voltage pulses. The increment in leakage current through the membrane at the breakdown was found to become smaller with a decrease in the thickness of the membrane, which resulted in the creation of smaller nanopores. In addition, the electric field for dielectric breakdown drastically decreased when the thickness of the membrane was less than 5 nm. These breakdown behaviors are quite similar to those observed in gate insulators of metal-oxide-semiconductor devices. Finally, stable ionic-current blockades were observed when single-stranded DNA passed through the nanopores created on the membranes with thicknesses of 3-7 nm.

  2. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    SciTech Connect

    Kyoung Ryu, Yu; Garcia, Ricardo; Aitor Postigo, Pablo; Garcia, Fernando

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained with a top-down lithography method.

  3. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND...

  4. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND...

  5. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND...

  6. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND...

  7. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND...

  8. Choroidal Thickness in Patients With Reticular Pseudodrusen Using 3D 1060-nm OCT Maps

    PubMed Central

    Haas, Paulina; Esmaeelpour, Marieh; Ansari-Shahrezaei, Siamak; Drexler, Wolfgang; Binder, Susanne

    2014-01-01

    Purpose. To map and analyze choroidal thickness (ChT) in AMD patients with reticular pseudodrusen (RPD) using three-dimensional (3D) 1060-nm optical coherence tomography (OCT). Methods. Fifty eyes from 25 patients with RPD were grouped according to the severity of AMD and the presence of RPD. All patients were imaged by high-speed (60,000 A-scans/s) 3D 1060-nm OCT over a 36 × 36° field of view. Choroidal thickness maps were automatically generated and compared with RPD areas visualized by fundus autofluorescence and infrared imaging. Retinal thickness maps, ChT maps, Haller's and Sattler's layer thickness were statistically analyzed between groups. Results. The mean ± SD (micrometers) subfoveal ChT was 201 ± 88 μm, 145 ± 48 μm, and 271 ± 130 μm for dry AMD with RPD, wet AMD with RPD, and eyes with wet AMD and no RPD, respectively. Choroidal thickness maps demonstrated the most significant choroidal thinning within eyes with wet AMD and RPD. Sattler's and Haller's layer thickness differed across the Early Treatment Diabetic Retinopathy Study grid when compared between eyes with and without RPD. Within eyes with RPD, ChT maps visualized that ChT was thicker below RDP areas than non-RPD areas. Conclusions. The 3D 1060-nm OCT choroidal maps over a large field of view offer noninvasive visualization for demonstrating local thickening correlation with RPD within each eye and overall thinning owing to AMD severity and RPD. This choroidal thinning was most striking in Sattler's layer, suggesting a choroidopathy of this vascular layer. PMID:24651554

  9. Pseudoepitaxial transrotational structures in 14 nm-thick NiSi layers on [001] silicon.

    PubMed

    Alberti, Alessandra; Bongiorno, Corrado; Cafra, Brunella; Mannino, Giovanni; Rimini, Emanuele; Metzger, Till; Mocuta, Cristian; Kammler, Thorsten; Feudel, Thomas

    2005-10-01

    In a system consisting of two different lattices, structural stability is ensured when an epitaxial relationship occurs between them and allows the system to retain the stress whilst avoiding the formation of a polycrystalline film. The phenomenon occurs if the film thickness does not exceed a critical value. Here we show that in spite of its orthorhombic structure, a 14 nm-thick NiSi layer can three-dimensionally adapt to the cubic Si lattice by forming transrotational domains. Each domain arises by the continuous bending of the NiSi lattice, maintaining a close relationship with the substrate structure. The presence of transrotational domains does not cause a roughening of the layer, but instead it improves the structural and electrical stability of the silicide in comparison with a 24 nm-thick layer formed using the same annealing process. These results have relevant implications for the thickness scaling of NiSi layers which are currently used as metallizations of electronic devices.

  10. Thermal and electrical conduction in ultrathin metallic films: 7 nm down to sub-nanometer thickness.

    PubMed

    Lin, Huan; Xu, Shen; Wang, Xinwei; Mei, Ning

    2013-08-12

    For ultrathin metallic films (e.g., less than 5 nm), no knowledge is yet available on how electron scattering at surface and grain boundaries reduces the electrical and thermal transport. The thermal and electrical conduction of metallic films is characterized down to 0.6 nm average thickness. The electrical and thermal conductivities of 0.6 nm Ir film are reduced by 82% and 50% from the respective bulk values. The Lorenz number is measured as 7.08 × 10⁻⁸ W Ω K⁻², almost a twofold increase of the bulk value. The Mayadas-Shatzkes model is used to interpret the experimental results and reveals very strong electron reflection (>90%) at grain boundaries.

  11. Threshold and efficiency for perforation of 1 nm thick carbon nanomembranes with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Ritter, Robert; Heller, René; Beyer, André; Turchanin, Andrey; Klingner, Nico; Hübner, René; Stöger-Pollach, Michael; Vieker, Henning; Hlawacek, Gregor; Gölzhäuser, Armin; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Cross-linking of a self-assembled monolayer of 1,1‧-biphenyl-4-thiol by low energy electron irradiation leads to the formation of a carbon nanomembrane, that is only 1 nm thick. Here we study the perforation of these freestanding membranes by slow highly charged ion irradiation with respect to the pore formation yield. It is found that a threshold in potential energy of the highly charged ions of about 10 keV must be exceeded in order to form round pores with tunable diameters in the range of 5-15 nm. Above this energy threshold, the efficiency for a single ion to form a pore increases from 70% to nearly 100% with increasing charge. These findings are verified by two independent methods, namely the analysis of individual membranes stacked together during irradiation and the detailed analysis of exit charge state spectra utilizing an electrostatic analyzer.

  12. A 200 nm thick glass-forming metallic film for fatigue-property enhancements

    NASA Astrophysics Data System (ADS)

    Chiang, C. L.; Chu, J. P.; Liu, F. X.; Liaw, P. K.; Buchanan, R. A.

    2006-03-01

    In this letter, we report the fatigue-property enhancement by a thin layer of glass-forming film. The fatigue life of a 316L stainless steel is considerably improved by at least 30 times, depending on the maximum applied stress when it is coated with a 200nm thick Zr47Cu31Al13Ni9 film. The application of the sputtered film yields an increase of the fatigue limit by 30%. The smooth surface, good adhesion, and compressive residual stress are found to play beneficial roles in achieving superior fatigue properties, revealing the glass-forming film as a potential material to enhance fatigue properties.

  13. Ultra-soft 100 nm thick zero Poisson's ratio film with 60% reversible compressibility

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu; Szalewski, Steve; Saraf, Ravi

    2013-03-01

    Squeezing films of most solids, liquids and granular materials causes dilation in the lateral dimension which is characterized by a positive Poisson's ratio. Auxetic materials, such as, special foams, crumpled graphite, zeolites, spectrin/actin membrane, and carbon nanotube laminates shrink, i.e., their Poisson's ratio is negative. As a result of Poisson's effect, the force to squeeze an amorphous material, such as a viscous thin film coating adhered to rigid surface increases by over million fold as the thickness decreases from 10 μm to 100 nm due to constrain on lateral deformations and off-plane relaxation. We demonstrate, ultra-soft, 100 nm films of polymer/nanoparticle composite adhered to 1.25 cm diameter glass that can be reversibly squeezed over 60% strain between rigid plates requiring (very) low stresses below 100 KPa. Unlike non-zero Poisson's ratio materials, stiffness decreases with thickness, and the stress distribution is uniform over the film as mapped electro-optically. The high deformability at very low stresses is explained by considering reentrant cellular structure found in cork and the wings of beetles that have Poisson's ratio near zero.

  14. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  15. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  16. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

    PubMed

    Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu; Yama, Gary; Kodama, Takashi; Gunji, Marika; Provine, J; Howe, Roger T; Goodson, Kenneth E; Kenny, Thomas W

    2012-02-08

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

  17. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers

    NASA Astrophysics Data System (ADS)

    Ferrando-Villalba, P.; Lopeandia, A. F.; Abad, Ll; Llobet, J.; Molina-Ruiz, M.; Garcia, G.; Gerbolès, M.; Alvarez, F. X.; Goñi, A. R.; Muñoz-Pascual, F. J.; Rodríguez-Viejo, J.

    2014-05-01

    We measure the thermal conductivity of a 17.5-nm-thick single crystalline Si layer by using a suspended structure developed from a silicon-on-insulator wafer, in which the Si layer bridges the suspended platforms. The obtained value of 19 Wm-1 K-1 at room temperature represents a tenfold reduction with respect to bulk Si. This design paves the way for subsequent lateral nanostructuration of the layer with lithographic techniques, to define different geometries such as Si nanowires, nanostrips or phononic grids. As a proof of concept, nanostrips of 0.5 × 10 μm have been defined by focused ion beam (FIB) in the ultrathin Si layer. After the FIB cutting process with Ga ions at 30 kV and 100 pA, the measured thermal conductivity dramatically decreased to 1.7 Wm-1 K-1, indicating that the structure became severely damaged (amorphous). Re-crystallization of the structure was promoted by laser annealing while monitoring the Raman spectra. The thermal conductivity of the layer increased again to a value of 9.5 Wm-1 K-1 at room temperature, below that of the single crystalline material due to phonon scattering at the grain boundaries.

  18. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers.

    PubMed

    Ferrando-Villalba, P; Lopeandia, A F; Abad, Ll; Llobet, J; Molina-Ruiz, M; Garcia, G; Gerbolès, M; Alvarez, F X; Goñi, A R; Muñoz-Pascual, F J; Rodríguez-Viejo, J

    2014-05-09

    We measure the thermal conductivity of a 17.5-nm-thick single crystalline Si layer by using a suspended structure developed from a silicon-on-insulator wafer, in which the Si layer bridges the suspended platforms. The obtained value of 19 Wm(-1) K(-1) at room temperature represents a tenfold reduction with respect to bulk Si. This design paves the way for subsequent lateral nanostructuration of the layer with lithographic techniques, to define different geometries such as Si nanowires, nanostrips or phononic grids. As a proof of concept, nanostrips of 0.5 × 10 μm have been defined by focused ion beam (FIB) in the ultrathin Si layer. After the FIB cutting process with Ga ions at 30 kV and 100 pA, the measured thermal conductivity dramatically decreased to 1.7 Wm(-1) K(-1), indicating that the structure became severely damaged (amorphous). Re-crystallization of the structure was promoted by laser annealing while monitoring the Raman spectra. The thermal conductivity of the layer increased again to a value of 9.5 Wm(-1) K(-1) at room temperature, below that of the single crystalline material due to phonon scattering at the grain boundaries.

  19. The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Reiche, M.; Erfurth, W.; Naumann, F.; Petzold, M.; Gösele, U.

    2009-06-01

    The strain behavior in nanoscale patterned biaxial tensile strained Si layer on insulator is investigated in 60-nm-thick nanostructures with dimensions in the 80-400 nm range. The in-plane strain is evaluated by using UV micro-Raman. We found that less than 30% of the biaxial strain is maintained in the 200×200 nm2 nanostructures. This relaxation, due to the formation of free surfaces, becomes more important in smaller nanostructures. The strain is completely relieved at 80 nm. This phenomenon is described based on detailed three-dimensional finite element simulations. The anisotropic relaxation in rectangular nanostructures is also discussed.

  20. Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells.

    PubMed

    Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan

    2016-12-21

    Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.

  1. Dental caries in Rome, 50-100 AD.

    PubMed

    Fejerskov, O; Guldager Bilde, P; Bizzarro, M; Connelly, J N; Skovhus Thomsen, J; Nyvad, B

    2012-01-01

    Scarce information exists on the clinical features of dental caries in the Imperial Roman population and no structural data on caries lesions from this period have so far been published. We report on the findings of 86 teeth (50-100 AD) found during archaeological excavations of the temple of Castor and Pollux in the Forum Romanum. We found that nearly all teeth had large carious cavities extending into the pulp. The distribution and size of the caries lesions were similar to those found in contemporary adult populations in Africa and China living without access to dental care. Most lesions had a hypermineralized zone in the dentin at the advancing front of the carious cavities as revealed by micro-computed tomography. This biological dentin reaction combined with the morphology of the cavities might indicate that some temporary topical pain relief and intervention treatment slowed down the rate of lesion progression. This is indirectly supported by examination of cavities of similar size and depth from a contemporary population without access to dental health care. In contrast to the lesions in the Roman teeth, these lesions did not exhibit a hypermineralized dentin reaction. We investigated whether the Pb isotopic composition of enamel and/or dentin of a single tooth matched that of a sample of an ancient Forum water lead pipe. The Pb isotopic composition of the tooth did not match that of the tube, suggesting that the subjects were exposed to different Pb sources during their lifetime other than the lead tubes.

  2. Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Herrmann, Ashley Ann Elizabeth

    In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and

  3. Observation of ferroelectricity at room temperature in ~1 nm thick conducting BaTiO3-δ

    NASA Astrophysics Data System (ADS)

    Lee, Seungran; Baasanforj, L.; Chang, Jungwon; Hwang, Inwoong; Kim, Jungrae; Shim, Seungbo; Song, Jonghyun; Kim, Jinhee

    Efforts to search for new and multi-functionalities in thin-film systems have led important findings of unknown phenomena and functionality which do not appear in bulk systems. As film growth technique is advanced, one can decrease the film thickness even thinner down to ~ nm, its unique physical properties are still appearing. For example, the superconducting metallic state of an LaAlO3/SrTiO3 (LAO/STO) heterostructure was found where LAO is about 3-4 unit cells (uc). An SrRuO3 film exhibited its ferromagnetic metallicity down to 4-6 uc; a few years later, its ferromagnetism was found to be disappeared at 2-3 uc. Meanwhile, theoretical methods have predicted existence of ferroelectrical properties mostly in prototype ferroelectric BaTiO3 (BTO): 3-6 uc. However, experimental verification to find such predicted thickness was hindered by large leakage current. Here we observed that ~1 nm-thick conducting BTO fillms show ferroelectric switching at room temperature (RT), and BTO films are fully-strained on LAO/STO heterostructures thicker than 5 nm thickness. Our experimental results will enlarge applicable functional oxide devices for future applications.

  4. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Huang, Zhimeng; Zhang, Dayong; Luo, Fei; Huang, Lixian; Li, Yanglong; Luo, Yongquan; Wang, Weiping; Zhao, Xiangjie

    2011-12-01

    Laser-induced-damage characteristics of commercial indium-tin oxide (ITO) films deposited by DC magnetron sputtering deposition on K9 glass substrates as a function of the film thickness have been studied at 1064 nm with a 10 ns laser pulse in the 1-on-1 mode, and the various mechanisms for thickness effect on laser-induced-damage threshold (LIDT) of the film have been discussed in detail. It is observed that laser-damage-resistance of ITO film shows dramatic thickness effect with the LIDT of the 50-nm ITO film 7.6 times as large as the value of 300 nm film, and the effect of depressed carrier density by decreasing the film thickness is demonstrated to be the primary reason. Our experiment findings indicate that searching transparent conductive oxide (TCO) film with low carrier density and high carrier mobility is an efficient technique to improve the laser-damage-resistance of TCO films based on maintaining their well electric conductivity.

  5. Optimum top and bottom oxide thicknesses and flat-band voltages for improving subthreshold characteristics of 5 nm DGMOSFET

    NASA Astrophysics Data System (ADS)

    Jung, Hakkee; Dimitrijev, Sima

    2017-01-01

    This paper has proposed the optimum design rules as investigating subthreshold characteristics of 5 nm DG (Double Gate) MOSFET for top/bottom gate flat-band voltages and oxide thicknesses. The difference of top gate voltages between on-current (10-7 A) and off-current (10-12 A) is specified as ΔVon - off , and the top-gate voltage for the on-current is defined as the threshold voltage. ΔVon - off and the threshold voltage are derived from equations for the drain current and gate voltage for various top/bottom gate flat-band voltages and oxide thicknesses, and compared with those for symmetric structure having equal top/bottom gate flat-band voltages and oxide thicknesses. As a result, the potential distributions for top/bottom gate flat-band voltages and oxide thicknesses influence on directly the tunneling current, which greatly changes ΔVon - off and the threshold voltage in subthreshold region. It is established that the top flat-band voltage and oxide thickness have to be larger than the bottom flat-band voltage and oxide thickness to reduce ΔVon - off and threshold voltage, compared with those of symmetric structure.

  6. Study of coercive fields and Kβ/Kα X-ray intensity ratios of nickel films in the thickness range of 5-2000 nm

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Singh, M. R.; Ravikumar, G.; Gupta, S. K.; Joseph, D.; Nayak, B. K.; Saxena, A.

    2012-06-01

    Coercive fields and X-Ray intensity ratios of the K-series lines of Ni films in the thickness range of 5-2000 nm deposited onto Si (111) substrate have been studied. The Coercive field is observed to increase with thickness and follows power law for the thickness range ≥ 50 nm. For lower thickness, there is a deviation from power law. A correlated change is also observed in the Kβ/Kα X-ray intensity ratios.

  7. Thickness dependence of planar Hall resistance and field sensitivity in NiO(30 nm)/NiFe( t) bilayers

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Kim, C. G.; Park, B. S.; Park, C. M.

    2000-06-01

    We measured the planar Hall resistance (PHR) profiles in NiO (30 nm)/NiFe( t) bilayers for t=5, 10, 20 and 30 nm and analyzed its field sensitivity in terms of exchange-coupling field and anisotropy constant. The measured PHR shows linear field dependence at near H=0 as well as small hysteresis. The linear field range Δ H and resistance change, Δ R= R∥- R⊥, decrease with the NiFe thickness, where Δ H is calculated to be proportional to the anisotropy constant Ku and exchange-coupling field Hex. However, the field sensitivity Δ R/Δ H shows a maximum value at t=20 nm; where Ku is the minimum. The PHR has the advantage of a linear response at the operating field range and can be used for a recording read-out head and related applications.

  8. Surface-dominated conduction in a 6nm-thick Bi2Se3 thin

    NASA Astrophysics Data System (ADS)

    He, Liang; Yu, Xinxin; Kou, Xufeng; Lang, Murong; Wang, Kang L.; Xiu, Faxian; Teague, Marcus; Yeh, Nai-Chang

    2012-02-01

    We report a direct observation of surface dominated conduction in an intrinsic Bi2Se3 thin film with a thickness of 6 quintuple layers (QLs) grown on lattice-matched CdS (0001) substrates by molecular beam epitaxy (MBE). Shubnikov-de Haas (SdH) oscillations from the topological surface states suggest that the Fermi level falls inside the bulk band gap and is 53 +/-5 meV above the Dirac point, in agreement with 70 +/- 20 meV obtained from scanning tunneling spectroscopies (STS). Our results demonstrate a great potential of producing genuine topological insulator devices using Dirac Fermions of the surface states.

  9. Leakage current conduction behaviors of 0.65 nm equivalent-oxide-thickness HfZrLaO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Lin, K. C.; Chen, J. Y.; Hsu, H. W.; Chen, H. W.; Liu, C. H.

    2012-11-01

    The high κ gate dielectrics of MOS capacitors with LaO/HfZrO stacked (denoted as HfZrLaO) have been fabricated by atomic-layer-deposited (ALD). In this study, the data show that the gate leakage current density (Jg) is about 1.9 A/cm2, and the equivalent oxide thickness (EOT) is about 0.65 nm with quantum effects taken into account. The analysis of the leakage current conduction characteristics is based on the temperature dependence of the leakage current from 300 to 475 K. The dominant current conduction behaviors are Schottky emission in the region of low electric fields (<1 MV/cm) and high temperatures (450-475 K), Poole-Frankel (P-F) emission in the region of medium electric fields (2.3-3.83 MV/cm) and low temperatures (300-350 K), and Fowler-Nordheim (F-N) tunneling in the region of high electric fields (>4 MV/cm) and low temperatures (<300 K). The electron barrier height (ΦB) at gate interface and the trap energy level (Φt) in the dielectric are extracted to be 1.07 and 1.38 eV, respectively.

  10. The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ramachandra, Ranjan; Demers, Hendrix; de Jonge, Niels

    2013-02-01

    The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

  11. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.

    PubMed

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-Ichi

    2015-10-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed.

  12. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process

    PubMed Central

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-ichi

    2015-01-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed. PMID:26424588

  13. Magneto-optical Kerr effect in Fe21Ni79 films on Si(100): Quantum behavior for film thicknesses below ˜6 nm

    NASA Astrophysics Data System (ADS)

    Talmadge, J. M.; Gao, J.; Riley, M. P.; Roth, R. J.; Kim, S.-O.; Eden, J. G.; Pudonin, F. A.; Mel'nikov, I. V.

    2004-05-01

    The magneto-optical Kerr effect (MOKE) has been observed and characterized in 1-80 nm thick Fe21Ni79 films deposited onto Si(100), for an external magnetic field (variable in strength up to 400 G) oriented parallel or orthogonal to the magnetization axis of the film. A measurable response is observed for film thicknesses (d) as small as 2 nm and, if the external magnetic field lies in the plane of the film, two-dimensional quantum behavior is evident for d≲6 nm. A precipitous decline in the magnitude of the MOKE response is accompanied by an increase in the coercivity and, when the external field is perpendicular to the film magnetization axis, a rapid rise in the saturation field. Experiments also confirm the existence of a component of the film magnetization oriented out of the plane of the film, a result consistent with the prediction of computational studies [T. Trunk et al., J. Appl. Phys. 89, 7606 (2001)] that the transition between Bloch and Néel wall domain structure occurs in FeNi films for film thicknesses of ≈30 nm.

  14. Synthesis and characterization of 10 nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices

    SciTech Connect

    Zaghloul, Usama; Piazza, Gianluca

    2014-06-23

    The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10 nm) ever deposited on ultrathin platinum layers (2–5 nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is −1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10 nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1 μm at 0.7 V for 25 μm long and 30 nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

  15. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    PubMed

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors.

  16. Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

    SciTech Connect

    Poole, P. L. Andereck, C. D.; Schumacher, D. W.; Daskalova, R. L.; Feister, S.; George, K. M.; Willis, C.; Akli, K. U.; Chowdhury, E. A.

    2014-06-15

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum. Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.

  17. Optical Constants and Band Gap Evolution with Phase Transition in Sub-20-nm-Thick TiO2 Films Prepared by ALD.

    PubMed

    Shi, Yue-Jie; Zhang, Rong-Jun; Zheng, Hua; Li, Da-Hai; Wei, Wei; Chen, Xin; Sun, Yan; Wei, Yan-Feng; Lu, Hong-Liang; Dai, Ning; Chen, Liang-Yao

    2017-12-01

    Titanium dioxide (TiO2) ultrathin films with different thicknesses below 20 nm were grown by atomic layer deposition (ALD) on silicon substrates at 300 °C. Spectroscopic ellipsometry (SE) measurements were operated to investigate the effect of thickness on the optical properties of ultrathin films in the spectra range from 200 to 1000 nm with Forouhi-Bloomer (F-B) dispersion relation. It has been found that the refractive index and extinction coefficient of the investigated TiO2 ultrathin film increase while the band gap of TiO2 ultrathin film decreases monotonically with an increase in film thickness. Furthermore, with the purpose of studying the temperature dependence of optical properties of TiO2 ultrathin film, the samples were annealed at temperature from 400 to 900 °C in N2 atmosphere. The crystalline structure of deposited and annealed films was deduced by SE and supported by X-ray diffraction (XRD). It was revealed that the anatase TiO2 film started to transform into rutile phase when the annealing temperature was up to 800 °C. In this paper, a constructive and effective method of monitoring the phase transition in ultrathin films by SE has been proposed when the phase transition is not so obvious analyzed by XRD.

  18. Phenomenological description of dispersion of 8-60-nm-thick silicon thin films into drops on Al{sub 2}O{sub 3} inert surface

    SciTech Connect

    Buzdugan, A. A. Gavrilov, S. A.; Gromov, D. G.; Redichev, E. N.; Chulkov, I. S.

    2008-12-15

    The dispersion of 8-60-nm-thick amorphous silicon thin films on a surface of aluminum oxide was studied using scanning electron microscopy and measuring the current through a thin film during vacuum heating. The temperature of the observed process of silicon thin film dispersion does not correspond to its expected melting temperature, which suggests a dispersion, rather than melting, process, since the thin amorphous silicon film already has a yield property. It was found that the dispersion temperature increases as the silicon thickness is reduced. It is assumed that this phenomenon is caused by the structure and energy effect of the Al{sub 2}O{sub 3} substrate, which propagates into silicon to a certain depth.

  19. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  20. Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses.

    PubMed

    Song, Zhi; Cheng, Xinbin; Ma, Hongping; Zhang, Jinlong; Ma, Bin; Jiao, Hongfei; Wang, Zhanshan

    2017-02-01

    The influence of coating thickness on laser-induced damage (LID) characteristics of anti-reflection (AR) coatings irradiated by 1064 nm nanosecond laser pulses was investigated. Two HfO2/SiO2 AR coatings with different physical thicknesses, 0.7 and 2.7 μm, were prepared and tested. To study the effect of coating thickness on a laser-induced damage threshold (LIDT) in isolation, electric field intensities (EFIs) at the substrate-coating interface were kept the same by using proper AR designs. Moreover, 2 nm artificial gold particles with a density of 10  mm-2 were implanted into the substrate-coating interface to achieve reliable experimental results. An optical microscope (OM) and a scanning electron microscope (SEM) were used for an online LIDT test and offline LID morphology observation, respectively. The typical LID morphology of thicker AR coatings was flat bottom craters with diameters of 20-50 μm, which can be easily observed by an online OM. For thinner AR coatings, hemispherical craters with diameters down to 1 μm were found as typical LID morphology by a SEM. However, these tiny craters could not be observed by an online OM. Moreover, such tiny craters did not grow with subsequent pulses, so they did not degrade the functional laser damage resistance of the thin AR coatings. When identified with an online OM, the LIDT of thinner AR coatings is found to be about two times higher than the thicker ones, and large delamination was mainly found as the LID morphology of AR coatings with high fluence. When observed with a SEM, the LIDT of thin AR coatings with tiny craters was over 60% lower than the LIDT of thick AR coatings, which agrees with the model that less energy is required to form smaller LID craters of thinner coatings.

  1. Demonstrating 1 nm-oxide-equivalent-thickness HfO2/InSb structure with unpinning Fermi level and low gate leakage current density

    NASA Astrophysics Data System (ADS)

    Trinh, Hai-Dang; Lin, Yueh-Chin; Nguyen, Minh-Thuy; Nguyen, Hong-Quan; Duong, Quoc-Van; Luc, Quang-Ho; Wang, Shin-Yuan; Nguyen, Manh-Nghia; Yi Chang, Edward

    2013-09-01

    In this work, the band alignment, interface, and electrical characteristics of HfO2/InSb metal-oxide-semiconductor structure have been investigated. By using x-ray photoelectron spectroscopy analysis, the conduction band offset of 1.78 ± 0.1 eV and valence band offset of 3.35 ± 0.1 eV have been extracted. The transmission electron microscopy analysis has shown that HfO2 layer would be a good diffusion barrier for InSb. As a result, 1 nm equivalent-oxide-thickness in the 4 nm HfO2/InSb structure has been demonstrated with unpinning Fermi level and low leakage current of 10-4 A/cm-2. The Dit value of smaller than 1012 eV-1cm-2 has been obtained using conduction method.

  2. Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  3. Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

    NASA Astrophysics Data System (ADS)

    Behaghel, B.; Tamaki, R.; Vandamme, N.; Watanabe, K.; Dupuis, C.; Bardou, N.; Sodabanlu, H.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-01

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  4. Resistive Switching Characteristics of 10-nm-Thick Amorphous HoScO x Films Doped with Nb and Zn

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Chia-Chun; Chu, Jinn P.; Liu, Yi-Xin; Chen, Liang-Wei

    2017-03-01

    In this study, 10-nm rare-earth metal-oxide (REMO) films, namely, pure HoScO x (HSO) and HoScO x doped with Nb (HSO-Nb) and Zn (HSO-Zn), were deposited to build resistive random access memory (RRAM) devices with a Pt/REMO/Pt structure using radio frequency magnetron sputtering. The results of x-ray diffraction and transmission electron microscopy showed that all as-deposited REMO films are featureless microstructures lacking long-range order. In all RRAM devices, layer structures were well adhered to each other with relatively smooth interfaces and no cracks or holes were observed. Hall measurements demonstrated n-type conduction in the as-deposited films. The addition of Nb and Zn increased carrier concentration and mobility of the HSO films and reduced electrical resistivity. The former was possibly caused by the electronic compensation of NbSc ··, thereby triggering the formation of polarons, and the latter was probably due to the increase in concentration of oxygen vacancies associated with acceptor doping. The RRAM devices revealed unipolar switching behavior characterized by a resistance ratio of more than three orders of magnitude, good endurance, and a long retention time. The switching behavior of the RRAM with amorphous HSO films was altered by the doping species. Doping with Nb and Zn decreased the forming voltage, facilitated the use of a smaller switching voltage, and increased the resistance ratio of high- and low-resistance states. The conduction mechanisms for the low resistive state and high resistive state were dominated by Ohmic conduction and trap-controlled space-charge-limited current mechanisms, respectively.

  5. Resistive Switching Characteristics of 10-nm-Thick Amorphous HoScO x Films Doped with Nb and Zn

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Chia-Chun; Chu, Jinn P.; Liu, Yi-Xin; Chen, Liang-Wei

    2016-12-01

    In this study, 10-nm rare-earth metal-oxide (REMO) films, namely, pure HoScO x (HSO) and HoScO x doped with Nb (HSO-Nb) and Zn (HSO-Zn), were deposited to build resistive random access memory (RRAM) devices with a Pt/REMO/Pt structure using radio frequency magnetron sputtering. The results of x-ray diffraction and transmission electron microscopy showed that all as-deposited REMO films are featureless microstructures lacking long-range order. In all RRAM devices, layer structures were well adhered to each other with relatively smooth interfaces and no cracks or holes were observed. Hall measurements demonstrated n-type conduction in the as-deposited films. The addition of Nb and Zn increased carrier concentration and mobility of the HSO films and reduced electrical resistivity. The former was possibly caused by the electronic compensation of NbSc ··, thereby triggering the formation of polarons, and the latter was probably due to the increase in concentration of oxygen vacancies associated with acceptor doping. The RRAM devices revealed unipolar switching behavior characterized by a resistance ratio of more than three orders of magnitude, good endurance, and a long retention time. The switching behavior of the RRAM with amorphous HSO films was altered by the doping species. Doping with Nb and Zn decreased the forming voltage, facilitated the use of a smaller switching voltage, and increased the resistance ratio of high- and low-resistance states. The conduction mechanisms for the low resistive state and high resistive state were dominated by Ohmic conduction and trap-controlled space-charge-limited current mechanisms, respectively.

  6. A 50-100 kWe gas-cooled reactor for use on Mars.

    SciTech Connect

    Peters, Curtis D.

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  7. AlGaN/GaN metal oxide semiconductor heterostructure field-effect transistors with 4 nm thick Al2O3 gate oxide

    NASA Astrophysics Data System (ADS)

    Gregušová, D.; Stoklas, R.; Čičo, K.; Lalinský, T.; Kordoš, P.

    2007-08-01

    AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with 4 nm thick Al2O3 gate oxide were prepared and their performance was compared with that of AlGaN/GaN HFETs. The MOSHFETs yielded ~40% increase of the saturation drain current compared with the HFETs, which is larger than expected due to the gate oxide passivation. Despite a larger gate-channel separation in the MOSHFETs, a higher extrinsic transconductance than that of the HFETs was measured. The drift mobility of the MOSHFETs, evaluated on large-gate FET structures, was significantly higher than that of the HFETs. The zero-bias mobility for MOSHFETs and HFETs was 1950 cm2 V-1 s-1 and 1630 cm2 V-1 s-1, respectively. These features indicate an increase of the drift velocity and/or a decrease of the parasitic series resistance in the MOSHFETs. The current collapse, evaluated from pulsed I-V measurements, was highly suppressed in the MOSHFETs with 4 nm thick Al2O3 gate oxide. This result, together with the suppressed frequency dispersion of the capacitance, indicates that the density of traps in the Al2O3/AlGaN/GaN MOSHFETs was significantly reduced.

  8. Preparing Pb(Zr,Ti)O3 films less than 100 nm thick by low-temperature metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nagai, A.; Morioka, H.; Asano, G.; Funakubo, H.; Saiki, A.

    2005-04-01

    Polycrystalline Pb(Zr ,Ti)O3 (PZT) films 70-80nm thick on (111)Ir/TiO2/SiO2/Si substrates were prepared at 415°C by metalorganic chemical vapor deposition (MOCVD). At 3V, the remanent polarization (Pr) of the as-deposited films was approximately 22μC/cm2. Inserting PbTiO3 seeds between the PZT films and Ir bottom electrodes improved the crystallinity of the films markedly but improved their ferroelectric properties only slightly. Low-temperature postannealing, on the other hand, even at 400°C (i.e., below the deposition temperature), improved Pr values and hysteresis loop shapes without obviously improving the crystallinity of the films. The electrical properties were improved even more when the films were annealed at 500°C. These results suggest that the low-temperature processing and sub-100-nm film thickness needed for making three-dimensionally structured ferroelectric capacitors can be obtained by using low-temperature MOCVD to deposit PZT films, and then annealing those films at a temperature no greater than 500°C.

  9. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm

    PubMed Central

    Mohler, Kathrin J.; Draxinger, Wolfgang; Klein, Thomas; Kolb, Jan Philip; Wieser, Wolfgang; Haritoglou, Christos; Kampik, Anselm; Fujimoto, James G.; Neubauer, Aljoscha S.; Huber, Robert; Wolf, Armin

    2015-01-01

    Purpose To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. Methods High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ocular pathology are presented. Coregistered ChT maps, choroidal summation maps, and depth-resolved en face images referenced to either the retinal pigment epithelium or the choroidal–scleral interface were generated using manual segmentation. Results Wide-field ChT maps showed a large inter- and intraindividual variance in peripheral and central ChT. In only four of the nine eyes, the location with the largest ChT was coincident with the fovea. The anatomy of the large lumen vessels of the outer choroid seems to play a major role in determining the global ChT pattern. Focal ChT changes with large thickness gradients were observed in some eyes. Conclusions Different ChT and vascular patterns could be visualized over ∼60° in patients for the first time using OCT. Due to focal ChT changes, a high density of thickness measurements may be favorable. High-definition depth-resolved en face images are complementary to cross sections and thickness maps and enhance the interpretation of different ChT patterns. PMID:26431482

  10. Fundamental reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition

    SciTech Connect

    Yamada, Hiroshi

    2008-01-15

    The reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition (RIBD) with in situ pyrolytic-gas passivation (PGP) using N{sub 2}O and NF{sub 3} was investigated. RIBD uses low-energy-controlled reactive, ionized species and potentializes low-temperature film growth. Although the oxide films were grown at a low temperature of 150 deg. C, their fundamental indices of reliability, such as the time-dependent dielectric breakdown lifetime and interface state density, were almost equivalent to those of oxide films grown at 850 deg. C using a furnace. This is probably due to localized interfacial N and F atoms. The number density of interfacial N atoms was about seven times larger than that for the furnace-grown oxide films, and this is a key factor for improving the reliability through the compensation of residual inconsistent-state bonding sites.

  11. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination.

    PubMed

    Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian

    2016-09-01

    Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m(-2) h(-1) bar(-1) and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate.

  12. Sub-70-nm pattern fabrication using an alternating phase-shifting mask in 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Irie, Shigeo; Kanda, Noriyoshi; Watanabe, Kunio; Suganaga, Toshifumi; Itani, Toshiro

    2002-07-01

    In Selete, we have developed various resolution-enhancement technologies (RETs) such as the alternating phase shifting mask (alt-PSM), attenuated-PSM (att-PSM), and off-axis illumination (OAI). The alt-PSM, for example, reduces the k1 factor and extends the lithographic performance. A problem concerning the alt-PSM is the difference in the transmitted light intensities of the non-phase-shifting region and the phase-shifting region which can cause critical-dimension (CD) placement error. The transmitted light intensities of the two regions can be made equal by side-etching, in which the quartz (Qz) is undercut by wet-etching at the side of the transmitting region. We sought to optimize the mask structure in terms of a high numerical aperture (NA) through a simulation using two kinds of structures with a 157 nm exposure wavelength. The structures were a single-trench structure and a dual-trench structure, with each trench dug in the transmitting region. To attain a high NA (NA equals 0.85), we tried to optimize the parameters of the Cr film thickness, the amount of the undercut (side-etching), and the phase shift. The evaluated line pattern sizes were 70 nm (line/space size equals 70/70 nm, 70/140 nm, 70/210 nm, and 70/350 nm) and 50 nm (line/space size equals 50/50 nm, 50/100 nm, 50/150 nm, and 50/250 nm) at the wafer. Further, using the optimized mask, we calculated the lithographic margin of a sub 70 nm pattern through a simulation. For the 70 nm line patterns, we found that it will be difficult to fabricate precisely a 70 nm line patten using a mask with a single- trench structure. And we also found that the most suitable conditions for the dual-trench structure mask were a 90 nm undercut, a 100 nm Cr film thickness, and a 180 degree(s) phase shift. The exposure latitude at a depth of focus (DOF) of 0.3 micrometers , simulated using the optimized mask, was 5.3% for the 70/70 nm pattern, 3.6% for 70/140 nm 16.0% for 70/210 nm, and 29.3% for 70/350 nm. As the pitch

  13. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  14. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness

    SciTech Connect

    Barth, Michael; Datta, Suman; Bruce Rayner, G.; McDonnell, Stephen; Wallace, Robert M.; Bennett, Brian R.; Engel-Herbert, Roman

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structures with a low equivalent oxide thickness of 0.8 nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.

  15. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    SciTech Connect

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

  16. Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm

    NASA Astrophysics Data System (ADS)

    Kwak, C.-M.; Seol, J.-B.; Kim, Y.-T.; Park, C.-G.

    2017-02-01

    For the past 10 years, laser-assisted atom probe tomography (APT) analysis has been performed to quantify the near-atomic scale distribution of elements and their local chemical compositions within interfaces that determine the design, processing, and properties of virtually all materials. However, the nature of the occurring laser-induced emission at the surface of needle-shaped sample is highly complex and it has been an ongoing challenge to understand the surface-related interactions between laser-sources and tips containing non-conductive oxides for a robust and reliable analysis of multiple-stacked devices. Here, we find that the APT analysis of four paired poly-Si/SiO2 (conductive/non-conductive) multiple stacks with each thickness of 10 nm is governed by experimentally monitoring three experimental conditions, such as laser-beam energies ranged from 30 to 200 nJ, analysis temperatures varying with 30-100 K, and the inclination of aligned interfaces within a given tip toward analysis direction. Varying with laser-energy and analysis temperature, a drastic compositional ratio of doubly charged Si ions to single charged Si ions within conductive poly-Si layers is modified, as compared with ones detected in the non-conductive layers. Severe distorted APT images of multiple stacks are also inevitable, especially at the conductive layers, and leading to a lowering of the successful analysis yields. This lower throughput has been overcome though changing the inclination of interfaces within a given tip to analysis direction (planar interfaces parallel to the tip axis), but significant deviations in chemical compositions of a conductive layer counted from those of tips containing planar interfaces perpendicular to the tip axis are unavoidable owing to the Si2, SiH2O, and Si2O ions detected, for the first time, within poly-Si layers.

  17. Influence of film thickness in THz active metamaterial devices: A comparison between superconductor and metal split-ring resonators

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan; Roy Chowdhury, Dibakar; Xiong, Jie; Yang, Hao; Azad, Abul K.; Taylor, Antoinette J.; Jia, Q. X.; Chen, Hou-Tong

    2013-08-01

    We experimentally demonstrate thickness-dependent resonance tuning in planar terahertz superconducting metamaterials. Inductive-capacitive resonance of arrays of split-ring resonators fabricated from 50, 100, and 200 nm thick YBa2Cu3O7-δ (YBCO) and gold films were characterized and compared as a function of temperature. In the YBCO metamaterials the resonance frequency strongly depends on the thickness, and they show high thermal tunability in both resonance strength and frequency below the superconducting transition temperature, where the imaginary conductivity varies by three orders of magnitude. In contrast, the resonance in the gold metamaterials exhibits little thickness-dependence and very small tunability.

  18. Raman scattering from very thin Si layers of Si/SiO2 superlattices: Experimental evidence of structural modification in the 0.8-3.5 nm thickness region

    NASA Astrophysics Data System (ADS)

    Khriachtchev, Leonid; Räsänen, Markku; Novikov, Sergei; Kilpelä, Olli; Sinkkonen, Juha

    1999-11-01

    Raman study of very thin (⩽3.5 nm) Si layers constituting Si/SiO2 superlattices and grown by molecular beam epitaxy is described. The Raman spectra show systematic dependence on thickness of the Si layers, which highlights the variety of disordered microstructures in the Si/SiO2 superlattices. A clear change in the vibrational properties is found to occur in the 0.8-3.5 nm thickness region. In particular, the Raman spectra are typical for amorphous silicon for the thicker layers, and the characteristic phonon band disappears for the thinner layers, presumably representing another form of Si coordination with a small Raman scattering cross section. In addition, absorption of the material changes essentially with the Si-layer thickness. Photoluminescence is detected from the Si/SiO2 superlattices, the superlattices with 1.2 and 1.8 nm Si layers being the most efficient emitters among our samples, and the photoluminescence is blueshifted with the decrease of the Si-layer thickness. The Raman spectra show no sign of nanocrystalline structure at any thickness of the as-deposited Si layers so that the observed photoluminescence cannot be connected with Si nanocrystallities. Annealing strongly changes the Raman and photoluminescence spectra, a well-ordered Si phase appears in the superlattices, but its increase does not correlate with the photoluminescence, which further disregard it as an emitter. Nevertheless, the emitting phase is not identified in the Raman spectra.

  19. Dual Metal/High-k Gate-Last Complementary Metal-Oxide-Semiconductor Field-Effect Transistor with SiBN Film and Characteristic Behavior In Sub-1-nm Equivalent Oxide Thickness

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yoshiaki; Wakabayashi, Hitoshi; Tsukamoto, Masanori; Nagashima, Naoki

    2011-08-01

    For the first time, dual metal/high-k gate-last complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs) with low-dielectric-constant-material offset spacers and several gate oxide thicknesses were fabricated to improve CMOSFETs characteristics. Improvements of 23 aF/µm in parasitic capacitances were confirmed with a low-dielectric-constant material, and drive current improvements were also achieved with a thin gate oxide. The drive currents at 100 nA/µm off leakages in n-type metal-oxide-semiconductor (NMOS) were improved from 830 to 950 µA/µm and that in p-type metal-oxide-semiconductor (PMOS) were from 405 to 450 µA/µm with a reduction in gate oxide thickness. The thin gate oxide in PMOS was thinner than that in NMOS and the gate leakage was increased. However the gate leakage did not affect the off leakage below a gate length of about 44 nm. On the basis of this result, in these gate-last CMOSFETs, it is concluded that the transistors have potential for further reduction of the equivalent oxide thickness without an increase in off leakages at short gate lengths for high off leakage CMOSFETs. For low off leakage CMOSFETs, the optimization of wet process condition is needed to prevent the reduction of the 2 nm HfO2 thickness in PMOS during a wet process.

  20. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  1. YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} trilayer junction with nm thick PrGaO{sub 3} barrier

    SciTech Connect

    Tsuchiya, R.; Kawasaki, M.; Kubota, H.; Nishino, J.; Sato, H.; Akoh, H.; Koinuma, H.

    1997-09-01

    We have established a deposition process of high quality a axis oriented YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (a-YBCO) and insulating epitaxial PrGaO{sub 3} (PGO) films to fabricate a-YBCO/PGO(2.0{endash}3.2 nm)/a-YBCO trilayer junction. The precipitate formation on the bottom a-YBCO was greatly suppressed by the atomic layer modification of the substrate surface with a wet etching and successive atomic layer epitaxy of SrO and BaO atomic layers prior to the YBCO deposition. Crack formation and residual stress in the film due to the thermal expansion mismatch along c axis of YBCO could be eliminated by inserting a buffer layer of a-YBCO deposited with changing the substrate temperature from 580 to 735{degree}C. The junctions showed a clear hysteresis with its current jump as large as 30{percent}, together with the Fraunhofer diffraction. {copyright} {ital 1997 American Institute of Physics.}

  2. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect

    Oyama, S.; Minatsuki, I.; Shimizu, K.

    2012-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  3. Experimental determination of optical constants in the vacuum ultra violet wavelength region between 80 and 140 nm: A reflectance versus thickness method and its application to ZnSe

    NASA Astrophysics Data System (ADS)

    Bridou, Françoise; Cuniot-Ponsard, Mireille; Desvignes, Jean-Michel

    2007-03-01

    The 80-120 nm spectral range is a key domain for solar physics. Below 105 nm solids do not transmit light and the reflectance of available mirrors is particularly low which makes optical measurements specifically difficult. Optical constants of the materials may consequently be unavailable or unreliable. We present here a two media reflectance method at normal incidence suited to this VUV range, in which the variable is not the incidence angle but the thickness of the top layer made of the material to be analyzed. The real (n) and imaginary (k) parts of the complex index are directly and graphically determined in the (n, k) plane as the common intersection point of isoreflectance curves corresponding to samples different only in the thickness of the top layer. The method is tested and illustrated with ZnSe films evaporated on Al covered float glass substrates. In the literature, the reflectance magnitudes measured on ZnSe crystals differ strongly from an author to the other, leading to discrepant data for ZnSe in the VUV domain. We obtain precise and reliable values of (n, k), which fit the experimental values determined on freshly cleaved ZnSe crystals by J.L. Freeouf and the theoretical values calculated from the electronic band structure of ZnSe by John P. Walter and Marvin L. Cohen, but strongly differ from the optical constants selected by E.D. Palik in his tables.

  4. REE Sorption Study of Seived -50 +100 Mesh Fraction of Media #1 in Brine #1 at Different Concentrations of REE at 70C

    SciTech Connect

    Gary Garland

    2015-06-29

    This dataset shows the sorption capacities of smaller grain size (-50 +100 mesh) of media #1 in brine #1 at different starting concentrations of REE's at elevated temperature of 70C. The experimental conditions are 2g of -50 +100 mesh media #1 to 150mL of REE solution at concentartions of .2ppm each, 2ppm each, and 20ppm each. The pH of the solution is 5.5, and the temperature was at 70C.

  5. Effect of SiO{sub 2} overcoat thickness on laser damage morphology of HfO{sub 2}/SiO{sub 2} Brewster`s angle polarizers at 1064 nm

    SciTech Connect

    Stolz, C.J.; Genin, F.Y.; Reitter, T.A.; Molau, N.E.; Bevis, R.P.; von Gunten, M.K.; Smith, D.J.; Anzellotti, J.F.

    1997-03-03

    HfO{sub 2}/SiO{sub 2} Brewster`s angle polarizers are being developed at LLNL for the National Ignition Facility. Damage threshold studies using a 3-ns pulse length 1064-nm laser have revealed a number of different damage morphologies such as nodular ejection pits, plasma scalds, flat bottom pits, and overcoat delaminations. Of these laser damage morphologies, delaminations have the most negative impact on the multilayer stability. By selecting the proper SiO{sub 2} overcoat thickness, the delamination morphology is eliminated without significantly modifying the spectra characteristics of the coating and the functional damage threshold is increased by 2-4x. A model of the thermal mechanical response of the overcoats is presented for various SiO{sub 2} overcoat thicknesses. The overcoat thickness influences the electric-field profile resulting in different thermal gradients between the outer SiO{sub 2} and HfO{sub 2} layers. This modeling effort attempts to understand the relation between the thermal stress distribution in the overcoat and the occurrence of delamination.

  6. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual

  7. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  8. Crystalline ZrTiO{sub 4} gated p-metal–oxide–semiconductor field effect transistors with sub-nm equivalent oxide thickness featuring good electrical characteristics and reliability

    SciTech Connect

    Wu, Chao-Yi; Hsieh, Ching-Heng; Lee, Ching-Wei; Wu, Yung-Hsien

    2015-02-02

    ZrTiO{sub 4} crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb{sub 2}O{sub 3} interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D{sub it}) of 2.75 × 10{sup 11 }cm{sup −2}eV{sup −1} near the midgap and low oxide traps. Crystallization of ZrTiO{sub 4} and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribed to the low D{sub it} value and small EOT. Owing to the Y{sub 2}O{sub 3} interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm{sup 2}/V-s at 1 MV/cm. In addition, I{sub on}/I{sub off} ratio larger than 10{sup 6} is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb{sub 2}O{sub 3}/o-ZrTiO{sub 4} gate stack holds the great potential for next-generation electronics.

  9. Resistive switching and magnetic behavior of Bi0.8Ba0.2FeO3 / SrRuO3 / SrTiO3 films: role of thickness-dependent strain

    NASA Astrophysics Data System (ADS)

    Vagadia, Megha; Ravalia, Ashish; Trivedi, Priyanka; Jethva, Sadaf; Katba, Savan; Kuberkar, D. G.

    2016-05-01

    The thickness-dependent resistive switching and magnetic behavior of Bi0.8Ba0.2FeO3/SRO/STO (1 0 0) films have been studied in the context of strain modifications introduced by varying the film thickness. Generation of misfit dislocation results in strain relaxation with an increase in film thickness. All films (50, 100 and 200 nm) show hysteresis in I-V behavior at room temperature with applied voltage V max  =  ±5 V. Fitting of I-V data suggests that trap-controlled SCLC governs the conduction in HRS in the 50 nm film while in the 100 nm and 200 nm films, the charge transport mechanism is ohmic-type throughout the applied field. The ON/OFF switching ratio and current retention performance decrease with an increase in film thickness, suggesting that substrate-induced strain and interface modifications play an important role in governing the resistive switching mechanism in Bi0.8Ba0.2FeO3 films. A film with lower thickness ~50 nm is found to exhibit the highest magnetization which may be attributed to the increase in oxygen vacancies and compressive strain.

  10. Charge transport-accumulation in multilayer structures with Si{sub 3}N{sub 4} and thick(5.5 nm) SiO{sub 2}

    SciTech Connect

    Novikov, Yu. N.

    2015-04-21

    Double-injection, transport, and accumulation of charge in metal-thick oxide-nitride-silicon and silicon-tunnel oxide-nitride-thick oxide-silicon structures have been theoretically studied. Calculation results were compared to experimental results. The charge transport in Si{sub 3}N{sub 4} is quantitatively described assuming the multiphonon ionization theory of neutral traps with a capture cross-section less than 10{sup −14} cm{sup 2}. With traps amphoterism taken into account, the calculation predicts the existence of a layer with their excessive concentration near the SiO{sub 2}/Si{sub 3}N{sub 4} interface. The model satisfactorily describes the write/erase characteristics in silicon-oxide-nitride-oxide-silicon-structures from Bu and White (Solid-State Electron. 45, 113 (2001))

  11. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    PubMed

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers.

  12. A comparison of 50, 100 and 200 mg of intra-articular pethidine during knee joint surgery, a controlled study with evidence for local demethylation to norpethidine.

    PubMed

    Söderlund, A; Boreus, L O; Westman, L; Engström, B; Valentin, A; Ekblom, A

    1999-03-01

    Pethidine (meperidine) is a compound with both local anaesthetic and opioid agonist properties. We have in a recent study demonstrated that pethidine could be an interesting alternative to prilocaine in arthroscopy with local anaesthetic technique. Therefore, we investigated, in a controlled randomized double-blind study, the effect of three doses of pethidine compared with a standard local anaesthetic, in patients subjected to arthroscopic knee joint surgery. Ten patients in each group received 50 mg (P50), 100 mg (P100), 200 mg (P200) of pethidine or prilocaine (5 mg/ml) + adrenaline (4 mg/ml) (PC), injected intra-articularly (i.a.) before surgery. We measured pain intensity and discomfort during arthroscopy and pain intensity at rest and at movement, nausea and tiredness for 3 days post-operatively at regular intervals using the VAS-technique. We also measured the concentration of pethidine and its demethylated metabolite, norpethidine, in plasma by collecting blood samples at 20, 40, 60, 80, 140 and 200 min following injection, and in synovial fluid which was collected through the arthroscope at the start and the end of the surgery. It was found that significantly more patients in the P50 group (n = 6) needed general anaesthesia due to intense pain than those in the P100 group (n = 1), P200 group (n = 0) or the PC group (n = 1). The PC group required significantly more analgesics and had a significantly higher calculated total sum of pain scores at movement post-operatively, than the other three groups. The P200 group more often reported tiredness post-operatively than the other three groups. We conclude that 100 or 200 mg pethidine i.a. produces satisfactory anaesthesia for surgery. There was a rapid transfer of pethidine from synovial fluid to plasma, resulting in plasma levels earlier reported to produce centrally mediated effects, such as analgesia and tiredness. We found much higher concentrations of norpethidine in the synovial fluid than in plasma

  13. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Lin, Peng; Xia, Qiangfei

    2016-11-01

    Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging ‘beyond CMOS’ devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

  14. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  15. Pattern transfer processes for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Miyoshi, Seiro; Furukawa, Takamitsu; Watanabe, Hiroyuki; Irie, Shigeo; Itani, Toshiro

    2002-07-01

    We describe and evaluate three kinds of pattern transfer processes that are suitable for 157-nm lithography. These transfer processes are 1) a hard mask (HM) process using SiO as a HM material, 2) a HM process using an organic bottom anti-reflecting coating (BARC)/SiN structure, and 3) a bi- layer process using a silicon-containing resist and an organic film as the bottom layer. In all of these processes, the underlayer fo the resist acts as an anti-reflecting layer. For the HM processes, we patterned a newly developed fluorine-containing resist using a 157-nm microstepper, and transferred the resist patterns to the hard mask by reactive ion etching (RIE) with minimal critical dimension shift. Using the HM pattern, we then fabricated a 65nm Wsi/poly-Si gate pattern using a high-NA microstepper (NA=0.85). With the bi-layer process, we transferred a 60nm 1:1 lines and spaces pattern of a newly developed silicon-containing resist to a 300nm-thick organic film by RIE. The fabrication of a 65nm 1:1 gate pattern and 60nm 1:1 organic film patten clearly demonstrated that 157-nm lithography is the best candidate for fabricating sub-70nm node devices.

  16. Improvement in thickness uniformity of thick SOI by numerically controlled local wet etching.

    PubMed

    Yamamura, Kazuya; Ueda, Kazuaki; Hosoda, Mao; Zettsu, Nobuyuki

    2011-04-01

    Silicon-on-insulator (SOI) wafers are promising semiconductor materials for high-speed LSIs, low-power-consumption electric devices and micro electro mechanical systems (MEMS). The thickness distribution of an SOI causes the variation of threshold voltage in electronic devices manufactured on the SOI wafer. The thickness distribution of a thin SOI, which is manufactured by applying a smart cut technique, is comparatively uniform. On the other hand, a thick SOI has a large thickness distribution because a bonded wafer is thinned by conventional grinding and polishing. For a thick SOI wafer with a thickness of 1 microm, it is required that the tolerance of thickness variation is less than 50 nm. However, improving the thickness uniformity of a thick SOI layer to a tolerance of +/- 5% is difficult by conventional machining because of the fundamental limitations of these techniques. We have developed numerically controlled local wet etching (NC-LWE) technique as a novel deterministic subaperture figuring and finishing technique, which utilizes a localized chemical reaction between the etchant and the surface of the workpiece. We demonstrated an improvement in the thickness distribution of a thick SOI by NC-LWE using an HF/HNO3 mixture, and thickness variation improved from 480 nm to 200 nm within a diameter of 170 mm.

  17. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  18. Laser cooling of CdS nanobelts: thickness matters.

    PubMed

    Li, Dehui; Zhang, Jun; Xiong, Qihua

    2013-08-12

    We report on the thickness dependent laser cooling in CdS nanobelts pumped by a 532 nm green laser. The lowest achievable cooling temperature is found to strongly depend on thickness. No net cooling can be achieved in nanobelts with a thickness below 65 nm due to nearly zero absorption and larger surface nonradiative recombination. While for nanobelts thicker than ~120 nm, the reabsorption effect leads to the reduction of the cooling temperature. Based on the thickness dependent photoconductivity gain, mean emission energy and external quantum efficiency, the modeling of the normalized temperature change suggests a good agreement with the experimental results.

  19. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  20. A Feasibility Study of 50 nm Resolution with Low Energy Electron Beam Proximity Projection Lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Savas, T. A.

    2002-01-01

    Patterns of 50 nm lines and spaces were demonstrated by low energy electron beam proximity lithography using 47-nm-thick poly methyl methacrylate (PMMA) and stencil masks fabricated by achromatic interference lithography (AIL). The result indicates the validity of the resolution analysis previously reported and the resolution capabilities of low energy electron beam proximity projection lithography (LEEPL) as a 50 nm node technology.

  1. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  2. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  3. Education and "Thick" Epistemology

    ERIC Educational Resources Information Center

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  4. MoSi absorber photomask for 32nm node

    NASA Astrophysics Data System (ADS)

    Konishi, Toshio; Kojima, Yosuke; Takahashi, Hiroyuki; Tanabe, Masato; Haraguchi, Takashi; Lamantia, Matthew; Fukushima, Yuichi; Okuda, Yoshimitsu

    2008-05-01

    The development of semiconductor process for 32nm node is in progress. Immersion lithography has been introduced as an extension of 193nm lithograpy. In addition, DPL (Double patterning lithography) is becoming a strong candidate of next generation lithography. The extension of optical lithography increases more mask complexity and tighter specification of photomasks. CD performance is the most important issue in the advanced photomask technology. However, it is expected that conventional mask cannot satisfy the required mask specifications for 32nm node and beyond. Most of CD errors are contributed to the dry etching process. Mask CD variation is greatly influenced by the loading effect from dry etching of the absorber. As the required accuracy of the mask arises, Cr absorber thickness has been gradually thinner. CD linearity with the thinner Cr absorber thickness has better performance. However, it is difficult to apply thinner Cr absorber thickness simply under the condition of OD > 3, which is needed for wafer printing. So, we adopted MoSi absorber instead of conventional Cr absorber, because MoSi absorber has less micro and global loading effect than that of Cr absorber. By using MoSi absorber, we can reduce Cr thickness as a hardmask. The thinner Cr hardmask allows for reduce resist thickness and become same condition for conventional EB resist lithography. The lithography performances were confirmed by the simulation and wafer printing. The new MoSi absorber mask behaves similar to the conventional Cr absorber mask. The adoption of super thin Cr as a hardmask made it possible to reduce resist thickness. By the application of the thin resist and the latest tools, we'll improve the mask performance to meet the 32 nm generation specification.

  5. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  6. Cubic lattice nanosheets: thickness-driven light emission.

    PubMed

    Golberg, Dmitri; Zhang, Chao; Xu, Zhi

    2014-07-22

    Silicon has a diamond-like cubic crystal lattice for which two-dimensional (2D) nanometer thickness nanosheet crystallization appears not to be trivial. However, in this issue of ACS Nano, the group led by Heon-Jin Choi demonstrates the gas-phase dendritic growth of Si nanosheets, only 1 to 13 nm thick. Moreover, such nanosheets display strong thickness-dependent photoluminescence in a visible range with red, green, and blue emission each documented.

  7. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  8. Optical constants determination of neodymium and gadolinium in the 3-nm to 100-nm wavelength range

    NASA Astrophysics Data System (ADS)

    Kjornrattanawanich, B.; Windt, D. L.; Uspenskii, Y. A.; Seely, J. F.

    2006-08-01

    The optical constants (n, k) of the wavelength-dependent index of refraction N = n+ik = 1-δ+ik of Nd (Neodymium) and Gd (Gadolinium) are determined in the wavelength range of 3 nm to 100 nm by the transmittance method using synchrotron radiation. Nd and Gd films with thicknesses ranging from 5 nm to 180 nm were fabricated on Si photodiodes (which served as the coating substrates as well as the detectors) and capped with Si layers to protect these reactive rare earth elements from oxidation. The imaginary part (k) obtained directly from the transmittance measurement is used in the derivation of the real part (δ) of the complex index of refraction N through the Kramers- Kronig integral. The measured optical constants are used in the design of currently developed Nd- and Gd-based multilayers for solar imaging applications. Our results on Nd and Gd optical constants and the reflectance of some Nd- and Gd-based multilayers are presented.

  9. Measuring coal thickness

    NASA Technical Reports Server (NTRS)

    Barker, C.; Blaine, J.; Geller, G.; Robinson, R.; Summers, D.; Tyler, J.

    1980-01-01

    Laboratory tested concept, for measuring thickness of overhead coal using noncontacting sensor system coupled to controller and high pressure water jet, allows mining machines to remove virtually all coal from mine roofs without danger of cutting into overlying rock.

  10. Origami of thick panels

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-01

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures.

  11. Photomask technology for 32nm node and beyond

    NASA Astrophysics Data System (ADS)

    Hikichi, Ryugo; Ishii, Hiroyuki; Migita, Hidekazu; Kakehi, Noriko; Shimizu, Mochihiro; Takamizawa, Hideyoshi; Nagano, Tsugumi; Hashimoto, Masahiro; Iwashita, Hiroyuki; Suzuki, Toshiyuki; Hosoya, Morio; Ohkubo, Yasushi; Ushida, Masao; Mitsui, Hideaki

    2008-05-01

    193nm-immersion lithography is the most promising technology for 32nm-node device fabrication. At the 32nm technology-node, the performance of photomasks, not only phase-shift masks but also binary masks, needs to be improved, especially in "resolution" and "CD accuracy". To meet sub-100nm resolution with high precision, further thinning of resist thickness will be needed. To improve CD performance, we have designed a new Cr-on-glass (COG) blank for binary applications, having OD-3 at 193nm. This simple Cr structure can obtain superior performance with the conventional mask-making process. Since the hardmask concept is one of the alternative solutions, we have also designed a multilayered binary blank. The new COG blank (NTARC) was fully dry-etched with over 25% shorter etching time than NTAR7, which is a conventional COG blank. Thinner resist (up to 200nm) was possible for NTARC. NTARC with 200nm-thick resist showed superior resolution and CD linearity in all pattern categories. On the other hand, the multilayered binary stack gives us a wide etching margin for several etching steps. Super thin resist (up to 100nm) was suitable by using a Cr-hardmask on a MoSi-absorber structure (COMS). The COMS blanks showed superior performance, especially in tiny clear patterns, such as the isolated hole pattern. We confirmed that these new photomask blanks, NTARC and COMS, will meet the requirements for 32nm-node and beyond, for all aspects of mask-making.

  12. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Hatano, Toshiyuki; Takeda, Ken-ichi

    2014-05-21

    To date, solid-state nanopores have been fabricated primarily through a focused-electronic beam via TEM. For mass production, however, a TEM beam is not suitable and an alternative fabrication method is required. Recently, a simple method for fabricating solid-state nanopores was reported by Kwok, H. et al. and used to fabricate a nanopore (down to 2 nm in size) in a membrane via dielectric breakdown. In the present study, to fabricate smaller nanopores stably--specifically with a diameter of 1 to 2 nm (which is an essential size for identifying each nucleotide)--via dielectric breakdown, a technique called "multilevel pulse-voltage injection" (MPVI) is proposed and evaluated. MPVI can generate nanopores with diameters of sub-1 nm in a 10-nm-thick Si3N4 membrane with a probability of 90%. The generated nanopores can be widened to the desired size (as high as 3 nm in diameter) with sub-nanometre precision, and the mean effective thickness of the fabricated nanopores was 3.7 nm.

  13. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  14. Critical thickness for the agglomeration of thin metal films

    SciTech Connect

    Boragno, C.; Buatier de Mongeot, F.; Felici, R.; Robinson, I.K.

    2009-09-15

    A thin metal film can exist in a metastable state with respect to breaking into small clusters. In this paper we report on grazing incidence small-angle x-ray scattering studies carried out in situ during the annealing of thin Ni films, between 2 and 10 nm thick, deposited on an amorphous SiO{sub 2} substrate. Our results show the presence of two different regimes which depend on the initial film thickness. For thicknesses less than 5 nm the annealing results in the formation of small, compact clusters on top of a residual Ni wetting layer. For thicknesses greater than 5 nm the film breaks into large, well-separated clusters and the substrate shows an uncovered clean surface.

  15. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  16. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    PubMed

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  17. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  18. Thin hardmask patterning stacks for the 22-nm node

    NASA Astrophysics Data System (ADS)

    Zhu, Zhimin; Piscani, Emil; Wang, Yubao; Macie, Jan; Neef, Charles J.; Smith, Brian

    2009-03-01

    This paper presents robust trilayer lithography technology for cutting-edge IC fabrication and double-patterning applications. The goal is to reduce the thickness of a silicon hardmask so that the minimum thickness of the photoresist is not limited by the etch budget and can be optimized for lithography performance. Successful results of pattern etching through a 300-nm carbon layer are presented to prove that a 13.5-nm silicon hardmask is thick enough to transfer the line pattern. Another highlight of this work is the use of a simulation tool to design the stack so that UV light is concentrated at the bottom of the trenches. This design helps to clear the resist in the trenches and prevent resist top loss. An experiment was designed to validate the assumption with 45-nm dense lines at various exposure doses, using an Exitech MS-193i immersion microstepper (NA = 1.3) at the SEMATECH Resist Test Center. Results show that such a stack design obtains very wide CD processing window and is robust for 1:3 line patterning at the diffraction limit, as well as for patterning small contact holes.

  19. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  20. Etching of 42-nm and 32-nm half-pitch features patterned using step and Flash® imprint lithography

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia B.; LaBrake, Dwayne L.; Khusnatdinov, Niyaz

    2008-03-01

    In this work, the authors demonstrate the suitability of Step and Flash® Imprint Lithography (S-FIL®) materials as a mask for patterning 42 nm and 32 nm half pitch features into a hardmask material. We present a zero etch-bias process with good silicon oxide to imprint resist selectivity and excellent line-width roughness (LWR) control. We demonstrate the required etch processes and mean value and uniformity of the residual layer thickness (RLT) necessary to maintain cross wafer CD uniformity for 42 nm and 32 nm half pitch dense lines. Finally, the authors present a mechanism for targeting the critical dimension by control of the imprint resist volume.

  1. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  2. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets.

    PubMed

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-23

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 microm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO(2) trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C(33) value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  3. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-01

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  4. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bureau preparing a seized vehicle for storage should be at a minimum; (1) Protect the cooling system from freezing; (2) Protect the battery by assuring it is properly watered; (3) Protect the tires by inflating...

  5. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bureau preparing a seized vehicle for storage should be at a minimum; (1) Protect the cooling system from freezing; (2) Protect the battery by assuring it is properly watered; (3) Protect the tires by inflating...

  6. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bureau preparing a seized vehicle for storage should be at a minimum; (1) Protect the cooling system from freezing; (2) Protect the battery by assuring it is properly watered; (3) Protect the tires by inflating...

  7. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bureau preparing a seized vehicle for storage should be at a minimum; (1) Protect the cooling system from freezing; (2) Protect the battery by assuring it is properly watered; (3) Protect the tires by inflating...

  8. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bureau preparing a seized vehicle for storage should be at a minimum; (1) Protect the cooling system from freezing; (2) Protect the battery by assuring it is properly watered; (3) Protect the tires by inflating...

  9. Microfabricated Amorphous Silicon Nanopillars on an Ultrasmooth 500-nm-thick Titanium Adhesion Layer

    DTIC Science & Technology

    2012-09-01

    which may be found by heat treatment of the photoresist (5) or perhaps working with poly( methyl methacrylate ) (PMMA) rather than ZEP electron beam...isobutyl ketone PMMA poly( methyl methacrylate ) Pt platinum RMS root mean square SEM scanning electron microscopy Si silicon Ti titanium...at 21 °C in xylenes and then was rinsed for 30 s in methyl isobutyl ketone (MIBK). 2.3 Silicon Deposition and Liftoff Prior to deposition, a 5-min

  10. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Ritter, Robert; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2014-04-18

    Experimental charge exchange and energy loss data for the transmission of slow highly charged Xe ions through ultrathin polymeric carbon membranes are presented. Surprisingly, two distinct exit charge state distributions accompanied by charge exchange dependent energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state indicating that equilibrium stopping force values do not apply in this case. Additional angle resolved transmission measurements point on a significant contribution of elastic energy loss. The observations show that regimes of different impact parameters can be separated and thus a particle's energy deposition in an ultrathin solid target may not be described in terms of an averaged energy loss per unit length.

  11. 670-nm light treatment reduces complement propagation following retinal degeneration

    PubMed Central

    2012-01-01

    Aim Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. Methods Sprague–Dawley (SD) rats were pretreated with 9 J/cm2 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). Results Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. Conclusions Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy. PMID:23181358

  12. Thickness dependent thermal conductivity of gallium nitride

    NASA Astrophysics Data System (ADS)

    Ziade, Elbara; Yang, Jia; Brummer, Gordie; Nothern, Denis; Moustakas, Theodore; Schmidt, Aaron J.

    2017-01-01

    As the size of gallium nitride (GaN) transistors is reduced in order to reach higher operating frequencies, heat dissipation becomes the critical bottleneck in device performance and longevity. Despite the importance of characterizing the physics governing the thermal transport in thin GaN films, the literature is far from conclusive. In this letter, we report measurements of thermal conductivity in a GaN film with thickness ranging from 15-1000 nm grown on 4H-SiC without a transition layer. Additionally, we measure the thermal conductivity in the GaN film when it is 1 μm-thick in the temperature range of 300 < T < 600 K and use a phonon transport model to explain the thermal conductivity in this film.

  13. Interferometry of thick and thin films

    NASA Astrophysics Data System (ADS)

    Conroy, Michael

    2007-06-01

    Interferometry is now an established technique for the measurement of surface topography. It has the capability of combining sub-nanometre resolution. A very useful extension to its capability is the ability to measure thick and thin films on a local scale. For films with thicknesses in excess of 1-2μm (depending on refractive index), the SWLI interaction with the film leads simply the formation of two localised fringes, each corresponding to a surface interface. It is relatively trivial to locate the positions of these two envelope maxima and therefore determine the film thickness, assuming the refractive index is known. For thin films (with thicknesses ~20nm to ~2μm, again depending on the index), the SWLI interaction leads to the formation of a single interference maxima. In this context, it is appropriate to describe the thin film structure in terms of optical admittances; it is this regime that is addressed through the introduction of a new function, the 'helical conjugate field' (HCF) function. This function may be considered as providing a 'signature' of the multilayer measured so that through optimization, the thin film multilayer may be determined on a local scale.

  14. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  15. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  16. Homoepitaxial growth of MOD-YBCO thick films on evaporated and MOD templates

    NASA Astrophysics Data System (ADS)

    Tanabe, D.; Yamaguchi, I.; Sohma, M.; Tsukada, K.; Matsui, M.; Kumagai, T.; Manabe, T.

    2011-11-01

    We have prepared metal organic deposition (MOD)-YBCO thick films by repeating the coating-pyrolysis-crystallization procedure onto ∼100-nm-thick evaporated and MOD templates. Surface morphology of the template was found to strongly affect the homoepitaxial growth of MOD-YBCO layers on the template; namely, the epitaxial growth of MOD-YBCO on the evaporated template was much easier than that on the MOD template. A 220-nm-thick epitaxial MOD-YBCO film was successfully prepared on the 100-nm-thick evaporated-YBCO template to obtain a 320-nm-thick YBCO film, which exhibited Jc = 2.44 MA/cm2 and Ic = 78 A/cm. The Ic value has significantly increased from 37 A/cm for the evaporated-template.

  17. Optimizing the multiple quantum well thickness of an InGaN blue light emitting diode

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Zhao, Jun Liang; Wang, Shu Guo; Dai, Hai Tao; Yu, Sheng-Fu; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Sun, Xiao Wei

    2013-03-01

    InGaN/GaN blue light emitting diodes with varied quantum well thickness from 2.4 nm to 3.6 nm are fabricated and characterized by atmosphere pressure metalorganic chemical vapor deposition (AP-MOCVD). Experimental results show that the exciton localization effect is enhanced from 21.76 to 23.48 by increasing the quantum well thickness from 2.4 nm to 2.7 nm. However, with the further increase of quantum well thickness, the exciton localization effect becomes weaker. Meanwhile, the peak wavelength of electroluminescence redshift with the increase of well thickness due to the larger quantum confined Stark effect (QCSE). In addition, the efficiency droop can be improved by increasing the well thickness.

  18. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  19. Influence of the thickness on the morphology and sensing ability of thermally-deposited tellurium films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, T.; Bineva, I.; Dinescu, A.; Nesheva, D.; Arsova, D.; Pejova, B.

    2016-03-01

    Tellurium films with nominal thicknesses of 30, 90 and 300 nm were prepared by thermal evaporation in vacuum at a low deposition rate of 0.3 nm/s. The morphology evolution with the increase of the film thickness was observed by scanning electron microscopy and atomic force microscopy. Nanorods with a width of about 40 nm were observed on the thinnest films surface. On the 90 nm thick films, the formations grew in priority in the z-direction to nanoblades with the same width, but a length of about 100 nm. The further increase of the thickness led to an increase of the 2D nanoobjects' width and length and formation of a stacked nanosheet structure. The surface root-mean-square roughness (Sq) increased with the thickness of the films. Preliminary investigations of the sensing ability of the as-deposited tellurium films with different thicknesses towards water (H2O), ethanol (C2H5OH), acetone (C3H5OH), and ammonia (NH3) vapors were performed by measuring the vapor-induced changes in the film dark current. The films showed appreciable response only to ammonia vapors; their sensitivity was almost equal for the 30 and 90 nm thick films, and decreased significantly for the film tkness of 300 nm.

  20. Thickness Dependence of Properties of ITO Films Deposited on PET Substrates.

    PubMed

    Kim, Seon Tae; Kim, Tae Gyu; Cho, Hyun; Yoon, Su Jong; Kim, Hye Sung; Kim, Jin Kon

    2016-02-01

    Indium tin oxide (ITO) films with various thicknesses from 104 nm to 513 nm were prepared onto polyethylene terephthalate (PET) substrates by using r.f. magnetron sputtering without intentionally heating the substrates. The structural, optical, and electrical properties of ITO films were investigated as a function of film thickness. It was found that the amorphous nature of the ITO film was dominant below the thickness of about 200 nm but the degree of the crystallinity increased with an increasing thickness above the thickness of about 250 nm, resulting in the increase of carrier concentration and therefore reducing the electrical resistivity from 5.1 x 10(-3) to 9.4 x 10(-4) omega x cm. The average transmittance (400-800 nm) of the ITO deposited PET substrates decreased as the film thickness was increasing and was above 80% for the thickness below 315 nm. The results show that the improvement of the film crystallinity with the film thickness contributes to the increase of the carrier concentration and the enhancement of the electrical conductivity.

  1. Sub-180 nm generation with borate crystal

    NASA Astrophysics Data System (ADS)

    Qu, Chen; Yoshimura, Masashi; Tsunoda, Jun; Kaneda, Yushi; Imade, Mamoru; Sasaki, Takatomo; Mori, Yusuke

    2014-10-01

    We demonstrated a new scheme for the generation of 179 nm vacuum-ultraviolet (VUV) light with an all-solid-state laser system. It was achieved by mixing the deep-ultraviolet (DUV) of 198.8 nm and the infrared (IR) of 1799.9 nm. While CsB3O5 (CBO) did not satisfy the phase-matching at around 180 nm, 179 nm output was generated with LiB3O5 (LBO) for the first time. The phase-matching property of LBO at around 180 nm was also investigated. There was small deviation from theoretical curve in the measurement, which is still considered reasonable.

  2. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    SciTech Connect

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet; Pandya, Dinesh K. Muduli, P. K.

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumping from Py into Ru.

  3. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.

    2015-11-01

    Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  4. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  5. Evanescent field response to immunoassay layer thickness on planar waveguides

    NASA Astrophysics Data System (ADS)

    Yan, Rongjin; Yuan, Guangwei; Stephens, Matthew D.; He, Xinya; Henry, Charles S.; Dandy, David S.; Lear, Kevin L.

    2008-09-01

    The response of a compact photonic immunoassay biosensor based on a planar waveguide to variation in antigen (C-reactive protein) concentration as well as waveguide ridge height has been investigated. Near-field scanning optical microscope measurements indicate 1.7%/nm and 3.3%/nm top surface optical intensity modulation due to changes in effective adlayer thickness on waveguides with 16.5 and 10nm ridge heights, respectively. Beam propagation method simulations are in good agreement with the experimental sensitivities as well as the observation of leaky mode interference both within and after the adlayer region.

  6. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  7. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range

    NASA Astrophysics Data System (ADS)

    Khorin, I.; Orlikovsky, N.; Rogozhin, A.; Tatarintsev, A.; Pronin, S.; Andreev, V.; Vdovin, V.

    2016-12-01

    Ultrathin (1-10 nm) Cu and Au films were prepared on the silicon and quartz substrates by magnetron sputtering at room temperature. We measured the transmission coefficient of the films at a wavelength of 3cm and analyzed a surface morphology of these films. It was shown that the films with thicknesses less than 7.5 nm (Au) and 3 nm (Cu) are almost transparent for microwaves. This effect is explained by quick oxidation of Cu and the complex surface morphology of nanometer thick films. The Au film morphology is evolved with increasing average Au thickness d from hemispherical islands initially (1.0 nmnm) to partially coalesced worm-like island structures (d=10 nm).

  8. Nanometer-thick flat lens with adjustable focus

    SciTech Connect

    Son, T. V.; Haché, A.; Ba, C. O. F.; Vallée, R.

    2014-12-08

    We report laser beam focusing by a flat, homogeneous film with a thickness of less than 100 nm. The effect relies on refractive index changes occurring in vanadium dioxide as it undergoes a phase transition from insulator to metal. Phase front curvature is achieved by means of temperature gradients, and adjustable focal lengths from infinity to 30 cm are attained.

  9. The origin of thick discs

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien

    2015-03-01

    Thick discs are defined to be disc-like components with a scale height larger than that of the classical discs. They are ubiquitous (Yoachim & Dalcanton 2006; Comerón et al. 2011a), they are made of mostly old and metal-poor stars and are most easily detected in close to edge-on galaxies. Their origin has been considered mysterious and several formation theories have been proposed: • The thick disc being formed secularly by thin disc stars heated by disc overdensities such as giant molecular clouds or spiral arms (Villumsen 1985, ApJ, 290, 75) and by stars moved outwards from their original orbits by radial migration mechanisms (Schönrich & Binney 2009). • The thick disc being formed by the heating of the thin disc by satellites (Quinn et al. 1993) and the tidal stripping of them (Abadi et al. 2003). • The thick disc being formed fast and already thick at high redshift in an highly unstable disc. Inside that thick disc, a thin disc would form afterwards as suggested by Elemgreen & Elmegreen (2006). • The thick disc being formed originally thick at high redshift by the merger of gas-rich protogalactic fragments and a thin disc forming afterwards within it (Brook et al. 2007). The first mechanism is a secular evolution mechanism. The time-scale of the second one is dependent on the merger history of the main galaxy. In the two last mechanisms, the thick disc forms already thick in a short time-scale at high redshift. Recent Milky Way studies, (see, e.g., Bovy et al. 2012), have shown indications that there is no discontinuity between the thin and the thick disc chemical and kinematic properties. Instead, those studies indicate the presence of a monotonic distribution of disc thicknesses. This would suggest a secular origin for the Milky Way thick disc. Studies in external galaxies (Yoachim & Dalcanton 2006; Comerón et al. 2011b), have shown that low-mass disc galaxies have thick disc relative masses much larger than those found in large-mass galaxies

  10. Thick YBa2Cu3O7-x BaSnO3 Films with Enhanced Critical Current Density at High Magnetic Fields

    DTIC Science & Technology

    2008-10-01

    thick YBCO +BSO film had a Jc ~3×105 A/cm2 at 5 T as compared to a typical Jc of 2.4×103 A/cm2 at 5 T for a 300- nm -thick YBCO film. The thick YBCO +BSO...for a 300 nm thick YBCO film. The thick YBCO +BSO films maintained high Tc 88 K and had a high density 2.51011 /cm2 of continuous BSO nanocolumns...nanocolumns to maintain a high Jc in high magnetic fields without a reduction in Tc. Recently 300 nm thick YBCO +BSO nanocomposite films were processed using

  11. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  12. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  13. Development of the nitride film thickness standard (NFTS)

    NASA Astrophysics Data System (ADS)

    Durga Pal, Prabha

    1998-07-01

    The semiconductor industry has been demanding film thickness reference material for films other than thermally grown silicon dioxide for sometime. To meet this challenge, Nitride Film Thickness Standard (NFTS) has been developed in four nominal thickness values, 20.0 nm, 90.0 nm, 120.0 nm and 200.0 nm. These are silicon nitride (Si3N4) films on silicon crystal substrate. Work is underway to develop a 9.0 nm standard. Thin nitride films are particularly needed for calibration of the thickness of nitride layers in capacitors and isolation masks for LOCOS (local oxidation of silicon). The reference material is certified for derived film thickness. The study consists of measurements made on four different sets of wafers that included patterned and unpatterned wafers. The measurements made on these wafer sets were used for answering issues related to film stability and cleaning. The stability study includes the search for a cleaning process that will restore a prior surface condition. On two sets of wafers two different types of cleaning procedures were used. Results indicate that a sulfuric acidmegasonic clean will etch the nitride film while an isopropyl alcohol clean followed by a deionized water rinse can be used over and over again. The third set of wafers was never cleaned and measurements were made on these over a period of two years. The last set of wafers is patterned. These are cleaned prior to measurement. Results show that LPCVD silicon nitride films are stable and can be used with confidence over a long period of time for calibrating optical metrology instruments.

  14. Thickness dependent wetting properties and surface free energy of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Zenkin, Sergei; Belosludtsev, Alexandr; Kos, Šimon; Čerstvý, Radomír; Haviar, Stanislav; Netrvalová, Marie

    2016-06-01

    We show here that intrinsic hydrophobicity of HfO2 thin films can be easily tuned by the variation of film thickness. We used the reactive high-power impulse magnetron sputtering for preparation of high-quality HfO2 films with smooth topography and well-controlled thickness. Results show a strong dependence of wetting properties on the thickness of the film in the range of 50-250 nm due to the dominance of the electrostatic Lifshitz-van der Waals component of the surface free energy. We have found the water droplet contact angle ranging from ≈120° for the thickness of 50 nm to ≈100° for the thickness of 2300 nm. At the same time the surface free energy grows from ≈25 mJ/m2 for the thickness of 50 nm to ≈33 mJ/m2 for the thickness of 2300 nm. We propose two explanations for the observed thickness dependence of the wetting properties: influence of the non-dominant texture and/or non-monotonic size dependence of the particle surface energy.

  15. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  16. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  17. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-01

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  18. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  19. Thickness dependence of superconductivity in FeSe0.5Te0.5 nanodevices

    NASA Astrophysics Data System (ADS)

    Yue, Chunlei; Hu, Jin; Liu, Xue; Mao, Zhiqiang; Wei, Jiang

    2014-03-01

    We investigated the thickness dependence of superconductivity on thin film single-crystal FeSe0.5Te0.5 nanodevices. We designed two independent approaches of exfoliation and ion milling to reduce the crystal thickness. On both methods, we discovered that once the thickness of crystal is reduced below 20nm, the superconductivity disappears. When the thickness is approaching to the critical thickness of 20nm, the normal state becomes more insulating, and transition temperature (14K) shifts toward lower temperature. In addition, ion milling method reveals that there is always about 6nm of non- stoichiometric FeSexTe1-x developed on the surface of FeSe0.5Te0.5 single crystal in ambient environment.

  20. Thickness dependent CARS measurement of polymeric thin films without depth-profiling.

    PubMed

    Choi, Dae Sik; Jeoung, Sae Chae; Chon, Byung-Hyuk

    2008-02-18

    Coherent anti-Stokes Raman scattering (CARS) microscopy is demonstrated to be a promising optical method for the characterization of polymer films with film thickness varying between 180 nm to 4300 nm. In case of PMMA films with a thickness of few hundreds of nanometers, the observed CARS signal was mainly associated with the interference effect of large nonresonant CARS field from glass substrate and the weak resonant field of PMMA. The dependence of resonant CARS intensity of PMMA film on film thickness is in good agreement with the theoretical prediction on a CARS field. The current work offers potential possibilities of noninvasive thickness measurement of polymeric thin film of thickness less than 180 nm by multiplex CARS microscopy without depth-profiling.

  1. Gauge Measures Thicknesses Of Blankets

    NASA Technical Reports Server (NTRS)

    Hagen, George R.; Yoshino, Stanley Y.

    1991-01-01

    Tool makes highly repeatable measurements of thickness of penetrable blanket insulation. Includes commercial holder for replaceable knife blades, which holds needle instead of knife. Needle penetrates blanket to establish reference plane. Ballasted slider applies fixed preload to blanket. Technician reads thickness value on scale.

  2. Measuring Thicknesses of Wastewater Films

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Davenport, R. J.

    1987-01-01

    Sensor determines when thickness of film of electrically conductive wastewater on rotating evaporator drum exceeds preset value. Sensor simple electrical probe that makes contact with liquid surface. Made of materials resistant to chemicals in liquid. Mounted on shaft in rotating cylinder, liquid-thickness sensor extends toward cylinder wall so tip almost touches. Sensor body accommodates probe measuring temperature of evaporated water in cylinder.

  3. New antireflective coatings for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Xu, Gu; Guerrero, Douglas J.; Dobson, Norman

    1998-06-01

    New bottom antireflective coatings (BARCs) for 193 nm lithography have been recently developed by Brewer Science Inc. Copolymers of benzyl methacrylate (or benzyl acrylate) and hydroxypropyl methacrylate have been synthesized and used as a main component in 193 nm BARCs. The acrylic copolymers have strong absorbance at 193 nm UV light wavelength. The 193 nm BARCs were formulated in safe solvents such as ethyl lactate and formed by spin-on coating process. Thermosetting of the 193 nm BARCs limited their intermixing with photoresists. These 193 nm BARCs had optical density of about 10 micrometers -1, k equals 0.35, and n equals 1.81. Preliminary oxygen plasma etch rates were > 1.5 times DUV resists. Good profiles at small feature sizes (< 0.20 micrometers ) were achieved with tested photoresists.

  4. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  5. Can DUV take us below 100 nm?

    NASA Astrophysics Data System (ADS)

    Finders, Jo; Jorritsma, Louis; Eurlings, Mark; Moerman, Richard; van Greevenbroek, Henk; van Schoot, Jan B.; Flagello, Donis G.; Socha, Robert J.; Stammler, Thomas

    2001-09-01

    Currently, the 130 nm SIA node is being implemented at leading edge semiconductor manufacturing facilities. Previously, this node appeared to be the insertion point for 193 nm lithography. However, it is evident that for the majority of applications 248 nm will be the wavelength of choice. This once again raises the question how far DUV lithography (248 nm) will take us. To investigate this, overlay, imaging and productivity related issues have to be considered. Although these items become more and more linked at low k1-factors (e.g. overlay and imaging), this paper will focus on some of the imaging related topics.

  6. Lithography strategy for 65-nm node

    NASA Astrophysics Data System (ADS)

    Borodovsky, Yan A.; Schenker, Richard E.; Allen, Gary A.; Tejnil, Edita; Hwang, David H.; Lo, Fu-Chang; Singh, Vivek K.; Gleason, Robert E.; Brandenburg, Joseph E.; Bigwood, Robert M.

    2002-07-01

    Intel will start high volume manufacturing (HVM) of the 65nm node in 2005. Microprocessor density and performance trends will continue to follow Moore's law and cost-effective patterning solutions capable of supporting it have to be found, demonstrated and developed during 2002-2004. Given the uncertainty regarding the readiness and respective capabilities of 157nm and 193nm lithography to support 65nm technology requirements, Intel is developing both lithographic options and corresponding infrastructure with the intent to use both options in manufacturing. Development and use of dual lithographic options for a given technology node in manufacturing is not a new paradigm for Intel: whenever introduction of a new exposure wavelength presented excessive risk to the manufacturing schedule, Intel developed parallel patterning approaches in time for the manufacturing ramp. Both I-line and 248nm patterning solutions were developed and successfully used in manufacturing of the 350nm node at Intel. Similarly, 248nm and 193nm patterning solutions were fully developed for 130nm node high volume manufacturing.

  7. Barkhausen noise in variable thickness amorphous finemet films

    SciTech Connect

    Puppin, Ezio; Pinotti, Ermanno; Brenna, Massimiliano

    2007-03-15

    We measured the statistical properties of Barkhausen noise in finemet films with nominal composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 22.5}B{sub 4} and variable thickness between 25 and 1000 nm. Films have been sputtered on glass substrates and their structure is amorphous. The critical exponents of the power-law distributions for the jumps amplitude show a remarkable stability over the whole thickness range, whereas the other macroscopic magnetic properties undergo strong variations. The value of the critical exponent is about 0.8 between 50 and 500 nm with a small increase up to 1.0 at 1000 nm. These values are similar to those observed with the same experimental technique in other two-dimensional (2D) systems, but definitely smaller with respect to the values observed in truly three-dimensional (3D) systems. Our data therefore indicate that, in the investigated thickness range, the behavior remains typical of 2D systems. The small increase of the critical exponent at 1000 nm might be an indication of a starting transition toward a 3D behavior.

  8. Thermal thickness and evolution of Precambrian lithosphere: A global study

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  9. Microstructure evolution with varied layer thickness in magnetron-sputtered Ni/C multilayer films

    PubMed Central

    Peng, Jichang; Li, Wenbin; Huang, Qiushi; Wang, Zhanshan

    2016-01-01

    The microstructure evolution of magnetron-sputtered Ni/C multilayers was investigated by varying the Ni and C layer thickness in the region of a few nanometers. For the samples having 2.6-nm-thick C layers, the interface width increases from 0.37 to 0.81 nm as the Ni layer thickness decreases from 4.3 to 1.3 nm. Especially for the samples with Ni layers less than 2.0 nm, the interface width changes significantly due to the discontinuously distributed Ni crystallites. For the samples having 2.8-nm-thick Ni layers, the interface width increases from 0.37 to 0.59 nm when the C layer thickness decreases from 4.3 to 0.7 nm. The evolution of interface microstructures with varied Ni and C layers is explained based on a proposed simple growth model of Ni and C layers. PMID:27515586

  10. Evaluation of Retinal and Choroidal Thickness in Fuchs' Uveitis Syndrome

    PubMed Central

    Ozsutcu, Mustafa

    2016-01-01

    Purpose. We aimed to investigate retinal and choroidal thickness in the eyes of patients with Fuchs' uveitis syndrome (FUS). Methods. Fifteen patients with unilateral FUS and 20 healthy control subjects were enrolled. Spectral domain optical coherence tomography (Spectralis HRA+OCT, 870 nm; Heidelberg Engineering, Heidelberg, Germany) was used to obtain retinal and choroidal thickness measurements. The retinal nerve fiber layer (RNFL) thickness, macular thickness, and choroidal thickness of the eyes with FUS were compared with the unaffected eye and the eyes of healthy control subjects. Results. The mean choroidal thickness at fovea and at each point within the horizontal nasal and temporal quadrants at 500 μm intervals to a distance of 1500 µm from the foveal center was significantly thinner in the affected eye of FUS patients compared with the unaffected eye of FUS patients or the eyes of healthy control subjects. However, there were no significant differences in RNFL or macular thickness between groups. Conclusions. Affected eyes in patients with FUS tend to have thinner choroids as compared to eyes of unaffected fellow eyes and healthy individuals, which might be a result of the chronic inflammation associated with the disease. PMID:27579176

  11. The SEMATECH Berkeley MET: extending EUV learning down to 16nm half pitch

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher N.; Baclea-An, Lorie Mae; Denham, Paul E.; George, Simi A.; Goldberg, Kenneth A.; Jones, Michael S.; Smith, Nathan S.; Wallow, Thomas I.; Montgomery, Warren; Naulleau, Patrick P.

    2011-04-01

    Several high-performing resists identified in the past two years have been exposed at the 0.3-numerical-aperture (NA) SEMATECH Berkeley Microfield Exposure Tool (BMET) with an engineered dipole illumination optimized for 18-nm half pitch. Five chemically amplified platforms were found to support 20-nm dense patterning at a film thickness of approximately 45 nm. At 19-nm half pitch, however, scattered bridging kept all of these resists from cleanly resolving larger areas of dense features. At 18-nm half pitch, none of the resists were are able to cleanly resolve a single line within a bulk pattern. With this same illumination a directly imageable metal oxide hardmask showed excellent performance from 22-nm half pitch to 17-nm half pitch, and good performance at 16-nm half pitch, closely following the predicted aerial image contrast. This indicates that observed limitations of the chemically amplified resists are indeed coming from the resist and not from a shortcoming of the exposure tool. The imageable hardmask was also exposed using a Pseudo Phase-Shift-Mask technique and achieved clean printing of 15-nm half pitch lines and modulation all the way down to the theoretical 12.5-nm resolution limit of the 0.3-NA SEMATECH BMET.

  12. The SEMATECH Berkeley MET: extending EUV learning to 16-nm half pitch

    SciTech Connect

    Anderson, Christopher N.; Baclea-an, Lorie Mae; Denham, Paul E.; George, Simi; Goldberg, Kenneth A.; Jones, Michael; Smith, Nathan; Wallow, Thomas; Montgomery, Warren; Naulleau, Patrick P.

    2011-03-18

    Several high-performing resists identified in the past two years have been exposed at the 0.3-numerical-aperture (NA) SEMATECH Berkeley Microfield Exposure Tool (BMET) with an engineered dipole illumination optimized for 18-nm half pitch. Five chemically amplified platforms were found to support 20-nm dense patterning at a film thickness of approximately 45 nm. At 19-nm half pitch, however, scattered bridging kept all of these resists from cleanly resolving larger areas of dense features. At 18-nm half pitch, none of the resists were are able to cleanly resolve a single line within a bulk pattern. With this same illumination a directly imageable metal oxide hardmask showed excellent performance from 22-nm half pitch to 17-nm half pitch, and good performance at 16-nm half pitch, closely following the predicted aerial image contrast. This indicates that observed limitations of the chemically amplified resists are indeed coming from the resist and not from a shortcoming of the exposure tool. The imageable hardmask was also exposed using a Pseudo Phase-Shift-Mask technique and achieved clean printing of 15-nm half pitch lines and modulation all the way down to the theoretical 12.5-nm resolution limit of the 0.3-NA SEMATECH BMET.

  13. Shape from equal thickness contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-05-10

    A unique imaging modality based on Equal Thickness Contours (ETC) has introduced a new opportunity for 3D shape reconstruction from multiple views. We present a computational framework for representing each view of an object in terms of its object thickness, and then integrating these representations into a 3D surface by algebraic reconstruction. The object thickness is inferred by grouping curve segments that correspond to points of second derivative maxima. At each step of the process, we use some form of regularization to ensure closeness to the original features, as well as neighborhood continuity. We apply our approach to images of a sub-micron crystal structure obtained through a holographic process.

  14. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  15. Applicability of spectral indices on thickness identification of oil slick

    NASA Astrophysics Data System (ADS)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  16. Characterization of 32nm node BEOL grating structures using scatterometry

    NASA Astrophysics Data System (ADS)

    Zangooie, Shahin; Sendelbach, Matthew; Angyal, Matthew; Archie, Charles; Vaid, Alok; Matthew, Itty; Herrera, Pedro

    2008-03-01

    Implementations of scatterometry in the back end of the line (BEOL) of the devices requires design of advanced measurement targets with attention to CMP ground rule constraints as well as model simplicity details. In this paper we outline basic design rules for scatterometry back end targets by stacking and staggering measurement pads to reduce metal pattern density in the horizontal plane of the device and to avoid progressive dishing problems along the vertical direction. Furthermore, important characteristics of the copper shapes in terms of their opaqueness and uniformity are discussed. It is shown that the M1 copper thicknesses larger than 100 nm are more than sufficient for accurate back end scatterometry implementations eliminating the need for modeling of contributions from the buried layers. AFM and ellipsometry line scans also show that the copper pads are sufficiently uniform with a sweet spot area of around 20 μm. Hence, accurate scatterometry can be done with negligible edge and/or dishing contributions if the measurement spot is placed any where within the sweet spot area. Reference metrology utilizing CD-SEM and CD-AFM techniques prove accuracy of the optical solutions for the develop inspect and final inspect grating structures. The total measurement uncertainty (TMU) values for the process of record line width are of the order of 0.77 nm and 0.35 nm at the develop inspect and final inspect levels, respectively.

  17. Thickness dependent ion conductivity of lithium borate network glasses

    NASA Astrophysics Data System (ADS)

    Berkemeier, F.; Shoar Abouzari, M.; Schmitz, G.

    2007-03-01

    Lithium borate network glasses are possible candidates for separator membranes in all-solid-state batteries. Thin films of a Li2O-borate glass were produced by argon beam sputtering and their specific ionic conductivities were measured by impedance spectroscopy. The conductivity of as-sputtered films is about two orders of magnitude higher compared to the conductivity of bulk glasses produced from the melt. Furthermore, thin films with a thickness of 7-125nm reveal a remarkable finite size effect after annealing: with decreasing thickness the specific dc conductivity increases about three orders of magnitude.

  18. Improved Coal-Thickness Measurement

    NASA Technical Reports Server (NTRS)

    Barr, T. A.

    1984-01-01

    Summed signals and dielectric-filled antenna improve measurement. Improved FM radar for measuring thickness of coal seam eliminates spectrum splitting and reduces magnitude of echo from front coal surface.

  19. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  20. Final report on the torque comparison EURAMET.M.T-S2, measurand torque: 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m

    NASA Astrophysics Data System (ADS)

    Röske, Dirk

    2017-01-01

    The purpose of the EURAMET comparison EURAMET.M.T-S2 was to compare the measuring capabilities up to 100 N.m of a reference-type torque calibration machine of ZAG, Slovenia, with the torque standard machine of the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) acting as pilot laboratory. A very stable TT1 torque transducer with well-known properties and two torque measuring bridges was used as travelling standard. According to the technical protocol, torque steps of at least 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m had to be measured both in clockwise and anticlockwise directions. For each of the torque steps and both senses of direction of the torque vector, En values were calculated. The results are in general in good agreement with the claimed measurement uncertainties except for the very first measurement at ZAG with additional support and four plate couplings. It seems to be sufficient in a vertical set-up (vertical torque axis) to use only two flexible couplings and there is no need for a further support between the transducers. The measurements with two couplings fulfill the requirement to the En value and support ZAG's claimed uncertainties of measurement. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Epitaxial thick film high-Tc SQUIDs

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Mi, S. B.; Jia, C. L.; Poppe, U.; Urban, K.; Fagaly, R. L.

    2008-02-01

    Low-noise operation of superconducting quantum interference devices (SQUIDs) in magnetic fields requires high critical current and strong pinning of vortices in the superconducting electrodes and in the flux transformer. Crack-free epitaxial high-Tc dc-SQUID structures with a total thickness ?5 μm and a surface roughness determined by 30 nm high growth spirals were prepared with YBa2Cu3O7-x (YBCO) films on MgO substrates buffered by a SrTiO3/BaZrO3-bilayer. HRTEM demonstrated a high quality epitaxial growth of the films. The YBCO films and SQUID structures deposited on the buffered MgO substrates had a superconducting transition temperature Tc exceeding 91 K and critical current densities Jc > 3 MA/cm2 at 77 K up to a thickness ~5 μm. The application of thicker superconducting and insulator films helped us to increase the critical current and dynamic range of the multilayer high-Tc flux transformer and improve the insulation between the superconducting layers. An optimization of SQUID inductance allowed us to fabricate 8 mm SQUID magnetometers with SQUID voltage swings of ~60 μV and a field resolution of ~30 fT/√Hz at 77 K.

  2. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    NASA Astrophysics Data System (ADS)

    Sarwar, A. T. M. Golam; May, Brelon J.; Chisholm, Matthew F.; Duscher, Gerd J.; Myers, Roberto C.

    2016-04-01

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaN insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. The shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.

  3. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    SciTech Connect

    Chisholm, Matthew F.; Golam Sarwar, A. T. M.; Myers, Roberto C.; Mays, Brelon J.; Duscher, Gerd J.

    2016-03-18

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaN insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. As a result, the shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.

  4. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    DOE PAGES

    Chisholm, Matthew F.; Golam Sarwar, A. T. M.; Myers, Roberto C.; ...

    2016-03-18

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaNmore » insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. As a result, the shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.« less

  5. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  6. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  7. Tailoring of Luminous Transmittance upon Switching for Thermochromic VO2 Films by Thickness Control

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Jin, Ping; Tazawa, Masato; Yoshimura, Kazuki

    2004-01-01

    The difference in luminous transmittance (Δ Tlum) upon switching of VO2 films strongly affects its solar controllability when used as a thermochromic window. It was found that Δ Tlum is controllable by film thickness. Optical calculation for a VO2 film on quartz glass revealed that the low-temperature semiconductor phase exhibits lower Tlum than the high-temperature metallic phase for thickness below 50 nm, while the relationship is reversed above 50 nm. The calculation was confirmed by film deposition and measurement. Maximum Δ Tlum is located near 80 nm. An enhanced Δ Tlum contributes largely to solar efficiency.

  8. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-07-17

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis.

  9. Gallup, NM, CARE Grant Success Story

    EPA Pesticide Factsheets

    A CARE Grant, Level II award, was made to Gallup, NM to focus on cleaning up the waste stream, reuse and recycling of materials, and reclaiming land for these purposes through outreach, education and organization.

  10. Recent progress in 193-nm antireflective coatings

    NASA Astrophysics Data System (ADS)

    Meador, James D.; Guerrero, Douglas J.; Xu, Gu; Shao, Xie; Dobson, Norman; Claypool, James B.; Nowak, Kelly A.

    1999-06-01

    This paper presents the chemistries and properties of organic, spin-on, bottom antireflective coatings (BARCs) that are designed for 193 nm lithography. All of the BARCs are thermosetting and use dye-attached/incorporated polymers. A first generation product, NEXT, will soon be commercialized. NEXT is built form i-line and deep-UV chemistries with the polymeric constituent being a substitute novolac. This product provide outstanding resolution of 0.16 micrometers L/S with several 193 nm photoresists. Second generation chemical platforms under study include acrylics, polyesters, and polyethers with the 193 nm absorbing chromophore being an aromatic function. The performance of selected BARCs from the four platforms is described, including: optical properties, 193 nm litho, plasma etch rates, Prolith modeling data, spin-bowl and waste line compatibility, and ambient stability.

  11. Research of niobium thin films with a predetermined thickness produced by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.; Logacheva, A. I.; Logachev, I. A.; Teplouhov, A. A.; Fedorov, A. A.

    2017-01-01

    Niobium and niobium thin films are widely used in various fields of modern science and technology: in the electronics industry, in a nuclear medical imaging technique, in the information technology, in superconducting cavities technology etc. The grain size of thin niobium films depends on its thickness and the film’s stoichiometry can be varied as a function of thickness. Thus the problem of thickness control has a great practical importance in all fields of niobium films application. The focus of this study was to perform an experimental calibration of STC–2000A deposition controller for niobium target on ADVAVAC VSM–200 setup and to conduct a grain size, roughness and stoichiometry research by scanning electron microscopy, X–ray diffraction and laser interference microscopy of niobium films produced by RF magnetron sputtering with the thickness range from 200 nm to 400 nm and 50 nm step.

  12. Thickness Dependence of Characteristics for (Ba, Sr)TiO3 Thin Films Prepared by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Takeshima, Yutaka; Tanaka, Katsuhiko; Sakabe, Yukio

    2000-09-01

    (Ba0.6, Sr0.4)TiO3 thin films were prepared by metalorganic chemical vapor deposition (MOCVD) using bisdipvaloylmethanatobarium tetraethylenepentamine adduct (Ba(C11H19O2)2(C8H23N5)2), bisdipvaloylmethanatostrontium tetraethylenepentamine adduct (Sr(C11H19O2)2(C8H23N5)2), and titanium isopropoxide (Ti(i-OC3H7)4) as starting materials. The thickness dependence of permittivity and other characteristics were investigated for epitaxially grown barium strontium titanate (BST) thin films on Pt(100)/MgO(100) substrates and nonepitaxially grown BST films on Pt(111)/MgO(100) substrates. The epitaxially grown films had a high relative permittivity (1200) at thicknesses greater than 120 nm. Permittivity decreased with the film thickness when the thickness was less than 120 nm, but remained constant at thicknesses between 50 and 80 nm. The nonepitaxially grown films had a relative permittivity of 600 at a thickness greater than 100 nm and decreased with decreasing film thickness when the thickness was below 100 nm. In this paper, the origin of thickness dependence is discussed in terms of the grain-size effect and the strain effect.

  13. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  14. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  15. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  16. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  17. Formation of dot arrays with a pitch of 20 nm × 20 nm for patterned media using 30 keV EB drawing on thin calixarene resist.

    PubMed

    Bin Mohamad, Zulfakri; Shirai, Masumi; Sone, Hayato; Hosaka, Sumio; Kodera, Masatoshi

    2008-01-16

    We studied the possibility of achieving very fine-pitch dot arrays with a pitch of 20 nm × 20 nm using 30 keV electron beam (EB) drawing on negative calixarene resist. In order to form such patterns, we studied the dependence on resist thickness of the dot size and the packing. We propose EB drawing on an extremely thin film for very highly packed dot-array formation. Our experimental results demonstrate the possibility of forming highly packed dot-array patterns with a pitch of 20 nm × 20 nm and a resist thickness of about 13 nm, which corresponds to about 1.6 Tbits in(-2).

  18. Elastic thickness compressibilty of the red cell membrane.

    PubMed

    Heinrich, V; Ritchie, K; Mohandas, N; Evans, E

    2001-09-01

    We have used an ultrasensitive force probe and optical interferometry to examine the thickness compressibility of the red cell membrane in situ. Pushed into the centers of washed-white red cell ghosts lying on a coverglass, the height of the microsphere-probe tip relative to its closest approach on the adjacent glass surface revealed the apparent material thickness, which began at approximately 90 nm per membrane upon detection of contact (force approximately 1-2 pN). With further impingement, the apparent thickness per membrane diminished over a soft compliant regime that spanned approximately 40 nm and stiffened on approach to approximately 50 nm under forces of approximately 100 pN. The same force-thickness response was obtained on recompression after retraction of the probe, which demonstrated elastic recoverability. Scaled by circumferences of the microspheres, the forces yielded energies of compression per area which exhibited an inverse distance dependence resembling that expected for flexible polymers. Attributed to the spectrin component of the membrane cytoskeleton, the energy density only reached one thermal energy unit (k(B)T) per spectrin tetramer near maximum compression. Hence, we hypothesized that the soft compliant regime probed in the experiments represented the compressibility of the outer region of spectrin loops and that the stiff regime < 50 nm was the response of a compact mesh of spectrin backed by a hardcore structure. To evaluate this hypothesis, we used a random flight theory for the entropic elasticity of polymer loops to model the spectrin network. We also examined the possibility that additional steric repulsion and apparent thickening could arise from membrane thermal-bending excitations. Fixing the energy scale to k(B)T/spectrin tetramer, the combined elastic response of a network of ideal polymer loops plus the membrane steric interaction correlated well with the measured dependence of energy density on distance for a statistical

  19. Ionospheric slab thickness and its seasonal variations observed by GPS

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Cho, Jung-Ho; Park, Jung-Uk

    2007-11-01

    The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December January February (DJF), March April May (MAM), June July August (JJA) and September October November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14 16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10 18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.

  20. Ultra-thick, low-stress nanostructured diamond films

    SciTech Connect

    Kucheyev, S O; Biener, J; Tringe, J W; Wang, Y M

    2005-01-13

    We describe a hot-filament chemical vapor deposition process for growing freestanding nanostructured diamond films, {approx}80 {micro}m thick, with residual tensile stress levels {le} 90 MPa. We characterize the film microstructure, mechanical properties, chemical bond distribution, and elemental composition. Results show that our films are nanostructured with columnar grain diameters of {le} 150 nm and a highly variable grain length along the growth direction of {approx}50-1500 nm. These films have a rms surface roughness of {le} 200 nm for a 300 x 400 {micro}m{sup 2} scan, which is about one order of magnitude lower than the roughness of typical microcrystalline diamond films of comparable thickness. Soft x-ray absorption near-edge structure (XANES) spectroscopy indicates a large percentage of sp{sup 3} bonding in the films,consistent with a high hardness of 66 GPa. Nanoindentation and XANES results are also consistent with a high phase and elemental purity of the films, directly measured by x-ray and electron diffraction, Rutherford backscattering spectrometry, and elastic recoil detection analysis. Cross-sectional transmission electron microscopy reveals a large density of planar defects within the grains, suggesting a high rate of secondary nucleation during film growth. These films represent a new class of smooth, ultra-thick nanostructured diamond.

  1. LTCC Thick Film Process Characterization

    SciTech Connect

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels, 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.

  2. LTCC Thick Film Process Characterization

    DOE PAGES

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less

  3. Applications of film thickness equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.

  4. Fermion localization on thick branes

    SciTech Connect

    Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David

    2006-02-15

    We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

  5. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  6. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE PAGES

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  7. Dielectric properties and microstructure of sintered BaTiO3 fabricated by using mixed 150-nm and 80-nm powders with various additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Kang, Jae Won; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2015-04-01

    Recently, the use of small-sized BaTiO3 particles for ultra-thin MLCC research has increased as a method for minimizing the dielectric layer's thickness in thick film process. However, when particles smaller than 100 nm are used, the reduced particle size leads to a reduced dielectric constant. The use of nanoparticles, therefore, requires an increase in the amount of additive used due to the increase in the specific surface area, thus increasing the production cost. In this study, a novel method of coating 150-nm and 80-nm BaTiO3 powders with additives and mixing them together was employed, taking advantage of the effect obtained through the use of BaTiO3 particles smaller than 100 nm, to conveniently obtain the desired dielectric constant and thermal characteristics. Also, the microstructure and the dielectric properties were evaluated. The additives Dy, Mn, Mg, Si, and Cr were coated on a 150-nm powder, and the additives Dy, Mn, Mg, and Si were coated on 80-nm powder, followed by mixing at a ratio of 1:1. As a result, the microstructure revealed grain formation according to the liquid-phase additive Si; additionally, densification was well realized. However, non-reducibility was not obtained, and the material became a semiconductor. When the amount of added Mn in the 150-nm powder was increased to 0.2 and 0.3 mol%, insignificant changes in the microstructure were observed, and the bulk density after mixing was found to have increased drastically in comparison to that before mixing. Also, non-reducibility was obtained for certain conditions. The dielectric property was found to be consistent with the densification and the grain size. The mixed composition #1-0.3 had a dielectric constant over 2000, and the result somewhat satisfied the dielectric constant temperature dependency for X6S.

  8. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  9. Influence of substrate and film thickness on polymer LIPSS formation

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A.; Rebollar, Esther

    2017-02-01

    Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200-380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  10. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  11. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  12. Structure and magnetic properties of Co-P films of nanometer thickness

    NASA Astrophysics Data System (ADS)

    Chzhan, A. V.; Patrin, G. S.; Kiparisov, S. Ya.; Seredkin, V. A.; Pal'Chik, M. G.

    2010-06-01

    The main features of the formation of chemically deposited thin polycrystalline Co-P films of nanometer thickness have been determined experimentally. Changes in the surface structure of films with different thicknesses have been determined using an atomic force microscope. It has been established that at thicknesses smaller than 10 nm the films represent a set of weakly connected nuclei of crystallites with random orientations of easy axes. The subsequent increase in the thickness of films leads to the formation of a uniform polycrystalline layer. Estimates are given, which make it possible to determine the magnetic state of crystallites for the case of their weak magnetic interaction.

  13. Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer.

    PubMed

    Zhao, Yang; Schmidt, Greg; Moore, Duncan T; Ellis, Jonathan D

    2015-09-01

    Absolute physical thickness across the sample aperture is critical in determining the index of a refraction profile from the optical path length profile for gradient index (GRIN) materials, which have a designed inhomogeneous refractive index. Motivated by this application, instrumentation was established to measure the absolute thickness of samples with nominally plane-parallel surfaces up to 50 mm thick. The current system is capable of measuring absolute thickness with 120 nm (1σ) repeatability and submicrometer expanded measurement uncertainty. Beside GRIN materials, this method is also capable of measuring other inhomogeneous and opaque materials.

  14. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  15. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  16. Electrical properties of sub-100 nm SiGe nanowires

    NASA Astrophysics Data System (ADS)

    Hamawandi, B.; Noroozi, M.; Jayakumar, G.; Ergül, A.; Zahmatkesh, K.; Toprak, M. S.; Radamson, H. H.

    2016-10-01

    In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGe-on oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method. Project support by the Swedish Foundation for Strategic Research “SSF” (No. EM-011-0002) and the Scientific and Technological Research Council of Turkey (No. TÜBİTAK).

  17. Thick resist for MEMS processing

    NASA Astrophysics Data System (ADS)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging

  18. 14nm M1 triple patterning

    NASA Astrophysics Data System (ADS)

    Li, Qiao; Ghosh, Pradiptya; Abercrombie, David; LaCour, Pat; Kanodia, Suniti

    2012-03-01

    With 20nm production becoming a reality, research has started to focus on the technology needs for 14nm. The LELE double patterning used in 20nm production will not be able to resolve M1 for 14nm. Main competing enabling technologies for the 14nm M1 are SADP, EUV, and LELELE (referred as LE3 thereafter) triple patterning. SADP has a number of concerns of 1. density, as a layout geometry needs to stay complete as a whole, and can not be broken; 2. the complexity in SADP mask generation and debug feedback to designers; 3. the subtraction nature of the trim mask further complicates OPC and yield. While EUV does not share those concerns, it faces significant challenges on the manufacturing equipment side. Of the SADP concerns, LE3 only shares that of complexity involved in mask generation and intuitive debug feedback mechanism. It does not require a layout geometry to stay as a whole, and it benefits from the affinity to LELE which is being deployed for 20nm production. From a process point of view, this benefit from affinity to LELE is tremendous due to the data and knowledge that have been collected and will be coming from the LELE deployment. In this paper, we first recount the computational complexity of the 3-colorability problem which is an integral part of a LE3 solution. We then describe graph characteristics that can be exploited such that 3-colorability is equivalent under divide-and-conquer. Also outlined are heuristics, which are generally applied in solving computationally intractable problems, for the 3-colorability problem, and the importance in choosing appropriate worst-case exponential runtime algorithms. This paper concludes with a discussion on the new hierarchical problem that faces 3-colorability but not 2-colorability and proposals for non-3-colorability feedback mechanism.

  19. Shell thickness matters! Energy transfer and rectification study of Au/ZnO core/shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Sen, Tapasi

    2016-12-15

    In the present study we report the influence of shell thickness on fluorescence resonance energy transfer between Au/ZnO core-shell nanoparticles and Rhodamine 6G dye by steady-state and time-resolved spectroscopy and rectification behaviours. Au/ZnO core-shell nanoparticles with different shell thickness were synthesized in aqueous solution by chemically depositing zinc oxide on gold nanoparticles surface. A pronounced effect on the photoluminescence (PL) intensity and shortening of the decay time of the dye in presence of Au/ZnO core-shell nanoparticles is observed. The calculated energy transfer efficiencies from dye to Au/ZnO are 62.5%, 79.2%, 53.6% and 46.7% for 1.5nm, 3nm, 5nm and 8nm thickness of shell, respectively. Using FRET process, the calculated distances (r) are 117.8, 113.2Å 129.9Å and 136.7Å for 1.5nm, 3nm, 5nm and 8nm thick Au/ZnO core-shell nanoparticles, respectively. The distances (d) between the donor and acceptor are 71.0, 57.8, 76.2 and 81.6Å for 1.5nm, 3nm, 5nm and 8nm thick core-shell Au/ZnO nanoparticles, respectively, using the efficiency of surface energy transfer (SET). The current-voltage (I-V) curve of hybrid Au/ZnO clearly exhibits a rectifying nature and represents the n-type Schottky diode characteristics with a typical turn-on voltage of between 0.6 and 1.3V. It was found that the rectifying ratio increases from 20 to 90 with decreasing the thickness of the shell from 5nm to 3nm and with shell thickness of 8nm, electrical transport through the core-shell is similar to what is observed with pure ZnO samples nanoparticles. The results indicated that the Au/ZnO core-shell nanoparticles with an average shell thickness of 3nm exhibited the maximum energy transfer efficiencies (79.2%) and rectification (rectifying ratio 90).

  20. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  1. 635nm diode laser biostimulation on cutaneous wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2014-05-01

    Biostimulation is still a controversial subject in wound healing studies. The effect of laser depends of not only laser parameters applied but also the physiological state of the target tissue. The aim of this project is to investigate the biostimulation effects of 635nm laser irradiation on the healing processes of cutaneous wounds by means of morphological and histological examinations. 3-4 months old male Wistar Albino rats weighing 330 to 350 gr were used throughout this study. Low-level laser therapy was applied through local irradiation of red light on open skin excision wounds of 5mm in diameter prepared via punch biopsy. Each animal had three identical wounds on their right dorsal part, at which two of them were irradiated with continuous diode laser of 635nm in wavelength, 30mW of power output and two different energy densities of 1 J/cm2 and 3 J/cm2. The third wound was kept as control group and had no irradiation. In order to find out the biostimulation consequences during each step of wound healing, which are inflammation, proliferation and remodeling, wound tissues removed at days 3, 7, 10 and 14 following the laser irradiation are morphologically examined and than prepared for histological examination. Fragments of skin including the margin and neighboring healthy tissue were embedded in paraffin and 6 to 9 um thick sections cut are stained with hematoxylin and eosin. Histological examinations show that 635nm laser irradiation accelerated the healing process of cutaneous wounds while considering the changes of tissue morphology, inflammatory reaction, proliferation of newly formed fibroblasts and formation and deposition of collagen fibers. The data obtained gives rise to examine the effects of two distinct power densities of low-level laser irradiation and compare both with the non-treatment groups at different stages of healing process.

  2. Optical characterization of 193nm amorphous carbon ARC films

    NASA Astrophysics Data System (ADS)

    Leng, Jingmin; Opsal, Jon; Pois, Heath

    2005-05-01

    In this study, the optical properties of amorphous carbon (aC) ARC films are investigated using an Opti-probe OP7341, and a metrology solution that robustly measures a broad range of process conditions is presented. We find that the aC material is consistent with uni-axial anisotropy, and that this effect may have important implications for photolithography. These results are obtained through the combination of multiple technologies in one tool: spectroscopic ellipsometry (SE); spectroscopic reflectometry or broadband (BB), with a wavelength range of 190-840 nm; single wavelength (673 nm) but multiple incident angle beam profile reflectometry (BPR) and beam profile ellipsometry (BPE), and single wavelength (633nm) absolute ellipsometry (AE). The combination of technologies at multiple angles and wavelengths provides additional optical information and sensitivity not possible with single-technology approaches. A complex wavelength dependent anisotropy model was developed for this analysis, and is compared with a real anisotropy model. The complex anisotropy model and the effective medium approximation (EMA) with two and three components were applied to a set of 12 wafer set with thickness swing aC films in the range of 500-750 Å as well as a second set of 23 pre- and post- etch wafers. The complex anisotropy model clearly has the advantage of best fit the BPR profiles along with the SE Fourier coefficients. The etch rate obtained by the complex anisotropy also showed a much narrower variation as compared with the EMA2 and EMA32 models with the real anisotropy.

  3. Factors influencing the properties of fluoropolymer-based resists for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Taylor, Gary N.; Xu, Cheng-Bai; Teng, Gary; Leonard, JoAnne; Szmanda, Charles R.; Lawrence, William; Nur, Sassan; Brown, Kirk W.; Stephen, Al

    2002-07-01

    This paper describes characterization and lithographic results for one class of low absorbance fluoropolymers that were developed for use in 157 nm lithography. We discuss basic resist properties such as absorbance, hydrophobicity, thickness, resolution and profile for dense 1:1 and semi- dense 1:1.5-10 L/S features, reflection control and plasma etching resistance as a function of composition. Lithographic results were obtained on two types of substrates, silicon and SiON hardmask anti-reflectant. The results on the anti-reflectant were compared to those obtained from simulations using PROLITH. Some of the conclusions of this investigation are: Lower absorbance resists have higher hydrophobicity and better resolution; Resists with high hydrophobicity have very poor adhesion on SiOn, but have very good adhesion on Si and organic anti-reflectants; Only inorganic anti-reflectants have sufficient absorption to provide very low reflectance in <30nm thick films; 100 nm 1:1 L/S resolution is attained in 205 nm thick resist on Si at a resist absorption of 2.2/micrometers . The profile is tapered due to absorption; Adhesion to SiON has been achieved by polymer modification.

  4. Comparison of ArF bilayer resists for sub-90 nm L/S fabrication

    NASA Astrophysics Data System (ADS)

    Hong, Jin; Kim, Hyun-Woo; Lee, Sung-Ho; Woo, Sang-Gyun; Cho, Han-Ku; Han, Woo-Sung

    2003-06-01

    The advent of 193nm ArF lithography opened new era of sub-90nm patterning in DRAM industry. ArF lithography in single layer scheme, however, has limitation in the substrate fabrication of sub-90nm L/S due to the decreased physical thickness of resist less that 3000Å and soft chemical structure of resist. Bilayer scheme, composed of Si-containing top PR and thick organic bottom layer, is gaining attention for its capability of patterning and control of resist thickness as a substitute for single layer. Several resists were evaluated for bilayer process in terms of photo patterning, dry development, bottom PR durability and SEM shrinkage. Resolution down to 80nm was achieved with Si content in the range of 8-9%. Etch selectivity in the dry development was a strong function of Si content and chemical structure of tope PR with pitch size dependence based on O2/N2 gas chemistry in dual frequency plasma tool. Profile control after dry development was subject to change depending on the gas ration (O2/N2) and power. Resist structure was proved to be a key factor in bottom PR durability at the substrate etch condition. Best combination of top and bottom resists in bilayer scheme will be discussed.

  5. Surface-initiated polymerizations on initiator anchored substrates: Synthesis and characterization of nanometer thick functional polymer films

    NASA Astrophysics Data System (ADS)

    Bao, Zhiyi

    We describe the surface-initiated ring-opening polymerization (ROP) of lactide from poly(2-hydroxyethyl methacrylate) (PHEMA) brushes anchored to Au substrates. The resulting comb polymers have a "bottle brush" architecture. During hydrolytic degradation of PLA in pH 7.4 buffer at 55°C, large, highly symmetric domains (˜50-100 mum) unexpectedly formed. The purpose of the research described in this chapter was to devise a model that describes their formation. Control experiments during degradation study link high lactide polymerization temperature to the formation of the defects. A likely mechanism is the scission of Au-S bonds at high temperatures, causing defects that swell when placed in the buffer solution. We demonstrated enhanced control over polymer brushes through variation of the areal density of the immobilized initiators used for their growth. Reaction of mercaptoundecanol monolayers on Au with both an acyl bromide initiator and a structurally similar acyl bromide diluent yields monolayers whose composition reflects the ratio of the acyl bromides in solution. Similarly, derivatization of SiO2 with an initiator and a diluent monochlorosilane also affords control over initiator density. The thickness of polymer films grown from these modified substrates drop dramatically when the fractional coverage of the surface by initiator decreases below 10% of a monolayer because the area per polymer chain increases. However, reduced termination at low initiator coverage results in substantial increases in initiator efficiency as measured by film growth rates normalized by the fractional coverage of the surface by initiator. Variation of chain density also affords control over film swelling. PHEMA films prepared with 0.1% initiator densities swell 20-fold more in water than films grown from monolayers containing only initiators. Such control should prove valuable in the use of brushes for immobilization of active, accessible biomacromolecules such as single

  6. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.

    PubMed

    Vanderkooy, Alan; Chen, Yang; Gonzaga, Ferdinand; Brook, Michael A

    2011-10-01

    Differences in the wavelengths of the surface plasmon band of gold nanoparticles (AuNP)--before and after particle aggregation--are widely used in bioanalytical assays. However, the gold surfaces in such bioassays can suffer from exchange and desorption of noncovalently bound ligands and from nonspecific adsorption of biomolecules. Silica shells on the surfaces of the gold can extend the available surface chemistries for bioconjugation and potentially avoid these issues. Therefore, silica was grown on gold surfaces using either hydrolysis/condensation of tetraethyl orthosilicate 1 under basic conditions or diglyceroxysilane 2 at neutral pH. The former precursor permitted slow, controlled growth of shells from about 1.7 to 4.3 nm thickness. By contrast, 3-4 nm thick silica shells formed within an hour using diglyceroxysilane; thinner or thicker shells were not readily available. Within the range of shell thicknesses synthesized, the presence of a silica shell on the gold nanoparticle did not significantly affect the absorbance maximum (~5 nm) of unaggregated particles. However, the change in absorbance wavelength upon aggregation of the particles was highly dependent on the thickness of the shell. With silica shells coating the AuNP, there was a significant decrease in the absorbance maximum of the aggregated particles, from ~578 to ~536 nm, as the shell thicknesses increased from ~1.7 to ~4.3 nm, because of increased distance between adjacent gold cores. These studies provide guidance for the development of colorimetric assays using silica-coated AuNP.

  7. Synthesis of fluorinated materials for 193-nm immersion lithography and 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Ishikawa, T.; Yoshida, T.; Hayamai, T.; Araki, Takayuki; Aoyama, H.; Hagiwara, T.; Itani, Toshiro; Fujii, Kiyoshi

    2005-05-01

    Various fluorinated polymers were synthesized for application in 193-nm immersion lithography with the goal of improving 157-nm photoresist performance. Their fundamental properties were characterized, such as transparency at 193-nm and 157-nm (wavelength) and solubility in water and a standard alkaline developer. High transparency, i.e., absorbance better than 0.3 μm-1 at 193-nm wavelength, was achieved. The dissolution behaviors of them were studied by using the Quartz Crystal Microbalance (QCM) method. We find that the dissolution rate of Poly(norbornene-2-fluoro-2-hexafluoroalchol) (PNB1FVIP) in 0.065N tetramethylammonium hydroxide (TMAH) was >200 times (nm/s) faster than that of the copolymer of tetrafluoroethylene (TFE) and norbornene-2-fluoro-2-hexafluoroalchol (TFE/NB1FVIP). A resist based on TFE/NB1FVIP was able to delineate 75 nm dense lines by exposure at 193-nm (wavelength) with an alternating phase shift mask using a 0.75 NA ArF scanner. The dissolution rates of the fluoropolymers in water and a 0.262N and 0.065 TMAH can be controlled by optimizing counter monomers containing hexafluoroisopropanol (HFA) unit, carboxylic acid unit and so on. In addition, we have collect water contact angle data. This data shows that fluoropolymers can be used as resist cover materials for 193-nm immersion lithography.

  8. Thickness dependence on thermal stability of sputtered Ag nanolayer on Ti/Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Akhavan, O.; Moshfegh, A. Z.

    2007-11-01

    Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N 2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2 θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.

  9. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  10. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  11. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  12. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; ...

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  13. The 503nm pigment of Escherichia coli

    PubMed Central

    Kamitakahara, Joyce R.; Polglase, W. J.

    1970-01-01

    The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH. PMID:4395501

  14. Lonsdaleite Films with Nanometer Thickness.

    PubMed

    Kvashnin, Alexander G; Sorokin, Pavel B

    2014-02-06

    We investigate the properties of potentially the stiffest quasi-2-D films with lonsdaleite structure. Using a combination of ab initio and empirical potential approaches, we analyze the elastic properties of lonsdaleite films in both elastic and inelastic regimes and compare them with graphene and diamond films. We review possible fabrication methods of lonsdaleite films using the pure nanoscale "bottom-up" paradigm: by connecting carbon layers in multilayered graphene. We propose the realization of this method in two ways: by applying direct pressure and by using the recently proposed chemically induced phase transition. For both cases, we construct the phase diagrams depending on temperature, pressure, and film thickness. Finally, we consider the electronic properties of lonsdaleite films and establish the nonlinear dependence of the band gap on the films' thicknesses and their lower effective masses in comparison with bulk crystal.

  15. Measurement of opaque film thickness

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Jaarinen, J.; Reyes, C.; Oppenheim, I. C.; Favro, L. D.; Kuo, P. K.

    1987-01-01

    The theoretical and experimental framework for thickness measurements of thin metal films by low frequency thermal waves is described. Although it is assumed that the films are opaque and the substrates are comparatively poor thermal conductors, the theory is easily extended to other cases of technological interest. A brief description is given of the thermal waves and the experimental arrangement and parameters. The usefulness of the technique is illustrated for making absolute measurements of the thermal diffusivities of isotropic substrate materials. This measurement on pure elemental solids provides a check on the three dimensional theory in the limiting case of zero film thickness. The theoretical framework is then presented, along with numerical calculations and corresponding experimental results for the case of copper films on a glass substrate.

  16. Minimum thickness anterior porcelain restorations.

    PubMed

    Radz, Gary M

    2011-04-01

    Porcelain laminate veneers (PLVs) provide the dentist and the patient with an opportunity to enhance the patient's smile in a minimally to virtually noninvasive manner. Today's PLV demonstrates excellent clinical performance and as materials and techniques have evolved, the PLV has become one of the most predictable, most esthetic, and least invasive modalities of treatment. This article explores the latest porcelain materials and their use in minimum thickness restoration.

  17. Central Corneal Thickness in Children

    PubMed Central

    2011-01-01

    Objective To report the central corneal thickness (CCT) in healthy white, African-American, and Hispanic children from birth to 17 years of age. Design Prospective observational multicenter study. Central corneal thickness was measured with a hand-held contact pachymeter. Results Two thousand seventy-nine children were included in the study, with ages ranging from day of birth to 17 years. Included were 807 white, 494 Hispanic, and 474 African-American individuals, in addition to Asian, unknown and mixed race individuals. African-American children had thinner corneas on average than that of both white (p< .001) and Hispanic children (p< .001) by approximately 20 micrometers. Thicker median CCT was observed with each successive year of age from age 1 to 11 years, with year-to-year differences steadily decreasing and reaching a plateau after age 11 at 573 micrometers in white and Hispanic children and 551 micrometers in African-American children. For every 100 micrometers of thicker CCT measured, the intraocular pressure was 1.5 mmHg higher on average (p< 0.001). For every diopter of increased myopic refractive error (p< 0.001) CCT was 1 micrometer thinner on average. Conclusions Median CCT increases with age from 1 to 11 years with the greatest increase present in the youngest age groups. African-American children on average have thinner central corneas than white and Hispanic children, while white and Hispanic children demonstrate similar central corneal thickness. PMID:21911662

  18. Thickness of western mare basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.

    1979-01-01

    An isopach map of the basalt thickness in the western mare basins is constructed from measurements of the exposed external rim height of partially buried craters. The data, although numerically sparse, is sufficiently distributed to yield gross thickness variations. The average basalt thickness in Oceanus Procellarum and adjacent regions is 400 m with local lenses in excess of 1500 m in the circular maria. The total volume of basalt in the western maria is estimated to be in the range of 1.5 x 10 to the 6th power cu km. The chief distinction between the eastern and western maria appears to be one of basalt volumes erupted to the surface. Maximum volumes of basalt are deposited west of the central highlands and flood subjacent terrain to a greater extent than on the east. The surface structures of the western maria reflect the probability of a greater degree of isostatic response to a larger surface loading by the greater accumulation of mare basalt.

  19. Measuring Rind Thickness on Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Miller, J.; Brown, H.

    1985-01-01

    Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.

  20. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  1. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  2. Investigation of electron beam stabilization of 193-nm photoresists

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Park, Jong-Woon; Kim, Hak-Joon; Jun, Bum-Jin; Gil, Myung-Goon; Kim, Bong-Ho; Ross, Matthew F.; Livesay, William R.

    2001-08-01

    193nm lithography is a promising candidate for the fabrication of microelectronic devices at the 130nm design rule and below. With smaller feature sizes, below 130nm, reduced resist thickness is essential because of the pattern collapse issues at high aspect ratios and the limited depth of focus with 193nm lithography tools. However, ArF resists have shown problems with etch selectivity, especially with the thin resist layers necessary. Additionally, pattern slimming during CD-SEM measurement, due to the nature of the resist chemistry, is an issue with feature stability after patterning. At present, many studies have been performed for improving the etch selectivity of resists and addressing line slimming issues. In this study, the electron beam stabilization process has been applied for improving the etch selectivity of resist patterns having an aspect ratio less than 3.0. The electron beam stabilization has been applied to two different ArF resist types; acrylate and cyclic-olefin- maleic-anhydride (COMA), which have been evaluated with respect to materials properties, etch selectivity, and line slimming performance as a function of electron beam dose and etch condition. Film shrinkage and the change in index of refraction were monitored as a function of stabilization condition. The chemical properties were characterized before and after electron beam stabilization using FTIR analysis. Blanket resist etch rate studies were performed as a function of stabilization condition for each resist type. Cross- sectional views of resist patterns after etch processing were also investigated to evaluate the improvement in etch resistance provided by the electron beam process. CD SEM measurements were performed to evaluate the impact of the stabilization process on the patterned features. The issue of line slimming has also been evaluated, with and without electron beam stabilization, for the different ArF resist materials considered. The results were compared with a Kr

  3. Efficient 1645-nm Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Young, York E.; Setzler, Scott D.; Snell, Kevin J.; Budni, Peter A.; Pollak, Thomas M.; Chicklis, E. P.

    2004-05-01

    We report a resonantly fiber-laser-pumped Er:YAG laser operating at the eye-safe wavelength of 1645 nm, exhibiting 43% optical efficiency and 54% incident slope efficiency and emitting 7-W average power when repetitively Q switched at 10 kHz. To our knowledge, this is the best performance (conversion efficiency and average power) obtained from a bulk solid-state Q-switched erbium laser. At a 1.1-kHz pulse repetition frequency the laser produces 3.4-mJ pulses with a corresponding peak power of 162 kW. Frequency doubling to produce 822.5-nm, 4.7-kW pulses at 10 kHz was performed to demonstrate the laser's utility.

  4. DNA Charge Transport over 34 nm

    PubMed Central

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation that is accessible to protein binding. Similar electron transfer rates are measured through 100-mer and 17-mer monolayers, consistent with rate-limiting electron tunneling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses most reports of molecular wires. PMID:21336329

  5. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  6. Determining mean thickness of the oxide layer by mapping the surface of a silicon sphere.

    PubMed

    Zhang, Jitao; Li, Yan; Wu, Xuejian; Luo, Zhiyong; Wei, Haoyun

    2010-03-29

    To determine Avogadro constant with a relative uncertainty of better than 2 x 10(-8), the mean thickness of the oxide layer grown non-uniformly on the silicon sphere should be determined with about 0.1 nm uncertainty. An effective and flexible mapping strategy is proposed, which is insensitive to the angle resolution of the sphere-rotating mechanism. In this method, a sphere-rotating mechanism is associated with spectroscopic ellipsometer to determine the distribution of the layer, and a weighted mean method based on equal-area projection theory is applied to estimate the mean thickness. The spectroscopic ellipsometer is calibrated by X-ray reflectivity method. Within 12 hours, eight hundred positions on the silicon sphere are measured twice. The mean thickness is determined to be 4.23 nm with an uncertainty of 0.13 nm, which is in the acceptable level for the Avogadro project.

  7. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

    SciTech Connect

    Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

    2014-09-21

    We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 2–27 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

  8. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  9. Binary 193nm photomasks aging phenomenon study

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sartelli, Luca; Pogliani, Carlo; Gough, Stuart; Sundermann, Frank; Miyashita, Hiroyuki; Hidenori, Yoshioka; Charras, Nathalie; Brochard, Christophe; Thivolle, Nicolas

    2011-05-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration [2] [3] . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects [4] [6] under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.

  10. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  11. Unconventional spin distributions in thick Ni80Fe20 nanodisks

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Lupo, P.; Haldar, A.; Adeyeye, A. O.

    2016-05-01

    We study the spin distributions in permalloy (Py: Ni80Fe20) nanodisks as a function of diameter D (300 nm ≤ D ≤ 1 μm) and thickness L (30 nm ≤ L ≤ 100 nm). We observed that beyond a certain thickness, for a fixed disk diameter, an unconventional spin topology precipitates which is marked by the presence of a divergence field within the magnetic vortex curl. The strength of this divergence changes anti-symmetrically from negative to positive—depending on the core polarity—along the axis of the cylindrical nanodisk. This is also accompanied by a skyrmion-like out-of-plane bending of the spin vectors farther away from the disk center. Additionally, the vortex core dilates significantly when compared to its typical size. This has been directly observed using magnetic force microscopy. We determined from the ferromagnetic resonance spectroscopy measurements that the unconventional topology in the thicker nanodisks gyrated at a frequency, which is significantly lower than what is predicted by a magnetic vortex based analytical model. Micromagnetic simulations involving dipolar and exchange interactions appear to satisfactorily reproduce the experimentally observed static and dynamic behaviors. Besides providing a physical example of an unconventional topology, these results can also aid the design of topologically protected memory elements.

  12. 3 Watt CW OPO tunable 604nm to 616nm for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Henderson, Angus; Halfmann, Thomas; Mieth, Simon

    2012-06-01

    A continuous wave optical parametric oscillator (CW OPO) pumped by a fiber laser has been developed which emits up to 3 Watts of single longitudinal mode radiation tunable in the wavelength range 604nm to 616nm. The device is a modified version of the ``Argos'' Model 2400 commercial product by Lockheed Martin Aculight. A 15 Watt 1064nm fiber laser pumps a CW OPO based upon periodically-poled Lithium Niobate (PPLN). A short section of the nonlinear crystal is poled to allow efficient intracavity sum frequency generation (SFG) between the OPO pump and signal wavelengths to generate orange radiation. The device can be coarsely tuned by matching the poling periods and temperature within the nonlinear crystal to phase-match both OPO and SFG processes simultaneously. Fine mode-hop-free tuning of the orange wavelength of up to 100GHz range can be achieved by applying a voltage to a PZT which tunes the pump laser. By similar intracavity conversion schemes, the system offers the potential of providing high power at wavelengths from 600nm to 1400nm in addition to the direct signal and idler wavelength ranges from 1400nm to 4630nm. Such capability comes without the complexity and reliability issues which are inherent in dye and Ti:Sapphire systems. Details of the OPO system performance and its use in quantum optics applications will be provided.

  13. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only

    PubMed Central

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-01-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F2/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer. PMID:27585643

  14. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  15. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only

    NASA Astrophysics Data System (ADS)

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-09-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F2/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer.

  16. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  17. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector

    NASA Astrophysics Data System (ADS)

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-01

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW-1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W-1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.

  18. Effect of spacer layer thickness on magnetic interactions in self-assembled single domain iron nanoparticles

    SciTech Connect

    Herndon, Nichole B; Ho, S; Abiade, J.; Pai, Devdas M.; Sankar, Jag; Pennycook, Stephen J

    2009-01-01

    The magnetic characteristics of iron nanoparticles embedded in an alumina thin film matrix have been studied as a function of spacer layer thickness. Alumina as well as iron nanoparticles were deposited in a multilayered geometry using sequential pulsed laser deposition. The role of spacer layer thickness was investigated by making layered thin film composites with three different spacer layer thicknesses 6, 12, and 18 nm with fixed iron particle size of 13 nm. Intralayer magnetic interactions being the same in each sample, the variation in coercivity and saturation magnetization is attributed to thickness dependent interlayer magnetic interactions of three types: exchange, strong dipolar, and weak dipolar. A thin film composite multilayer structure offers a continuously tunable strength of interparticle dipole-dipole interaction and is thus well suited for studies of the influence of interaction on the magnetic properties of small magnetic particle systems.

  19. Thickness dependence of temperature coefficient of resistivity of polycrystalline bismuth films

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Katyal, O. P.

    1991-04-01

    Results for the temperature coefficient of resistivity (TCR) of polycrystalline bismuth films deposited on to glass substrate are reported for the thickness range 30 300 nm. The film TCR is found to be negative for all thicknesses studied and its absolute value exhibits a maximum of 3.70×10-3 K-1 near 72.5 nm. The variation of charge carrier density with film thickness has been estimated from the presence of surface states. To include the thickness dependence of charge carrier density, a modified theory has been used to explain the observed behaviour of the TCR. The experimental results for the TCR of Bi films are found to be consistent with the theoretical values. The existence of the extremum is theoretically verified. From the analysis, the specularity parameter p is about 0.44 and the reflection coefficient R is 0.1.

  20. Influence of the interface on the magnetic properties of ferromagnetic ultrathin films with various adjacent copper thicknesses

    SciTech Connect

    Zhang, Dong; Jiang, Sheng; Luo, Chen; Wang, Yukun; Rui, Wenbin; Du, Jun; Zhai, Hongru; Zhai, Ya

    2014-05-07

    The interface and magnetic properties of two series of films with Ta(5 nm)/Fe{sub 20}Ni{sub 80}Nd{sub 0.017}(3 nm)/Cu(t nm) and Ta(5 nm)/Cu(t nm)/Fe{sub 50}Co{sub 50}Gd{sub 0.07}(3 nm)/Cu(2 nm) structures have been investigated by atomic force microscopy, vibrating sample magnetometer, and ferromagnetic resonance (FMR). The roughness of all films increases with increasing copper thickness, which causes the different grain sizes in the surface of films. The coercivity of FeCo-Gd films increases with increasing thickness of inserted Cu layer while decreases with increasing thickness of Cu capping layer for FeNi-Nd films. FMR linewidth exhibits huge dependence on the thickness of inserted Cu layer for FeCo-Gd films, increasing from 2270 to 3680 Oe, which comes from the additional contribution of effect of the two-magnon scattering. And the thickness of Cu capping layer shows also an influence on FMR linewidth of FeNi-Nd films, increasing from 190 to 320 Oe, which mainly comes from intrinsic FMR linewidth and plus minor inhomogeneous broadening. All of these extrinsic linewidth broadening are related to the interface roughness.

  1. Influence of the interface on the magnetic properties of ferromagnetic ultrathin films with various adjacent copper thicknesses

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Jiang, Sheng; Luo, Chen; Wang, Yukun; Rui, Wenbin; Zhai, Ya; Du, Jun; Zhai, Hongru

    2014-05-01

    The interface and magnetic properties of two series of films with Ta(5 nm)/Fe20Ni80Nd0.017(3 nm)/Cu(t nm) and Ta(5 nm)/Cu(t nm)/Fe50Co50Gd0.07(3 nm)/Cu(2 nm) structures have been investigated by atomic force microscopy, vibrating sample magnetometer, and ferromagnetic resonance (FMR). The roughness of all films increases with increasing copper thickness, which causes the different grain sizes in the surface of films. The coercivity of FeCo-Gd films increases with increasing thickness of inserted Cu layer while decreases with increasing thickness of Cu capping layer for FeNi-Nd films. FMR linewidth exhibits huge dependence on the thickness of inserted Cu layer for FeCo-Gd films, increasing from 2270 to 3680 Oe, which comes from the additional contribution of effect of the two-magnon scattering. And the thickness of Cu capping layer shows also an influence on FMR linewidth of FeNi-Nd films, increasing from 190 to 320 Oe, which mainly comes from intrinsic FMR linewidth and plus minor inhomogeneous broadening. All of these extrinsic linewidth broadening are related to the interface roughness.

  2. Optical thickness measurement of mask blank glass plate by the excess fraction method using a wavelength-tuning interferometer

    NASA Astrophysics Data System (ADS)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2013-10-01

    The absolute optical thickness of a 140-mm2 mask blank glass plate 3.1 mm thickness was measured by three-surface interferometry using a wavelength-tuning Fizeau interferometer. The interference order was determined by the excess fraction method. The wavelength of a tunable laser diode was scanned linearly from 632 to 642 nm, and a CCD detector recorded 2000 interference images. Two kinds of optical thicknesses measured by discrete Fourier analysis and phase-shifting were synthesized to obtain the optical thickness with respect to the ordinary refractive index. The optical thickness defined by the group refractive index at the 637 nm central wavelength was measured by wavelength scanning. The optical thickness deviation defined by the ordinary refractive index was measured using tunable phase-shifting. The systematic errors caused by nonlinearity in the wavelength tuning were corrected through correlation analysis between the theoretical and observed interference fringes.

  3. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    SciTech Connect

    Schrider, Keegan J.; Yalisove, Steven M.; Torralva, Ben

    2015-09-21

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  4. Asymmetric, nonbroadened waveguide structures for double QW high-power 808nm diode laser

    NASA Astrophysics Data System (ADS)

    Abbasi, S. P.; Mahdieh, M. H.

    2017-01-01

    In this paper, we propose an asymmetric epitaxial layer structre for designing 808nm diode laser. In this asymmetric sructure, the p-waveguide is reduced in thickness and the p-cladding is doped for increasing the thermal conductivity and consequently better heat extraction. The main purpose of using such design is enhancing the laser gain by reduction of loss in laser cavity, and reduction of electrical and thermal resistivity of the diode laser.

  5. Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Satchell, N.; Witt, J. D. S.; Burnell, G.; Curran, P. J.; Kinane, C. J.; Charlton, T. R.; Langridge, S.; Cooper, J. F. K.

    2017-02-01

    We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film’s local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures.

  6. Dielectric-thickness dependence of damage induced by electron-beam irradiation of MNOS gate pattern

    NASA Astrophysics Data System (ADS)

    Matsui, Miyako; Mine, Toshiyuki; Hozawa, Kazuyuki; Watanabe, Kikuo; Inoue, Jiro; Nagaishi, Hiroshi

    2007-03-01

    We analyzed the electron-irradiation damage induced by electron-beam inspection of MNOS capacitors with various gate-dielectric thicknesses. Damage induced in a MNOS capacitor with SiON dielectric for high-performance CMOS devices was compared with that induced on a MOS capacitor with SiO II dielectric. We found that there is no remarkable difference between the damage to MOS capacitors and that to MNOS capacitors. The induced damage strongly depends on the thickness of the gate dielectric. Damages were induced when a higher-energy electron-beam, whose electron range was larger than the thickness of the gate electrode, was irradiated. When the electron beam was irradiated to a MOS capacitor with gate-dielectric thickness of 10.0 nm the flat-band-voltage shifted due to the created traps. When the electron beam was scanned to a MOS or MNOS capacitor with gate-dielectric thickness of 4.0 nm, Vfb shifted by less than 6 mV. However, the leakage-current density increased to 10 -7 A/cm2 at gate-electrode voltage of 3.0 V. On the other hand, when the electron beam was scanned on a MNOS capacitor with 2.5-nm-thick SiON dielectric, even the leakage current density was not increased. Accordingly, for damage-free inspection when gate-dielectric thickness is 4.0 nm or more, the electron-beam energy should be lower so that the electron range is smaller than the thickness of the gate electrode.

  7. Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-04-01

    Submicron dimensions, nanoscale crystalline structure, and fabrication mechanisms of microcones on silver films of variable (50-380 nm) thickness deposited onto glass substrates by single strongly focused femtosecond laser pulses of different fluences are experimentally studied using scanning electron microscopy. Fabrication mechanisms for nanoholes and microcones are discussed for films of the different thickness, as well as the extraordinary shapes of their constituent nanocrystallites, strongly elongated along the melt flow direction in thin films.

  8. Preparation and characterisation of novel thick sol-gel titania film photocatalysts.

    PubMed

    Mills, Andrew; Elliott, Nicholas; Hill, George; Fallis, David; Durrant, James R; Willis, Richard L

    2003-05-01

    The preparation and characterization of thick (9 microns), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003, using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.

  9. Thickness-dependent glass transition temperature and charge mobility in cross-linked polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Qin, Hui; Zhang, Jinghui; Wang, Tao

    2016-11-01

    We report thickness-dependent glass transition temperature (Tg) and charge mobility in cross-linked thin films made of conjugated polymer poly(9,9-dioctylfluorene-co-N -(4-butylphenyl)diphenylamine) (TFB). Monotonic Tg depressions with reducing film thickness in thermally and UV cross-linked TFB thin films supported on Si-SiOx substrates are observed through ellipsometry measurements, suggesting that a surface mobile layer with enhanced chain dynamics still exists in cross-linked TFB thin films, even with a high cross-linking percentage. Data fitting using a three-layer model shows that the Tg in the interface, bulk and surface layer both increases with increasing cross-linking, while the thickness of the interface and surface layer increases and reduces, respectively. Cross-linking of TFB thin film generates traps that hinder charge transport and consequently reduce charge mobility. The charge mobility converges in thick (>140 nm) and thin (<40 nm) TFB films but shows strong thickness dependence in between, reducing from 4.0 ×10-4c m2/V s in a 180-nm film to 0.1 ×10-4c m2/V s in a 20-nm thin film.

  10. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-07-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  11. Contactless thickness measurement of micromachined silicon sensors with transmitted infrared light

    NASA Astrophysics Data System (ADS)

    Samek, Norbert E.

    Relative transmission of infrared light has been used to measure thickness of micromachined silicon diaphragm sensors. The transmission was measured on an infrared microscope equipped with a water cooled illuminator and with 800 nm and 900 nm narrow band pass filters. Calibration tests were made by plotting the output of a photodetector on a 0 to 100 scale against the thickness of the sensors measured with an electronic dial gage. The results are compared against theoretical relative transmission curves. Factors affecting accuracy and the measuring error band are discussed.

  12. 75 FR 81437 - Amendment of Class E Airspace; Taos, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Taos, NM. Decommissioning of the Ski non-directional beacon (NDB) at Taos Regional Airport, Taos, NM... Taos, NM area. Decommissioning of the Ski NDB and cancellation of the NDB approach at Taos...

  13. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  14. Yb fiber amplifier at 972.5 nm with frequency quadrupling to 243.1 nm

    NASA Astrophysics Data System (ADS)

    Burkley, Z.; Rasor, C.; Cooper, S. F.; Brandt, A. D.; Yost, D. C.

    2017-01-01

    We demonstrate a continuous-wave ytterbium-doped fiber amplifier which produces 6.3 W at a wavelength of 972.5 nm. We frequency-quadruple this source in two resonant doubling stages to generate 530 mW at 243.1 nm. Radiation at this wavelength is required to excite the 1S-2S transition in atomic hydrogen and could therefore find application in experimental studies of hydrogen and anti-hydrogen.

  15. 248nm silicon photoablation: Microstructuring basics

    NASA Astrophysics Data System (ADS)

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-01

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  16. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  17. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  18. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; Lorenzon, W.

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  19. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation

    NASA Astrophysics Data System (ADS)

    Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun

    2017-03-01

    The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.

  20. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  1. Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm

    NASA Astrophysics Data System (ADS)

    Chai, Xiangxu; Zhu, Qihua; Feng, Bin; Li, Fuquan; Feng, Xi; Wang, Fang; Han, Wei; Wang, Liquan

    2017-02-01

    At the wavelength of 263 nm and 351 nm, the nonlinear absorption curves of 66% deuterated DKDP crystal were measured in the geometries of beam polarizing along the optics axis (E∥Z) and perpendicular to it (E⊥Z). The results indicate that the nonlinear absorption in the E⊥Z geometry is stronger than that in the E∥Z geometry. The nonlinear absorptions at 263 nm and 351 nm are identified to two- and three-photon absorption, respectively. The theoretical fits to the experimental data yields the two-photon absorption coefficients of 0.32 ± 0.03 cm/GW (E⊥Z geometry) and 0.17 ± 0.02 cm/GW (E∥Z geometry) at 263 nm, and the three-photon absorption coefficients of (8.1 ± 1.1) × 10-4 cm3/GW2 (E⊥Z geometry) and (2.2 ± 0.5) × 10-4 cm3/GW2 (E∥Z geometry) at 351 nm.

  2. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  3. Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists

    SciTech Connect

    Pargon, E.; Menguelti, K.; Martin, M.; Bazin, A.; Joubert, O.; Lill, T.

    2009-05-01

    In this article, we have performed detailed investigations of the 193 nm photoresist transformations after exposure to the so-called HBr and Ar plasma cure treatments using various characterization techniques (x-ray photoelectron spectroscopy, Fourier transformed infrared, Raman analyses, and ellipsometry). By using windows with different cutoff wavelengths patched on the photoresist film, the role of the plasma vacuum ultraviolet (VUV) light on the resist modifications is clearly outlined and distinguished from the role of radicals and ions from the plasma. The analyses reveal that both plasma cure treatments induce severe surface and bulk chemical modifications of the resist films. The synergistic effects of low energetic ion bombardment and VUV plasma light lead to surface graphitization or cross-linking (on the order of 10 nm), while the plasma VUV light (110-210 nm) is clearly identified as being responsible for ester and lactone group removal from the resist bulk. As the resist modification depth depends strongly on the wavelength penetration into the material, it is found that HBr plasma cure that emits near 160-170 nm can chemically modify the photoresist through its entire thickness (240 nm), while the impact of Ar plasmas emitting near 100 nm is more limited. In the case of HBr cure treatment, Raman and ellipsometry analyses reveal the formation of sp{sup 2} carbon atoms in the resist bulk, certainly thanks to hydrogen diffusion through the resist film assisted by the VUV plasma light.

  4. Sub-100-nm trackwidth development by e-beam lithography for advanced magnetic recording heads

    NASA Astrophysics Data System (ADS)

    Chang, Jei-Wei; Chen, Chao-Peng

    2006-03-01

    Although semiconductor industry ramps the products with 90 nm much quicker than anticipated [1], magnetic recording head manufacturers still have difficulties in producing sub-100 nm read/write trackwidth. Patterning for high-aspectratio writer requires much higher depth of focus (DOF) than most advanced optical lithography, including immersion technique developed recently [2]. Self-aligning reader with its stabilized bias requires a bi-layer lift-off structure where the underlayer is narrower than the top image layer. As the reader's trackwidth is below 100nm, the underlayer becomes very difficult to control. Among available approaches, e-beam lithography remains the most promising one to overcome the challenge of progressive miniaturization. In this communication, the authors discussed several approaches using ebeam lithography to achieve sub-100 nm read/write trackwidth. Our studies indicated the suspended resist bridge design can not only widen the process window for lift-off process but also makes 65 nm trackwidth feasible to manufacture. Necked dog-bone structure seems to be the best design in this application due to less proximity effects from adjacent structures and minimum blockages for ion beam etching. The trackwidth smaller than 65 nm can be fabricated via the combination of e-beam lithography with auxiliary slimming and/or trimming. However, deposit overspray through undercut becomes dominated in such a small dimension. To minimize the overspray, the effects of underlayer thickness need to be further studied.

  5. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  6. The art of photomask materials for low-k1-193nm lithography

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masahiro; Iwashita, Hiroyuki; Mitsui, Hideaki

    2009-04-01

    The resolution of photomask patterns were improved with a hardmask (HM) system. The system which is thin Sicompounds layer is easily etched by the hyper-thin resist (below 100nm thickness). The HM material has sufficient etching selectivity against the chrome-compounds which is the second layer chrome absorber for the phase-shifter. This hardmask layer has been completely removed during the phase-shifter etching. It means that the conventional phase-shit mask (PSM) has been made with the ultimately high-resolution without configuration changes. Below 50nm resolution of PSM was made with 90nm thickness resist on HM layer in this paper. The CD bias between a resist feature CD and a chrome feature CD was almost zero (below 1nm) in the optimized etching condition. We confirmed that the mask performances were the equal to COMS (Cr-HM on MoSi binary mask) in resolution and CD linearity. The performances of hardmask blanks will be defined by resist performance because of almost zero bias.

  7. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  8. Self-limited self-perfection by liquefaction for sub-20 nm trench/line fabrication.

    PubMed

    Liang, Yixing; Murphy, Patrick; Li, Wen-Di; Chou, Stephen Y

    2009-11-18

    We proposed and demonstrated a new approach to pressed self-perfection by liquefaction (P-SPEL), where a layer of SiO2 is used as a stopper on one sidewall of gratings, to self-limit the final trench width in P-SPEL to a preset stopper layer thickness, allowing a precise control of the final trench width without the need to control any pressing parameters such as pressure, temperature and the gap between the pressing plate and the substrate. We achieved 20 nm wide trenches from a 90 nm original width, reducing the original trench by 450%. We also observed improvement in the trench width uniformity. Using the fabricated resist trenches as templates, 20 nm metal lines were achieved by lift-off.

  9. Development of an inorganic nanoparticle photoresist for EUV, e-beam, and 193nm lithography

    NASA Astrophysics Data System (ADS)

    Krysak, Marie; Trikeriotis, Markos; Schwartz, Evan; Lafferty, Neal; Xie, Peng; Smith, Bruce; Zimmerman, Paul; Montgomery, Warren; Giannelis, Emmanuel; Ober, Christopher K.

    2011-04-01

    We have developed a transparent, high refractive index inorganic photoresist with significantly higher etch resistance than even the most robust polymeric resist. As feature sizes continue to decrease, film thickness must be reduced in order to prevent pattern collapse. Normally thinner films prevent sufficient pattern transfer during the etch process, creating the need for a hardmask, thus increasing production cost. Compared to PHOST, we have shown over 10 times better etch resistance. Organic photo-crosslinkable ligands have been attached to a hafnium oxide nanoparticle core to create an imageable photoresist. This resist has shown superior resolution with both E-beam and 193 nm lithography, producing sub-50 nm patterns. In addition to improved etch resistance, the inorganic photoresist exhibits a high refractive index, increasing the depth of focus (DOF). The nanoparticle size of ~ 1-2 nm has the potential to reduce line edge roughness (LER).

  10. Formation of 300 nm period pore arrays by laser interference lithography and electrochemical etching

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kleimann, P.; Laffite, G.; Jamois, C.; Orobtchouk, R.

    2015-02-01

    This paper highlights that combining laser interference lithography and electrochemical etching is a cost-effective, efficient method to realize periodic nanopore arrays in silicon with lattice pitch as small as 300 nm on centimeter-scale substrates. The fabrication of wide-area and high aspect ratio 2D pore arrays with 250 nm diameter and 5 μm depth is demonstrated. All the steps of the process have been optimized to achieve vertical sidewalls with 50 nm thickness, providing pore arrays with aspect ratio of 100 on n-type silicon substrates over an area of 2 × 2 cm2. These results constitute a technological advance in the realization of ordered pore arrays in silicon with very small lattice parameters, with impact in biotechnology, energy harvesting, or sensors.

  11. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  12. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    NASA Astrophysics Data System (ADS)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  13. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  14. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  15. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  16. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    SciTech Connect

    Kaiju, H. Kasa, H.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.; Komine, T.

    2015-05-07

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96–1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10–20 nm can be expected to function as spin-filter devices.

  17. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Khan, M. A. Majeed; Khan, Wasi

    2016-08-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap ( E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  18. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    PubMed

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  19. Effective method to study the thickness-dependent dielectric functions of nanometal thin film.

    PubMed

    Hu, Er-Tao; Cai, Qing-Yuan; Zhang, Rong-Jun; Wei, Yan-Feng; Zhou, Wen-Chao; Wang, Song-You; Zheng, Yu-Xiang; Wei, Wei; Chen, Liang-Yao

    2016-11-01

    A new method for measuring the dielectric functions change with the thickness of nanometal thin films was proposed. To confirm the accuracy and reliability of the method, a nano-thin wedge-shaped gold (Au) film with continuously varied thicknesses was designed and prepared on K9 glass by direct-current-sputtering (DC-sputtering). The thicknesses and the dielectric functions in the wavelength range of 300-1100 nm of the nano-thin Au films were obtained by fitting the ellipsometric parameters with the Drude and critical points model. Results show that while the real part of the dielectric function (ϵ1) changes marginally with increasing film thickness, the imaginary part (ϵ2) decreases drastically with the film thickness, approaching a stable value when the film thickness increases up to about 42 nm. This method is particularly useful in the study of thickness-dependent optical properties of nano-thin film.

  20. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  1. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  2. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  3. 808-nm diode lasers with and without exogenous chromophore in the treatment of benign facial pigmented and vascular lesions

    NASA Astrophysics Data System (ADS)

    Marangoni, Ovidio; Magaton Rizzi, G.; Trevisan, G.

    2001-10-01

    Aim: To evaluate the safety and efficacy of an 808 nm diode laser for the treatment of benign facial pigmented and vascular lesions, with and without the use of an exogenous chromophore. Method: Thirty-eight patients were treated with an 808 nm diode laser (Eufoton, Italy), in some cases using a chromophore (1% methylene blue, SALF, Bergamo). Pigmented lesions: 21 patients, (15 pigmented keratoses, 6 melanoses). All the lesions were evaluated by dermatoscopy (Videocap 200, DS Medica, Italy) before the treatment. Fluence levels were 10 - 30 J/cmq; pulse lengths were 10 - 50 ms; spot size was 2 mm. Five hypopigmented keratoses were artificially pigmented using exogenous chromophore. Two melanoses required an additional laser session. Vascular lesions: 17 patients, (12 small angiomas, 5 teleangectasias). Fluences were 50 - 100 J/cmq; pulse lengths were 10 - 50 ms; spot size was 2 mm. Eight angiomas were pigmented with exogenous chromophore prior to the treatment. In all cases the areas surrounding the lesions were cooled. The patients were followed at 1, 4 and 8 weeks after the procedure. Results: The keratoses healed completely within two weeks. Four melanoses healed after four weeks. In the two melanoses that were re-treated after eight weeks there remained slight hypopigmentation of the area. All the vascular lesions healed after 15 days without any residual scarring. Considerations: The use of the 808 nm diode laser in the treatment of benign facial pigmented and vascular lesions appears to be justified on the grounds of efficacy and safety of the device, and good degree of acceptance by the patients. By increasing absorption of the 808 nm beam and reducing its penetration, the pigmentation of superficial lesions with exogenous chromophore allowed us to decrease fluences and reduce irradiation times.

  4. Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Du, Qingguo; Peng, Bo; Xiong, Qihua; Hong, Lei; Demir, Hilmi Volkan; Wong, Terence K. S.; Ko Kyaw, Aung Ko; Sun, Xiao Wei

    2014-09-01

    Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm.

  5. High thickness acrylamide photopolymer for peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Fernández, E.; Márquez, A.; Gallego, S.; Neipp, C.; Pascual, I.

    2006-05-01

    The acrylamide photolymers are considered interesting materials for holographic media. They have high diffraction efficiency (ratio of the intensities of the diffracted and the incident beams), an intermediate energetic sensitivity among other materials and post-processing steps are not necessary, therefore the media is not altered. The layers of these materials, about 1 mm thick, are a suitable media for recording many diffraction gratings in the same volume of photopolymer using peristrophic multiplexing technique, with great practical importance in the field of holographic memories type WORM (write once read many). In this work we study the recording of diffraction gratings by peristrophic multiplexing with axis of rotation perpendicular to the recording media. The photopolymer is composed of acrylamide as the polymerizable monomer, triethanolamine as radical generator, yellowish eosin as sensitizer and a binder of polyvinyl alcohol. We analyze the holographic behaviour of the material during recording and reconstruction of diffraction gratings using a continuous Nd:YAG laser (532 nm) at an intensity of 5 mW/cm2 as recording laser. The response of the material is monitored after recording with an He-Ne laser. We study the recording process of unslanted diffraction gratings of 1125 lines/mm. The diffraction efficiency of each hologram is seen to decrease as the number of holograms recorded increases, due to consumption of the available dynamic range, in a constant exposure scheduling. It can be seen that the photopolymer works well with high energy levels, without excessive dispersion of light by noise gratings. In order to homogenize the diffraction efficiency of each hologram we use the method proposed by Pu. This method is designed to share all or part of the avaliable dynamic range of the recording material among the holograms to be multiplexed. Using exposure schedules derived from this method we have used 3 scheduling recordings from the algorithm used

  6. Design and laser damage properties of a dichroic beam combiner coating for 22.5° incidence and S polarization with high-transmission at 527nm and high-reflection at 1054nm

    NASA Astrophysics Data System (ADS)

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

    2015-11-01

    We have designed a dichroic beam combiner coating consisting of 11 HfO2/SiO2 layer pairs deposited on a large fused silica substrate. The coating provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for light at 22.5° angle of incidence (AOI) in air in S polarization (Spol). The coating's design is based on layers of near half-wave optical thickness in the design space for stable HT at 527 nm, with layer modifications that provide HR at 1054 nm while preserving HT at 527 nm. Its implementation in the 527 nm/1054 nm dual wavelength beam combiner arrangement has two options, with each option requiring one or the other of the high intensity beams to be incident on the dichroic coating from within the substrate (from glass). We show that there are differences between the two options with respect to the laser-induced damage threshold (LIDT) properties of the coating, and analyze the differences in terms of the 527 nm and 1054 nm E-field intensity behaviors for air --> coating and glass --> coating incidence. Our E-field analysis indicates that LIDTs for air --> coating incidence should be higher than for glass --> coating incidence. LIDT measurements for Spol at the use AOI with ns pulses at 532 nm and 1064 nm confirm this analysis with the LIDTs for glass --> coating incidence being about half those for air --> coating incidence at both wavelengths. These LIDT results and the E-field analysis clearly indicate that the best beam combiner option is the one for which the high intensity 527 nm beam is incident on the coating from air and the 1054 nm high intensity beam is incident on the coating from glass.

  7. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  8. Microscope illumination systems for 157 nm

    NASA Astrophysics Data System (ADS)

    Pesch, Alexander; Uhlendorf, Kristina; Deparnay, Arnaud; Erdmann, Lars; Kuschnerus, Peter; Engel, Thomas; Brunner, Robert

    2003-05-01

    The image quality of an inspection microscope depends strongly on the performance of the illumination system. Especially in the case of laser-based illumination it is necessary to transform the original beam profile into a homogeneous light spot with a flat top field distribution. Simultaneously, speckles caused by the coherence of the laser have to be reduced. Here we discuss different ways to homogenize the multi mode beam profile of a pulsed compact 157 nm excimer laser. A variety of setups, combining dynamic acting diffusers, microlens arrays and primary lenses were realized and characterized in several geometrical arrangements. The homogenizers were evaluated and characterized especially with respect to the statistical behavior on the integrated pulse number.

  9. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    PubMed

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices.

  10. Pavement thickness evaluation using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Harris, Dwayne Arthur

    Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement management and design. Much of the time this information is missing, out of date, or unknown for highway sections. Current technologies for determining pavement thickness are core drilling, falling weight deflectometer (FWD), and ground penetrating radar (GPR). Core drilling provides very accurate pin point pavement thickness information; however, it is also time consuming, labor intensive, intrusive to traffic, destructive, and limited in coverage. FWD provides nondestructive estimates of both a surface thickness and total pavement structure thickness, including pavement, base and sub-base. On the other hand, FWD is intrusive to traffic and affected by the limitations and assumptions the method used to estimate thickness. GPR provides pavement surface course thickness estimates with excellent data coverage at highway speed. Yet, disadvantages include the pavement thickness estimation being affected by the electrical properties of the pavement, limitations of the system utilized, and heavy post processing of the data. Nevertheless, GPR has been successfully utilized by a number of departments of transportation (DOTs) for pavement thickness evaluation. This research presents the GPR thickness evaluation methods, develops GPRPAVZ the software used to implement the methodologies, and addresses the quality of GPR pavement thickness evaluation.

  11. Peripapillary choroidal thickness in healthy Chinese subjects

    PubMed Central

    2013-01-01

    Background To evaluate the peripapillary choroidal thickness of a healthy Chinese population, and to determine its influencing factors. Methods A total of 76 healthy volunteers (76 eyes) without ophthalmic or systemic symptoms were enrolled. Choroidal scans (360-degree 3.4 mm diameter peripapillary circle scans) were obtained for all eyes using enhanced depth imaging spectral-domain optical coherence tomography. Choroid thickness was measured at the temporal, superotemporal, superior, superonasal, nasal, inferonasal, inferior, and inferotemporal segments. Results The average peripapillary choroidal thicknesses were 165.03 ± 40.37 μm. Inferonasal, inferior, and inferotemporal thicknesses were significantly thinner than temporal, superotemporal, superior, superonasal, nasal thicknesses (p < 0.05). No statistically significant difference was found among inferonasal, inferior, and inferotemporal thicknesses. The average peripapillary choroidal thickness decreased linearly with age (β = −1.33, 95% CI −1.98, -0.68, P < 0.001). No correlation was noted between average choroidal thickness and other factors (gender, refractive error, axial length, average retinal nerve fiber layer thickness, intraocular pressure, diastolic blood pressure, systolic blood pressure, mean blood pressure, diastolic ocular perfusion pressure, systolic ocular perfusion pressure, and mean ocular perfusion pressure). Conclusions The inferonasal, inferior, inferotemporal peripapillary choroidal thicknesses were significantly thinner than temporal, superotemporal, superior, superonasal, and nasal thicknesses. A thinner peripapillary choroid is associated with increasing age. PMID:23758729

  12. Challenges of 29nm half-pitch NAND Flash STI patterning with 193nm dry lithography and self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Chiu, M. C.; Lin, Benjamin Szu-Min; Tsai, M. F.; Chang, Y. S.; Yeh, M. H.; Ying, T. H.; Ngai, Chris; Jin, Jaklyn; Yuen, Stephen; Huang, Sem; Chen, Yongmei; Miao, Liyan; Tai, Kevin; Conley, Amiad; Liu, Ian

    2008-11-01

    High NA (1.35) Immersion litho runs into the fundamental limit of printing at 40-45nm half pitch (HP). The next generation EUVL tool is known to be ready not until year 2012. Double patterning (DP) technology has been identified as the extension of optical photolithography technologies to 3xnm and 2xnm half-pitch for the low k1 regime to fill in the gap between Immersion lithography and EUVL. Self Aligned Double Patterning (SADP) Technology utilized mature process technology to reduce risk and faster time to market to support the continuation of Moore's Law of Scaling to reduce the cost/function. SADP uses spacer to do the pitch splitting bypass the conventional double patterning (e.g. Litho-Freeze-Litho-Etch (LFLE), or Litho-Etch-Litho-Etch (LELE)) overlay problem. Having a tight overlay performance is extremely critical for NAND Flash manufacturers to achieve a fast yield ramp in production. This paper describes the challenges and accomplishment of a Line-By-Spacer (LBS) SADP scheme to pattern the 29nm half-pitch NAND Flash STI application. A 193nm Dry lithography was chosen to pattern on top of the amorphous carbon (a-C) film stack. The resist pattern will be transferred on the top a-C core layer follow by spacer deposition and etch to achieve the pitch splitting. Then the spacer will be used to transfer to the bottom a-C universal hardmask. This high selectivity a-C hardmask will be used to transfer the 29nm half-pitch pattern to the STI. Good within wafer CD uniformity (CDU) <2nm and line width roughness (LWR) <2nm for the 29nm half-pitch NAND FLASH STI were demonstrated as the benefits using double amorphous carbon hardmask layers. The relationships among the photoresist CDs, CD trimming , as-deposited spacer film thickness, spacer width and the final STI line/core space/gap space CDs will also be discussed in this paper since patterning is combining both lithography performance with CVD and Etch process performance. Film selection for amorphous carbon and

  13. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  14. Optical monitoring of thin oil film thickness in extrusion processes

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Robert; Wroczyński, Piotr; Graczyk, Jan; Gnyba, Marcin

    2005-09-01

    We have used reflectance spectroscopy for the in-situ, non-invasive monitoring of a thin oil film thickness during extrusion process of ceramic paste in capillary rheometer. Investigated pastes are disperse solid liquid systems prepared from the silicone oil AK106 (Wacker) and ceramic powder AlOOH. The thin oil film, extracted from the extruded paste, appears on walls of the rheometer die. A borosilicate view-port-glass provides optical access to the thin film inside the die. Reflectance spectroscopy enables the thin film thickness measurements by wideband spectral analysis of light back reflected from the sample. This spectrum includes extremes, which results from interference between beams reflected from glass-oil boundary and oil-paste boundary. Position and intensity of this extremes were determined by thickness of the thin film as well as refractive indices of the oil and the paste. Optoelectronic system dedicated for process monitoring by means of reflectance spectroscopy had been designed and built. The system comprises tungsten halogen lamp and fiber optic spectrometer. Optical signals are transmitted through bifurcated fibers, focusing optics and the view-port-window. Spectroscopic monitoring was carried out in VIS-NIR range from 400 to 900 nm as a function of extrusion velocity (0.01-5mm/s) and paste particle granulation (5-20 μm). Computer calculation, performed using dedicated software, enables fast determination of thickness even for reflectance spectra interfered by high noise level. Fast development of ceramic components technology requires detailed description of complex rheometric processes. Monitoring of the most important process parameter - oil layer thickness - enables pre-determination of rheometric factors required for proper paste extrusion and accurate shape filling.

  15. Cortical thickness in untreated transsexuals.

    PubMed

    Zubiaurre-Elorza, Leire; Junque, Carme; Gómez-Gil, Esther; Segovia, Santiago; Carrillo, Beatriz; Rametti, Giuseppina; Guillamon, Antonio

    2013-12-01

    Sex differences in cortical thickness (CTh) have been extensively investigated but as yet there are no reports on CTh in transsexuals. Our aim was to determine whether the CTh pattern in transsexuals before hormonal treatment follows their biological sex or their gender identity. We performed brain magnetic resonance imaging on 94 subjects: 24 untreated female-to-male transsexuals (FtMs), 18 untreated male-to-female transsexuals (MtFs), and 29 male and 23 female controls in a 3-T TIM-TRIO Siemens scanner. T1-weighted images were analyzed to obtain CTh and volumetric subcortical measurements with FreeSurfer software. CTh maps showed control females have thicker cortex than control males in the frontal and parietal regions. In contrast, males have greater right putamen volume. FtMs had a similar CTh to control females and greater CTh than males in the parietal and temporal cortices. FtMs had larger right putamen than females but did not differ from males. MtFs did not differ in CTh from female controls but had greater CTh than control males in the orbitofrontal, insular, and medial occipital regions. In conclusion, FtMs showed evidence of subcortical gray matter masculinization, while MtFs showed evidence of CTh feminization. In both types of transsexuals, the differences with respect to their biological sex are located in the right hemisphere.

  16. Efficient phase matching algorithm for measurements of ultrathin indium tin oxide film thickness in white light interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Lei, Feng; Itoh, Masahide

    2017-02-01

    A novel method is proposed to measure the thickness of the indium tin oxide (ITO) film, which is less than 20 nm, using valid Fourier's phase information of white light correlogram and curve matching algorithm. Based on the Fourier transform amplitude information, the valid phase distribution function that contains the thin transparent electrode ITO film thickness information has been successfully extracted. A curve matching algorithm based on standard deviation is employed to accurately calculate the thickness of such thin ITO films. The experimental results show that the thickness values were consistent with that determined using the stylus instruments, indicating that this method can be applied to measure the ITO film thickness ranging from 5 to 100 nm.

  17. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  18. Impact of scaling base thickness on the performance of heterojunction phototransistors

    NASA Astrophysics Data System (ADS)

    Dehzangi, Arash; Haddadi, Abbas; Adhikary, Sourav; Razeghi, Manijeh

    2017-03-01

    In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8845 and 9528 A W‑1 at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2760 at 77 K and 3081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17690 at 77 K, and 19050 at 150 K.

  19. Impact of scaling base thickness on the performance of heterojunction phototransistors.

    PubMed

    Dehzangi, Arash; Haddadi, Abbas; Adhikary, Sourav; Razeghi, Manijeh

    2017-03-10

    In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8845 and 9528 A W(-1) at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2760 at 77 K and 3081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17690 at 77 K, and 19050 at 150 K.

  20. Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction.

    PubMed

    Wang, Y Z; Kong, M G; Liu, Z W; Lin, C C; Zeng, Y

    2016-10-01

    The spatial resolution of transmission electron backscatter diffraction (t-EBSD) with a standard conventional EBSD detector was evaluated quantitatively based on the calculation of the correlation coefficient of transmission patterns which were acquired across a twin boundary in the sample of austenitic steel. The results showed that the resolution of t-EBSD improved from tens of nanometres to below 10 nm with increasing accelerating voltage and thinning of specimen thickness. High voltage could enhance the penetration depth and reduce the scattering angle. And the thinning of specimen thickness would result in decreasing of the scattering events according to the theory of thermal diffuse scattering (TDS). In addition, the transmission patterns were found to be weak and noisy if the specimen was too thin, because of the decreasing intensity detected by the screen. Consequently, in this work, the best spatial resolution of 7 nm was achieved at 30 kV and 41 nm thickness. Moreover, the specimen thickness range was also discussed using Monte-Carlo simulation. This approach was helpful to account for the differences of measured spatial resolutions, by t-EBSD, of lamellas with different thickness.

  1. Field electron emission from undoped, continuous, submicron-thick diamond films

    NASA Astrophysics Data System (ADS)

    Ternyak, O.; Akhvlediani, R.; Hoffman, A.; Wong, W. K.; Lee, S. T.; Lifshitz, Y.; Daren, S.; Cheifetz, E.

    2005-12-01

    The present work shows that the field electron emission (FEE) properties of polycrystalline diamond films can be enhanced by control over the film thickness. The FEE properties of undoped, continuous, and smooth submicron-thick diamond films with initial nucleation densities of ˜5×1010particles/cm2 were investigated as a function of diamond film thickness. A set of films with thickness ranging from 70-100to830nm yielded turn-on field values of 6-8V/μm and threshold field values of 8.5-17.5V/μm (for 0.3μA/cm2), respectively, without any conditioning. It was found that the films of thickness up to ˜370nm can sustain stable current density as high as 0.1A/cm2 without morphological modification. The thicker films, however, suffer from a strong degradation of the film and breakdown. The best FEE (lower turn-on and threshold fields and morphological stability) was obtained for a thin (100nm) continuous diamond film. This result is suggested to be attributed mainly to the efficient electron conduction from the back contact to the surface.

  2. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  3. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  4. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  5. The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels

    NASA Astrophysics Data System (ADS)

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm-1 to 1800 cm-1). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis & Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  6. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  7. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  8. Maskless plasmonic lithography at 22 nm resolution.

    PubMed

    Pan, Liang; Park, Yongshik; Xiong, Yi; Ulin-Avila, Erick; Wang, Yuan; Zeng, Li; Xiong, Shaomin; Rho, Junsuk; Sun, Cheng; Bogy, David B; Zhang, Xiang

    2011-01-01

    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing.

  9. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  10. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  11. Nanocrystalline germanium nip solar cells with spectral sensitivities extending into 1450 nm

    NASA Astrophysics Data System (ADS)

    Li, Chang; Ni, Jian; Sun, Xiaoxiang; Wang, Xinyu; Li, Zhenglong; Cai, Hongkun; Li, Juan; Zhang, Jianjun

    2017-02-01

    To absorb the infrared part of the solar spectrum more efficiently, narrow bandgap hydrogenated nanocrystalline germanium (nc-Ge:H) thin films were fabricated by radio frequency plasma enhanced chemical vapor deposition at a low temperature of 180 °C. While the incubation layer of the nc-Ge:H was reduced to less than 5 nm by using the ultra-high hydrogen dilution, the negative photoconductivity behavior was still observed as the thickness of nc-Ge:H up to 30 nm. Therefore, as the best candidate for solar cells application, the nc-Ge:H (20 nm)/nc-Si:H (10 nm) periodic multilayer structure was prepared and used as the absorption layer of nc-Ge:H nip solar cells. More importantly, the spectral sensitivities extending into the wavelength of 1450 nm were achieved in the nc-Ge:H nip solar cells. In addition, the annealing for the nc-Ge:H nip solar cells was carried out. While the overall short circuit current density of the device is improved after 500 °C annealing, the spectral sensitivities in the infrared region is decreased due to the the coalescence of Ge crystallites.

  12. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    NASA Astrophysics Data System (ADS)

    Poole, P. L.; Willis, C.; Cochran, G. E.; Hanna, R. T.; Andereck, C. D.; Schumacher, D. W.

    2016-10-01

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of even tight F / # systems, thus removing the necessity for realignment between shots. The repetition rate of the device exceeds 0.1 Hz for sub-100 nm films, facilitating higher repetition rate operation of modern laser facilities.

  13. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Wang, C. C.; Zhang, J.; Liu, G.; Zhang, G. J.; Ding, X. D.; Zhang, G. P.; Sun, J.

    2008-10-01

    For polymer-supported metal thin films used in flexible electronics, the definition of the fatigue lifetime at microcrack nucleation (FLMN) should be more physically meaningful than all the previous definitions at structural instability. In this paper, the FLMN of Cu films (with thickness from 100 nm to 3.75 µm) as well as Al thin films (from 80 to 800 nm) was experimentally characterized at different strain ranges and different thicknesses by using a simple electrical resistance measurement (ERM). A significant thickness dependence was revealed for the FLMN and a similar Coffin-Manson fatigue relationship observed commonly in bulk materials was found to be still operative in both the films. Microstructural analyses were carried out to verify the feasibility of ERM correspondingly.

  14. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE PAGES

    Poole, P. L.; Willis, C.; Cochran, G. E.; ...

    2016-10-10

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  15. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    SciTech Connect

    Poole, P. L.; Willis, C.; Cochran, G. E.; Hanna, R. T.; Andereck, C. D.; Schumacher, D. W.

    2016-10-10

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of even tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.

  16. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    NASA Astrophysics Data System (ADS)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  17. Thin-Thick Coexistence Behavior of 8CB Liquid Crystalline Films on Silicon

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Subashi, E.; Fukuto, M.

    2008-05-01

    The wetting behavior of thin films of 4-n-octyl-4'-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (TIN) and the nematic-to-smectic-A (TNA) temperatures. For Si surfaces with coverages between 47 and 72±3nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near TIN and TNA. For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon.

  18. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  19. Lactones in 193 nm resists: What do they do?

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Truong, Hoa D.; Brock, Phil J.

    2008-03-01

    Lactones are almost ubiquitously employed in 193 nm resists to increase the polarity of hydrophobic alicyclic polymers. What else do lactones do in 193 nm resists? We studied the behavior of methacrylate (MA) resists consisting of different protecting groups, hexafluoroalcohols, and norbornane lactone methacrylate (NLM, 2-oxo-3-oxatricyclo[4.2.1.04,8]nonan-5-yl methacrylate). When the protecting group is large [ethylcyclooctyl (ECO) and methyladamantyl (MAd)], thinning of the resist film that occurs in highly exposed areas upon postexposure bake (PEB) is significantly smaller than what is expected from the polymer composition. When the concentration of isopropylhexafluoroalcohol methacrylate (iPrHFAMA) is increased in the ECOMA-NLM polymer, the thinning increases and reaches 100% of theory and the ECOMA-norbornenehexafluoroalcohol methacrylate (NBHFAMA) resist loses quantitative thickness in highly-exposed areas upon PEB at 90 °C. This indicates that small lactones which are more basic than esters can trap deprotection fragments especially when the protecting group is large. Such entrapment was detected by IR spectroscopy and also observed at temperatures as high as 200 °C in thermogravimetric analysis (TGA). Incorporation of lactone appears to decrease the bake temperature sensitivity and the sensitivity of the resist perhaps due to trapping of photochemically generated acids by basic lactone. The lactone ring can be hydrolyzed during aqueous base development but does not seem to affect the dissolution rate, indicating that hydrolysis occurs in aqueous base solution after dissolution. Poly(methacrylic acid-NLM) dissolves as fast as poly(methacrylic acid) in 0.26 N tetramethylammonium hydroxide (TMAH) aqueous solution. While exposed P(ECOMA 47-NLM 53) resist dissolves in 0.26 N developer at about the same rate as authentically prepared poly(methacrylic acid 47-NLM 53), the dissolution rate of highly-exposed P(MAdMA 44-NLM 56) resist is much slower, indicating

  20. Ice thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Howell, Stephen E. L.

    2015-09-01

    Recently, the feasibility of commercial shipping in the ice-prone Northwest Passage (NWP) has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. These show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. Results indicate that even in today's climate, ice conditions must still be considered severe. These results have important implications for the prediction of ice breakup and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  1. A study of microclad thickness variation (1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate the thickness variation of microclad material used in fabricating 1E38 bridges. For the role sampled (nine reels), standard deviations within reels ranged from 6.11 to 12.07 {mu}in. Thickness variations within reels ranged from 16.2 to 40.9 {mu}in., with the average thickness between 142.90 and 161.28 {mu}in.

  2. Localizing gravity on exotic thick 3-branes

    SciTech Connect

    Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba

    2004-11-15

    We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.

  3. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivity (σac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  4. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit

    PubMed Central

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single–layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid–layer is embedded between the FTO layers. In our work, the effects of mid–layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid–layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10−2 Ω−1 for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10−5 Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses. PMID:26833398

  5. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  6. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit.

    PubMed

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-02-02

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10(-2 ) Ω(-1) for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10(-5 ) Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses.

  7. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  8. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  9. Novel 980-nm and 490-nm light sources using vertical cavity lasers with extended coupled cavities

    NASA Astrophysics Data System (ADS)

    McInerney, John G.; Mooradian, Aram; Lewis, Alan; Shchegrov, Andrei V.; Strzelecka, Eva M.; Lee, Dicky; Watson, Jason P.; Liebman, Michael K.; Carey, Glen P.; Umbrasas, Arvydas; Amsden, Charles A.; Cantos, Brad D.; Hitchens, William R.; Heald, David L.; Doan, Vincent V.; Cannon, J. L.

    2003-04-01

    We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power devices all the way to high power extended cavity lasers. The latter have demonstrated 1W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise, sub 10 μrad beam pointing stability combined with small size, low power consumption and high efficiency.

  10. A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyan; Jiang, Huawei

    2016-12-01

    A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.

  11. Investigations of a dual seeded 1178nm Raman laser system

    NASA Astrophysics Data System (ADS)

    Block, Matthew; Henry, Leanne J.; Klopfer, Michael; Jain, Ravinder

    2016-03-01

    The leakage of 1121 nm power from a resonator cavity because of spectral broadening seriously degrades the performance of a Raman resonator by reducing the 1121 nm circulating power and the 1178 nm output power. Therefore, it is important to understand the conditions which minimize 1121 nm power leakage, maximize 1121 intracavity and 1178 nm output power while enabling a manageable Stimulated Brillouin Scattering gain for narrow linewidth systems. It was found that cavity lengths longer than approximately 40 m didn't result in significantly more 1121 nm linewidth broadening. Relative to the high reflectivity bandwidth of the fiber Bragg gratings, it was found that 4 nm FBGs seemed to optimize 1178 nm amplification while minimizing the amount of 1121 nm power leakage. A two stage high power 1178 nm Raman system was built and 20 W of 1178 nm output power was achieved with a polarization extinction ratio of 21 and nearly diffraction limited beam quality. Linewidth broadening was found to increase as the 1178 nm output increased and was approximately 8 GHz when the 1178 nm output power was 20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth.

  12. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  13. Multi-watt 589nm fiber laser source

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Drobshoff, Alex D.; Beach, Raymond J.; Messerly, Michael J.; Payne, Stephen A.; Brown, Aaron; Pennington, Deanna M.; Bamford, Douglas J.; Sharpe, Scott J.; Cook, David J.

    2006-02-01

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichio-metric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd 3+ fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the 1088nm 4-level laser transition. At 15W, the 938nm laser has an M2 of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  14. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  15. Microstructure and Critical Current Density of YBa2Cu3O7-x + BaSnO3 Thick Films Grown with Pre-Mixed Pulsed Laser Ablation Target (Postprint)

    DTIC Science & Technology

    2010-01-01

    0.21 nm (TEM) was used after standard sample preparation to observe the nanocolumns of BSO in the YBCO matrix. RESULTS AND DISCUSSION The Tc...86 88 90 0 500 1000 1500 2000 2500 3000 T C (K ) Thickness ( nm ) YBCO + BSO (20 mol%) FIGURE 1. Tc in YBCO + 20 mol% BSO films with varying thickness...107 0 500 1000 1500 2000 2500 3000 0 T 1 T 3 T 5 T 7 T 8 T J C (A /c m 2 ) Thickness ( nm ) 77 K H // C FIGURE 2. Jc values for varying thickness YBCO

  16. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; ...

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  17. A robust 45 nm gate-length CMOSFET for 90 nm Hi-speed technology

    NASA Astrophysics Data System (ADS)

    Lim, K. Y.; Chan, V.; Rengarajan, R.; Lee, H. K.; Rovedo, N.; Lim, E. H.; Yang, S.; Jamin, F.; Nguyen, P.; Lin, W.; Lai, C. W.; Teh, Y. W.; Lee, J.; Kim, L.; Luo, Z.; Ng, H.; Sudijono, J.; Wann, C.; Yang, I.

    2006-04-01

    We have developed a robust 45 nm gate-length CMOSFET for 90 nm node high performance application. Aggressive gate length and gate dielectric scaling along with optimized strain engineering enable high performance device similar to 65 nm node CMOSFET [Nakahara Y, et al. IEDM Tech Dig 2003;281] We have utilized oxy-nitride gate with post-nitridation anneal, high ramp rate spike anneal, low temperature spacer scheme and stress controlled SiN contact etch stop liner process in order to improve drive current as well as transistor short-channel roll-off. In particular, we will focus on the study of middle-of-line (MOL) process parameters, (i.e. MOL thermal expense and mechanical stress from contact etch stop liner) on transistor performance and reliability. Based on the study, we have obtained device exhibit drive-current of 900/485 μA/μm for NMOSFET and PMOSFET, respectively, at standard supply voltage of 1 V.

  18. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  19. 100 nm half-pitch double exposure KrF lithography using binary masks

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.

    2008-03-01

    In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NA Lens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σ inner = 0.57 and σ outer = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  20. UV-NIL templates for the 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Hiraka, Takaaki; Yusa, Satoshi; Fujii, Akiko; Sasaki, Shiho; Itoh, Kimio; Toyama, Nobuhito; Kurihara, Masaaki; Mohri, Hiroshi; Hayashi, Naoya

    2007-10-01

    NIL (nano-imprint lithography) is expected as one of the lithographic candidates for 32nm node and beyond. Recently, the small line edge roughness (LER) as well as the potentially high resolution that will ensure no-OPC mask feature is attracting many researchers. However, the NIL needs 1X patterns on template and a transit from 4X to 1X is a big and hard technology jump for the mask industry. The fine resolution pattern making on the template is one of the most critical issues for the realization of NIL. In this paper, as a continuation of our previous works 1-5, we have achieved further resolution by optimizing the materials, their thicknesses, the developing and the etching processes, as well as the writing parameters of the 100keV SB (spot beam) writer. At the best resolved point on the template, resolutions down to hp (half pitch) 18nm on dense line patterns, hp20nm on dense hole patterns, and hp26nm on dense dot patterns were confirmed. Concerning stable pattern resolution over a certain field area, we evaluated pattern resolution through over a 250um square area, which we think would be adequate for initial imprint tests. For the 250μm square area, we confirmed pattern resolution of hp24nm for dense line patterns and hp32nm for dense hole patterns. In addition, we have studied resolution limit of the 50keV VSB (variable shaped beam) photomask production writing tools, which have been commonly used tools in the 4X photomask manufacturing for larger field size patterning. Materials, process conditions and parameters acquired through the 100keV SB process were implanted, and we could fabricate templates with hp32nm dense line patterns, with acceptable full chip uniformity and writing time. We also studied the imprint capability, and fabricated a template with fine features and imprinted it onto a wafer. As a result, we could transfer hp24nm dense line patterns, hp24nm dense hole patterns, and hp32nm dense dot patterns onto the wafer.

  1. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  2. Problems of radioisotope thickness gauge metrological provisions

    SciTech Connect

    Veits, B.; Karasev, A.; Krop, V.

    1993-12-31

    Results of research and development in the area of metrological provisions of thickness gages of sheet materials and coating are presented. The problem of measurement of different nature sample combinations for beta thickness gages of coatings is provided by an experimental-calculative method.

  3. Cloud Thickness from Offbeam Returns - Thor Lidar

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, and sometimes multiple cloud layers, can be estimated from the time delay of off-beam returns from a pulsed laser source illuminating one side of the cloud layer. In particular, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. The halo method works best for thick cloud layers, typically optical thickness exceeding 2, and thus compliments conventional lidar which cannot penetrate thick clouds. Cloud layer top and base have been measured independently over the ARM/SGP site using conventional laser ranging (lidar) and the top minus base thickness are compared with a cloud top halo estimate obtained from the NASA/Goddard THOR System (THOR = THickness from Offbeam Returns). THOR flies on the NASA P3, and measures the halo timings from several km above cloud top, at the same time providing conventional lidar cloud top height. The ARM/SGP micropulse lidar provides cloud base height for validation.

  4. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  5. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  6. Aerodynamic properties of thick airfoils II

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1923-01-01

    This investigation is an extension of NACA report no. 75 for the purpose of studying the effect of various modifications in a given wing section, including changes in thickness, height of lower camber, taper in thickness, and taper in plan form with special reference to the development of thick, efficient airfoils. The method consisted in testing the wings in the NACA 5-foot wind tunnel at speeds up to 50 meters (164 feet) per second while they were being supported on a new type of wire balance. Some of the airfoils developed showed results of great promise. For example, one wing (no. 81) with a thickness in the center of 4.5 times that of the U. S. A. 16 showed both uniformly high efficiency and a higher maximum lift than this excellent section. These thick sections will be especially useful on airplanes with cantilever construction. (author)

  7. Micro-droplets lubrication film thickness dynamics

    NASA Astrophysics Data System (ADS)

    Huerre, Axel; Theodoly, Olivier; Cantat, Isabelle; Leshansky, Alexander; Valignat, Marie-Pierre; Jullien, Marie-Caroline; MMN Team; LAI Team; IPR Team; Department of Chemical Engineering Team

    2014-11-01

    The motion of droplets or bubbles in confined geometries has been extensively studied; showing an intrinsic relationship between the lubrication film thickness and the droplet velocity. When capillary forces dominate, the lubrication film thickness evolves non linearly with the capillary number due to viscous dissipation between meniscus and wall. However, this film may become thin enough that intermolecular forces come into play and affect classical scalings. We report here the first experimental evidence of the disjoining pressure effect on confined droplets by measuring droplet lubrication film thicknesses in a microfluidic Hele-Shaw cell. We find and characterize two distinct dynamical regimes, dominated respectively by capillary and intermolecular forces. In the former case rolling boundary conditions at the interface are evidenced through film thickness dynamics, interface velocity measurement and film thickness profile.

  8. Multiple-shot ultraviolet laser damage resistance of nonquarterwave reflector designs for 248 NM

    SciTech Connect

    Newnam, B.E.; Foltyn, S.R.; Jolin, L.J.

    1982-01-01

    The damage resistance of multilayer dielectric reflectors designed for 248 nm has been substantially increased by use of nonquarterwave (QW) thicknesses for the top few layers. These designs minimize the peak standing-wave electric field in the high-index layers, which have proven to be weaker than the low-index components. Previous damage tests of infrared- and visible-wavelength reflectors based on these designs have produced variable results. However, at the ultraviolet wavelength of 248 nm, 99% reflectors of Sc/sub 2/O/sub 3/, MgF/sub 2/, and SiO/sub 2/ strongly demonstrated the merit of non-QW designs. Four sets of reflectors of each of four designs (all QW thickness; one modified-pair substitution; two modified-pair substitution; one modified pair plus an extra half-wave layer of Sc/sub 2/O/sub 3/) were tested for damage resistance with a KrF laser operating at 35 pps with a pulsewidth of 8 ns and spot-size diameter of 0.6 mm. Each of 50 sites were irradiated for 1000 shots or until damage occurred. On the average, the reflectors with one-modified-thickness pair had a 50% higher threshold (10 to 10 sites survived) than the all-quarterwave design. Addition of a second modified-layer pair resulted in no further increase in threshold but the saturation fluence (10 of 10 sites damage) was 110% higher. Reflectors with an additional half-wave of Sc/sub 2/O/sub 3/ had lower thresholds of the order of 10% as expected. The thresholds correlated best with peak-field models, whereas the best model correlating the saturation fluences involved the sum of the upper two scandia layer thicknesses.

  9. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  10. Refractive index change during exposure for 193-nm chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Oh, Hye-Keun; Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Byun, Sung Hwan; An, Ilsin; Lee, Kun-Sang; Park, In-Ho

    1999-06-01

    Some of the important areas to be improved for lithography simulation are getting correct exposure parameters and determining the change of refractive index. It is known that the real and imaginary refractive indices are changed during exposure. We obtained these refractive index changes during exposure for 193 nm chemically amplified resists. The variations of the transmittance as well as the resist thickness were measured during ArF excimer laser exposure. We found that the refractive index change is directly related to the concentration of the photo acid generator and de-protected resin. It is important to know the exact values of acid concentration from the exposure parameters since a small difference in acid concentration magnifies the variation in the amplified de-protection during post exposure bake. We developed and used a method to extract Dill ABC exposure parameters for 193 nm chemically amplified resist from the refractive index change upon exposure.

  11. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.

    PubMed

    Saleh, Amr A E; Dionne, Jennifer A

    2012-11-14

    Optical trapping using focused laser beams has emerged as a powerful tool in the biological and physical sciences. However, scaling this technique to nanosized objects remains challenging due to the diffraction limit of light and the high power levels required for nanoscale trapping. In this paper, we propose plasmonic coaxial apertures as low-power optical traps for nanosized specimens. The illumination of a coaxial aperture with a linearly polarized plane wave generates a dual optical trapping potential well. We theoretically show that this potential can stably trap dielectric particles smaller than 10 nm in diameter while keeping the trapping power level below 20 mW. By tapering the thickness of the coaxial dielectric channel, trapping can be extended to sub-2-nm particles. The proposed structures may enable optical trapping and manipulation of dielectric particles ranging from single proteins to small molecules with sizes previously inaccessible.

  12. Sub-10 nm nano-gap device for single-cluster transport measurements

    SciTech Connect

    Rousseau, J. Morel, R.; Vila, L.; Brenac, A.; Marty, A.; Notin, L.; Beigné, C.

    2014-02-17

    We present a versatile procedure for the fabrication of single electron transistor (SET) devices with nanometer-sized clusters and embedded back gate electrode. The process uses sputtering gas-aggregation for the growth of clusters and e-beam lithography with double angle shadow-edge deposition to obtain electrodes separated by nano-gaps with width below 10 nm. The nano-gap width is easily controlled only by geometrical factors such as deposited thin film thickness and evaporation angles. The usefulness of this technique is demonstrated by measuring the SET behavior of a device with a 4 nm cobalt cluster embedded in alumina, where the Coulomb blockade and incremental cluster charging can be readily identified without resorting to the differential conductivity.

  13. Experimental determination of the impact of polysilicon LER on sub-100-nm transistor performance

    NASA Astrophysics Data System (ADS)

    Patterson, Kyle; Sturtevant, John L.; Alvis, John R.; Benavides, Nancy; Bonser, Douglas; Cave, Nigel; Nelson-Thomas, Carla; Taylor, William D.; Turnquest, Karen L.

    2001-08-01

    Photoresist line edge roughness (LER) has long been feared as a potential limitation to the application of various patterning technologies to actual devices. While this concern seems reasonable, experimental verification has proved elusive and thus LER specifications are typically without solid parametric rationale. We report here the transistor device performance impact of deliberate variations of polysilicon gate LER. LER magnitude was attenuated by more than a factor of 5 by altering the photoresist type and thickness, substrate reflectivity, masking approach, and etch process. The polysilicon gate LER for nominally 70 - 150 nm devices was quantified using digital image processing of SEM images, and compared to gate leakage and drive current for variable length and width transistors. With such comparisons, realistic LER specifications can be made for a given transistor. It was found that subtle cosmetic LER differences are often not discernable electrically, thus providing hope that LER will not limit transistor performance as the industry migrates to sub-100 nm patterning.

  14. Extreme ultraviolet source at 6.7 nm based on a low-density plasma

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang, Weihua; Endo, Akira; Li Bowen; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry

    2011-11-07

    We demonstrate an efficient extreme ultraviolet (EUV) source for operation at {lambda} = 6.7 nm by optimizing the optical thickness of gadolinium (Gd) plasmas. Using low initial density Gd targets and dual laser pulse irradiation, we observed a maximum EUV conversion efficiency (CE) of 0.54% for 0.6% bandwidth (BW) (1.8% for 2% BW), which is 1.6 times larger than the 0.33% (0.6% BW) CE produced from a solid density target. Enhancement of the EUV CE by use of a low-density plasma is attributed to the reduction of self-absorption effects.

  15. Effects of the 755-nm Alexandrite laser on fine dark facial hair: review of 90 cases.

    PubMed

    Uyar, Belkiz; Saklamaz, Ali

    2012-05-01

    Laser hair removal is a relatively effective method for thick hair. Despite the risk for induction of fine hair growth, application of laser for fine dark hair is sometimes inevitable. We investigate the effects of 755-nm Alexandrite laser on fine dark facial hair and evaluate the induction rates of fine hair growth and case satisfaction. In the present study, the thickening rate of hairs (33.33%) was found to be higher than the previously published rates. However, reduction of hair density can be obtained when the laser sessions are continued.

  16. Characterization of optical constants for uranium from 10 to 47 nm

    SciTech Connect

    Brimhall, Nicole; Herrick, Nicholas; Allred, David D.; Turley, R. Steven; Ware, Michael; Peatross, Justin

    2010-03-20

    We use a laser high-harmonics-based extreme-ultraviolet (EUV) polarimeter to determine the optical constants of elemental uranium in the wavelength range from 10 to 47 nm. The constants are extracted from the measured ratio of p-polarized to s-polarized reflectance from a thin uranium film deposited in situ. The film thickness is inferred from a spectroscopic ellipsometry measurement of the sample after complete oxidation in room air. Uranium has been used as a high-reflectance material in the EUV. However, difficulties with oxidation prevented its careful characterization previous to this study. We find that measured optical constants for uranium vary significantly from previous estimates.

  17. Nonlinear ultrasonic imaging of thermal fatigue cracks of several tens nm gap in glass plates

    NASA Astrophysics Data System (ADS)

    Hertl, M.; Kawashima, K.; Sekino, K.; Yasui, H.; Aida, T.

    2015-10-01

    Thermal fatigue crack of which gap distance is several tens nm in glass plate is imaged by using an immersion higher harmonic imaging technique. Some parts of the thermal fatigue crack are clearly imaged by the third harmonic amplitude of the 3.5 MHz burst wave by angular incidence. For through-transmission mode across the crack face, the seventh harmonic of a through-thickness resonant frequency also visualizes the thermal fatigue crack. If spatial resolution will reach to a few micron meters, the technique could be applied for detection of disbonds in bonded wafers.

  18. Cell projection use in maskless lithography for 45nm and 32nm logic nodes

    NASA Astrophysics Data System (ADS)

    Manakli, S.; Komami, H.; Takizawa, M.; Mitsuhashi, T.; Pain, L.

    2009-03-01

    Due to the ever-increasing cost of equipment and mask complexity, the use of optical lithography for integrated circuit manufacturing is increasingly more complex and expensive. Recent workshops and conferences in semiconductor lithography underlined that one alternative to support sub-32nm technologies is mask-less lithography option using electron beam technology. However, this direct write approach based on variable shaped beam principle (VSB) is not sufficient in terms of throughput, i.e. of productivity. New direct write techniques like multibeam systems are under development, but these solutions will not be mature before 2012. The use of character/cell projection (CP) on industrial VSB tools is the first step to deal with the throughput concerns. This paper presents the status of the CP technology and evaluates its possible use for the 45nm and 32nm logic nodes. It will present standard cell and SRAM structures that are printed as single characters using the CP technique. All experiments are done using the Advantest tool (F3000) which can project up to 100 different cells per layer. Cell extractions and design have been performed with the design and software solution developed by D2S. In this paper, we first evaluate the performance gain that can be obtained with the CP approach compared to the standard VSB approach. This paper also details the patterning capability obtained by using the CP concept. An evaluation of the CD uniformity and process stability is also presented. Finally this paper discusses about the improvements of this technique to address high resolution and to improve the throughput concerns.

  19. Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Steindamm, A.; Brendel, M.; Topczak, A. K.; Pflaum, J.

    2012-10-01

    In this work, we address the microscopic effects related to the implementation of a bathophenanthroline (BPhen) exciton blocking layer (EBL) sandwiched between Ag cathode and molecular diindenoperylene (DIP)/C60 bilayer of a photovoltaic cell. Complementary studies of current density, external quantum efficiency, and photoluminescence quenching for EBL thicknesses up to 50 nm indicate that Ag atoms are able to penetrate through the whole 35 nm thick C60 film into the polycrystalline DIP layer underneath, thereby enhancing exciton quenching if no blocking layer is applied. In contrast, an optimal trade-off between exciton blocking, suppression of metal penetration, and electron transport is achieved for a 5 nm thick BPhen layer yielding an improvement of power conversion efficiency by more than a factor of 2.

  20. Intrinsic flux pinning mechanisms in different thickness MgB2 films

    NASA Astrophysics Data System (ADS)

    Yang, C.; Ni, Z. M.; Guo, X.; Hu, H.; Wang, Y.; Zhang, Y.; Feng, Q. R.; Gan, Z. Z.

    2017-03-01

    MgB2 films in four thickness (60 nm, 200nm, 600nm and 1μm) have been fabricated by hybrid physical-chemical vapor deposition technique (HPCVD). By measuring the magnetization hysteresis loops and the resistivity, we have obtained the transport and magnetic properties of the four films. After that, the pinning mechanisms in them were discussed. Comparing the pinning behaviors in these ultrathin films, thin films and thick films, it was found that there exist different pinning types in MgB2 films of different thickness. In combination with the study of the surface morphology, cross-section and XRD results, we concluded that MgB2 films had different growth modes in different growth stages. For thin films, films grew along c axis, and grain boundaries acted as surface pinning. While for thick films, films grew along c axis at first, and then changed to a-b axis growth. As a result, the a-b axis grains acted as strong volume pinning.

  1. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    SciTech Connect

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z.

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  2. Thickness dependent structural, magnetic and magneto-transport properties of epitaxial Nd0.50Sr0.50MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Hari Krishna

    2016-05-01

    We report the thickness-dependent structural, magnetic and magneto-transport properties in epitaxial Nd0.50Sr0.50MnO3 thin films (10 to 300nm) prepared by DC magnetron sputtering technique on single crystalline (001) oriented substrate LaAlO3. X-ray diffraction pattern reveals the epitaxial growth of all the films and the out-of-plane lattice parameter of films were found to increase with thickness. As thickness of the film increases the paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition temperature (TC), charge ordered transition temperature (TCO) and magnetic moment were found to increase with a strong bifurcation in ZFC-FC magnetization. The asymmetry in the coercivity seen in field dependent magnetization loops (M-H loops) suggests the presence of exchange bias (EB) effect. While temperature dependent resistivity of films show the semiconducting nature for thickness 10-200nm in temperature range from 5-300K, the film of thickness 300nm shows the insulator to metal transition with transition temperature (TIM) at 175K. Temperature dependent low field magnetoresistance (LFMR) measured at 4kOe found to decrease with thickness and for high field magnetoresistance (HFMR) at 40kOe and 60kOe also show similar dependence and a crossover at intermediate temperature range in the magnitude of MR between 10nm and 200nm films at constant field. Colossal increase in magnetoresistance observed for 10nm film at low temperature.

  3. Attenuation of 1310- and 1550-nm laser light through sound dental enamel

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Fried, Daniel

    2002-06-01

    Inexpensive laser diodes and fiber-optic technology have revived optical transillumination as a promising diagnostic method for the early detection of dental caries. The principal factor limiting transillumination through dental hard tissue is light scattering in the normal enamel and dentin. Previous studies have shown that the scattering coefficient decreases with increasing wavelength. Therefore, the near-IR region is likely to be well suited for fiber optic transillumination. The objective of this study was to measure the optical attenuation of near-IR light through dental enamel at 1310-nm and 1550-nm. These laser wavelengths are readily available due to their suitability for application to fiber optic communication. In this study the collimated transmission of laser light through polished thin sections of dental enamel for various thickness from 0.1 to 2.5 mm was measured in cuvettes of index matching fluid with n= 1.63. Beer-Lambert plots show that the attenuation coefficients are 3.1+/- 0.17cm-1 and 3.8+/- 0.17cm-1 for 1310-nm and 1550-nm, respectively. This study indicates that near-IR laser wavelengths are well-suited for the transillumination of dental enamel for caries detection since the attenuation through normal tissue is an order of magnitude less than in the visible.

  4. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shekhar, Raj; Huang, David

    2002-05-01

    Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.

  5. Gate patterning in 14 nm and beyond nodes: from planar devices to three dimensional Finfet devices

    NASA Astrophysics Data System (ADS)

    Meng, Lingkuan; Hong, Peizhen; He, Xiaobin; Li, Chunlong; Li, Junjie; Li, Junfeng; Zhao, Chao; Wei, Yayi; Yan, Jiang

    2016-01-01

    In this work, we investigated the challenges encountered in 14 nm node Finfet gate patterning. The patterning process was originated from a 22 nm planar device, in which a SiO2/Si3N4/SiO2 (ONO) multilayer was used as an etch mask. To accommodate with the 3D nature of Finfet structures in 14 nm node, the thickness of Si3N4 has been increased in the investigated process. We found out that the standard ONO mask etch process was no longer effective for gate patterning in 3D Finfet devices. It was observed that the etched mask sidewall was significantly more tapered than that in planar devices, resulting in the final CDs of both mask and dummy gate far wider than those of the planar devices. In order to achieve a desirable gate CD, the formation mechanism causing a severely tapered mask profile was first investigated. Our results suggested that redeposition effect of the etch products on the sidewall played a significant role in controlling etched mask sidewall angle. Then, we proposed a two-step etch process which can improve the anisotropy of ONO mask etch and obtain a steep etch profile with a desirable CD. Using this process, a gate CD of 20 nm was successfully achieved with a desirable profile and a smooth sidewall. Our results have demonstrated that the newly developed etch process is very robust and has a wide process window.

  6. Fabrication, characterization, and application in nanoenergetic materials of uncracked nano porous silicon thick films

    NASA Astrophysics Data System (ADS)

    Wang, Shouxu; Shen, Ruiqi; Yang, Cheng; Ye, Yinghua; Hu, Yan; Li, Chuangxin

    2013-01-01

    The porous silicon (PS) film has gained increasing attention in recent years as advanced nanoenergetic materials (nEMs). A simple fabrication method to prepare uncracked PS thick films was successfully realized with precisely controlled electrochemical etching, and the relationship between the current density and the concentration of electrolytes was found in its fabrication. Additionally, the capillary stresses resulted from the liquids in nanopores of PS films was another factor resulted in its crack. The nanopores composed of uncracked PS thick films distributed regularly and their diameters ranged from 2 nm to 6 nm. Its Sa (average roughness) of PS film surface was 6.53 nm, and its thickness ranged from 102.41 μm to 205.75 μm. The specific surface area was 587 m2/g and the average diameter of nanopores was 4.3 nm. The PS film was found to be monocrystal and it was same as the substrate. The crack mechanism of PS films was discussed: the porous structure reduced the strength of PS films comparing the silicon bulk and the capillary effect hastened the crack of PS films. PS films filling with sodium percholorate in nanopores were ignited by laser and the stable combustion showed that they were advantageous to be applied as micro-electromechanical systems (MEMS) compatible devices, such as silicon-based chips of mircothruster and microigniter.

  7. Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm

    SciTech Connect

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

    2016-10-12

    We designed a dichroic beam combiner coating with 11 HfO2/SiO2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in terms of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. Lastly, these results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.

  8. Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm

    DOE PAGES

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; ...

    2016-10-12

    We designed a dichroic beam combiner coating with 11 HfO2/SiO2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in termsmore » of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. Lastly, these results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.« less

  9. Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm

    NASA Astrophysics Data System (ADS)

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

    2017-01-01

    We designed a dichroic beam combiner coating with 11 HfO2/SiO2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in terms of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. These results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.

  10. Manufacturability of 2x-nm devices with EUV tool

    NASA Astrophysics Data System (ADS)

    Tawarayama, Kazuo; Nakajima, Yumi; Kyoh, Suigen; Aoyama, Hajime; Matsunaga, Kentaro; Magoshi, Shunko; Tanaka, Satoshi; Hayashi, Yumi; Mori, Ichiro

    2011-04-01

    Due to the promising development status of EUVL as a practical lithography technology for the 2x-nm node, we are continuing to evaluate its process liability using the EUV1 at Selete, which has an Off-Axis illumination capability. The resolution limit of the EUV1 for L&S patterns is currently 18 nm for dipole illumination, and 16 nm for aggressive dipole illumination. This study examined the critical points of EUVL for device manufacturing through wafer processes. The yield obtained from electrical measurements indicates the maturity of the technology, including the resist process, the tool, and the mask. Optimization of the resist and RIE processes significantly improved the yield. The final yields obtained from electrical measurements were 100% for hp 30 nm, 70% for hp 28 nm, and 40% for hp 26 nm. These results demonstrate EUV lithography to be a practical technology that is now suitable for 2x nm semiconductor manufacture.

  11. Study of the thickness effect on the dielectric functions by utilizing a wedge-shaped Ti film sample with continuously varied thickness

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Zhang, Rong-Jun; Cai, Qing-Yuan; Wang, Zi-Yi; Xu, Ji-Ping; Zheng, Yu-Xiang; Wang, Song-You; Wei, Yan-Feng; Huang, Ren-Zhong; Chen, Liang-Yao

    2015-09-01

    The dielectric functions of direct-current-sputtered wedge-shaped ultrathin titanium (Ti) film on K9 glass were investigated in this paper. The wedge-shaped Ti thin film was deposited under the identical conditions with continuously varied thickness. Atomic force microscope revealed that the thin film surface was very smooth with the surface roughness of about 0.5 nm. The dielectric functions of the wedge-shaped films in the wavelength range of 300-1200 nm were obtained by a focused-beam ellipsometer with the beam size on the sample about 200 μm. Results show that ɛ 1, the real part of the dielectric function, is negative almost in the whole spectrum region, proving that the film at the measured area is continuous and shows metallic behavior. On the other hand, ɛ 1 decreases with the increase in the film thickness, while ɛ 2, the imaginary part of the dielectric function, has the opposite variation tendency. The changing of ɛ 1 with film thickness is due to the reduced electron-electron interactions and enhanced metallic behavior. While for ɛ 2, it gets larger with the increase in the film thickness, which is mainly owing to the decrease in the tensile stress in the film.

  12. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-02-27

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry.

  13. Sidewall spacer quadruple patterning for 15nm half-pitch

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Chen, Yongmei; Chen, Yijian; Miao, Liyan; Sun, Shiyu; Kim, Sung-Woo; Berger, Ami; Mao, Daxin; Bencher, Christ; Hung, Raymond; Ngai, Chris

    2011-04-01

    193nm immersion lithography, with the single-exposure resolution limitation of half-pitch 38nm, has extended its patterning capability to about 20nm using the double-patterning technique[1]. Despite the non-trivial sub-20nm patterning challenges, several NAND Flash manufacturers are already pursuing for sub-16nm patterning technology. 25nm NAND flash memory has already begun production in 2010, and given the typical 2-year scaling cycle, sub-16nm NAND devices should see pilot or mass production as early as 2014. Using novel patterning techniques such as sidewall spacer quadruple patterning (upon 120nm to 128nm pitch using dry ArF lithography) or triple patterning (upon 90nm pitch using immersion ArF lithography), we are able to extend optical lithography to sub-16nm half-pitch and demonstrate the lithographic performance that can nearly meet the ITRS roadmap requirements. In this paper, we conduct an in-depth review and demonstration of sidewall spacer quadruple patterning; including 300mm wafer level data of the mean values and CDU along with a mathematical assessment of the various data pools for sub-16nm lines and spaces. By understanding which processes (lithography, deposition, and etch) define the critical dimension of each data pool, we can make predictions of CDU capability for the sidewall spacer quad patterning. Our VeritySEM4i CD SEM tool demonstrated high measurement yield during fully automated measurements, which enables accurate lines, spaces and CDU measurements of the sub-16nm. The patterns generated from the sidewall spacer quadruple patterning techniques are used as a hardmask to transfer sub-16nm lines and spaces patterns to underneath amorphous silicon and silicon oxide layers, or poly silicon layer for 1X STI or poly gate applications.

  14. Thickness dependence of piezoelectric properties of BiFeO3 films fabricated using rf magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Aramaki, Masaaki; Kariya, Kento; Yoshimura, Takeshi; Murakami, Shuichi; Fujimura, Norifumi

    2016-10-01

    The piezoelectric property of BiFeO3 films prepared on a (100) LaNiO3/Si(100) substrate using an rf magnetron sputtering system was investigated for their applications in MEMS vibration energy harvesters. The X-ray diffraction profiles indicate that (100)-oriented BiFeO3 films with thicknesses from 450 to 1750 nm were obtained at a deposition temperature of 510 °C. All the films showed well-defined ferroelectric hysteresis loops at room temperature. The thickness dependence of crystallinity and electrical properties indicated that the films have a bottom layer with a high defect density. The e 31,f piezoelectric coefficient and electromechanical coupling factor (k\\text{31,f}2) increase with increasing film thickness and reach -3.2 C/m2 and 3.3%, respectively, at a thickness of 1750 nm, which is considered to be caused by the decrease in defect density.

  15. Characterization of the optical constants and dispersion parameters of chalcogenide Te40Se30S30 thin film: thickness effect

    NASA Astrophysics Data System (ADS)

    Abd-Elrahman, M. I.; Hafiz, M. M.; Qasem, Ammar; Abdel-Rahim, M. A.

    2016-02-01

    Chalcogenide Te40Se30S30 thin films of different thickness (100-450 nm) are prepared by thermal evaporation of the Te40Se30S30 bulk. X-ray examination of the film shows some prominent peaks relate to crystalline phases indicating the crystallization process. The calculated particles of crystals from the X-ray diffraction peaks are found to be from 11 to 26 nm. As the thickness increases, the transmittance decreases and the reflectance increases. This could be attributed to the increment of the absorption of photons as more states will be available for absorbance in the case of thicker films. The decrease in the direct band gap with thickness is accompanied with an increase in energy of localized states. The obtained data for the refractive index could be fit to the dispersion model based on the single oscillator equation. The single-oscillator energy decreases, while the dispersion energy increases as the thickness increases.

  16. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  17. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film

    PubMed Central

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C. B.; Haarindraprasad, R.; Liu, Wei-Wen; Poopalan, P.; Balakrishnan, S. R.; Thivina, V.; Ruslinda, A. R.

    2015-01-01

    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. PMID:26694656

  18. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    SciTech Connect

    Basu, T.; Kumar, M.; Som, T.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.

    2015-09-14

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  19. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    NASA Astrophysics Data System (ADS)

    Basu, T.; Kumar, M.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.; Som, T.

    2015-09-01

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5-15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  20. Optimization of barrier layer thickness in MgSe/CdSe quantum wells for intersubband devices in the near infrared region

    SciTech Connect

    Chen, Guopeng; Shen, Aidong; Tamargo, Maria C.

    2015-10-28

    The authors report the optimization of MgSe barrier thickness in CdSe/MgSe multiple quantum well structures and its effect on structural, optical qualities and intersubband (ISB) transition characteristics. Three samples with the MgSe thicknesses of 2 nm, 3 nm, and 4 nm were grown on InP substrates by molecular beam epitaxy. X-ray diffraction and photoluminescence measurements showed that the thinner the MgSe barrier thickness the better the structural quality. However, ISB absorption was only observed in the sample with a MgSe thickness of 3 nm. Failing to observe ISB absorption in the sample with a thicker MgSe barrier (≥4 nm) is due to the deteriorated material quality while the missing of ISB transition in the sample with thinner barrier (≤2 nm) is due to the tunneling of electrons out of the CdSe wells. The optimized MgSe barrier thickness of around 3 nm is found to be able to suppress the electron tunneling while maintaining a good material quality of the overall structure.

  1. Biostimulative effect of 809-nm diode laser and indocyanine green on p. aeruginosa instead of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Aysan, Nuray; Topaloglu, Nermin; Yuksel, Sahru; Gulsoy, Murat

    2013-03-01

    Photodynamic therapy (PDT) is a safe and alternative antimicrobial treatment that consists of a chemical agent, called photosensitizer, which can be activated by light of an appropriate wavelength to produce reactive oxygen species (ROS). PDT can be used for photoinactivation of bacteria in an attempt to overcome the problem of bacterial multidrug resistance. In particular, it is an effective antimicrobial treatment against infected wounds that have antibiotic resistance and wound infections would otherwise lead to mortality and morbidity. The main purpose of this study was to demonstrate the importance of PDT dosimetry (light dose and concentration of photosensitizer). If the dosimetry of PDT was not optimized properly, photoinactivation of bacteria cannot be achieved and even worse biostimulation on pathogens could be observed. This study investigated whether there is a biostimulative effect due to free oxygen radicals of PDT when light dose and photosensitizer concentration are too low. In this study, the biostimulative effect on P. aeruginosa strain was observed instead of the PDT effect, when 84 J/cm2 of energy dose (809-nm diode laser) was applied with 20, 50, 100 and 150 μg/ml of ICG concentrations. The killing effect of PDT was observed with higher ICG concentrations, such as 200, 250 μg/ml of ICG. However the killing effect was not enough to destroy pathogen efficiently with these high concentrations of ICG.

  2. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants

    NASA Astrophysics Data System (ADS)

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F.; Franz, Axel R.

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs‧) measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs‧ at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs‧. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  3. Measurements of Stokes parameters of materials at 1064-nm and 532-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.; Kalshoven, James E., Jr.

    2001-09-01

    Laser radar systems have found wide applications in the field of remote sensing. Reflectance as well as polarization features are used together for applications ranging from environmental monitoring to target classification. The Stokes parameters are ideal quantities for characterizing the above features because they provide useful information on both light intensity and polarization state. The University of Nebraska is currently refurbishing an airborne multi-wavelength laser radar system based on the NASA Goddard Space Flight Center (GSFC) developed Airborne Laser Polarimetric Sensor (ALPS). The system uses a Nd:YAG laser operating at wavelengths of 1064 nm and 532 nm, and contains four channels at each wavelength to measure the polarization states. This system was used to measure the Stokes parameters of backscattered laser light from different materials. These included canvas tarp, white paper, plywood, concrete, aluminum plate and anodized aluminum plate. The data provide an understanding of the polarized scattering properties of various materials, and are expected to be useful in developing target discrimination algorithms.

  4. Effect of thickness on the thermal properties of hydrogen-bonded LbL assemblies.

    PubMed

    Sung, Choonghyun; Vidyasagar, Ajay; Hearn, Katelin; Lutkenhaus, Jodie L

    2012-05-29

    Layer-by-layer (LbL) assemblies have attracted much attention for their functional versatility and ease of fabrication. However, characterizing their thermal properties in relation to the film thickness has remained a challenging topic. We have investigated the role of film thickness on the glass transition temperature (T(g)) and coeffecient of thermal expansion for poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) and PEO/poly(methacrylic acid) (PEO/PMAA) hydrogen-bonded LbL assemblies in both bulk and ultrathin films using modulated differential scanning calorimetry (modulated DSC) and temperature-controlled ellipsometry. In PEO/PAA LbL films, a single, well-defined T(g) was observed regardless of film thickness. The T(g) increased by 9 °C relative to the bulk T(g) as film thickness decreased to 30 nm because of interactions between the film and its substrate. In contrast, PEO/PMAA LbL films show a single glass transition only after a thermal cross-linking step, which results in anhydride bonds between PMAA groups. The T(g), within error, was unaffected by film thickness, but PEO/PMAA LbL films of thicknesses below ~2.7 μm exhibited a small amount of PEO crystallization and phase separation for the thermally cross-linked films. The coefficients of thermal expansion of both types of film increased with decreasing film thickness.

  5. Macular thickness in healthy Saudi adults

    PubMed Central

    Al-Zamil, Waseem M.; Al-Zwaidi, Fahad M.; Yassin, Sanaa A.

    2017-01-01

    Objectives: To determine the macular thickness in the eyes of healthy Saudi adults using spectral-domain optical coherence tomography (SD-OCT). Methods: This is a prospective, cross-sectional study, including 158 healthy participants between August and December 2015. Mean subject age was 29.9 ± 7.85 years old. All participants underwent full ophthalmic evaluation, including SD-OCT imaging, and axial length measurement. Data from the right eye were included. Mean retinal thickness was determined. Correlations between retinal thickness and gender, age, axial length, and spherical equivalence were analyzed. Results: Mean central retinal thickness was 244.76 ± 23.62 µm, mean axial length was 23.8 ± 1.062 mm (range: 20.5-29 mm) and mean spherical equivalent was -0.31 ± 1.75 diopters (D) (range: -5.50 to +4.25 D). Central subfield (CSF) thickness and foveal volume were significantly lower in women than in men (both p<0.001). Data from the various age groups did not show statistically significant differences in the CSF thickness (p=0.389) or foveal volume (p=0.341). A positive correlation between CSF thickness and axial length (p<0.001) was observed. Conclusion: The normal macular thickness values in healthy Saudi individuals is different from that reported in other ethnic groups, as obtained by SD-OCT. Saudi men had thicker CSF than Saudi women and axial length was positively correlated to the central foveal thickness. PMID:28042632

  6. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  7. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshinao; Enatsu, Yuuki; Ishizuki, Masanari; Kubota, Yuki; Tajima, Jumpei; Nagashima, Toru; Murakami, Hisashi; Takada, Kazuya; Koukitu, Akinori

    2010-09-01

    Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50-200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H 2 and NH 3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×10 8 cm -2.

  8. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  9. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  10. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    SciTech Connect

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.

  11. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique

    NASA Astrophysics Data System (ADS)

    Potočnik, J.; Nenadović, M.; Bundaleski, N.; Popović, M.; Rakočević, Z.

    2016-12-01

    Nickel (Ni) thin films of different thicknesses (25 nm to 150 nm) were deposited on glass substrates using Glancing Angle Deposition technique. Characterization of obtained Ni films was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and by four-point probe method. Variations in optical parameters with thickness correlated with structural, chemical and electrical properties of nanostructured nickel thin films were studied. The results showed that deposit is porous and consists of nano-scaled columns, which grow perpendicular to the substrate. It was found that the size of the columns and the surface roughness change with film thickness. Spectroscopic ellipsometry revealed that the refractive index and extinction coefficient varied with thickness, which can be correlated with changes in microstructure of Ni films. Additionally, the relationship between the film microstructure and its resistivity was also analyzed. It was found that the variations in Ni films resistivity could be attributed to the changes in the width of the columns. The increasing of layer thickness leads to overall decrease of optical resistivity of nickel thin films.

  12. Thickness dependence study of current-driven ferromagnetic resonance in Y3Fe5O12/heavy metal bilayers

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Mitra, A.; Westerman, A. L.; Ali, M.; Ciccarelli, C.; Cespedes, O.; Hickey, B. J.; Ferguson, A. J.

    2017-02-01

    We use ferromagnetic resonance to study the current-induced torques in YIG/heavy metal bilayers. YIG samples with thickness varying from 14.8 nm to 80 nm, with the Pt or Ta thin film on top, are measured by applying a microwave current into the heavy metals and measuring the longitudinal DC voltage generated by both spin rectification and spin pumping. From a symmetry analysis of the FMR lineshape and its dependence on YIG thickness, we deduce that the Oersted field dominates over spin-transfer torque in driving magnetization dynamics.

  13. Thickness dependence study of inorganic CdTe/CdSe solar cells fabricated from colloidal nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Ju, Tong; Yang, Lily; Carter, Sue

    2010-05-01

    The thickness dependence of cadmium telluride/cadmium selenide (CdTe/CdSe) heterojunctions is studied in order to maximize the performance of solar cells. The best overall performance of 3.02% efficiency at air mass 1.5 was achieved from a device with 300 nanometers (nm) of sintered CdTe and 100 nm CdSe, using indium tin oxide and evaporated aluminum as the electrodes. In contrast to thin film CdTe solar cells, the power efficiency was strongly dependent on the thickness of the nanoparticle layer, indicating that the device efficiency is limited by charge transport.

  14. Effect of Flake Thickness on Coercivity of Nanocrystalline SmCo5 Bulk Prepared from Anisotropic Nanoflake Powder (Postprint)

    DTIC Science & Technology

    2016-08-23

    Figure 8 shows fracture surface microstructure of the SmCo5 bulk sample prepared with 100 nm thick flakes. Flake-shaped SmCo5 phases are clearly visible as...boundaries. Efforts to determine the composition of these nano -phases by EDS analysis were not successful probably because the phases were too small...with 100 - 1000 nm in thickness had coercivity values between 6 and 11 kOe. As we know, bulk coercivity is sensitive to FIG. 8. SEM fracture surface

  15. Expression of NM23 in human melanoma progression and metastasis.

    PubMed Central

    Easty, D. J.; Maung, K.; Lascu, I.; Véron, M.; Fallowfield, M. E.; Hart, I. R.; Bennett, D. C.

    1996-01-01

    NM23 is a putative metastasis-suppressor gene for some human cancers. Here we have studied NM23 expression during melanoma progression using Northern blotting and immunocytochemistry. There was no significant difference in the average amounts of NM23 mRNA between cell lines derived from metastatic and primary melanomas. The level of NM23 mRNA was also determined for three pairs of poorly metastatic parental (P) and their highly metastatic variant (M) cell lines; the ratios for M/P were 1.2, 0.98 and 0.80. Next we used immunocytochemistry to study NM23 protein in normal skin, benign naevi and primary and metastatic melanomas. Melanocytes in all normal skin and benign samples were positive for NM23; however most primary melanomas (7/11) were not stained by the antibody. All metastatic melanoma samples (5/5) were positively stained. Findings were similar with an antiserum reactive with both forms of NM23 (H1 and H2), and with an antibody specific for NM23-H1. No relationship was apparent between NM23 immunoreactivity in primary tumours and their aggressiveness or prognosis. Hence, in contrast to the situation described for murine melanoma, the amount of NM23 mRNA or protein in human melanoma did not correlate inversely with metastasis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8679442

  16. In situ metalorganic vapor phase epitaxy control of GaAs/AlAs Bragg reflectors by laser reflectometry at 514 nm

    NASA Astrophysics Data System (ADS)

    Raffle, Y.; Kuszelewicz, R.; Azoulay, R.; Le Roux, G.; Michel, J. C.; Dugrand, L.; Toussaere, E.

    1993-12-01

    In situ reflectometry with a 514-nm laser beam was used to monitor AlAs and GaAs layer thicknesses grown by metalorganic vapor phase epitaxy. The effective optical indices of these materials have been calibrated at the growth temperature by using an original method based on ex situ double crystal x-ray diffraction measurement. According to these measured indices, the in situ laser reflectometry at 514 nm appears to be well suited for a real-time thickness control of the GaAs/AlAs based Bragg reflectors. Finally, Bragg reflectors centered at 980 nm have been grown using the reflectometry at 514 nm. X-ray diffraction and reflectivity measurements performed on these reflectors confirm a 1% reproducibility and accuracy of the wavelength stop band center.

  17. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    SciTech Connect

    Ohno, Takeo; Samukawa, Seiji

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  18. Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities.

    PubMed

    Lee, Jeunghoon; Hasan, Warefta; Odom, Teri W

    2009-02-12

    This paper describes three ways to tune the multipolar surface plasmon resonances of Au pyramidal particles: (1) by varying their thickness; (2) by controlling their relative orientation on a surface; and (3) by changing the refractive index of the surrounding media. We found that as the index of the medium was increased that the plasmon resonances red-shifted linearly from visible to near infrared wavelengths. By screening the different geometric parameters, we found that 25-nm thick pyramids in a tip-up orientation produced the largest refractive index sensitivities.

  19. A lidar system for remote measurement of oil film thickness on sea surface

    SciTech Connect

    Piskozub, J.; Drozdowska, V.; Varlamov, V.

    1997-06-01

    A new lidar system FLS-UV designed for measurement of oil film thickness is described. The system consisting of solid state 299 nm laser and a multichannel spectral receiver was produced by LDI Ltd, Tallinn Estonia in close collaboration with Laser Laboratory of Institute of Oceanology, Sopot, Poland. The system is able to measure oil film thickness in the range of 0.5 - 10 micrometers. It utilizes two methods: light absorption of Raman band in UV and measurement of fluorescence band intensity. The system is designed for continuous measurement from ship or low altitude aircraft. Technical description of the system as well as first experimental results are presented.

  20. A Thick Target for Synchrotrons and Betatrons

    DOE R&D Accomplishments Database

    McMillan, E. M.

    1950-09-19

    If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.

  1. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  2. Optically thick ablation fronts. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Konigl, A.

    1984-01-01

    The physical characteristics of optically thick ablation fronts such as interstellar clouds are analyzed. Attention is given to cold clumps in both planar and spherical geometries and modifications caused by accelerations in a gravitational field or by evaporation of the clumps when encountered hot gas. The effects of ablation on the appearance of the Rayleigh-Taylor instability are examined in both linear and nonlinear regimes. The results of the calculations are applied to the astrophysical phenomena of cold clumps immersed in a supersonic flow, optically thick jets, and ablation in stellar envelopes. Evaporation in an optically thick front is projected to be orders of magnitude larger than evaporation in electron-conduction fronts in optically thin conditions. The optically thick processes could then be useful for modeling flows from, e.g., newly formed stars and active galactic nuclei.

  3. Non-contact thickness measurement using UTG

    NASA Technical Reports Server (NTRS)

    Bui, Hoa T. (Inventor)

    1996-01-01

    A measurement structure for determining the thickness of a specimen without mechanical contact but instead employing ultrasonic waves including an ultrasonic transducer and an ultrasonic delay line connected to the transducer by a retainer or collar. The specimen, whose thickness is to be measured, is positioned below the delay line. On the upper surface of the specimen a medium such as a drop of water is disposed which functions to couple the ultrasonic waves from the delay line to the specimen. A receiver device, which may be an ultrasonic thickness gauge, receives reflected ultrasonic waves reflected from the upper and lower surface of the specimen and determines the thickness of the specimen based on the time spacing of the reflected waves.

  4. Steady incompressible variable thickness shear layer aerodynamics

    NASA Technical Reports Server (NTRS)

    Chi, M. R.

    1976-01-01

    A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

  5. APPLIED ORIGAMI. Origami of thick panels.

    PubMed

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures.

  6. Investigation of Shot Noise Reduction in InGaP HBTs with different Base Thickness

    NASA Astrophysics Data System (ADS)

    Sakalas, P.; Schroter, M.; Zampardi, P.

    2005-08-01

    DC, AC characteristics and Noise parameters of InGaP/GaAs HBTs with base thicknesses of wB/nm=90, 70, 50 as well as CCHBTs with wB=90 nm, were measured and modeled using advanced compact model HICUM. Very good agreement of HICUM versus measured data was observed for AC and DC data. Significant base thickness reduction only slightly increases peak transit frequency fT/GHz =(45 (90nm), 54 (50nm)) due to reduced base transit time. High speed performance is mainly controlled by nonequilibrium electrons which form minority carrier jam in B/C SCR and thus additional delay. Significant increase of fT/GHz =60 (90nm) was observed for CCHBTs, which feature lower collector internal resistance and smaller delay in B/C SCR. Therefore measured NFmin of different wB HBTs did not exhibit expected difference, in contrast to CCHBTs, which demonstrated significantly lower NFmin. Our analytical noise model clarified that strong shot noise reduction in AIIIBV is stemming not only from correlated currents, but also from Coulomb blockade by nonequilibrium electrons.

  7. Thick REBaCuO superconducting films through single-coating of low-fluorine metallorganic solution

    NASA Astrophysics Data System (ADS)

    Boubeche, M.; Cai, C. B.; Jian, H. B.; Li, M. J.; Yang, W. T.; Liu, Z. Y.; Bai, C. Y.

    2016-10-01

    A high critical current Ic is crucial for the application of high temperature superconductors YBa2Cu3O7-δ in energy efficient power devices and wires. In this paper we report the fabrication of thick (YGd)1.3Ba2Cu3O7-x films on a metal substrate using low-fluorine metal organic deposition method. The effects of the film thickness on the microstructure, texture and superconductivity properties of the films were evaluated. In order to increase the film thicknesses by single coating, the influence of withdrawal speed during the dip coating on resulting thickness are investigated with the other processing parameters fixed. It is revealed that there is a maximum thickness for a certain starting solution. Here we used 3 different solutions, Conventional Low Fluorine solutions with 2 M and 2.5 M, and super low-fluorine solution with 2.5 M. The maximum thicknesses of about 710 nm, 1280 nm and 1460 nm were obtained, respectively.

  8. Structural, morphological, electrical, and optical properties of silver thin films of varying thickness deposited on cupric oxide

    NASA Astrophysics Data System (ADS)

    Hajakbari, Fatemeh; Shafieinejad, Farzaneh

    2016-03-01

    In this investigation, silver (Ag) films of varying thickness (25-100 nm) were grown on cupric oxide (CuO) on silicon and quartz. The CuO preparation was carried out by the thermal oxidation annealing of copper (Cu) thin films deposited by DC magnetron sputtering. The physical properties of the prepared films were studied by different techniques. Rutherford backscattering spectroscopy (RBS) analysis indicated that the Ag film thickness was about 25-100 nm. X-ray diffraction (XRD) results showed that by increasing Ag thickness, the film crystallinity was improved. Also, atomic force microscopy (AFM) and scanning electron microscopy (SEM) results demonstrated that the surface morphology and the grain size were affected by the Ag film thickness. Furthermore, the electrical resistivity of films determined by four-point probe measurements versus the Ag film thickness was discussed. A reduction in the optical band gap energy of CuO is observed from 1.51 to 1.42 eV with an increase in Ag film thickness to 40 nm in Ag/CuO films.

  9. Microwave mixing with niobium variable thickness bridges

    NASA Technical Reports Server (NTRS)

    Wang, L.-K.; Callegari, A.; Deaver, B. S., Jr.

    1977-01-01

    Niobium thin-film bridges 300-A thick, 1-micron wide, and 0.5-micron long joining two bulk films 5000-A thick and having normal resistance of the order of 1 ohm have been fabricated and used for microwave mixing at 10 GHz. They exhibit Josephson, bolometric, and multiple-flux-flow mixing and have useful response at 100-200 GHz. The data show in a direct way limitations imposed by flux flow and heating.

  10. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Geis, M.W.

    1986-03-18

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.

  11. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Geis, Michael W.

    1986-01-01

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.

  12. Characterization of Thick Glass Reinforced Composites

    DTIC Science & Technology

    1992-07-01

    24 ounces per square yard. The matrices were different polyester resin systems from American Cyanamid and Owens Corning . Specimen thicknesses ranged...fab- ricated similar size plates using the American Cyanamid resin. The Owens Corning plates con- tained 53% volume fraction fiber while the American...thicknesses for the Owens Corning and four for the American Cyanamid. Specimens were loaded in three point bending at a displacement rate that was changed

  13. Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range.

    PubMed

    Aernouts, Ben; Zamora-Rojas, Eduardo; Van Beers, Robbe; Watté, Rodrigo; Wang, Ling; Tsuta, Mizuki; Lammertyn, Jeroen; Saeys, Wouter

    2013-12-30

    A supercontinuum laser based double integrating sphere setup in combination with an unscattered transmittance measurement setup was developed and carefully validated for optical characterization of turbid samples in the 500-2250 nm wavelength range. A set of 57 liquid optical phantoms, covering a wide range of absorption and scattering properties, were prepared and measured at two sample thicknesses. The estimated bulk optical properties matched well for both thicknesses, and with theory and literature, without significant crosstalk between absorption and scattering. Equations were derived for the bulk scattering properties μ(s), μ(s)' and g of Intralipid® 20% which can be used to calculate the bulk scattering properties of intralipid-dilutions in the 500-2250 nm range.

  14. A precise measurement of lunar spectral irradiance from 450 nm to 1000 nm

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Lykke, K.; Woodward, J. T.; Smith, A. W.

    2013-12-01

    Although the Moon is our nearest celestial neighbor, our knowledge of its absolute spectral irradiance is an order of magnitude less precise than our knowledge of the best-calibrated stars, including the Sun. A precise determination of the Moon's absolute spectral irradiance has the potential to improve on-orbit calibrations of Earth-observing instruments and extend atmospheric monitoring techniques based on Sun photometry to nighttime measurements based on lunar spectrophotometry. Observations of the Moon have already been used to track changes in satellite sensor response at the sub-percent level, relying on a model of lunar irradiance developed by the United States Geological Survey to predict time-dependent changes in lunar irradiance. The absolute scale of this model, however, is not known accurately enough to allow the Moon to specify an absolute scale for instrument response on orbit or to bridge gaps in various climate data records. We report initial measurements of lunar spectral irradiance with an uncertainty below 1 % from 420 nm to 1000 nm and compare them with the USGS model. Our measurement uncertainty meets the radiometric calibration requirement for many climate data records derived from satellite images, including those for vegetation, aerosols, and snow and ice albedo. It therefore opens the possibility of using the Moon as a calibration standard to bridge gaps in satellite coverage and validate atmospheric retrieval algorithms. Our measurement technique also yields detailed information about the atmosphere at the measurement site, suggesting that lunar observations are a possible solution for aerosol monitoring during the polar winter and can provide nighttime measurements to complement aerosol data collected with Sun photometers. Our measurement, made with a novel apparatus, is an order of magnitude more accurate than the previous state-of-the-art and has continuous spectral coverage, removing the need to interpolate between filter passbands.

  15. Sub-10 nm patterning using EUV interference lithography.

    PubMed

    Päivänranta, Birgit; Langner, Andreas; Kirk, Eugenie; David, Christian; Ekinci, Yasin

    2011-09-16

    Extreme ultraviolet (EUV) lithography is currently considered as the leading technology for high-volume manufacturing below sub-20 nm feature sizes. In parallel, EUV interference lithography based on interference transmission gratings has emerged as a powerful tool for industrial and academic research. In this paper, we demonstrate nanopatterning with sub-10 nm resolution using this technique. Highly efficient and optimized molybdenum gratings result in resolved line/space patterns down to 8 nm half-pitch and show modulation down to 6 nm half-pitch. These results show the performance of optical nanopatterning in the sub-10 nm range and currently mark the record for photon-based lithography. Moreover, an efficient phase mask completely suppressing the zeroth-order diffraction and providing 50 nm line/space patterns over large areas is evaluated. Such efficient phase masks pave the way towards table-top EUV interference lithography systems.

  16. Solid Surface Combustion Experiment: Thick Fuel Results

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Bhattacharjee, Subrata; West, Jeff; Tang, Lin; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The results of experiments for spread over polymethylmethacrylate, PMMA, samples in the microgravity environment of the Space Shuttle are described. The results are coupled with modelling in an effort to describe the physics of the spread process for thick fuels in a quiescent, microgravity environment and uncover differences between thin and thick fuels. A quenching phenomenon not present for thin fuels is delineated, namely the fact that for thick fuels the possibility exists that, absent an opposing flow of sufficient strength to press the flame close enough to the fuel surface to allow the heated layer in the solid to develop, the heated layer fails to become 'fully developed.' The result is that the flame slows, which in turn causes an increase in the relative radiative loss from the flame, leading eventually to extinction. This potential inability of a thick fuel to develop a steady spread rate is not present for a thin fuel because the heated layer is the fuel thickness, which reaches a uniform temperature across the thickness relatively rapidly.

  17. Elastic stability of thick auxetic plates

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2014-04-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads.

  18. Ice Thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, C.; Howell, S.

    2015-12-01

    Recently the feasibility of commercial shipping in the ice-prone Northwest Passage has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first-ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. Results show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. There are few other data to compare with to evaluate if the ice of the Northwest Passage has transitioned as other parts of the Arctic have. Although likely thinner than some 20 or more years ago, ice conditions must still be considered severe, and the Canadian Arctic Archipelao may well be considered the last ice refuge of the Arctic. These results have important implications for the prediction of ice break-up and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  19. Determination of thickness and composition of high-k dielectrics using high-energy electrons

    SciTech Connect

    Grande, P. L.; Vos, M.; Venkatachalam, D. K.; Elliman, R. G.; Nandi, S. K.

    2013-08-12

    We demonstrate the application of high-energy elastic electron backscattering to the analysis of thin (2–20 nm) HfO{sub 2} overlayers on oxidized Si substrates. The film composition and thickness are determined directly from elastic scattering peaks characteristic of each element. The stoichiometry of the films is determined with an accuracy of 5%–10%. The experimental results are corroborated by medium energy ions scattering and Rutherford backscattering spectrometry measurements, and clearly demonstrate the applicability of the technique for thin-film analysis. Significantly, the presented technique opens new possibilities for nm depth profiling with high spatial resolution in scanning electron microscopes.

  20. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  1. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  2. 32nm node technology development using interference immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; McCafferty, Diane; Markoya, Louis; Hendrickx, Eric; Hermans, Jan; Ronse, Kurt

    2005-05-01

    The 38nm and 32nm lithography nodes are the next major targets for optical lithography on the Semiconductor Industry Roadmap. The recently developed water-based immersion lithography using ArF illumination will be able to provide an optical solution for lithography at the 45nm node, but it will not be able to achieve the 38nm or the 32nm nodes as currently defined. To achieve these next lithographic nodes will require new, very high refractive index fluids to replace the water used in current immersion systems. This paper describes tests and experiments using an interference immersion lithography test jig to develop key technology for the 32nm node. Interference imaging printers have been available for years, and with the advent of Immersion Lithography, they have a new use. Interference immersion image printing offers users a rapid, cost-effective way to develop immersion lithography, particularly at extremely high resolutions. Although it can never replace classical lens-based lithography systems for semiconductor device production, it does offer a way to develop resist and fluid technology at a relatively low cost. Its simple image-forming format offers easy access to the basic physics of advanced imaging. Issues such as: Polarization of the image forming light rays; Fluid/resist interaction during exposure; Topcoat film performance; and the Line Edge Roughness (LER) of resists at extremely high resolutions can all be readily studied. Experiments are described and results are provided for work on: 32nm imaging tests; high refractive index fluid testing using 193nm wavelength at resolutions well beyond current lens-based system capabilities; and polarization configuration testing on 45nm, 38nm, and 32nm L/S features. Results on the performance of resists and topcoats are reported for 32nm L/S features.

  3. Near-infrared transillumination at 1310-nm for the imaging of early dental decay

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Huynh, Gigi D.; Jones, Graham C.; Fried, Daniel

    2003-09-01

    New imaging technologies are needed for the early detection of dental caries (decay) in the interproximal contact sites between teeth. Previous measurements have demonstrated that dental enamel is highly transparent in the near-IR at 1300-nm. In this study, a near-IR imaging system operating at 1300-nm was used to acquire images through tooth sections of varying thickness and whole teeth in order to demonstrate the utility of a near-IR dental transillumination system for the imaging of early dental caries (decay). Simulated lesions, which model the optical scattering of natural dental caries, were placed in plano-parallel dental enamel sections. The contrast ratio between the simulated lesions and surrounding sound enamel was calculated from analysis of acquired projection images. The results show significant contrast between the lesion and the enamel (>0.35) and a spatial line profile that clearly resolves the lesion in samples as thick as 6.75-mm. This study clearly demonstrates that a near-IR transillumination system has considerable potential for the imaging of early dental decay.

  4. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  5. Composite Fermion Spin Polarization Energy with Finite Layer Thickness

    NASA Astrophysics Data System (ADS)

    Shayegan, Mansour; Liu, Yang; Hasdemir, Sukret; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    2014-03-01

    We study the spin polarization transitions of fractional quantum Hall (FQH) states in the filling range 1 < ν < 2 in symmetric quantum wells (QWs), as a function of density. Our results reveal a strong well-width dependence of the critical density nC and ratio between the Zeeman energy (EZ) normalized to the Coulomb energy (e2 / 4 πɛlB), above which a certain FQH state becomes spin polarized. For example, the ν = 7 / 5 FQH state becomes spin polarized at about 3 times higher density or 1.7 times larger EZ in the 31-nm-wide QW than in the 65-nm-wide QW. This well-width dependence of the spin polarization stems from by the finite electron layer thickness in these QWs and the resulting softening of the Coulomb interaction. We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, and the NSF (DMR-0904117, DMR-1305691 and MRSEC DMR-0819860) for sample fabrication. Work at Arg.

  6. Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films

    NASA Astrophysics Data System (ADS)

    Stenzel, O.; Stendal, A.; Röder, M.; Wilbrandt, S.; Drews, D.; Werninghaus, T.; von Borczyskowski, C.; Zahn, D. R. T.

    1998-03-01

    Thin film sandwich samples have been prepared of copper phthalocyanine ultrathin solid films with incorporated metal (silver, indium) nanoclusters, surrounded by an amorphous silicon environment. The samples were investigated by transmission electron microscopy in both lateral and cross-sectional geometries. In view of the optical properties, we observed a gradual blue wavelength shift of the localized metal cluster plasmon excitation for about 300 nm accompanying an equivalent copper phthalocyanine thickness increase from `zero' to a threshold thickness of about 4 nm. We attribute this behaviour to the formation of bulk-like optical properties of the copper phthalocyanine film, which is completed at the observed equivalent threshold thickness.

  7. Measurement of the Temperature Coefficient of Resistance in Metallic Films with Nano-thickness

    NASA Astrophysics Data System (ADS)

    Oliva, A. I.; Lugo, J. M.

    2016-03-01

    The temperature coefficient of resistance (TCR) values of gold and aluminum films deposited on glass substrates were obtained in the range of thickness from 20 nm to 200 nm at 298 K and atmospheric pressure conditions. Applying an electrical current and measuring simultaneously the corresponding changes of voltage (i.e., electrical resistance), and the change of temperature on the thin films, the TCR value was estimated. The measured TCR values show a decrement with the film thickness reduction, and their values are approximately 13.0 % lower than their corresponding bulk values mainly for thinner films. A comparison with previously reported cooper TCR values and the values estimated with the Tellier-Tosser model show good agreement with differences of about 5.0 % between them.

  8. Hard x-ray nanofocusing by refractive lenses of constant thickness

    NASA Astrophysics Data System (ADS)

    Seiboth, F.; Scholz, M.; Patommel, J.; Hoppe, R.; Wittwer, F.; Reinhardt, J.; Seidel, J.; Knaut, M.; Jahn, A.; Richter, K.; Bartha, J. W.; Falkenberg, G.; Schroer, C. G.

    2014-09-01

    In order to focus light or x rays, the thickness of a refractive lens is typically varied over its aperture. Here, we present a refractive x-ray lens made of lamellae of constant thickness, the refractive lamellar lens. Refractive power is created by a specific bending of the lamellae rather than by a concave lens profile. This very special design has the technological advantage that materials like sapphire or diamond can be used to make lenses by coating techniques. A first lens prototype focused x rays with a photon energy E = 15.25 keV to a lateral beam size of 164 nm × 296 nm full width at half maximum.

  9. Thickness Effects for Thermoelectric Property of Antimony Telluride Nanoplatelets via Solvothermal Method.

    PubMed

    Yan, Xinxin; Zheng, Wenwen; Liu, Fengming; Yang, Shuhua; Wang, Ziyu

    2016-11-29

    Nanostructures have the potential to exhibit good thermoelectric properties by tuning and controlling their size and thickness, and the competing electrical and thermal properties can be decoupled by engineering the interface and grain boundary. In the present study, Sb2Te3 nanoplatelets with different sizes were fabricated using a practical solvothermal method. The thickness of the platelets were regulated between sizes of 10 nm and 100 nm, and the opposite edge length was varied between 1 and 10 μm by altering chemical conditions. Consequently, manipulating the grain size made it suitable to benefit the carrier transport and also block phonons for the thin platelets, resulting in a significant decrease in thermal conductivity and simultaneous increase in electrical conductivity. The results showed that the optimized figure of merit ZT, increased from 0.2 to 1.0 for thin samples, providing a comprehensive understanding of size-dependent thermoelectric performance.

  10. Thickness Effects for Thermoelectric Property of Antimony Telluride Nanoplatelets via Solvothermal Method

    NASA Astrophysics Data System (ADS)

    Yan, Xinxin; Zheng, Wenwen; Liu, Fengming; Yang, Shuhua; Wang, Ziyu

    2016-11-01

    Nanostructures have the potential to exhibit good thermoelectric properties by tuning and controlling their size and thickness, and the competing electrical and thermal properties can be decoupled by engineering the interface and grain boundary. In the present study, Sb2Te3 nanoplatelets with different sizes were fabricated using a practical solvothermal method. The thickness of the platelets were regulated between sizes of 10 nm and 100 nm, and the opposite edge length was varied between 1 and 10 μm by altering chemical conditions. Consequently, manipulating the grain size made it suitable to benefit the carrier transport and also block phonons for the thin platelets, resulting in a significant decrease in thermal conductivity and simultaneous increase in electrical conductivity. The results showed that the optimized figure of merit ZT, increased from 0.2 to 1.0 for thin samples, providing a comprehensive understanding of size-dependent thermoelectric performance.

  11. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  12. Thickness Effects for Thermoelectric Property of Antimony Telluride Nanoplatelets via Solvothermal Method

    PubMed Central

    Yan, Xinxin; Zheng, Wenwen; Liu, Fengming; Yang, Shuhua; Wang, Ziyu

    2016-01-01

    Nanostructures have the potential to exhibit good thermoelectric properties by tuning and controlling their size and thickness, and the competing electrical and thermal properties can be decoupled by engineering the interface and grain boundary. In the present study, Sb2Te3 nanoplatelets with different sizes were fabricated using a practical solvothermal method. The thickness of the platelets were regulated between sizes of 10 nm and 100 nm, and the opposite edge length was varied between 1 and 10 μm by altering chemical conditions. Consequently, manipulating the grain size made it suitable to benefit the carrier transport and also block phonons for the thin platelets, resulting in a significant decrease in thermal conductivity and simultaneous increase in electrical conductivity. The results showed that the optimized figure of merit ZT, increased from 0.2 to 1.0 for thin samples, providing a comprehensive understanding of size-dependent thermoelectric performance. PMID:27898107

  13. Determination of Mean Thickness of an Oxide Layer on a Silicon Sphere by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Tao; Li, Yan; Luo, Zhi-Yong; Wu, Xue-Jian

    2010-05-01

    One of the biggest obstacles to reduce the uncertainty of the Avogadro constant NA is such that there will be an oxide layers on the surface of a silicon sphere. The thickness of this layer is measured by a modified spectroscopic ellipsometer, which can eliminate the influence of the curved surface, and the results are calibrated by x-ray reflectivity. Fifty positions distributed nearly uniformly on the surface of the silicon sphere are measured twice. The results show that the mean thickness of the overall oxide layer is 3.75 nm with the standard uncertainty of 0.21 nm, which means that the relative uncertainty component of NA owing to this layer can be reduced to 1.2 × 10-8.

  14. CdS nanofilms: Effect of film thickness on morphology and optical band gap

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Kumar, Santosh; Sharma, Pankaj; Sharma, Vineet; Katyal, S. C.

    2012-12-01

    CdS nanofilms of varying thickness (t) deposited by chemical bath deposition technique have been studied for structural changes using x-ray diffractometer (XRD) and transmission electron microscope (TEM). XRD analysis shows polycrystalline nature in deposited films with preferred orientation along (002) reflection plane also confirmed by selected area diffraction pattern of TEM. Uniform and smooth surface morphology observed using field emission scanning electron microscope. The surface topography has been studied using atomic force microscope. The optical constants have been calculated from the analysis of %T and %R spectra in the wavelength range 300 nm-900 nm. CdS nanofilms show a direct transition with red shift. The optical band gap decreases while the refractive index increases with increase in thickness of nanofilms.

  15. New method of assessing the relationship between buccal bone thickness and gingival thickness

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0–5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results Of the central incisors, 77% of all sites had a buccal thickness of 0.5–1.0 mm, and 23% had a thickness of 1.0–1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was

  16. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  17. In vitro assessment of fiber sweeping speed during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) is considered a minimally invasive procedure to treat benign prostatic hyperplasia (BPH). During the PVP, the prostate gland is irradiated by the 532-nm laser and the fiber is swept and dragged along the urethra. In this study the speed of sweeping fiber during the PVP is being investigated. In vitro porcine kidney model was used (N=100) throughout the experiment. A Q-switched 532-nm laser, equipped with sidefiring 750-Um fiber, was employed and set to power levels of 120 and 180 W. The speed of fiber sweeping was the only variable in this study and varied at 0 (i.e. no sweeping), 0.5, 1.0, 1.5, and 2.0 sweep/s. Ablation rate, depth, and coagulation thickness were quantified. Based on the current settings, ablation rate decreased as sweeping speed increased and was maximized between 0 to 1.0 sweep/s for 120-W power level and between 0 to 0.5 sweep/s for 180-W power level. Ablation rate at 180 W was higher than that at 120 W, regardless of sweeping speed. Ablation depth at both 120 and 180 W was maximized at 0 sweep/s and decreased 35% at 0.5 sweep/s. The overall coagulation thickness was less than 1.5 mm and comparable from 0 to 1.5 sweep/s (0.8~0.9 mm) and increased at 2.0 sweep/s (~1.1 mm). This study demonstrated that tissue ablation performance was contingent upon sweeping speed and maximized at slow sweeping speed due to longer laser-tissue interaction time and larger area coverage by the 532-nm light.

  18. Development and characterization of a thinner binary mask absorber for 22-nm node and beyond

    NASA Astrophysics Data System (ADS)

    Faure, Tom; Badger, Karen; Kindt, Louis; Kodera, Yutaka; Komizo, Toru; Kondo, Shinpei; Mizoguchi, Takashi; Nemoto, Satoru; Seki, Kazunori; Senna, Tasuku; Wistrom, Richard; Zweber, Amy; Nishikawa, Kazuhiro; Inazuki, Yukio; Yoshikawa, Hiroki

    2010-09-01

    The lithography challenges posed by the 22 nm node continue to place stringent requirements on photomasks. The dimensions of the mask features continue to shrink more deeply into the sub-wavelength scale. In this regime residual mask electromagnetic field (EMF) effects due to mask topography can degrade the imaging performance of critical mask patterns by degrading the common lithography process window and by magnifying the impact of mask errors or MEEF. Based on this, an effort to reduce the mask topography effect by decreasing the thickness of the mask absorber was conducted. In this paper, we will describe the results of our effort to develop and characterize a binary mask substrate with an absorber that is approximately 20-25% thinner than the absorber on the current Opaque MoSi on Glass (OMOG) binary mask substrate. For expediency, the thin absorber development effort focused on using existing absorber materials and deposition methods. It was found that significant changes in film composition and structure were needed to obtain a substantially thinner blank while maintaining an optical density of 3.0 at 193 nm. Consequently, numerous studies to assess the mask making performance of the thinner absorber material were required and will be described. During these studies several significant mask making advantages of the thin absorber were discovered. The lower film stress and thickness of the new absorber resulted in improved mask flatness and up to a 60% reduction in process-induced mask pattern placement change. Improved cleaning durability was another benefit. Furthermore, the improved EMF performance of the thinner absorber [1] was found to have the potential to relieve mask manufacturing constraints on minimum opaque assist feature size and opaque corner to corner gap. Based on the results of evaluations performed to date, the thinner absorber has been found to be suitable for use for fabricating masks for the 22 nm node and beyond.

  19. Unique Challenges Accompany Thick-Shell CdSe/nCdS (n > 10) Nanocrystal Synthesis

    SciTech Connect

    Guo, Y; Marchuk, K; Abraham, R; Sampat, S; Abraham, R.; Fang, N; Malko, AV; Vela, J

    2011-12-23

    Thick-shell CdSe/nCdS (n {ge} 10) nanocrystals were recently reported that show remarkably suppressed fluorescence intermittency or 'blinking' at the single-particle level as well as slow rates of Auger decay. Unfortunately, whereas CdSe/nCdS nanocrystal synthesis is well-developed up to n {le} 6 CdS monolayers (MLs), reproducible syntheses for n {ge} 10 MLs are less understood. Known procedures sometimes result in homogeneous CdS nucleation instead of heterogeneous, epitaxial CdS nucleation on CdSe, leading to broad and multimodal particle size distributions. Critically, obtained core/shell sizes are often below those desired. This article describes synthetic conditions specific to thick-shell growth (n {ge} 10 and n {ge} 20 MLs) on both small (sub2 nm) and large (>4.5 nm) CdSe cores. We find added secondary amine and low concentration of CdSe cores and molecular precursors give desired core/shell sizes. Amine-induced, partial etching of CdSe cores results in apparent shell-thicknesses slightly beyond those desired, especially for very-thick shells (n {ge} 20 MLs). Thermal ripening and fast precursor injection lead to undesired homogeneous CdS nucleation and incomplete shell growth. Core/shells derived from small CdSe (1.9 nm) have longer PL lifetimes and more pronounced blinking at single-particle level compared with those derived from large CdSe (4.7 nm). We expect our new synthetic approach will lead to a larger throughput of these materials, increasing their availability for fundamental studies and applications.

  20. Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics

    PubMed Central

    Hayworth, Kenneth J.; Xu, C. Shan; Lu, Zhiyuan; Knott, Graham W.; Fetter, Richard D.; Tapia, Juan Carlos; Lichtman, Jeff W.; Hess, Harald F.

    2015-01-01

    FIB-SEM has become an essential tool for studying neural tissue at resolutions below 10×10×10 nm, producing datasets superior for automatic connectome tracing. We present a technical advance, ultrathick sectioning, which reliably subdivides embedded tissue samples into chunks (20 µm thick) optimally sized and mounted for efficient, parallel FIB-SEM imaging. These chunks are imaged separately and then ‘volume stitched’ back together, producing a final 3D dataset suitable for connectome tracing. PMID:25686390

  1. Fabrication of Planar Laser Targets with Sub-Micrometer Thickness Uniformity

    SciTech Connect

    Bono, M J; Castro, C; Hibbard, R L

    2005-07-21

    Lawrence Livermore National Laboratory routinely manufactures planar laser targets that consist of stacked and bonded foils for physics experiments on high-energy lasers. One recent planar laser target, the Equation of State target, had extremely tight specifications. The target required four bonded layers with thickness uniformities of several hundred nm, and the adhesive bonds between the layers could not exceed a few {micro}m. This paper describes the manufacturing process that was developed to meet these specifications.

  2. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process

  3. Scattering matrices of martian dust analogs at 488 nm and 647 nm

    NASA Astrophysics Data System (ADS)

    Dabrowska, Dominika D.; Muñoz, Olga; Moreno, Fernando; Ramos, José L.; Martínez-Frías, Jesús; Wurm, Gerhard

    2015-04-01

    We present measurements of the complete scattering matrix as a function of the scattering angle of five martian dust analogs, namely montmorillonite, two palagonite (JSC-1) samples, basalt, and calcite. The measurements are performed at 488 and 647 nm, covering the scattering angle range from 3° to 177°. The experimental scattering matrices are compared with results of Lorenz-Mie calculations performed for the same size distributions and refractive indices as our analog samples. As expected, we find that scattering matrices of realistic polydispersions of dust particles cannot be replaced by such calculated matrices. In contrast, the measured phase functions for our martian dust analogs may be considered a good approximation for martian dust at the studied wavelengths. Further, because of the sensitivity of polarimetry to particle microphysics, spectro-polarimetric observations from the martian surface appear to be a powerful diagnostic tool to infer the composition of the dust in the martian atmosphere. To facilitate the use of the experimental matrices for multiple-scattering calculations with polarization included, we compute the corresponding synthetic scattering matrices based on the measurements and defined in the full angle range from 0° to 180°.

  4. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    NASA Astrophysics Data System (ADS)

    Ding, Guowen; Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-01

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ṡ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  5. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    SciTech Connect

    Ding, Guowen Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  6. Temperature- and thickness-dependent elastic moduli of polymer thin films

    PubMed Central

    2011-01-01

    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ. PMID:21711747

  7. Terahertz polarization conversion of metallic meanderline structures on the different thickness of polymide substrates

    NASA Astrophysics Data System (ADS)

    Gu, Chang; Zhao, Guozhong; Huang, Ruirui; Kou, Kuan

    2014-11-01

    In this paper, we have investigated the polarization dependence of terahertz wave through the metallic meanderline structure on the different thicknesses of polyimide substrate. The meanderline wave plates are designed by using software of CST Microwave Studio. The 200 nm thickness of gold film is used as metallic layer deposited on the polyimide substrate with different thicknesses. The ellipticity η is obtained by the simulating transmission and phase, η=0 corresponds to linearly polarized transmission, while η=1 and -1 corresponds to left-handed and right-handed circular polarization. The intermediate value of η indicates the elliptically polarization. The simulation results show that the absolute value of ellipticity reach the maximum of 0.999 at 0.505THz, 0.479THz and 0.391THz when the substrate thickness t=10μm, 30μm and 60μm, respectively. In addition, the metallic microstructure of meanderline displays a large bandwidth of THz operation. The ellipticity is over 99% in the THz band of 457 GHz to 532 GHz, 426 GHz to 508 GHz, 356 GHz to 486 GHz corresponding to the above three kind of substrate thicknesses. The bandwidth increases and shows red shift with increasing of substrate thickness. These results provide a reference for the design and manufacture of THz polarization conversion device.

  8. Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness

    NASA Astrophysics Data System (ADS)

    Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo

    2017-02-01

    Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.

  9. On high speed transmission with the 850nm VCSELs

    NASA Astrophysics Data System (ADS)

    Turkiewicz, Jarosław P.; Chorchos, Łukasz; Puerta Ramirez, Rafael; Vegas Olmos, Juan Jose; Ledentsov, Nikolay

    2016-09-01

    One of the key research challenges is development of energy efficient high bit rate data interconnects. The most promising solutions are based on 850 nm vertical cavity surface emitting lasers (VCSEL) and multi mode fibre (MMF). In this paper options to realize energy efficient 850 nm data interconnects are discussed and evaluated.

  10. Minimization of Wave Drag Due to Thickness with Constraints on Constant Volume and Maximum Thickness Position

    NASA Astrophysics Data System (ADS)

    Ishida, Yoji

    We have developed a numerical method for design of minimum-drag supersonic wing thickness with constraints on total volume and wing maximum thickness position. The method is based on the linearized supersonic theory and is an extension of Kawasaki's method which deals only with total volume constraint. The maximum thickness position of the wing, a new constraint condition, is an important information from both aerodynamic and structural point of view. The addition of the constraint has considerably extended the design possibility and has actually produced many interesting optimum thickness families. Numerical examples are given for delta, gothic and arrow wings which confirm the usefulness of present design method.

  11. Loss of transmittance in fluoropolymer films due to laser-induced damage at 1053 and 351-nm

    SciTech Connect

    Whitman, P.; Milam, D.; Norton, M.; Sell, W.

    1997-12-01

    Thick fluoropolymer films are being evaluated as a potential `disposable` debris shield to protect high-peak-power laser optics from x-ray and target debris generated in inertial-confinement fusion-ignition experiments, Two obstacles to implementation are optical uniformity and damage threshold. To understand the damage characteristics, transmittance of single 1053- or 351-nm laser pulses has been measured for commercial fluoropolymer films in vacuum. Samples were tested at fluences up to 105 J/cm2 at 1053-nm and 13 J/cm2 at 351-nm. Both the total transmitted energy for a single shot and the temporal energy transmittance profile during the shot were measured as a function of fluence. In addition, the total focusable transmitted energy was recorded for 351 -nm pulses. Results show that transmittance decreases slowly during a single-pulse irradiation, allowing much of the energy to be transmitted at fluences which cause noticeable degradation to the film. The film transmits greater than 90% of the 351-nm energy delivered in a beam with spatial average fluence of 8 J/cm2 with modulation up to 15 J/cm2. For 1053-nm laser light, the films do not begin to exhibit noticeable transmittance loss until average fluences exceed 40 J/cm2.

  12. Electron beam inspection of 16nm HP node EUV masks

    NASA Astrophysics Data System (ADS)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  13. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    PubMed

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  14. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    NASA Astrophysics Data System (ADS)

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-08-01

    In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range.

  15. Thin bilayer resists for 193-nm and future photolithography II

    NASA Astrophysics Data System (ADS)

    Hishiro, Yoshi; Hyatt, Michael

    2007-03-01

    Bilayer, Si-containing resists are a technique of interest and a strong candidate to replace chemical vapor deposition (CVD) hardmask processes for small critical dimensions (CDs). Previously, we proposed a very thin film approach using bilayer resists for future lithography, defined the requirements for the resists, and demonstrated 55nm transferred patterns with high aspect ratios using 2-beam interferometer exposure. In this paper, we have demonstrated smaller-than- 60nm transferred patterns with a high numerical aperture (NA) scanner, as well as 45nm and 40nm transferred patterns with a 2-beam system using a 20% Si-containing thin bilayer resist. Immersion scanner exposure and a 35nm CD with 2- beam system were also studied.

  16. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  17. Development of a new high transmission phase shift mask technology for 10 nm logic node

    NASA Astrophysics Data System (ADS)

    Faure, Thomas; Sakamoto, Yoshifumi; Toda, Yusuke; Badger, Karen; Seki, Kazunori; Lawliss, Mark; Isogawa, Takeshi; Zweber, Amy; Kagawa, Masayuki; Wistrom, Richard; Xu, Yongan; Lobb, Granger; Viswanathan, Ramya; Hu, Lin; Inazuki, Yukio; Nishikawa, Kazuhiro

    2016-05-01

    In this paper we will describe the development of a new 12% high transmission phase shift mask technology for use with the 10 nm logic node. The primary motivation for this work was to improve the lithographic process window for 10 nm node via hole patterning by reducing the MEEF and improving the depth of focus (DOF). First, the simulated MEEF and DOF data will be compared between the 6% and high T PSM masks with the transmission of high T mask blank varying from 12% to 20%. This resulted in selection of a 12% transmission phase shift mask. As part of this work a new 12% attenuated phase shift mask blank was developed. A detailed description and results of the key performance metrics of the new mask blank including radiation durability, dry etch properties, film thickness, defect repair, and defect inspection will be shared. In addition, typical mask critical dimension uniformity and mask minimum feature size performance for 10 nm logic node via level mask patterns will be shown. Furthermore, the results of work to optimize the chrome hard mask film properties to meet the final mask minimum feature size requirements will be shared. Lastly, the key results of detailed lithographic performance comparisons of the process of record 6% and new 12% phase shift masks on wafer will be described. The 12% High T blank shows significantly better MEEF and larger DOF than those of 6% PSM mask blank, which is consistent with our simulation data.

  18. Development and characterization of advanced phase-shift mask blanks for 14nm node and beyond

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Jun; Jang, Kyu-Jin; Choi, Min-Ki; Yang, Chul-Kyu; Lee, Jae-Chul; Lee, Jong-Keun; Kang, Byung-Sun; Lee, Jong-Hwa; Shin, Cheol; Nam, Kee-Soo

    2014-10-01

    Recently, the development of semiconductor process for 14nm node and beyond is in progress. The mask-making process demands higher resolution and CD accuracy to meet requirements. Current conventional ArF PSM has several problems such as higher 3D effect and higher loading effect due to the thicker film. These problems cause the CD performance degradation. This study is about the manufacturing of advance ArF PSM, which has thinner phase shift layer and higher etch rate Cr absorber film. The thickness of phase shift film is less than 60nm and the total etch-time for the Cr absorber film is reduced more than 30%. The mask CD performance of this new blank was evaluated in terms of CD uniformity, CD linearity, pattern resolution, and loading effect and so on. Adapting to this new blank, we can achieve better CD performance by reducing the loading effect. In addition, the chemical durability and ArF exposure durability were also improved. In conclusion, the mask-making process margin was extended by using this new blank, and it is expected that we can achieve the required specifications for 14nm node and beyond.

  19. Assessment of Layer Thickness and Interface Quality in CoP Electrodeposited Multilayers.

    PubMed

    Lucas, Irene; Ciudad, David; Plaza, Manuel; Ruiz-Gómez, Sandra; Aroca, Claudio; Pérez, Lucas

    2016-07-27

    The magnetic properties of CoP electrodeposited alloys can be easily controlled by layering the alloys and modulating the P content of the different layers by using pulse plating in the electrodeposition process. However, because of its amorphous nature, the study of the interface quality, which is a limitation for the optimization of the soft magnetic properties of these alloys, becomes a complex task. In this work, we use Rutherford backscattering spectroscopy (RBS) to determine that electrodeposited Co0.74P0.26/Co0.83P0.17 amorphous multilayers with layers down to 20 nm-thick are composed by well-defined layers with interfacial roughness below 3 nm. We have also determined, using magnetostriction measurements, that 4 nm is the lower limitation for the layer thickness. Below this thickness, the layers are mixed and the magnetic behavior of the multilayered films is similar to that shown by single layers, thus going from in-plane to out-of-plane magnetic anisotropy. Therefore, these results establish the range in which the magnetic properties of these alloys can be controlled by layering.

  20. Optoelectric patterning: Effect of electrode material and thickness on laser-induced AC electrothermal flow.

    PubMed

    Mishra, Avanish; Khor, Jian-Wei; Clayton, Katherine N; Williams, Stuart J; Pan, Xudong; Kinzer-Ursem, Tamara; Wereley, Steve

    2016-02-01

    Rapid electrokinetic patterning (REP) is an emerging optoelectric technique that takes advantage of laser-induced AC electrothermal flow and particle-electrode interactions to trap and translate particles. The electrothermal flow in REP is driven by the temperature rise induced by the laser absorption in the thin electrode layer. In previous REP applications 350-700 nm indium tin oxide (ITO) layers have been used as electrodes. In this study, we show that ITO is an inefficient electrode choice as more than 92% of the irradiated laser on the ITO electrodes is transmitted without absorption. Using theoretical, computational, and experimental approaches, we demonstrate that for a given laser power the temperature rise is controlled by both the electrode material and its thickness. A 25-nm thick Ti electrode creates an electrothermal flow of the same speed as a 700-nm thick ITO electrode while requiring only 14% of the laser power used by ITO. These results represent an important step in the design of low-cost portable REP systems by lowering the material cost and power consumption of the system.

  1. Image processing techniques for measuring non-uniform film thickness profiles

    SciTech Connect

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr.

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  2. Proton Energy Optimization and Spatial Distribution Analysis from a Thickness Study Using Liquid Crystal Targets

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Schumacher, Douglas; Freeman, Richard; van Woerkom, Linn

    2016-10-01

    Laser-accelerated ions from thin targets have been widely studied for applications including secondary radiation sources and cancer therapy, with recent studies trending towards thinner targets which can provide improved ion energies and yields. Here we discuss results from an experiment on the Scarlet laser at OSU using variable thickness liquid crystal targets. On this experiment, the spatial and spectral distributions of accelerated ions were measured along target normal and laser axes at varying thicknesses from 150nm to 2000nm at a laser intensity of 1 ×1020W /cm2 . Maximum ion energy was observed for targets in the 600 - 800nm thickness range, with proton energies reaching 24MeV . The ions were further characterized using radiochromic film, revealing an unusual spatial distribution on many laser shots. Here, the peak ion yield falls in an annular ring surrounding the target normal, with an increasing divergence angle as a function of ion energy. Details of these spatial and spectral ion distributions will be presented, including spectral deconvolution of the RCF data, revealing additional trends in the accelerated ion distributions. Supported by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0001976.

  3. Thickness effect on the structural and electrical properties of poly-SiGe films

    SciTech Connect

    Asafa, T.B.; Witvrouw, A.; Schneider, D.; Moussa, A.; Tabet, N.; Said, S.A.M.

    2014-01-01

    Graphical abstract: - Highlights: • Stress and Young's modulus of poly-SiGe film are linked to the grain columnar structure. • The above properties remain unchanged for poly-SiGe films thicker than 40 nm. • The point of transition is close to the electron mean free path for SiGe. • Both the resistivity and Hall mobility follow a similar trend. - Abstract: As lateral dimensions of electromechanical devices are scaled down to length scales comparable to electron mean free paths, the influence of thickness effect on their properties becomes sine qua non. This paper presents a detailed study of thickness effect on the Young's modulus, residual stress, resistivity and Hall mobility of ultrathin poly-Si{sub 11}Ge{sub 89} films deposited by low pressure chemical vapour deposition. The Young's moduli for the films thicker than ∼40 nm are close to the bulk value (135 GPa) while those of the thinner films are much lower. The reduction in resistivity and subsequent improved Hall mobility as thickness increases are discussed in light of surface morphology which is evident from atomic microscopy images. The near constant values of Young's modulus, resistivity and Hall mobility for the films thicker than ∼40 nm are attributed to the columnar grain structure as confirmed by the transmission electron microscopy images.

  4. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Tsutsumi, Tatsuya; Kabata, Tomoki; Mori, Takuma; Egawa, Takashi

    2017-03-01

    We investigated the effect of well layer thicknesses on the external quantum efficiency (EQE) and energy conversion efficiency (ECE) for InGaN/GaN multiple quantum well (MQW) solar cells grown on sapphire substrates by metalorganic chemical vapor deposition. The results indicated that EQE and ECE have maximum values at a specific well thickness. When the well thickness is sufficiently thin, EQE and ECE increase with an increase in the well thickness owing to an increase in light absorption. Then, once the well thickness surpasses a critical thickness, EQE and ECE begin to decrease owing to the influence of nonradiative recombination processes, which was indicated by the static and dynamic photoluminescence analyses. The critical well thickness probably depends not only on the MQW design but also on growth conditions. Further, we confirmed that the increased total thickness of the stacked well layers leads to increased light absorption and thereby contributes to the improvement of solar cell performance. A high short circuit current density of 1.34 mA/cm2 and a high ECE of 1.31% were achieved for a InGaN/GaN MQW solar cell with a 3.2-nm-thick InGaN well with total well thickness of 115 nm.

  5. Dependencies of microstructure and stress on the thickness of GdBa2Cu3O7 − δ thin films fabricated by RF sputtering

    PubMed Central

    2013-01-01

    GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137

  6. Residual Stress Analysis in Thick Uranium Films

    SciTech Connect

    Hodge, A M; Foreman, R J; Gallegos, G F

    2004-12-06

    Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.

  7. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, Leander J.; Bergren, Donald A.

    1989-01-01

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  8. Antarctic Crustal Thickness from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.

    2013-12-01

    Using gravity anomaly inversion, we have produced the first comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information. The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the most recent Bedmap2 ice thickness and bedrock topography compilation south of 60 degrees south (Fretwell et al., 2013) and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica penetrated by narrow continental rifts that feature relatively thinner crust. The East Antarctic Rift System (EARS) is a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. Intermediate crustal thickness with an inferred linear rift fabric is predicted under Coates Land. An extensive region of either thick oceanic crust or highly thinned continental crust is predicted offshore Oates Land and north Victoria Land, and also off West Antarctica

  9. Partial Thickness Rotator Cuff Tears: Current Concepts

    PubMed Central

    Matthewson, Graeme; Beach, Cara J.; Nelson, Atiba A.; Woodmass, Jarret M.; Ono, Yohei; Boorman, Richard S.; Lo, Ian K. Y.; Thornton, Gail M.

    2015-01-01

    Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized. PMID:26171251

  10. Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility

    PubMed Central

    Lucy, Katie A.; Wang, Bo; Schuman, Joel S.; Bilonick, Richard A.; Ling, Yun; Kagemann, Larry; Sigal, Ian A.; Grulkowski, Ireneusz; Liu, Jonathan J.; Fujimoto, James G.; Ishikawa, Hiroshi; Wollstein, Gadi

    2017-01-01

    Purpose Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). Methods The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. Results A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Conclusions Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures. PMID:28324116

  11. Effect of Sb thickness on the performance of bialkali-antimonide photocathodes

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos; Mammei, Russell; Poelker, Matthew

    2016-01-06

    The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ~7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layers exhibited the highest QE and the best 1/e lifetime. As last, the authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.

  12. Synthesis and surface plasmonic properties of ultra-thick silver nanowires

    NASA Astrophysics Data System (ADS)

    Hua, Jiaojiao; Wu, Fan; Fan, Fengru; Wang, Wenhui; Xu, Zhongfeng; Li, Fuli

    2016-06-01

    Metallic nanowires (NWs) possess significant potential for applications in integrated photonic and electronic devices at the nanoscale. Considering the manipulation of NWs and energy loss associated with surface plasmon polaritons (SPPs) modes which serve as signal carriers in the nanophotonic devices, NWs with large diameters are significant. In this work, we report a successive multi-step polyol process approach for the synthesis of ultra-thick silver nanowires (Ag NWs) and investigate their energy loss. Thin Ag NWs prepared in the first step are used as seeds for the further growth of thick Ag NWs in the subsequent steps, where Ag NWs with diameter as large as 1820 nm have been prepared. We further investigate the SPP propagation properties of these thick Ag NWs, and find that energy loss is decreased in Ag NWs with improved diameter. Our experimental results are important for the design and fabrication of SPP-based nanophotonic components and circuits.

  13. Effect of Si3N4 thickness on the optical characterization of grapheme.

    PubMed

    Shin, Dong-Wook; Lee, Jung Heon; Yoo, Ji-Beom

    2014-12-01

    Optical detection of graphene on a specific substrate is important for the analysis of the physical or chemical properties of graphene. Si3N4, an oxygen free substrate with high dielectric constant, is a good candidate to replace SiO2. In this letter, we report the optimization of the Si3N4 thickness for efficient optical characterization by means of the contrast, enhancement factor (F), and the Raman spectra of the graphene obtained on the selected Si3N4/Si substrate. The contrast (visibility) and enhancement factors (F, Raman intensity) of the graphene/Si3N4/Si structure were calculated as a function of the Si3N4 thickness and the wavelength of the excitation source. A suitable Si3N4 thickness generating high visibility and Raman intensities at the wavelength of the excitation source, 633 nm, was obtained.

  14. First-principles study of the critical thickness in asymmetric ferroelectric tunnel junctions

    SciTech Connect

    Cai Mengqiu; Du Yong; Huang Boyun

    2011-03-07

    The absent critical thickness of fully relaxed asymmetric ferroelectric tunnel junctions is investigated by first-principles calculations. The results show that PbTiO{sub 3} thin film between Pt and SrRuO{sub 3} electrodes can still retain a significant and stable polarization down to thicknesses as small as 0.8 nm, quite unlike the case of symmetric ferroelectric tunnel junctions. We trace this surprising result to the generation of a large electric field by the charge transfer between the electrodes caused by their different electronic environments, which acts against the depolarization field and enhances the ferroelectricity, leading to the reduction, or even complete elimination, for the critical thickness.

  15. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    SciTech Connect

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  16. Effect of Sb thickness on the performance of bialkali-antimonide photocathodes

    SciTech Connect

    Mamun, Md Abdullah A. Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos; Mammei, Russell; Poelker, Matthew

    2016-03-15

    The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ∼7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layers exhibited the highest QE and the best 1/e lifetime. The authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.

  17. Surface chemistry and polymer film thickness effects on endothelial cell adhesion and proliferation

    PubMed Central

    Bhattacharyya, Dhiman; Xu, Hao; Deshmukh, Rajendra R.; Timmons, Richard B.; Nguyen, Kytai T.

    2010-01-01

    Adherence and growth rates of human aortic endothelial cells (HAEC) on plasma polymerized poly(vinylacetic acid) films were measured as functions of the surface density of —COOH groups and plasma deposited film thickness. Pulsed plasma polymerization was employed to produce films containing 3.6 to 9% —COOH groups, expressed as a percent of total carbon content. Endothelial cells exhibited increased cell adherence and proliferation with increasing —COOH surface densities. Additionally, and unexpectedly, cell growth was also dependent on the film thicknesses, which ranged from 25 to 200 nm. The results indicate that optimization of the functional group surface density and film thickness could produce significant enhancements in initial adhesion and subsequent growth of the HAEC cells. PMID:20213813

  18. Ballistic-electron-emission-spectroscopy detection of monolayer thickness fluctuations in a semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Guthrie, D. K.; First, P. N.; Gaylord, T. K.; Glytsis, E. N.; Leibenguth, R. E.

    1999-07-01

    Ballistic-electron-emission spectroscopy (BEES) is used to measure fluctuations in the thickness of buried Ga0.8Al0.2As layers. The device under measurement is a half-electron-wavelength Fabry-Perot filter that has been designed to have two quasibound states. By performing BEES at several different spatial locations and by utilizing the relationship between the thicknesses of the device layers and the location (in energy) of the quasibound states, single-monolayer variations are detected in the thicknesses of both the GaAs quantum well and the surrounding Ga0.8Al0.2As barriers. The lateral resolution is shown to be better than 20 nm.

  19. Effect of Sb thickness on the performance of bialkali-antimonide photocathodes

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos; ...

    2016-01-06

    The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ~7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layersmore » exhibited the highest QE and the best 1/e lifetime. As last, the authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.« less

  20. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    NASA Technical Reports Server (NTRS)

    Predtechensky, M. R.; Smal, A. N.; Varlamov, Yu. D.; Vatnik, S. M.; Tukhto, O. M.; Vasileva, I. G.

    1995-01-01

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth the Al atoms do not diffuse from substrate into the film and the films with thickness up to 100 nm exhibit the excellent direct current (DC) properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R(sub S)). The low value of surface resistance R(sub S)(75 GHz, 77K) = 20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  1. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  2. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  3. Glue Film Thickness Measurements by Spectral Reflectance

    SciTech Connect

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  4. MULTIPLE THICKNESS TIMES DENSITY GAMMA GAGE

    DOEpatents

    Cherry, N.H.

    1962-07-24

    A device was developed for measuring simultaneously the thicknesses of two dissimilar materials superimposed on each other, such as coating of one material on another. The apparatus utilizes a double gamma radiation source producing radiation in two narrow band energy levels. The different materials attenuate the two bands of energy unequally with the result that a composite signal is received which can be analyzed to separate out the components due to the differing materials and indicate the thickness or densities of the two layers. (AEC)

  5. Coal Thickness Gauging Using Elastic Waves

    NASA Technical Reports Server (NTRS)

    Nazarian, Soheil; Bar-Cohen, Yoseph

    1999-01-01

    The efforts of a mining crew can be optimized, if the thickness of the coal layers to be excavated is known before excavation. Wave propagation techniques can be used to estimate the thickness of the layer based on the contrast in the wave velocity between coal and rock beyond it. Another advantage of repeated wave measurement is that the state of the stress within the mine can be estimated. The state of the stress can be used in many safety-related decisions made during the operation of the mine. Given these two advantages, a study was carried out to determine the feasibility of the methodology. The results are presented herein.

  6. Nanofilm thickness measurement by resonant frequencies

    SciTech Connect

    Latyshev, A V; Yushkanov, A A

    2015-03-31

    We report a theoretical investigation of monochromatic laser light – thin metal film interaction. The dependences of transmission, reflection and absorption coefficients of an electromagnetic wave on the incidence angle, layer thickness and effective electron collision frequency are obtained. The above coefficients are analysed in the region of resonant frequencies. The resulting formula for the transmission, reflection and absorption coefficients are found to be valid for any angles of incidence. The case of mirror boundary conditions is considered. A formula is derived for contactless measurement of the film thickness by the observed resonant frequencies. (laser applications and other topics in quantum electronics)

  7. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  8. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    PubMed

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  9. Effect of separating layer thickness on W/Si multilayer replication.

    PubMed

    Wang, Fangfang; Mu, Baozhong; Jin, Huijun; Yang, Xiajun; Zhu, Jingtao; Wang, Zhanshan

    2011-08-15

    The direct replication of W/Si multilayers and the effect of separating layer thickness on the performance of the multilayer before and after replication are investigated systematically. Platinum separating layers with different layer thicknesses were first deposited onto different supersmooth mandrels and then W/Si multilayers with the similar structure were deposited onto these Pt-coated mandrels by using a high vacuum DC magnetron sputtering system. After the deposition, these multilayers were replicated onto the commercially available float glass substrates by epoxy replication technique. These multilayers before and after replication are characterized by grazing-incident X-ray reflectance measurement and atomic force microscope. The measured results show that before and after replication, the reflectivity curves are much similar to those calculated and the surface roughness of each sample is close to that of the mandrel, when the separating layer thickness is larger than 1.5 nm. These results reveal that the W/Si multilayer with the separating layer thickness larger than 1.5 nm can be successfully replicated onto a substrate without modification of the structure, significant increase of surface roughness or apparent change of reflectivity.

  10. Critical thickness for stripe domain formation in FePt thin films: Dependence on residual stress

    NASA Astrophysics Data System (ADS)

    Álvarez, N. R.; Gómez, J. E.; Moya Riffo, A. E.; Vicente Álvarez, M. A.; Butera, A.

    2016-02-01

    Magnetically soft FePt thin films of varying thickness (20 nm ≤ d ≤ 100 nm) were sputter-deposited at different Ar pressures in order to systematically modify the residual stress and hence the magnetic anisotropy. The magnetic domain structure of FePt thin films showed a transition from planar to nearly parallel stripes above a critical thickness, dcr, which was found to depend on an anisotropy contribution perpendicular to the film plane, originated essentially in magnetoelastic effects. A careful structural characterization was made in order to obtain the strain and the stress induced magnetic anisotropy in the samples. Vibrating sample magnetometry and magnetic force microscopy were used to investigate the changes occurring in the magnetic domain structure and the critical thickness of each set of films. Joining together structural and magnetic results, we have been able to construct a phase diagram that divided regions of different domain structures, either by changing the film thickness or the perpendicular magnetic anisotropy. The experimental results could be satisfactorily explained by using a model developed by Murayama. The observed dependence of the magnetic properties of soft FePt thin films on the fabrication conditions opens the possibility to tune the magnetic domain configuration from planar to stripe-like domains by changing the argon sputtering pressure used during film deposition.

  11. Measuring joint cartilage thickness using reflectance spectroscopy non-invasively and in real-time

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karagol, Cosar; Aydin, Ahmet T.

    2011-03-01

    Joint cartilage thickness has been estimated using spatially resolved steady-state reflectance spectroscopy noninvasively and in-real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe with six 400 um diameter fibers. The first fiber was used to deliver the light to the cartilage and the other five were used to detect back-reflected diffused light. Distances from the detector fibers to the source fiber were 0.8 mm, 1.6 mm, 2.4 mm, 3.2 mm and 4 mm. Spectra of back-reflected diffused light were taken on 40 bovine patella cartilages. The samples were grouped into four; the first group was the control group with undamaged cartilages, in the 2nd, 3rd and 4th groups cartilage thickness was reduced approximately 25%, 50% and 100%, respectively. A correlation between cartilage thicknesses and hemoglobin absorption of light in the wavelength range of 500 nm- 600 nm for source-detector pairs was found. The proposed system with an optical fiber probe less than 4 mm in diameter has the potential for cartilage thickness assessment through an arthroscopy channel in real-time without damaging the cartilage.

  12. Thickness dependence of Jc (0) in MgB2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-06-01

    MgB2 superconducting films, whose thicknesses range from 10 nm to 8 μm, have been fabricated on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD) method. It is the first time that the Tc and the Jc of MgB2 films are studied on such a large scale. It is found that with the increasing of thickness, Tc elevates first and then keeps roughly stable except for some slight fluctuations, while Jc (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum Jc (5 K, 0 T) = 2.3 × 108 A cm-2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB2 films.

  13. Thickness dependence of magnetic anisotropy and domains in amorphous Co40Fe40B20 thin films grown on PET flexible substrates

    NASA Astrophysics Data System (ADS)

    Tang, Zhenhua; Ni, Hao; Lu, Biao; Zheng, Ming; Huang, Yong-An; Lu, Sheng-Guo; Tang, Minghua; Gao, Ju

    2017-03-01

    The amorphous Co40Fe40B20 (CoFeB) films (5-200 nm in thickness) were grown on flexible polyethylene terephthalate (PET) substrates using the DC magnetron-sputtering method. The thickness dependence of structural and magnetic properties of flexible CoFeB thin films was investigated in detail. The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of 150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. The results show potential for designing CoFeB-based flexible spintronic devices in which the physical parameters could be tailored by controlling the thickness of the thin film.

  14. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  15. Variation of cell spreading on TiO2 film modified by 775 nm and 388 nm femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsukamoto, M.; Shinonaga, T.; Sato, Y.; Chen, P.; Nagai, A.; Hanawa, T.

    2014-03-01

    Titanium (Ti) is one of the most used biomaterials in metals. However, Ti is typically artificial materials. Thus, it is necessary for improving the biocompatibility of Ti. Recently, coating of the titanium dioxides (TiO2) film on Ti plate has been proposed to improve biocompatibility of Ti. We have developed coating method of the film on Ti plate with an aerosol beam. Periodic structures formation on biomaterials was also a useful method for improving the biocompatibility. Direction of cell spreading might be controlled along the grooves of periodic microstructures. In our previous study, periodic nanostructures were formed on the film by femtosecond laser irradiation at fundamental wave (775 nm). Period of the periodic nanostructures was about 230 nm. In cell test, cell spreading along the grooves of the periodic nanostructures was observed although it was not done for the film without the periodic nanostructures. Then, influence of the period of the periodic nanostructures on cell spreading has not been investigated yet. The period might be changed by changing the laser wavelength. In this study, the periodic nanostructures were created on the film with femtosecond laser at 775nm and 388 nm, respectively. After cell test, cell spreading along the grooves of the periodic nanostructures was observed on 775 nm and 388nm laser irradiated areas. Distribution of direction of cell spreading on laser irradiated area was also examined. These results suggested that controlling the cell spreading on periodic nanostructures with period of 230 nm was better than that with period of 130 nm.

  16. A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm.

    PubMed

    Steinborn, R; Koglbauer, A; Bachor, P; Diehl, T; Kolbe, D; Stappel, M; Walz, J

    2013-09-23

    A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 6¹S → 6³P transition in mercury.

  17. Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands

    SciTech Connect

    Heilmann, Ralf K.; Ahn, Minseung; Bruccoleri, Alex; Chang, Chih-Hao; Gullikson, Eric M.; Mukherjee, Pran; Schattenburg, Mark L.

    2011-04-01

    We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 {mu}m were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of {approx}50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

  18. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Naik, V. B.; Meng, H.; Sbiaa, R.

    2012-12-01

    We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB) free layer (FL) on magnetic and tunneling magnetoresistance (TMR) properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA). It is found that the critical thickness (tc) to sustain PMA is doubled (tc = 2.6 nm) in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm). While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm) with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  19. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    NASA Astrophysics Data System (ADS)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Klein, Lorena H.; Salmi, Emma; Ritala, Mikko; Marcus, Philippe

    2016-11-01

    Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  20. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion.

    PubMed

    Rodenburg, C; Viswanathan, P; Jepson, M A E; Liu, X; Battaglia, G

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ~30 nm and wall thickness variations from ~100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40-340 nm.