Science.gov

Sample records for 50-200 mev protons

  1. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  2. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.

  3. 150 MeV proton medical cyclotron design study.

    PubMed

    Burleigh, R J; Clark, D J; Flood, W S

    1975-01-01

    A brief design study has been done for a 150 MeV proton sector cyclotron. The object was to minimize cost but maintain good reliability and easy maintenance. The use of the proton beam would be for therapy, radiography and isotope production.

  4. Magnifying lens for 800 MeV proton radiography.

    PubMed

    Merrill, F E; Campos, E; Espinoza, C; Hogan, G; Hollander, B; Lopez, J; Mariam, F G; Morley, D; Morris, C L; Murray, M; Saunders, A; Schwartz, C; Thompson, T N

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution. PMID:22047305

  5. Magnifying lens for 800 MeV proton radiography

    NASA Astrophysics Data System (ADS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  6. Magnifying lens for 800 MeV proton radiography

    SciTech Connect

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-10-15

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  7. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    SciTech Connect

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-11-27

    The use of HTS materials in high radiation environmentsrequires that the superconducting properties remain constant up to aradiation high dose. BSCCO-2223 samples from two manufacturers wereirradiated with 50 MeV protons at fluences of up to 5 x 1017 protons/cm2.The samples lost approximately 75 percent of their pre-irradiation Ic.This compares with Nb3Sn, which loses about 50 percent at the samedisplacements per atom.

  8. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    SciTech Connect

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  9. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    SciTech Connect

    Marshall, J.A.

    1984-07-01

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  10. Inclusive proton reactions at 164 MeV

    NASA Astrophysics Data System (ADS)

    Segel, R. E.; Chen, T.; Rutledge, L. L., Jr.; Maher, J. V.; Wiggins, John; Singh, P. P.; Debevec, P. T.

    1982-12-01

    Singles proton, deuteron, triton, 3He, and alpha spectra resulting from the bombardment of 27Al, 58Ni, 62Ni, and 208Pb targets were measured. Data were taken over the angular range 25°-150°. Most of the data were taken at a bombarding energy of 164 MeV; some data were taken at 100 MeV. The ratios of fast (>30 MeV) particle yields are p:d:t:3He:α~100:10:1:1:1. The deuteron spectra fall off more sharply with exit particle energy than do the proton spectra while tritons fall still more sharply, and the fast 3He and α spectra are similar in shape to the triton spectra. Fast particle angular distributions are all forward peaked with the forward peaking increasing with increasing outgoing particle energy. Angular distributions for the different particle species are quite similar and shapes of both spectral and angular distributions are rather independent of target. Proton and alpha evaporation peaks are prominent, deuterons less so, and evaporation peaks are not apparent in the triton and 3He spectra. NUCLEAR REACTIONS 164, 100 MeV p on 27Al, 58Ni, 62Ni, 208Pb; measured outgoing p, d, t, 3He, α spectra 25°<=θ<=150°.

  11. MeV proton flux predictions near Saturn's D ring

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Cooper, J. F.; Mitchell, D. G.; Krupp, N.; Paranicas, C.

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  12. Shielding measurements for a 230 MeV proton beam

    SciTech Connect

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  13. ETFE polymer bombarded with 1 MeV proton

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; de Almeida, A.; Muntele, I.; Muntele, C.; Delalez, N.; Ila, D.

    2005-12-01

    The ethylenetetrafluoroethylene (ETFE) is a polymer formed by alternating ethylene and tetrafluoroethylene segments. It has high impact resistance and useful mechanical properties. ETFE can be used as components of pumps, valves, tie wraps, and electrical components. It can also be applied in the field of medical physics as intra venous catheters and as radiation dosimeter. When a material is exposed to the ionizing radiation, it suffers damage that depends on the type, energy and intensity of the radiation. In order to determine the radiation damage mechanism, ETFE films were bombarded with 1 MeV protons to the fluence between 1 × 1011 and 1 × 1016 protons/cm2 and the chemical species emitted during the bombardment were measured with residual gas analysis (RGA) and show that HF gas is the entity preferentially emitted. Optical absorption photospectrometry (OAP) and attenuated total reflectometry fourier transform infrared (ATR-FTIR) shows quantitative chemical evidence of the damage. Our results show that damage is detectable at low proton fluence, but damage that can compromise the application in dosimetry occurs only for fluence greater than 1014 protons/cm2.

  14. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  15. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H‑ beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  16. The reaction proton deuteron yields triton pion at 470 and 590 MeV

    NASA Technical Reports Server (NTRS)

    Dollhopf, W.; Lunke, C.; Perdrisat, C. F.; Roberts, W. K.; Kitching, P.; Olsen, W. C.; Priest, J. R.

    1973-01-01

    The preliminary results from a study of the deuteron (proton, positive pion)triton reaction are reported. The differential cross section for this reaction was measured for a number of center of mass angles from 37 deg to 160 deg at incident proton energies of 470 and 590 MeV. The cross sections measured at 590 MeV agree with predictions made considering a two-nucleon process. The 470 MeV data shows a peak in the backward direction which is not predicted by this mechanism.

  17. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  18. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ripani, M.; Alba, R.; Ricco, G.; Schillaci, M.; Barbagallo, M.; Boccaccio, P.; Celentano, A.; Colonna, N.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Esposito, J.; Figuera, P.; Finocchiaro, P.; Kostyukov, A.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Viberti, C. M.

    2013-09-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  19. Inelastic scattering of 61 MeV protons by pb-207

    NASA Technical Reports Server (NTRS)

    Owais, M.

    1976-01-01

    Differential cross sections for the excitation of the first four neutron-hole states and the doublet at 2.61 MeV by 61.2 MeV protons were measured. The data are analyzed in terms of both a purely collective model description and a microscopic model supplemented by macroscopic core polarization. A realistic two-body interaction is used and knock-on amplitudes are included. Core polarization is found to be important but represents a relatively smaller contribution than in most nuclei previously studied. A parallel analysis of similar data at lower proton bombarding energies reveals a surprisingly strong energy dependence of the reaction mechanisms.

  20. 1000 MeV Proton beam therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. K.; Gavrikov, Yu A.; Ivanov, E. M.; Karlin, D. L.; Khanzadeev, A. V.; Yalynych, N. N.; Riabov, G. A.; Seliverstov, D. M.; Vinogradov, V. M.

    2006-05-01

    Since 1975 proton beam of PNPI synchrocyclotron with fixed energy of 1000 MeV is used for the stereotaxic proton therapy of different head brain diseases. 1300 patients have been treated during this time. The advantage of high energy beam (1000 MeV) is low scattering of protons in the irradiated tissue. This factor allows to form the dose field with high edge gradients (20%/mm) that is especially important for the irradiation of the intra-cranium targets placed in immediate proximity to the life critical parts of the brain. Fixation of the 6 0mm diameter proton beam at the isodose centre with accuracy of ±1.0 mm, two-dimensional rotation technique of the irradiation provide a very high ratio of the dose in the irradiation zone to the dose at the object's surface equal to 200:1. The absorbed doses are: 120-150 Gy for normal hypophysis, 100-120 Gy for pituitary adenomas and 40-70 Gy for arterio-venous malformation at the rate of absorbed dose up to 50 Gy/min. In the paper the dynamics and the efficiency of 1000 MeV proton therapy treatment of the brain deceases are given. At present time the feasibility study is in progress with the goal to create a proton therapy on Bragg peak by means of the moderation of 1000 MeV proton beam in the absorber down to 200 MeV, energy required for radiotherapy of deep seated tumors.

  1. Production of (28)Mg by bombardment of (nat)Cl with 200MeV protons: Proof-of-concept study for a stacked LiCl target.

    PubMed

    van der Meulen, N P; Steyn, G F; Vermeulen, C; van Rooyen, T J

    2016-09-01

    A stacked target consisting of ten Al-encapsulated LiCl discs, for producing (28)Mg via the (nat)Cl(p,X)(28)Mg process in the energy region 50-200MeV, is described. This target was irradiated with a 200MeV beam at an intensity of 100nA, providing information on both yield and outscattering losses. Results of a Monte Carlo modelling of the beam and target, by means of the code MCNPX, are also presented. Similar Al-encapsulated LiCl discs were individually irradiated with 66MeV proton beams of 65 and 90μA, respectively, to study their behaviour under high-intensity bombardment. Once removed from the Al encapsulation, the (28)Mg can be separated from the LiCl target material efficiently, using a 12.5cm x 1cm(2) column containing Purolite S950 chelating resin. The eluate contains (7)Be but no other measurable radio-contaminants. The removal of the (7)Be contaminant is performed by cation exchange chromatography in malate media, with (28)Mg being retained by the resin and (7)Be eluted. PMID:27372806

  2. Proton irradiation of conventional and lithium solar cells - 11-37 MeV

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Carter, J. R.

    1974-01-01

    Conventional n/p and lithium solar cells were irradiated with 11- to 37-MeV protons. The energy dependence of the solar cell degradation, calculated from electrical parameters and lifetime measurements, is shown to be very slight. Damage coefficients for the n/p cells are calculated. Annealing characteristics of both the lithium cells and the n/p cells are presented.

  3. 200 MeV proton radiography studies with a hand phantom using a prototype proton CT scanner.

    PubMed

    Plautz, Tia; Bashkirov, V; Feng, V; Hurley, F; Johnson, R P; Leary, C; Macafee, S; Plumb, A; Rykalin, V; Sadrozinski, H F-W; Schubert, K; Schulte, R; Schultze, B; Steinberg, D; Witt, M; Zatserklyaniy, A

    2014-04-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton computed tomography (CT) scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality.

  4. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    PubMed Central

    Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.

    2014-01-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  5. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  6. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-15

    The response of CR-39 nuclear track detector (TasTrak) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  7. A new proton fluence model for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1988-01-01

    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.

  8. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGESBeta

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  9. Comparisons of LET Distributions for Protons with Energies between50 and 200 MeV Determined Using a Spherical Tissue-EquivalentProportional Counter (TEPC) and a Position-Sensitive Silicon Spectrometer(RRMD-III)

    SciTech Connect

    Borak, Thomas B.; Doke, Tadayoshi; Fuse, T.; Guetersloh, StephenB.; Heilbronn, Lawrence H.; Hara, K.; Moyers, Michael; Suzuki, S.; Taddei, Phillip; Terasawa, K.; Zeitlin, Cary J.

    2004-12-01

    Experiments have been performed to measure the response of a spherical tissue-equivalent proportional counter (TEPC) and a silicon-based LET spectrometer (RRMD-III) to protons with energies ranging from 50 200 MeV. This represents a large portion of the energy distribution for trapped protons encountered by astronauts in low-Earth orbit. The beam energies were obtained using plastic polycarbonate degraders with a monoenergetic beam that was extracted from a proton synchrotron. The LET spectrometer provided excellent agreement with the expected LET distribution emerging from the energy degraders. The TEPC cannot measure the LET distribution directly. However, the frequency mean value of lineal energy, y bar f, provided a good approximation to LET. This is in contrast to previous results for high-energy heavy ions wherey barf underestimated LET, whereas the dose-averaged lineal energy, y barD, provided a good approximation to LET.

  10. Filamentation control and collimation of laser accelerated MeV protons

    NASA Astrophysics Data System (ADS)

    Ramakrishna, B.; Tayyab, M.; Bagchi, S.; Mandal, T.; Upadhyay, A.; Weng, S. M.; Murakami, M.; Cowan, T. E.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-12-01

    We demonstrate experimentally that the proton beam filamentation in dense plasma can be controlled in multi-layered (Al-CH-Al) sandwich targets. We observe up to three-fold reduction in the MeV proton beam divergence (~12°) from these targets as a result of decrease in filamentary structures in the proton beam profile. Strong self-generated resistive magnetic fields in targets with a high-Z transport layer are mainly responsible for this observed effect. Enhancement in the proton flux and energy is also observed from these targets. Supported by a matching 2D particle-in-cell (PIC) simulation and theoretical considerations, we suggest that these targets can be very effectively implemented to collimate proton beams useful for ion oncology applications or advanced fast igniter approach of inertial confinement fusion (ICF).

  11. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  12. Experimental evidence of the superfocusing effect for axially channeled MeV protons

    NASA Astrophysics Data System (ADS)

    Motapothula, M.; Petrović, S.; Nešković, N.; Breese, M. B. H.

    2016-08-01

    Sub-Ångström focusing of megaelectronvolt (MeV) ions within axial channels was predicted over 10 years ago, but evidence proved elusive. We present experimental angular distributions of axially channeled MeV protons in a 55-nm-thick (001) silicon membrane through which multiple scattering is negligible. Fine angular structure is in excellent agreement with Monte Carlo simulations based on three interaction potentials, providing indirect evidence of the existence of the superfocusing effect with flux enhancement of around 800 within a focused beam width of ˜20 pm .

  13. Transport mechanism of MeV protons in tapered glass capillaries

    SciTech Connect

    Hasegawa, Jun; Oguri, Yoshiyuki; Jaiyen, Sarawut; Polee, Chalermpong; Chankow, Nares

    2011-08-15

    To investigate the transport mechanism of MeV protons in tapered glass capillaries, spatially resolved energy spectra were measured for proton microbeams focused by 20-{mu}m-outlet capillaries having various taper angles. Three-dimensional Monte Carlo (MC) simulations were also performed to support the experiments and trace each particle in the capillary in more detail. The dependence of the proton energy distribution on the outgoing angle proved that the capillary-focused proton beam consists of two different components, protons traveling straight through the capillary without colliding with the capillary wall and protons scattered by the capillary inner wall. Moreover, the focusing effect of the tapered glass capillary was found to be mainly due to the scattered beam component. The MC simulations well reproduced the experimental results and showed that beam focusing ratios of 1.6-2.4 are possible with capillaries having a convex inner wall. The flight distance of the scattered proton in the capillary glass body was found to play an important role in determining transport efficiency of the protons through the capillary.

  14. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  15. Isotopic production cross sections in proton-nucleus collisions at 200 MeV

    SciTech Connect

    Machner, H.; Aschman, D.G.; Steyn, D.; Baruth-Ram, K.; Carter, J.; Sideras-Haddad, E.; Sellschop, J.P.F.; Cowley, A.A.; Goldenbaum, F.; Nangu, B.M.; Spoelstra, B.; Pilcher, J.V.; Smit, F.D.

    2006-04-15

    Intermediate-mass fragments from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200-MeV protons were measured in an angular range from 20 deg. to 120 deg. in the laboratory system. The fragments, ranging from isotopes of helium up to isotopes of carbon, were isotopically resolved. Double-differential cross sections, energy-differential cross sections, and total cross sections were extracted.

  16. Irradiation Effects of 22 and 240 MeV Protons on Several Transistors and Solar Cells

    NASA Technical Reports Server (NTRS)

    Hulten, W. C.; Honaker, W. C.; Patterson, John L.

    1961-01-01

    The work covered in this report has been directed toward the investigation of the irradiation effects of 22 and 240 MeV protons on several transistors, solar cells, resistors, and condensers to be used in the space radiation environment. The experimental data indicated definite detrimental effects on transistors and solar cells but no apparent effects on the types of resistors and condensers tested. The detrimental effects are of two distinct types: transient and permanent.

  17. RF phase stability in the 100-MeV proton linac operation

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  18. Modification of radiobiological effects of 171 MeV protons by elements of physical protection

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Shurshakov, Vyacheslav; Ivanov, Alexander; Molokanov, Alexander

    2016-07-01

    Space radiation includes protons of various energies. Physical protection is effective in the case of low energy protons (50-100 MeV) and becomes insufficient for radiation with a high part of high-energy protons. In the experiment performed on outbred mice, the purpose of the study was to evaluate the radiobiological effect of 171 MeV protons and protons modified by elements of physical protection of the spacecraft, on a complex of indicators of the functional condition of the system hematopoiesis and the central nervous system in 24 hours after irradiation at 20 cGy dose. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a «protective curtain», and a glass plate imitating an ISS window. Mass thickness of the " protective curtain" in terms of water equivalent was ̴ 6,2 g/cm2. Physical shielding along the path of 171 MeV protons increases their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, the two types of shielding together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. The effects observed in the experiment indicate the necessity to carry out comprehensive radiobiological researches (physical, biological and mathematical) in assessing the effects of physical protection, that are actual for ensuring radiation safety of crews in

  19. Radiation effects induced in pin photodiodes by 40- and 85-MeV protons

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.; Reft, C. S.

    1985-01-01

    PIN photodiodes were bombarded with 40- and 85-MeV protons to a fluence of 1.5 x 10 to the 11th power p/sq cm, and the resulting change in spectral response in the near infrared was determined. The photocurrent, dark current and pulse amplitude were measured as a function of proton fluence. Changes in these three measured properties are discussed in terms of changes in the diode's spectral response, minority carrier diffusion length and depletion width. A simple model of induced radiation effects is presented which is in good agreement with the experimental results. The model assumes that incident protons produce charged defects within the depletion region simulating donor type impurities.

  20. Results of hybrid photodiode irradiation by 200 MeV protons

    SciTech Connect

    Baumbaugh A. et al.

    2001-12-03

    Hybrid Photodiodes (HPD, [1]) will be used as the photodetector for the Compact Muon Solenoid (CMS) Hadron Calorimeter (HCAL) readout [2]. The HPDs are required to operate in a high radiation environment, where the HCAL detector will receive a total ionizing dose of about 330 rads and a fluence of 4 x 10{sup 11} n/cm{sup 2} over a 10 year running period [3]. Effects of HPD irradiation by low energy neutrons were studied and reported previously [1]. In these studies, high energy protons are used to study possible effects of single event burnout [4], since high energy protons are more likely to induce large energy transfer within the HPD silicon. The HPDs were irradiated by 200 MeV protons at the Indiana University Cyclotron Facility [IUCF, 5]. The results of the study are presented.

  1. PIN photodiodes irradiated with 40- and 85-MeV protons

    NASA Technical Reports Server (NTRS)

    Reft, C. S.; Becher, J.; Kernell, R. L.

    1985-01-01

    PIN photodiodes were bombarded with 40- and 85-MeV protons to a fluence of 1.5 x 10 to the 11th p/sq cm, and the resulting change in spectral response in the near infrared was determined. The photocurrent, dark current, and pulse amplitude were measured as a function of proton fluence. Changes in these three measured properties are discussed in terms of changes in the diode's spectral response, minority carrier diffusion length, and depletion width. A simple model of induced radiation effects is presented which is in good agreement with the experimental results. The model assumes that incident protons produce charged defects within the depletion region simulating donor type impurities.

  2. Studying the destruction of various fluoropolymers caused by MeV protons

    NASA Astrophysics Data System (ADS)

    Muntele, Claudiu I.; Allayarov, Sadulla R.; Muntele, Iulia C.; Ila, Daryush

    2007-08-01

    While fluoropolymers are normally used as anti-adherent coating, they are intensely investigated for potential use in various radiation dosimeter applications as well as space technology. In order to understand the discrepancy between high chemical and thermal stability and low radiation stability of various fluoropolymers, we are bombarding them with 1 MeV protons to fluences up to 2 × 1015 protons/cm2. During bombardment we are monitoring the emission of chemical species with a residual gas analyzer (RGA). The results we present here are a good indicator that material damage happens much earlier than 2 × 1015 protons/cm2 and that further work should be addressed at much smaller exposures.

  3. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    SciTech Connect

    Chadwick, M.B.; Normand, E.

    1999-06-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data.

  4. 41 CFR 109-50.200 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 50-SPECIAL DOE DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.200 Scope... organizations for the purpose of improving math and science curricula or conducting of technical and...

  5. 41 CFR 109-50.200 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 50-SPECIAL DOE DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.200 Scope... organizations for the purpose of improving math and science curricula or conducting of technical and...

  6. 41 CFR 109-50.200 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 50-SPECIAL DOE DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.200 Scope... organizations for the purpose of improving math and science curricula or conducting of technical and...

  7. 41 CFR 109-50.200 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 50-SPECIAL DOE DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.200 Scope... organizations for the purpose of improving math and science curricula or conducting of technical and...

  8. Proton-nucleus total inelastic cross sections - An empirical formula for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1983-01-01

    An empirical formula for the total inelastic cross section of protons on nuclei with charge greater than 1 is presented. The formula is valid with a varying degree of accuracy down to proton energies of 10 MeV. At high energies (equal to or greater than 2 GeV) the formula reproduces experimental data to within reported errors (about 2%).

  9. An 800-MeV proton radiography facility for dynamic experiments

    NASA Astrophysics Data System (ADS)

    King, N. S. P.; Ables, E.; Adams, Ken; Alrick, K. R.; Amann, J. F.; Balzar, Stephen; Barnes, P. D., Jr.; Crow, M. L.; Cushing, S. B.; Eddleman, J. C.; Fife, T. T.; Flores, Paul; Fujino, D.; Gallegos, R. A.; Gray, N. T.; Hartouni, E. P.; Hogan, G. E.; Holmes, V. H.; Jaramillo, S. A.; Knudsson, J. N.; London, R. K.; Lopez, R. R.; McDonald, T. E.; McClelland, J. B.; Merrill, F. E.; Morley, K. B.; Morris, C. L.; Naivar, F. J.; Parker, E. L.; Park, H. S.; Pazuchanics, P. D.; Pillai, C.; Riedel, C. M.; Sarracino, J. S.; Shelley, F. E., Jr.; Stacy, H. L.; Takala, B. E.; Thompson, Richard; Tucker, H. E.; Yates, G. J.; Ziock, H.-J.; Zumbro, J. D.

    1999-11-01

    The capability has successfully been developed at the Los Alamos Nuclear Science Center (LANSCE) to utilize a spatially and temporally prepared 800 MeV proton beam to produce proton radiographs. A series of proton bursts are transmitted through a dynamic object and transported, via a unique magnetic lens system, to an image plane. The magnetic lens system permits correcting for the effects of multiple coulomb scattering which would otherwise completely blur the spatially transmitted information at the image plane. The proton radiographs are recorded either on a time integrating film plate or with a recently developed multi-frame electronic imaging camera system. The latter technique permits obtaining a time dependent series of proton radiographs with time intervals (modulo 358 ns) up to many microseconds and variable time intervals between images. One electronically shuttered, intensified, CCD camera is required per image. These cameras can detect single protons interacting with a scintillating fiber optic array in the image plane but also have a dynamic range which permits recording radiographs with better than 5% statistics for observation of detailed density variations in the object. A number of tests have been carried out to characterize the quality of the proton radiography system for absolute mass determination, resolution, and dynamic range. Initial dynamic experiments characterized the temporal and spatial behavior of shock propagation in a high explosive sample with up to six images per experiment. Based on experience with the prototype system, a number of upgrades are being implemented including the anticipated capability for enhanced mass discrimination through differential multiple coulomb scattering radiographs and more images with improved imaging techniques.

  10. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., 152Tb, 155Tb, 155Eu, and 156Eu) and 153Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  11. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments Database

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  12. Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.

  13. Neutron-proton spin-correlation parameter A sub z z at 68 MeV

    SciTech Connect

    Hammans, M.; Brogli-Gysin, C.; Burzynski, S.; Campbell, J.; Haffter, P.; Henneck, R.; Lorenzon, W.; Pickar, M.A.; Sick, I. ); Konter, J.A.; Mango, S.; van den Brandt, B. )

    1991-05-06

    We report a first measurement of the spin-correlation parameter {ital A}{sub {ital z}{ital z}} in neutron-proton scattering at 67.5 MeV. The results, obtained in the angular range 105{degree}{le}{theta}{sub c.m.}{le}170{degree} with typical accuracies of 0.008, are highly sensitive to the {sup 3}{ital S}{sub 1}-{sup 3}{ital D}{sub 1} mixing parameter {epsilon}{sub 1}. A phase-shift analysis based on the current world data yields a value of {epsilon}{sub 1} significantly higher than predicted by modern potential models.

  14. Correlation between laser accelerated MeV proton and electron beams using simple fluid model for target normal sheath acceleration

    SciTech Connect

    Tampo, M.; Awano, S.; Nakamura, H.; Nakatsutsumi, M.; Tanimoto, T.; Yabuuchi, T.; Bolton, P. R.; Kondo, K.; Mima, K.; Mori, Y.; Stephens, R. B.; Tanaka, K. A.; Kodama, R.

    2010-07-15

    High density energetic electrons that are created by intense laser plasma interactions drive MeV proton acceleration. The correlation between accelerated MeV protons and escaped electrons is experimentally investigated at laser intensities in the range of 10{sup 18}-10{sup 19} W/cm{sup 2} with S-polarization. Observed proton maximum energies are linearly proportional to escaped electron slope temperatures with a scaling coefficient of about 10. In the context of the simple analytical fluid model for transverse normal sheath acceleration, hot electron sheath density near the target rear surface can be estimated if an empirical acceleration time is assumed.

  15. Results of using the axisymmetric RF focusing by means of field spatial harmonics at 7 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Dyubkov, V. S.

    2016-09-01

    For several decades, axially symmetric channels with RF focusing by means of nonsynchronous spatial harmonics of the accelerating field are offered as an attractive alternative to proven and reliable RFQ linacs. In a number of works an effectiveness of channels with axially symmetric RF focusing by means of the nonsynchronous harmonics of the field was demonstrated in the proton energy range up to 2 MeV. An effectiveness of discussed channels for protons at energies up to 7 MeV is considered in this paper. Numerical simulation results of proton self-consistent dynamics in a channel with axisymmetric RF focusing are presented and discussed in this article.

  16. Fixed fluorescent images of an 80 MeV proton pencil beam

    NASA Astrophysics Data System (ADS)

    Warman, J. M.; de Haas, M. P.; Luthjens, L. H.; Denkova, A. G.; Kavatsyuk, O.; van Goethem, M.-J.; Kiewiet, H. H.; Brandenburg, S.

    2013-04-01

    We have used an organic radio-fluorogenic gel to make fixed fluorescent images of the track of an 80 MeV proton pencil beam NB this is not a scintillation effect; rather a small fraction of the molecules of the medium are converted permanently from a non-emissive to an emissive form. The spatial resolution of the images is better than 0.1 mm and the cuboid form of the gels allows the track to be viewed along the direction of the beam or transverse to it. The fluorescence diverges and increases in intensity with increasing depth up to the Bragg peak with 80-20% post-peak fall-off in 1.4±0.1 mm. From the effect of interposed polystyrene sheets on the proton range in the gel, its water equivalent thickness is determined to be 0.91.

  17. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    SciTech Connect

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-12-31

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH{sub 2} (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution.

  18. Activation cross sections of proton induced nuclear reactions on gold up to 65MeV.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A

    2016-07-01

    Activation cross sections of proton induced reactions on gold for production of (197m,197g,195m,195g, 193m,193g,192)Hg, (196m,196g(cum),195g(cum),194,191(cum))Au, (191(cum))Pt and (192)Ir were measured up to 65MeV proton energy, some of them for the first time. The new data are in acceptably good agreement with the recently published earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the TALYS 1.6 (results in TENDL-2015 on-line library) and EMPIRE 3.2 code. PMID:27156194

  19. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  20. 41 CFR 109-50.200 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 50-SPECIAL DOE DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.200 Scope... related and Federal research equipment to elementary and secondary educational institutions or nonprofit organizations for the purpose of improving math and science curricula or conducting of technical and...

  1. A Monte Carlo Model for LET Spectra of 200 MeV Protons Used for Microelectronic Testing

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Culpepper, William X.

    2003-01-01

    The direct ionization Linear Energy Transfer (LET) for 200 MeV protons in silicon is much smaller than that for higher charged particles since LET increases as the square of the ion charge. However, occasionally the proton interacts with the silicon nuclei and produces a shower of fragments and a recoiling nucleus. When this happens, the LET produced is much greater than the direct ionization LET. Testing the single event effect susceptibility of components using energetic (200 MeV) protons is often the only viable option for system level testing commercial-off-the-shelf (COTS) avionics that have not been designed for space environments. However, the question of how a system tested with protons will perform in a heavy ion environment arises. Here the concern is not only with prediction of on-orbit upset rate, but also about possibility of on-orbit failures that were not observed during proton testing.

  2. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.

    2016-04-01

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.

  3. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    SciTech Connect

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV.

  4. Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfven waves

    NASA Technical Reports Server (NTRS)

    Ng, C. K.; Reames, D. V.

    1994-01-01

    We present a model of the focused transport of approximately 1 MeV solar energetic protons through interplanetary Alfven waves that the protons themselves amplify or damp. It is based on the quasi-linear theory but with a phenomenological pitch angle diffusion coefficient in the 'resonance gap.' For initial Alfven wave distributions that give mean free paths greater than approximately 0.5 AU for approximately 1 MeV protons in the inner heliosphere, the model predicts greater than roughly an order of magnitude amplification (damping) in the outward (inward) propagating resonant Alfven waves at less than or approximately equal to o.3 AU heliocentric distance. As the strength of proton source is increased, the peak differential proton intensity at approximately 1 MeV at 1 AU increases to a maximum of approximately 250 particles (/(sq cm)(s)(sr)(MeV)) and then decreases slowly. It may be attenuated by a factor of 5 or more relative to the case without wave evolution, provided that the proton source is sufficiently intense that the resulting peak differential intensity of approximately 1 MeV protons at 1 AU exceeds approximately 200 particles (/(sq cm)(s)(sr)(MeV)). Therefore, in large solar proton events, (1) one may have to take into account self-amplified waves in studying solar particle propagation, (2) the number of accelerated protons escaping from a flare or interplanetary shock may have been underestimated in past studies by a significant factor, and (3) accelerated protons escaping from a traveling interplanetary shock at r less than or approximately equal to 0.3 AU should amplify the ambient hydromagnetic waves siginificantly to make the shock an efficient accelerator, even if initially the mean free path is greater than or approximately equal to 1 AU.

  5. Recombination characteristics in 2-3 MeV protons irradiated FZ Si

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Čeponis, T.; Uleckas, A.; Vaitkus, J.; Raisanen, J.

    2010-01-01

    Combined analysis of the carrier recombination and generation lifetime as well as reverse recovery durations ( τ RR), dependent on proton irradiation fluence in the range of 7×10 12-7×10 14 p/cm 2, has been performed in FZ silicon PIN diodes and wafer structures. A δ-layer and triangle profiles of radiation induced defects were formed by varying energy of protons in the range 2-3 MeV. Carrier decay constituents and values of recombination lifetime have been evaluated by employing a microwave probed photoconductivity transient technique, while deep levels spectra ascribed to generation lifetime variations have been examined by exploiting capacitance deep-level transient (DLTS) spectroscopy. Recombination lifetime decreases from several μs to few ns, while DLTS spectra show an increase in the amplitude of a DLTS peak at 170 K with irradiation fluence. Transforms of DLTS spectra and a decrease in density of the majority carrier traps have been revealed after 24 h isochronal anneals in the range of temperatures of 80-420 °C. Inhomogeneous depth distribution of recombination lifetime in proton irradiated samples has been revealed from the cross-sectional scans of the excess carrier lifetime measured by MW-PC technique and compared for δ-layer and triangle profiles of radiation induced defects. After isochronal anneals, the τ RR changes its behaviour as a function of irradiation fluence.

  6. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  7. Near realtime forecasting of MeV protons on the basis of sub relativistic electrons

    NASA Astrophysics Data System (ADS)

    Labrenz, Johannes; Heber, Bernd; Kuehl, Patrick; Sarlanis, Christos; Malandraki, Olga; Posner, Arik

    2016-04-01

    A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. In order to provide up to an hour warning before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. It has been demonstrated that the analysis of relativistic electron time profiles provides a low miss and false alarm rate. High Energy Solar Particle Events foRecastIng and Analysis (HESPERIA) is a project funded within the European Union's Horizon 2020 research and innovation programme (PROTEC-1-2014 Call: Space Weather). Within this project the REleASE forecasting scheme was rewritten in the open access programming language PYTHON and will be made public. As a next step, we have analyzed the possibility to also use, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v <0.8 c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE). This would prove to be particularly useful during periods that SOHO does not provide continuous near real-time data. We show that the ACE/EPAM observations can be adapted to the REleASE forecasting scheme to provide reliable SEP forecasts. A comparison of measured and forecast proton intensities by SOHO/EPHIN and ACE/EPAM will be presented. In addition we investigated the false alarm rate and detection probability of solar ion events. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  8. Radiation effects on silicon bipolar transistors caused by 3-10 MeV protons and 20-60 MeV bromine ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Lan, Mujie; Liu, Chaoming; Yang, Dezhuang; He, Shiyu

    2010-03-01

    The current gain degradation in silicon NPN bipolar junction transistors (BJTs) was examined under irradiation with 3-10 MeV protons and 20-60 MeV bromine (Br) ions with various dose levels. To characterize the radiation damage of the NPN BJTs, the ionizing dose D i and displacement dose D d as a function of chip depth in the NPN BJTs were calculated for both the protons and Br ions with different energies. Based on the irradiation testing and calculated results, it is shown that the current gain degradation of NPN BJTs is sensitive to the ratio of D d/( D d+ D i) in the sensitive region given by protons and Br ions. The irradiation particles (protons and Br ions), which give larger D d/( D d+ D i) at a given total dose, would generate more severe damage to the NPN BJTs. The reciprocal of the gain variation as a function of the displacement dose was compared, showing that the Messenger-Spratt equation becomes relevant to describe the experimental data, when the ratio of the D d/( D d+ D i) are larger and the displacement dose are higher than a certain value.

  9. Radiation stability of ZrN under 2.6 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-07-01

    Zirconium nitride is a promising alternative material for the use as an inert matrix for transuranic fuel, but the knowledge of the radiation tolerance of ZrN is very limited. We have studied the radiation stability of ZrN using a 2.6 MeV proton beam at 800 °C. The irradiated microstructure and hardening were investigated and compared with annealed samples. A high density of nano-sized defects was observed in samples irradiated to doses of 0.35 and 0.75 dpa. Some defects were identified as vacancy-type pyramidal dislocation loops using lattice resolution imaging and Fourier-filter image processing. A very slight lattice expansion was noted for the sample with a dose of 0.75 dpa. Hardening effects were found for samples irradiated to both 0.35 and 0.75 dpa using Knoop indentation.

  10. M shell ionization of Ar induced in near-central collisions with MeV protons

    NASA Astrophysics Data System (ADS)

    Kavčič, M.; Banaś, D.

    2016-03-01

    High energy resolution {{K}}{β }{1,3} x-ray emission spectra of Ar induced in collisions with 0.75-3.0 MeV protons were measured using a complete in-vacuum curved-crystal x-ray emission spectrometer in Johansson geometry. The {{K}}{β }{1,3}{{{M}}}{1,2} satellite lines were clearly resolved in the measured spectra and their intensity relative to the parent {{K}}{β }{1,3} diagram line was used to extract the M shell single ionization probability for near-central collisions. The experimental values are compared to the theoretical predictions calculated within the semiclassical approximation (SCA) and also the binary encounter based geometrical model. Very good agreement with experimental data was achieved for the SCA values employing concise Dirac-Hartree-Fock wave functions for the description of valence M shell electrons.

  11. Vector and tensor analyzing powers in deuteron-proton breakup at 130 MeV

    SciTech Connect

    Stephan, E.; Biegun, A.; Klos, B.; Micherdzinska, A.; Zipper, W.; Kistryn, St.; Sworst, R.; Bodek, K.; Ciepal, I.; Golak, J.; Skibinski, R.; Witala, H.; Wronska, A.; Zejma, J.; Deltuva, A.; Epelbaum, E.; Fonseca, A. C.; Kalantar-Nayestanaki, N.; Kis, M.; Mahjour-Shafiei, M.

    2010-07-15

    High-precision data for vector and tensor analyzing powers for the {sup 1}H(d-vector,pp)n reaction at a 130-MeV deuteron beam energy have been measured over a large part of the phase space. Theoretical predictions based on various approaches to describe the three nucleon (3N) system reproduce very well the vector analyzing power data and no three-nucleon force effect is observed for these observables. Tensor analyzing powers are also very well reproduced by calculations in almost the whole studied region, but locally certain discrepancies are observed. For A{sub xy} such discrepancies usually appear, or are enhanced, when model 3N forces, TM99 or Urbana, are included. Problems of all theoretical approaches with describing A{sub xx} and A{sub yy} are limited to very small kinematical regions, usually characterized by the lowest energy of the relative motion of the two protons.

  12. Study on the microwave ion source of the 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2016-09-01

    A microwave ion source is used as an ion source for the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC). The specifications of the ion source are a 50-keV energy and a 20-mA peak current. The plasma is operated in the CW mode by using a magnetron, and the pulse beam is extracted using a semiconductor switch located in the extraction power supply. The beam characteristics were measured based on the pulse voltage and current. A test stand was also installed to study the beam characteristics of the ion source off-line. In this paper, the pulse beam characteristics of the ion source are presented, and the installation of the test stand is reported.

  13. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  14. Study of the radioactivity induced in air by a 15-MeV proton beam.

    PubMed

    Braccini, S; Ereditato, A; Nesteruk, K P; Scampoli, P; Zihlmann, K

    2015-02-01

    Radioactivity induced by a 15-MeV proton beam extracted into air was studied at the beam transport line of the 18-MeV cyclotron at the Bern University Hospital (Inselspital). The produced radioactivity was calculated and measured by means of proportional counters located at the main exhaust of the laboratory. These devices were designed for precise assessment of air contamination for radiation protection purposes. The main produced isotopes were (11)C, (13)N and (14)O. Both measurements and calculations correspond to two different irradiation conditions. In the former, protons were allowed to travel for their full range in air. In the latter, they were stopped at the distance of 1.5 m by a beam dump. Radioactivity was measured continuously in the exhausted air starting from 2 min after the end of irradiation. For this reason, the short-lived (14)O isotope gave a negligible contribution to the measured activity. Good agreement was found between the measurements and the calculations within the estimated uncertainties. Currents in the range of 120-370 nA were extracted in air for 10-30 s producing activities of 9-22 MBq of (11)C and (13)N. The total activities for (11)C and (13)N per beam current and irradiation time for the former and the latter irradiation conditions were measured to be (3.60 ± 0.48) × 10(-3) MBq (nA s)(-1) and (2.89 ± 0.37) × 10(-3) MBq (nA s)(-1), respectively.

  15. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  16. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  17. Measurement of the Z31 contribution to the stopping power using MeV protons and antiprotons: The Barkas effect

    NASA Astrophysics Data System (ADS)

    Andersen, L. H.; Hvelplund, P.; Knudsen, H.; Möller, S. P.; Pedersen, J. O. P.; Uggerhöj, E.; Elsener, K.; Morenzoni, E.

    1989-04-01

    The stopping power for antiprotons has been measured for the first time. The antiproton stopping power of silicon is found to be 3%-19% lower than for equivelocity protons over the energy range 3.01 to 0.538 MeV. The ``Z31 contribution'' to the stopping power (the Barkas effect) is deduced by comparing the stopping power for protons and antiprotons.

  18. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    NASA Technical Reports Server (NTRS)

    Dupieux, P.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Charmensat, P.; De Marco, N.; Fanet, H.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; L'Hote, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Schimmerling, W.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  19. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl. D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-02-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton ({approximately} 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation enviro nment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment.

  20. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  1. Limits on the antiproton/proton ratio in the cosmic radiation from 100 MeV to 1580 MeV

    NASA Technical Reports Server (NTRS)

    Salamon, M. H.; Mckee, S.; Musser, J. A.; Tarle, G.; Tomasch, A.

    1990-01-01

    A search for antiprotons (p-bars) in the cosmic radiation with energies below 1580 MeV at the top of the atmosphere was performed using the PBAR balloon-borne magnetic spectrometer. No antiprotons were observed in 124,000 proton events. For the energy interval 100-640 MeV, an upper limit is reported to the p-bar/p ratio of 2.8 x 10 to the -5th at the top of the atmosphere, after correcting for instrumental efficiencies and contributions from secondary particles. No antiproton was observed in the energy interval 640-1580 MeV, which yields an upper limit to the p-bar/p ratio of 6.1 x 10. By combining both data sets, the limits on the p-bar/p ratio can be improved to 2.0 x 10 to the -5th. The detector performance and instrumental efficiencies of the individual detector components are discussed. A detail Monte Carlo calculation was used to evaluate the instrumental efficiency for both antiprotons and protons as a function of momentum.

  2. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  3. The radial diffusion coefficient of 1.3 - 2.3 MeV protons in recurrent proton streams

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1978-01-01

    The paper presents anisotropy measurements of 1.3-2.3 MeV protons in the interplanetary space during recurrent events for which the radial intensity variation is measured within the radial range from about 0.3 to about 4 AU for the period from June, 1973 through April, 1976. The simultaneous measurements of the diffusive anisotropy and the radial gradient are used to make a direct estimate of the interplanetary radial diffusion coefficient, which is independent of any particular solution of the propagation equation. IMP 7 and 8 is required to be sunward of the earth and hence outside of the magnetosphere; if both spacecraft are sunward, measurements from the one farthest from the magnetosphere are used. The resulting values for the radial diffusivity coefficient near 1 AU lie in the range (3 to 9) x 10 to the 20th sq cm/sec, corresponding to scattering mean free paths between 0.03 and 0.1 AU with a mean of 0.06 AU.

  4. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  5. Hydrogen release from 800 MeV proton-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  6. Proton-induced fragmentation of carbon at energies below 100 MeV

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Streibel, T.; Roecher, H.; Dreute, J.; Hirzebruch, S. E.; Huentrup, G.; Heinrich, Wolfgang

    1994-01-01

    Radiation effects caused by single cosmic ray particles have been studied for many years in radiobiological experiments for different biological objects and biological end-points. Additionally, single event effects in microelectronic devices have gained large interest. There are two fundamental mechanisms by which a single particle can cause radiation effects. On the one hand, a cosmic ray ion with high linear energy transfer can deposit a high dose along its path. On the other hand, in a nuclear collision, a high dose can be deposited by short range particles emitted from the target nucleus. In low earth orbits a large contribution to target fragmentation events originates from trapped protons which are encountered in the South Atlantic Anomaly. These protons have energies up to a few hundred MeV. We study the fragmentation of C, O and Si nuclei - the target nuclei of biological material and microelectronic devices - in nuclear collisions. Our aim is to measure production cross sections, energy spectra, emission directions and charge correlations of the emitted fragments. The present knowledge concerning these data is rather poor. M. Alurralde et al. have calculated cross sections and average energies of fragments produced from Si using the cascade-evaporation model. D.M. Ngo et al. have used the semiempirical cross section formula of Silberberg and Tsao to calculate fragment yields and the statistical model of Goldhaber to describe the reaction kinematics. Cross sections used in these models have uncertainties within a factor of two. Our data will help to test and improve existing models especially for energies below 300 MeV/nucleon. Charge correlations of fragments emitted in the same interaction are of particular importance, since high doses can be deposited if more than one heavy fragment with a short range is produced.

  7. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  8. Positron probing of phosphorus-vacancy complexes in silicon irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N.; Emtsev, V.; Krause-Rehberg, R.; Elsayed, M.; Kessler, C.; Kozlovski, V.; Oganesyan, G.

    2015-06-01

    Defects in phosphorus-doped silicon samples of floating-zone material, n-FZ-Si(P), produced under irradiation with 15 MeV protons at room temperature are studied by positron annihilation lifetime spectroscopy over the temperature range of ∼ 30 K - 300 K and by low- temperature Hall effect measurements. After annealing of E-centersand divacancies, we detected for the first time high concentrations of positron traps which had not been observed earlier. These defects are isochronally annealed over the temperature interval of ∼ 320 °C - 700 °C they manifest themselves as electrically neutral deep donor centersin the material of n-type. A long-lived component of the positron lifetime, τ2(I2 < 60%) ∼ 280 ps, attributed to these centers, suggests a relaxed configuration involving two vacancies. The enthalpy and entropy of annealing of these centersare Ea ∼ 1.05(0.21) eV and ΔSm ≈ 3.1(0.6)kB, respectively. It is argued that the microstructure of the defect consists of two vacancies, VV, and one atom of phosphorus, P. The split configuration of the VPV complex is shortly discussed.

  9. {sup 7}Li(p,n) NUCLEAR DATA LIBRARY FOR INCIDENT PROTON ENERGIES TO 150 MEV

    SciTech Connect

    S. MASHNIK; ET AL

    2000-11-01

    Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Accelerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+{sup 7}Li reaction, to predict neutron production from thin and thick lithium targets. In this report we describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for incident protons with energies up to 150 MeV. The important {sup 7}Li(p,n{sub 0}) and {sup 7}Li(p,n{sub 1}) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. This leads to the emission of lower-energy neutrons and other charged particles and gamma-rays from preequilibrium and compound nucleus decay processes. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.

  10. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  11. Proton-induced production of residual radionuclides in natRe up to 2590 MeV

    NASA Astrophysics Data System (ADS)

    Issa, Shams A. M.; Uosif, M. A. M.; Michel, R.; Herpers, U.; Malmborg, P.; Holmqvist, B.

    2013-03-01

    The excitation functions for residual nuclide production by proton reactions on rhenium was investigated using activated targets from irradiation experiments at the cyclotron of the Svedberg Laboratory at Uppsala up to 180 MeV and the higher energies were used at the Laboratoire Saturne at Saclay. The measured experimental results were compared with previous published and theoretical models calculations by the codes TALYS, INCL4+ABLA and Bertini/Dresner. A total of 5252 cross-section was determined covering 54 residual nuclides in the energy range from 78.2 to 2590 MeV.

  12. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV.

    PubMed

    Sjue, S K L; Mariam, F G; Merrill, F E; Morris, C L; Saunders, A

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets. PMID:26827356

  13. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  14. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method.

  15. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method. PMID:22944532

  16. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  17. Study of proton induced reactions on niobium targets up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Baba, M.; Corniani, E.; Shubin, Yu. N.

    2008-12-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As Niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the integral excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 86,88,89Zr, 86,87mg,88Y and 85Sr in the energy range 30-70 MeV, some measured for the first time at this energy range. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE and with the literature data. The calculations have been carried out without any parameter adjustment. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  18. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  19. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    SciTech Connect

    Bonnet, T.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M. M.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  20. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  1. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGESBeta

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  2. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  3. Optically stimulated luminescence from Al 2O 3:C irradiated with 10-60 MeV protons

    NASA Astrophysics Data System (ADS)

    Edmund, J. M.; Andersen, C. E.; Greilich, S.; Sawakuchi, G. O.; Yukihara, E. G.; Jain, M.; Hajdas, W.; Mattsson, S.

    2007-09-01

    We investigated the potential use of Al 2O 3:C for medical proton dosimetry. Detector crystals coupled to fiber-optic cables were irradiated in proton beams with energies from 10 to 60 MeV. The key finding is that the initial intensity of the optically stimulated luminescence (OSL) signal is energy independent for small detectors (<0.5 mm) and relatively small doses (<0.3 Gy). This feature is related to the supralinearity of the detectors dose-response to low linear energy transfer (LET) radiation. The results show that our system can be used in medical proton dosimetry without LET-dependent correction factors in the dose and energy interval investigated.

  4. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  5. An Observational Test of the Stability of Inner Belt Protons Above 60 Mev Using Measurements Separated By 41 Years

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; O'Brien, T. P., III; Looper, M. D.; Blake, J. B.; George, J. S.

    2014-12-01

    The relative stability of protons trapped in the inner Van Allen radiation belt is a unique signature of the near-Earth radiation environment. While the outer electron belt changes its topography and intensity on timescales of less than a day, calculations indicate that protons in the deepest portions of the inner belt can remain on drift shells for centuries. The long lifetimes for equatorially mirroring protons have never been experimentally verified because few missions traverse this challenging environment, and those that have attempted to quantify the proton flux there have faced potentially large backgrounds from penetrating protons outside the instrument field of view. Today, the Relativistic Proton Spectrometer (RPS) investigation on board the Van Allen Probes offers a background-free reference and hence a unique opportunity to compare the present state of inner belt protons with prior measurements. In this study we revisit one relatively clean, and possibly the most accurate historical dataset: a Cherenkov proton spectrometer that operated in a highly inclined 132x1932 km orbit in 1971. The OV1-20P proton spectrometer covered the energy range of ~65-550 MeV (completely within the RPS energy range), had good background rejection because of a fast scintillator coincidence requirement, but operated off of a flight battery for only 10 days. The short lifetime of the OV1-20P mission is the primary reason it did not have significant impact on subsequent studies of the inner belt. At the meeting we will report on a comparison of OV1-20P and RPS fluxes at the same magnetic field coordinates. Our 41-year measurement baseline is not anywhere near a continuous record of course, but it is rare in space science that we have the opportunity to measure a trapped radiation environment on the timescale of decades.

  6. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    SciTech Connect

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165/sup 0/ and 180/sup 0/ center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done.

  7. Anisotropies in the interplanetary intensity of solar protons with energies greater than 0.3 MeV.

    NASA Technical Reports Server (NTRS)

    Innanen, W. G.; Van Allen, J. A.

    1973-01-01

    By using Explorer 35 interplanetary observations of solar protons with energies greater than 0.3 MeV during ten selected solar events (1967-1970) the tine dependence of intensity and of the angular distribution of intensity has been studied for the first time in the sub-MeV range of energy. The respective contributions of diffusive and convective transport are resolved. Results are qualitatively similar to those of McCracken et al. (1968, 1971) in the energy range from 7.5to 45 MeV; but, as was expected, convective transport is found to be relatively more important at the lower energies. The convective component of the anisotropy vector yields values of the solar wind velocity in good agreement with directly measured values.

  8. Excitation functions of (nat)Zn(p,x) nuclear reactions with proton beam energy below 18 MeV.

    PubMed

    Asad, Ali H; Chan, Sun; Morandeau, Laurence; Cryer, David; Smith, Suzanne V; Price, Roger I

    2014-12-01

    We measured the excitation functions of (nat)Zn (p,x) reactions up to 17.6MeV, using the stacked-foils activation technique. High-purity natural zinc (and copper) foils were irradiated with proton beams generated by an 18MeV isochronous cyclotron. Activated foils were measured using high-purity Ge gamma spectroscopy to quantify the radionuclides (61)Cu, (66)Ga, (67)Ga, and (65)Zn produced from the reactions. Thick-target integral yields were also deduced from the measured excitation functions of the produced radioisotopes. These results were compared with the published literature and were found to be in good agreement with most reports, particularly those most recently compiled.

  9. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method.

  10. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method. PMID:22940414

  11. Comparison of radiation degradation induced by x-ray and 3-MeV protons in 65-nm CMOS transistors

    NASA Astrophysics Data System (ADS)

    Ding, Lili; Gerardin, Simone; Bagatin, Marta; Bisello, Dario; Mattiazzo, Serena; Paccagnella, Alessandro

    2016-09-01

    The total ionizing dose (TID) response of 65-nm CMOS transistors is studied by 10-keV x-ray and 3-MeV protons up to 1 Grad (SiO2) total dose. The degradation levels induced by the two radiation sources are different to some extent. The main reason is the interface dose enhancement due to the thin gate oxide and the low energy photons. The holes’ recombination also contributes to the difference. Compared to these two mechanisms, the influence of the dose rate is negligible.

  12. Multimode approach to {sup 241}Am and {sup 237}Np fission induced by 660-MeV protons

    SciTech Connect

    Karapetyan, G. S. Balabekyan, A. R.; Demekhina, N. A.; Adam, J.

    2009-06-15

    The results obtained by measuring cross sections for the formation of fragments originating from {sup 241}Am and {sup 237}Np fission induced by 660-MeV protons are presented. The charge and mass distributions of fragments are analyzed within the multimode-fission model, symmetric and asymmetric fission channels being separated. The contributions of various fission components are estimated, and the fission cross sections for the {sup 241}Am and {sup 237}Np nuclei are calculated along with the fissilities of these nuclei.

  13. Application of a PAGAT/MgCl2 gel for dose measurements in a 150 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Tominaga, T.; Hayashi, S.; Usui, S.; Kawamura, H.; Katahira, K.

    2013-06-01

    The purpose of this study is to evaluate the dose response of polyacrylamide-based gel (PAGAT) when irradiated with clinical proton beams. Recently inorganic salt additive in gel has been reported to improve dose sensitivity substantially. We attempted to add MgCl2 (0.5M) to regular PAGAT gel in order to compensate its lower radiation sensitivity. The spin-spin relaxation rates (R2) as dose readout was calculated from MR imaging after irradiation with 150MeV proton beam. The dose sensitivity was discussed from the slope at dose-R2 response curve. As the result, the sensitivity of the gel with MgCl2 is approximately 3 times higher than that of regular PAGAT gel without spoiling dose response stability under the various irradiation conditions such as dose rate and dose integration.

  14. Dynamic Strain on Thin Diaphragms of a Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    1999-11-13

    Extrinsic Fabry-Perot Interferometric fiber optic sensors were used to measure dynamic strains on thin diaphragms of a liquid mercury target, which was subjected to intense 800-MeV proton thermal shock tests. The mercury target is engineered with very thin end plates or diaphragms (either 0.6 mm or 1.9 mm) for studying large strain effects. During thermal shock tests, the mercury in the target interacted with an intense pulsed beam of 2.4x10{sup 13 protons}. The resulting pressure waves lead to large strains exceeding 250 microstrains on a 0.6-mm diaphragm. Significant factors relative to the accuracy of strain measurements are emphasized, such as the sensor air gap, alignment of sensors, and frequency response of the strain instrument. In this paper, dynamic strains measured on thin diaphragms are described and discussed.

  15. The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996-2010

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Valtonen, Eino; Heber, Bernd; Malandraki, Olga E.; Papaioannou, Athanasios; Klein, Karl-Ludwig; Afanasiev, Alexander; Agueda, Neus; Aurass, Henry; Battarbee, Markus; Braune, Stephan; Dröge, Wolfgang; Ganse, Urs; Hamadache, Clarisse; Heynderickx, Daniel; Huttunen-Heikinmaa, Kalle; Kiener, Jürgen; Kilian, Patrick; Kopp, Andreas; Kouloumvakos, Athanasios; Maisala, Sami; Mishev, Alexander; Miteva, Rositsa; Nindos, Alexander; Oittinen, Tero; Raukunen, Osku; Riihonen, Esa; Rodríguez-Gasén, Rosa; Saloniemi, Oskari; Sanahuja, Blai; Scherer, Renate; Spanier, Felix; Tatischeff, Vincent; Tziotziou, Kostas; Usoskin, Ilya G.; Vilmer, Nicole

    2013-03-01

    SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s ≲ 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length

  16. Studies of the response of CR-39 track detectors to protons from a 3 MeV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Bernardi, L.; Cecchi, A.; Gori, C.; Lucarelli, F.; Renzi, R.

    1991-01-01

    A Van de Graaff proton accelerator was tested for its application to the study of CR-39 SSNTD response to accelerated protons. The energies of the proton beams ranged from 0.2 to 2.3 MeV. Two different beam angles of incidence were taken into consideration for each proton energy (i.e. normal incidence and 45°). The complete procedure for the irradiation of a CR-39 sample required relatively little time and the results obtained — in agreement with others as reported in the literature — demonstrated that the Van de Graaff proton accelerator can find a useful application to the problem of neutron dosimetry using SSNTDs.

  17. Approximations for neutron emission spectra from proton collisions between 20 and 500 MeV on nuclei of A greater than or equal to 12

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.

    1973-01-01

    When high energy protons from solar proton events or trapped radiation belts impinge on spacecraft structures, secondary particles are emitted. The most pernicious secondaries, from either a biological or physical standpoint, are the cascade and evaporation neutrons because of their reaction with matter leading to radioactive materials in the spacecraft structures. Empirically determined cascade and evaporation neutron emission spectra for protons of energy between 20 and 500 MeV incident on all materials at or above carbon in mass number are presented.

  18. Spin-rotation parameter Q for elastic scattering of 800 MeV polarized protons from WO, UCa, and SYPb

    SciTech Connect

    Fergerson, R.W.

    1985-10-01

    The spin-rotation parameter Q was measured for WO, UCa, and SYPb using the 800 MeV proton beam produced at the Clinton P. Anderson Meson Physics Facility. The experiment was carried out using the High Resolution Spectrometer equipped with a focal-plane polarimeter to determine the scattered polarization components in all three directions. These data (when combined with previous cross section and analyzing power data) determine the amplitude describing the elastic scattering of protons from these spin-zero nuclei to within an overall phase. Q is shown to be more sensitive than either the cross section or analyzing power to differences between the nonrelativistic and relativistic scattering theories that describe the proton-nucleus reaction in terms of fundamental proton-nucleon input. The nonrelativistic predictions for Q generally lie below the data but consistently have the correct structure. The relativistic predictions for the UCa and SYPb Q data are quite good (better than the nonrelativistic predictions). The relativistic predictions for the WO Q data show much more structure than is evident in the data. 51 refs., 39 figs., 4 tabs.

  19. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.

  20. Deuteron-proton breakup reaction at Ed=7.4 MeV

    NASA Astrophysics Data System (ADS)

    Kröger, H.; Nachabe, A. M.; Slobodrian, R. J.

    1986-04-01

    The reaction d+p-->p+p+n is investigated at Elabd=7.4 MeV. Calculations of the cross section are compared with recent kinematically complete measurements. The Coulomb potential is taken fully into account in the calculations based on the strong approximation of Mo/ller wave operator approach.

  1. Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

    SciTech Connect

    Li, Z. P.; Hillhouse, G. C.; Meng, J.

    2008-07-15

    We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.

  2. Activation calculations for trapped protons below 200 MeV: Appendix

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    Tables are given displaying of the results of the activation calculations of metal samples and other material aboard the Long Duration Exposure Facility-1 (LDEF-1) and Spacelab-2 with the computer program, PTRAP4. The computer printouts give the reaction, the reactant product, the proton reaction cross sections as a function of the energy of the incident protons, and the activation as a function of distance into the sample from the exposed surface.

  3. Characterization of radiation damage caused by 23 MeV protons in Multi-Pixel Photon Counter (MPPC)

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Xu, Yupeng; Liu, Congzhan; Gu, Yudong; Xie, Fei; Li, Yanguo; Hu, Hongliang; Zhou, Xu; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Zhang, Juan; Xu, Zhenling; Zhang, Yifei; Zhao, Jianling

    2016-06-01

    A automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors onboard the Hard X-ray Modulation Telescope (HXMT). It consists of a Am241 radioactive source and a photo-detector. The Am241 radioactive source is tagged within a plastic scintillator (BC440M). The scintillating photons produced by the decayed alpha particles from the radioactive source is readout by the photo-detector. The Multi-Pixel Photon Counter (MPPC) produced by Hamamatsu is used as the photo-detector for AGC. To verify the feasibility of its application in space environment, four MPPCs (S10362-33-050C) were irradiated by a beam of 23 MeV protons. The integrated proton fluence that exposed to the four MPPC samples are 1.0 ×108 p cm-2 , 2.0 ×108 p cm-2 , 4.0 ×108 p cm-2 and 1.0 ×1010 p cm-2 respectively. It is found that the increment leakage current of the MPPC samples caused by irradiation damage increase linearly with the integrated fluence. The pulse-height resolution of the MPPC has deteriorated hardly after irradiation. When irradiated up to 1.1 ×109cm-2 1 MeV equivalent neutrons, the MPPC completely lost its photon-counting capability but could still work as a photo-detector for AGC. The MPPC fails as a photo-detector for the AGC when the irradiated 1 MeV neutron equivalent fluences is up to 2.7 ×1010cm-2 .

  4. Reinvestigation of the Direct Two-proton Decay of the Long-lived Isomer 94Agm [0.4 s, 6.7 MeV, (21+)

    SciTech Connect

    Cerny, J.; Moltz, D. M.; Lee, D. W.; Perajarvi, K.; Barquest, B. R.; Grossman, L. E.; Jeong, W.; Jewett, C.

    2009-03-05

    An attempt to confirm the reported direct one-proton and two-proton decays of the (21+) isomer at 6.7(5) MeV in 94Ag has been made. The 0.39(4) s half-life of the isomer permitted use of a helium-jet system to transport reaction products from the 40Ca + natNi reaction at 197 MeV to a low-background area; 24 gas Delta E-(Si) E detector telescopes were used to identify emitted protons down to 0.4 MeV. No evidence was obtained for two-proton radioactivity with a summed energy of 1.9(1) MeV and a branching ratio of 0.5(3)percent. Two groups of one-proton radioactivity from this isomer had also been reported; our data confirm the lower energy group at 0.79(3) MeV with its branching ratio of 1.9(5)percent.

  5. Phase shift analysis of all proton-proton scattering data below T sub lab =350 MeV

    SciTech Connect

    Bergervoet, J.R.; Campen, P.C. van; Klomp, R.A.M.; Kok, J. de; Rijken, T.A.; Stoks, V.G.J.; Swart, J.J. de )

    1990-04-01

    As a continuation of our 0--30 MeV analysis we present a multienergy phase shift analysis of all {ital pp} scattering data below {ital T}{sub lab}=350 MeV. In the description of all partial waves we take exactly into account the long-range potential consisting of the improved Coulomb potential (including the magnetic moment interaction), the vacuum polarization potential, and the tail of the one-pion-exchange potential. To describe the short-range interaction in the lower partial waves we use a {ital P}-matrix parametrization. The intermediate partial waves are treated either by optimal mapping techniques or by using the Nijmegen soft-core potential. The latter gives a better description of the data. The final data set comprises 1626 scattering observables. The best fit to this final data set results in {chi}{sup 2}/{ital N}{sub df}=1.117, where {ital N}{sub df}=1576 is the number of degrees of freedom. The {ital pp}{pi}{sup 0} pseudovector coupling constant is determined to be {ital f}{sub 0}{sup 2}=(74.9{plus minus}0.7){times}10{sup {minus}3}. Single-energy phase shifts and errors are also given.

  6. Radiobiological intercomparison of the 160 MeV and 230 MeV proton therapy beams at the Harvard Cyclotron Laboratory and at Massachusetts General Hospital.

    PubMed

    Wouters, Bradly G; Skarsgard, Lloyd D; Gerweck, Leo E; Carabe-Fernandez, Alejandro; Wong, Michelle; Durand, Ralph E; Nielson, Deanna; Bussiere, Marc R; Wagner, Miles; Biggs, Peter; Paganetti, Harald; Suit, Herman D

    2015-02-01

    The purpose of this study was to determine the relative biological effectiveness (RBE) along the axis of two range-modulated proton beams (160 and 230 MeV). Both the depth and the dose dependence of RBE were investigated. Chinese hamster V79-WNRE cells, suspended in medium containing gelatin and cooled to 2 °C, were used to obtain complete survival curves at multiple positions throughout the entrance and 10 cm spread-out Bragg peak (SOBP). Simultaneous measurements of the survival response to (60)Co gamma rays served as the reference data for the proton RBE determinations. For both beams the RBE increased significantly with depth in the 10 cm SOBP, particularly in the distal half of the SOBP, then rose even more sharply at the distal edge, the most distal position measured. At a 4 Gy dose of gamma radiation (S = 0.34) the average RBE values for the entrance, proximal half, distal half and distal edge were 1.07 ± 0.01, 1.10 ± 0.01, 1.17 ± 0.01 and 1.21 ± 0.01, respectively, and essentially the same for both beams. At a 2 Gy dose of gamma radiation (S = 0.71) the average RBE values rose to 1.13 ± 0.03, 1.15 ± 0.02, 1.26 ± 0.02 and 1.30 ± 0.02, respectively, for the same four regions of the SOBP. The difference between the 4 Gy and 2 Gy RBE values reflects the dose dependence of RBE as measured in these V79-WNRE cells, which have a low α/β value, as do other widely used cell lines that also show dose-dependent RBE values. Late-responding tissues are also characterized by low α/β values, so it is possible that these cell lines may be predictive for the response of such tissues (e.g., spinal cord, optic nerve, kidney, liver, lung). However, in the very small number of studies of late-responding tissues performed to date there appears to be no evidence of an increased RBE for protons at low doses. Similarly, RBE measurements using early responding in vivo systems (mostly mouse jejunum, an early-responding tissue which has a large α/β ∼ 10 Gy) have

  7. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.

    PubMed

    Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  8. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam

    NASA Astrophysics Data System (ADS)

    Hall, David C.; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  9. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  11. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGESBeta

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  12. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.

    PubMed

    Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues. PMID:26611861

  13. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  14. The temperature dependence of void and bubble formation and growth in aluminium during 600 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Green, W. V.; Singh, B. N.; Leffers, T.

    1984-05-01

    As a part of a continuing program, we report in the present paper results obtained from irradiating pure aluminium samples in the PIREX facility installed in the 600 MeV proton beam of the accelerator at the Swiss Institute for Nuclear Research (SIN). The aluminium foils have been irradiated at 8 different temperatures in the range from 130°-430°C, to displacement doses of up to 5 dpa and helium contents of over 1000 appm. The TEM examinations have shown that at all irradiation temperatures and displacement doses, helium bubbles are formed uniformly through the whole grain interior. No voids are observed at temperatures above 160° C. At all temperatures, irradiation induced dislocations have been observed, most of them linked to bubbles. At higher temperatures and doses, clear evidence of irradiation induced precipitation has been observed; the precipitates are normally decorated with helium bubbles.

  15. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  16. MECHANICAL PROPERTIES AND MICROSTRUCTURE IN LOW ACTIVATION MARTENSITIC STEELS F82H AND OPTIMAX AFTER 800 MEV PROTON IRRADIATION

    SciTech Connect

    Y. DAI; ET AL

    1999-10-01

    Low-activation martensitic steels, F82H (mod.) and Optimax-A, have been irradiated with 800-MeV protons up to 5.9 dpa. The tensile properties and microstructure have been studied. The results show that radiation hardening increases continuously with irradiation dose. F82H has lesser irradiation hardening as compared to Optimax-A in the present work and DIN1.4926 from a previous study. The irradiation embrittlement effects are evident in the materials since the uniform elongation is reduced sharply to less than 2%. However, all the irradiated samples ruptured in a ductile-fracture mode. Defect clusters have been observed. The size and the density of defect clusters increase with the irradiation dose. Precipitates are amorphous after irradiation.

  17. Conductivity compensation in p-6H-SiC in irradiation with 8-MeV protons

    SciTech Connect

    Lebedev, A. A.; Kozlovski, V. V.; Belov, S. V.; Bogdanova, E. V.; Oganesyan, G. A.

    2011-09-15

    Carrier removal rate (V{sub d}) in p-6H-SiC in its irradiation with 8-MeV protons has been studied. The p-6H-SiC samples were produced by sublimation in vacuum. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that complete compensation of samples with initial value of N{sub a} - N{sub d} Almost-Equal-To 1.5 Multiplication-Sign 10{sup 18} cm{sup -3} occurs at an irradiation dose of {approx}1.1 Multiplication-Sign 10{sup 16} cm{sup -2}. In this case, the carrier removal rate was {approx}130 cm{sup -1}.

  18. Results of 1 MeV proton irradiation of front and back surfaces of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Kachare, R.; Weizer, V. G.

    1987-01-01

    Several silicon solar cells with and without back surface fields (BSF), having thicknesses of 200 microns and 63 microns were irradiated with 1 MeV protons having fluences between 1 times 10 to the 10th power and 1 times 10 to the 12th power p/square cm. The irradiation was performed using both normal and isotropic incidence on the front as well as back surfaces of the solar cells. The results of the back surface irradiations are analyzed using a model in which irradiation induced defects across the high-low (BSF) junction are considered. It is concluded that degradation of the high-low junction is responsible for the severe performance loss in thinner cells when irradiated from the rear.

  19. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  20. Polarized-target asymmetry in pion-proton bremsstrahlung at 298 MeV

    SciTech Connect

    Bosshard, A.; Amsler, C.; Bistirlich, J.A.; van den Brandt, B.; Crowe, K.M.; Doebeli, M.; Doser, M.; Haddock, R.P.; Konter, J.A.; Ljungfelt, S.; Loude, J.F.; Mango, S.; Meyer, C.A.; Perroud, J.P.; Riedlberger, J.; Renker, D.; Schaad, M.; Sober, D.I.; Truoel, P.; Weymuth, P. Lawrence Berkeley Laboratory, University of California at Berkeley, Berkeley California 94720 Paul Scherrer Institut, 5232 Villigen, Paul Scherrer Institut, Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 Institut de Physique Nucleaire, Universite de Lausanne, 1015 Lausanne, Department of Physics, Catholic University of America, Washington, D.C. 10024 )

    1990-05-28

    First data are presented for the polarized-target asymmetry in the reaction {pi}{sup +}{ital p}{r arrow}{pi}{sup +}{ital p}{gamma} at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment {mu}{sub {Delta}} of the {Delta}{sup ++}(1232 MeV). A fit of the asymmetry in the cross section {ital d}{sup 5}{sigma}/{ital d}{Omega}{sub {pi}} {ital d}{Omega}{sub {gamma}} {ital dk} as a function of the photon energy {ital k} to predictions from a recent isobar-model calculation with {mu}{sub {Delta}} as the only free parameter yields {mu}{sub {Delta}}=1.64({plus minus}0.19exp{Delta},{plus minus}0.14 theor){mu}{sub {ital p}}. Though this value agrees with bag-model corrections to the SU(6) prediction {mu}{sub {Delta}}=2{mu}{sub {ital p}}, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

  1. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam.

    PubMed

    Carante, Mario Pietro; Ballarini, Francesca

    2016-01-01

    A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA "cluster lesion" (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose-responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of

  2. Forward-angle neutron-proton scattering at 96 MeV

    SciTech Connect

    Johansson, C.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Klug, J.; Mermod, P.; Pomp, S.; Oesterlund, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.

    2005-02-01

    The differential np scattering cross section has been measured at 96 MeV in the angular range {theta}{sub c.m.}=20 deg. -76 deg. Together with an earlier data set at the same energy, covering the angles {theta}{sub c.m.}=74 deg. -180 deg., a new data set has been formed in the angular range {theta}{sub c.m.}=20 deg. - 180 deg. This extended data set has been normalized to the experimental total np cross section, resulting in a renormalization of the earlier data of 0.7%, which is well within the reported normalization uncertainty for that experiment. A novel normalization technique has been investigated. The results on forward np scattering are in reasonable agreement with theory models and partial wave analyses and have been compared with data from the literature.

  3. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    SciTech Connect

    Costa Jr, Edio da; Tsurutani, Bruce T.; Alves, Maria Virgínia; Echer, Ezequiel; Lakhina, Gurbax S. E-mail: costajr.e@gmail.com

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  4. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  5. RBE and genetic susceptibility of mouse and rat spermatogonial stem cells to protons, heavy charged particles and 1.5 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Vaglenov, A.; Fedorenko, B.; Kaltenboeck, B.

    The main purpose of the present study is to provide data on RBE and genetic susceptibility in the mouse and the rat when exposed to protons, HZE particles and neutrons. Genetic damage from exposure to 50 MeV and 9 GeV protons, 4 GeV/nucleon helium ions, 4 GeV/nucleon carbon ions and 1.5 MeV neutrons was studied in adult (CBA × C57Bl/6J) F1 mice. Damage from 9 GeV protons and 4 GeV helium ions was studied in adult Wistar rats. The incidence of reciprocal translocations (RT) induced in the spermatogonial stem cells of each species was recorded. RBE values were derived by comparing linear regression coefficients from dose-responses within the same dose-range for each of the radiation types tested and 60Co γ-rays or by means of a direct nonparametric method. RT yields measured after mouse and rat spermatogonial irradiation with protons, heavy charged particles and neutrons fit the linear model of the dose-response relationship. Relative to 60Co γ-rays, RBE values are as follows for mouse spermatogonia: 0.9 for 50 MeV protons; 1.3 for 9 GeV protons; 0.7 for 4 GeV helium ions; and 1.3 for 4 GeV carbon ions. For rat spermatogonia, values were: 1.7 for 9 GeV protons and 1.3 for helium ions. Compared to mice irradiated using the same experimental design, rats were more susceptible to high-LET radiations, with susceptibility assessed by genetic damage to their spermatogonial stem cells. The RBE of 1.5 MeV neutron is about 6.6.

  6. Measurement of the ratio of differential cross sections for double and single ionization of He by (4{endash}10)-MeV protons

    SciTech Connect

    DeHaven, W.R.; Dilley, C.; Landers, A.; Kamber, E.Y.; Cocke, C.L.

    1998-01-01

    We have measured the ratio of differential cross sections for the production of doubly and singly ionized He by fast protons at energies between 4 and 10 MeV. The ratio was measured as a function of proton scattering angle, from which the energy transfer was calculated using binary kinematics. The ratio is found to be near 1.25{percent}, nearly independent of either proton energy or energy transfer. This value is lower than that reported previously for a similar experiment, but in good agreement with recent Compton scattering and theoretical results. {copyright} {ital 1998} {ital The American Physical Society}

  7. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  8. HUGONIOT MEASUREMENTS AT LOW PRESSURES IN TIN USING 800 MeV PROTON RADIOGRAPHY

    SciTech Connect

    Schwartz, C. L.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Marr-Lyon, M.; Rightley, P. M.; McNeil, W. V.

    2009-12-28

    A 20 mm long 8 mm diameter cylindrical tin target has been shocked to a pressure just below the beta->gamma phase change, using a small, low density PETN charge mounted on the opposite side of a thin stainless steel diaphragm. The density jump and shock velocity were measured radiographically at multiple points as the shock wave moved though the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record along the principal Hugoniot from a peak shock velocity of 3.27 km/sec to a minimum of 3.09 km/sec. Edge release effects were removed from the data using simple tomographic reconstruction techniques. The data and analysis are presented.

  9. Energy loss of MeV protons specularly reflected from metal surfaces

    SciTech Connect

    Juaristi, J.I.

    1996-05-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. {copyright} {ital 1996 The American Physical Society.}

  10. Microscopic description of proton scattering at 295 MeV from Pb isotopes

    SciTech Connect

    Rafi, Syed; Pachouri, Dipti; Sharma, Manjari; Haider, W.; Bhagwat, A.; Gambhir, Y. K.

    2011-09-15

    Microscopic analysis of the recently reported 295-MeV-proton scattering data from Pb isotopes and {sup 58}Ni is presented within the framework of the Brueckner-Hartree-Fock theory. The effective interaction (g matrix) has been calculated using three Hamiltonians with Urbana v-14, Argonne v-18, and Ried93 internucleon potentials. The microscopic optical potential is calculated by folding the effective interactions over nucleon density distributions obtained in the relativistic mean field framework. The Argonne v-18 and Ried93 interactions have been used for the first time to calculate the nucleon-nucleus optical potential. The calculations reproduce the experiment well thus revalidating the use of microscopic optical potential in such analyses.

  11. The atmospheric muon flux in correlation with temperature variations in the low stratosphere (50-200 mb).

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Briatore, L.; Longhetto, A.; Navarra, G.; EAS-TOP collaboraiton

    The dependence of the muon flux from the atmospheric parameters (pressure and temperature) is a well known effect since long time ago, that is usually corrected for in cosmic ray measurements. We have correlated at EAS-TOP (LNGS) the muon flux detected by the EMD detector (29 stations, 10m2 each, E_thr>3MeV) with the atmospheric temperature (10-1000mb levels) monitored by the radio-soundings of the Aeronautica Militare at Pratica di Mare (Rome). A significant effect has been observed when the muon flux is correlated with the atmospheric temperature in the region 50-200mb (50-200gr/cm2), as expected, since this is the region where the mesons of first generation are produced. The effect becomes even larger (K_T=-9.5+/-1.1)x10-4 K-1) when the variations of the cosmic ray primary flux is taken into account (Neutron Monitor, Rome). Then, the technique has been used to monitor strong temperature variations in the low stratosphere through the muon flux in two periods, showing that the average temperature variations in the low stratosphere are reproduced with a ~2K uncertainty. The main results of this analysis will be presented.

  12. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    NASA Astrophysics Data System (ADS)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  13. Optimized magnet for a 250 MeV proton radiotherapy cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.; Blosser, H.

    2001-12-01

    The NSCL accelerator group in 1993 carried out an extensive design study [1] for a K250 superconducting cyclotron for advanced cancer therapy. A private company ACCEL now offers cyclotrons based on this study on a commercial basis, and actual construction of a first such cyclotron is likely in the near future. In view of this, further optimization of the design of the superconducting magnet is currently underway. The configuration of the cyclotron has many similarities with previous NSCL-built superconducting cyclotrons—notable differences are the peak average field of 3 T (required by the focusing limit for protons) vs the 5 tesla of other MSU designs, and the use of four sectors rather than three to avoid the νr=3/2 stopband. The further optimization of the magnetic design described here keys on using the true 3D magnetic field program to more precisely match the design to an optimized orbital frequency configuration and to explore reducing the amount of spiral in the hills which then shortens the linear length of the rf elements and therefore reduces capacity and power consumption.

  14. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40. PMID:26934784

  15. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40.

  16. Measurement of Dynamic Strain on a Mercury Target Vessel During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Cates, M.R.

    2001-01-11

    A mercury target vessel, designed to simulate some aspects of the eventual target design for the proposed Spallation Neutron Source (SNS) to be built in Oak Ridge by the Department of Energy, was used in a test at the Los Alamos Neutron Science Center (LANSCE) to study the strain induced from thermal shock of bombarding protons. In the SNS, intense thermal shock loads are expected to cause an enormous rate of temperature rise ({approximately}10{sup 7} K/s), with resulting pressure waves in the mercury that may lead to large stresses on the thin walls of the mercury target. To guide the mercury target design and to benchmark the computer design codes, transient strain was measured using fiber optic Fabry-Perot sensors. Twenty strain sensors were attached in various axial and transverse orientations to a cylindrical stainless steel target vessel containing mercury. The vessel was 10 cm in diameter, about 15 cm long, and with a 5-cm radius hemispherical shell welded to the forward end. The test was done at the LANSCE Weapons Neutron Research (WNR) beam facility on 30-31 January 1999. The sensors were attached with gauge lengths of about two centimeters, and were located in pairs in most areas, for redundancy and facilitation of data analysis. The 800-MeV proton deposition of 0.5--2.3 x 10{sup 13} over a full-width at half maximum beam size of {approximately}25 mm, produced axial strains peaking at a few microstrains, with transverse (hoop) strains more than an order of magnitude higher. We describe the experiments, including the sensors and measurement configuration, and discuss the strain data analysis.

  17. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2016-09-01

    New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  18. Production of /sup 81/Rb/sup 81m/Kr generators with 60-MeV protons at BLIP

    SciTech Connect

    Mausner, L.F.; Richards, P.

    1983-01-01

    By bombarding natural krypton gas with approx. 63 MeV protons, /sup 81/Rb is formed by (p,4n) reaction from high abundance /sup 84/Kr (57%) as well as some additional contribution from /sup 83/Kr (11.5%) and /sup 82/Kr (11.6%) by (p,3n) and (p,2n) reactions, respectively. The production rate of /sup 81/Rb is typically 1.5 mCi/..mu..Ah. This production rate is sufficient to create up to several hundred millicuries per run if necessary, enough for several high activity /sup 81/Rb/sup 81m/Kr generators. Presently generators that deliver 10 to 20 mCi to the lungs are produced weekly for on-site use. The only other important activity in the solution is Rb-82m (6.4 hr). Small amounts of Br-76 (16.1 hr), Br-77 (57 hr), Br-82 (35.5 hr), Rb-83 (86.2 d), and Rb-84 (33 d) were also present. The bromine impurities pose no problem since they are not trapped on the generator. Rb-82m and Rb-84 decay to stable Kr-82 and Kr-84 in the generator and do not interfere with Kr-81m studies.

  19. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  20. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Anjum, Arshiya; Vinayakprasanna, N. H.; Pradeep, T. M.; Pushpa, N.; Krishna, J. B. M.; Gnana Prakash, A. P.

    2016-07-01

    N-channel depletion MOSFETs were irradiated with 4 MeV Proton and Co-60 gamma radiation in the dose range of 100 krad(Si) to 100 Mrad(Si). The electrical characteristics of MOSFET such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (μ), leakage current (IL) and drain saturation current (ID Sat) were studied as a function of dose. A considerable increase in ΔNit and ΔNot and decrease in Vth,gm, μ, and ID Sat was observed after irradiation. The results of 4 MeV Proton irradiation were compared with that of Co-60 gamma radiation and it is found that the degradation is more for the devices irradiated with 4 MeV Protons when compared with the Co-60 gamma radiation. This indicates that Protons induce more trapped charges in the field oxide region when compared to the gamma radiation.

  1. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields

    NASA Astrophysics Data System (ADS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Ramjilal, Ninawe, N. G.; Sunil, C.; Gupta, A. K.; Bandyopadhyay, T.

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  2. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.

    PubMed

    Paul, Sabyasachi; Sahoo, G S; Tripathy, S P; Sharma, S C; Ramjilal; Ninawe, N G; Sunil, C; Gupta, A K; Bandyopadhyay, T

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed. PMID:24985813

  3. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  4. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  5. MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz

    SciTech Connect

    Hou Bixue; Nees, John; Easter, James; Thomas, Alexander; Krushelnick, Karl; Davis, Jack; Petrov, George

    2009-09-07

    Well-collimated proton beams are generated from bulk glass along the target normal direction by tightly focused 55 fs, 3 mJ pulses from a laser operating at 0.5 kHz repetition rate. Proton beams with energies of >265 keV have an emission angle of about 16 deg. full width at half maximum. Spectral measurements indicate proton energies exceeding 0.5 MeV with a flux of 3.2x10{sup 9} s{sup -1} sr{sup -1} and the flux of measured protons with energies of greater than 90 keV is 8.5x10{sup 11} s{sup -1} sr{sup -1} on center.

  6. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  7. Light response of YAP:Ce and LaBr3:Ce scintillators to 4-30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Cremona, A.; Nocente, M.; Rebai, M.; Rigamonti, D.; Tardocchi, M.; Croci, G.; Ericsson, G.; Fazzi, A.; Hjalmarsson, A.; Mazzocco, M.; Strano, E.; Gorini, G.

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr3:Ce crystals has been measured with protons in the 4-8 MeV energy range at the Uppsala tandem accelerator and in the 8-26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with 137Cs and 60Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr3:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  8. Pitch Angle Distributions of 0.6-1.8 MeV Protons Observed by Voyager 1 at 85-87 AU

    SciTech Connect

    Decker, R.B.; Krimigis, S.M.; Roelof, E.C.; Burlaga, L.F.; Ness, N.F.

    2004-09-15

    We combined daily averages of magnetic field vector data and 0.6-1.8 MeV proton angular intensity data to construct 32 pitch angle distributions (PADs) for measurements made by Voyager 1 (V1) at 85-87 AU. The PADs were observed during the period 2002.6-2003.1, when energetic particle instruments on V1 measured unusually high intensities. The angular data show large, mainly unidirectional beaming of protons most often in the -T direction, i.e., away from the sun in the sense of a spiral magnetic field. The mean anisotropy amplitude based on the 32 samples is 0.55{+-}0.21.

  9. Interplanetary-proton (0. 61 < ep < 3. 41 MeV) events observed with Pioneer 11, 1973-86 and out to 22. 4 AU. Progress report

    SciTech Connect

    Van Allen, J.A.

    1987-01-01

    A survey of interplanetary-proton events (0.61 to 3.41 MeV) is summarized in graphical and tabular form for the period April 1973-December 1986. The observations were obtained by an effectively continuous data stream from the University of Iowa instrument on the Ames Research Center/NASA spacecraft Pioneer 11 as it moved outward in the solar system from 1.0 to 22.4 AU. Two hundred and sixty-five distinct events are identified. The spectra and intensities of the protons, presumed to be originally of solar origin, are influenced dramatically by propagative and accelerative processes in the interplanetary medium.

  10. Experimental results from high-intensity sources of monochromatic X-rays generated by 10-38 MeV protons

    NASA Astrophysics Data System (ADS)

    Avaldi, L.; Bassi, S.; Castiglioni, M.; Milazzo, M.; Silari, M.; Weckermann, B.

    1990-12-01

    The performance of a high intensity X-ray source generated by proton bombardment of pure elemental targets has been investigated experimentally. The K α yields of several thick targets of pure elemental composition have been measured at proton energies between 12 and 38 MeV. The measured yields ((3-5 × 10 10 photons/(s μA sr)) compare favourably with the expected values, while a sensible background contribution from nuclear processes asks for a careful experimental arrangement in order to use this source for XRF analyses.

  11. Cross-section for proton tritium scattering from 1.4 to 3.4 MeV at the laboratory angle of 165°

    NASA Astrophysics Data System (ADS)

    Xia, X. J.; Ding, W.; Zhang, B.; Long, X. G.; Luo, S. Z.; Peng, S. M.; Hutton, R.; Shi, L. Q.

    2008-03-01

    The elastic scattering cross-section for proton scattering from tritium was measured at a laboratory angle of 165° and over an incident proton energy range from 1.4 to 3.4 MeV. A thin solid target containing 1.62 × 1017 T atoms/cm2 was prepared by absorption of tritium into a film of titanium on aluminium foil backing. The cross-section increases almost linearly with decreasing energy in the higher energy region of 2-3.4 MeV. The currently measured cross-section data are compared with data available in the literature values and they show a similarly linear trend in a similar higher energy range. The maximum difference in the cross-section at almost the same scattering angle between current data and the previous results is no worse than 2.3%.

  12. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH2 Targets

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Deppert, O.; Brabetz, C.; Fiala, P.; Kleinschmidt, A.; Poth, P.; Schanz, V. A.; Tebartz, A.; Zielbauer, B.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2016-05-01

    We present a study of laser-driven ion acceleration with micrometer and submicrometer thick plastic targets. Using laser pulses with high temporal contrast and an intensity of the order of 1020 W /cm2 we observe proton beams with cutoff energies in excess of 85 MeV and particle numbers of 109 in an energy bin of 1 MeV around this maximum. We show that applying the target normal sheath acceleration mechanism with submicrometer thick targets is a very robust way to achieve such high ion energies and particle fluxes. Our results are backed with 2D particle in cell simulations furthermore predicting cutoff energies above 200 MeV for acceleration based on relativistic transparency. This predicted regime can be probed after a few technically feasible adjustments of the laser and target parameters.

  13. LET dependence of the response of a PTW-60019 microDiamond detector in a 62MeV proton beam.

    PubMed

    Rossomme, S; Denis, J M; Souris, K; Delor, A; Bartier, F; Dumont, D; Vynckier, S; Palmans, H

    2016-09-01

    This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam. PMID:27567088

  14. Measurements of proton induced γ-ray emission cross-sections on Mg from 1.0 to 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, N.; Kakuee, O.; Mohammadi, S.

    2016-04-01

    Differential cross-section of proton induced γ-ray emission from the reactions 24Mg(p,p‧γ)24Mg (Eγ = 1369 keV), 25Mg(p,p‧γ)25Mg (Eγ = 390, 585, 975 keV) and 26Mg(p,γ)27Al (Eγ = 1014 keV) were measured for proton energies from 1 to 3 MeV using a 60 μg/cm2 Mg target evaporated on a 40 μg/cm2 Ag thin film. The γ-rays were collected by a 50% relative efficiency HPGe detector placed at an angle of 90° with respect to the beam direction, while the backscattered protons were collected by an ion implanted Si detector placed at a scattering angle of 165°. Simultaneous collection of γ-ray and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. Measured cross-section values were compared with the previously reported data in the literature. Absolute γ-ray differential cross-sections were obtained with an overall systematic uncertainty of about ±6% and statistical uncertainty of less than ±5% for proton energies higher than 2.24 MeV.

  15. LET dependence of the response of a PTW-60019 microDiamond detector in a 62MeV proton beam.

    PubMed

    Rossomme, S; Denis, J M; Souris, K; Delor, A; Bartier, F; Dumont, D; Vynckier, S; Palmans, H

    2016-09-01

    This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.

  16. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles.

    PubMed

    Agosteo, S; Colautti, P; Esposito, J; Fazzi, A; Introini, M V; Pola, A

    2011-12-01

    Neutron energy spectra at different emission angles, between 0° and 120° from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0° resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  17. Recovery of the chemical ordering in L1{sub 0} MnAl epitaxial thin films irradiated by 2 MeV protons

    SciTech Connect

    Anuniwat, Nattawut; Cui, Yishen; Wolf, Stuart A.; Lu, Jiwei; Weaver, Bradley D.

    2013-03-11

    Epitaxial MnAl films with a high chemical ordering were synthesized and characterized during a series of irradiations by 2 MeV protons (H{sup +}). The chemical ordering was first reduced to a minimum at a total fluence (TF) of 1 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}, and consequently was recovered at the final total fluence of 2 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}. We attributed the recovery of chemical ordering to thermal effects and the enhanced diffusion caused by the high energy protons. In addition, the damages by the protons have little effect on the magnetic scattering processing in MnAl characterized by the anomalous Hall effect.

  18. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    SciTech Connect

    Lord, K.R. II; Walters, M.R.; Woodyard, J.R.

    1994-09-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  19. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  20. Response of human lymphocytes to proton radiation of 60 MeV compared to 250 kV X-rays by the cytokinesis-block micronucleus assay.

    PubMed

    Miszczyk, Justyna; Rawojć, Kamila; Panek, Agnieszka; Swakoń, Jan; Prasanna, Pataje G; Rydygier, Marzena

    2015-04-01

    Particle radiotherapy such as protons provides a new promising treatment modality to cancer. However, studies on its efficacy and risks are relatively sparse. Using the cytokinesis-blocked micronucleus assay, we characterized response of human peripheral blood lymphocytes, obtained from health donors irradiated in vitro in the dose range: 0-4. 0 Gy, to therapeutic proton radiation of 60 MeV from AIC-144 isochronous cyclotron, by studying nuclear division index and DNA damage and compared them with X-rays. Peripheral blood lymphocytes show decreased ability to proliferate with increasing radiation doses for both radiation types, however, in contrast to X-rays, irradiation with protons resulted in a higher proliferation index at lower doses of 0.75 and 1.0 Gy. Protons are more effective in producing MN at doses above 1.75 Gy compared to X-rays. Dose-response curves for micronucleus incidence can be best described by a cubic model for protons, while for X-rays the response was linear. The differences in the energy spectrum and intracellular distribution of energy between radiation types are also apparent at the intracellular distribution of cytogenetic damage as seen by the distribution of various numbers of micronuclei in binucleated cells. Our studies, although preliminary, further contribute to the understanding of the mechanistic differences in the response of HPBL in terms of cellular proliferation and cytogenetic damage induced by protons and X-rays as well as intra-cellular distribution of energy and thus radiobiological effectiveness.

  1. The effects of 800 MeV proton irradiation on the corrosion of tungsten, tantalum, stainless steel, and gold

    SciTech Connect

    Lillard, R.S.; Butt, D.P.; Kanner, G.; Daemen, L.

    1997-12-01

    Real time electrochemical data were acquired for tungsten, tantalum, stainless steel 304L, and gold targets during proton irradiation at the LANSCE Weapons Neutron Research Facility. The goal of this research was to establish a better understanding of the corrosion properties of materials as a function of proton irradiation and gain insight into the mechanism of the observed phenomena. The following electrochemical observations were made during proton irradiation of W, Ta, SS304, and Au: (1) the open circuit potential of all materials increased with increasing proton fluence; (2) the corrosion rate (at the OCP) of W and SS304 increased with increasing proton fluence; (3) the passive dissolution rate for SS304 and Ta decreased with increasing proton fluence; (4) the anodic dissolution rate for W increased with increasing proton fluence; (5) the pitting potential for SS304 increased with proton fluence, which is an indication that the material is less susceptible to pitting attack during irradiation.

  2. Cross sections for proton induced high energy γ -ray emission (PIGE) in reaction 19 F(p, αγ)16 O at incident proton energies between 1.5 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Cabanelas, P.; Cruz, J.; Fonseca, M.; Henriques, A.; Lourenço, F.; Luís, H.; Machado, J.; Pires Ribeiro, J.; Sánchez-Benítez, A. M.; Teubig, P.; Velho, P.; Zarza-Moreno, M.; Galaviz, D.; Jesus, A. P.

    2016-08-01

    We have studied the high energy gamma-rays produced in the reaction 19 F(p, αγ)16 O for incident proton energies from 1.5 to 4.0 MeV over NaF/Ag and CaF2/Ag thin targets in two different sets of data. Gamma-rays were detected with a High Purity Ge detector with an angle of 130° with respect to the beam axis. The cross-sections for the high energy gamma-rays of 6.129, 6.915 and 7.115 MeV have been measured for the whole group between 5 and 7.2 MeV with accuracy better than 10%. A new energy range was covered and more points are included in the cross-sections data base expanding the existing set of data. Results are in agreement with previous measurements in similar conditions.

  3. Estimate of the radiation source term for 18F production via thick H218O targets bombarded with 18 MeV protons

    NASA Astrophysics Data System (ADS)

    Cruzate, Juan Ángel

    2015-12-01

    The positron-emitting radionuclide most important from the point of view of radiation protection is 18F. This isotope is usually produced by bombarding 18O-enriched water with protons. Currently there are few experimental data on the radiation source term generated during these reactions. In addition, presently there is no theoretical estimates of this source term, for use in radiation protection, validated by experimental data. Up till now this term is calculated by using nuclear interactions' simulation codes, such as ALICE91. An estimate of the energy spectra for neutrons and photons, induced by 18 MeV protons on H218O target, have been calculated by using MCNPX code with cross sections from release 0 of ENDF/B VII library for all materials except 18O, for which TENDL-2012 library was used. This estimate was validated against a recent experiment carried out at the Japan Atomic Energy Agency (JAEA). The calculated spectra have generally well reproduced experiments. The results show that the calculated radiation source term may be used to estimate the neutron activation of the accelerator components and the cyclotron building, to calculate the cyclotron shielding, and to carry out radiation protection evaluations in general, for the case of cyclotrons producing 18F by means of the 18O(p,n)18F nuclear reactions, for proton energies up to 18 MeV.

  4. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber

    NASA Astrophysics Data System (ADS)

    Medin, Joakim

    2010-06-01

    Water calorimetric measurements have been performed in a 180 MeV scanned pulsed proton beam and the absorbed dose determined has been compared with the results obtained using two NE2571 Farmer chambers and the IAEA TRS-398 code of practice. The depth of measurement in water corresponded to a residual range of Rres = 16.5 cm, corresponding to a mean energy of about 150 MeV. Ionization chambers were calibrated in terms of the absorbed dose to water in 60Co at the Swedish Secondary Standard Dosimetry Laboratory, directly traceable to Bureau International des Poids et Mesures. The present experimental investigation has shown that water calorimetry is feasible in a high-energy scanned pulsed proton beam. When comparing the results obtained with water calorimetry and ionometry, the beam quality correction factor, kQ, could be determined for the two NE2571 ionization chambers used. The kQ-factor was found to be 1.032 ± 0.013, which is in good agreement with the factor tabulated in IAEA TRS-398 for this chamber type (1.039 ± 0.018). The present result has also been compared with a previously obtained result in a passively scattered proton beam having similar energy. This comparison yielded a 1.1% deviation, which is not significant considering the combined uncertainties of the two experimental determinations of kQ. The dominating contribution to the combined uncertainty stems from the correction factor for ion recombination in the scanned proton beam (1%), and further studies are required in order to reduce this uncertainty and reveal any possible differences in the kQ-factor between these two proton beam delivery techniques.

  5. RBE for late somatic effects in mice irradiated with 60 MeV protons relative to X-rays.

    NASA Technical Reports Server (NTRS)

    Darden, E. B., Jr.; Clapp, N. K.; Bender, R. S.; Jernigan, M. C.; Upton, A. C.

    1971-01-01

    Investigation of the relative biological effectiveness of energetic protons for the induction of somatic effects in a mammal (mice) following whole body irradiation. The proton energy used approximates the mean energy for proton spectra accompanying solar events. The effects on longevity and the incidence of major neoplastic diseases are summarized. The results obtained suggest that medium energy proton irradiation is no more effective, and on the whole, probably less effective, than conventional X radiation for the induction of late radiation effects in the mouse.

  6. Stopping powers and energy loss straggling for (0.9-3.4) MeV protons in a kapton polyimide thin film

    NASA Astrophysics Data System (ADS)

    Damache, S.; Djaroum, S.; Ouichaoui, S.; Amari, L.; Moussa, D.

    2016-09-01

    The energy loss and energy loss straggling widths have been measured in transmission for Ep ≈ (0.9-3.4) MeV protons traversing a thin kapton polyimide foil. In a prior step, the thickness and non-uniformity of the target foil were carefully investigated. The overall relative uncertainties in the stopping power and energy loss straggling variance data amount, respectively, to less than 2% and 8%. The S(E) experimental data show to be in excellent agreement with available previous ones and with those compiled in the ICRU-49 report. They are fully consistent with the predictions of Sigmund-Schinner's binary collision theory of electronic stopping over the whole proton energy range explored. An average deviation of ∼2.5% relative to values calculated by the SRIM-2008 code, likely due to effects of valence electrons involving the Csbnd H, Cdbnd C and Cdbnd O bonds, is however observed at low proton velocities. The measured energy loss straggling data, which are unique to our knowledge, are found to be in good agreement with values derived by the classical Bohr formula for Ep ≳ 1300 keV but they significantly exceed Bohr's collisional energy loss straggling at lower proton velocities where target electrons can no longer be considered as free. They also show to be consistent with the predictions of the Bethe-Livingston and Sigmund-Schinner theories over the low proton velocity region (Ep < 1300 keV). However, they are significantly overestimated by these theories over the intermediate and high proton velocity regions, which may be due to bunching effect by inner shell electrons of the polymer target. Besides, our energy loss straggling data are in better overall consistency with the Yang, O'Connor and Wang empirical formula for Ep > 1300 keV, while deviations above the latter amounting up to ∼18% are observed at lower proton velocities.

  7. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    NASA Astrophysics Data System (ADS)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  8. Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays.

    PubMed

    Stephens, Bryan J; Mendenhall, Marcus H

    2010-10-01

    We present a novel technique to produce narrow-band X-rays by preparing (161)Ho from the bombardment of dysprosium foil by 11.6 MeV protons. The activated foil produces predominantly 45-55 keV X-rays, which are suitable for activating iodinated radio-sensitizing agents (e.g. IUdR) for oncological therapy. We demonstrate that clinically useful quantities of the nuclide are easily produced with a medical cyclotron which is far from the current state of the art.

  9. Proton beam simulation with MCNPX: Gallium metal activation estimates below 30 MeV relevant to the bulk production of 68Ge and 65Zn

    NASA Astrophysics Data System (ADS)

    Fassbender, M.; Arzumanov, A.; Jamriska, D. J.; Lyssukhin, S. N.; Trellue, H.; Waters, L. S.

    2007-08-01

    Several gallium metal targets containing Ga metal encapsulated in Nb shells were irradiated in a 30 MeV cyclotron beam. Proton and secondary neutron beam fluences as well as radionuclide activity formation were modeled using MCNP-X in combination with CINDER90. Targets were chemically processed using two anion exchange steps. Good agreement between measured radiochemical yields and MCNPX/CINDER estimates was observed. The separation principle introduced in this work was utilized for a small 68Ge/Ga generator column for 68Ga labeling purposes.

  10. The streaming of 1.3 - 2.3 MeV cosmic-ray protons during periods between prompt solar particle events. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    1977-01-01

    The anisotropy of 1.3 to 2.3 MeV protons in interplanetary space was measured using the Caltech electron/isotope spectrometer aboard IMP-7 for 317 6 hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies were determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles was found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy was inconsistent with previously proposed sources of low energy proton increases seen at 1 AU which involve continual solar acceleration. The typical properties of this new component of low-energy cosmic rays were determined for this period which is near solar minimum.

  11. Oxidation of SO2 and formation of water droplets under irradiation of 20 MeV protons in N2/H2O/SO2

    NASA Astrophysics Data System (ADS)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei; Tanikawa, Hideomi; Harayama, Isao; Kobara, Hitomi; Sasa, Kimikazu; Pedersen, Jens Olaf Pepke; Hvelplund, Preben

    2015-12-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20 MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both droplet number and droplet size increased with SO2 consumption for the proton irradiation. The total charged droplet numbers entering the differential mobility analyzer per unit time were proportional to the 0.68 power of the SO2 consumption. These two findings suggest that coagulation among the small droplets contributes to the formation of the droplets. The charged droplet volume detected per unit time is proportional to the SO2 consumption, which indicates that a constant amount of sulfur atoms is contained in a unit volume of droplet, regardless of different droplet-size distributions depending on the SO2 consumption.

  12. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  13. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  14. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  15. Neutron and light-charged-particle productions in proton-induced reactions on 208Pb at 62.9 MeV

    NASA Astrophysics Data System (ADS)

    Guertin, A.; Marie, N.; Auduc, S.; Blideanu, V.; Delbar, Th.; Eudes, P.; Foucher, Y.; Haddad, F.; Kirchner, T.; Le Brun, Ch.; Lebrun, C.; Lecolley, F. R.; Lecolley, J. F.; Ledoux, X.; Lefèbvres, F.; Lefort, T.; Louvel, M.; Ninane, A.; Patin, Y.; Pras, Ph.; Rivière, G.; Varignon, C.

    2005-01-01

    Neutrons and light charged particles produced in 62.9MeV proton-induced reactions on 208Pb were measured during a single experiment performed at the CYCLONE facility in Louvain-la-Neuve (Belgium). Two independent experimental set-ups were used to extract double differential cross-sections for neutrons, protons, deuterons, tritons, 3He and alpha-particles. Charged particles were detected using a set of Si- Si- CsI telescopes from 25° to 155°, by step of 10 degrees. Neutrons were measured using shielded DeMoN counters, liquid NE213 scintillators, at 24°, 35°, 55°, 80° and 120°. These data allowed the determination of angle differential, energy differential and total production cross-sections. A comparison with theoretical calculations (MCNPX, FLUKA and TALYS) has been performed. It shows that the neutron and proton production rates are well predicted by MCNPX, using the INCL4 option. All the other codes underestimate the neutron production whereas they overestimate the proton one. For composite particles, which represent 17% of the charged particle total reaction cross-section, neither the shape nor the amplitude of the cross-sections are correctly predicted by the models.

  16. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Medin, Joakim; Ross, Carl K.; Klassen, Norman V.; Palmans, Hugo; Grusell, Erik; Grindborg, Jan-Erik

    2006-03-01

    Absorbed doses determined with a sealed water calorimeter operated at 4 °C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR20,10 = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, Rres = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in 60Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the kQ values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm-2 depth, suggesting that the TRS-398 tabulated kQ values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (wair/e)Q of 33.6 J C-1 ± 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (wair/e)Q value by the same amount.

  17. Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions

    NASA Astrophysics Data System (ADS)

    Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.

    2016-03-01

    In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.

  18. Effect of irradiation with MeV protons and electrons on the conductivity compensation and photoluminescence of moderately doped p-4H-SiC (CVD)

    SciTech Connect

    Kozlovski, V. V.; Lebedev, A. A. Bogdanova, E. V.; Seredova, N. V.

    2015-09-15

    The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstrated that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.

  19. Energy dependence of proton induced fission cross sections for heavy nuclei in the energy range 200-1000 MeV

    SciTech Connect

    Kotov, A. A.; Vaishnene, L. A.; Vovchenko, V. G.; Gavrikov, Yu. A.; Poliakov, V. V.; Tverskoy, M. G.; Fedorov, O. Ya.; Chestnov, Yu. A.; Shchetkovskiy, A. I.; Shvedchikov, A. V.; Doroshenko, A. Yu.; Fukahori, T.

    2006-09-15

    Total cross sections for proton induced fission of {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu nuclei were measured in the range 200-1000 MeV with an energy step of 100 MeV. The experiment was carried out at 1 GeV in a PNPI synchrocyclotron. Complementary fragments of the binary fission from a thin target were detected in coincidence by two parallel plate avalanche counters (PPAC) located close to the target. An assembly of the two PPACs and with the target in between them was placed directly into the beam, which provided a large solid angle acceptance. The beam monitoring system employed a scintillation counter telescope that was used for direct proton counting as well as for registration of the elastic pp-scattering events from the auxiliary (CH{sub 2}){sub n} target. The measured energy dependence of the total fission cross sections is presented. The results are compared with other available experimental data as well as with calculations in the frame of the cascade-evaporation model.

  20. Double beta decay of Uranium-238: Proton reactions of {sup 238}U in 5--12 MeV range. Final report, April 15, 1987--March 31, 1992

    SciTech Connect

    Turkevich, A.; Economou, T.E.

    1993-06-01

    This report is in two parts. The first part reports on the experimental work determining the half-life for double beta decay of {sup 238}U to {sup 238}PU to be (2.0 {plus_minus} 0.6) {times} 10{sup 21} years. This is the first evidence for a third mode of decay of this heaviest naturally occurring nucleus. This rate is about 10{sup 6} times slower than spontaneous fission, which itself is about 10{sup 6} times slower than alpha decay. The implication of this double beta decay to neutrino masses depends on uncertain theoretical calculations of the rate for such a heavy nucleus. The second part reports on yields of principal fission products from 5.6, 7.3, 9.4, and 11.5 MeV proton interactions with {sup 238}U. The yields at 11.5 MeV are similar to those from 14 MeV neutron fission of {sup 238}U. At the same time, the production cross sections of {sup 238}Np at the same energies are determined. This nuclide is produced as often as fission at the lowest energy but only 3.8% as often at the highest energy.

  1. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

    SciTech Connect

    Chaudhary, Pankaj; Marshall, Thomas I.; Perozziello, Francesca M.; Manti, Lorenzo; Currell, Frederick J.; Hanton, Fiona; McMahon, Stephen J.; Kavanagh, Joy N.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Prise, Kevin M.; Schettino, Giuseppe

    2014-09-01

    Purpose: The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. Methods and Materials: Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). Results: We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. Conclusions: The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.

  2. A track structure model of optically stimulated luminescence from Al 2O 3:C irradiated with 10-60 MeV protons

    NASA Astrophysics Data System (ADS)

    Edmund, Jens M.; Andersen, Claus E.; Greilich, Steffen

    2007-09-01

    We investigated the optically stimulated luminescence (OSL) signal from Al2O3:C irradiated with 10-60 MeV protons to estimate the potential use of this material as a proton dosimeter. After irradiation, OSL decay curves were read out and we used both the initial part and the total area of these curves as response signal. A precondition for optimal proton dosimetry is an LET-independent response and the experimental data showed such an independence at 0.3 Gy for the initial OSL signal. To understand the experimental results, we applied target and track structure theory. Here, the OSL signal is considered to be a result of target activation and the OSL proton signal is calculated from the OSL gamma signal and a radial dose distribution around the proton track. Although several simplifications were made to ease calculations, the classic track structure theory can qualitatively account for all the main features of the experimental data. We estimate a target radius to be between 30 and 150 nm and associate this radius with a charge migration distance in the crystal. The model calculations suggest that the dose and LET-dependency of the OSL signal is a result of an unique mixture of one- and two-hit targets. This implies that the initial OSL signal from Al2O3:C in general is not LET-independent at 0.3 Gy or lower doses. However, a mixture of the initial and total OSL signal could provide an LET-independent response in a given LET and dose interval.

  3. Elastic and inelastic scattering of polarized protons from carbon-12 at 400, 600, and 700 MeV

    SciTech Connect

    Jones, K.W.

    1984-04-01

    Good resolution cross section and analyzing power (p vector, p') data for many states in /sup 12/C up to an excitation energy of 21 MeV and spanning a momentum transfer range of 0.3 to 2.1 fm/sup -1/ were obtained using the High Resolution Spectrometer at the Clinton P. Anderson Meson Physics Facility at incident beam energies of 398, 597, and 698 MeV. Optical model potentials were obtained from the elastic scattering data. Inelastic data were analyzed in the Distorted Wave Impulse Approximation using the Love-Franey effective nucleon-nucleon interaction. The energy dependent isoscalar natural parity cross sections were underestimated, while phase difficulties were encountered in fitting analyzing powers. The energy independent isovector natural parity cross sections were reasonably reproduced, but analyzing powers were not, the calculations yielding positive trends whereas the data are of opposite sign. The energy independent isoscalar and isovector unnatural parity cross sections were quite well reproduced up to moderate momentum transfers, and striking successes were observed for some analyzing power data. Systematics of energy dependence together with the results of the DWIA calculations permitted the assignment of spin, parity and isospin quantum numbers to states in the 18-21 MeV excitation region. 64 references.

  4. Critical current density of Nb3Sn wires after irradiation with 65MeV and 24GeV protons

    NASA Astrophysics Data System (ADS)

    Spina, T.; Scheuerlein, C.; Richter, D.; Bottura, L.; Ballarino, A.; Flükiger, R.

    2014-05-01

    Industrial Nb3Sn wires with Ti and Ta additives (RRP process) and with Ta additives (PIT process) with a diameter of 1 mm have been irradiated at room temperature with protons of 65 MeV and of 24 GeV at various fluences up to 1×1021 p/m2. A steady increase of Jc vs. fluence was observed for all the wires up to the highest fluence. The observed increase of Jc at 4.2K in all wires was quite similar in spite of the very different proton energies. With increasing fluence. the radiation induced pinning force was found to increase. the enhancement Jc/Jco after 5.04×1020 p/m2 reaching 1.4 for Ta and 1.8 for Ti alloyed wires at 10T. The present results were quantitatively analysed by assuming a radiation induced point pinning mechanism in addition to grain boundary pinning. The results are compared with those of an ongoing neutron irradiation study undertaken on the same Nb3Sn wires in collaboration with the Atominstitut Vienna. Proton irradiation was found to produce considerably higher damage than neutron irradiation.

  5. K{alpha} x-ray satellite lines of Si induced in collisions with 1-3-MeV protons

    SciTech Connect

    Kavcic, Matjaz

    2003-08-01

    The K{alpha} x-ray emission spectra of Si bombarded by 1-3-MeV protons were measured with a crystal spectrometer in Johansson geometry, enabling energy resolution below the natural linewidth of the measured K{alpha} line. The K{alpha}L{sup 1} and K{alpha}L{sup 2} (K{alpha}L{sup 1,2}) x-ray satellite lines appearing in these spectra as a result of the radiative decay of atomic states with one hole in the K shell and one or two in the L subshells were precisely measured. The energies and intensities of the main components that could be resolved within the satellite lines are given. It has been demonstrated that the latter do not depend on proton energy and are essentially the same as in photon-induced spectra. The overall K{alpha}L{sup 1} satellite intensity relative to the K{alpha} diagram line has been used to deduce the L-shell ionization probabilities induced in near-central proton collisions. The experimental values were compared to the theoretical values calculated with the semiclassical approximation, with the three-body classical trajectory Monte Carlo model, and the classical binary-encounter-based geometrical model.

  6. Correlated analysis of 2 MeV proton-induced radiation damage in CdZnTe crystals using photoluminescence and thermally stimulated current techniques

    NASA Astrophysics Data System (ADS)

    Gu, Yaxu; Jie, Wanqi; Rong, Caicai; Wang, Yuhan; Xu, Lingyan; Xu, Yadong; Lv, Haoyan; Shen, Hao; Du, Guanghua; Fu, Xu; Guo, Na; Zha, Gangqiang; Wang, Tao

    2016-11-01

    Radiation damage induced by 2 MeV protons in CdZnTe crystals has been studied by means of photoluminescence (PL) and thermally stimulated current (TSC) techniques. A notable quenching of PL intensity is observed in the regions irradiated with a fluence of 6 × 1013 p/cm2, suggesting the increase of non-radiative recombination centers. Moreover, the intensity of emission peak Dcomplex centered at 1.48 eV dominates in the PL spectrum obtained from irradiated regions, ascribed to the increase of interstitial dislocation loops and A centers. The intensity of TSC spectra in irradiated regions decreases compared to the virgin regions, resulting from the charge collection inefficiency caused by proton-induced recombination centers. By comparing the intensity of identified traps obtained from numerical fitting using simultaneous multiple peak analysis (SIMPA) method, it suggests that proton irradiation under such dose can introduce high density of dislocation and A-centers in CdZnTe crystals, consistent with PL results.

  7. Effects of high-dose 40 MeV proton irradiation on the electroluminescent and electrical performance of InGaN light-emitting diodes

    SciTech Connect

    Khanna, Rohit; Allums, K.K.; Abernathy, C.R.; Pearton, S.J.; Kim, Jihyun; Ren, F.; Dwivedi, R.; Fogarty, T.N.; Wilkins, R.

    2004-10-11

    InGaN multi-quantum-well light-emitting diodes (LEDs) in the form of unpackaged die with emission wavelengths from 410 to 525 nm were irradiated with 40 MeV protons to doses of 5x10{sup 9}-5x10{sup 10} cm{sup -2}. The highest dose is equivalent to more than 100 years in low-earth orbit. The projected range of these protons is >50 {mu}m in GaN and thus they traverse the entire active region. The electroluminescent intensity from the LEDs decreased by only 15%-25% even for the highest doses and the reverse breakdown voltage increased by 1-2 V from their control values of {approx}21-29 V. The percentage change in breakdown voltage and electroluminescence intensity was independent of the initial emission wavelength over the range investigated, within experimental error. The GaN LEDs exhibit extremely good stability to these high-energy proton irradiations with no measurable change in contact resistance or contact morphology.

  8. Acceleration of protons to above 6 MeV using H{sub 2}O 'snow' nanowire targets

    SciTech Connect

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-09

    A scheme is presented for using H{sub 2}O 'snow' nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  9. SU-E-T-554: Monte Carlo Calculation of Source Terms and Attenuation Lengths for Neutrons Produced by 50–200 MeV Protons On Brass

    SciTech Connect

    Ramos-Mendez, J; Faddegon, B; Paganetti, H

    2015-06-15

    Purpose: We used TOPAS (TOPAS wraps and extends Geant4 for medical physicists) to compare Geant4 physics models with published data for neutron shielding calculations. Subsequently, we calculated the source terms and attenuation lengths (shielding data) of the total ambient dose equivalent (TADE) in concrete for neutrons produced by protons in brass. Methods: Stage1: The Bertini and Binary nuclear models available in Geant4 were compared with published attenuation at depth of the TADE in concrete and iron. Stage2: Shielding data of the TADE in concrete was calculated for 50– 200 MeV proton beams on brass. Stage3: Shielding data from Stage2 was extrapolated for 235 MeV proton beams. This data was used in a point-line-source analytical model to calculate the ambient dose per unit therapeutic dose at two locations inside one treatment room at the Francis H Burr Proton Therapy Center. Finally, we compared these results with experimental data and full TOPAS simulations. Results: At larger angles (∼130o) the TADE in concrete calculated with the Bertini model was about 9 times larger than that calculated with the Binary model. The attenuation length in concrete calculated with the Binary model agreed with published data within 7%±0.4% (statistical uncertainty) for the deepest regions and 5%±0.1% for shallower regions. For iron the agreement was within 3%±0.1%. The ambient dose per therapeutic dose calculated with the Binary model, relative to the experimental data, was a ratio of 0.93±0.16 and 1.23±0.24 for two locations. The analytical model overestimated the dose by four orders of magnitude. These differences are attributed to the complexity of the geometry. Conclusion: The Binary and Bertini models gave comparable results, with the Binary model giving the best agreement with published data at large angle. Shielding data we calculated using the Binary model is useful for fast shielding calculations with other analytical models. This work was supported by

  10. Production cross sections of products in the proton induced reactions on natNd in the energy region up to 45 MeV

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Chul; Kim, Kwangsoo; Song, Tae-Yung; Lee, Young-Ouk; Kim, Guinyun

    2015-11-01

    The production cross sections of 141,143,144,146,148m,148g,149,150Pm, 139m,147,149Nd, 138m,142gPr, and 139gCe in the natNd(p,x) reactions were determined by a stacked-foil activation technique for the proton energy range up to 45 MeV using the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences. The measured cross sections were compared with literature data as well as data from the TENDL-2014 library based on TALYS 1.6. The production cross sections of the above radionuclides are slightly higher than the literature data but are in general agreement with values in TENDL-2014 library except for 148mPm, 148gPm, 139mNd, and 142gPr. The thick target integral yields of the produced radionuclides were also deducted from the measured cross sections.

  11. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  12. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  13. Relative biological effectiveness of the 60-MeV therapeutic proton beam at the Institute of Nuclear Physics (IFJ PAN) in Kraków, Poland.

    PubMed

    Słonina, Dorota; Biesaga, Beata; Swakoń, Jan; Kabat, Damian; Grzanka, Leszek; Ptaszkiewicz, Marta; Sowa, Urszula

    2014-11-01

    The aim of the study was to determine the relative biological effectiveness (RBE) of a 60-MeV proton radiotherapy beam at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) in Kraków, the first one to operate in Poland. RBE was assessed at the surviving fractions (SFs) of 0.01, 0.1, and 0.37, for normal human fibroblasts from three cancer patients. The cells were irradiated near the Bragg peak of the pristine beam and at three depths within a 28.4-mm spread-out Bragg peak (SOBP). Reference radiation was provided by 6-MV X-rays. The mean RBE value at SF = 0.01 for fibroblasts irradiated near the Bragg peak of pristine beam ranged between 1.06 and 1.15. The mean RBE values at SF = 0.01 for these cells exposed at depths of 2, 15, and 27 mm of the SOBP ranged between 0.95-1.00, 0.97-1.02, and 1.05-1.11, respectively. A trend was observed for RBE values to increase with survival level and with depth in the SOBP: at SF = 0.37 and at the depth of 27 mm, RBE values attained their maximum (1.19-1.24). The RBE values estimated at SF = 0.01 using normal human fibroblasts for the 60-MeV proton radiotherapy beam at the IFJ PAN in Kraków are close to values of 1.0 and 1.1, used in clinical practice.

  14. Relative biological effectiveness of the 60-MeV therapeutic proton beam at the Institute of Nuclear Physics (IFJ PAN) in Kraków, Poland.

    PubMed

    Słonina, Dorota; Biesaga, Beata; Swakoń, Jan; Kabat, Damian; Grzanka, Leszek; Ptaszkiewicz, Marta; Sowa, Urszula

    2014-11-01

    The aim of the study was to determine the relative biological effectiveness (RBE) of a 60-MeV proton radiotherapy beam at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) in Kraków, the first one to operate in Poland. RBE was assessed at the surviving fractions (SFs) of 0.01, 0.1, and 0.37, for normal human fibroblasts from three cancer patients. The cells were irradiated near the Bragg peak of the pristine beam and at three depths within a 28.4-mm spread-out Bragg peak (SOBP). Reference radiation was provided by 6-MV X-rays. The mean RBE value at SF = 0.01 for fibroblasts irradiated near the Bragg peak of pristine beam ranged between 1.06 and 1.15. The mean RBE values at SF = 0.01 for these cells exposed at depths of 2, 15, and 27 mm of the SOBP ranged between 0.95-1.00, 0.97-1.02, and 1.05-1.11, respectively. A trend was observed for RBE values to increase with survival level and with depth in the SOBP: at SF = 0.37 and at the depth of 27 mm, RBE values attained their maximum (1.19-1.24). The RBE values estimated at SF = 0.01 using normal human fibroblasts for the 60-MeV proton radiotherapy beam at the IFJ PAN in Kraków are close to values of 1.0 and 1.1, used in clinical practice. PMID:25037857

  15. A large, precise set of polarization observables for deuteron-proton breakup at 130 MeV

    SciTech Connect

    Stephan, E.; Biegun, A.; Klos, B.; Micherdzinska, A.; Zipper, W.; Kistryn, St.; Bodek, K.; Ciepal, I.; Golak, J.; Skibinski, R.; Sworst, R.; Witala, H.; Zejma, J.; Kalantar-Nayestanaki, N.; Kis, M.; Mahjour-Shafiei, M.; Deltuva, A.; Fonseca, A. C.; Epelbaum, E.; Nogga, A.

    2008-04-29

    High precision vector A{sub x},A{sub y} and tensor A{sub xx},A{sub xy},A{sub yy} analyzing powers for the {sup 1}H(d-vector,pp)n breakup reaction were measured at 130 MeV beam energy with the detection system covering a large part of the phase space. Results are compared with rigorous theoretical calculations based on realistic nucleon-nucleon potentials, also with a so-called three-nucleon force included, as well as on chiral perturbation theory. Theoretical predictions generally describe the data quite well, but in some regions discrepancies have been observed, which indicate incompleteness of the present-day treatment of three nucleon dynamics.

  16. Evaluated Nuclear Data Library for Transport Calculations Involving Incident Neutrons and Protons of Energy Up to 100 MeV.

    1993-08-09

    Version 00 This data base was developed for use in Monte Carlo or discrete ordinate transport codes, for example, the general Monte Carlo code MCNP. Various modules of the NJOY processing code system have been enhanced to permit processing of the ENDF/B-VI formatted evaluations into both continuous-energy and multi-group format. The transport data files for all 18 projectile-plus-target systems have been processed through NJOY, and coupled multi-particle, multi-group transport libraries for MCNP now exist. Inmore » addition, pointwise MCNP libraries to 100 MeV for incident neutrons have been prepared for the nine targets. The production version of the MCNP code is being modified to handle the new pointwise libraries. The production version of MCNP already supports the use of coupled multi-group libraries.« less

  17. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  18. Neutron and proton transition densities from 32,34S(p,p') at Ep=318 MeV. I. Isoscalar densities for 32S

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Khandaker, M. A.; Boberg, P.; Feldman, A. E.; Flanders, B. S.; Hyman, S.; Seifert, H.; Karen, P.; Norum, B. E.; Welch, P.; Nanda, S.; Saha, A.

    1991-11-01

    Differential cross sections and analyzing powers for low-lying states of 32S were measured using 318 MeV protons. The data were analyzed using an empirical effective interaction previously fitted to inelastic scattering data for 16O and 40Ca at the same energy. Transition densities for many states were fitted to the data using general expansions which permit evaluation of uncertainties due to statistical and normalization errors, penetrability and distortion, and incompleteness in momentum space. The accuracy of the procedure was tested by comparing isoscalar densities fitted to (p,p') data for 32S with proton densities fitted to (e,e') data. The good agreement between these analyses supports the quantitative accuracy of densities fitted to (p,p') data. Isoscalar densities were also fitted to data for several states of 32S for which no (e,e') data exist. We find that the experimental densities agree well with the shell model for the first 2+ state, but that the neutron density for the second 2+ state is distinctly different in shape. Good qualitative agreement between the data and the shell model is obtained for the first two 4+ states of 32S. Transition densities were also fitted to the data for the lowest 1-, 3-, and 5- states in 32S. The shape of the 1- transition density is complicated, but the very small matrix element agrees with the approximate selection rule that suppresses isoscalar E1 moments.

  19. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  20. Stopping power and energy loss straggling of thin Formvar foil for 0.3-2.7 MeV protons and alpha particles

    NASA Astrophysics Data System (ADS)

    Mammeri, S.; Ammi, H.; Dib, A.; Pineda-Vargas, C. A.; Ourabah, S.; Msimanga, M.; Chekirine, M.; Guesmia, A.

    2012-12-01

    Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ˜0.3 μm) have been measured in the energy range (0.3-2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe-Bloch theory to extract the target mean excitation and ionization potential . A resulting value of ≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe-Livingston's classical theories or by Yang's empirical formula. A deviation of ˜40%-80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.

  1. Measurement of proton induced thick target γ-ray yields on B, N, Na, Al and Si from 2.5 to 4.1 MeV

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Ferraccioli, G.; Melon, B.; Nannini, A.; Perego, A.; Salvestrini, L.; Lagoyannis, A.; Preketes-Sigalas, K.

    2016-01-01

    Thick target yields for proton induced γ-ray emission (PIGE) on low-Z nuclei, namely B, N, Na, Al and Si, were measured for proton energies from 2.5 to 4.1 MeV and emission angles of 0°, 45° and 90°, at the 3 MV Tandetron laboratory of INFN-LABEC in Florence. The studied reactions were: 10B(p,α‧γ)7Be (Eγ = 429 keV), 10B(p,p‧γ)10B (Eγ = 718 keV) and 11B(p,p‧γ)11B (Eγ = 2125 keV) for boron; 14N(p,p‧γ)14N (Eγ = 2313 keV) for nitrogen; 23Na(p,p‧γ)23Na (Eγ = 441 and 1636 keV) and 23Na(p,α‧γ)20Ne (Eγ = 1634 keV) for sodium; 27Al(p,p‧γ)27Al (Eγ = 844 and 1014 keV) and 27Al(p,α‧γ)24Mg (Eγ = 1369 keV) for aluminum; 28Si(p,p‧γ)28Si (Eγ = 1779 keV) and 29Si(p,p‧γ)29Si (Eγ = 1273 keV) for silicon. The PIGE thick target yields have been measured with an overall uncertainty typically better than 10%. The use of the measured thick target yield to benchmark and validate experimental cross sections available in the literature is demonstrated.

  2. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    SciTech Connect

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-15

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C{sub 5}H{sub 5}N{sub 5}) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45 Degree-Sign parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15 Degree-Sign to 165 Degree-Sign . Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  3. Cross sections for production of the 15.10 MeV and other astrophysically significant gamma-ray lines through excitation and spallation of sup 12 C and sup 16 O with protons

    NASA Technical Reports Server (NTRS)

    Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.

    1986-01-01

    The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.

  4. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen.

    PubMed

    Jana, M R; Chung, M; Freemire, B; Hanlet, P; Leonova, M; Moretti, A; Palmer, M; Schwarz, T; Tollestrup, A; Torun, Y; Yonehara, K

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and∕or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  5. Impact of x-ray dose on the CR-39 response to 1-9 MeV protons with application to proton spectroscopy at OMEGA and NIF

    NASA Astrophysics Data System (ADS)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Gatu Johnson, M.; Zylstra, A.; Rosenberg, M.; Sio, H.

    2014-10-01

    CR-39 is a clear plastic nuclear track detector utilized in many nuclear diagnostics fielded in large-scale inertial confinement fusion (ICF) facilities. Large x-ray fluences in ICF experiments may impact the CR-39 response to incident charged particles. A thick-target bremsstrahlung x-ray machine was used to expose CR-39 to various x-ray doses to determine their impact on the CR-39 response to protons. This x-ray machine emits Cu- α line-radiation at 8 keV and has been absolutely calibrated using radiochromic film. The CR-39 detectors were then exposed to D3He-protons generated by the MIT Linear Electrostatic Ion Accelerator. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays. For example, a dose of 60 +/- 1.3 Gy results in a decrease of 53% in the track diameter, while a dose of 5 +/- 0.1 Gy causes a decrease of 7.5% in the track diameter. Doses of approximately 5Gy are typical on CR-39 detectors used to diagnose ICF implosions at OMEGA and the NIF. The resulting data will be used to evaluate how x-ray doses received by CR-39 in OMEGA and NIF experiments affect the recorded data. This undergraduate research was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  6. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation

    PubMed Central

    Faddegon, Bruce A.; Shin, Jungwook; Castenada, Carlos M.; Ramos-Méndez, José; Daftari, Inder K.

    2015-01-01

    Purpose: To measure depth dose curves for a 67.5 ± 0.1 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Methods: Depth dose curves were measured in 2 beam lines. Protons in the raw beam line traversed a Ta scattering foil, 0.1016 or 0.381 mm thick, a secondary emission monitor comprised of thin Al foils, and a thin Kapton exit window. The beam energy and peak width and the composition and density of material traversed by the beam were known with sufficient accuracy to permit benchmark quality measurements. Diodes for charged particle dosimetry from two different manufacturers were used to scan the depth dose curves with 0.003 mm depth reproducibility in a water tank placed 300 mm from the exit window. Depth in water was determined with an uncertainty of 0.15 mm, including the uncertainty in the water equivalent depth of the sensitive volume of the detector. Parallel-plate chambers were used to verify the accuracy of the shape of the Bragg peak and the peak-to-plateau ratio measured with the diodes. The uncertainty in the measured peak-to-plateau ratio was 4%. Depth dose curves were also measured with a diode for a Bragg curve and treatment beam spread out Bragg peak (SOBP) on the beam line used for eye treatment. The measurements were compared to Monte Carlo simulation done with geant4 using topas. Results: The 80% dose at the distal side of the Bragg peak for the thinner foil was at 37.47 ± 0.11 mm (average of measurement with diodes from two different manufacturers), compared to the simulated value of 37.20 mm. The 80% dose for the thicker foil was at 35.08 ± 0.15 mm, compared to the simulated value of 34.90 mm. The measured peak-to-plateau ratio was within one standard deviation experimental uncertainty of the simulated result for the thinnest foil and two standard deviations for the thickest foil. It was necessary to include the collimation in the simulation, which had a more pronounced effect on the peak-to-plateau ratio for the

  7. Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse

    SciTech Connect

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Bulanov, S. V.; Esirkepov, T. Zh.; Choi, I. W.; Kim, C. M.; Jeong, T. M.; Yu, T. J.; Sung, J. H.; Lee, S. K.; Hafz, N.; Pae, K. H.

    2008-05-15

    High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond titanium:sapphire laser pulse interacting with 7.5, 12.5, and 25 {mu}m thick polyimide tape targets. Laser pulse with an energy of 1.7 J and with a duration of 34 fs is focused with an f/3.4 parabolic mirror giving an intensity of 3x10{sup 19} W cm{sup -2}. The main pulse to amplified spontaneous emission (ASE) intensity contrast ratio is 2.5x10{sup 7}. The conversion efficiency from the laser energy into the proton kinetic energies is achieved to be {approx}3%, which is comparable to or even higher than those achieved in the previous works; using nanometer-thick targets, in combination with the short-pulse lasers that have almost the same pulse width and the intensity but different main pulse to ASE intensity contrast of {approx}10{sup 10} [Neely et al., Appl. Phys. Lett. 89, 021502 (2006)], in which the authors claim that the main mechanism is target normal sheath acceleration; or using the 7.5 {mu}m thick polyimide target, in combination with the short-pulse laser, which has almost the same pulse width and the intensity, but the main pulse to ASE intensity contrast ratio was controlled to be 2.5x10{sup 5} [Yogo et al., Phys. Rev. E 77, 016401 (2008)], in which the authors claim the efficient acceleration by the mechanism of the underdense plasma model. The contrast ratio of the present experiment is in between these two experiments. The possible mechanism of this regime is discussed.

  8. Neutron spectral and angular distribution measurements for 113 and 256 MeV protons on range-thick Al and sup 238 U targets using the foil activation techniques

    SciTech Connect

    Greenwood, L.R.; Intasorn, A.

    1989-07-01

    Second neutron yields, energy spectra, and angular distributions have been measured at seven angles from 0 to 150{degree} for 113 and 256 MeV protons stopped in range-thick targets of aluminum and depleted uranium ({sup 238}U). Thin foil stacks of ten different materials were activated by secondary neutrons at distances of 20--30 cm from the targets. Following each irradiation, 30--40 different activation products were measured by gamma-ray spectroscopy. These activation rates were then used to adjust neutron energy spectra calculated by the HETC computer code. Activation cross sections were taken from ENDF/BV below 20 MeV, from literature values tested in Be(d,n) fields up to 50 MeV, and from proton spallation data and calculations from 50--250 MeV. Spectral adjustments were made with the STAY'SL computer code using a least-squares technique to minimize {chi}{sup 2} for a covariance matrix determined from uncertainties in the measured activities, cross sections, and calculated flux spectra. Neutron scattering effects were estimated from foil packets irradiated at different distances from the target. Proton effects were measured with (p,n) reactions. Systematic differences were found between the adjusted and calculated neutron spectra, namely, that HETC underpredicts the neutron flux at back angles by a factor of 2--3 and slightly overpredicts the flux at forward angles. 19 refs., 23 figs., 13 tabs.

  9. Annual Cosmic Ray Spectra from 250 MeV up to 1.6 GeV from 1995 - 2014 Measured with the Electron Proton Helium Instrument onboard SOHO

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Gómez-Herrero, R.; Heber, B.

    2016-03-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by examining long-term variations of the GCR energy spectrum ( e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) onboard the SOlar and Heliospheric Observatory (SOHO) is well suited for this kind of investigation. Although the design of the instrument is optimised to measure proton and helium isotope spectra up to 50 MeV nucleon^{-1}, the capability exists to determine proton energy spectra from 250 MeV up to above 1.6 GeV. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy-response function of EPHIN for electrons, protons, and heavier ions. For validation purposes, proton spectra based on this method are compared to various balloon missions and space instrumentation. As a result we present annual galactic cosmic-ray spectra from 1995 to 2014.

  10. Evaluation of cross sections for Lα x-ray production by up to 4 MeV protons in representative elements from silver to uranium

    NASA Astrophysics Data System (ADS)

    Lapicki, Gregory

    2009-07-01

    Over the last two decades, Lα x-ray production cross sections have been fitted with a number of empirical formulae. Cross sections obtained from these formulae are averaged and fitted to a new empirical formula. These new empirical cross sections are compared with the results of the plane-wave Born approximation and the ECPSSR theory of Brandt and Lapicki (1981 Phys. Rev. A 23 1717). They are also gauged by the ECPSSR theory that has been corrected with a united atom approach in slow collisions, evaluated with Dirac-Hartree-Slater instead of screened hydrogenic wavefunctions, modified for intra-shell couplings as well as the change of the atomic parameters due to multiple ionizations. The effects of appropriately normalized intra-shell coupling factors and of multiple ionization were found to be small and essentially offset each other. The role of different sets of atomic parameters in conversion of the predictions of these ionization theories for Lα x-ray production in elements from the 47 <= Z2 <= 92 range of target atoms bombarded by up to 4 MeV protons is examined, and the selection of the optimal combination of ionization theory and atomic parameters for a reliable data base for PIXE analysis of elements heavier than palladium is discussed.

  11. M -shell x-ray production by 0. 6--4. 0-MeV protons in ten elements from hafnium to thorium

    SciTech Connect

    Pajek, M. ); Kobzev, A.P.; Sandrik, R.; Skrypnik, A.V. ); Ilkhamov, R.A.; Khusmurodov, S.H. ); Lapicki, G. )

    1990-07-01

    {ital M}-shell x-ray production cross sections for selected heavy elements, namely, {sub 72}Hf, {sub 73}Ta, {sub 74}W, {sub 75}Re, {sub 76}Os, {sub 77}Ir, {sub 78}Pt, {sub 79}Au, {sub 83}Bi, and {sub 90}Th, were measured for protons of energy 0.6--4.0 MeV. The experimental results are compared with the predictions of the first Born and semiclassical approximations for {ital M}-shell ionization; these data are also compared with the theory that accounts for the projectile's energy loss and Coulomb deflection as well as for the target's {ital M}-shell electron perturbed stationary state and relativistic nature (ECPSSR). Generally, fair agreement between the data and the ECPSSR theory is found. Some systematical discrepancies observed for the lightest elements (Hf, Ta, and W) are explained as possible ambiguities in the {ital M}-shell Coster-Kronig factors and fluorescence yields, which were used to convert theoretical {ital M}-subshell ionization cross sections to the total {ital M}-x-ray production cross sections. The experimental total {ital M}-shell ionization cross sections were obtained from measured {ital M}-x-ray cross sections using the proposed approximate average fluorescence yield {bar {omega}}{sub {ital M}} that relies on two fluorescence yields and the Coster-Kronig factor for {ital only} {ital M}{sub 4} and {ital M}{sub 5} subshells.

  12. North/South Hemispheric Periodicities in the {>} 25 MeV Solar Proton Event Rate During the Rising and Peak Phases of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2016-08-01

    We present evidence that >25~MeV solar proton events show a clustering in time at intervals of about six months that persisted during the rising and peak phases of Solar Cycle 24. This phenomenon is most clearly demonstrated by considering events originating in the northern or southern solar hemispheres separately. We examine how these variations in the solar energetic particle (SEP) event rate are related to other phenomena, such as hemispheric sunspot numbers and areas, rates of coronal mass ejections, and the mean solar magnetic field. Most obviously, the SEP event rate closely follows the sunspot number and area in the same hemisphere. The variations of about six months are associated with features in many of the other parameters we examine, indicating that they are just one signature of the episodic development of Cycle 24. They may be related to periodicities of about 150 days reported in various solar and interplanetary phenomena during previous solar cycles. The clear presence of periodicities of about six months in Cycle 24 that evolve independently in each hemisphere contradicts a scenario suggested by McIntosh et al. ( Nature Com. 6, 6491, 2015) for the variational timescales of solar magnetism.

  13. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  14. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  15. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  16. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    NASA Astrophysics Data System (ADS)

    Kozlovski, V. V.; Lebedev, A. A.; Emtsev, V. V.; Oganesyan, G. A.

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6-9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the "source" of silicon ions generating these ions uniformly across the sample thickness.

  17. The Relationship Between CME Properties in the CDAW, CACTUS and SEEDS Catalogs and ?25 MeV Solar Proton Event Intensities

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2013-12-01

    overcome some of these problems. In particular, a spacecraft in quadrature with the solar source of an SEP event should observe the 'true' width and speed of the associated CME. However, STEREO CME parameters are derived using the CACTUS method, and cannot be directly compared with the LASCO CDAW catalog values that have been so widely used for many years. In this study, we will examine the relationship between the properties of CMEs in various catalogs and the intensities of a large sample of particle events that include ˜25 MeV protons in cycles 23 and 24. In particular, we will compare the proton intensity-speed relationships obtained using the CDAW, CACTUS and SEEDS LASCO catalogs, and also using the CACTUS values from whichever spacecraft (STEREO A, B or SOHO) is best in quadrature with the solar event. We will also examine whether there is any correlation between the width of the CMEs in the automated catalogs and proton intensity, and whether a combination of CME speed and width might improve the correlation with proton intensity.

  18. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    SciTech Connect

    Rossomme, S; Renaud, J; Sarfehnia, A; Seuntjens, J; Lee, N; Thomas, R; Kacperek, A; Bertrand, D; Vynckier, S; Palmans, H

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor kQ,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates kQ,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficient is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental kQ,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. kQ,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine kQ,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher

  19. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  20. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  1. Cross Sections for the Production of Cosmogenic Nuclides with Protons up to 400 MeV for the Interpretation of Cosmic-Ray-produced Nuclides

    NASA Astrophysics Data System (ADS)

    Schiekel, Th.; Rosel, R.; Herpers, U.; Bodemann, R.; Leya, I.; Gloris, M.; Michel, R.; Dittrich, B.; Kubik, P.; Suter, M.

    1993-07-01

    Integral excitation functions of the cosmogenic nuclides are the basic requirement for the interpretation of interactions between cosmic ray particles and extraterrestrial and terrestrial matter. Together with the knowledge of primary and secondary particle fields inside an irradiated body, model calculations can be developed to interpret abundances of cosmogenic nuclides in dependencies of the irradiation history of the irradiated body and of the cosmic particle ray itself. The quality of those model calculations depends on the quality of the available cross-section database, which is neither comprehensive nor reliable for the most important nuclides like the long-lived radionuclides (i.e., 10Be, 26Al, 36Cl, 41Ca) and the stable rare gas isotopes. For a systematic investigation in this field of science we carried out several irradiation experiments with protons in the energy region between 45 MeV and 400 MeV at the Paul Scherrer Institut (Villigen, Switzerland) and the Laboratoire Nationale Saturne (Saclay, France) using the stacked foil technique. We included 21 different target elements with Z between 6 and 79 (C, N as Si3N4, O as SiO2, Mg, Al, Si, Ca as CaC2H2O4, Ti, V, Mn as Mn/Ni alloy, Fe, Co, Ni, Cu, Sr as SrF2, Y, Zr, Nb, Rh, Ba as Ba containing glass and Au) in our experiments. The proton fluxes were monitored via the reaction 27Al(p,3p3n)22Na using the evaluated data of [1]. Residual nuclides were measured by X-, gamma-, and after a chemical separation by accelerator mass spectrometry. In order to check the quality of our experimental procedures we included some target elements in our new experiments for which consistent excitation functions have already been determined [2,3,4]. Our new data show excellent agreement with the earlier measurements. We measured cross sections for more than 120 different reactions. Here we report on the results for target elements with Z up to 28. The exsisting database of experimental excitation functions for the production

  2. 800-MeV magnetic-focused flash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Espinoza, Camilo; Goett, John Jerome; Hogan, Gary; Hollander, Brian; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morley, Deborah; Morris, Chris; Murray, Matthew; Nedrow, Paul; Saunders, Alexander; Schurman, Tamsen; Sisneros, Thomas; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Wilde, Carl

    2016-03-01

    Proton radiography shows great promise as a tool to guide proton beam therapy (PBT) in real time. Here, we demonstrate two ways in which the technology may progress towards that goal. Firstly, with a proton beam that is 800 MeV in energy, target tissue receives a dose of radiation with very tight lateral constraint. This could present a benefit over the traditional treatment energies of ~200 MeV, where up to 1 cm of lateral tissue receives scattered radiation at the target. At 800 MeV, the beam travels completely through the object with minimal deflection, thus constraining lateral dose to a smaller area. The second novelty of this system is the utilization of magnetic quadrupole refocusing lenses that mitigate the blur caused by multiple Coulomb scattering within an object, enabling high resolution imaging of thick objects, such as the human body. This system is demonstrated on ex vivo salamander and zebrafish specimens, as well as on a realistic hand phantom. The resulting images provide contrast sufficient to visualize thin tissue, as well as fine detail within the target volumes, and the ability to measure small changes in density. Such a system, combined with PBT, would enable the delivery of a highly specific dose of radiation that is monitored and guided in real time.

  3. Involvement of the Artemis Protein in the Relative Biological Efficiency Observed With the 76-MeV Proton Beam Used at the Institut Curie Proton Therapy Center in Orsay

    SciTech Connect

    Calugaru, Valentin; Nauraye, Catherine; Cordelières, Fabrice P.; Biard, Denis; De Marzi, Ludovic; Hall, Janet; Favaudon, Vincent; Mégnin-Chanet, Frédérique

    2014-09-01

    Purpose: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). Methods and Materials: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. Results: We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. Conclusions: Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.

  4. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  5. Ranking and validation of the spallation models for description of intermediate mass fragment emission from p + Ag collisions at 480 MeV incident proton beam energy

    NASA Astrophysics Data System (ADS)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2016-06-01

    Double-differential cross-sections d2σ/dΩ dE for isotopically identified intermediate mass fragments ( 6Li up to 27Mg from nuclear reactions induced by 480 MeV protons impinging on a silver target were analyzed in the frame of a two-step model. The first step of the reaction was described by the intranuclear cascade model INCL4.6 and the second one by four different models (ABLA07,GEM2, GEMINI++, and SMM). The experimental spectra reveal the presence of low-energy, isotropic as well as high-energy, forward-peaked contributions. The INCL4.6 model offers a possibility to describe the latter contribution for light intermediate mass fragments by coalescence of the emitted nucleons. The qualitative agreement of the model predictions with the data was observed but the high-energy tails of the spectra were significantly overestimated. The shape of the isotropic part of the spectra was reproduced by all four models. The GEM2 model strongly underestimated the value of the cross-sections for heavier IMF whereas the SMM and ABLA07 models generally overestimated the data. The best quantitative description of the data was offered by GEMINI++, however, a discrepancy between the data and the model cross-sections still remained for almost all reaction products, especially at forward angles. It indicates that non-equilibrium processes are present which cannot be reproduced by the applied models. The goodness of the data description was judged quantitatively using two statistical deviation factors, the H-factor and the M-factor, as a tool for ranking and validation of the theoretical models.

  6. Effects of 100MeV protons delivered at 0.5 or 1cGy/min on the in vivo induction of early and delayed chromosomal damage.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpatthanaphong, Paiboon; Tungjai, Montree; Golightly, Marc; Whorton, Elbert B

    2013-08-30

    Little is known about in vivo cytogenetic effects of protons delivered at the dose and dose rates encountered in space. We determined the effects of 100MeV protons, one of the most abundant type of protons produced during solar particle events (SPE), on the induction of chromosome aberrations (CAs) in bone marrow (BM) cells collected at early (3 and 24h) and late (6 months) time-points from groups of BALB/cJ mice (a known radiosensitive strain) exposed whole-body to 0 (sham-controls), 0.5, or 1.0Gy of 100MeV protons, delivered at 0.5 or 1.0cGy/min. These doses and dose-rates are comparable to those produced during SPE events. Additionally, groups of mice were exposed to 0 or 1Gy of (137)Cs γ rays (delivered at 1cGy/min) as a reference radiation. The kinetics of formation/reduction of gamma-histone 2-AX (γH2AX) were determined in BM cells collected at 1.5, 3, and 24h post-irradiation to assess the early-response. There were five mice per treatment-group per harvest-time. Our data indicated that the kinetics of γH2AX formation/reduction differed, depending on the dose and dose rate of protons. Highly significant numbers of abnormal cells and chromatid breaks (p<0.01), related to those in sham-control groups, were detected in BM cells collected at each time-point, regardless of dose or dose-rate. The finding of significant increases in the frequencies of delayed non-clonal and clonal CAs in BM cells collected at a late time-point from exposed mice suggested that 0.5 or 1Gy of 100MeV protons is capable of inducing genomic instability in BM cells. However, the extent of effects induced by these two low dose rates was comparable. Further, the results showed that the in vivo cytogenetic effects induced by 1Gy of 100MeV protons or (137)Cs γ rays (delivered at 1cGy/min) were similar.

  7. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  8. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  9. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  10. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV

    PubMed Central

    Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  11. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy.

  12. K-italic-shell ionization cross sections for Al, Ti, V, Cr, Fe, Ni, Cu, and Ag by protons and oxygen ions in the energy range 0. 3--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M.; Benka, O.

    1986-08-01

    Absolute K-italic-shell ionization cross sections have been measured for thin targets of Al, Ti, and Cu for protons in the energy range 0.3--2.0 MeV and for thin targets of Ti, V, Cr, Fe, Ni, Cu, and Ag for oxygen ions in the energy range 1.36--6.4 Mev. The experimental results are compared to the perturbed-stationary-state (PSS) approximation with energy-loss (E), Coulomb (C), and relativistic (R) corrections, i.e., the ECPSSR approximation (Brandt and Lapicki), to the semiclassical approximation (Laegsgaard, Andersen, and Lund), and to a theory for direct Coulomb ionization of the 1s-italicsigma molecular orbital (Montenegro and Sigaud (MS)). The proton results agree within 3% with empirical reference cross sections. Also, the ECPSSR provides best overall agreement for protons. For oxygen ions, ECPSSR and MS predict experimental results satisfactorily for scaled velocities xi> or =0.4. For lower scaled velocities, the experimental cross sections become considerably higher than theoretical predictions for Coulomb ionization. This deviation increases with increasing Z-italic/sub 1//Z/sub 2/; it cannot be explained by electron transfer to the projectile or by ionization due to target recoil atoms.

  13. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013.

  14. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-01

    The characteristics of moderator assembly dimension are investigated for the usage of 7Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D2O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors. PMID:16872076

  15. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using {sup 7}Li(p,n) neutrons at proton energy of 2.5 MeV

    SciTech Connect

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-15

    The characteristics of moderator assembly dimension are investigated for the usage of {sup 7}Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D{sub 2}O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.

  16. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A.

    2010-07-15

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  17. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    DOE PAGESBeta

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; et al

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased asmore » the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.« less

  18. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 MeV proton-7Li reaction or from fission of 235U

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D2O moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.

  19. Proton beam simulation with MCNPX/CINDER'90: Germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes.

    PubMed

    Fassbender, M; Taylor, W; Vieira, D; Nortier, M; Bach, H; John, K

    2012-01-01

    Germanium metal targets encapsulated in Nb shells were irradiated in a proton beam. Proton and secondary neutron beam fluences as well as radionuclide activity formation were modeled using MCNPX in combination with CINDER90. Targets were chemically processed using distillation and anion exchange. Good agreement between the measured radiochemical yields and MCNPX/CINDER90 estimates was observed. A target of pentavalent (73,74)As radioarsenic for neutron activation studies was prepared.

  20. Proton beam simulation with MCNPX/CINDER'90: Germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes.

    PubMed

    Fassbender, M; Taylor, W; Vieira, D; Nortier, M; Bach, H; John, K

    2012-01-01

    Germanium metal targets encapsulated in Nb shells were irradiated in a proton beam. Proton and secondary neutron beam fluences as well as radionuclide activity formation were modeled using MCNPX in combination with CINDER90. Targets were chemically processed using distillation and anion exchange. Good agreement between the measured radiochemical yields and MCNPX/CINDER90 estimates was observed. A target of pentavalent (73,74)As radioarsenic for neutron activation studies was prepared. PMID:21890369

  1. Changes in the structural and thermal properties of poly(vinylidene fluoride-chlorotrifluoroethylene) irradiated with 4 MeV protons

    NASA Astrophysics Data System (ADS)

    Singh, Arjun; Kishore, Prateek; Singh, Manjit; Srivastava, Alok

    2015-10-01

    The radiation effects on semicrystalline poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer [poly(VDF-CTFE)] induced by proton beam irradiation were investigated. The poly(VDF-CTFE) films were exposed to 4 MeV protons at different fluence in the range of 2.7 × 1013 to 65.0 × 1013 protons/cm2. Changes in the chemical structural and thermal properties of pristine films as well as irradiated samples were studied using Fourier Transform Infrared (FTIR) and thermal analytical techniques, namely Thermogravimetric Analysis and Differential Scanning Calorimetry (DSC), respectively. FTIR spectroscopic data revealed two new bands at 1650 and 1747 cm-1 for irradiated samples whose intensities gradually increased with increasing ion fluence from 2.7 × 1013 to 27.0 × 1013 protons/cm2 due to the formation of carbon-carbon double bonds. The thermal stability was found to decrease after proton irradiation due to chain-scission. DSC data revealed that the proton irradiation was found to change in heat of fusion and crystallinity depending upon the applied dose.

  2. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    SciTech Connect

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-10-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the {sup 3}He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ({sup 3}He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the {sup 3}He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment.

  3. Corrections for the polarization-dependent efficiency and new neutron-proton analyzing power data at 7.6 MeV

    NASA Astrophysics Data System (ADS)

    Weisel, G. J.; Braun, R. T.; Tornow, W.

    2010-08-01

    We present new corrections for the polarization-dependent efficiency (PDE), which introduces a false asymmetry into measurements of n-p analyzing power Ay(θ) caused by double scattering in the neutron side detectors. To accomplish this, we created a new database of C12(n⃗,n) Ay(θ) by using a combination of fits to data, phase-shift analysis, and R-matrix analysis. Our recorrection for PDE of previously reported n-p Ay(θ) data at 7.6 and 12.0 MeV and new data at 7.6 MeV indicate that we have achieved a superior representation of C12(n⃗,n). Our results continue to suggest a possible charge dependence of the pion-nucleon coupling constant.

  4. Corrections for the polarization-dependent efficiency and new neutron-proton analyzing power data at 7.6 MeV

    SciTech Connect

    Weisel, G. J.; Braun, R. T.; Tornow, W.

    2010-08-15

    We present new corrections for the polarization-dependent efficiency (PDE), which introduces a false asymmetry into measurements of n-p analyzing power A{sub y}({theta}) caused by double scattering in the neutron side detectors. To accomplish this, we created a new database of {sup 12}C(n-vector,n) A{sub y}({theta}) by using a combination of fits to data, phase-shift analysis, and R-matrix analysis. Our recorrection for PDE of previously reported n-p A{sub y}({theta}) data at 7.6 and 12.0 MeV and new data at 7.6 MeV indicate that we have achieved a superior representation of {sup 12}C(n-vector,n). Our results continue to suggest a possible charge dependence of the pion-nucleon coupling constant.

  5. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  6. Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Blanco Sancho, J.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2013-06-01

    In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15·1011 so that the total number of protons in the beam is about 1.3·1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 μs. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with σ = 0.1 mm-1.0 mm. In this paper we present results using two values of σ, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius = 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target experiments for the machine protection studies at the HiRadMat (High Radiation Materials) facility at CERN. However this work has shown that large samples of High Energy Density (HED) matter will be generated in such experiments which suggests an additional application of this facility. In the present paper we emphasize the possibility of doing HED physics experiments at the HiRadMat in the future.

  7. K -shell ionization cross sections for Si, P, K, Ca, Zn, and Ga by protons and carbon ions in the energy range 1--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Benka, O. )

    1990-01-01

    Absolute {ital K}-shell ionization cross sections have been measured for thin targets of Si, P, S, K, Ca, Zn, and Ga using carbon ions between 1.0 and 6.4 MeV and protons of 1 and 2 MeV. The dependence of x-ray production cross sections on target thickness was determined. The experimental results are compared to the semiclassical approximation (Laegsgaard, Andersen, and Lund in 3 Proceedings of the Tenth International Conference on the Physics of Electron and Atomic Collisions, Paris, 1977, edited by G. Watel (North-Holland, Amsterdam 1977)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B. 18, 299 (1985)), to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), and to the modification of the ECPSSR approximation (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Suppl. 12, C9-251 (1987)). The results for carbon ions are also compared to the statistical molecular orbital theory of inner-shell ionization for symmetric or nearly symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)).

  8. Proton-recoil detectors for time-of-flight measurements of neutrons with kinetic energies from some tens of keV to a few MeV

    NASA Astrophysics Data System (ADS)

    Beyer, R.; Grosse, E.; Heidel, K.; Hutsch, J.; Junghans, A. R.; Klug, J.; Légrády, D.; Nolte, R.; Röttger, S.; Sobiella, M.; Wagner, A.

    2007-06-01

    For experiments at the superconducting electron accelerator ELBE, where neutrons in the kinetic energy region from some tens of keV to a few MeV will be produced by bremsstrahlung, neutron-time-of-flight detectors have been developed. These detectors are made from the plastic scintillator material EJ-200. Efficiency calibration showed more than 10% efficiency for kinetic energies down to 30 keV. The calibration was done at the "accelerator facility for fast neutron research" at Physikalisch-Technische Bundesanstalt in Braunschweig, using pulsed quasi-monoenergetic neutron fields with a well-determined fluence. The low detection threshold was obtained by coincident readout of two Hamamatsu R2059-01 photomultiplier tubes per scintillator and by triggering just below the single-photo-electron peak of these photomultiplier tubes, which additionally gives a well-reproduceable detection threshold.

  9. Stretched-state excitations with the (neutron,proton) reaction at 278 MeV on carbon-14, magnesium-26 and silicon-30

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Dong

    1997-11-01

    The reactions 12C(n,p)12B,/ 14C(n,p)14B,/ 16O(n,p)16N,/ 26Mg(n,p)26Na and 30Si(n,p)30Al were studied at a neutron energy of 278 MeV using the charge-exchange facility at the TRIUMF accelerator laboratory in Vancouver, Canada. Excitation-energy spectra and differential cross sections for the observed excitations in these reactions were extracted over the momentum-transfer range from 1.2 to 2.5 fm-1 (θlab in 19o,/ 23o,/ 27o,/ 31o and 35o). The primary goal of this work was the study of T = 2 'stretched' particle-hole states, more specifically (/nu d5/2,/ /pi p3/2-1)/ 4/sp- states excited in 14B,/ (/nu f7/2,/pi d5/2-1)/ 6/sp- states excited in 26Na, and (/nu f7/2,/ /pi d5/2-1)/ 6/sp- states excited in 30Al. The identification of these states was based on: (1) comparison of the experimental cross section angular distribution with theoretical differential cross sections calculated with the distorted-wave-impulse approximation (DWIA); (2) comparison of the measured excitation energies with excitation energies of analog stretched states; and (3) comparison of the spectroscopic strength for these (n,p) reactions to (p,n) and (e,e') spectroscopic strengths. The T = 1 (/nu d5/2,/ /pi p3/2-1)/ 4/sp- 'stretched' states excited in 12B and 16N were also studied. For the 12C(n,p)12B reaction (on targets of CH2 and graphite), 4/sp- T = 1 strength at Ex = 4.25 MeV was observed and found to be consistent with previous measurements; this state was used for calibrating excitation-energy scales for the other targets and as a consistency check among the different experimental runs for this project.

  10. Characterizing proton beam of 6.7 MeV LEDA RFQ by fitting HEBT wire-scanner profiles to improved model.

    SciTech Connect

    Lysenko, W. P.; Gilpatrick, J. D.; Qiang, J.; Ryne, Robert; Rybarcyk, L. J.; Schneider, J. D.; Young, L. M.

    2002-01-01

    Quadrupole scans in the HEBT of the 6.7 MeV LEDA RFQ were analyzed to characterize the transverse phase space at the RFQ exit. In previous work, the profiles measured by the wire scanner were fit to various models (HEBT simulations from the RFQ exit to the wire scanner) in an effort to determine the transverse Courant-Snyder parameters (a, p, and t) at the RFQ exit. Unfortunately, at the larger quadrupole settings, the measured profiles showed features that were not present in the simulations. This made good fits impossible. Here we describe our latest analysis, which resulted in very good fits by using an improved model for the beam at the RFQ exit. The model beam was generated by the RFQ simulation code TOUTATIS. In the fitting code, this beam was distorted by linear transformations that changed the Courant-Snyder parameters to whatever values were required by the nonlinear optimizer while preserving the high-order features of the phase-space distribution. This present success indicates that there has not been any missing physics in the codes, which gives us increased confidence in our accelerator designs. In addition, we have learned that details in the RFQ beam can make a significant difference in observed behavior downstream of the RFQ.

  11. Analysis of the radiation shielding of the bunker of a 230MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques.

    PubMed

    Sunil, C

    2016-04-01

    The neutron ambient dose equivalent outside the radiation shield of a proton therapy cyclotron vault is estimated using the unshielded dose equivalent rates and the attenuation lengths obtained from the literature and by simulations carried out with the FLUKA Monte Carlo radiation transport code. The source terms derived from the literature and that obtained from the FLUKA calculations differ by a factor of 2-3, while the attenuation lengths obtained from the literature differ by 20-40%. The instantaneous dose equivalent rates outside the shield differ by a few orders of magnitude, not only in comparison with the Monte Carlo simulation results, but also with the results obtained by line of sight attenuation calculations with the different parameters obtained from the literature. The attenuation of neutrons caused by the presence of bulk iron, such as magnet yokes is expected to reduce the dose equivalent by as much as a couple of orders of magnitude outside the shield walls. PMID:26844542

  12. Dose-rate influence on the defect production in MeV proton-implanted float-zone and epitaxial n-type silicon

    NASA Astrophysics Data System (ADS)

    Lévêque, P.; Hallén, A.; Pellegrino, P.; Svensson, B. G.; Privitera, V.

    2002-01-01

    The production of stable vacancy-related point defects in proton-implanted float-zone and epitaxial silicon has been studied in the low dose range (⩽10 10/cm 2) as a function of dose-rate. The well-known "inverse dose-rate" effect has been observed in both types of materials with a decrease in the concentration of vacancy-related defects as the dose-rate increases. The effect is less pronounced in oxygen lean epitaxial silicon. Moreover, a continuous decrease of the vacancy-related defect concentration as a function of the flux was measured while a threshold was expected according to previous studies. Both of these results can be explained by a simple calculation, taking into account the influence of the oxygen concentration as well as the influence of the diffusion coefficient of point defects on the "inverse dose-rate" effect.

  13. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  14. Determination of integral cross sections of 3H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    NASA Astrophysics Data System (ADS)

    Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.

    2016-05-01

    The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.

  15. Semi-empirical and empirical L X-ray production cross sections for elements with 50 ⩽ Z ⩽ 92 for protons of 0.5 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Nekab, M.; Kahoul, A.

    2006-04-01

    We present in this contribution, semi-empirical production cross sections of the main X-ray lines Lα, Lβ and Lγ for elements from Sn to U and for protons with energies varying from 0.5 to 3.0 MeV. The theoretical X-ray production cross sections are firstly calculated from the theoretical ionization cross sections of the L i ( i = 1, 2, 3) subshell within the ECPSSR theory. The semi-empirical Lα, Lβ and Lγ cross sections are then deduced by fitting the available experimental data normalized to their corresponding theoretical values and give the better representation of the experimental data in some cases. On the other hand, the experimental data are directly fitted to deduce the empirical L X-ray production cross sections. A comparison is made between the semi-empirical cross sections, the empirical cross sections reported in this work and the empirical ones reported by Reis and Jesus [M.A. Reis, A.P. Jesus, Atom. Data Nucl. Data Tables 63 (1996) 1] and those of Strivay and Weber [Strivay, G. Weber, Nucl. Instr. and Meth. B 190 (2002) 112].

  16. Response of metallic glasses Fe/sub 40/Ni/sub 40/P/sub 14/B/sub 6/ and Fe/sub 80/B/sub 20/ to irradiation with 800-MeV protons

    SciTech Connect

    Cost, J.R.; Sommer, W.F.

    1981-01-01

    Metallic glasses with compositions of Fe/sub 40/Ni/sub 40/P/sub 14/B/sub 6/ and Fe/sub 80/B/sub 20/ were irradiated in the 800 MeV proton beam at the Los Alamos Meson Physics Facility while the electrical resistance and length changes were monitored. The resistance and the length of the first alloy were both found to increase and saturate with dose to ..delta..R/R approx. = 5 x 10/sup -3/ and ..delta..L/L approx. = 2 x 10/sup -3/. For the second alloy the total dose of 1.1 x 10/sup 19/ p/cm/sup 2/, which was calculated to give roughly 0.12 dpa, was slightly less than that required for saturation. No annealing of these increases was observed for anneals from room temperature to 250/sup 0/C. These results are interpreted in terms of a model in which collision cascades create small regions of increased atomic disorder which fully overlap each other at saturation.

  17. Determination of the radial gradient in the region 0.81-1.0 AU using both high- and low-energy /more than 10-GeV and more than 52-MeV/ detectors for the 1-AU monitor. [solar quiet measurements of alpha particles and protons

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Bukata, R. P.; Rao, U. R.

    1974-01-01

    A determination of the radial gradient for alpha particles (31-46 MeV/nuc) and protons with energies above 7.5 MeV and 44-77 MeV in the region 1.0-0.81 AU is presented for the solar-quiet year 1966. The determinations are based on data from the Pioneer 6 space probe. Two different detectors are used: the Deep River neutron monitor and measurements of low energy protons made on the IMP-C satellite. The average energy response of the Deep River monitor is 16 GeV, whereas the IMP-C data is for protons with energies above 50 MeV. The resulting radial gradient is found to be nearly zero for the alpha particles and slightly negative for the protons. The same qualitative results were found using the IMP-C data and the Deep River neutron monitor to measure the temporal variation in the cosmic ray intensity. The present analysis indicates that detectors over a wide range of energies are suitable for measuring the radial gradient, providing sufficient statistical precision is obtained to evaluate short-term modulation and the azimuthal separation of the detectors is not great.

  18. Experimental characterization of two-dimensional pencil beam scanning proton spot profiles

    NASA Astrophysics Data System (ADS)

    Lin, Liyong; Ainsley, Christopher G.; McDonough, James E.

    2013-09-01

    Dose calculations of pencil beam scanning treatment plans rely on the accuracy of proton spot profiles; not only the primary component but also the broad tail components. Four films are placed at several locations in air and multiple depths in Solidwater® for six selected energies. The films used for the primary components are exposed to 50-200 MU to avoid saturation; the films used for the tail components are exposed to 800, 8000 and 80 000 MU. By applying a pair/magnification method and merging these data, dose kernels down to 10-4 of the central spot dose can be generated. From these kernels one can calculate the dose-per-MU for different field sizes and shapes. Measurements agree within 1% of dose-kernel-based calculations for output versus field size comparisons. Asymmetric, comet-shaped profile tails have a bigger impact at superficial depths and low energies: the output difference between two orientations at the surface of a rectangular field of 40 mm×200 mm is about 2% at the isocentre at 100 MeV. Integration of these dose kernels from 0 to 40 mm radius shows that the charge deficit in the Bragg peak chamber varies <2% from entrance to the end of range for energies <180 MeV, but exceeds 5% at 225 MeV.

  19. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  20. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  1. Cascaded proton acceleration by collisionless electrostatic shock

    NASA Astrophysics Data System (ADS)

    Xu, T. J.; Shen, B. F.; Zhang, X. M.; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-01

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  2. Observations of solar flare gamma-rays and protons

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.

    1985-01-01

    Solar flare gamma-rays (4 to 7 MeV) and protons (8 to 500 MeV) were simultaneously observed from six flares on 1 Apr., 4 Apr., 27, Apr. 13, May 1981, 1 Feb. and 6 June 1982 by the Hinotori and GMS satellites. The relationship between 4 to 7 MeV gamma-ray fluences and peak 16 to 34 MeV proton fluxes for these flares are analyzed. It does not reveal an apparent correlation between these two parameters. The present result implies that the protons producing gamma-rays and the protons observed near the Earth do not always belong to the same population.

  3. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    SciTech Connect

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; Sakamoto, Y.; Nakashima, H.; Boehnlein, D.; Coleman, R.; Lauten, G.; Leveling, A.; Mokhov, N.; Ramberg, E.; Soha, A.; Vaziri, K.; Ninomiya, K.; Omoto, T.; Shima, T.; Takahashi, N.; Shinohara, A.; Caffee, M. W.; Welten, K. C.; Nishiizumi, K.; Shibata, S.; Ohtsuki, T.

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.

  4. History of the ZGS 500 MeV booster.

    SciTech Connect

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  5. Design of a proton microbeam of the PEFP

    SciTech Connect

    Kim, Kye Ryung; Kim, Yong Hwan; Chang, Ji Ho; Kim, Kui Young

    2008-02-15

    The PEFP has been developing a 100 MeV proton linear accelerator and user facilities for 20 and 100 MeV proton beams. At one end of the five 20 MeV proton beam lines, a proton microbeam construction was considered for an application in the fields of material, biological, and medical sciences. To develop the proton microbeam, realization of a few MeV proton beam with a few tens of microamperes in diameter of a beam spot was essentially required. In this report, the basic descriptions of the proton microbeam which is composed of an energy degrader, slits, magnetic lens, a target chamber, and detectors are presented including a consideration of unfavorable aspects concerning some specific characteristics of a linear accelerator, such as pulse mode operation and fixed energy. Some calculation results from a Monte Carlo simulation by using the SRIM2006 and the TURTLE codes are also included.

  6. Time-dependent 2.2 MeV and 0.5 MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2 MeV and 0.51 MeV gamma ray lines from solar flares are calculated and the results are compared with observations of the 1972, August 4 and 7 flares. Time lag between the nuclear reactions and the formation of these two lines are caused, respectively, by capture of the neutrons, and by deceleration of the positrons and decay of the radioactive nuclei. Results show that the calculation is consistent with the observed rise of the 2.2 MeV line on August 4, and it does not require different time dependences for the accelerated protons and electrons in the flare region. The above lags can explain the delayed gamma ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  7. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  8. Optimization of production yields, radionuclidic purity and hotcell shielding of SPECT and PET radionuclides produced by proton irradiation in variable energy 30 MeV cyclotrons--Part 67Ga.

    PubMed

    Adam-Rebeles, R; Van den Winkel, P; De Vis, L

    2007-09-01

    Optimization of the production parameters (incident and exit proton energy, thickness of the (68)Zn target layer, decay time to start chemical processing of an irradiated target after the end of bombardment) and of the thickness of the lead shield of the processing hotcell for the cyclotron production of (67)Ga by the (68)Zn(p,2n) threshold reaction are accomplished by powerful divide et impera and binary search algorithms with the Pharmacopoeia radionuclidic purity of the (67)Ga-citrate radiopharmaceutical at a reference time and the locally accepted dose rate level for the controlled area as boundary conditions. Two sets of equations are presented (one associated with the maximum production rate, the other with the use of a minimum target layer thickness) that allow the expression of the optimized production parameters, the radionuclide yields satisfying the Pharmacopoeia requirements at the start of distribution and the necessary shielding as a function of the required activity at the start of distribution and of the maximum allowable beam current on target.

  9. Very energetic protons in Saturn's radiation belt

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Mcilwain, C.

    1980-01-01

    Very energetic protons are trapped in the inner Saturnian radiation belt. The University of California at San Diego instrument on Pioneer 11 has definitely identified protons of energy greater than 80 MeV on channel M3 and has tentatively detected protons of energy greater than 600 MeV on channel C3. The spatial distribution of the protons is distinct from that of the trapped electrons, the main difference being that the protons are strongly absorbed by the innermost moons and that the electrons are not. The source strength for injecting protons by the decay of cosmic ray albedo neutrons generated in the rings of Saturn has been estimated. The required proton lifetime is approximately 20 years.

  10. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  11. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  12. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  13. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  14. Data analysis for Skylab proton spectrometer

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1976-01-01

    The data from a proton spectrometer flown aboard Skylab is examined. The instrument is sensitive to protons in the energy range 18 to 400 MeV. A partial failure of the spectrometer restricted spectral analysis to two energy bands, 18 to 27 MeV and 27 to 400 MeV. The directional data showed that a Gaussian angular distribution parameter of at least 70 degrees is required for the low energy band and at least 40 degrees for the high energy band. The data, integrated over angle, indicate that the AP3 model extrapolated down to 18-27 MeV is high by factors of 2 to 5 over most of the B-L space mapped. In the 27 to 400 MeV range, the AP3 model is 20 to 100 percent low at low and high values of L, and is high at medium L values in the B-L space mapped.

  15. Compact proton spectrometers for measurements of shock

    SciTech Connect

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  16. Time-dependent 2.2-MeV and 0.5-MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2- and 0.51-MeV gamma-ray lines from solar flares are calculated, and the results are compared with observations of the 1972 August 4 and 7 flares. The time lag between the nuclear reactions and the formation of these two lines is caused by capture of the neutrons and subsequent deceleration of the positrons and decay of the radioactive nuclei. Our main results are that the calculation is consistent with the observed rise of the 2.2-MeV line on August 4, and it does not require different time dependences for the accelerated protons and high-energy electrons in the flare region. The above lags can explain the delayed gamma-ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  17. Out of Field Doses in Clinical Photon and Proton Beam

    NASA Astrophysics Data System (ADS)

    Kubančák, Ján

    2010-01-01

    Out-of-field doses in homogenous cubical polymethylmethacrylate (PMMA) phantom were studied in this work. Measurements were performed in clinical 171 MeV proton and megavoltae photon beam. As detectors, CaSO:Dy thermoluminescent detectors were used. According to expectancy, results showed that out-of-field doses are substantially lower for clinical proton beam in comparison with clinical proton beam.

  18. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.

    1996-02-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron fluence outside a thinner moderator as the neutron fluence from a 2.5 MeV proton beam with a thicker moderator.

  19. Proton-proton bremsstrahlung calculation: Comparison with recent high-precision experimental results

    SciTech Connect

    Li Yi; Liou, M.K.; Schreiber, W.M.

    2005-08-01

    Proton-proton bremsstrahlung cross sections and analyzing powers have been calculated at 190 MeV by using a one-boson-exchange model. The results are compared with the recently published high-precision Kernfysisch-Versneller-Instituut (KVI) data. Satisfactory agreement between theory and experiment has been found.

  20. Measurement of inner radiation belt electrons with kinetic energy above 1 MeV

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.

    2015-10-01

    Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992-2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft, exponential energy spectra are consistent with extrapolation of lower energy measurements.

  1. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  2. The alpha optical potential at 1,370 MeV

    NASA Astrophysics Data System (ADS)

    Bauhoff, W.

    1986-06-01

    Data for elastic scattering of alpha particles from12C and Ca-isotopes at 1,370 MeV are analyzed in terms of a phenomenological optical potential. No evidence is found for deviations of the real part from the usual Woods-Saxon shape, as it is the case for proton scattering at corresponding energies. A further increase in nuclear transparency is found compared to 700 MeV.

  3. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  4. Proton and heavy ion therapy.

    PubMed

    Larsson, B

    1975-01-01

    Penetrating ion beams are considered interesting supplements to the types of radiation, mostly electrons and gamma rays, that have dominated in radiation research and radiotherapy during the last decades. Biomedical experimentations and clinical studies ar larger ion accelerators (100-1000 MeV/amu) are therefore undertaken in order to exploit their possible clinical use in cancer therapy. It is concluded that an accelerator that permits effective use of protons (ca. 200 MeV) and deutrons (ca. 50 MeV, for neutron therapy) located in a central hospital would represent a convenient tool for clinical investigations at a larger scale. PMID:1201773

  5. Elastic scattering of polarised deuterons from 16O at 200, 400 and 700 MeV

    NASA Astrophysics Data System (ADS)

    van Sen, Nguyen; Yanlin, Ye; Arvieux, J.; Gaillard, G.; Bonin, B.; Boudard, A.; Bruge, G.; Lugol, J. C.; Hasegawa, T.; Soga, F.; Antonuk, L. E.; Cameron, J. M.; Lam, S. T.; Neilson, G. C.; Roy, G.; Sheppard, D. M.; Babinet, R.

    1987-03-01

    Angular distributions of cross section, and Ay and Ayy analysing powers were measured for polarised deuteron elastic scattering from 16O at 200, 400 and 700 MeV. The data at 200 MeV bear evidence of the nuclear rainbow phenomenon while those at 400 and 700 MeV are reminiscent of the proton scattering results at equivalent energies. The data were analysed in terms of the optical model. The real central potential shape changes from an attractive Woods-Saxon form at 200 MeV to a wine-bottle-bottom form with a repulsive interior at 700 MeV. The total reaction cross sections deduced display a clear nuclear transparency effect in the present energy domain in agreement with predictions from the Glauber theory optical limit. Comparison with previous results for 40Ca and 58Ni targets is made.

  6. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  7. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  8. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  9. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    SciTech Connect

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  10. Impact of Solar Proton Events on High Latitude Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar; Mansoori, Azad Ahmad

    2016-07-01

    We investigate the ionospheric response to the solar protons which are accelerated to different energies (MeV-GeV) and thought to be originated at the solar atmosphere during the various energetic phenomena knows as solar transients viz. Solar Flares, Coronal Mass Ejections (CMEs). These transients are believed to be a manifestation of same energy release processes from a highly complex condition in the magnetic field configuration on the solar surface. We have taken six solar proton events (SPE) of solar cycle 23rd for analysis in the various energy bands of the protons. In order to find the ionospheric responses to these incoming solar protons ionospheric total electron content (TEC) is taken as the characteristic parameter. We have taken the data observed by GOES satellites which provides the data for different energy channels (0.8-4 MeV, 4-9 MeV, 9-15 MeV, 15-40 MeV, 40-80 MeV, 80-165 MeV, and 165-500 MeV). The enhancement in peak TEC (∆TEC) was then obtained for the high latitude station Davis (Lat-68.35, Lon 77.58). To find the association of this enhancement with proton flux characteristics we derived the correspondence between spectral indices and ∆TEC. We obtained a strong correlation (0.84) to exist between the spectral indices and ∆TEC.

  11. Proton resonance scattering of 7Be

    SciTech Connect

    Yamaguchi, H.; Saito, A.; He, J. J.; Wakabayashi, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Khiem, L. H.; Niikura, M.; Kwon, Y. K.; Teranishi, T.; Nishimura, S.; Togano, Y.; Iwasa, N.; Inafuku, K.

    2006-07-12

    We have studied the proton resonance scattering of 7Be by using a pure 7Be beam produced at CRIB (CNS Radioactive Ion Beam separator; CNS stands for Center of Nuclear Study, University of Tokyo). The excitation function of 8B was measured up to the excitation energy of 6.8 MeV, with the thick-target method. The excited states of 8B higher than 3.5 MeV were not known by the past experiments. This proton elastic scattering is also of importance in relation with the 7Be(p,{gamma})8B reaction, which is a key reaction in the standard solar model.

  12. Proton resonance scattering of 7Be

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Saito, A.; He, J. J.; Wakabayashi, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Khiem, L. H.; Kwon, Y. K.; Niikura, M.; Teranishi, T.; Nishimura, S.; Togano, Y.; Iwasa, N.; Inafuku, K.

    2006-07-01

    We have studied the proton resonance scattering of 7Be by using a pure 7Be beam produced at CRIB (CNS Radioactive Ion Beam separator; CNS stands for Center of Nuclear Study, University of Tokyo). The excitation function of 8B was measured up to the excitation energy of 6.8 MeV, with the thick-target method. The excited states of 8B higher than 3.5 MeV were not known by the past experiments. This proton elastic scattering is also of importance in relation with the 7Be(p,γ)8B reaction, which is a key reaction in the standard solar model.

  13. Titanium spallation cross sections between 30 and 584 MeV and Ar-39 activities on the moon

    NASA Technical Reports Server (NTRS)

    Steinburnn, F.; Fireman, E. L.

    1974-01-01

    The production cross sections of Ar39 for Ti spallation at 45-, 319-, 433-, and 584-MeV proton energies were measured to be 0.37 + or - 0.09, 12.4 + or - 3.7, 9.1 + or - 2.7, and 17.8 + or - 6.2 mb, respectively. Normalized Ar39 production rates and activities are also derived for protons above 40 MeV and for three differential proton spectra of the type approximately E(- alpha). It is concluded that, even for samples of high-Ti content, Ti spallation by solar protons below 200-MeV energy does not contribute significantly to their Ar39 radioactivity.

  14. Proton therapy

    MedlinePlus

    ... direction of the tumor. A machine called a synchrotron or cyclotron creates and speeds up the protons. ... redness in the radiation area, and temporary hair loss. AFTER THE PROCEDURE Following proton therapy, you should ...

  15. Active interrogation using energetic protons

    SciTech Connect

    Morris, Christopher L; Chung, Kiwhan; Greene, Steven J; Hogan, Gary E; Makela, Mark; Mariam, Fesseha; Milner, Edward C; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  16. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  17. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  18. Polarization observables in deuteron photodisintegration below 360 MeV

    SciTech Connect

    Glister, J.; Ron, G.; Lee, B. W.; Gilman, R.; Sarty, A. J.; Strauch, S.; Higinbotham, D. W.; Piasetzky, E.; Allada, K.; Armstrong, W.; Arrington, J.; Arenhövel, H.; Beck, A.; Benmokhtar, F.; Berman, B. L.; Boeglin, W.; Brash, E.; Camsonne, A.; Calarco, J.; Chen, J. P.; Choi, S.; Chudakov, E.; Coman, L.; Craver, B.; Cusanno, F.; Dumas, J.; Dutta, C.; Feuerbach, R.; Freyberger, A.; Frullani, S.; Garibaldi, F.; Hansen, J. -O.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Ilieva, Y.; de Jager, C. W.; Jiang, X.; Jones, M. K.; Kang, Hyekoo; Kelleher, A.; Khrosinkova, E.; Kuchina, E.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Markowitz, P.; May-Tal Beck, S.; McCullough, E.; Meekins, D.; Meziane, M.; Meziani, Z. -E.; Michaels, R.; Moffit, B.; Norum, B. E.; Oh, Y.; Olson, M.; Paolone, M.; Paschke, K.; Perdrisat, C. F.; Potokar, M.; Pomatsalyuk, R.; Pomerantz, I.; Puckett, A.; Punjabi, V.; Qian, X.; Qiang, Y.; Ransome, R. D.; Reyhan, M.; Roche, J.; Rousseau, Y.; Saha, A.; Sawatzky, B.; Schulte, E.; Schwamb, M.; Shabestari, M.; Shahinyan, A.; Shneor, R.; Širca, S.; Slifer, K.; Solvignon, P.; Song, J.; Sparks, R.; Subedi, R.; Urciuoli, G. M.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zhu, X.

    2011-02-03

    We performed high precision measurements of induced and transferred recoil proton polarization in d($\\vec{γ}$, $\\vec{p}$)n for photon energies of 277--357 MeV and θcm = 20 ° -- 120 °. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. Moreover, at the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  19. Polarization observables in deuteron photodisintegration below 360 MeV

    DOE PAGESBeta

    Glister, J.; Ron, G.; Lee, B. W.; Gilman, R.; Sarty, A. J.; Strauch, S.; Higinbotham, D. W.; Piasetzky, E.; Allada, K.; Armstrong, W.; et al

    2011-02-03

    We performed high precision measurements of induced and transferred recoil proton polarization in d(more » $$\\vec{γ}$$, $$\\vec{p}$$)n for photon energies of 277--357 MeV and θcm = 20 ° -- 120 °. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. Moreover, at the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.« less

  20. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  1. DPA damage analysis for 14-MeV neutrons on PFC materials

    NASA Astrophysics Data System (ADS)

    Kim, Dong-woo; Lee, Bo-young; Ko, Seung-kook; Kim, Hee-soo; Noh, Seung-jung

    2015-06-01

    The dpa (displacement per atom) damage for 14-MeV neutron in a pfc materials was simulated using MCNPX/SPECTER code. The dpa values in the main components of the structural material SS316L, Fe, Cr and Ni, were calculated to analyze the effect of nuclear damage. According to the neutron wall load for ITER design base, a neutron flux of 3.5 × 1013 neutrons/cm2·sec was applied. The simulated dpa values were found to be as 3.0 dpa/fpy for Fe, 2.9 dpa/fpy for Cr and 3.1 dpa/fpy for Ni. For practical experiments, the simulated dpa values due to the irradiation damage of 17-MeV protons were found to be as 0.67 dpa at the peak and 0.05 at the surface for SS316L using by SRIM code at the same fluence. For the 17-MeV proton irradiation, the Bragg peak appears at a 0.64-mm depth. Also, SS316L specimens irradiated by a 17-MeV proton beam with a fluence of 1016 protons/cm2 were analyzed by using transmission electron microscopy.

  2. Resonance frequency control for the KOMAC 100-MeV drift tube linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2015-02-01

    A 100-MeV proton accelerator has been developed, and the operation and beam service started at the Korea Multi-purpose Accelerator Complex (KOMAC) in July 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio-frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The resonance frequencies of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), installed at every DTL tank. Until now, the RCCS has been operating in the constant temperature mode. If the system is to be stabilized better, the RCCS must be operated in the frequency control mode. For this purpose, studies, including the relation between the resonance frequency and RCCS operation temperature, were done under various conditions. In this paper, the preparations for the frequency control loop of the RCCS are described.

  3. Design and construction of a compact microwave proton source for a proton linac.

    PubMed

    Hong, I S; Park, B S; Jang, J H; Kwon, H J; Cho, Y S; Hwang, Y S

    2010-02-01

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  4. Design and construction of a compact microwave proton source for a proton linac

    SciTech Connect

    Hong, I. S.; Park, B. S.; Jang, J. H.; Kwon, H. J.; Cho, Y. S.; Hwang, Y. S.

    2010-02-15

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  5. Proton Therapy

    NASA Astrophysics Data System (ADS)

    Oelfke, Uwe

    Proton therapy is one of the most rapidly developing new treatment technologies in radiation oncology. This treatment approach has — after roughly 40 years of technical developments — reached a mature state that allows a widespread clinical application. We therefore review the basic physical and radio-biological properties of proton beams. The main physical aspect is the elemental dose distribution arising from an infinitely narrow proton pencil beam. This includes the physics of proton stopping powers and the concept of CSDA range. Furthermore, the process of multiple Coulomb scattering is discussed for the lateral dose distribution. Next, the basic terms for the description of radio-biological properties of proton beams like LET and RBE are briefly introduced. Finally, the main concepts of modern proton dose delivery concepts are introduced before the standard method of inverse treatment planning for hadron therapy is presented.

  6. [Radiobiological effects of total mice irradiation with Bragg's peak protons].

    PubMed

    Ivanov, A A; Molokanov, A G; Ushakov, I B; Bulynina, T M; Vorozhtsova, S V; Abrosimova, A N; Kryuchkova, D M; Gaevsky, V N

    2013-01-01

    Outbred CD-1 female mice were irradiated in a proton beam (171 MeV, 5 Gy) on the phasotron at the Joint Institute of Nuclear Research (Dubna, Russia). Radiation was delivered in two points of the depth dose distribution: at the beam entry and on Bragg's peak. Technical requirements for studying the effects of Bragg's peak protons on organism of experimental animals were specified. It was recognized that protons with high linear energy transfer (mean LET = 1.6 keV/microm) cause a more severe damaging effect to the hemopoietic system and cytogenetic apparatus in bone marrow cells as compared with entry protons and 60Co gamma-quanta. It was shown that recovery of the main hemopoietic organs and immunity as well as elimination of chromosomal aberrations take more time following irradiation with Bragg's peak protons but not protons with the energy of 171 MeV.

  7. Note: A monoenergetic proton backlighter for the National Ignition Facility.

    PubMed

    Rygg, J R; Zylstra, A B; Séguin, F H; LePape, S; Bachmann, B; Craxton, R S; Garcia, E M; Kong, Y Z; Gatu-Johnson, M; Khan, S F; Lahmann, B J; McKenty, P W; Petrasso, R D; Rinderknecht, H G; Rosenberg, M J; Sayre, D B; Sio, H W

    2015-11-01

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the (3)He(d,p)(4)He nuclear reaction reveal a bright (10(10) protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)(3)He reactions also show 2 × 10(10) isotropically distributed 3-MeV protons. PMID:26628185

  8. Note: A monoenergetic proton backlighter for the National Ignition Facility

    SciTech Connect

    Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Sayre, D. B.; Zylstra, A. B.; Séguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Sio, H. W.; Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W.; Rinderknecht, H. G.; Rosenberg, M. J.

    2015-11-15

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the {sup 3}He(d,p){sup 4}He nuclear reaction reveal a bright (10{sup 10} protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n){sup 3}He reactions also show 2 × 10{sup 10} isotropically distributed 3-MeV protons.

  9. Note: A monoenergetic proton backlighter for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rygg, J. R.; Zylstra, A. B.; Séguin, F. H.; LePape, S.; Bachmann, B.; Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; Gatu-Johnson, M.; Khan, S. F.; Lahmann, B. J.; McKenty, P. W.; Petrasso, R. D.; Rinderknecht, H. G.; Rosenberg, M. J.; Sayre, D. B.; Sio, H. W.

    2015-11-01

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the 3He(d,p)4He nuclear reaction reveal a bright (1010 protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (˜13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)3He reactions also show 2 × 1010 isotropically distributed 3-MeV protons.

  10. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  11. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  12. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  13. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  14. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 deg. continuous arc proton therapy and for 180 deg. split arc proton therapy (two 90 degree sign arcs) using CT profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  15. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  16. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  17. Proton Radiography: Its uses and Resolution Scaling

    SciTech Connect

    Mariam, Fesseha G.

    2012-08-09

    Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

  18. Space Environments and Effects: Trapped Proton Model

    NASA Technical Reports Server (NTRS)

    Huston, S. L.; Kauffman, W. (Technical Monitor)

    2002-01-01

    An improved model of the Earth's trapped proton environment has been developed. This model, designated Trapped Proton Model version 1 (TPM-1), determines the omnidirectional flux of protons with energy between 1 and 100 MeV throughout near-Earth space. The model also incorporates a true solar cycle dependence. The model consists of several data files and computer software to read them. There are three versions of the mo'del: a FORTRAN-Callable library, a stand-alone model, and a Web-based model.

  19. First experimental research in low energy proton radiography

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Yang, Guo-Jun; Li, Yi-Ding; Long, Ji-Dong; He, Xiao-Zhong; Zhang, Xiao-Ding; Jiang, Xiao-Guo; Ma, Chao-Fan; Zhao, Liang-Chao; Yang, Xing-Lin; Zhang, Zhuo; Wang, Yuan; Pang, Jian; Li, Hong; Li, Wei-Feng; Zhou, Fu-Xin; Shi, Jin-Shui; Zhang, Kai-Zhi; Li, Jin; Zhang, Lin-Wen; Deng, Jian-Jun

    2014-08-01

    Proton radiography is a new scatheless diagnostic tool providing a potential development direction for advanced hydrotesting. Recently a low energy proton radiography system has been developed at the Chinese Academy of Engineering Phyiscs (CAEP). This system has been designed to use an 11 MeV proton beam to radiograph thin static objects. This system consists of a proton cyclotron coupled to an imaging beamline, which is the first domestic beamline dedicated to proton radiography experiments. Via some demonstration experiments, the radiography system is confirmed to provide clear pictures with spatial resolution ~100 μm within 40 mm field-of-view.

  20. Energy Dependence of SEP Electron and Proton Onset Times

    NASA Astrophysics Data System (ADS)

    Makela, P. A.; Xie, H.; Gopalswamy, N.; St Cyr, O. C.

    2015-12-01

    We study the large solar energetic particle (SEP) events that were detected by GOES in the > 10 MeV energy channel during December 2006 to March 2014. Using multi-spacecraft observations from STEREO A, B and SOHO, we are able to determine accurately the solar particle release (SPR) time of SEP electrons and protons. We first compute connection angles (CA) between the solar events and magnetic foot-points connecting to each spacecraft. By choosing the smallest CA, we derive the electron and proton SPRs using electron fluxes from the SOHO Electron Proton and Helium Instrument (EPHIN), proton fluxes from the SOHO Energetic and Relativistic Nuclei and Electron instrument (ERNE), and from the High Energy Telescope (HET) on STEREO. It is found that: 1) the 0.25 MeV-0.7 MeV electron SPRs are ~10 min earlier than 2.64 MeV - 10.4 Mev electron SPRs; 2) the proton SPRs inferred from high-energy channels (> 50 MeV) are similar to electron SPRs; 3) the proton SPRs inferred from lower energy channel (10 - 16.9 MeV) can be either ~ 7 min earlier than or delayed from the electron SPRs for tens of minutes to hours, especially for SEPs with large pre-event background flux levels. In this study, we evaluated the effects of large scattering and high background levels on SPRs and made suggested corrections for the background effect on SPR times. We also find that for some large SEP events, the observed EPHIN electron and ERNE proton intensity profiles show a double-peak feature. The onset of the first peak corresponds well to the associated Type III and metric Type II onset and tends to be nearly scattering-free.

  1. Interplanetary proton fluence model - JPL 1991

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Spitale, G.; Wang, J.; Gabriel, S.

    1993-01-01

    We describe an updated predictive engineering model for the interplanetary fluence of protons with energies respectively greater than 1, 4, 10, 30, and 60 MeV. This has been the first opportunity to derive a model from a data set that has been collected in space over a long enough period of time to produce a valid sample of solar proton events. The model provides a quantitative basis for estimating the exposures to solar protons of spacecraft during missions of varying length and of surfaces and atmospheres of solar system objects. The data sets contain several major proton events comparable to the 1972 event. For the cases of the over 10 and over 30 MeV particles, the fluences are somewhat lower than in our earlier model No over 1, over 4, and over 60 MeV proton fluence models have been published in the literature previously. We present our results in a convenient graphical form which may be used to calculate the 1 AU fluence expected at a given confidence level as a function of the length of the exposure. A method of extending this estimate to other heliocentric distances is described.

  2. Little Boy neutron spectrum below 3 MeV

    SciTech Connect

    Evans, A.E.; Bennett, E.F.; Yule, T.J.

    1984-01-01

    The leakage neutron spectrum from the Little Boy replica has been measured from 12 keV to 3 MeV using a high-resolution /sup 3/He ionization chamber, and from 1 keV to 3 MeV using proton-recoil proportional counters. The /sup 3/He-spectrometer measurements were made at distances of 0.75 and 2.0 m from the active center and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly. Proton-recoil measurments were made at 90/sup 0/ to the assembly axis at distances of 0.75 and 2.0 m, with a shielded measurement made at 2.0 m to estimate background due to scattering. The /sup 3/He spectrometer was calibrated at Los Alamos using monoenergetic /sup 7/Li(p,n)/sup 7/Be neutrons to generate a family of response functions. The proton-recoil counters were calibrated at Argonne by studying the capture of thermal neutrons by nitrogen in the counters, by observation of the 24-keV neutron resonance in iron, and by relating to the known hydrogen content of the counters. The neutron spectrum from Little Boy was found to be highly structured, with peaks corresponding to minima in the iron total neutron cross section. In particular, influence of the 24-keV iron window was evident in both sets of spectra. The measurements provide information for dosimetry calculations and also a valuable intercomparison of neutron spectrometry using the two different detector types. Spectra measured with both detectors are in essential agreement. 8 references, 7 figures, 2 tables.

  3. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  4. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  5. Pointing of laser-accelerated proton beams

    SciTech Connect

    Schreiber, J.; Ter-Avetisyan, S.; Risse, E.; Kalachnikov, M.P.; Nickles, P.V.; Sandner, W.; Schramm, U.; Habs, D.; Witte, J.; Schnuerer, M.

    2006-03-15

    Small fluctuations in the acceleration sheath change the pointing of a proton beam accelerated from the rear side of a laser irradiated thin aluminum foil. The proton acceleration was produced with 40 fs pulses of a Ti:sapphire laser at an intensity of approximately 10{sup 19} W/cm{sup 2}. This observation has been made with a high spatial resolution Thomson spectrometer. The proton beam pointing has appeared stable in the energy range between the high energy cutoff (3 MeV) and 50% of this value. Deviations of the beam position at lower energies changes in a range of 0-3 mrad. The recorded pictures show wiggled and continuous proton traces which imply a release of the proton beam from the acceleration zone with a velocity chirp.

  6. Proton-Proton Weak Capture in Chiral Effective Field Theory

    SciTech Connect

    Marcucci, Laura Elisa; Schiavilla, Rocco; Viviani, MIchele

    2013-05-01

    The astrophysical $S$-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the $A=3$ binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium $\\beta$ decay. Contributions from $S$ and $P$ partial waves in the incoming two-proton channel are retained. The $S$-factor at zero energy is found to be $S(0)=(4.030 \\pm 0.006)\\times 10^{-23}$ MeV fm$^2$, with a $P$-wave contribution of $0.020\\times 10^{-23}$ MeV fm$^2$. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the $S$-factor are inherently unstable.

  7. Proton-proton weak capture in chiral effective field theory.

    PubMed

    Marcucci, L E; Schiavilla, R; Viviani, M

    2013-05-10

    The astrophysical S factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0-100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments and the Gamow-Teller matrix element in tritium β decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S factor at zero energy is found to be S(0)=(4.030±0.006)×10(-23) MeV fm(2), with a P-wave contribution of 0.020×10(-23) MeV fm(2). The theoretical uncertainty is due to the fitting procedure of the low-energy constants and to the cutoff dependence.

  8. Proton-proton weak capture in chiral effective field theory.

    PubMed

    Marcucci, L E; Schiavilla, R; Viviani, M

    2013-05-10

    The astrophysical S factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0-100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments and the Gamow-Teller matrix element in tritium β decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S factor at zero energy is found to be S(0)=(4.030±0.006)×10(-23) MeV fm(2), with a P-wave contribution of 0.020×10(-23) MeV fm(2). The theoretical uncertainty is due to the fitting procedure of the low-energy constants and to the cutoff dependence. PMID:23705703

  9. MeV heavy ion microprobe PIXE for the analysis of the materials surface

    NASA Astrophysics Data System (ADS)

    Mokuno, Y.; Horino, Y.; Kinomura, A.; Chayahara, A.; Kiuchi, M.; Fujii, K.; Takai, M.

    1994-03-01

    Micro PIXE analysis using MeV phosphorus microprobes was performed to a surface structure which consists of multilevel aluminum wirings in silicon nitride and these results were compared with those from a proton microprobe. In the case of a 2 MeV phosphorus microprobe, the X-ray production was enhanced near the surface due to the large energy deposition rate or the short projectile range. As a result, the increase in surface sensitivity was clearly shown in PIXE mapping images of aluminum, silicon, and phosphorus.

  10. The Carrington Event: Possible Solar Proton Intensity-Time Profile

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.; McCracken, K. G.

    2004-05-01

    We evaluate the >30 MeV proton fluence associated with the Carrington event as 1.9 x 10**10 protons per sqcm based on the analysis of solar proton generated NO(y) radicals that are deposited in polar ice. (See McCracken et al., JGR, 106, 21,585, 2001.) We construct a possible intensity-time profile of the solar particle flux for this event by assuming that it is part of the class of interplanetary shock dominated events where the maximum particle flux is observed as the shock passes the earth. We show that most of the very large solar proton fluence events (those with >30 MeV omnidirectonal fluence exceeding 1 x 10**9 protons per cmsq) observed at the earth during the last 50 years belong to this class of event.

  11. The Structure of the Proton

    DOE R&D Accomplishments Database

    Chambers, E. E.; Hofstadter, R.

    1956-04-01

    The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

  12. The influence of interplanetary shocks on solar protons measured in the stratosphere.

    PubMed

    Bazilevskaya, G A; Stozhkov YuI; Struminsky, A B

    1994-10-01

    Since the beginning of the 22nd solar cycle twenty solar proton events were observed by the regular balloon measurements of cosmic rays. Temporal changes of intensities and energy spectra of solar protons with energy 100-500 MeV were obtained. The strong influence of interplanetary shock waves on the proton flux characteristics near the Earth was observed. Possible effects of solar proton transport in the vicinity of shock fronts are discussed to explain the observational data.

  13. Calibration of the LLNL Imaging Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Manuel, M. J.-E.; Kuranz, C. C.; Klein, S.; Belancourt, P. X.; Fein, J. R.; MacDonald, M. J.; Drake, R. P.; Hazi, A. U.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H.

    2014-10-01

    Ultra intense short pulse lasers incident on solid targets (e.g. Au foil) produce well collimated, broadband proton beams. These proton beams can be used to characterize magnetic fields in high-energy-density systems. The Imaging Proton Spectrometer (IPS) was previously designed and built (H. Chen 2010, RSI) for use with such laser produced proton beams. The IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 250 at 0.5 MeV and 350 at 2 MeV, as well as a single spatial imaging direction. In order to better characterize the imaging capability of this diagnostic, a 3D FEA solver has been used to calculate the magnetic field of the IPS. Particle trajectories are then obtained via numerical integration to calibrate the imaging axis of the IPS. Experiments using alpha sources will be used to verify the calculated calibration. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840. Work by LLNL was performed under the auspices of U.S. DOE under Contract DE-AC52-07NA27344.

  14. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments Database

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  15. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology.

    PubMed

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-06-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  16. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    PubMed Central

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as Computed Tomography (CT), the Water-Equivalent-Path-Length (WEPL) that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS Active Pixel Sensor (APS) technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. PMID:24785680

  17. Proton Resonance Spectroscopy in MAGNESIUM-24

    NASA Astrophysics Data System (ADS)

    Vanhoy, Jeffrey Rahn

    Excitation functions for proton elastic scattering and proton induced reactions on ('23)Na were measured with the KN Van de Graaff accelerator and associated high resolution system at Triangle Universities Nuclear Laboratory. Differential cross sections for the ('23)Na(p,p(,0)), (p,p(,1)),(p,(alpha)(,0)), and (p,(alpha)(,1)) reactions were obtained for the energy range E(,p) = 1.08 to 4.15 MeV with an overall experimental energy resolution of (TURN)400 eV. Resonance spins, parities, partial widths, and channel spin and orbital angular momentum mixing ratios were extracted with a multi-level, multi-channel R-matrix based computer program. Resonance parameters were determined for 72 levels between 12.72 and 15.05 MeV in the compound system ('24)Mg. An additional nineteen resonances were identified between 15.05 and 16.67 MeV in ('24)Mg; the resonance parameters for these states are incomplete. Two isobaric analog states were identified and two others tentatively located. Coulomb energies and proton spectroscopic factors were determined and compared with ('23)Na(d,p) spectroscopic factors. The s-wave proton strength function ratio of S(,J=2) / S(,J=1) was approximately one. This ratio can be used to set limits on the effective spin-spin interaction between projectile and target. The reduced width sum rule for proton and alpha decay is discussed and comparisons made with the present data. Results from this study indicate that additional measurements and analysis are required in several areas. Spectroscopic information on states in ('24)Na should be extended to allow additional identification of analog states. Improved methods are needed to evaluate and interpret alpha spectroscopic factors. Additional experiments to measure alpha angular distributions will be required to provide resonance parameters for states above E(,p) = 3 MeV.

  18. Threshold pion production from proton-proton collisions

    SciTech Connect

    Lee, T.S.H.

    1995-08-01

    We showed that the threshold production of {pi}{sup 0}pp, {pi}{sup +}np, and {pi}{sup +}d from proton-proton collisions can be consistently described by a model consisting of pion s-wave rescattering and N{bar N} pair-terms of heavy-meson exchanges. The large difference between {sigma}{sup tot}(pp {yields} {pi}{sup +}d) and {sigma}{sup tot}(pp {yields} {pi}{sup +}np) is understood from the orthogonality of the deuteron and the np scattering wave functions. In a calculation using the Paris potential, we find that the data can be reproduced best by using a soft {pi}NN form factor with {Delta} = 650 MeV for a monopole form. This is consistent with our earlier studies of pion production in the A-excitation region. A paper describing this result was submitted for publication.

  19. Analysis of the pp analyzing-power data at 50.04 Mev

    NASA Astrophysics Data System (ADS)

    Stoks, V. G. J.; de Swart, J. J.

    1990-07-01

    The recent, very accurate proton-proton analyzing-power measurements by the Zürich group at tlab = 50.04 MeV are analyzed. We show that in order to arrive at a proper description of these data, the magnetic-moment interaction has to be included in all partial waves. It is also shown that some of the approximations made in the literature, when trying to incorporate this magnetic-moment interaction, are inadequate. From these beautiful data one can now determine quite accurately the phase shifts at 50 MeV. We compare our results with the phase shifts found in other phase-shift analyses. Some of our phase shifts differ by 6-9 standard deviations from these analyses. Finally, we compare the predictions of some well-known nucleon-nucleon potential models with these high-precision data.

  20. Modification of ROSPEC to cover neutrons from thermal to 18 MeV.

    PubMed

    Ing, H; Djeffal, S; Clifford, T; Li, L; Noulty, R; Machrafi, R

    2007-01-01

    Rotating Spectrometer (ROSPEC) is a neutron spectrometer designed to measure neutron energy distributions, and provide accurate neutron dosimetry. It is a completely self-contained unit and measures neutron energy via recoiling protons in gas proportional counters. Each of the four original gas counters is dedicated to a particular neutron energy range dictated by sensitivity to gamma rays at the low energy end of the spectrum and by proton collisions with the counter walls at the high energy end. Introduced originally in 1992, ROSPEC has a proven operational record with a program of continued upgrades. The operating range of the original ROSPEC spans 50 keV-4.5 MeV. The range of the ROSPEC has now been extended down to include epithermal and thermal neutrons by adding two 2 in. (3)He counters. Also, an optional simple scintillation spectrometer was designed to extend the upper limit of ROSPEC up to 18 MeV.

  1. The second generation Singapore high resolution proton beam writing facilitya)

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Malar, P.; Baysic de Vera, Armin

    2012-02-01

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 × 29.9 nm2 and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  2. The second generation Singapore high resolution proton beam writing facility

    SciTech Connect

    Kan, J. A. van; Malar, P.; Baysic de Vera, Armin

    2012-02-15

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 x 29.9 nm{sup 2} and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  3. MeV ion-beam analysis of optical data storage films

    NASA Technical Reports Server (NTRS)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  4. DETECTORS AND EXPERIMENTAL METHODS: A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Zhang, Feng-Qi

    2009-06-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔVth) generated by 60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔVth) generated by 60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes.

  5. rvec p + sup 13 rvec C elastic scattering at 500 MeV

    SciTech Connect

    Tanaka, N.

    1990-01-01

    For the first time, an elastic scattering experiment was performed at LAMPF using polarized protons and a polarized target nucleus ({rvec p} + {sup 13}{rvec C}). The analyzing powers (A{sub ooon}({Theta})) and (A{sub oonn}({Theta})) were measured using an incident beam energy of 500 MeV over the laboratory angular range of 10{degree}--30{degree}. Motivation for the experiment and some preliminary results and conclusions are presented. 12 refs., 7 figs.

  6. Nuclear multifragmentation by 700–1500 MeV photons: New data of GRAAL experiment

    SciTech Connect

    Nedorezov, V. G. Lapik, A. M.; Collaboration: GRAAL Collaboration

    2015-12-15

    The cross sections of carbon nucleus photodisintegration into protons and neutrons with high multiplicity for photon energies from 700 to 1500 MeV were measured. The experiment was performed at the tagged photon beam of the GRAAL setup using the wide-aperture detector LAGRANγE. It was shown that multifragmentation up to complete disintegration into separate nucleons is initiated by elementary reactions of meson photoproduction with a subsequent intranuclear cascade.

  7. Accelerator driven system based on plutonium subcritical reactor and 660 MeV phasotron

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Barashenkov, V. S.; Buttsev, V. S.; Chultem, D.; Dudarev, S. Yu.; Furman, V. I.; Gudowski, W.; Janczyszyn, J.; Maltsev, A. A.; Onischenko, L. M.; Pogodajev, G. N.; Polanski, A.; Popov, Yu. P.; Puzynin, I. V.; Sissakian, A. N.; Taczanowski, S.

    1999-11-01

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and 0.95 and the energetic gain about 20.

  8. Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Daido, H.; Yogo, A.; Sagisaka, A.; Ogura, K.; Orimo, S.; Mori, M.; Ma, J.; Pirozhkov, A. S.; Kiriyama, H.; Kanazawa, S.; Kondo, S.; Yamamoto, Y.; Shimoura, T.; Tanoue, M.; Nakai, Y.; Akutsu, A.; Nagashima, A.; Bulanov, S. V.; Esirkepov, T. Z.; Kimura, T.; Tajima, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Iwashita, Y.; Shirai, T.; Nakamura, S.; Choi, I. W.; Yu, T. J.; Sung, J. H.; Kim, H. T.; Jeong, T. M.; Hong, K.-H.; Noh, Y.-C.; Ko, D.-K.; Lee, J.

    2008-05-01

    We have performed simultaneous proton and X-ray imaging with an ultra-short and high-intensity Ti: Sap laser system. More than 1010 protons, whose maximum energy reaches 2.5 MeV, were delivered within a ~ps bunch. At the same time, keV X-ray is generated at almost the same place where protons are emitted. We have performed the simultaneous imaging of the copper mesh by using proton and x-ray beams, in practical use of the characteristics of the laser produced plasma that it can provide those beams simultaneously without any serious problems on synchronization.

  9. Micro-patterns fabrication using focused proton beam lithography

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Havranek, V.; Mackova, A.; Semian, V.; Torrisi, L.; Calcagno, L.

    2016-03-01

    Proton beam writing technique was recently introduced at 3MV Tandetron accelerator at Nuclear Physics Institute in Rez (Czech Republic). It has been used, to produce three-dimensional (3D) micro-structures in poly(methylmethacrylate) by 2.0 MeV and 2.6 MeV protons micro-beam. Micro-channels (52 μm × 52 μm) have been realized. After chemical etching, the quality of the bottom and side walls of the produced structures in PMMA were analyzed using Scanning Transmission Ion Microscopy (STIM).

  10. Modulation of low energy electrons and protons near solar maximum

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Meyer, P.

    1975-01-01

    The intensities of cosmic-ray electrons in the energy range from 24 to 235 MeV and of protons in the ranges 40 to 150 MeV and greater than 700 MeV are compared with the neutron intensity data over the period 1968 to 1972. Correlation plots between these various components show a marked break following the June 9, 1969 Forbush decrease. The resulting hysteresis curve is best explained as a sudden change in the rigidity dependence of solar modulation. A variation in the size of the solar cavity is also possible but not likely.

  11. The Proton

    NASA Astrophysics Data System (ADS)

    Canal, Carlos Garcia; Sassot, Rodolfo

    2003-10-01

    In this talk we present a collection of selected topics concerning the structure of the proton and the fundamental interactions as seen inside it. These topics have been thoroughly covered by high energy experiments with ever increasing precision in recent years and beautifully illustrate our present knowledge of the standard model.

  12. Proton Radiobiology

    PubMed Central

    Tommasino, Francesco; Durante, Marco

    2015-01-01

    In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed. PMID:25686476

  13. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  14. Development of proton CT imaging system for evaluation of proton range calculation accuracy

    NASA Astrophysics Data System (ADS)

    Tanaka, Sodai; Nishio, Teiji; Matsushita, Keiichiro; Tsuneda, Masato; Aono, Yuki; Kabuki, Shigeto; Sugiura, Akinori; Uesaka, Mitsuru

    2014-09-01

    [Purpose] In treatment planning of proton therapy, X-ray CT image is generally utilized for proton dose and range calculations in a patient body. However, there is an error of the conversion from CT value to WEL (Water Equivalent Length), and it turns into the error of proton range calculation. Therefore, WEL can be directly derived by use of pixel value on proton CT (pCT) image. The purpose of this study is development of a simple and convenient pCT imaging system for evaluation of proton range calculation accuracy. [Method] PCT imaging system was constructed with a plastic scintillator and a cooled CCD camera, which acquires the image of integrated value of the scintillation light toward the beam direction. Experiment for evaluation of this system with 70-MeV protons provided by NIRS cyclotron was performed. The proton beam was irradiated to objects of water and other substances phantom with complicated shape. The pCT image reconstructed from the experimental data was quantitatively evaluated. [Result] Construction of pCT image of various objects was successful. The value of WEL factor of water was 1.0 +/-0.1. [Conclusion] The simple and convenient pCT imaging system for evaluation of proton range calculation accuracy was developed and was evaluated by experiment using proton beam.

  15. Little Boy neutron spectrum below 1 MeV

    SciTech Connect

    Evans, A.E.

    1984-01-01

    A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured at the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.

  16. Electrons and cosmic ray produced protons in Saturn's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Fillius, W.

    1985-01-01

    The Cerenkov detector on Pioneer 11 previously observed Crand protons above 600 MeV in Saturn's inner magnetosphere, mixed with a poorly understood background of energetic electrons. The electron count is separated from the proton counts and the first-order angular distributions are established for each species. To do this the theoretical relationships among the harmonic coefficients of the count rate is used as a function of spacecraft roll angle. The majority of the counts were electrons with energy above several MeV; i.e., with drift periods shorter than the satellite orbital resonance. The electrons have isotropic pitch angle distributions, and the protons pancake over most of the region between Mimas and the rings, although there is a small region of dumbbell proton distributions in the vicinity of Janus and epimetheus.

  17. Gamma ray lines from solar flares. [with 2.2 MeV line being strongest

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1974-01-01

    The strongest line, both predicted theoretically and detected observationally at 2.2 MeV, is due to neutron capture by protons in the photosphere. The neutrons are produced in nuclear reactions of flare accelerated particles which also positrons and prompt nuclear gamma rays. From the comparison of the observed and calculated intensities of the lines at 4.4 or 6.1 MeV to that of the 2.2 MeV line, it is possible to deduce the spectrum of accelerated nuclei in the flare region; and from the absolute intensities of these lines, it is possible to obtain the total number of accelerated nuclei at the sun. The study of the 2.2 MeV line also gives information on the amount of He-3 in the photosphere. The study of the line at 0.51 MeV resulting from positron annihilation complements the data obtained from the other lines; in addition it gives information on the temperature and density in the annihilation region.

  18. Model for Solar Proton Risk Assessment

    NASA Technical Reports Server (NTRS)

    Xapos, M. A.; Stauffer, C.; Gee, G. B.; Barth, J. L.; Stassinopoulos, E. G.; McGuire, R. E.

    2004-01-01

    A statistical model for cumulative solar proton event fluences during space missions is presented that covers both the solar minimum and solar maximum phases of the solar cycle. It is based on data from the IMP and GOES series of satellites that is integrated together to allow the best features of each data set to be taken advantage of. This allows fluence-energy spectra to be extended out to energies of 327 MeV.

  19. ATPF - a dedicated proton therapy facility

    NASA Astrophysics Data System (ADS)

    Fang, Shou-Xian; Guan, Xia-Ling; Tang, Jing-Yu; Chen, Yuan; Deng, Chang-Dong; Dong, Hai-Yi; Fu, Shi-Nian; Jiao, Yi; Shu, Hang; Ouyang, Hua-Fu; Qiu, Jing; Shi, Cai-Tu; Sun, Hong; Wei, Jie; Yang, Mei; Zhang, Jing

    2010-03-01

    A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning method, the extraction energy can be as many as about 200 between 60 MeV and 230 MeV. A new method - the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.

  20. Investigation on using high-energy proton beam for total body irradiation (TBI).

    PubMed

    Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J

    2016-01-01

    This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. PMID:27685117

  1. Proton irradiation of stem cells: Radiation damage and chemical radioprotection

    NASA Technical Reports Server (NTRS)

    Riley, R. C.; Montour, J. L.; Gurney, C. W.

    1972-01-01

    Effects of high energy protons on erythropoietic stem cells and radioprotection by chemicals were investigated in NASA Space Radiation Effects Laboratory. The effects of a parallel beam of 600 MeV protons. The fluence, when converted to dose, were referenced to the synchrocyclotron beam monitors which were then used to administer radiation exposures. Mice were given graded doses to 300 rads to determine dose-response curve. Other mice received saline, AET, or 5-hydroxytryptamine 10 to 15 minutes before exposure.

  2. Solar neutron decay proton observations in cycle 21

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Kroeger, Richard; Meyer, Peter; Reames, Donald

    1990-01-01

    Measurement of the flux and energy spectrum of the protons resulting from the decay of solar flare neutrons gives unique information on the spectrum of neutrons from 5 to 200 MeV. Neutrons from three flares have been observed in this manner during solar cycle 21. The use of the decay protons to determine neutron energy spectra is reviewed, and new and definitive energy spectra are presented for the two large flares on June 3, 1982 and April 25, 1984.

  3. Submicron elemental mapping with the oxford scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Grime, G. W.; Watt, F.; Chapman, J. R.

    1987-03-01

    Following recent modifications to the Oxford scanning proton microprobe (SPM) a beam spot diameter of 0.5 μm has been achieved at a beam current of 20-30 pA of 4 MeV protons. This has been confirmed by scanning both a copper test grid and microcrystals of barium sulphate. The potential of using high spatial resolutions in microbiology has been explored by scanning a single mouse cell.

  4. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  5. Cross sections for {sup 68}Ge production in natural- and enriched-germanium targets irradiated with protons of energy 100 MeV and background in experiments devoted to searches for the 2{beta}0{nu} decay of {sup 76}Ge

    SciTech Connect

    Barabanov, I. R. Bezrukov, L. B.; Kianovsky, S. V.; Kornoukhov, V. N.

    2010-11-15

    The rate of {sup 68}Ge production at sea level under the effect of the nuclear component of cosmic rays is calculated. The calculation is based on the experimental values of the cross sections for {sup 68}Ge production in natural- and enriched-germanium targets (enrichment in {sup 76}Ge) irradiated with high-energy protons. The background from the decays of {sup 68}Ge can be a serious problem in new-generation experiments devoted to searches for the 2{beta}0{nu} decay of {sup 76}Ge.

  6. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic

  7. Multiple scattering of proton via stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kia, M. R.; Noshad, Houshyar

    2015-08-01

    Multiple scattering of protons through a target is explained by a set of coupled stochastic differential equations. The motion of protons in matter is calculated by analytical random sampling from Moliere and Landau probability density functions (PDF). To satisfy the Vavilov theory, the moments for energy distribution of a 49.1 MeV proton beam in aluminum target are obtained. The skewness for the PDF of energy demonstrates that the energy distribution of protons in thin thickness becomes a Landau function, whereas, by increasing the thickness of the target it does not follow a Gaussian function completely. Afterwards, the depth-dose distributions are calculated for a 60 MeV proton beam traversing soft tissue and for a 160 MeV proton beam travelling through water. The results prove that when elastic scattering is taken into account, the Bragg-peak position is decreased, while the dose deposited in the Bragg region is increased. The results obtained in this article are benchmarked by comparison of our results with the experimental data reported in the literature.

  8. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  9. Measurements of 15.11-MeV gamma-ray flux produced in the reactions C-12(p, p')-C-12*(15.11 MeV) and O-16(p, p' alpha)-C-12*(15.11 MeV)

    NASA Technical Reports Server (NTRS)

    Lapides, J. R.; Crannell, C. J.; Crannell, H.; Hornyak, W. F.; Seltzer, S. M.; Trombka, J. I.; Wall, N. S.

    1978-01-01

    The flux of 15.11 MeV gamma rays relative to the flux of 4.44 MeV gamma rays which are emitted from the corresponding states of C-12 are a sensitive measure of the spectrum of exciting particles in solar flares and other cosmic sources. Emission of 15.11 MeV gamma rays may result not only from the direct excitation of C-12 but also from the interaction O-16 (p,p' alpha) C-12* sup 15.11 MeV. Although the cross sections for the direct reaction was studied extensively, the cross section for the spallation interaction with O-16 is not reported in the literature. Preliminary measurements demonstrated the feasibility of measuring the production of 15.11 MeV gamma rays by proton interactions with O-16 using the University of Maryland cyclotron facility. For both carbon and oxygen targets the flux of 15.11 MeV gamma rays is being measured relative to the flux of 4.44 MeV gamma rays. The gamma ray emission from de-excitation of the giant dipole resonances is being measured.

  10. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  11. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV.

    PubMed

    Taniguchi, S; Moriya, T; Takada, M; Hatanaka, K; Wakasa, T; Saito, T

    2005-01-01

    The response functions of 25.4 cm (length) x 25.4 cm (diameter) NE213 organic liquid scintillator have been measured for neutrons in the energy range from 20 to 800 MeV at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and at the Research Center for Nuclear Physics (RCNP) of Osaka University. At HIMAC, white (continuous) energy spectrum neutrons were produced by the 400 MeV per nucleon carbon ion bombardment on a thick graphite target, whose energy spectrum has already been measured by Kurosawa et al., [Nucl. Sci. Eng. 132, 30 (1999)] and the response functions of the time-of-flight-gated monoenergetic neutrons in a wide energy range from 20 to 800 MeV were simultaneously measured. At RCNP, the quasi-monoenergetic neutrons were produced via 7Li(p,n)7Be reaction by 250 MeV proton beam bombardment on a thin 7Li target, and the TOF-gated 245 MeV peak neutrons were measured. The absolute peak neutron yield was obtained by the measurement of 478 keV gamma rays from the 7Be nuclei produced in a Li target. The measured results show that the response functions for monoenergetic neutrons < 250 MeV have a recoil proton plateau and an edge around the maximum light output, which increases with increasing incident neutron energy, on the other hand > 250 MeV, the plateau and the edge become unclear because the proton range becomes longer than the detector size and the escaping protons increase. It can be found that the efficiency of the 24.5 cm (diameter) x 25.4 cm (length) NE213 for the 250 MeV neutrons is -10 times larger than the 12.7 cm (length) x 12.7 cm (diameter) NE213, which is widely used as a neutron spectrometer. PMID:16604622

  12. Status of and prospects for proton beam utilization at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Kye-Ryung

    2015-02-01

    The 1st proton beam utilization experiment using the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC) was successfully conducted on July 22, 2013. Forty-eight proposals for the second half year's beam times were submitted, and 37 proposals were selected. The beam time was allocated by the PAC (Program Advisory Committee), which was composed of experts recommended by the KOPUA (Korea Proton Accelerator User Association). For proton beam utilization, the KOMAC constructed two target rooms, TR23 and TR103, for the 20-MeV and 100-MeV proton beam last year, and an operation license was issued by the KINS (Korea Institute of Nuclear Safety) in July, before the beam service started. Proton beams can be utilized in various application fields, such as nano-, bio-, space, semiconductor, and nuclear technologies, medical sciences, nuclear physics, and so on. Especially, the demands for high-dose irradiation with proton beams are increasing for nuclear- and fusion-material tests and radio-isotope production. In this paper, we review the achievements during last ten years and report the status of and the future prospects for beam utilization of the 100-MeV proton accelerator at the KOMAC.

  13. Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment

    NASA Technical Reports Server (NTRS)

    Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.

    2007-01-01

    This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.

  14. Computation of doses for large-angle Coulomb scattering of proton pencil beams.

    PubMed

    Ciangaru, George; Sahoo, Narayan; Zhu, X Ronald; Sawakuchi, Gabriel O; Gillin, Michael T

    2009-12-21

    In this work we present a study of the impact of considering higher order terms in Molière's multiple Coulomb scattering (MCS) theory for the purpose of calculating scanning proton pencil beam lateral dose profiles in water. The proton beam profile in air, just before entering the target medium, was modeled with a sum of Gaussians fitted with measured data. The subsequent proton scattering in water was described using the three-term Molière distribution, which covers both small- and large-angle scatterings. We compared measured and computed lateral dose profiles at the 2 cm and at the near-Bragg peak depths for proton pencil beams with energies of 72.5 MeV, 121.2 MeV, 163.9 MeV and 221.8 MeV. At shallow depths, the Coulomb interaction model provided a good description of the profiles for all energies, except for 221.8 MeV. At the near-Bragg peak depths, the Coulomb interaction model provided a good description of the profiles only for the 72.5 MeV. The observed discrepancies may be attributed to the additional contributions from nuclear interactions, which may be quantified only after an accurate description of the MCS. The analysis presented in this work did not require user-adjustable parameters and may be carried out in a similar way for any other media, depths and proton energies.

  15. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, B.L.; Donahue, R.J.

    1996-05-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron flux outside a thinner moderator as the neutron flux from a 2.5 MeV proton beam with a, thicker moderator. These results are based on optimization of the useful neutron spectrum in air at the point of irradiation, not on depth-dose profiles in tissue/tumor.

  16. A new model for the calculation and prediction of solar proton fluences

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Gabriel, Stephen B.

    1990-01-01

    A new predictive engineering model for the energy greater than 10 MeV and greater than 30 MeV solar proton environment at earth is reviewed. The data used are from observations made from 1956 through 1985. In this data set, the distinction between 'ordinary events' and 'anomalously large events' that was required in earlier models disappeared. This permitted the use of statistical analysis methods developed for ordinary events on the entire data set. The greater than 10-MeV fluences with the new model are about twice those expected on the basis of earlier models. At energies greater than 30 MeV, the old and new models agree.

  17. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  18. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  19. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  20. Pion Induced Pion Production on Oxygen at 280 Mev.

    NASA Astrophysics Data System (ADS)

    Rozon, Francis Martin

    A first coincident measurement of the pion induced pion production reaction cross-section on a complex nucleus (A > 2) has been successfully performed. In particular, the reaction ^{16}O( pi^+,pi^+pi^-) was measured at 280 MeV incident pion energy. The only previous published measures of this reaction on nuclei consisted of a dated measurement done on emulsion nuclei (BBD*69) and did not provide very stringent limits to the nuclear cross section. Single arm experiments have previously been done elsewhere on the proton (BJK*80) and the deuteron (PGM*84). The reaction was measured at TRIUMF using the QQD magnetic spectrometer in coincidence with the CARUZ (RGR88), a total absorption scintillator range telescope. The measured four-fold differential cross sections were extrapolated to the unmeasured portions of the phase-space to extract the total reaction cross-section at 280 MeV, which was found to be sigma_{tot} = 2.250 +/-.350mb . The (pi,2pi ) cross-section is thus observed to provide approximately 40% of the inclusive double charge exchange cross section (Woo84) at this energy. The model of (OV86) is found to explain many of the features of the data, including sigma _{tot}. The present data do not preclude effects due to pion condensate precursor phenomena as proposed by (CE83) but they do not support the existence of a strong effect. The data are also compared to kinematical Monte Carlo simulations of some possible reaction mechanisms and it is found that the presence of an intermediate Delta can aid the explanation of the low energy features of the pi^+ energy spectrum.

  1. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  2. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  3. The effect of the {Delta} excitation on proton-proton bremsstrahlung

    SciTech Connect

    Lee, T.S.H.; Jong, F. de; Nakayama, K.

    1995-08-01

    The proton-proton bremsstrahlung is investigated with a coupled-channel model with {pi} and {Delta} degrees of freedom. The model is consistent with the NN scattering up to 1 GeV and the {gamma}N{Delta} vertex determined in the study of pion photoproduction on the nucleon. We find that the {Delta} excitation can significantly improve the agreement with the pp {yields} pp{gamma} data at E{sub L} = 280 MeV. The N{Delta} rescattering plays an important role in determining the angular distribution and analyzing powers. Predictions at E{sub L} = 550 and 800 MeV were made for the forthcoming experimental tests at COSY of Juelich. A paper describing our results was submitted for publication.

  4. Search for the giant pairing vibration through (p,t) reactions around 50 and 60 MeV

    SciTech Connect

    Mouginot, B.; Khan, E.; Azaiez, F.; Franchoo, S.; Ramus, A.; Scarpaci, J. A.; Stefan, I.; Neveling, R.; Buthelezi, E. Z.; Foertsch, S. V.; Smit, F. D.; Fujita, H.; Usman, I.; Mabiala, J.; Mira, J. P.; Swartz, J. A.; Papka, P.

    2011-03-15

    The existence of the giant pairing vibration (GPV) in {sup 120}Sn and {sup 208}Pb was investigated using the (p,t) reaction at incident proton energies of 50 MeV and 60 MeV for the scattering angles 0 deg. and 7 deg. No clear signature for the GPV was found, providing an upper limit for the cross section of {sigma}{sub max} = 0.2 mb. Theoretical interpretations for the low cross section of the GPV are discussed.

  5. Proton induced radiation damage in fast crystal scintillators

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  6. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  7. In situ variations of carrier decay and proton induced luminescence characteristics in polycrystalline CdS

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Brytavskyi, I.; Ceponis, T.; Jasiunas, A.; Kalesinskas, V.; Kovalevskij, V.; Meskauskaite, D.; Pavlov, J.; Remeikis, V.; Tamulaitis, G.; Tekorius, A.

    2014-06-01

    Evolution of the microwave-probed photoconductivity transients and of the proton induced luminescence has simultaneously been examined in polycrystalline CdS layers evaporated in vacuum during exposure to a 1.6 MeV proton beam. The decrease of the intensity of luminescence peaked at 510 and 709 nm wavelengths and of values of the effective carrier lifetime has been correlated in dependence of proton irradiation fluence. The defect introduction rate has been evaluated by the comparative analysis of the laser and proton beam induced luminescence. The difference of a carrier pair generation mechanism inherent for light and for a proton beam has been revealed.

  8. An evaluation of a prototype proton CT scanner

    NASA Astrophysics Data System (ADS)

    Plautz, Tia Elizabeth

    Since the 1990s, the number of clinical proton therapy facilities around the world has been growing exponentially. Because of this, and the lack of imaging support for proton therapy in the treatment room, a renewed interest in proton radiography and computed tomography (CT) has emerged. This imaging modality was largely abandoned in the 1970s and '80s in favor of the already successful x-ray CT, for reasons including long acquisition times and inadequate spatial resolution. Protons are particularly useful for radiotherapy because of their well-defined range in matter and their favorable energy profile which facilitates greater conformality than other radiotherapies; however, in order to realize the full potential of proton radiotherapy, the range of protons in the patient must be precisely known. Presently, proton therapy treatment planning is accomplished by taking x-ray CTs of the patient and converting each voxel into proton relative stopping power with respect to water (RSP) via a stoichiometrically-acquired calibration curve. However, since there is no unique relationship between Hounsfield values and RSP, this procedure has inherent uncertainties of a few percent in the proton range, requiring additional distal uncertainty margins in proton treatment plans. In contrast to x-ray CT, proton CT measures the RSP of an object directly, eliminating the need for Hounsfield-value-to-RSP conversion. In the prototype proton CT scanner that we have developed, a low-intensity beam of 200 MeV protons traverses a patient, entirely, and stops in a downstream energy/range detector. The entry and exit vectors of each proton are measured in order to determine a most-likely path of the proton through the object, and the response of the energy/range detector is converted to the water-equivalent path length of each proton in the object. These measurements are made at many angles between 0 and 360 degrees in order to reconstruct a three-dimensional map of proton RSP in the object

  9. SU-E-T-459: Dosimetric Consequences of Rotated Elliptical Proton Spots in Modeling In-Air Proton Fluence for Calculating Doses in Water of Proton Pencil Beams

    SciTech Connect

    Matysiak, W; Yeung, D; Hsi, W

    2014-06-01

    Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-like spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.

  10. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    PubMed

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  11. Is the proton radius puzzle evidence of extra dimensions?

    NASA Astrophysics Data System (ADS)

    Dahia, F.; Lemos, A. S.

    2016-08-01

    The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between the 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds.

  12. Proton Resonance Spectroscopy in CALCIUM-40.

    NASA Astrophysics Data System (ADS)

    Warthen, Barry Joseph

    1987-09-01

    The differential cross sections for the ^{39}K(p,p_{ rm o})^{39}K and ^{39}K(p,alpha_ {rm o})^{36}Ar reactions have been measured for E_{ rm p} = 1.90 to 4.02 MeV at laboratory angles theta = 90^ circ, 108^circ, 150^circ and 165^ circ. Data were taken with the Triangle Universities Nuclear Laboratory (TUNL) KN Van de Graaff accelerator and the associated high resolution system. The targets consisted of 1-2 mug/cm^2 of potassium carbonate (K_2CO _3), enriched to 99.97% ^{39}K, evaporated onto gold coated carbon backings. Excitation functions were measured in proton energy steps varying from 100 to 400 eV. The energy region studied corresponds to an excitation energy range in the ^{40}Ca nucleus of E_{rm x} = 10.2 to 12.3 MeV. A multi-level multi-channel R-matrix based computer code was used to fit the experimental excitation functions. Resonance parameters obtained include resonance energy, spin, parity, partial widths, and channel spin and orbital angular momentum mixing ratios. Of the 248 resonances observed in the proton channel, 148 were also observed in the alpha channel. A fit to the observed level density yielded a nuclear temperature of 1.5 MeV. The data were compared with predictions of statistical theories of energy levels for both level spacing and reduced width distributions. The alpha reduced widths agree with the Porter-Thomas distribution and suggest that only 5-10% of the states with alpha widths were not observed. The summed strength in each of the alpha channels represents a significant fraction of the Wigner limit for these channels. The proton channels, on the other hand, generally have much smaller fractions. The two proton s-wave strength functions are equal and thus show no evidence for spin-exchange forces in the nucleon-nucleus interaction.

  13. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    NASA Astrophysics Data System (ADS)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  14. The heliolongitudinal distribution of solar flares associated with solar proton events.

    PubMed

    Smart, D F; Shea, M A

    1996-01-01

    We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian. PMID:11540356

  15. The heliolongitudinal distribution of solar flares associated with solar proton events.

    PubMed

    Smart, D F; Shea, M A

    1996-01-01

    We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.

  16. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    SciTech Connect

    Mclean, Thomas D; Justus, Alan L; Gadd, S Milan; Olsher, Richard H; Devine, Robert T

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  17. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.

    PubMed

    Olsher, R H; McLean, T D; Justus, A L; Devine, R T; Gadd, M S

    2010-03-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom. PMID:19887515

  18. Radiobiological Characterization of Two Therapeutic Proton Beams With Different Initial Energy Spectra Used at the Institut Curie Proton Therapy Center in Orsay

    SciTech Connect

    Calugaru, Valentin; Nauraye, Catherine; Noeel, Georges; Giocanti, Nicole; Favaudon, Vincent; Megnin-Chanet, Frederique

    2011-11-15

    Purpose: Treatment planning in proton therapy uses a generic value for the relative biological efficiency (RBE) of 1.1 throughout the spread-out Bragg peak (SOBP) generated. In this article, we report on the variation of the RBE with depth in the SOBP of the 76- and 201-MeV proton beams used for treatment at the Institut Curie Proton Therapy Center in Orsay. Methods and Materials: The RBE (relative to {sup 137}Cs {gamma}-rays) of the two modulated proton beams at three positions in the SOBP was determined in two human tumor cells using as endpoints clonogenic cell survival and the incidence of DNA double-strand breaks (DSBs) as measured by pulse-field gel electrophoresis without and with enzymatic treatment to reveal clustered lesions. Results: The RBE for induced cell killing by the 76-MeV beam increased with depth in the SOBP. However for the 201-MeV protons, it was close to that for {sup 137}Cs {gamma}-rays and did not vary significantly. The incidence of DSBs and clustered lesions was higher for protons than for {sup 137}Cs {gamma}-rays, but did not depend on the proton energy or the position in the SOBP. Conclusions: Until now, little attention has been paid to the variation of RBE with depth in the SOBP as a function of the nominal energy of the primary proton beam and the molecular nature of the DNA damage. The RBE increase in the 76-MeV SOBP implies that the tumor tissues at the distal end receives a higher biologically equivalent dose than at the proximal end, despite a homogeneous physical dose. This is not the case for the 201-MeV energy beam. The precise determination of the effects of incident beam energy, modulation, and depth in tissues on the linear energy transfer-RBE relationship is essential for treatment planning.

  19. Nuclear collision processes around the Bragg peak in proton therapy.

    PubMed

    Matsuzaki, Yuka; Date, Hiroyuki; Sutherland, Kenneth Lee; Kiyanagi, Yoshiaki

    2010-01-01

    In the physical processes of proton interaction in bio-materials, most of the proton energy is transferred to electrons. Ionization and excitation occur most frequently around the Bragg peak region, where nuclear reactions also exist. In this study, we investigated the processes of energy deposition by considering interactions including the nuclear reactions between protons and water molecules by a Monte Carlo simulation for proton therapy. We estimated the number of particles produced by a variety of nuclear reactions, and we focused on the interaction in the low-energy region (below 1 MeV). Furthermore, we considered the charge-changing processes in the low-energy region (less than a few hundred keV). Finally, we evaluated the total dose and the contribution of primary protons and secondary particles through nuclear reactions to the absorbed dose. The results showed that the protons generate numerous neutrons via nuclear reactions. Particularly, neutrons with relatively low energies produce recoil protons by elastic collisions with the hydrogen atoms. Around the Bragg peak, low-energy primary protons (slowed-down protons) are prevalent, whereas recoil (secondary) protons gradually become dominant behind the distal falloff region of the Bragg peak. Therefore, around the Bragg peak, the main contribution to the absorbed dose is that of the primary protons (from 80 to 90%), whereas secondary protons created by primary proton-induced reactions contribute to the dose from 20 to 5%. Behind the distal endpoint of the Bragg peak, the absorbed dose is mainly due to the protons produced by (1)H(n, p), and the contribution of these is about 70%. PMID:20821107

  20. On forecasting the onset of Solar Proton Events

    NASA Astrophysics Data System (ADS)

    Núñez, Marlon; Fidalgo, Raúl; Morales, Rafael

    A major problem for predicting the onset of Solar Proton Events is the detection of the magnetic connection between the flare and the earth. If there is a magnetic connection, the particles accelerated by a large solar event may impact the earth and produce the onset of a solar energetic proton event. Current physical models cannot predict the onset of a SPE mainly because of the chaotic conditions within the IMF structure. Kiplinger (1995) reported a high correlation between the existence of 10 MeV protons at Earth and a characteristic pattern of X-ray spectral evolution for several associated flares. We propose a practical approach that tries to detect the time intervals of this correlation. Our assumption is that a high correlation betwewn X-ray and protons at Earth is an important symptom of a magnetic connection and may help to prevent Solar Proton Events.

  1. Laser Acceleration of Monoenergetic Protons Trapped in Moving Double Layer

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, X.

    2008-10-15

    We present analytic theory of monoenergetic protons acceleration by short pulse laser irradiation on a thin foil with specific thickness suggested by Yan et al. in simulations. The laser ponderomotive force pushes the electrons forward, leaving ions behind until the space charge field balances the ponderomotive force at distance {delta}. For the optimal target thickness D = {delta}>c/{omega}{sub p}, the electron sheath piled up at the rear surface of width skin depth moves into vacuum, carrying with it the protons contained in the sheath. These protons are trapped by the self field of the electron sheath and are collectively accelerated as a double layer by the laser ponderomotive force. We present here the analytic expression for the energy of the accelerated protons as a function of time, laser intensity, wavelength, and plasma density. For example, proton energy can reach {approx_equal}200 MeV at a = 5, and pulse length 90 fs.

  2. SU-E-T-519: Emission of Secondary Particles From a PMMA Phantom During Proton Irradiation: A Simulation Study with the Geant4 Monte Carlo Toolkit

    SciTech Connect

    Lau, A; Chen, Y; Ahmad, S

    2014-06-01

    Purpose: Proton therapy exhibits several advantages over photon therapy due to depth-dose distributions from proton interactions within the target material. However, uncertainties associated with protons beam range in the patient limit the advantage of proton therapy applications. To quantify beam range, positron-emitting nuclei (PEN) and prompt gamma (PG) techniques have been developed. These techniques use de-excitation photons to describe the location of the beam in the patient. To develop a detector system for implementing the PG technique for range verification applications in proton therapy, we studied the yields, energy and angular distributions of the secondary particles emitted from a PMMA phantom. Methods: Proton pencil beams of various energies incident onto a PMMA phantom with dimensions of 5 x 5 x 50 cm3 were used for simulation with the Geant4 toolkit using the standard electromagnetic packages as well as the packages based on the binary-cascade nuclear model. The emitted secondary particles are analyzed . Results: For 160 MeV incident protons, the yields of secondary neutrons and photons per 100 incident protons were ~6 and ~15 respectively. Secondary photon energy spectrum showed several energy peaks in the range between 0 and 10 MeV. The energy peaks located between 4 and 6 MeV were attributed to originate from direct proton interactions with 12C (~ 4.4 MeV) and 16O (~ 6 MeV), respectively. Most of the escaping secondary neutrons were found to have energies between 10 and 100 MeV. Isotropic emissions were found for lower energy neutrons (<10 MeV) and photons for all energies, while higher energy neutrons were emitted predominantly in the forward direction. The yields of emitted photons and neutrons increased with the increase of incident proton energies. Conclusions: A detector system is currently being developed incorporating the yields, energy and angular distributions of secondary particles from proton interactions obtained from this study.

  3. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  4. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    SciTech Connect

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-12-31

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current.

  5. Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam

    NASA Astrophysics Data System (ADS)

    Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.

    2013-06-01

    The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

  6. Biomedical effects of protons with different levels of LET

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Vorozhtsova, Svetlana; Abrosimova, Alla; Ivanov, Alexander; Molokanov, Alexander

    Protons compose 80% of space radiation, thus, if the average energy of protons is 45 MeV, then there is a proton range much differing on the LET level available. In this regard, the study of protons radiobiological effects with different levels of LET is relevant. On the basis of the JINR Phasotron we designed the special device allowing to irradiate experimental animals - mice at the various regions of proton beam differing more than 3 times on the level of LET. The experiments were carried out on outbred CD-1 females mice and C57Bl6 males. Animals were irradiated at two points of the depth dose distribution - at the entrance of the proton beam and at the modified Bragg peak, extended with a ridge filter. Total irradiation of mice was conducted by a proton beam with energy of 171 MeV at doses of 1.0, 2.5 and 5.0 Gy at the JINR Phasotron beam, is used for the treatment of patients. LET of 171 MeV protons was 0.49 keV/mkm, the dose rate was 0.37 Gy/min. Range of energy at the modified Bragg peak is 0-30 MeV. Dose rate was 0.8 Gy/min. Average value of LET at the modified Bragg peak was 1.6 keV/mkm. In the modified Bragg peak the contribution to the absorbed dose of protons with low-LET radiation was about 67%, with LET 25-50 keV/mkm was 23% and with high -LET (50-100 keV/mkm) was 10%. For comparison irradiation of 60Co γ-rays was conducted on the device for remote radiation therapy Rokus-M MTC JINR in the same doses. The average dose of (60) Co gammaγ-rays with LET of 0.3 keV/mkm was 1 Gy/min. The experiments showed that after 24 hours of both proton irradiation with a high level of LET, and with 171 MeV proton beam in the object, a clear dose-dependent loss of bone marrow hematopoiesis is observed, the depth of destruction after irradiation by protons with a high level of increased from 1.14 to 1.36 with increasing doses of irradiation from 1.0 to 5.0 Gy. Restoration of bone marrow cellularity by the 8th day after exposure also was reduced in mice irradiated by

  7. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  8. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

    PubMed Central

    Chung, Kwangzoo; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-01-01

    Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015. PMID:26756034

  9. Comparison of Schroedinger and Dirac coupled-channels analyses of the sup 28 Si( p , p prime ) sup 28 Si reaction at 500 MeV

    SciTech Connect

    de Swiniarski, R.; Beatty, D.; Donoghue, E.; Fergerson, R.W.; Franey, M.; Gazzaly, M.; Glashausser, C.; Hintz, N.; Jones, K.W.; McClelland, J.B.; Nanda, S.; Plum, M. Serin Physics Laboratory, Rutgers University, Piscataway, NJ School of Physics and Astronomy, University of Minnesota, Minneapolis, MN Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, NM )

    1990-09-01

    Analyzing powers have been measured for elastic and inelastic scattering of 500-MeV protons from {sup 28}Si. These data for the first 0{sup +}, 2{sup +}, and 4{sup +} states and the corresponding cross-section data have been analyzed with both Schroedinger and Dirac equation phenomenological coupled-channels methods. Good, qualitatively similar, results are achieved with the two methods.

  10. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  11. A Detector for Proton Computed Tomography

    SciTech Connect

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  12. Proton irradiation study of GFR candidate ceramics

    NASA Astrophysics Data System (ADS)

    Gan, Jian; Yang, Yong; Dickson, Clayton; Allen, Todd

    2009-06-01

    This work investigated the microstructural response of SiC, ZrC and ZrN irradiated with 2.6 MeV protons at 800 °C to a fluence of 2.75 × 10 19 protons/cm 2, corresponding to 0.71-1.8 displacement per atom (dpa), depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed. In comparison to Kr ion irradiation at 800 °C to 10 dpa from the previous studies, the proton irradiated ZrC and ZrN at 1.8 dpa show less irradiation damage to the lattice structure. The proton irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 0.71 dpa consists of black dot defects at high density.

  13. Measurement of 181 MeV H- ions stripping cross-sections by carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Yoshimoto, M.; Yamazaki, Y.; Hotchi, H.; Harada, H.; Okabe, K.; Kinsho, M.; Irie, Y.

    2015-03-01

    The stripping cross-sections of 181 MeV H- (negative hydrogen) ions by the carbon stripper foil are measured with good accuracy. The present experiment was carried out at the 3-GeV RCS (Rapid Cycling Synchrotron) of J-PARC (Japan Proton Accelerator Research Complex). The stripping cross-sections for different charge states, also known as electron loss cross-sections of H- ion, are denoted as σ-11, σ-10 and σ01, for both electrons stripping (H- →H+), one-electron stripping (H- →H0) and the 2nd-electron stripping (H0 →H+) proceeding σ-10, respectively. We have established very unique and precise techniques for such measurements so as also to determine a foil stripping efficiency very accurately. The cross-sections σ-11, σ-10 and σ01 are obtained to be (0.002 ± 0.001) ×10-18cm2, (1.580 ± 0.034) ×10-18cm2 and (0.648 ± 0.014) ×10-18cm2, respectively. The presently given cross-sections are newly available experimental results for an incident H- energy below 200 MeV and they are also shown to be consistent with recently proposed energy (1 /β2) scaled cross-sections calculated from the previously measured data at 200 and 800 MeV. The present results have a great importance not only at J-PARC for the upgraded H- beam energy of 400 MeV but also for many new and upgrading similar accelerators, where H- beam energies in most cases are considered to be lower than 200 MeV.

  14. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  15. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  16. NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods.

    PubMed

    Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui

    2016-03-18

    The diffusion properties of H(+) in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using (1)H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface.

  17. NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods.

    PubMed

    Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui

    2016-01-01

    The diffusion properties of H(+) in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using (1)H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733

  18. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  19. Delayed effects of proton irradiation in Macaca mulatta. II. mortality (15-year report). Interim report 1964-1982

    SciTech Connect

    Yochmowitz, M.G.; Wood, D.H.; Salmon, Y.L.

    1983-01-01

    A radiation primate colony of 57 controls and 301 (217 proton) exposed subjects has been followed since 1964. Lifespan of both the exposed and, more specifically, the proton-exposed subjects in the chronic colony was shortened. Energies of 55 MeV and greater decreased life span as did doses in excess of 360 rads. Females were more sensitive to lower doses than males. They died earlier in doses as low as 25-113 rads and in all energies tested except 55 MeV. Survival curve analysis found no difference among the onset of death in the 3 highest energies (138, 400, and 2300 Mev); however, its onset was earlier in the 32-MeV exposure and later in the 55-MeV exposure and later in the 55-MeV exposure than the total penetrating energies (greater than or equal to 138 MeV). Dose ordering effects were evident. In contrast to the controls, mortality rates began to accelerate at approx. 8 years in the 360-400-rad group; at approx. 2 years in the 500-650-rad group and approx. 1 year in the 800-rad group. The leading causes of death among the proton-exposed animals were primary infections (approx. 30%), endometriosis (25%), and organ degeneration (approx. 17%). Malignant tumors accounted for 18% of the deaths. If endometriosis is included in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-exposed animals.

  20. Delayed effects of proton irradiation in Macaca mulatta. II. Mortality (15-year report). Interim report 1964-1982

    SciTech Connect

    Yochmowitz, M.G.; Wood, D.H.; Salmon, Y.L.

    1983-01-01

    A radiation primate colony of 57 controls and 301 (217 proton) exposed subjects has been followed since 1964. Lifespan of both the exposed and, more specifically, the proton-exposed subjects in the chronic colony was shortened. Energies of 55 MeV and greater decreased life span as did doses in excess of 360 rads. Females were more sensitive to lower doses than males. They died earlier in doses as low as 25-113 rads and in all energies tested except 55 MeV. Survival curve analysis found no difference among the onset of death in the 3 highest energies (138, 400, and 2300 Mev); however, its onset was earlier in the 32-MeV exposure and later in the 55-MeV exposure and later in the 55-MeV exposure than the total penetrating energies (greater than or equal to 138 MeV). Dose ordering effects were evident. In contrast to the controls, mortality rates began to accelerate at approx. 8 years in the 360-400-rad group; at approx. 2 years in the 500-650-rad group and approx. 1 year in the 800-rad group. The leading causes of death among the proton-exposed animals were primary infections (approx. 30%), endometriosis (25%), and organ degeneration (approx. 17%). Malignant tumors accounted for 18% of the deaths. If endometriosis is included in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-exposed animals.

  1. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  2. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    PubMed

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity.

  3. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method. PMID:18509666

  4. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    PubMed

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. PMID:27423927

  5. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  6. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.

    PubMed

    Islam, M R; Collums, T L; Zheng, Y; Monson, J; Benton, E R

    2013-11-21

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy−1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy−1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  7. Detailed characterization of the LLNL imaging proton spectrometer

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J.-E.; Kuranz, C. C.; Klein, S. R.; Belancourt, P. X.; Fein, J. R.; MacDonald, M. J.; Drake, R. P.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H.

    2016-11-01

    Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

  8. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    SciTech Connect

    Li, JS

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in a 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.

  9. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  10. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  11. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  12. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  13. Solar proton produced neon in shergottite meteorites

    NASA Technical Reports Server (NTRS)

    Garrison, D. H.; Rao, M. N.; Bogard, D. D.

    1994-01-01

    Cosmogenic radionuclides produced by near-surface, nuclear interactions of energetic solar protons (approx. 10-100 MeV) were reported in several lunar rocks and a very small meteorites. We recently documented the existence and isotopic compositions of solar-produced (SCR) Ne in two lunar rocks. Here we present the first documented evidence for SCR Ne in a meteorite, ALH77005, which was reported to contain SCR radionuclides. Examination of literature data for other shergottites suggests that they may also contain a SCR Ne component. The existence of SCR Ne in shergottites may be related to a Martian origin.

  14. Parity Nonconservation in Proton-Proton and Proton-Water Scattering at 1.5 GeV/c

    DOE R&D Accomplishments Database

    Mischke, R. E.; Bowman, J. D.; Carlini, R.; MacArthur, D.; Nagle, D. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R. L.

    1984-07-01

    Experiments searching for parity nonconservation in the scattering of 1.5 GeV/c (800 MeV) polarized protons from an unpolarized water target and a liquid hydrogen target are described. The intensity of the incident proton beam was measured upstream and downstream of the target by a pair of ionization detectors. The beam helicity was reversed at a 30-Hz rate. Auxiliary detectors monitored beam properties that could give rise to false effects. The result for the longitudinal asymmetry from the water is A{sub L} = (1.7 +- 3.3 +- 1.4) x 10{sup -7}, where the first error is statistical and the second is an estimate of systematic effects. The hydrogen data yield a preliminary result of A{sub L} = (1.0 +- 1.6) x 10{sup -7}. The systematic errors for p-p are expected to be < 1 x 10{sup -7}.

  15. Radiation tests of the EMU spacesuit for the International SpaceStation using energetic protons

    SciTech Connect

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.

    2001-06-04

    Measurements using silicon detectors to characterize theradiation transmitted through the EMU spacesuit and a human phantom havebeen performed using 155 and 250 MeV proton beams at the Loma LindaUniversity Medical Center (LLUMC). The beams simulate radiationencountered in space, where trapped protons having kinetic energies onthe order of 100 MeV are copious. Protons with 100 MeV kinetic energy andabove can penetrate many centimeters of water of other light materials,so that astronauts exposed to such energetic particles will receive dosesto their internal organs. This dose can be enhanced or reduced byshielding - either from the spacesuit or the self-shielding of the body -but minimization of the risk depends on details of the incident particleflux (in particular the energy spectrum) and on the dose responses of thevarious critical organs.

  16. Proton intensity spectra during the solar energetic particle events of May 17, 2012 and January 6, 2014

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Banjac, S.; Dresing, N.; Goméz-Herrero, R.; Heber, B.; Klassen, A.; Terasa, C.

    2015-04-01

    Context. Ground-level enhancements (GLEs) are solar energetic particle events that show a significant intensity increase at energies that can be measured by neutron monitors. The most recent GLE-like events were recorded on May 17, 2012 and January 6, 2014. They were also measured by sophisticated instrumentation in space such as PAMELA and the Electron Proton Helium INstrument (EPHIN) onboard SOHO. Since neutron monitors are only sensitive to protons above 400 MeV with maximum sensitivity at 1 to 2 GeV, the spectra of such weak GLE-like events (January 6, 2014) can only be measured by space instrumentation. Aims: We show that the SOHO/EPHIN is capable of measuring the solar energetic particle proton event spectra between 100 MeV and above 800 MeV. Methods: We performed a GEANT Monte Carlo simulation to determine the energy response function of EPHIN. Based on this calculation, we derived the corresponding proton energy spectra. The method was successfully validated against previous PAMELA measurements. Results: We present event spectra from EPHIN for May 17, 2012 and January 6, 2014. During the event in May 2012, protons were accelerated to energies above 700 MeV, while we found no significant increase for protons above 600 MeV during the event on January 6, 2014.

  17. Proton irradiation effects on the thermoelectric properties in single-crystalline Bi nanowires

    SciTech Connect

    Chang, Taehoo; Kim, Jeongmin; Song, Min-Jung; Lee, Wooyoung

    2015-05-15

    The effects of proton irradiation on the thermoelectric properties of Bi nanowires (Bi-NWs) were investigated. Single crystalline Bi-NWs were grown by the on-film formation of nanowires method. The devices based on individual Bi-NWs were irradiated with protons at different energies. The total number of displaced atoms was estimated using the Kinchin-Pease displacement model. The electric conductivity and Seebeck coefficient in the Bi-NW devices were investigated before and after proton irradiation at different temperatures. Although the Seebeck coefficient remained stable at various irradiation energies, the electrical conductivity significantly declined with increasing proton energy up to 40 MeV.

  18. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    SciTech Connect

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  19. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent.

  20. Proton or helium ion beam written channel waveguides in Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Yicun; Zhang, Chao; Vanga, Sudheer Kumar; Bettiol, A. A.; Chen, Feng

    2013-10-01

    We report on the fabrication of channel waveguides in Nd:YAG ceramics, using either focused proton beam writing (PBW) or He beam writing (HeBW) techniques. Energies of ions used in the writing process were at 1 MeV and 2 MeV, respectively, with different writing fluence. High quality channel waveguides were produced in both H+ and He+ implanted regions. Characteristics of the waveguides were explored, and refractive index distribution of the waveguide was reconstructed.

  1. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.

  2. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S.; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T.; Beddar, Sam

    2013-09-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission.

  3. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    PubMed Central

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission. PMID:23920051

  4. Lowest l=0 proton resonance in {sup 26}Si and implications for nucleosynthesis of {sup 26}Al

    SciTech Connect

    Peplowski, P. N.; Baby, L. T.; Wiedenhoever, I.; Diffenderfer, E.; Hoeflich, P.; Rojas, A.; Volya, A.; Dekat, S. E.; Gay, D. L.; Grubor-Urosevic, O.; Kaye, R. A.; Keeley, N.

    2009-03-15

    Using a beam of the radioactive isotope {sup 25}Al, produced with the new RESOLUT facility, we measured the direct (d,n) proton-transfer reaction leading to low-lying proton resonances in {sup 26}Si. We observed the lowest l=0 proton resonance, identified with the 3{sup +} state at 5.914-MeV excitation energy. This result eliminates the largest uncertainty in astrophysical reaction rates involved in the nucleosynthesis of {sup 26}Al.

  5. PVC film behavior under proton bombardment

    NASA Astrophysics Data System (ADS)

    Rickards, J.; Trejo-Luna, R.; Andrade, E.

    1995-04-01

    Thin films of poly(vinyl chloride) (PVC) were bombarded with protons of energies between 0.7 and 3 MeV, and the loss of mass was studied using back- and forward-scattering techniques. The abundances of chlorine, carbon and hydrogen were measured simultaneously during the bombardment. With fluences up to 8 × 10 15 protons/cm 2, the amount of carbon does not change, but chlorine is strongly depleted ( G-value = 3) and hydrogen is reduced to between 70 and 80%. This is consistent with the process of dehydrochlorination. An immediate preference is observed for producing this type of chemical reaction over others, suggesting that excitation energy is deposited in a small region like the monomer unit, and then distributed according to the chemical properties of the region.

  6. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  7. A gas ionisation Direct-STIM detector for MeV ion microscopy

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-04-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger-Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas.

  8. The solar gamma ray spectrum between 4 and 8 MeV

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Suri, A. N.

    1976-01-01

    The properties of nuclear gamma ray emission in the 4 to 8 MeV range were evaluated. This emission consists of broad and narrow lines resulting from nuclear reactions of energetic H, He, C and O nuclei with ambient matter. Calculations were compared with observations of the 1972, August 4 flare and show that: (1) essentially all the observed radiation in the 4 to 8 MeV region is to the superposition of broad and narrow lines of nuclear origin with almost no contribution from other mechanisms; (2) the accelerated particles in the energy region from about 10 to 100 MeV/amu have a relatively flat Energy spectrum; (3) the calculated gamma ray spectrum, obtained from an isotropic distribution of accelerated particles, fits the observed spectrum better than the spectrum derived from an anisotropic distribution for which the particles' velocity vectors point towards the photosphere; and (4) it is possible to set a stringent upper limit on the ratio of relativistic electrons to protons in flares, consistent with the small, but finite, electron-to-proton ratio in galactic cosmic rays.

  9. Measurement of Ay for the pd Breakup Reaction at 250 MeV

    SciTech Connect

    Maeda, Y.; Uesaka, T.; Kawabata, T.; Suda, K.; Sasamoto, Y.; Sakaguchi, S.; Sakai, H.; Yako, K.; Sasano, M.; Noji, S.; Hatanaka, K.; Tamii, A.; Shimizu, Y.; Takechi, M.; Tameshige, Y.; Matsubara, H.; Sagara, K.; Wakasa, T.; Dozono, M.; Ihara, E.

    2007-06-13

    From the recent studies, it has been found that the differential cross sections of the elastic Nd scattering at the energy below 150 MeV can be well reproduced by incorporating the 3NF in the Faddeev calculation based on modern nucleon-nucleon (NN) interactions. On the other hand, the differential cross sections of nd and pd at 250 MeV show large discrepancies between the data and the Faddeev calculations with 3NF. It indicates the presence of the missing features of the three nucleon system at this energy region. For the next step of the 3NF study, we measured the vector analyzing power Ay and the differential cross sections for the 2H(p, pp)n breakup reaction at 250 MeV. The experiment was carried out by detecting two protons in the final state with using the double-armed spectrometer Grand Raiden (GR) and Large Acceptance Spectrometer (LAS) at Research Center for Nuclear Physics (RCNP). These data provide important information on the 3NF effects and make a discrimination between 3NF models.

  10. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  11. ({ital p},{ital d}) reaction on {sup 62}Ni at 65 MeV

    SciTech Connect

    Matoba, M.; Kurohmaru, K.; Iwamoto, O.; Nohtomi, A.; Uozumi, Y.; Sakae, T.; Koori, N.; Ohgaki, H.; Ijiri, H.; Maki, T.; Nakano, M.; Sen Gupta, H.M.

    1996-04-01

    The {sup 62}Ni({ital p},{ital d}){sup 61}Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in {sup 61}Ni up to an excitation energy of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta {ital l} and {ital j} and spectroscopic factors for several strongly excited states. The 1{ital f}{sub 7/2} hole state spreads largely in the excitation energy region of 2{endash}6 MeV, while the 1{ital f}{sub 5/2}, 2{ital p}{sub 3/2}, and 2{ital p}{sub 1/2} hole states into only 2{endash}4 levels. The strength function of the 1{ital f}{sub 7/2} hole state is analyzed with an asymmetrical Lorentzian function. The damping mechanism of the single hole states is discussed. {copyright} {ital 1996 The American Physical Society.}

  12. Orientation features of {sup 24}Mg(2+) aligned nuclei in (p, p) and (d, d) reactions at E{sub x} ≈ 7.5 MeV per nucleon

    SciTech Connect

    Galanina, L. I. Zelenskaya, N. S.; Lebedev, V. M.; Orlova, N. V.; Spassky, A. V.

    2015-09-15

    Experimental angular dependences of cross sections for elastic and inelastic scattering and the result obtained by reconstructing the populations of magnetic sublevels, multipole-moment orientation tensors, and polarization tensors are presented for {sup 24}Mg (2{sup +}, 1.369 MeV) aligned nuclei produced in inelastic proton scattering at E{sub p} = 7.4 MeV. The experimental results in question are compared with the results of calculations based on the coupled-channel method and on the compound-nucleus model, the 3/2{sup +} resonance in the {sup 25}Al compound nucleus being taken into account. The orientation features of {sup 24}Mg (2{sup +}, 1.369 MeV) nuclei produced in inelastic proton and deuteron scattering on {sup 24}Mg at E{sub x} ≈ 7.5 MeV per nucleon are found to be generally similar despite a substantial difference in the respective differential cross sections.

  13. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J. Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  14. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  15. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGESBeta

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; et al

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  16. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications.

    PubMed

    Rosenberg, M J; Séguin, F H; Waugh, C J; Rinderknecht, H G; Orozco, D; Frenje, J A; Johnson, M Gatu; Sio, H; Zylstra, A B; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Stoeckl, C; Hohenberger, M; Sangster, T C; LePape, S; Mackinnon, A J; Bionta, R M; Landen, O L; Zacharias, R A; Kim, Y; Herrmann, H W; Kilkenny, J D

    2014-04-01

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7-4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10(6) cm(-2). A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount. PMID:24784597

  17. Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu

    2015-08-01

    A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)

  18. Development of a Ne gas target for 22Na production by proton irradiation

    NASA Astrophysics Data System (ADS)

    Mandal, Bidhan Ch.; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of 22Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of 22Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  19. Cross-shell excitation in two-proton knockout: Structure of {sup 52}Ca

    SciTech Connect

    Gade, A.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Dinca, D.-C.; Glasmacher, T.; Hansen, P. G.; Terry, J. R.; Janssens, R. V. F.; Carpenter, M. P.; Zhu, S.; Bazin, D.; Mueller, W. F.; Broda, R.; Fornal, B.; Deacon, A. N.; Freeman, S. J.; Kay, B. P.; Mantica, P. F.; Tostevin, J. A.

    2006-08-15

    The two-proton knockout reaction {sup 9}Be({sup 54}Ti,{sup 52}Ca+{gamma}) has been studied at 72 MeV/nucleon. Besides the strong feeding of the {sup 52}Ca ground state, the only other sizeable cross section proceeds to a 3{sup -} level at 3.9 MeV. There is no measurable direct yield to the first excited 2{sup +} state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of {sup 52}Ca.

  20. PIXE-induced XRF by high energy protons and alpha particles

    NASA Astrophysics Data System (ADS)

    Castiglioni, M.; Manfredi, G.; Milazzo, M.; Silari, M.

    1993-04-01

    In the past three years a comprehensive theoretical and experimental study has been conducted on the production of intense sources of monochromatic X-rays in the range 1-75 keV by bombardment of pure element targets with protons and alpha particles of tens of MeV energy. The present paper describes a dual-chamber irradiation system which has been designed and built for PIXE-induced XRF. Preliminary experimental results of analyses obtained with 20 MeV protons and a Zn primary target are shown.

  1. Development of a Ne gas target for (22)Na production by proton irradiation.

    PubMed

    Mandal, Bidhan Ch; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of (22)Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of (22)Na in a 6 day long 17 MeV, 5 μA proton irradiation run. PMID:27036769

  2. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  3. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  4. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Makowski, J.; Torrisi, A.

    2016-05-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 1019 W/cm2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ~ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum (Epmax) and the mean (langleEprangle) proton energy on |Δx| is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m Epmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = -100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness Ep changed only within ~ 40% and the highest proton energies reached 2.4 MeV.

  5. What's In a Proton?

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  6. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  7. What's In a Proton?

    SciTech Connect

    Brookhaven Lab

    2009-07-08

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  8. Coherent pion production in proton-deuteron collisions

    NASA Astrophysics Data System (ADS)

    Dymov, S.; Shmakova, V.; Mchedlishvili, D.; Azaryan, T.; Barsov, S.; Dzyuba, A.; Engels, R.; Gebel, R.; Goslawski, P.; Gou, B.; Grigoryev, K.; Hartmann, M.; Kacharava, A.; Komarov, V.; Khoukaz, A.; Kulessa, P.; Kulikov, A.; Kurbatov, V.; Lomidze, N.; Lorentz, B.; Macharashvili, G.; Merzliakov, S.; Mielke, M.; Mikirtytchiants, S.; Nioradze, M.; Ohm, H.; Papenbrock, M.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Seyfarth, H.; Ströher, H.; Tabidze, M.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Wilkin, C.; Wüstner, P.

    2016-11-01

    Values of the proton analysing power in the pd →3Heπ0 /3Hπ+ reactions at 350-360 MeV per nucleon were obtained by using a polarised proton beam incident on a deuterium cluster-jet target and with a polarised deuteron beam incident on a target cell filled with polarised hydrogen. These results have a much larger angular coverage than existing data. First measurements are also presented of the deuteron vector analysing power and the deuteron-proton spin correlations. Data were also obtained on the deuteron-proton spin correlation and proton analysing power at small angles at 600 MeV per nucleon, though the angular coverage at this energy was much more restricted even when using a deuteron beam. By combining the extrapolated values of the spin correlations to the forward or backward directions with published measurements of the deuteron tensor analysing powers, the relative phases between the two non-vanishing amplitudes were evaluated.

  9. Size Distributions of Solar Proton Events: Methodological and Physical Restrictions

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Yanke, V. G.

    2016-10-01

    Based on the new catalogue of solar proton events (SPEs) for the period of 1997 - 2009 (Solar Cycle 23) we revisit the long-studied problem of the event-size distributions in the context of those constructed for other solar-flare parameters. Recent results on the problem of size distributions of solar flares and proton events are briefly reviewed. Even a cursory acquaintance with this research field reveals a rather mixed and controversial picture. We concentrate on three main issues: i) SPE size distribution for > 10 MeV protons in Solar Cycle 23; ii) size distribution of > 1 GV proton events in 1942 - 2014; iii) variations of annual numbers for > 10 MeV proton events on long time scales (1955 - 2015). Different results are critically compared; most of the studies in this field are shown to suffer from vastly different input datasets as well as from insufficient knowledge of underlying physical processes in the SPEs under consideration. New studies in this field should be made on more distinct physical and methodological bases. It is important to note the evident similarity in size distributions of solar flares and superflares in Sun-like stars.

  10. Characteristics of solar proton events associated with ground level enhancements

    NASA Astrophysics Data System (ADS)

    Oh, S. Y.; Yi, Y.; Bieber, J. W.; Evenson, P.; Kim, Y. K.

    2010-10-01

    In certain explosive events, the Sun emits large numbers of protons with energy up to tens of GeV. Particle acceleration processes on the Sun can be understood through the observation of such energetic particles. According to the definition of NOAA Space Environment Services Center, a solar proton event (SPE) is defined as an event with a peak intensity of >10 pfu (particle flux unit; 1 particle cm-2 sr-1 s-1) for >10 MeV protons. Major SPEs are not always associated with ground level enhancements (GLEs), whereas relatively minor SPEs are sometimes associated with GLEs. We examined the peak intensities of 85 SPEs after 1986 using the intensity of proton differential energy channels (P3-P10) from GOES. We identified 31 SPEs associated with GLEs having well-defined profiles with a large increase and clear peak for each proton channel. They have larger peak intensity and fluence and shorter delay time between onset and peak than SPEs without GLEs. Fluences and peak intensities of SPEs have a good correlation with percent increases of GLEs, with the best correlation coefficients obtained for the peak intensities and fluences of channels P8, P9, and P10. For these energy channels (spanning 350-700 MeV), we find that there are threshold values for GOES fluence and peak intensity such that most SPEs above the threshold are associated with GLEs, whereas almost none below the thresholds are.

  11. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, Joseph; Stevens, Ralph R.; Schneider, J. David; Zaugg, Thomas

    1995-09-15

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos will be given.

  12. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  13. On the dechanneling of protons in Si [110

    NASA Astrophysics Data System (ADS)

    Kokkoris, M.; Perdikakis, G.; Kossionides, S.; Petrović, S.; Simoen, E.

    2003-08-01

    In the present work, the dechanneling of protons in Si [110] is studied combining theoretical Monte-Carlo and phenomenological simulation results in the energy range E p =1.8-2.4 MeV. The applicability of a Gompertz type sigmoidal dechanneling function, with two parameters, k and xc, which represent characteristic dechanneling rate and range, respectively, is examined, yielding the successful reproduction of backscattering spectra of channeled protons along the Si [110] crystal axis. The results are compared to the ones obtained in the past for different beam - crystal orientation combinations and an attempt is made to explain the occurring similarities and discrepancies.

  14. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  15. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  16. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. PMID:24074929

  17. A beam optics study of the biomedical beam line at a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-10-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam.

  18. Design study of a medical proton linac for neutron therapy

    SciTech Connect

    Machida, S.; Raparia, D.

    1988-08-26

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs.

  19. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165

  20. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.