Science.gov

Sample records for 50-528 stn 50-529

  1. Reflective color STN-LCD technologies

    NASA Astrophysics Data System (ADS)

    Fujita, Shingo; Yamaguchi, Hisanori; Mizuno, Hiroaki; Ohtani, Toshiya; Sekime, Tomoaki; Hatanaka, Takayuki; Ogawa, Tetsu

    1998-04-01

    Reflective color STN-LCDs should be one of the most promising devices for mobile business tools (MBT), because the demand such as low cost, low power consumption, light weight and compact size is especially strong for this application. A reflective color STN-LCD with a single polarizer and double retardation films has been investigated. The double retardation films arranged in front of LC-layer enabled the LCD to contain reflective electrodes inside the panel. This configuration achieves the bright image with no parallax. A new construction of a reflective STN-LCD with a single polarizer has been decided by means of our own method in which the color difference (Delta) E* as the optimizing parameter has been used. Further, RGB color filters has been newly designed for our reflective LCD, and the aluminum (Al) layer has been introduced as reflective electrodes. As a result, we have realized 7.8-in.-diagonal refractive color STN-LCD(640 by 480) which has 15% reflectance, 1:14 contrast ratio, 4096 color capability and the sufficient color gamut. It has been confirmed that the single polarizer reflective color STN-LCD has sufficient enough performance for MBT use. We believe that it will be a key device for this application.

  2. The Student Telescope Network (STN) experiment

    NASA Astrophysics Data System (ADS)

    Hannahoe, Ryan M.; Stencel, Robert E.; Bisque, Steve; Rice, Mike

    2003-02-01

    support of this effort, and acknowleedge in-kind support from the estate of William Herschel Womble. Details at website www.du.edu/~rstencel/stn.htm.

  3. Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres

    SciTech Connect

    Sun, Jia; Yu, Eun Young; Yang, Yuting; Confer, Laura A; Sun, Steven H; Wan, Ke; Lue, Neal F; Lei, Ming

    2010-09-02

    In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the two components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBP{alpha}-{beta} complex.

  4. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  5. Synthesis of Double C-Glycoside Analogue of sTn

    PubMed Central

    Ress, Dino K.; Baytas, Sultan N.; Wang, Qun; Muñoz, Eva M.; Tokuzoki, Kazuo; Tomiyama, Hiroshi; Linhardt, Robert J.

    2014-01-01

    A sTn double C-glycoside, sTn analogue 2, was synthesized using samarium chemistry developed in our laboratory. Complications in the oxidation reaction affording aldehyde acceptor were overcome by double protection of amide and the use of a room-temperature ionic liquid as solvent. Studies are underway to conjugate the sTn double C-glycoside hapten 2 to KLH carrier protein for biological evaluation as a vaccine. PMID:16277348

  6. Comparison of weight changes following unilateral and staged bilateral STN DBS for advanced PD

    PubMed Central

    Lee, Eric M; Kurundkar, Ashish; Cutter, Gary R; Huang, He; Guthrie, Barton L; Watts, Ray L; Walker, Harrison C

    2011-01-01

    Unilateral and bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) result in weight gain in the initial postoperative months, but little is known about the changes in weight following unilateral and staged bilateral STN DBS over longer time intervals. A case–control comparison evaluated weight changes over 2 years in 43 consecutive unilateral STN DBS patients, among whom 25 elected to undergo staged bilateral STN DBS, and 21 age-matched and disease severity matched PD controls without DBS. Regression analyses incorporating age, gender, and baseline weight in case or control were conducted to assess weight changes 2 years after the initial unilateral surgery. Unilateral STN DBS and staged bilateral STN DBS patients gained 3.9 ± 2.0 kg and 5.6 ± 2.1 kg versus their preoperative baseline weight (P < 0.001, respectively) while PD controls without DBS lost 0.8 ± 1.1 kg. Although bilateral STN DBS patients gained 1.7 kg more than unilateral STN DBS patients at 2 years, this difference was not statistically significant (P = 0.885). Although there was a trend toward greater weight gain in staged bilateral STN DBS patients versus unilateral patients, we found no evidence for an equivalent or synergistic increase in body weight following placement of the second DBS electrode. PMID:22398977

  7. Effects of STN DBS on Memory Guided Force Control in Parkinson’s Disease (June 2007)

    PubMed Central

    Prodoehl, Janey; Corcos, Daniel M.; Rothwell, John C.; Metman, Leo Verhagen; Bakay, Roy A. E.; Vaillancourt, David E.

    2008-01-01

    This study examined the control of elbow force in nine patients with Parkinson’s disease when visual feedback was available and when visual feedback was removed to determine how medication (Meds) and unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) affect memory guided force control. Patients were examined in each of four treatment conditions: 1) off treatment; 2) Meds; 3) STN DBS; and 4) Meds plus STN DBS. With visual feedback available, there was no difference in force output across treatment conditions. When visual feedback was removed force output drifted under the target in both the off-treatment and the Meds conditions. However, when on STN DBS or Meds plus STN DBS force output drifted above the target. As such, only STN DBS had a significant effect on force output in the vision removed condition. Increased force output when on STN DBS may have occurred due to disruptions in the basal ganglia-thalamo-cortical circuitry. We suggest that modulation of output of the internal segment of the globus pallidus by STN DBS may drive the effect of STN DBS on memory guided force control. PMID:17601184

  8. High Light Induced Disassembly of Photosystem II Supercomplexes in Arabidopsis Requires STN7-Dependent Phosphorylation of CP29

    PubMed Central

    Fristedt, Rikard; Vener, Alexander V.

    2011-01-01

    Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported. PMID:21915352

  9. SOURCE APPORTIONMENT OF SEATTLE PM 2.5: A COMPARISON OF IMPROVE AND ENHANCED STN DATA SETS

    EPA Science Inventory

    Seattle, WA, STN and IMPROVE data sets with STN temperature resolved carbon peaks were analyzed with both the PMF and Unmix receptor models. In addition, the IMPROVE trace element data was combined with the major STN species to examine the role of IMPROVE metals. To compare the ...

  10. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    PubMed

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-06-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.

  11. Articulatory Changes in Vowel Production following STN DBS and Levodopa Intake in Parkinson's Disease

    PubMed Central

    Martel Sauvageau, Vincent; Roy, Johanna-Pascale; Cantin, Léo; Prud'Homme, Michel; Langlois, Mélanie; Macoir, Joël

    2015-01-01

    Purpose. To investigate the impact of deep brain stimulation of the subthalamic nucleus (STN DBS) and levodopa intake on vowel articulation in dysarthric speakers with Parkinson's disease (PD). Methods. Vowel articulation was assessed in seven Quebec French speakers diagnosed with idiopathic PD who underwent STN DBS. Assessments were conducted on- and off-medication, first prior to surgery and then 1 year later. All recordings were made on-stimulation. Vowel articulation was measured using acoustic vowel space and formant centralization ratio. Results. Compared to the period before surgery, vowel articulation was reduced after surgery when patients were off-medication, while it was better on-medication. The impact of levodopa intake on vowel articulation changed with STN DBS: before surgery, levodopa impaired articulation, while it no longer had a negative effect after surgery. Conclusions. These results indicate that while STN DBS could lead to a direct deterioration in articulation, it may indirectly improve it by reducing the levodopa dose required to manage motor symptoms. These findings suggest that, with respect to speech production, STN DBS and levodopa intake cannot be investigated separately because the two are intrinsically linked. Along with motor symptoms, speech production should be considered when optimizing therapeutic management of patients with PD. PMID:26558134

  12. Effects of STN DBS on Rigidity in Parkinson’s Disease

    PubMed Central

    Shapiro, Mark B.; Vaillancourt, David E.; Sturman, Molly M.; Metman, Leo Verhagen; Bakay, Roy A. E.; Corcos, Daniel M.

    2008-01-01

    We quantified the effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and medication on Parkinsonian rigidity using an objective measure of work about the elbow joint during a complete cycle of imposed 1-Hz sinusoidal oscillations. Resting and activated rigidity were analyzed in four experimental conditions: 1) off treatment; 2) on DBS; 3) on medication; and 4) on DBS plus medication. Rigidity at the elbow joint was also assessed using the Unified Parkinson’s Disease Rating Scale (UPDRS). We tested ten patients who received STN DBS and ten age-matched neurologically healthy control subjects. The activated rigidity condition increased work in both Parkinson’s disease (PD) patients and control subjects. In PD patients, STN DBS reduced both resting and activated rigidity as indicated by work and the UPDRS rigidity score. This is the first demonstration that STN stimulation reduces rigidity using an objective measure such as work. In contrast, the presurgery dose of antiparkinsonian medication did not significantly improve the UPDRS rigidity score and reduced work only in the activated rigidity condition. Our results suggest that STN DBS may be more effective in alleviating rigidity in the upper limb of PD patients than medications administered at presurgery dosage level. PMID:17601186

  13. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway.

    PubMed

    Brunenberg, Ellen J L; Moeskops, Pim; Backes, Walter H; Pollo, Claudio; Cammoun, Leila; Vilanova, Anna; Janssen, Marcus L F; Visser-Vandewalle, Veerle E R M; ter Haar Romeny, Bart M; Thiran, Jean-Philippe; Platel, Bram

    2012-01-01

    Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures. PMID:22768059

  14. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    SciTech Connect

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  15. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    NASA Astrophysics Data System (ADS)

    Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

    2014-09-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  16. STN vs. GPi Deep Brain Stimulation: Translating the Rematch into Clinical Practice.

    PubMed

    Williams, Nolan R; Foote, Kelly D; Okun, Michael S

    2014-04-01

    When formulating a deep brain stimulation (DBS) treatment plan for a patient with Parkinson's disease (PD), two critical questions should be addressed: 1- Which brain target should be chosen to optimize this patient's outcome? and 2- Should this patient's DBS operation be unilateral or bilateral? Over the past two decades, two targets have emerged as leading contenders for PD DBS; the subthalamic nucleus (STN) and the globus pallidus internus (GPi). While the GPi target does have a following, most centers have uniformly employed bilateral STN DBS for all Parkinson's disease cases (Figure 1). This bilateral STN "one-size-fits-all" approach was challenged by an editorial entitled "STN vs. GPi: The Rematch," which appeared in the Archives of Neurology in 2005. Since 2005, a series of well designed clinical trials and follow-up studies have addressed the question as to whether a more tailored approach to DBS therapy might improve overall outcomes. Such a tailored approach would include the options of targeting the GPi, or choosing a unilateral operation. The results of the STN vs. GPi 'rematch' studies support the conclusion that bilateral STN DBS may not be the best option for every Parkinson's disease surgical patient. Off period motor symptoms and tremor improve in both targets, and with either unilateral or bilateral stimulation. Advantages of the STN target include more medication reduction, less frequent battery changes, and a more favorable economic profile. Advantages of GPi include more robust dyskinesia suppression, easier programming, and greater flexibility in adjusting medications. In cases where unilateral stimulation is anticipated, the data favor GPi DBS. This review summarizes the accumulated evidence regarding the use of bilateral vs. unilateral DBS and the selection of STN vs. GPi DBS, including definite and possible advantages of different targets and approaches. Based on this evidence, a more patient-tailored, symptom specific approach will be

  17. STN vs. GPi Deep Brain Stimulation: Translating the Rematch into Clinical Practice

    PubMed Central

    Williams, Nolan R.; Foote, Kelly D.; Okun, Michael S.

    2014-01-01

    When formulating a deep brain stimulation (DBS) treatment plan for a patient with Parkinson’s disease (PD), two critical questions should be addressed: 1- Which brain target should be chosen to optimize this patient’s outcome? and 2- Should this patient’s DBS operation be unilateral or bilateral? Over the past two decades, two targets have emerged as leading contenders for PD DBS; the subthalamic nucleus (STN) and the globus pallidus internus (GPi). While the GPi target does have a following, most centers have uniformly employed bilateral STN DBS for all Parkinson’s disease cases (Figure 1). This bilateral STN “one-size-fits-all” approach was challenged by an editorial entitled “STN vs. GPi: The Rematch,” which appeared in the Archives of Neurology in 2005. Since 2005, a series of well designed clinical trials and follow-up studies have addressed the question as to whether a more tailored approach to DBS therapy might improve overall outcomes. Such a tailored approach would include the options of targeting the GPi, or choosing a unilateral operation. The results of the STN vs. GPi ‘rematch’ studies support the conclusion that bilateral STN DBS may not be the best option for every Parkinson’s disease surgical patient. Off period motor symptoms and tremor improve in both targets, and with either unilateral or bilateral stimulation. Advantages of the STN target include more medication reduction, less frequent battery changes, and a more favorable economic profile. Advantages of GPi include more robust dyskinesia suppression, easier programming, and greater flexibility in adjusting medications. In cases where unilateral stimulation is anticipated, the data favor GPi DBS. This review summarizes the accumulated evidence regarding the use of bilateral vs. unilateral DBS and the selection of STN vs. GPi DBS, including definite and possible advantages of different targets and approaches. Based on this evidence, a more patient-tailored, symptom specific

  18. Cdc13 OB2 Dimerization Required for Productive Stn1 Binding and Efficient Telomere Maintenance

    PubMed Central

    Mason, Mark; Wanat, Jennifer J.; Harper, Sandy; Schultz, David C.; Speicher, David W.; Johnson, F. Brad; Skordalakes, Emmanuel

    2012-01-01

    SUMMARY Cdc13 is an essential yeast protein required for telomere length regulation and genome stability. It does so via its telomere capping properties and by regulating telomerase access to the telomeres. The crystal structure of the S. cerevisiae Cdc13 domain located between the recruitment and DNA binding domains reveals an oligonucleotide-oligosaccharide binding fold (OB2) with unusually long loops extending from the core of the protein. These loops are involved in extensive interactions between two Cdc13 OB2 folds leading to stable homo-dimerization. Interestingly, the functionally impaired cdc13-1 mutation inhibits OB2 dimerization. Biochemical assays indicate OB2 is not involved in telomeric DNA or Stn1 binding. However, disruption of the OB2 dimer in full-length Cdc13 affects Cdc13-Stn1 association leading to telomere length deregulation, increased temperature sensitivity and Stn1 binding defects. We therefore propose that dimerization of the OB2 domain of Cdc13 is required for proper Cdc13, Stn1, Ten1 (CST) assembly and productive telomere capping. PMID:23177925

  19. Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation.

    PubMed

    Pesaresi, Paolo; Hertle, Alexander; Pribil, Mathias; Kleine, Tatjana; Wagner, Raik; Strissel, Henning; Ihnatowicz, Anna; Bonardi, Vera; Scharfenberg, Michael; Schneider, Anja; Pfannschmidt, Thomas; Leister, Dario

    2009-08-01

    Flowering plants control energy allocation to their photosystems in response to light quality changes. This includes the phosphorylation and migration of light-harvesting complex II (LHCII) proteins (state transitions or short-term response) as well as long-term alterations in thylakoid composition (long-term response or LTR). Both responses require the thylakoid protein kinase STN7. Here, we show that the signaling pathways triggering state transitions and LTR diverge at, or immediately downstream from, STN7. Both responses require STN7 activity that can be regulated according to the plastoquinone pool redox state. However, LTR signaling does not involve LHCII phosphorylation or any other state transition step. State transitions appear to play a prominent role in flowering plants, and the ability to perform state transitions becomes critical for photosynthesis in Arabidopsis thaliana mutants that are impaired in thylakoid electron transport but retain a functional LTR. Our data imply that STN7-dependent phosphorylation of an as yet unknown thylakoid protein triggers LTR signaling events, whereby an involvement of the TSP9 protein in the signaling pathway could be excluded. The LTR signaling events then ultimately regulate in chloroplasts the expression of photosynthesis-related genes on the transcript level, whereas expression of nuclear-encoded proteins is regulated at multiple levels, as indicated by transcript and protein profiling in LTR mutants. PMID:19706797

  20. SOURCE APPORTIONMENT OF SEATTLE PM 2.5 USING STN ORGANIC CARBON PEAKS

    EPA Science Inventory

    Results from the Source Apportionment of Seattle PM2.5 Using STN Organic Carbon Peaks study will be presented at the American Association for Aerosol Research (AAAR) 24th Annual Conference in Austin, Texas (Oct 17 - 21, 2005). Receptor modeling results from Seattle us...

  1. STN area detection using K-NN classifiers for MER recordings in Parkinson patients during neurostimulator implant surgery

    NASA Astrophysics Data System (ADS)

    Schiaffino, L.; Rosado Muñoz, A.; Guerrero Martínez, J.; Francés Villora, J.; Gutiérrez, A.; Martínez Torres, I.; Kohan, y. D. R.

    2016-04-01

    Deep Brain Stimulation (DBS) applies electric pulses into the subthalamic nucleus (STN) improving tremor and other symptoms associated to Parkinson’s disease. Accurate STN detection for proper location and implant of the stimulating electrodes is a complex task and surgeons are not always certain about final location. Signals from the STN acquired during DBS surgery are obtained with microelectrodes, having specific characteristics differing from other brain areas. Using supervised learning, a trained model based on previous microelectrode recordings (MER) can be obtained, being able to successfully classify the STN area for new MER signals. The K Nearest Neighbours (K-NN) algorithm has been successfully applied to STN detection. However, the use of the fuzzy form of the K-NN algorithm (KNN-F) has not been reported. This work compares the STN detection algorithm of K-NN and KNN-F. Real MER recordings from eight patients where previously classified by neurophysiologists, defining 15 features. Sensitivity and specificity for the classifiers are obtained, Wilcoxon signed rank non-parametric test is used as statistical hypothesis validation. We conclude that the performance of KNN-F classifier is higher than K-NN with p<0.01 in STN specificity.

  2. STN-DBS Reduces Saccadic Hypometria but Not Visuospatial Bias in Parkinson's Disease Patients

    PubMed Central

    Fischer, Petra; Ossandón, José P.; Keyser, Johannes; Gulberti, Alessandro; Wilming, Niklas; Hamel, Wolfgang; Köppen, Johannes; Buhmann, Carsten; Westphal, Manfred; Gerloff, Christian; Moll, Christian K. E.; Engel, Andreas K.; König, Peter

    2016-01-01

    In contrast to its well-established role in alleviating skeleto-motor symptoms in Parkinson's disease, little is known about the impact of deep brain stimulation (DBS) of the subthalamic nucleus (STN) on oculomotor control and attention. Eye-tracking data of 17 patients with left-hemibody symptom onset was compared with 17 age-matched control subjects. Free-viewing of natural images was assessed without stimulation as baseline and during bilateral DBS. To examine the involvement of ventral STN territories in oculomotion and spatial attention, we employed unilateral stimulation via the left and right ventralmost contacts respectively. When DBS was off, patients showed shorter saccades and a rightward viewing bias compared with controls. Bilateral stimulation in therapeutic settings improved saccadic hypometria but not the visuospatial bias. At a group level, unilateral ventral stimulation yielded no consistent effects. However, the evaluation of electrode position within normalized MNI coordinate space revealed that the extent of early exploration bias correlated with the precise stimulation site within the left subthalamic area. These results suggest that oculomotor impairments “but not higher-level exploration patterns” are effectively ameliorable by DBS in therapeutic settings. Our findings highlight the relevance of the STN topography in selecting contacts for chronic stimulation especially upon appearance of visuospatial attention deficits. PMID:27199693

  3. STN-DBS Reduces Saccadic Hypometria but Not Visuospatial Bias in Parkinson's Disease Patients.

    PubMed

    Fischer, Petra; Ossandón, José P; Keyser, Johannes; Gulberti, Alessandro; Wilming, Niklas; Hamel, Wolfgang; Köppen, Johannes; Buhmann, Carsten; Westphal, Manfred; Gerloff, Christian; Moll, Christian K E; Engel, Andreas K; König, Peter

    2016-01-01

    In contrast to its well-established role in alleviating skeleto-motor symptoms in Parkinson's disease, little is known about the impact of deep brain stimulation (DBS) of the subthalamic nucleus (STN) on oculomotor control and attention. Eye-tracking data of 17 patients with left-hemibody symptom onset was compared with 17 age-matched control subjects. Free-viewing of natural images was assessed without stimulation as baseline and during bilateral DBS. To examine the involvement of ventral STN territories in oculomotion and spatial attention, we employed unilateral stimulation via the left and right ventralmost contacts respectively. When DBS was off, patients showed shorter saccades and a rightward viewing bias compared with controls. Bilateral stimulation in therapeutic settings improved saccadic hypometria but not the visuospatial bias. At a group level, unilateral ventral stimulation yielded no consistent effects. However, the evaluation of electrode position within normalized MNI coordinate space revealed that the extent of early exploration bias correlated with the precise stimulation site within the left subthalamic area. These results suggest that oculomotor impairments "but not higher-level exploration patterns" are effectively ameliorable by DBS in therapeutic settings. Our findings highlight the relevance of the STN topography in selecting contacts for chronic stimulation especially upon appearance of visuospatial attention deficits.

  4. STN-DBS Reduces Saccadic Hypometria but Not Visuospatial Bias in Parkinson's Disease Patients.

    PubMed

    Fischer, Petra; Ossandón, José P; Keyser, Johannes; Gulberti, Alessandro; Wilming, Niklas; Hamel, Wolfgang; Köppen, Johannes; Buhmann, Carsten; Westphal, Manfred; Gerloff, Christian; Moll, Christian K E; Engel, Andreas K; König, Peter

    2016-01-01

    In contrast to its well-established role in alleviating skeleto-motor symptoms in Parkinson's disease, little is known about the impact of deep brain stimulation (DBS) of the subthalamic nucleus (STN) on oculomotor control and attention. Eye-tracking data of 17 patients with left-hemibody symptom onset was compared with 17 age-matched control subjects. Free-viewing of natural images was assessed without stimulation as baseline and during bilateral DBS. To examine the involvement of ventral STN territories in oculomotion and spatial attention, we employed unilateral stimulation via the left and right ventralmost contacts respectively. When DBS was off, patients showed shorter saccades and a rightward viewing bias compared with controls. Bilateral stimulation in therapeutic settings improved saccadic hypometria but not the visuospatial bias. At a group level, unilateral ventral stimulation yielded no consistent effects. However, the evaluation of electrode position within normalized MNI coordinate space revealed that the extent of early exploration bias correlated with the precise stimulation site within the left subthalamic area. These results suggest that oculomotor impairments "but not higher-level exploration patterns" are effectively ameliorable by DBS in therapeutic settings. Our findings highlight the relevance of the STN topography in selecting contacts for chronic stimulation especially upon appearance of visuospatial attention deficits. PMID:27199693

  5. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit

    PubMed Central

    Ebert, Martin; Hauptmann, Christian; Tass, Peter A.

    2014-01-01

    Synchronization of populations of neurons is a hallmark of several brain diseases. Coordinated reset (CR) stimulation is a model-based stimulation technique which specifically counteracts abnormal synchrony by desynchronization. Electrical CR stimulation, e.g., for the treatment of Parkinson's disease (PD), is administered via depth electrodes. In order to get a deeper understanding of this technique, we extended the top-down approach of previous studies and constructed a large-scale computational model of the respective brain areas. Furthermore, we took into account the spatial anatomical properties of the simulated brain structures and incorporated a detailed numerical representation of 2 · 104 simulated neurons. We simulated the subthalamic nucleus (STN) and the globus pallidus externus (GPe). Connections within the STN were governed by spike-timing dependent plasticity (STDP). In this way, we modeled the physiological and pathological activity of the considered brain structures. In particular, we investigated how plasticity could be exploited and how the model could be shifted from strongly synchronized (pathological) activity to strongly desynchronized (healthy) activity of the neuronal populations via CR stimulation of the STN neurons. Furthermore, we investigated the impact of specific stimulation parameters especially the electrode position on the stimulation outcome. Our model provides a step forward toward a biophysically realistic model of the brain areas relevant to the emergence of pathological neuronal activity in PD. Furthermore, our model constitutes a test bench for the optimization of both stimulation parameters and novel electrode geometries for efficient CR stimulation. PMID:25505882

  6. Suppression of STN1 enhances the cytotoxicity of chemotherapeutic agents in cancer cells by elevating DNA damage

    PubMed Central

    Zhou, Qing; Chai, Weihang

    2016-01-01

    DNA damage-inducing agents are among the most effective treatment regimens in clinical chemotherapy. However, drug resistance and severe side effects caused by these agents greatly limit their efficacy. Sensitizing malignant cells to chemotherapeutic agents has long been a goal of chemotherapy. In the present study, suppression of STN1, a gene important for safeguarding genome stability, potentiated the anticancer effect of chemotherapeutic agents in tumor cells. Using multiple cancer cells from a variety of origins, it was observed that downregulation of STN1 resulted in a significant decrease in the half maximal inhibitory concentration values of several conventional anticancer agents. When cells are treated with anticancer agents, STN1 suppression leads to a decline in colony formation and diminished anchorage-independent growth. Furthermore, it was additionally observed that STN1 knockdown augmented the levels of DNA damage caused by damage-inducing agents. The present study concluded that suppression of STN1 enhances the cytotoxicity of damage-inducing chemotherapeutic agents by increasing DNA damage in cancer cells. PMID:27446354

  7. Emotion recognition in Parkinson's disease after subthalamic deep brain stimulation: differential effects of microlesion and STN stimulation.

    PubMed

    Aiello, Marilena; Eleopra, Roberto; Lettieri, Christian; Mondani, Massimo; D'Auria, Stanislao; Belgrado, Enrico; Piani, Antonella; De Simone, Luca; Rinaldo, Sara; Rumiati, Raffaella I

    2014-02-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) has acquired a relevant role in the treatment of Parkinson's disease (PD). Despite being a safe procedure, it may expose patients to an increased risk to experience cognitive and emotional difficulties. Impairments in emotion recognition, mediated both by facial and prosodic expressions, have been reported in PD patients treated with such procedure. However, it is still unclear whether the STN per se is responsible for such changes or whether others factors like the microlesion produced by the electrode implantation may also play a role. In this study we evaluated facial emotions discrimination and emotions recognition using both facial and prosodic expressions in 12 patients with PD and 13 matched controls. Patients' were tested in four conditions: before surgery, both in on and off medication, and after surgery, respectively few days after STN implantation before turning stimulator on and few months after with stimulation on. We observed that PD patients were impaired in discriminating and recognizing facial emotions, especially disgust, even before DBS implant. Microlesion caused by surgical procedure was found to influence patients' performance on the discrimination task and recognition of sad facial expression while, after a few months of STN stimulation, impaired disgust recognition was again prominent. No impairment in emotional prosody recognition was observed both before and after surgery. Our study confirms that PD patients may experience a deficit in disgust recognition and provides insight into the differential effect of microlesion and stimulation of STN on several tasks assessing emotion recognition. PMID:24342106

  8. Emotion recognition in Parkinson's disease after subthalamic deep brain stimulation: differential effects of microlesion and STN stimulation.

    PubMed

    Aiello, Marilena; Eleopra, Roberto; Lettieri, Christian; Mondani, Massimo; D'Auria, Stanislao; Belgrado, Enrico; Piani, Antonella; De Simone, Luca; Rinaldo, Sara; Rumiati, Raffaella I

    2014-02-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) has acquired a relevant role in the treatment of Parkinson's disease (PD). Despite being a safe procedure, it may expose patients to an increased risk to experience cognitive and emotional difficulties. Impairments in emotion recognition, mediated both by facial and prosodic expressions, have been reported in PD patients treated with such procedure. However, it is still unclear whether the STN per se is responsible for such changes or whether others factors like the microlesion produced by the electrode implantation may also play a role. In this study we evaluated facial emotions discrimination and emotions recognition using both facial and prosodic expressions in 12 patients with PD and 13 matched controls. Patients' were tested in four conditions: before surgery, both in on and off medication, and after surgery, respectively few days after STN implantation before turning stimulator on and few months after with stimulation on. We observed that PD patients were impaired in discriminating and recognizing facial emotions, especially disgust, even before DBS implant. Microlesion caused by surgical procedure was found to influence patients' performance on the discrimination task and recognition of sad facial expression while, after a few months of STN stimulation, impaired disgust recognition was again prominent. No impairment in emotional prosody recognition was observed both before and after surgery. Our study confirms that PD patients may experience a deficit in disgust recognition and provides insight into the differential effect of microlesion and stimulation of STN on several tasks assessing emotion recognition.

  9. Mutation of invH, but Not stn, Reduces Salmonella-Induced Enteritis in Cattle

    PubMed Central

    Watson, Patricia R.; Galyov, Edouard E.; Paulin, Sue M.; Jones, Philip W.; Wallis, Tim S.

    1998-01-01

    The induction of secretory and inflammatory responses in calves by Salmonella typhimurium and Salmonella dublin strains was compared, and the effects of mutations in the invH and stn genes were assessed. S. typhimurium induced greater secretory and inflammatory responses than S. dublin in bovine ileal loops, despite the fact that these serotypes were recovered from bovine ileal mucosa in comparable numbers (P. R. Watson, S. M. Paulin, A. P. Bland, P. W. Jones, and T. S. Wallis, Infect. Immun. 63:2743–2754, 1995). These results implicate serotype-specific factors other than, or in addition to, intestinal invasion in the induction of enteritis. The secretory and inflammatory responses induced by S. typhimurium and S. dublin in bovine ligated ileal loops were not significantly altered by mutation of stn, which suggests that stn does not have a major role in Salmonella-induced enteritis. The invH mutation significantly reduced the secretory and inflammatory responses induced in bovine ileal loops, and this correlated with a reduction in the severity of enteritis following oral inoculation of calves. The attenuation associated with the invH mutation did not appear to be due to an increased susceptibility to the innate host defense mechanisms, because the resistance of S. typhimurium to the bactericidal action of either bovine polymorphonuclear leukocytes or bovine serum was not significantly altered. However, lysis of macrophages following infection with S. typhimurium was significantly reduced by the invH mutation. The invH mutation prevented the normal secretion of several proteins, including SipC, by S. typhimurium, indicating that the function of the inv-spa-encoded type III protein secretion system was disrupted. Taken together, these observations implicate inv-spa-dependent effectors in mediation of Salmonella-induced enteritis in cattle. Clearly, however, other undefined serotype-specific virulence factors are also involved in Salmonella-induced enteritis. PMID

  10. Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials

    PubMed Central

    Telkes, Ilknur; Jimenez-Shahed, Joohi; Viswanathan, Ashwin; Abosch, Aviva; Ince, Nuri F.

    2016-01-01

    Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11–32 Hz) and high frequency range (200–450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11–32 Hz) and the range of high frequency oscillations (200–450 Hz) provided prediction accuracies of 72 and 68% respectively. The best

  11. Arabidopsis STN7 Kinase Provides a Link between Short- and Long-Term Photosynthetic Acclimation[W

    PubMed Central

    Pesaresi, Paolo; Hertle, Alexander; Pribil, Mathias; Kleine, Tatjana; Wagner, Raik; Strissel, Henning; Ihnatowicz, Anna; Bonardi, Vera; Scharfenberg, Michael; Schneider, Anja; Pfannschmidt, Thomas; Leister, Dario

    2009-01-01

    Flowering plants control energy allocation to their photosystems in response to light quality changes. This includes the phosphorylation and migration of light-harvesting complex II (LHCII) proteins (state transitions or short-term response) as well as long-term alterations in thylakoid composition (long-term response or LTR). Both responses require the thylakoid protein kinase STN7. Here, we show that the signaling pathways triggering state transitions and LTR diverge at, or immediately downstream from, STN7. Both responses require STN7 activity that can be regulated according to the plastoquinone pool redox state. However, LTR signaling does not involve LHCII phosphorylation or any other state transition step. State transitions appear to play a prominent role in flowering plants, and the ability to perform state transitions becomes critical for photosynthesis in Arabidopsis thaliana mutants that are impaired in thylakoid electron transport but retain a functional LTR. Our data imply that STN7-dependent phosphorylation of an as yet unknown thylakoid protein triggers LTR signaling events, whereby an involvement of the TSP9 protein in the signaling pathway could be excluded. The LTR signaling events then ultimately regulate in chloroplasts the expression of photosynthesis-related genes on the transcript level, whereas expression of nuclear-encoded proteins is regulated at multiple levels, as indicated by transcript and protein profiling in LTR mutants. PMID:19706797

  12. Compensatory stepping in Parkinson's disease is still a problem after deep brain stimulation randomized to STN or GPi

    PubMed Central

    St George, R. J.; Carlson-Kuhta, P.; King, L. A.; Burchiel, K. J.

    2015-01-01

    The effects of deep brain stimulation (DBS) on balance in people with Parkinson's disease (PD) are not well established. This study examined whether DBS randomized to the subthalamic nucleus (STN; n = 11) or globus pallidus interna (GPi; n = 10) improved compensatory stepping to recover balance after a perturbation. The standing surface translated backward, forcing subjects to take compensatory steps forward. Kinematic and kinetic responses were recorded. PD-DBS subjects were tested off and on their levodopa medication before bilateral DBS surgery and retested 6 mo later off and on DBS, combined with off and on levodopa medication. Responses were compared with PD-control subjects (n = 8) tested over the same timescale and 17 healthy control subjects. Neither DBS nor levodopa improved the stepping response. Compensatory stepping in the best-treated state after surgery (DBS+DOPA) was similar to the best-treated state before surgery (DOPA) for the PD-GPi group and the PD-control group. For the PD-STN group, there were more lateral weight shifts, a delayed foot-off, and a greater number of steps required to recover balance in DBS+DOPA after surgery compared with DOPA before surgery. Within the STN group five subjects who did not fall during the experiment before surgery fell at least once after surgery, whereas the number of falls in the GPi and PD-control groups were unchanged. DBS did not improve the compensatory step response needed to recover from balance perturbations in the GPi group and caused delays in the preparation phase of the step in the STN group. PMID:26108960

  13. Efficient and Specific Detection of Salmonella in Food Samples Using a stn-Based Loop-Mediated Isothermal Amplification Method

    PubMed Central

    Srisawat, Mevaree; Panbangred, Watanalai

    2015-01-01

    The Salmonella enterotoxin (stn) gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity. PMID:26543859

  14. Cognitive and Psychiatric Effects of STN versus GPi Deep Brain Stimulation in Parkinson's Disease: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie

    2016-01-01

    Background Deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson’s disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues. Methods We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life. Results Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups. Conclusions A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life. PMID:27248139

  15. Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex1[OPEN

    PubMed Central

    Shapiguzov, Alexey; Chai, Xin; Fucile, Geoffrey; Longoni, Paolo; Zhang, Lixin

    2016-01-01

    Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex. PMID:26941194

  16. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases?

    PubMed Central

    Flood, Pádraic J.; Yin, Lan; Herdean, Andrei; Harbinson, Jeremy; Aarts, Mark G. M.; Spetea, Cornelia

    2014-01-01

    Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments. PMID:24591726

  17. Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study

    PubMed Central

    Detorakis, Georgios Is.; Chaillet, Antoine; Palfi, Stéphane; Senova, Suhan

    2015-01-01

    Several disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the β-band, 13–30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these β-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty. PMID:26217171

  18. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats.

    PubMed

    Yang, Chen; Zhang, Jia-Rui; Chen, Lei; Ge, Shun-Nan; Wang, Jue-Lei; Yan, Zhi-Qiang; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2015-05-19

    Many studies showed that abnormal oscillations in the cortical-basal ganglia loop is involved in the pathophysiology of Parkinson's disease (PD). In contrast to the well-studied beta synchronization, high-voltage spindles (HVSs), another type of abnormal oscillation observed in PD, are neglected. To explore the role of subthalamic nucleus-deep brain stimulation (STN-DBS) in HVSs regulation, we simultaneously recorded the local field potential (LFP) in the globus pallidus (GP) and electrocorticogram (ECoG) in the primary motor cortex(M1) in freely moving 6-hydroxydopamine (6-OHDA) lesioned or control rats before, during, and after STN-DBS. Consistent with our previous study, HVSs occurrence, duration, and relative power and coherence between the M1 cortex and GP increased in 6-OHDA lesioned rats. We found that high but not low frequency stimulation restored the abnormal HVSs activity and motor deficit. These results suggest that the STN is involved in the abnormal oscillation between the M1 cortex and GP.

  19. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    PubMed Central

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  20. Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats.

    PubMed

    Yang, Chen; Zhang, Jia-Rui; Chen, Lei; Ge, Shun-Nan; Wang, Ju-Lei; Yan, Zhi-Qiang; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2015-08-27

    Abnormal oscillation in the cortical-basal ganglia loop is involved in the pathophysiology of parkinsonism. High-voltage spindles (HVSs), one of the main type abnormal oscillations in Parkinson's disease, are regulated by dopamine D2-like receptors but not D1-like receptors. However, little is known about how dopamine D2-like receptors regulate HVSs and the role of hyperpolarization-activated cyclic nucleotide-gated2 (HCN2) in HVSs regulation. We simultaneously recorded the local field potential (LFP) in globus pallidus (GP) and electrocorticogram (ECoG) in primary motor cortex (M1) in freely moving 6-hydroxydopamine (6-OHDA) lesioned or control rats. The expression of HCN2 and dopamine D2 receptor in the subthalamic nucleus (STN) was examined by immunochemical staining and Western blotting. We also tested the role of HCN2 in HVSs regulation by using pharmacological and shRNA methodology. We found that dopamine D2-like receptor agonists suppressed the increased HVSs in 6-OHDA lesioned rats. HCN2 was co-expressed with dopamine D2 receptor in the STN, and dopamine depletion decreased the expression of HCN2 as well as dopamine D2 receptor which contribute to the regulation of HVSs. HCN2 was down regulated by HCN2 shRNA, which thereby led to an increase in the HVSs in naïve rats while HCN2 agonist reduced the HVSs in 6-OHDA lesioned rats. These results suggest that HCN2 in the STN is involved in abnormal oscillation regulation between M1 cortex and GP.

  1. Evidence of improved immediate verbal memory and diminished category fluency following STN-DBS in Chinese-Cantonese patients with idiopathic Parkinson's disease.

    PubMed

    Tang, Venus; Zhu, Cannon X L; Chan, Danny; Lau, Claire; Chan, Anne; Mok, Vincent; Yeung, Jonas; Poon, Wai Sang

    2015-08-01

    The present study investigated the neuropsychological effects of bilateral deep brain stimulation (DBS) on subthalamic nucleus (STN) in Chinese-Cantonese patients with idiopathic Parkinson's disease (PD). Twenty-seven patients were prospectively recruited from the Movement Disorder Clinic at the Hong Kong Prince of Wales Hospital. Neuropsychological evaluations were performed at baseline, 6 and 12 months following the DBS procedure. Assessment battery included standardized tests on global cognitive function, verbal memory, non-verbal memory, confrontation naming, visuospatial organization, attention and executive functions. Anxiety and depressive symptoms were measured by two self-reported questionnaires. Results demonstrated diminished performance on a category fluency task that occurred at 6 months post-operatively and persisted at 12-month re-evaluation; 29.6-33.3 % of patients showed reduction of more than 1 SD (standard deviation) at post-operative measure. Conversely, performance on an immediate recall task in a verbal memory test was found to improve significantly at the same time point and persisted through 12 months after surgery; 22.2-25.9 % showed an improvement (≥1 SD). Psychologically, anxiety symptoms were statistically decreased and the significant reduction occurred at 12 months after surgery. Patients who reported a moderate to severe level of anxiety reduced from 51.9 to 18.5 %. Our findings concurred with most evidences on the effects of STN-DBS on verbal fluency; on the other hand, we demonstrated improvement of immediate verbal memory that warranted further investigation. PMID:25708249

  2. Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination.

    PubMed

    Poudyal, Roshan Sharma; Nath, Krishna; Zulfugarov, Ismayil S; Lee, Choon-Hwan

    2016-09-01

    When phosphorylation of Photosystem (PS) II core proteins is blocked in STN8 knock-out mutants of rice (Oryza sativa) under photoinhibitory illumination, the mobilization of PSII supercomplex is prevented. We have previously proposed that more superoxide (O2(-)) is produced from PSII in the mutant (Nath et al., 2013, Plant J. 76, 675-686). Here, we clarify the type and site for the generation of reactive oxygen species (ROS). Using both histochemical and fluorescence probes, we observed that, compared with wild-type (WT) leaves, levels of ROS, including O2(-) and hydrogen peroxide (H2O2), were increased when leaves from mutant plants were illuminated with excess light. However, singlet oxygen production was not enhanced under such conditions. When superoxide dismutase was inhibited, O2(-) production was increased, indicating that it is the initial event prior to H2O2 production. In thylakoids isolated from WT leaves, kinase was active in the presence of ATP, and spectrophotometric analysis of nitrobluetetrazolium absorbance for O2(-) confirmed that PSII-driven superoxide production was greater in the mutant thylakoids than in the WT. This contrast in levels of PSII-driven superoxide production between the mutants and the WT plants was confirmed by conducting protein oxidation assays of PSII particles from osstn8 leaves under strong illumination. Those assays also demonstrated that PSII-LHCII supercomplex proteins were oxidized more in the mutant, thereby implying that PSII particles incur greater damage even though D1 degradation during PSII-supercomplex mobilization is partially blocked in the mutant. These results suggest that O2(-) is the major form of ROS produced in the mutant, and that the damaged PSII in the supercomplex is the primary source of O2(-). PMID:27390892

  3. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer

    PubMed Central

    Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.

    2015-01-01

    Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038

  4. The Student Telescope Network (STN) Experiment

    NASA Astrophysics Data System (ADS)

    Stencel, R. E.; Harland, H. A.; Hannahoe, R.; Bisque, S. T. M. D.; Rice, M.

    2002-05-01

    Several factors make observational astronomy difficult for pre-college students and teachers: (1) school happens during the day and observing is normally a night-time activity; (2) not many schools have teachers comfortable with astronomy equipment; (3) the scourge of light pollution has hidden the stars from many students living in or near cities; (4) there is a general lack of access to expertise when needed. Electronic access to computer-controlled telescopes equipped with digital cameras can solve some these difficulties by enabling students and their teachers to access internet-controllable telescopes, and consult more readily with experts. We report on a happy convergence of technical solutions to internet-control of telescopes by Software Bisque (www.bisque.com), the opening of New Mexico Skies guest observatory (www.nmskies.com) and outreach by the Youth Astronomy Committee of the Astronomical League. Recognizing the opportunity, we jointly proposed to the Institute for Connecting Science Research to the Classroom, to conduct a pilot program allowing high school students to access a CCD-equipped, accurately pointing and tracking telescope, controllable over the web, with a user-friendly sky-map browser tool. As we have demonstrated with Australian and Eurasian student participants, that suitably placed telescopes worldwide can make observing from the classroom/home in daylight feasible. In this and a related poster, we report on a three month pilot project conducted Feb-May 2002, including user interest and statistics, lessons learned, and ideas on how to enhance student participation in the research process. We thank the Institute for Connecting Science Research to the Classroom for a grant to the University of Denver in partial support of this effort.

  5. COMPARISON OF DATA FROM THE STN AND IMPROVE NETWORKS

    EPA Science Inventory

    Two national chemical speciation-monitoring networks operate currently within the United States. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network operates primarily in rural areas collecting aerosol and optical data to better understand th...

  6. Long-term effects of STN DBS on mood: psychosocial profiles remain stable in a 3-year follow-up

    PubMed Central

    Kaiser, Iris; Kryspin-Exner, Ilse; Brücke, Thomas; Volc, Dieter; Alesch, François

    2008-01-01

    Background Deep brain stimulation of the subthalamic nucleus significantly improves motor function in patients with severe Parkinson's disease. However, the effects on nonmotor aspects remain uncertain. The present study investigated the effects of subthalamic nucleus deep brain stimulation on mood and psychosocial functions in 33 patients with advanced Parkinson's disease in a three year follow-up. Methods Self-rating questionnaires were administered to 33 patients prior to surgery as well as three, six, twelve and 36 months after surgery. Results In the long run, motor function significantly improved after surgery. Mood and psychosocial functions transiently improved at one year but returned to baseline at 36 months after surgery. In addition, we performed cluster and discriminant function analyses and revealed four distinct psychosocial profiles, which remained relatively stable in the course of time. Two profiles featured impaired psychosocial functioning while the other two of them were characterized by greater psychosocial stability. Conclusion Compared to baseline no worsening in mood and psychosocial functions was found three years after electrode implantation. Moreover, patients can be assigned to four distinct psychosocial profiles that are relatively stable in the time course. Since these subtypes already exist preoperatively the extent of psychosocial support can be anticipatory adjusted to the patients' needs in order to enhance coping strategies and compliance. This would allow early detection and even prevention of potential psychiatric adverse events after surgery. Given adequate psychosocial support, these findings imply that patients with mild psychiatric disturbances should not be excluded from surgery. PMID:19014430

  7. Perceived Changes in Communication as an Effect of STN Surgery in Parkinson's Disease: A Qualitative Interview Study

    PubMed Central

    Ahlberg, Emilia; Laakso, Katja; Hartelius, Lena

    2011-01-01

    The aim of the present study was to explore four individuals' perspective of the way their speech and communication changed as a result of subthalamic nucleus deep brain stimulation treatment for Parkinson's disease. Interviews of two men and two women were analyzed using qualitative content analysis. Three themes emerged as a result of the analysis. The first theme included sub-themes describing both increased and unexpected communication difficulties such as a more vulnerable speech function, re-emerging stuttering and cognitive difficulties affecting communication. The second theme comprised strategies to improve communication, using different speech techniques and communicative support, as well as trying to achieve changes in medical and stimulation parameters. The third theme included descriptions of mixed feelings surrounding the surgery. Participants described the surgery as an unavoidable dramatic change, associated both with improved quality of life but also uncertainty and lack of information, particularly regarding speech and communication changes. Despite negative effects on speech, the individuals were generally very pleased with the surgical outcome. More information before surgery regarding possible side effects on speech, meeting with a previously treated patient and possibly voice and speech therapy before or after surgery are suggested to facilitate the adjustment to the new speech conditions. PMID:21876840

  8. 1H, 13C, and 15N NMR assignments of StnII-Y111N, a highly impaired mutant of the sea anemone actinoporin Sticholysin II.

    PubMed

    Pardo-Cea, Miguel A; Alegre-Cebollada, Jorge; Martínez-del-Pozo, Alvaro; Gavilanes, José G; Bruix, Marta

    2010-04-01

    Sticholysin II is an actinoporin of 175 amino acids produced by the sea anemone Stichodactyla helianthus. Several studies with different mutants have been performed to characterize its molecular properties and activity. As a first step towards a 3D structural characterization and its interaction with membrane models at a residue level, herein we report the nearly complete NMR (15)N, (13)C and (1)H chemical shifts assignments of the Y111N variant at pH 4.0 and 25 degrees C (BMRB No. 16630). The assignment is complete for the biologically relevant residues, specially for those implicated in membrane interactions.

  9. High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching.

    PubMed

    Betterle, Nico; Ballottari, Matteo; Baginsky, Sacha; Bassi, Roberto

    2015-02-01

    Phosphorylation of the photosystem II antenna protein CP29 has been reported to be induced by excess light and further enhanced by low temperature, increasing resistance to these stressing factors. Moreover, high light-induced CP29 phosphorylation was specifically found in monocots, both C3 and C4, which include the large majority of food crops. Recently, knockout collections have become available in rice (Oryza sativa), a model organism for monocots. In this work, we have used reverse genetics coupled to biochemical and physiological analysis to elucidate the molecular basis of high light-induced phosphorylation of CP29 and the mechanisms by which it exerts a photoprotective effect. We found that kinases and phosphatases involved in CP29 phosphorylation are distinct from those reported to act in State 1-State 2 transitions. In addition, we elucidated the photoprotective role of CP29 phosphorylation in reducing singlet oxygen production and enhancing excess energy dissipation. We thus established, in monocots, a mechanistic connection between phosphorylation of CP29 and nonphotochemical quenching, two processes so far considered independent from one another.

  10. Title list of documents made publicly available: documents from October through December 1978 for Dockets 50-334 through STN 50-597

    SciTech Connect

    Not Available

    1982-06-01

    This document contains a description of information received and generated by the U.S. NRC. This special edition contains Docket 50 material from 1978 that has not appeared in previous editions of the Title List. The documents in this supplement are indexed by personal author, corporate source, and report number.

  11. Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response.

    PubMed

    Forstmann, Birte U; Keuken, Max C; Jahfari, Sara; Bazin, Pierre-Louis; Neumann, Jane; Schäfer, Andreas; Anwander, Alfred; Turner, Robert

    2012-03-01

    The subthalamic nucleus (STN) is a small but vitally important structure in the basal ganglia. Because of its small volume, and its localization in the basal ganglia, the STN can best be visualized using ultra-high resolution 7 Tesla (T) magnetic resonance imaging (MRI). In the present study, first we individually segmented 7 T MRI STN masks to generate atlas probability maps. Secondly, the individually segmented STN masks and the probability maps were used to derive cortico-subthalamic white matter tract strength. Tract strength measures were then taken to test two functional STN hypotheses which account for the efficiency in stopping a motor response: the right inferior fronto-subthalamic (rIFC-STN) hypothesis and the posterior medial frontal cortex-subthalamic (pMFC-STN) hypothesis. Results of two independent experiments show that increased white matter tract strength between the pMFC and STN results in better stopping behaviour.

  12. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.

    PubMed

    Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian

    2016-10-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. PMID:27374161

  13. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.

    PubMed

    Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian

    2016-10-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes.

  14. Influence of deep brain stimulation and levodopa on sensory signs in Parkinson's disease.

    PubMed

    Gierthmühlen, Janne; Arning, Philipp; Binder, Andreas; Herzog, Jan; Deuschl, Günther; Wasner, Gunnar; Baron, Ralf

    2010-07-15

    To examine the effects of levodopa (L-dopa) and deep brain stimulation of the subthalamic nucleus (STN-DBS) on sensory symptoms and signs in Parkinson's disease (PD). Seventeen patients with PD were included. (1) Presence of sensory symptoms and (2) effects of L-dopa and STN-DBS on sensory symptoms and signs [assessed by quantitative sensory testing (QST)] were examined 6 months after starting STN-DBS. In addition, in 12 of these patients, presence of sensory symptoms prior and post STN-DBS was compared. Pain was most frequently nociceptive. In about 30-40%, pain and sensory symptoms were associated with PD motor symptoms. In most of these cases, pain responded to L-dopa. Intensity of pain was reduced post STN-DBS compared to pre STN-DBS. L-Dopa had no influence on detection thresholds, whereas STN-DBS improved thermal detection thresholds. However, thermal and mechanical pain thresholds were uninfluenced by L-dopa or STN-DBS. Although some patients reported an improvement of pain with STN-DBS or L-dopa, objectively pain sensitivity as assessed by QST was not altered by STN-DBS or L-dopa suggesting that there is no evidence for a direct modulation of central pain processing by L-dopa or STN-DBS.

  15. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex.

    PubMed

    Chu, Hong-Yuan; Atherton, Jeremy F; Wokosin, David; Surmeier, D James; Bevan, Mark D

    2015-01-21

    The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.

  16. Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson's Disease.

    PubMed

    Kim, Han-Joon; Jeon, Beom S; Paek, Sun Ha

    2015-05-01

    Subthalamic deep brain stimulation (STN DBS) is an established treatment for the motor symptoms in patients with advanced Parkinson's disease (PD). In addition to improvements in motor symptoms, many studies have reported changes in various nonmotor symptoms (NMSs) after STN DBS in patients with PD. Psychiatric symptoms, including depression, apathy, anxiety, and impulsivity, can worsen or improve depending on the electrical stimulation parameters, the locations of the stimulating contacts within the STN, and changes in medications after surgery. Global cognitive function is not affected by STN DBS, and there is no increase in the incidence of dementia after STN DBS compared to that after medical treatment, although clinically insignificant declines in verbal fluency have been consistently reported. Pain, especially PD-related pain, improves with STN DBS. Evidence regarding the effects of STN DBS on autonomic symptoms and sleep-related problems is limited and remains conflicting. Many symptoms of nonmotor fluctuations, which are occasionally more troublesome than motor fluctuations, improve with STN DBS. Although it is clear that NMSs are not target symptoms for STN DBS, NMSs have a strong influence on the quality of life of patients with PD, and clinicians should thus be aware of these NMSs when deciding whether to perform surgery and should pay attention to changes in these symptoms after STN DBS to ensure the optimal care for patients. PMID:26090080

  17. Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers.

    PubMed

    García-Linares, Sara; Palacios-Ortega, Juan; Yasuda, Tomokazu; Åstrand, Mia; Gavilanes, José G; Martínez-del-Pozo, Álvaro; Slotte, J Peter

    2016-06-01

    Sticholysin I and II (StnI and StnII) are pore-forming toxins that use sphingomyelin (SM) for membrane binding. We examined how hydrogen bonding among membrane SMs affected the StnI- and StnII-induced pore formation process, resulting in bilayer permeabilization. We compared toxin-induced permeabilization in bilayers containing either SM or dihydro-SM (lacking the trans Δ(4) double bond of the long-chain base), since their hydrogen-bonding properties are known to differ greatly. We observed that whereas both StnI and StnII formed pores in unilamellar vesicles containing palmitoyl-SM or oleoyl-SM, the toxins failed to similarly form pores in vesicles prepared from dihydro-PSM or dihydro-OSM. In supported bilayers containing OSM, StnII bound efficiently, as determined by surface plasmon resonance. However, StnII binding to supported bilayers prepared from dihydro-OSM was very low under similar experimental conditions. The association of the positively charged StnII (at pH7.0) with unilamellar vesicles prepared from OSM led to a concentration-dependent increase in vesicle charge, as determined from zeta-potential measurements. With dihydro-OSM vesicles, a similar response was not observed. Benzyl alcohol, which is a small hydrogen-bonding compound with affinity to lipid bilayer interfaces, strongly facilitated StnII-induced pore formation in dihydro-OSM bilayers, suggesting that hydrogen bonding in the interfacial region originally prevented StnII from membrane binding and pore formation. We conclude that interfacial hydrogen bonding was able to affect the membrane association of StnI- and StnII, and hence their pore forming capacity. Our results suggest that other types of protein interactions in bilayers may also be affected by hydrogen-bonding origination from SMs. PMID:26975250

  18. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption

    PubMed Central

    Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie

    2016-01-01

    The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system. PMID:27699212

  19. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption

    PubMed Central

    Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie

    2016-01-01

    The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.

  20. A Protein Phosphorylation Threshold for Functional Stacking of Plant Photosynthetic Membranes

    PubMed Central

    Fristedt, Rikard; Granath, Pontus; Vener, Alexander V.

    2010-01-01

    Phosphorylation of photosystem II (PSII) proteins affects macroscopic structure of thylakoid photosynthetic membranes in chloroplasts of the model plant Arabidopsis. In this study, light-scattering spectroscopy revealed that stacking of thylakoids isolated from wild type Arabidopsis and the mutant lacking STN7 protein kinase was highly influenced by cation (Mg++) concentrations. The stacking of thylakoids from the stn8 and stn7stn8 mutants, deficient in STN8 kinase and consequently in light-dependent phosphorylation of PSII, was increased even in the absence of Mg++. Additional PSII protein phosphorylation in wild type plants exposed to high light enhanced Mg++-dependence of thylakoid stacking. Protein phosphorylation in the plant leaves was analyzed during day, night and prolonged darkness using three independent techniques: immunoblotting with anti-phosphothreonine antibodies; Diamond ProQ phosphoprotein staining; and quantitative mass spectrometry of peptides released from the thylakoid membranes by trypsin. All assays revealed dark/night-induced increase in phosphorylation of the 43 kDa chlorophyll-binding protein CP43, which compensated for decrease in phosphorylation of the other PSII proteins in wild type and stn7, but not in the stn8 and stn7stn8 mutants. Quantitative mass spectrometry determined that every PSII in wild type and stn7 contained on average 2.5±0.1 or 1.4±0.1 phosphoryl groups during day or night, correspondingly, while less than every second PSII had a phosphoryl group in stn8 and stn7stn8. It is postulated that functional cation-dependent stacking of plant thylakoid membranes requires at least one phosphoryl group per PSII, and increased phosphorylation of PSII in plants exposed to high light enhances stacking dynamics of the photosynthetic membranes. PMID:20532038

  1. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  2. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group. PMID:24140562

  3. Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson's disease: a pilot study.

    PubMed

    Zanini, Sergio; Moschella, Vincenzo; Stefani, Alessandro; Peppe, Antonella; Pierantozzi, Mariangela; Galati, Salvatore; Costa, Alberto; Mazzone, Paolo; Stanzione, Paolo

    2009-09-01

    Combined deep brain stimulation of the subthalamic (STN) and pedunculopontine (PPN) nuclei has been recently proposed as surgical treatment of advanced Parkinson's disease. STN stimulation alone has been shown to provide selective improvement of the grammatical aspect of language. We studied five advanced Parkinson's disease patients who underwent combined deep brain stimulation (STN + PPN). Overall cognitive profile did not change. On the contrary, an interesting trend towards reduction of ungrammatical errors (particularly substitution of free and inflectional morphemes) was found when stimulating the STN, and also the PPN, when the STN was switched off. These findings replicate previous observations on the STN, and provide the rationale for further investigation of the role of the PPN in processing linguistic grammar.

  4. Dementia after DBS Surgery: A Case Report and Literature Review

    PubMed Central

    Rektorova, I.; Hummelova, Z.; Balaz, M.

    2011-01-01

    We report the case history of a 75-year-old woman with Parkinson's disease who developed severe cognitive problems after deep brain stimulation (DBS) of the bilateral subthalamic nuclei (STN). After a brief cognitive improvement, the patient gradually deteriorated until she developed full-blown dementia. We discuss the case with respect to the cognitive effects of STN DBS and the possible risk factors of dementia after STN DBS surgery. PMID:22191066

  5. Cortically evoked potentials in the human subthalamic nucleus.

    PubMed

    Zwartjes, Daphne G M; Janssen, Marcus L F; Heida, Tjitske; Van Kranen-Mastenbroek, Vivianne; Bour, Lo J; Temel, Yasin; Visser-Vandewalle, Veerle; Veltink, Peter H

    2013-02-28

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) alleviates motor symptoms in Parkinson's disease (PD) patients. However, in a substantial number of patients the beneficial effects of STN DBS are overshadowed by psychiatric side effects. We hypothesize that stimulation of the STN motor area will provide the optimal effect on the motor symptoms without inducing these side effects, and expect that motor cortex stimulation (MCS) evokes a spatially specific response within the STN, which identifies the STN motor area. We previously showed that MCS evokes responses in the unit activity specifically within certain areas of the STN. Unit activity is generally considered a measure of the output activity. To gain more insight into the neuronal input into the STN, we describe the results of cortically evoked subthalamic local field potentials (LFPs). We show that the cortically evoked LFPs follow a certain temporal and spatial pattern. The significant peaks of the evoked LFPs coincide with the timing of some of the inhibitions and excitations present in the unit responses. The spatial resolution of responses measured in the LFP to MCS is not high enough to identify the STN motor region. However, we believe that optimizing targeting techniques and the development of novel DBS electrodes will improve STN DBS therapy for PD patients.

  6. Observations of minor planets.

    NASA Astrophysics Data System (ADS)

    Observations made at the following stations are published: Bucharest, Catania, Caussols, Cent. Astron. Yebes, Cerro Tololo Interam. Obs., Chirorin, Crimean Astrophys. Obs. (52nd Report), Eur. South. Obs., Falkensee, Geisei, Goethe Link Obs., Göttingen, Haute Provence, Hemingford Abbots, JCPM Oi Stn., Kambah (near Canberra), Kitt Peak, Klet', Le Creusot, Lick Obs., Lincoln Lab., Lowell Obs., Lowell Obs. Anderson Mesa Stn., Madonnna di Dossobuono, Mt. John Obs., Mt. Palomar, Oak Ridge Obs., Purple Mountain Obs., Quonochontaug Stn. (Rhode Island), Reintal, S. Vittore (Bologna), Seewalchen, Siding Spring, Skalnaté Pleso, Spec. Astrophys. Obs., Steward Obs., Sydney, Tautenburg, Telford, Tokyo Obs. Kiso Stn., Turku, Zimmerwald.

  7. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    PubMed

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway.

  8. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.

    PubMed

    Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P

    2016-01-01

    The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.

  9. Effects of neurostimulation for advanced Parkinson’s disease patients on motor symptoms: A multiple-treatments meta-analysas of randomized controlled trials

    PubMed Central

    Xie, Cheng-Long; Shao, Bei; Chen, Jie; Zhou, Yi; Lin, Shi-Yi; Wang, Wen-Wen

    2016-01-01

    Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). We aim to evaluate the efficacy of GPi (globus pallidus internus), STN (subthalamic nucleus)-DBS and medical therapy for PD. We conducted a systematic review and multiple-treatments meta-analysis to investigate the efficacy of neurostimulation and medical therapy for PD patients. Sixteen eligible studies were included in this analysis. We pooled the whole data and found obvious difference between GPi-DBS versus medical therapy and STN-DBS versus medical therapy in terms of UPDRS scores (Unified Parkinson’s Disease Rating Scale). Meanwhile, we found GPi-DBS had the similar efficacy on the UPDRS scores when compared with STN-DBS. What is more, quality of life, measured by PDQ-39 (Parkinson’s disease Questionnaire) showed greater improvement after GPi-DBS than STN-DBS. Five studies showed STN-DBS was more effective for reduction in medication than GPi-DBS. Overall, either GPi-DBS or STN-DBS was an effective technique to control PD patients’ symptoms and improved their functionality and quality of life. Meanwhile, the UPDRS scores measuring parkinsonian symptoms revealed no significant difference between GPi-DBS and STN-DBS. STN-DBS was more effective for reduction in medication than GPi-DBS. Alternatively, GPi-DBS was more effective for improving the PDQ-39 score than STN-DBS. PMID:27142183

  10. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    PubMed

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine.

  11. Delayed synchronization of activity in cortex and subthalamic nucleus following cortical stimulation in the rat

    PubMed Central

    Magill, Peter J; Sharott, Andrew; Bolam, J Paul; Brown, Peter

    2006-01-01

    Oscillations may play a role in the functional organization of cortico-basal ganglia-thalamocortical circuits, and it is important to understand their underlying mechanisms. The cortex often drives basal ganglia (BG) activity, and particularly, oscillatory activity in the subthalamic nucleus (STN). However, the STN may also indirectly influence cortex. The aim of this study was to characterize the delayed (>200 ms) responses of STN neurons to synchronized cortical inputs, focusing on their relationship with oscillatory cortical activity. We recorded the short-latency and delayed responses of STN units and frontal electrocorticogram (ECoG) to cortical stimulation in anaesthetized rats. Similar to previous studies, stimulation of ipsilateral frontal cortex, but not temporal cortex, evoked a short-latency triphasic response, followed by a sustained reduction or pause in firing, in rostral STN units. Caudal STN units did not show the short-latency triphasic response but often displayed a prolonged firing reduction. Oscillations in STN unit activity and ECoG were common after this sustained firing reduction, particularly between 200 and 600 ms after frontal cortical stimulation. These delayed oscillations were significantly coherent in a broad frequency band of 5–30 Hz. Coherence with ECoG at 5–15 Hz was observed throughout STN, though coherence at 15–30 Hz was largely restricted to rostral STN. Furthermore, oscillatory responses at 5–30 Hz in rostral STN predominantly led those in cortex (mean latency of 29 ms) after frontal cortical stimulation. These findings suggest that STN neurons responding to corticosubthalamic inputs may provide a delayed input to cortex, via BG output nuclei, and thence, thalamocortical pathways. PMID:16709634

  12. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    PubMed

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine. PMID:25982833

  13. Frequency Matters: Beta Band Subthalamic Nucleus Deep Brain Stimulation Induces Parkinsonian-like Blink Abnormalities in Normal Rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha; Evinger, Craig

    2014-01-01

    The synchronized beta band oscillations in the basal ganglia-cortical networks in Parkinson's disease (PD) may be responsible for PD motor symptoms or an epiphenomenon of dopamine loss. We investigated the causal role of beta band activity in PD motor symptoms by testing the effects of beta frequency subthalamic nucleus deep brain stimulation (STN DBS) on blink reflex excitability, amplitude, and plasticity in normal rats. Delivering 16 Hz STN DBS produced the same increase in blink reflex excitability and impairment in blink reflex plasticity in normal rats as occurs in rats with 6-OHDA lesions and PD patients. These deficits were not an artifact of STN DBS because when these normal rats received 130 Hz STN DBS, their blink characteristics were the same as without STN DBS. To demonstrate the blink reflex disturbances with 16 Hz STN DBS were frequency specific, we tested the same rats with 7 Hz STN DBS, a theta band frequency typical of dystonia. In contrast to beta stimulation, 7 Hz DBS exaggerated blink reflex plasticity as occurs in focal dystonia. Thus, without destroying dopamine neurons or blocking dopamine receptors, frequency specific STN DBS can be used to create PD- or dystonic-like symptoms in a normal rat. PMID:25146113

  14. Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study

    ERIC Educational Resources Information Center

    Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele

    2004-01-01

    In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…

  15. Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation on Tongue Movements in Speakers with Parkinson's Disease Using Electropalatography: A Pilot Study

    ERIC Educational Resources Information Center

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia

    2011-01-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…

  16. Effect of unilateral versus bilateral electrostimulation in subthalamic nucleus on speech in Parkinsons disease

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2001-05-01

    Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.

  17. Phosphorylation of Photosystem II Controls Functional Macroscopic Folding of Photosynthetic Membranes in Arabidopsis[C][W][OA

    PubMed Central

    Fristedt, Rikard; Willig, Adrian; Granath, Pontus; Crèvecoeur, Michèle; Rochaix, Jean-David; Vener, Alexander V.

    2009-01-01

    Photosynthetic thylakoid membranes in plants contain highly folded membrane layers enriched in photosystem II, which uses light energy to oxidize water and produce oxygen. The sunlight also causes quantitative phosphorylation of major photosystem II proteins. Analysis of the Arabidopsis thaliana stn7xstn8 double mutant deficient in thylakoid protein kinases STN7 and STN8 revealed light-independent phosphorylation of PsbH protein and greatly reduced N-terminal phosphorylation of D2 protein. The stn7xstn8 and stn8 mutants deficient in light-induced phosphorylation of photosystem II had increased thylakoid membrane folding compared with wild-type and stn7 plants. Significant enhancement in the size of stacked thylakoid membranes in stn7xstn8 and stn8 accelerated gravity-driven sedimentation of isolated thylakoids and was observed directly in plant leaves by transmission electron microscopy. Increased membrane folding, caused by the loss of light-induced protein phosphorylation, obstructed lateral migration of the photosystem II reaction center protein D1 and of processing protease FtsH between the stacked and unstacked membrane domains, suppressing turnover of damaged D1 in the leaves exposed to high light. These findings show that the high level of photosystem II phosphorylation in plants is required for adjustment of macroscopic folding of large photosynthetic membranes modulating lateral mobility of membrane proteins and sustained photosynthetic activity. PMID:20028840

  18. High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation.

    PubMed

    Massey, L A; Miranda, M A; Zrinzo, L; Al-Helli, O; Parkes, H G; Thornton, J S; So, P-W; White, M J; Mancini, L; Strand, C; Holton, J L; Hariz, M I; Lees, A J; Revesz, T; Yousry, T A

    2012-02-01

    Using conventional MRI the subthalamic nucleus (STN) is not clearly defined. Our objective was to define the anatomy of the STN using 9.4 T MRI of post mortem tissue with histological validation. Spin-echo (SE) and 3D gradient-echo (GE) images were obtained at 9.4 T in 8 post mortem tissue blocks and compared directly with corresponding histological slides prepared with Luxol Fast Blue/Cresyl Violet (LFB/CV) in 4 cases and Perl stain in 3. The variability of the STN anatomy was studied using internal reference points. The anatomy of the STN and surrounding structures was demonstrated in all three anatomical planes using 9.4 T MR images in concordance with LFB/CV stained histological sections. Signal hypointensity was seen in 6/8 cases in the anterior and medial STN that corresponded with regions of more intense Perl staining. There was significant variability in the volume, shape and location of the borders of the STN. Using 9.4 T MRI, the internal signal characteristics and borders of the STN are clearly defined and significant anatomical variability is apparent. Direct visualisation of the STN is possible using high field MRI and this is particularly relevant, given its anatomical variability, for planning deep brain stimulation.

  19. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  20. Deep Brain Stimulation and Medication for Parkinsonian Tremor During Secondary Tasks

    PubMed Central

    Sturman, Molly M.; Vaillancourt, David E.; Metman, Leo Verhagen; Sierens, Diane K.; Bakay, Roy A.E.; Corcos, Daniel M.

    2008-01-01

    This study examined the efficacy of subthalamic nucleus (STN), deep brain stimulation (DBS), and medication for resting tremor during performance of secondary tasks. Hand tremor was recorded using accelerometry and electromyography (EMG) from 10 patients with Parkinson’s disease (PD) and ten matched control subjects. The PD subjects were examined off treatment, on STN DBS, on medication, and on STN DBS plus medication. In the first experiment, tremor was recorded in a quiet condition and during a cognitive task designed to enhance tremor. In the second experiment, tremor was recorded in a quiet condition and during isometric finger flexion (motor task) with the contralateral limb at 5% of the maximal voluntary contraction (MVC) that was designed to suppress tremor. Results showed that: (1) STN DBS and medication reduced tremor during a cognitive task that exacerbated tremor, (2) STN DBS normalized tremor frequency in both the quiet and cognitive task conditions, whereas tremor amplitude was only normalized in the quiet condition, (3) a secondary motor task reduced tremor in a similar manner to STN DBS. These findings demonstrate that STN DBS still suppresses tremor in the presence of a cognitive task. Furthermore, a secondary motor task of the opposite limb suppresses tremor to levels comparable to STN DBS. PMID:17469210

  1. Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson's disease.

    PubMed

    Greenhouse, Ian; Gould, Sherrie; Houser, Melissa; Hicks, Gayle; Gross, James; Aron, Adam R

    2011-02-01

    Motor and emotion processing depend on different fronto-basal ganglia circuits. Distinct sub-regions of the subthalamic nucleus (STN) may modulate these circuits. We evaluated whether stimulation targeted at separate territories in the STN region would differentially affect motor and emotion function. In a double-blind design, we studied twenty Parkinson's disease patients who had deep brain stimulation (DBS) electrodes implanted bilaterally in the STN. We stimulated either dorsal or ventral contacts of the STN electrodes on separate days in each patient and acquired behavioral measures. Dorsal contact stimulation improved motor function by reducing scores on the Unified Parkinson's Disease Rating Scale and by reducing both reaction time and reaction time variability compared to ventral contact stimulation. By contrast, ventral contact stimulation led to an increase in positive emotion compared to dorsal contact stimulation. These results support the hypothesis that different territories within the STN region implement motor and emotion functions. PMID:21184765

  2. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions. PMID:25577507

  3. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  4. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation.

    PubMed

    Pelloux, Yann; Meffre, Julie; Giorla, Elodie; Baunez, Christelle

    2014-01-01

    The subthalamic nucleus (STN) belongs to the basal ganglia and is the current target for the surgical treatment of neurological and psychiatric disorders such as Parkinson's Disease (PD) and obsessive compulsive disorders (OCD), but also a proposed site for the treatment of addiction. It is therefore very important to understand its functions in order to anticipate and prevent possible side-effects in the patients. Although the involvement of the STN is well documented in motor, cognitive and motivational processes, less is known regarding emotional processes. Here we have investigated the direct consequences of STN inactivation by excitotoxic lesions on emotional processing and reinforcement in the rat. We have used various behavioral procedures to assess affect for neutral, positive and negative reinforcers in STN lesioned rats. STN lesions reduced affective responses for positive (sweet solutions) and negative (electric foot shock, Lithium Chloride-induced sickness) reinforcers while they had no effect on responses for a more neutral reinforcer (novelty induced place preference (NIPP)). Furthermore, when given the choice between saccharine, a sweet but non caloric solution, and glucose, a more bland but caloric solution, in contrast to sham animals that preferred saccharine, STN lesioned animals preferred glucose over saccharine. Taken altogether these results reveal that STN plays a critical role in emotional processing. These results, in line with some clinical observations in PD patients subjected to STN surgery, suggest possible emotional side-effects of treatments targeting the STN. They also suggest that the increased motivation for sucrose previously reported cannot be due to increased pleasure, but could be responsible for the decreased motivation for cocaine reported after STN inactivation.

  5. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation

    PubMed Central

    Pelloux, Yann; Meffre, Julie; Giorla, Elodie; Baunez, Christelle

    2014-01-01

    The subthalamic nucleus (STN) belongs to the basal ganglia and is the current target for the surgical treatment of neurological and psychiatric disorders such as Parkinson’s Disease (PD) and obsessive compulsive disorders (OCD), but also a proposed site for the treatment of addiction. It is therefore very important to understand its functions in order to anticipate and prevent possible side-effects in the patients. Although the involvement of the STN is well documented in motor, cognitive and motivational processes, less is known regarding emotional processes. Here we have investigated the direct consequences of STN inactivation by excitotoxic lesions on emotional processing and reinforcement in the rat. We have used various behavioral procedures to assess affect for neutral, positive and negative reinforcers in STN lesioned rats. STN lesions reduced affective responses for positive (sweet solutions) and negative (electric foot shock, Lithium Chloride-induced sickness) reinforcers while they had no effect on responses for a more neutral reinforcer (novelty induced place preference (NIPP)). Furthermore, when given the choice between saccharine, a sweet but non caloric solution, and glucose, a more bland but caloric solution, in contrast to sham animals that preferred saccharine, STN lesioned animals preferred glucose over saccharine. Taken altogether these results reveal that STN plays a critical role in emotional processing. These results, in line with some clinical observations in PD patients subjected to STN surgery, suggest possible emotional side-effects of treatments targeting the STN. They also suggest that the increased motivation for sucrose previously reported cannot be due to increased pleasure, but could be responsible for the decreased motivation for cocaine reported after STN inactivation. PMID:25538581

  6. Soil carbon and nitrogen changes following afforestation of marginal cropland across a precipitation gradient in Loess Plateau of China.

    PubMed

    Chang, Ruiying; Jin, Tiantian; Lü, Yihe; Liu, Guohua; Fu, Bojie

    2014-01-01

    Cropland afforestation has been widely found to increase soil organic carbon (SOC) and soil total nitrogen (STN); however, the magnitudes of SOC and STN accumulation and regulating factors are less studied in dry, marginal lands, and therein the interaction between soil carbon and nitrogen is not well understood. We examined the changes in SOC and STN in younger (5-9-year-old) and older (25-30-year-old) black locust (Robinia pseudoacacia L., an N-fixing species) plantations that were established on former cropland along a precipitation gradient (380 to 650 mm) in the semi-arid Loess Plateau of China. The SOC and STN stocks of cropland and plantations increased linearly with precipitation increase, respectively, accompanying an increase in the plantation net primary productivity and the soil clay content along the increasing precipitation gradient. The SOC stock of cropland decreased in younger plantations and increased in older plantations after afforestation, and the amount of the initial loss of SOC during the younger plantations' establishment increased with precipitation increasing. By contrast, the STN stock of cropland showed no decrease in the initial afforestation while tending to increase with plantation age, and the changes in STN were not related to precipitation. The changes in STN and SOC showed correlated and were precipitation-dependent following afforestation, displaying a higher relative gain of SOC to STN as precipitation decreased. Our results suggest that the afforestation of marginal cropland in Loess Plateau can have a significant effect on the accumulation of SOC and STN, and that precipitation has a significant effect on SOC accumulation but little effect on STN retention. The limitation effect of soil nitrogen on soil carbon accumulation is more limited in the drier area rather than in the wetter sites.

  7. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task.

    PubMed

    Aleksandrova, Lily R; Creed, Meaghan C; Fletcher, Paul J; Lobo, Daniela S S; Hamani, Clement; Nobrega, José N

    2013-05-15

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinson's disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions. PMID:23434606

  8. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease.

    PubMed

    Pienaar, Ilse S; Lee, Cecilia Heyne; Elson, Joanna L; McGuinness, Louisa; Gentleman, Stephen M; Kalaria, Raj N; Dexter, David T

    2015-02-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an accepted treatment for motor symptoms in a subset of Parkinson's disease (PD) patients. The mechanisms why DBS is effective are incompletely understood, but previous studies show that DBS targeted in brain structures other than the STN may modify the microvasculature. However, this has not been studied in PD subjects who have received STN-DBS. Here we investigated the extent and nature of microvascular changes in post-mortem STN samples from STN-DBS PD patients, compared to aged controls and PD patients who had not been treated with STN-DBS. We used immunohistochemical and immunofluorescent methods to assess serial STN-containing brain sections from PD and STN-DBS PD cases, compared to similar age controls using specific antibodies to detect capillaries, an adherens junction and tight junction-associated proteins as well as activated microglia. Cellular features in stained sections were quantified by confocal fluorescence microscopy and stereological methods in conjunction with in vitro imaging tools. We found significant upregulation of microvessel endothelial cell thickness, length and density but lowered activated microglia density and striking upregulation of all analysed adherens junction and tight junction-associated proteins in STN-DBS PD patients compared to non-DBS PD patients and controls. Moreover, in STN-DBS PD samples, expression of an angiogenic factor, vascular endothelial growth factor (VEGF), was significantly upregulated compared to the other groups. Our findings suggest that overexpressed VEGF and downregulation of inflammatory processes may be critical mechanisms underlying the DBS-induced microvascular changes. PMID:25533682

  9. Functional anatomy of subthalamic nucleus stimulation in Parkinson disease

    PubMed Central

    Eisenstein, Sarah A.; Koller, Jonathan M.; Black, Kathleen D.; Campbell, Meghan C.; Lugar, Heather M.; Ushe, Mwiza; Tabbal, Samer D.; Karimi, Morvarid; Hershey, Tamara; Perlmutter, Joel S.; Black, Kevin J.

    2014-01-01

    Objective We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3D brain region and to assign statistical significance after stringent Type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS. Method Fifty-one PD participants with STN DBS were evaluated off medication, with DBS off and during unilateral STN DBS with clinically optimized settings. Dependent variables included DBS-induced changes in Unified Parkinson Disease Rating Scale (UPDRS) subscores, kinematic measures of bradykinesia and rigidity, working memory, response inhibition, mood, anxiety, and akathisia. Weighted t-tests at each voxel produced p images showing where DBS most significantly affected each dependent variable based on outcomes of participants with nearby DBS. Finally, a permutation test computed the probability that this p image indicated significantly different responses based on stimulation site. Results Most motor variables improved with DBS anywhere in the STN region, but several motor, cognitive and affective responses significantly depended on precise location stimulated, with peak p values in superior STN/zona incerta (quantified bradykinesia), dorsal STN (mood, anxiety), and inferior STN/substantia nigra (UPDRS tremor, working memory). Interpretation Our method identified DBS-induced behavioral changes that depended significantly on DBS site. These results do not support complete functional segregation within STN, since movement improved with DBS throughout, and mood improved with dorsal STN DBS. Rather, findings support functional convergence of motor, cognitive and limbic information in STN. PMID:24953991

  10. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease.

    PubMed

    Whitmer, Diane; de Solages, Camille; Hill, Bruce; Yu, Hong; Henderson, Jaimie M; Bronte-Stewart, Helen

    2012-01-01

    Parkinson's disease (PD) is marked by excessive synchronous activity in the beta (8-35 Hz) band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS) within the subthalamic nucleus (STN) region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and is of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI) to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway (HDP) between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05). Cortical signals over the estimated origin of the HDP also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially-specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network. PMID:22675296

  11. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation.

    PubMed

    Pelloux, Yann; Meffre, Julie; Giorla, Elodie; Baunez, Christelle

    2014-01-01

    The subthalamic nucleus (STN) belongs to the basal ganglia and is the current target for the surgical treatment of neurological and psychiatric disorders such as Parkinson's Disease (PD) and obsessive compulsive disorders (OCD), but also a proposed site for the treatment of addiction. It is therefore very important to understand its functions in order to anticipate and prevent possible side-effects in the patients. Although the involvement of the STN is well documented in motor, cognitive and motivational processes, less is known regarding emotional processes. Here we have investigated the direct consequences of STN inactivation by excitotoxic lesions on emotional processing and reinforcement in the rat. We have used various behavioral procedures to assess affect for neutral, positive and negative reinforcers in STN lesioned rats. STN lesions reduced affective responses for positive (sweet solutions) and negative (electric foot shock, Lithium Chloride-induced sickness) reinforcers while they had no effect on responses for a more neutral reinforcer (novelty induced place preference (NIPP)). Furthermore, when given the choice between saccharine, a sweet but non caloric solution, and glucose, a more bland but caloric solution, in contrast to sham animals that preferred saccharine, STN lesioned animals preferred glucose over saccharine. Taken altogether these results reveal that STN plays a critical role in emotional processing. These results, in line with some clinical observations in PD patients subjected to STN surgery, suggest possible emotional side-effects of treatments targeting the STN. They also suggest that the increased motivation for sucrose previously reported cannot be due to increased pleasure, but could be responsible for the decreased motivation for cocaine reported after STN inactivation. PMID:25538581

  12. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  13. Modulatory Effect of Subthalamic Nucleus on the Development of Fatigue During Exhausting Exercise: An in Vivo Electrophysiological and Microdialysis Study in Rats

    PubMed Central

    Wang, Dalei; Liu, Xiaoli; Qiao, Decai

    2012-01-01

    The purpose of the study was to investigate the modulatory effect of changes of subthalamic nucleus (STN) activity on the development of central fatigue during exhausting exercise, and reveal the possible mechanism that might affect STN activity from the perspective of neurotransmitters. Rats were randomly divided into electrophysiology and microdialysis study groups. For electrophysiological study, electrical activity in sensorimotor cortex and STN were simultaneously recorded before, during and 90min after the exhausting exercise. For microdialysis study, extracellular fluid of STN was continuously collected with a microdialysis probe and glutamate (Glu), gamma-aminobutyric acid (GABA) levels were subsequently detected with high performance liquid chromatography (HPLC). The behavioral studies showed that rats ran well initiatively with the treadmill exercise in the beginning, 45 ± 11.5min later, movement capacity reduced obviously (which was termed as ‘early fatigue’). Correspondingly, STN activity increased significantly compared with rest condition (p < 0.05), while, cortex activity decreased significantly (p < 0.05). Subsequently, rats continued their exercise with minor external stimulation till exhaustion. Cortex activity reached the minimum value under exhaustion condition, while STN activity changed insignificantly (p > 0.05). For microdialysis study, the dynamic change of Glu/GABA ratio was consistent with the change of STN activity during the development of ‘early fatigue’ rather than the development of exhaustion. In conclusion, the present study shows that, the development of the cortex fatigue during exhausting exercise consists of two phases, ‘early fatigue’ and exhaustion. Our results suggest that, dynamic changes of STN activity are closely relevant to the development of ‘early fatigue’ rather than exhaustion, and the changes of STN activity during the development of ‘early fatigue’ might be partly related to the variance of

  14. The Role of Sialyl-Tn in Cancer

    PubMed Central

    Munkley, Jennifer

    2016-01-01

    Activation of an aberrant glycosylation pathway in cancer cells can lead to expression of the onco-foetal sialyl-Tn (sTn) antigen. STn is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc α-O-Ser/Thr and is associated with an adverse outcome and poor prognosis in cancer patients. The biosynthesis of the sTn antigen has been linked to the expression of the sialytransferase ST6GalNAc1, and also to mutations in and loss of heterozygosity of the COSMC gene. sTn neo- or over-expression occurs in many types of epithelial cancer including gastric, colon, breast, lung, oesophageal, prostate and endometrial cancer. sTn is believed to be carried by a variety of glycoproteins and may influence protein function and be involved in tumour development. This review discusses how the role of sTn in cancer development and tumour cell invasiveness might be organ specific and occur through different mechanisms depending on each cancer type or subtype. As the sTn-antigen is expressed early in carcinogenesis targeting sTn in cancer may enable the targeting of tumours from the earliest stage. PMID:26927062

  15. High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions.

    PubMed

    Tan, Sonny K H; Janssen, Marcus L F; Jahanshahi, Ali; Chouliaras, Leonidas; Visser-Vandewalle, Veerle; Lim, Lee Wei; Steinbusch, Harry W M; Sharp, Trevor; Temel, Yasin

    2011-10-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced Parkinson's disease, but this treatment can elicit disabling mood changes. Our recent experiments show that in rats, HFS of the STN both inhibits the firing of 5-HT (5-hydroxytryptamine; serotonin) neurons in the dorsal raphe nucleus (DRN) and elicits 5-HT-dependent behavioral effects. The neural circuitry underpinning these effects is unknown. Here we investigated in the dopamine-denervated rat the effect of bilateral HFS of the STN on markers of neuronal activity in the DRN as well as DRN input regions. Controls were sham-stimulated rats. HFS of the STN elicited changes in two 5-HT-sensitive behavioral tests. Specifically, HFS increased immobility in the forced swim test and increased interaction in a social interaction task. HFS of the STN at the same stimulation parameters, increased c-fos immunoreactivity in the DRN, and decreased cytochrome C oxidase activity in this region. The increase in c-fos immunoreactivity occurred in DRN neurons immunopositive for the GABA marker parvalbumin. HFS of the STN also increased the number of c-fos immunoreactive cells in the lateral habenula nucleus, medial prefrontal cortex but not significantly in the substantia nigra. Collectively, these findings support a role for circuitry involving DRN GABA neurons, as well as DRN afferents from the lateral habenula nucleus and medial prefrontal cortex, in the mood effects of HFS of the STN.

  16. Inhibitory control and error monitoring by human subthalamic neurons

    PubMed Central

    Bastin, J; Polosan, M; Benis, D; Goetz, L; Bhattacharjee, M; Piallat, B; Krainik, A; Bougerol, T; Chabardès, S; David, O

    2014-01-01

    The subthalamic nucleus (STN) has been shown to be implicated in the control of voluntary action, especially during tasks involving conflicting choice alternatives or rapid response suppression. However, the precise role of the STN during nonmotor functions remains controversial. First, we tested whether functionally distinct neuronal populations support different executive control functions (such as inhibitory control or error monitoring) even within a single subterritory of the STN. We used microelectrode recordings during deep brain stimulation surgery to study extracellular activity of the putative associative-limbic part of the STN while patients with severe obsessive-compulsive disorder performed a stop-signal task. Second, 2–4 days after the surgery, local field potential recordings of STN were used to test the hypothesis that STN oscillations may also reflect executive control signals. Extracellular recordings revealed three functionally distinct neuronal populations: the first one fired selectively before and during motor responses, the second one selectively increased their firing rate during successful inhibitory control, and the last one fired selectively during error monitoring. Furthermore, we found that beta band activity (15–35 Hz) rapidly increased during correct and incorrect behavioral stopping. Taken together, our results provide critical electrophysiological support for the hypothesized role of the STN in the integration of motor and cognitive-executive control functions. PMID:25203170

  17. High-Frequency Stimulation of the Subthalamic Nucleus Counteracts Cortical Expression of Major Histocompatibility Complex Genes in a Rat Model of Parkinson’s Disease

    PubMed Central

    Grieb, Benjamin; Engler, Gerhard; Sharott, Andrew; von Nicolai, Constantin; Streichert, Thomas; Papageorgiou, Ismini; Schulte, Alexander; Westphal, Manfred; Lamszus, Katrin; Engel, Andreas K.

    2014-01-01

    High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats. PMID:24621597

  18. Human CST has independent functions during telomere duplex replication and C-strand fill-in

    PubMed Central

    Wang, Feng; Stewart, Jason A.; Kasbek, Christopher; Zhao, Yong; Wright, Woodring E.; Price, Carolyn M.

    2012-01-01

    Summary Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S-phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide the first direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a novel replication factor that solves diverse replication-associated problems. PMID:23142664

  19. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC. PMID:26601504

  20. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.

  1. Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients.

    PubMed

    Wagenbreth, Caroline; Zaehle, Tino; Galazky, Imke; Voges, Jürgen; Guitart-Masip, Marc; Heinze, Hans-Jochen; Düzel, Emrah

    2015-06-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor impairments in Parkinson's disease (PD) but its effect on the motivational regulation of action control is still not fully understood. We investigated whether DBS of the STN influences the ability of PD patients to act for anticipated reward or loss, or whether DBS improves action execution independent of motivational valence. 16 PD patients (12 male, mean age = 58.5 ± 10.17 years) treated with bilateral STN-DBS and an age- and gender-matched group of healthy controls (HC) performed a go/no-go task whose contingencies explicitly decouple valence and action. Patients were tested with (ON) and without (OFF) active STN stimulation. For HC, there was a benefit in performing rewarded actions when compared to actions that avoided punishment. PD patients showed such a benefit reliably only when STN stimulation was ON. In fact, the relative behavioral benefit for go for reward over go to avoid losing was stronger in the PD patients under DBS ON than in HC. In PD patients, rather than generally improving motor functions independent of motivational valence, modulation of the STN by DBS improves action execution specifically when rewards are anticipated. Thus, STN-DBS establishes a reliable congruency between action and reward ("Pavlovian congruency") and remarkably enhances it over the level observed in HC. PMID:25929662

  2. Aggressive behavior as a rare side effect of subthalamic stimulation in Parkinson's disease.

    PubMed

    Papuć, Ewa; Trojanowski, Tomasz; Obszańska, Katarzyna; Stelmasiak, Zbigniew

    2015-01-01

    Although deep brain stimulation (DBS) has a well-established position in the treatment of Parkinson's disease (PD), it may be accompanied by different side effects including behavioral changes. We present a patient with advanced PD after bilateral stimulation of the subthalamic nucleus (STN) who developed attacks of aggressive behavior. The patient with a 12 year history of PD underwent the procedure of DBS with one-stage bilateral stereotactic approach using the Leksel G stereotactic frame. For STN identification microrecording technique was applied (5 microelectrodes). Four weeks after surgery STN stimulation was switched on. With increasing the amplitude of stimulation on the right (active contacts 1 and 2) the patient experienced transient episodes of aggression. Change of stimulation mode led to withdrawal of all side effects. We hypothesize that aggression episodes in the patient were caused by stimulation of limbic circuit probable within STN although we cannot exclude simultaneous stimulation of neighboring structures. Aggression episodes are rare side effect of STN-DBS, nevertheless they may be expected in more posteromedial placement of the electrode within STN. The presented case extends the evidence for non-motor functions of STN and highlights its role as an integrating structure within the basal ganglia system.

  3. Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat

    SciTech Connect

    Takada, M.; Hattori, T.

    1987-08-22

    Autoradiographic retrograde tracing techniques with radioactive transmitters were used to analyse the identity of a putative transmitter in the rat pallidosubthalamic (GP-STN) pathway. One to 2 hours after the stereotaxic injection of /sup 3/H-glycine restricted to the STN, a large number of neuronal somata were radiolabeled in the GP. No comparable labeling was observed following the injection of /sup 3/H-gamma-aminobutyric acid (/sup 3/H-GABA) into the same nucleus even with survival times as long as 6 hours. Specifically, no significant somatic labeling was detected either in the GP or in the caudoputamen (CPU). Only when /sup 3/H-GABA was injected into the substantia nigra did CPU and GP neurons become labeled. On the contrary, STN neuronal somata were invariably labeled 6 hours after the intrapallidal injection of /sup 3/H-GABA, whereas no perikaryal labeling was observed in the STN after /sup 3/H-glycine injection into the GP. The perikaryal labeling was prevented in all cases by intraventricular administration of colchicine 1 day before the isotope injections. The observations suggest that /sup 3/H-glycine was preferentially transported retrogradely through the GP-STN pathway, and /sup 3/H-GABA through the STN-GP projection. In view of the recent controversy on the role of GABA as a putative transmitter of the GP-STN projection, we now propose glycine as an alternative transmitter candidate of these critically situated neurons in the basal ganglia.

  4. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791

  5. Age-dependent alterations in the cortical entrainment of subthalamic nucleus neurons in the YAC128 mouse model of Huntington's disease.

    PubMed

    Callahan, Joshua W; Abercrombie, Elizabeth D

    2015-06-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD. The aim of the present study was to examine whether changes in the fidelity of information transmission between the cortex and the STN emerge as a function of phenotypic severity in the YAC128 mouse model of HD. We obtained in vivo extracellular recordings in the STN and concomitant electrocorticogram (ECoG) recordings during discrete brain states that reflected global cortical network synchronization or desynchronization. At early ages in YAC128 mice, both the cortex and the STN exhibited patterns of hyperexcitability. As symptom severity progressed, cortical entrainment of STN activity was disrupted and there was an increase in the proportion of non-oscillating, tonically firing STN neurons that were less phase-locked to cortical activity. Concomitant to the dissipation of STN entrainment, there was a reduction in the evoked response of STN neurons to focal cortical stimulation. The spontaneous discharge of STN neurons in YAC128 mice also decreased with age and symptom severity. These results indicate dysfunction in the flow of information within the corticosubthalamic circuit and demonstrate progressive age-related disconnection of the hyperdirect pathway in a transgenic mouse model of HD.

  6. Sixty Hertz Neurostimulation Amplifies Subthalamic Neural Synchrony in Parkinson’s Disease

    PubMed Central

    Blumenfeld, Zack; Velisar, Anca; Miller Koop, Mandy; Hill, Bruce C.; Shreve, Lauren A.; Quinn, Emma J.; Kilbane, Camilla; Yu, Hong; Henderson, Jaimie M.; Brontë-Stewart, Helen

    2015-01-01

    High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony. Here we demonstrate for the first time that during intra-operative 60 Hz STN DBS, one or more bands of resting state neural synchrony were amplified in the STN in PD. We recorded intra-operative STN resting state local field potentials (LFPs) from twenty-eight STNs in seventeen PD subjects after placement of the DBS lead (model 3389, Medtronic, Inc.) before and during three randomized neurostimulation sets (130 Hz/1.35V, 130 Hz/2V, 60 Hz/2V). During 130 Hz/2V DBS, baseline (no DBS) STN alpha (8 – 12 Hz) and beta (13 – 35 Hz) band power decreased (N=14, P < 0.001 for both), whereas during 60 Hz/2V DBS, alpha band and peak frequency power increased (P = 0.012, P = 0.007, respectively). The effect of 60 Hz/2V DBS opposed that of power-equivalent (130 Hz/1.35V) DBS (alpha: P < 0.001, beta: P = 0.006). These results show that intra-operative 60 Hz STN DBS amplified whereas 130 Hz STN DBS attenuated resting state neural synchrony in PD; the effects were frequency-specific. We demonstrate that neurostimulation may be useful as a tool to selectively modulate resting state resonant bands of neural synchrony and to investigate its influence on motor and non-motor behaviors in PD and other neuropsychiatric diseases. PMID:25807463

  7. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.

    PubMed

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.

  8. Arachnophobia alleviated by subthalamic nucleus stimulation for Parkinson's disease.

    PubMed

    Allert, Niels; Gippert, Sabrina M; Sajonz, Bastian E A; Nelles, Christoph; Bewernick, Bettina; Schlaepfer, Thomas E; Coenen, Volker A

    2016-06-01

    We report on a Parkinson patient with motor fluctuations and dyskinesias in whom deep brain stimulation (DBS) of the subthalamic nucleus (STN) not only improved motor symptoms but also pre-existing arachnophobia. Arachnophobia had been unchanged by the course of Parkinson's disease but rapidly improved with STN-DBS. Both, motor effects and the improvement of arachnophobia were stable during 2 years follow-up. To our knowledge this is the first report on STN stimulation effects on a specific phobia. PMID:27198699

  9. Other Types Of LCDs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Mochizuki, Akihiro

    The following sections are included: * INTRODUCTION * TUNABLE BIREFRINGENCE LCDs * Nematic Device with Homogeneous Alignment * Nematic Device with Homeotropic Alignment * ELECTRICALLY CONTROLLED BIREFRINGENCE EFFECT LCDs WITH A COMPENSATING CELL OR POLYMER LAYERS * Super Homeotropic LCDs * Black and White STN LCDs * Optical mode interference * Guest-host mode * Double-layered STN * Retardation film compensated STN * DUAL FREQUENCY ADDRESSING LCDs * Application for DSM LCDs * Application for TN LCDs * PI-CELL * CHOLESTERIC-NEMATIC PHASE CHANGE LCDs * Storage Mode LCDs * Stabilized Hysteresis Mode LCDs * THERMALLY ADDRESSED LCDs (CHOLESTERIC) * BISTABLE LCD * WIDE VIEWING ANGLE TN LCDs USING RETARDATION SHEETS * Type 1 Cells * Type 2 Cells * REFERENCES

  10. Mood Response to Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson Disease

    PubMed Central

    Campbell, Meghan C.; Black, Kevin J.; Weaver, Patrick M.; Lugar, Heather M.; Videen, Tom O.; Tabbal, Samer D.; Karimi, Morvarid; Perlmutter, Joel S.; Hershey, Tamara

    2012-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson disease (PD) improves motor function but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. We identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood, decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN. PMID:22450611

  11. A PC-based system for predicting movement from deep brain signals in Parkinson's disease.

    PubMed

    Loukas, Constantinos; Brown, Peter

    2012-07-01

    There is much current interest in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for the treatment of Parkinson's disease (PD). This type of surgery has enabled unprecedented access to deep brain signals in the awake human. In this paper we present an easy-to-use computer based system for recording, displaying, archiving, and processing electrophysiological signals from the STN. The system was developed for predicting self-paced hand-movements in real-time via the online processing of the electrophysiological activity of the STN. It is hoped that such a computerised system might have clinical and experimental applications. For example, those sites within the STN most relevant to the processing of voluntary movement could be identified through the predictive value of their activities with respect to the timing of future movement.

  12. The Mathematics of Dispatchability, Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2016-01-01

    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently, it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, dispatchability has considerable theoretical as well as practical significance. One thing that hampers further work in this area is the underdeveloped theory. Moreover, the existing foundation is inadequate in certain respects. In this paper, we develop a new mathematical theory of dispatchability and its relationship to execution. We also provide several characterizations of dispatchability, including characterizations in terms of the structural properties of the STN graph. This facilitates the potential application of the theory to other areas.

  13. The Mathematics of Dispatchability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2016-01-01

    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, the dispatchability property has both theoretical and practical interest. One thing that hampers further work in this area is the underdeveloped theory. The existing definitions are expressed in terms of algorithms, and are less suitable for mathematical proofs. In this paper, we develop a new formal theory of dispatchability in terms of execution sequences. We exploit this to prove a characterization of dispatchability involving the structural properties of the STN graph. This facilitates the potential application of the theory to uncertainty reasoning.

  14. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  15. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings

    PubMed Central

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter

    2012-01-01

    Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804

  16. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys

    PubMed Central

    Hu, Xing; Rommelfanger, Karen S.; Pare, Jean-Francois; Khan, Zafar U.; Smith, Yoland; Wichmann, Thomas

    2014-01-01

    The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors. PMID:24760789

  17. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology. PMID:22832400

  18. Identification of (2S,3S)-β-Methyltryptophan as the Real Biosynthetic Intermediate of Antitumor Agent Streptonigrin

    PubMed Central

    Kong, Dekun; Zou, Yi; Zhang, Zhang; Xu, Fei; Brock, Nelson L.; Zhang, Liping; Deng, Zixin; Lin, Shuangjun

    2016-01-01

    Streptonigrin is a potent antitumor antibiotic, active against a wide range of mammalian tumor cells. It was reported that its biosynthesis relies on (2S,3R)-β-methyltryptophan as an intermediate. In this study, the biosynthesis of (2S,3R)-β-methyltryptophan and its isomer (2S,3S)-β-methyltryptophan by enzymes from the streptonigrin biosynthetic pathway is demonstrated. StnR is a pyridoxal 5′-phosphate (PLP)-dependent aminotransferase that catalyzes a transamination between L-tryptophan and β-methyl indolepyruvate. StnQ1 is an S-adenosylmethionine (SAM)-dependent C-methyltransferase and catalyzes β-methylation of indolepyruvate to generate (R)-β-methyl indolepyruvate. Although StnR exhibited a significant preference for (S)-β-methyl indolepyruvate over the (R)-epimer, StnQ1 and StnR together catalyze (2S,3R)-β-methyltryptophan formation from L-tryptophan. StnK3 is a cupin superfamily protein responsible for conversion of (R)-β-methyl indolepyruvate to its (S)-epimer and enables (2S,3S)-β-methyltryptophan biosynthesis from L-tryptophan when combined with StnQ1 and StnR. Most importantly, (2S,3S)-β-methyltryptophan was established as the biosynthetic intermediate of the streptonigrin pathway by feeding experiments with a knockout mutant, contradicting the previous proposal that stated (2S,3R)-β-methyltryptophan as the intermediate. These data set the stage for the complete elucidation of the streptonigrin biosynthetic pathway, which would unlock the potential of creating new streptonigrin analogues by genetic manipulation of the biosynthetic machinery. PMID:26847951

  19. The subthalamic nucleus. Part I: development, cytology, topography and connections.

    PubMed

    Marani, Enrico; Heida, Tjitske; Lakke, Egbert A J F; Usunoff, Kamen G

    2008-01-01

    This monograph (Part I of two volumes) on the subthalamic nucleus (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. Part II of the two volumes (volume 199) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models--single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared. PMID:18727483

  20. The subthalamic nucleus part II: modelling and simulation of activity.

    PubMed

    Heida, Tjitske; Marani, Enrico; Usunoff, Kamen G

    2008-01-01

    Part I of The Subthalamic Nucleus (volume 198) (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections.The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. This monograph (Part II of the two volumes) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinson's disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models - single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared. PMID:18727495

  1. The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats

    PubMed Central

    Breysse, Emmanuel; Pelloux, Yann

    2015-01-01

    Abstract The subthalamic nucleus (STN) has only recently been added into the reward circuit. It has been shown to encode information regarding rewards (4% sucrose, 32% cocaine). To investigate the encoding of negative value, STN neurons were recorded in rats performing a task using discriminative stimuli predicting various rewards and especially during the replacement of a positive reinforcer (4% sucrose) by an aversive reinforcer (quinine). The results show that STN neurons encode information relative to both positive and aversive reinforcers via specialized subpopulations. The specialization is reset when the context is modified (change from a favorable context (4% vs 32% sucrose) to an unfavorable context (quinine vs 32% sucrose). An excitatory response to the cue light predicting the reward seems to be associated with the preferred situation, suggesting that STN plays a role in encoding the relative value of rewards. STN also seems to play a critical role in the encoding of execution error. Indeed, various subpopulations of neurons responding exclusively at early (i.e., “oops neurons”) or at correct lever release were identified. The oops neurons respond mostly when the preferred reward (32% sucrose) is missed. Furthermore, STN neurons respond to reward omission, suggesting a role in reward prediction error. These properties of STN neurons strengthen its position in the reward circuit as a key cerebral structure through which reward-related processes are mediated. It is particularly important given the fact that STN is the target of surgical treatment for Parkinson’s disease and obsessive compulsive disorders, and has been suggested for the treatment of addiction as well. PMID:26478913

  2. Limiting glutamate transmission in a Vglut2-expressing subpopulation of the subthalamic nucleus is sufficient to cause hyperlocomotion

    PubMed Central

    Schweizer, Nadine; Pupe, Stéfano; Arvidsson, Emma; Nordenankar, Karin; Smith-Anttila, Casey J. A.; Mahmoudi, Souha; Andrén, Anna; Dumas, Sylvie; Rajagopalan, Aparna; Lévesque, Daniel; Leão, Richardson N.; Wallén-Mackenzie, Åsa

    2014-01-01

    The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knockout mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects. PMID:24821804

  3. Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into Functionally Active Heteropores.

    PubMed

    Rivera-de-Torre, Esperanza; García-Linares, Sara; Alegre-Cebollada, Jorge; Lacadena, Javier; Gavilanes, José G; Martínez-Del-Pozo, Álvaro

    2016-07-01

    Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other's activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity. PMID:27129251

  4. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease

    PubMed Central

    Jahanshahi, Marjan

    2013-01-01

    Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients. PMID:24399941

  5. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control.

    PubMed

    Tewari, Alia; Jog, Rachna; Jog, Mandar S

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson's disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN.

  6. Neuropsychology Review Submission

    PubMed Central

    Rossi, P. Justin; Okun, Michael S.

    2016-01-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson’s disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN. PMID:26577509

  7. Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease

    PubMed Central

    Ludwig, Janne; Remien, Piet; Guballa, Christoph; Binder, Andreas; Binder, Sabine; Schattschneider, Jörn; Herzog, Jan; Volkmann, Jens; Deuschl, Günther; Wasner, Gunnar; Baron, Ralf

    2007-01-01

    Dysfunctions of the autonomic nervous system (ANS) are common in Parkinson's disease (PD). Regarding motor disability, deep brain stimulation of the subthalamic nucleus (STN) is an effective treatment option in long lasting PD. The aims of this study were to examine whether STN stimulation has an influence on functions of the ANS and to compare these effects to those induced by levodopa. Blood pressure (BP) and heart rate (HR) during rest and orthostatic conditions, HR variability (HRV) and breathing‐induced cutaneous sympathetic vasoconstriction (CVC) were tested in 14 PD patients treated with STN stimulation during “ON” and “OFF” condition of the stimulator. The effects of a single dose of levodopa on ANS were tested in 15 PD patients without DBS. STN stimulation had no influence on cardiovascular ANS functions, whereas CVC was significantly increased. In contrast, levodopa significantly lowered BP and HR at rest and enhanced orthostatic hypotension. Further, HRV, skin perfusion and temperature increased after administration of levodopa. Our results suggest that in contrast to levodopa, STN stimulation has only minor effects on autonomic functions. Since less pharmacotherapy is needed after STN stimulation, reduced levodopa intake results in relative improvement of autonomic function in deep brain stimulated PD patients. PMID:17371906

  8. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease.

    PubMed

    Serranová, Tereza; Jech, Robert; Dušek, Petr; Sieger, Tomáš; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen

    2011-10-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can induce nonmotor side effects such as behavioral and mood disturbances or body weight gain in Parkinson's disease (PD) patients. We hypothesized that some of these problems could be related to an altered attribution of incentive salience (ie, emotional relevance) to rewarding and aversive stimuli. Twenty PD patients (all men; mean age ± SD, 58.3 ± 6 years) in bilateral STN DBS switched ON and OFF conditions and 18 matched controls rated pictures selected from the International Affective Picture System according to emotional valence (unpleasantness/pleasantness) and arousal on 2 independent visual scales ranging from 1 to 9. Eighty-four pictures depicting primary rewarding (erotica and food) and aversive fearful (victims and threat) and neutral stimuli were selected for this study. In the STN DBS ON condition, the PD patients attributed lower valence scores to the aversive pictures compared with the OFF condition (P < .01) and compared with controls (P < .01). The difference between the OFF condition and controls was less pronounced (P < .05). Furthermore, postoperative weight gain correlated with arousal ratings from the food pictures in the STN DBS ON condition (P < .05 compensated for OFF condition). Our results suggest that STN DBS increases activation of the aversive motivational system so that more relevance is attributed to aversive fearful stimuli. In addition, STN DBS-related sensitivity to food reward stimuli cues might drive DBS-treated patients to higher food intake and subsequent weight gain. PMID:21780183

  9. Deep Brain Stimulation of the Subthalamic Nucleus Improves Lexical Switching in Parkinsons Disease Patients

    PubMed Central

    Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Kühn, Andrea A.; Klostermann, Fabian

    2016-01-01

    Objective Reduced verbal fluency (VF) has been reported in patients with Parkinson’s disease (PD), especially those treated by Deep Brain Stimulation of the subthalamic nucleus (STN DBS). To delineate the nature of this dysfunction we aimed at identifying the particular VF-related operations modified by STN DBS. Method Eleven PD patients performed VF tasks in their STN DBS ON and OFF condition. To differentiate VF-components modulated by the stimulation, a temporal cluster analysis was performed, separating production spurts (i.e., ‘clusters’ as correlates of automatic activation spread within lexical fields) from slower cluster transitions (i.e., ‘switches’ reflecting set-shifting towards new lexical fields). The results were compared to those of eleven healthy control subjects. Results PD patients produced significantly more switches accompanied by shorter switch times in the STN DBS ON compared to the STN DBS OFF condition. The number of clusters and time intervals between words within clusters were not affected by the treatment state. Although switch behavior in patients with DBS ON improved, their task performance was still lower compared to that of healthy controls. Discussion Beyond impacting on motor symptoms, STN DBS seems to influence the dynamics of cognitive procedures. Specifically, the results are in line with basal ganglia roles for cognitive switching, in the particular case of VF, from prevailing lexical concepts to new ones. PMID:27575379

  10. Photosynthetic lesions can trigger accelerated senescence in Arabidopsis thaliana.

    PubMed

    Wang, Jing; Leister, Dario; Bolle, Cordelia

    2015-11-01

    Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed. PMID:26272903

  11. Motivational tuning of fronto-subthalamic connectivity facilitates control of action impulses.

    PubMed

    Herz, Damian M; Christensen, Mark S; Bruggemann, Norbert; Hulme, Oliver J; Ridderinkhof, K Richard; Madsen, Kristoffer H; Siebner, Hartwig R

    2014-02-26

    It is critical for survival to quickly respond to environmental stimuli with the most appropriate action. This task becomes most challenging when response tendencies induced by relevant and irrelevant stimulus features are in conflict, and have to be resolved in real time. Inputs from the pre-supplementary motor area (pre-SMA) and inferior frontal gyrus (IFG) to the subthalamic nucleus (STN) are thought to support this function, but the connectivity and causality of these regions in calibrating motor control has not been delineated. In this study, we combined off-line noninvasive brain stimulation and functional magnetic resonance imaging, while young healthy human participants performed a modified version of the Simon task. We show that impairing pre-SMA function by noninvasive brain stimulation improved control over impulsive response tendencies, but only when participants were explicitly rewarded for fast and accurate responses. These effects were mediated by enhanced activation and connectivity of the IFG-STN pathway. These results provide causal evidence for a pivotal role of the IFG-STN pathway during action control. Additionally, they suggest a parallel rather than hierarchical organization of the pre-SMA-STN and IFG-STN pathways, since interruption of pre-SMA function can enhance IFG-STN connectivity and improve control over inappropriate responses.

  12. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control

    PubMed Central

    Tewari, Alia; Jog, Rachna; Jog, Mandar S.

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474

  13. Subthalamic deep brain stimulation in Parkinson׳s disease has no significant effect on perceptual timing in the hundreds of milliseconds range

    PubMed Central

    Cope, Thomas E.; Grube, Manon; Mandal, Arnab; Cooper, Freya E.; Brechany, Una; Burn, David J.; Griffiths, Timothy D.

    2014-01-01

    Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS ‘on’, ‘off’, and then ‘on’ again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. PMID:24613477

  14. The Subthalamic Nucleus, Limbic Function, and Impulse Control.

    PubMed

    Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S

    2015-12-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.

  15. Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study

    PubMed Central

    Le Jeune, F.; Péron, J.; Biseul, I.; Fournier, S.; Sauleau, P.; Drapier, S.; Haegelen, C.; Drapier, D.; Millet, B.; Garin, E.; Herry, J.-Y.; Malbert, C.-H.

    2008-01-01

    Deep brain stimulation (DBS) of the bilateral subthalamic nucleus (STN) in Parkinson's disease is thought to produce adverse events such as emotional disorders, and in a recent study, we found fear recognition to be impaired as a result. These changes have been attributed to disturbance of the STN's limbic territory and would appear to confirm that the negative emotion recognition network passes through the STN. In addition, it is now widely acknowledged that damage to the orbitofrontal cortex (OFC), especially the right side, can result in impaired recognition of facial emotions (RFE). In this context, we hypothesized that this reduced recognition of fear is correlated with modifications in the cerebral glucose metabolism of the right OFC. The objective of the present study was first, to reinforce our previous results by demonstrating reduced fear recognition in our Parkinson's disease patient group following STN DBS and, second, to correlate these emotional performances with glucose metabolism using 18FDG-PET. The 18FDG-PET and RFE tasks were both performed by a cohort of 13 Parkinson's disease patients 3 months before and 3 months after surgery for STN DBS. As predicted, we observed a significant reduction in fear recognition following surgery and obtained a positive correlation between these neuropsychological results and changes in glucose metabolism, especially in the right OFC. These results confirm the role of the STN as a key basal ganglia structure in limbic circuits. PMID:18490359

  16. Effects of Deep Brain Stimulation and Medication on Strength, Bradykinesia, and Electromyographic Patterns of the Ankle Joint in Parkinson’s Disease

    PubMed Central

    Vaillancourt, David E.; Prodoehl, Janey; Sturman, Molly M.; Bakay, Roy A.E.; Metman, Leo Verhagen; Corcos, Daniel M.

    2008-01-01

    We investigated the control of movement in 12 patients with Parkinson’s disease (PD) after they received surgically implanted high-frequency stimulating electrodes in the subthalamic nucleus (STN). The experiment studied ankle strength, movement velocity, and the associated electromyographic patterns in PD patients, six of whom had tremor at the ankle. The patients were studied off treatment, ON STN deep brain stimulation (DBS), on medication, and on medication plus STN DBS. Twelve matched control subjects were also examined. Medication alone and STN DBS alone increased patients’ ankle strength, ankle velocity, agonist muscle burst amplitude, and agonist burst duration, while reducing the number of agonist bursts during movement. These findings were similar for PD patients with and without tremor. The combination of medication plus STN DBS normalized maximal strength at the ankle joint, but ankle movement velocity and electromyographic patterns were not normalized. The findings are the first to demonstrate that STN DBS and medication increase strength and movement velocity at the ankle joint. PMID:16124011

  17. Late Consequential Surgical Bed Soft Tissue Necrosis in Advanced Oropharyngeal Squamous Cell Carcinomas Treated With Transoral Robotic Surgery and Postoperative Radiation Therapy

    SciTech Connect

    Lukens, J. Nicholas; Lin, Alexander; Gamerman, Victoria; Mitra, Nandita; Grover, Surbhi; McMenamin, Erin M.; Weinstein, Gregory S.; O'Malley, Bert W.; Cohen, Roger B.; Orisamolu, Abimbola; Ahn, Peter H.; Quon, Harry

    2014-08-01

    Purpose: A subset of patients with oropharyngeal squamous cell carcinoma (OP-SCC) managed with transoral robotic surgery (TORS) and postoperative radiation therapy (PORT) developed soft tissue necrosis (STN) in the surgical bed months after completion of PORT. We investigated the frequency and risk factors. Materials and Methods: This retrospective analysis included 170 consecutive OP-SCC patients treated with TORS and PORT between 2006 and 2012, with >6 months' of follow-up. STN was defined as ulceration of the surgical bed >6 weeks after completion of PORT, requiring opioids, biopsy, or hyperbaric oxygen therapy. Results: A total of 47 of 170 patients (28%) had a diagnosis of STN. Tonsillar patients were more susceptible than base-of-tongue (BOT) patients, 39% (41 of 104) versus 9% (6 of 66), respectively. For patients with STN, median tumor size was 3.0 cm (range 1.0-5.6 cm), and depth of resection was 2.2 cm (range 1.0-5.1 cm). Median radiation dose and dose of fraction to the surgical bed were 6600 cGy and 220 cGy, respectively. Thirty-one patients (66%) received concurrent chemotherapy. Median time to STN was 2.5 months after PORT. All patients had resolution of STN after a median of 3.7 months. Multivariate analysis identified tonsillar primary (odds ratio [OR] 4.73, P=.01), depth of resection (OR 3.12, P=.001), total radiation dose to the resection bed (OR 1.51 per Gy, P<.01), and grade 3 acute mucositis (OR 3.47, P=.02) as risk factors for STN. Beginning May 2011, after implementing aggressive avoidance of delivering >2 Gy/day to the resection bed mucosa, only 8% (2 of 26 patients) experienced STN (all grade 2). Conclusions: A subset of OP-SCC patients treated with TORS and PORT are at risk for developing late consequential surgical bed STN. Risk factors include tonsillar location, depth of resection, radiation dose to the surgical bed, and severe mucositis. STN risk is significantly decreased with carefully avoiding a radiation dosage of >2 Gy/day to the

  18. Investigation of a novel protonic/electronic ceramic composite material as a candidate for hydrogen separation membranes

    NASA Astrophysics Data System (ADS)

    Fish, Jason S.

    A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state

  19. Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony.

    PubMed

    Zavala, Baltazar; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem; Brown, Peter

    2016-06-01

    The switch between automatic action selection and more controlled forms of decision-making is a dynamic process thought to involve both cortical and subcortical structures. During sensory conflict, medial pFC oscillations in the theta band (<8 Hz) drive those of the subthalamic nucleus (STN), and this is thought to increase the threshold of evidence needed for one competing response to be selected over another. Here, we were interested in testing whether STN activity is also altered by the rate at which evidence is presented during a congruent dot motion task absent of any explicit sensory conflict. By having a series of randomly moving dots gradually transform to congruent motion at three different rates (slow, medium, fast), we were able to show that a slower rate increased the time it took participants to make a response but did not alter the total amount of evidence that was integrated before the response. Notably, this resulted in a decision being made with a lower amount of instantaneous evidence during the slow and medium trials. Consistent with the idea that medial pFC-STN activity is involved in executing cognitive control, the higher levels of ambiguity during these trials were associated with increased theta band synchrony between the cortex and the STN, with the cortical oscillations Granger-causal to those of the STN. These results further confirm the involvement of the STN in decision-making and suggest that the disruption of this network may underlie some of the unwanted cognitive deficits associated with STN deep brain stimulation.

  20. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  1. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  2. Expectation modulates the effect of deep brain stimulation on motor and cognitive function in tremor-dominant Parkinson's disease.

    PubMed

    Keitel, Ariane; Ferrea, Stefano; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2013-01-01

    Expectation contributes to placebo and nocebo responses in Parkinson's disease (PD). While there is evidence for expectation-induced modulations of bradykinesia, little is known about the impact of expectation on resting tremor. Subthalamic nucleus (STN) deep brain stimulation (DBS) improves cardinal PD motor symptoms including tremor whereas impairment of verbal fluency (VF) has been observed as a potential side-effect. Here we investigated how expectation modulates the effect of STN-DBS on resting tremor and its interaction with VF. In a within-subject-design, expectation of 24 tremor-dominant PD patients regarding the impact of STN-DBS on motor symptoms was manipulated by verbal suggestions (positive [placebo], negative [nocebo], neutral [control]). Patients participated with (MedON) and without (MedOFF) antiparkinsonian medication. Resting tremor was recorded by accelerometry and bradykinesia of finger tapping and diadochokinesia were assessed by a 3D ultrasound motion detection system. VF was quantified by lexical and semantic tests. In a subgroup of patients, the effect of STN-DBS on tremor was modulated by expectation, i.e. tremor decreased (placebo response) or increased (nocebo response) by at least 10% as compared to the control condition while no significant effect was observed for the overall group. Interestingly, nocebo responders in MedON were additionally characterized by significant impairment in semantic verbal fluency. In contrast, bradykinesia was not affected by expectation. These results indicate that the therapeutic effect of STN-DBS on tremor can be modulated by expectation in a subgroup of patients and suggests that tremor is also among the parkinsonian symptoms responsive to placebo and nocebo interventions. While positive expectations enhanced the effect of STN-DBS by further decreasing the magnitude of tremor, negative expectations counteracted the therapeutic effect and at the same time exacerbated a side-effect often associated with STN

  3. Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: a meta-analytic connectivity study.

    PubMed

    Manes, Jordan L; Parkinson, Amy L; Larson, Charles R; Greenlee, Jeremy D; Eickhoff, Simon B; Corcos, Daniel M; Robin, Donald A

    2014-07-01

    Cortico-basal ganglia connections are involved in a range of behaviors within motor, cognitive, and emotional domains; however, the whole-brain functional connections of individual nuclei are poorly understood in humans. The first aim of this study was to characterize and compare the connectivity of the subthalamic nucleus (STN) and globus pallidus pars interna (GPi) using meta-analytic connectivity modeling. Structure-based activation likelihood estimation meta-analyses were performed for STN and GPi seeds using archived functional imaging coordinates from the BrainMap database. Both regions coactivated with caudate, putamen, thalamus, STN, GPi, and GPe, SMA, IFG, and insula. Contrast analyses also revealed coactivation differences within SMA, IFG, insula, and premotor cortex. The second aim of this study was to examine the degree of overlap between the connectivity maps derived for STN and GPi and a functional activation map representing the speech network. To do this, we examined the intersection of coactivation maps and their respective contrasts (STN > GPi and GPi > STN) with a coordinate-based meta-analysis of speech function. In conjunction with the speech map, both STN and GPi coactivation maps revealed overlap in the anterior insula with GPi map additionally showing overlap in the supplementary motor area (SMA). Among cortical regions activated by speech tasks, STN was found to have stronger connectivity than GPi with regions involved in cognitive linguistic processes (pre-SMA, dorsal anterior insula, and inferior frontal gyrus), while GPi demonstrated stronger connectivity to regions involved in motor speech processes (middle insula, SMA, and premotor cortex). PMID:25050431

  4. Bilateral subthalamic stimulation monotherapy in advanced Parkinson's disease: long-term follow-up of patients.

    PubMed

    Valldeoriola, Francesc; Pilleri, Manuela; Tolosa, Eduardo; Molinuevo, José L; Rumià, Jordi; Ferrer, Enric

    2002-01-01

    Bilateral subthalamic nucleus stimulation (STN-DBS) is used to improve parkinsonian symptoms and attenuate levodopa-induced motor complications. In some patients, such clinical improvement allows antiparkinsonian medication (ApMed) withdrawal. We show the clinical outcome at the long-term follow-up of patients with advanced Parkinson's disease (PD) in which STN-DBS was used in monotherapy, and compare the clinical results of patients without medication with those obtained in parkinsonian patients in which ApMed were reduced but could not be totally displaced after surgery. We analyzed clinical outcome of ten patients with PD in which all ApMed was withdrawn after bilateral subthalamic stimulation and 16 parkinsonian patients still taking antiparkinsonian medication after surgery. After 1.5 years, STN-DBS monotherapy produced UPDRS motor scores similar to those observed in the on-drug condition before surgery without the inconvenience of motor fluctuations and dyskinesias. No significant differences were seen in most of clinical outcome measures when comparing patients still taking ApMed with patients in STN-DBS monotherapy but a few patients still taking ApMed presented mild dyskinesias and motor fluctuations and patients with STN-DBS monotherapy did not. STN-DBS is useful in the treatment of advanced PD and in some patients it is possible to maintain this therapy alone in the long term. The therapeutic effect of STN-DBS on motor signs can be equipotent to that of levodopa with the additional benefit of avoiding motor fluctuations and dyskinesias.

  5. Cognition and Depression Following Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pallidus Pars Internus in Parkinson's Disease: A Meta-Analysis.

    PubMed

    Combs, Hannah L; Folley, Bradley S; Berry, David T R; Segerstrom, Suzanne C; Han, Dong Y; Anderson-Mooney, Amelia J; Walls, Brittany D; van Horne, Craig

    2015-12-01

    Parkinson's disease (PD) is a common, degenerative disorder of the central nervous system. Individuals experience predominantly extrapyramidal symptoms including resting tremor, rigidity, bradykinesia, gait abnormalities, cognitive impairment, depression, and neurobehavioral concerns. Cognitive impairments associated with PD are diverse, including difficulty with attention, processing speed, executive functioning, memory recall, visuospatial functions, word-retrieval, and naming. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is FDA approved and has been shown to be effective in reducing motor symptoms of PD. Studies have found that stimulating STN and GPi are equally effective at improving motor symptoms and dyskinesias; however, there has been discrepancy as to whether the cognitive, behavioral, and mood symptoms are affected differently between the two targets. The present study used random-effects meta-analytic models along with a novel p-curve analytic procedure to compare the potential cognitive and emotional impairments associated with STN-DBS in the current literature to those associated with GPi-DBS. Forty-one articles were reviewed with an aggregated sample size of 1622 patients. Following STN-DBS, small declines were found in psychomotor speed, memory, attention, executive functions, and overall cognition; and moderate declines were found in both semantic and phonemic fluency. However, GPi-DBS resulted in fewer neurocognitive declines than STN-DBS (small declines in attention and small-moderate declines in verbal fluency). With regards to its effect on depression symptomatology, both GPi-DBS and STN-DBS resulted in lower levels of depressive symptoms post-surgery. From a neurocognitive standpoint, both GPi-DBS and STN-DBS produce subtle cognitive declines but appears to be relatively well tolerated. PMID:26459361

  6. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    PubMed Central

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  7. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system.

  8. Unilateral Subthalamic Nucleus Stimulation Has a Measurable Ipsilateral Effect on Rigidity And Bradykinesia in Parkinson Disease

    PubMed Central

    Tabbal, Samer D.; Ushe, Mwiza; Mink, Jonathan W.; Revilla, Fredy J.; Wernle, Angie R.; Hong, Minna; Karimi, Morvarid; Perlmutter, Joel S.

    2008-01-01

    Background Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor function in Parkinson disease (PD). However, little is known about the quantitative effects on motor behavior of unilateral STN DBS. Methods In 52 PD subjects with STN DBS, we quantified in a double-blinded manner rigidity (n= 42), bradykinesia (n= 38), and gait speed (n= 45). Subjects were tested in four DBS conditions: both on, left on, right on and both off. A force transducer was used to measure rigidity across the elbow, and gyroscopes were used to measure angular velocity of hand rotations for bradykinesia. About half of the subjects were rated using the Unified Parkinson Disease Rating Scale (part III) motor scores for arm rigidity and repetitive hand rotation simultaneously during the kinematic measurements. Subjects were timed walking 25 feet. Results All subjects had significant improvement with bilateral STN DBS. Contralateral, ipsilateral and bilateral stimulation significantly reduced rigidity and bradykinesia. Bilateral stimulation improved rigidity more than unilateral stimulation of either side, but there was no significant difference between ipsilateral and contralateral stimulation. Although bilateral stimulation also increased hand rotation velocity more than unilateral stimulation of either side, contralateral stimulation increased hand rotation significantly more than ipsilateral stimulation. All stimulation conditions improved walking time but bilateral stimulation provided the greatest improvement. Conclusions Unilateral STN DBS decreased rigidity and bradykinesia contralaterally as well ipsilaterally. As expected, bilateral DBS improved gait more than unilateral DBS. These findings suggest that unilateral STN DBS alters pathways that affect rigidity and bradykinesia bilaterally but do not support the clinical use of unilateral STN DBS since bilateral DBS clearly provides greater benefit. PMID:18329019

  9. Defining a role for the subthalamic nucleus within operative theoretical models of subcortical participation in language

    PubMed Central

    Whelan, B; Murdoch, B; Theodoros, D; Hall, B; Silburn, P

    2003-01-01

    Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson's disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson's disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson's disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p<0.05) reliable improvement in postoperative scores achieved on the word test-revised (TWT-R), as well as a reliable decline (p<0.01) in the accuracy of lexical decisions

  10. Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles

    PubMed Central

    Kaempf, Natalie; Kochlamazashvili, Gaga; Puchkov, Dmytro; Maritzen, Tanja; Bajjalieh, Sandra M.; Kononenko, Natalia L.; Haucke, Volker

    2015-01-01

    Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins. PMID:26015569

  11. Personality Changes after Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Pham, Uyen; Solbakk, Anne-Kristin; Skogseid, Inger-Marie; Pripp, Are Hugo; Konglund, Ane Eidahl; Andersson, Stein; Haraldsen, Ira Ronit; Aarsland, Dag; Dietrichs, Espen; Malt, Ulrik Fredrik

    2015-01-01

    Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized therapy that improves motor symptoms in advanced Parkinson's disease (PD). However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI): the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS), and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L) before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P = 0.006; P = 0.024). Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P = 0.027). Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity. PMID:25705545

  12. Deep Brain Stimulation of the Subthalamic Nucleus Improves Reward-Based Decision-Learning in Parkinson's Disease

    PubMed Central

    van Wouwe, Nelleke C.; Ridderinkhof, K. R.; van den Wildenberg, W. P. M.; Band, G. P. H.; Abisogun, A.; Elias, W. J.; Frysinger, R.; Wylie, S. A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD). We determined computational measures of outcome evaluation and reward prediction from PD patients who performed a probabilistic reward-based decision-learning task. In previous work, these measures covaried with activation in the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that stimulation of the STN motor regions in PD patients served to improve reward-based decision-learning, probably through its effect on activity in frontostriatal motor loops (prominently involving the putamen and, hence, reward prediction). In a subset of relatively younger patients with relatively shorter disease duration, the effects of DBS appeared to spread to more cognitive regions of the STN, benefiting loops that connect the caudate to various prefrontal areas importantfor outcome evaluation. These results highlight positive effects of STN stimulation on cognitive functions that may benefit PD patients in daily-life association-learning situations. PMID:21519377

  13. Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism

    PubMed Central

    Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2015-01-01

    Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response. PMID:25878267

  14. Factors Related to Outcomes of Subthalamic Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Kim, Hae Yu; Chang, Won Seok; Kang, Dong Wan; Sohn, Young Ho; Lee, Myung Sik

    2013-01-01

    Objective Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment of choice for patients with advanced idiopathic Parkinson's disease (PD) who have motor complication with medication. The objectives of this study are to analyze long-term follow-up data of STN DBS cases and to identify the factors related to outcomes. Methods Fifty-two PD patients who underwent STN DBS were followed-up for more than 3 years. The Unified Parkinsons Disease Rating Scale (UPDRS) and other clinical profiles were assessed preoperatively and during follow-up. A linear regression model was used to analyze whether factors predict the results of STN DBS. We divided the study individuals into subgroups according to several factors and compared subgroups. Results Preoperative activity of daily living (ADL) and the magnitude of preoperative levodopa response were shown to predict the improvement in UPDRS part II without medication, and preoperative ADL and levodopa equivalent dose (LED) were shown to predict the improvement in UPDRS part II with medication. In UPDRS part III with medication, the magnitude of preoperative levodopa response was a predicting factor. Conclusion The intensity of preoperative levodopa response was a strong factor for motor outcome. And preoperative ADL and LED were strong factors for ADL improvement. More vigorous studies should be conducted to elucidate how levodopa-induced motor complications are ameliorated after STN DBS. PMID:24175026

  15. Identification of a Photosystem II Phosphatase Involved in Light Acclimation in Arabidopsis[W

    PubMed Central

    Samol, Iga; Shapiguzov, Alexey; Ingelsson, Björn; Fucile, Geoffrey; Crèvecoeur, Michèle; Vener, Alexander V.; Rochaix, Jean-David; Goldschmidt-Clermont, Michel

    2012-01-01

    Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STATE TRANSITION7 (STN7) phosphorylates LHCII, the light-harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions. STN8, which is mainly involved in phosphorylation of PSII core subunits, influences folding of the thylakoid membranes and repair of PSII after photodamage. The rapid reversibility of these acclimatory responses requires the action of protein phosphatases. In a reverse genetic screen, we identified the chloroplast PP2C phosphatase, PHOTOSYSTEM II CORE PHOSPHATASE (PBCP), which is required for efficient dephosphorylation of PSII proteins. Its targets, identified by immunoblotting and mass spectrometry, largely coincide with those of the kinase STN8. The recombinant phosphatase is active in vitro on a synthetic substrate or on isolated thylakoids. Thylakoid folding is affected in the absence of PBCP, while its overexpression alters the kinetics of state transitions. PBCP and STN8 form an antagonistic kinase and phosphatase pair whose substrate specificity and physiological functions are distinct from those of STN7 and the counteracting phosphatase PROTEIN PHOSPHATASE1/THYLAKOID-ASSOCIATED PHOSPHATASE38, but their activities may overlap to some degree. PMID:22706287

  16. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas.

    PubMed

    Naylor, Tara L; Tang, Huaping; Ratsch, Boris A; Enns, Andreas; Loo, Alice; Chen, Liqing; Lenz, Peter; Waters, Nigel J; Schuler, Walter; Dörken, Bernd; Yao, Yung-Mae; Warmuth, Markus; Lenz, Georg; Stegmeier, Frank

    2011-04-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and CD79A/B. In this study, we offer evidence of therapeutic potential for the selective PKC (protein kinase C) inhibitor sotrastaurin (STN) in preclinical models of DLBCL. A significant fraction of ABC DLBCL cell lines exhibited strong sensitivity to STN, and we found that the molecular nature of NF-κB pathway lesions predicted responsiveness. CD79A/B mutations correlated with STN sensitivity, whereas CARD11 mutations rendered ABC DLBCL cell lines insensitive. Growth inhibitory effects of PKC inhibition correlated with NF-κB pathway inhibition and were mediated by induction of G₁-phase cell-cycle arrest and/or cell death. We found that STN produced significant antitumor effects in a mouse xenograft model of CD79A/B-mutated DLBCL. Collectively, our findings offer a strong rationale for the clinical evaluation of STN in ABC DLBCL patients who harbor CD79 mutations also illustrating the necessity to stratify DLBCL patients according to their genetic abnormalities.

  17. Maximal subthalamic beta hypersynchrony of the local field potential in Parkinson's disease is located in the central region of the nucleus.

    PubMed

    de Solages, Camille; Hill, Bruce C; Yu, Hong; Henderson, Jaimie M; Bronte-Stewart, Helen

    2011-12-01

    A pathological marker of Parkinson's disease is the existence of abnormal synchrony of neuronal activity within the beta frequency range (13-35 Hz) in the subthalamic nucleus (STN). Recent studies examining the topography of this rhythm have located beta hypersynchrony in the most dorsal part of the STN. In contrast, this study of the topography of the local field potential beta oscillations in 18 STNs with a 1 mm spatial resolution revealed that the point of maximal beta hypersynchrony was located at 53 ± 24% of the trajectory span from the dorsal to the ventral borders of the STN (corresponding to a 3.0 ± 1.6 mm depth for a 5.9 ± 0.75 mm STN span). This suggests that maximal beta hypersynchrony is located in the central region of the nucleus and that further investigation should be done before using STN spectral profiles as an indicator for guiding placement of deep brain stimulation leads. PMID:21205981

  18. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease.

    PubMed

    Yang, Andrew I; Vanegas, Nora; Lungu, Codrin; Zaghloul, Kareem A

    2014-09-17

    Beta frequency (13-30 Hz) oscillatory activity in the subthalamic nucleus (STN) of Parkinson's disease (PD) has been shown to influence the temporal dynamics of high-frequency oscillations (HFOs; 200-500 Hz) and single neurons, potentially compromising the functional flexibility of the motor circuit. We examined these interactions by simultaneously recording both local field potential and single-unit activity from the basal ganglia of 15 patients with PD during deep brain stimulation (DBS) surgery of the bilateral STN. Phase-amplitude coupling (PAC) in the STN was specific to beta phase and HFO amplitude, and this coupling was strongest at the dorsal STN border. We found higher beta-HFO PAC near DBS lead contacts that were clinically effective compared with the remaining non-effective contacts, indicating that PAC may be predictive of response to STN DBS. Neuronal spiking was locked to the phase of 8-30 Hz oscillations, and the spatial topography of spike-phase locking (SPL) was similar to that of PAC. Comparisons of PAC and SPL showed a lack of spatiotemporal correlations. Beta-coupled HFOs and field-locked neurons had different preferred phase angles and did not co-occur within the same cycle of the modulating oscillation. Our findings provide additional support that beta-HFO PAC may be central to the pathophysiology of PD and suggest that field-locked neurons alone are not sufficient for the emergence of beta-coupled HFOs. PMID:25232117

  19. Personality changes after deep brain stimulation in Parkinson's disease.

    PubMed

    Pham, Uyen; Solbakk, Anne-Kristin; Skogseid, Inger-Marie; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Andersson, Stein; Haraldsen, Ira Ronit; Aarsland, Dag; Dietrichs, Espen; Malt, Ulrik Fredrik

    2015-01-01

    Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized therapy that improves motor symptoms in advanced Parkinson's disease (PD). However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI): the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS), and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L) before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P = 0.006; P = 0.024). Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P = 0.027). Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity. PMID:25705545

  20. Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson's disease patients using automatic segmentation and PCA-based analysis.

    PubMed

    Xiao, Yiming; Jannin, Pierre; D'Albis, Tiziano; Guizard, Nicolas; Haegelen, Claire; Lalys, Florent; Vérin, Marc; Collins, D Louis

    2014-09-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective surgical therapy to treat Parkinson's disease (PD). Conventional methods employ standard atlas coordinates to target the STN, which, along with the adjacent red nucleus (RN) and substantia nigra (SN), are not well visualized on conventional T1w MRIs. However, the positions and sizes of the nuclei may be more variable than the standard atlas, thus making the pre-surgical plans inaccurate. We investigated the morphometric variability of the STN, RN and SN by using label-fusion segmentation results from 3T high resolution T2w MRIs of 33 advanced PD patients. In addition to comparing the size and position measurements of the cohort to the Talairach atlas, principal component analysis (PCA) was performed to acquire more intuitive and detailed perspectives of the measured variability. Lastly, the potential correlation between the variability shown by PCA results and the clinical scores was explored.

  1. Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease.

    PubMed

    Witt, Karsten; Daniels, Christine; Herzog, Jan; Lorenz, Delia; Volkmann, Jens; Reiff, Julia; Mehdorn, Maximilian; Deuschl, Günther; Krack, Paul

    2006-01-01

    Patients with Parkinson's disease frequently have mild to moderate depression and exhibit low hedonic tone. The authors investigate the impact of a single L-dopa challenge and the acute effects of electric stimulation of the subthalamic nucleus (STN) on symptoms of depression and hedonic tone. Depressive symptoms improved with L-dopa and STN stimulation to the same extent. However, hedonic tone improved only with L-dopa. Most of the emotional changes did not correlate with changes in motor performance, indicating they were not just reactive but specific to the treatment. These results demonstrate a single dissociation of depressive symptoms and anhedonia in response to an acute L-dopa and STN-stimulation challenge.

  2. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism.

    PubMed

    Wessel, Jan R; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H E M; Aziz, Tipu Z; Aron, Adam R

    2016-04-18

    Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events.

  3. High frequency stimulation of the subthalamic nucleus is efficacious in Parkin disease.

    PubMed

    Romito, Luigi M A; Contarino, Maria F; Ghezzi, Daniele; Franzini, Angelo; Garavaglia, Barbara; Albanese, Alberto

    2005-02-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is an efficacious symptomatic treatment for Parkinson's disease. We have analysed the genetic status of a series of consecutive parkinsonian patients implanted for STN HFS and compared the outcome of five carrying mutations in the parkin gene with that of the non-parkin group. All patients obtained sustained control of PD symptoms and achieved functional improvement; in the parkin group the UPDRS motor score improved by 56.4%, the levodopa equivalent daily dosage was reduced by 75.5%. Postoperative medications were reduced more in parkin than in non-parkin patients. We confirm that the current inclusion criteria for STN HFS do not exclude patients carrying mutations in the parkin gene; their clinical outcome is comparable to that of the non-parkin group.

  4. Time-Resolved Fluorescence Studies Of Ph Effects On The Conformation Of Troponin C

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Kao; Liao, Ronglihi; Cheung, Herbert C.

    1988-06-01

    Using time-resolved nanosecond fluorescence spectroscopy, we investigated the conformational changes of skeletal and cardiac troponin C. A thiol specific fluorescence probe N-(iodoacety1)-N'-(5-sulfo-1-naphthyl)- ethylenediamine (IAEDANS) was attached to cysteine 98 of skeletal troponin C (STnC) and 2-(4'-iodoacetamido-anilino)-naphthalene-6-sulfonic acid (IAANS) was linked to cysteine 35 and 84 of cardiac troponin C (CTnC). With excitation at 340 nm for STnC-IAEDANS and at 335 nm for CTnC-IAANS, apo-STnC and apo-CTnC exhibited biexponential decay kinetics. At 20°C and neutral pH, the following lifetimes were observed: (1) apo-STnC, 9 and 16 ns, and (2) apo-CTnC, 2.3 and 7 ns. The long lived component of the emission in STnC-IAEDANS comprised ~ 61% of observed intensity, however, the corresponding component in CTnC contributed only. A decrease of pH from 7.2 to 5.2 induced an increase of the lifetimes 20% (STnC) and 10% (CTnC). These results suggest that Cys-98 of STnC and Cys-35 and Cys-84 of CTnC became less quenched by their neighboring residues at low pH. Addition of guanidine hydrochloride to STnC resulted in a decrease of ~30% of both lifetimes. The lifetimes increased slightly when the temperature was lowered. Variation of solution viscosity by addition of sucrose did not affect the long component of the lifetimes of STnC. However, the short component did sense a viscosity effect. These results suggest that there was likely a chromophore heterogeneity which may arise from differences in conformation, environment, and or ionization of the excited state of the chromophore. At 20°C and neutral pH, two rotational correlation times were observed: (1) apo-STnC, - 1.2 ns, .2 1 11.3 ns, and (2) apo-CTnC, .~ 0.6 ns, .2 1 13.6 ns. The short rotational correlation times likely reflect rapid motions of the chromophores covalently attached to the side chain of the cysteine residues, and the long correlation times reflect the overall protein motions. The .2 values

  5. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    SciTech Connect

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  6. Older Candidates for Subthalamic Deep Brain Stimulation in Parkinson's Disease Have a Higher Incidence of Psychiatric Serious Adverse Events

    PubMed Central

    Cozac, Vitalii V.; Ehrensperger, Michael M.; Gschwandtner, Ute; Hatz, Florian; Meyer, Antonia; Monsch, Andreas U.; Schuepbach, Michael; Taub, Ethan; Fuhr, Peter

    2016-01-01

    Objective: To investigate the incidence of serious adverse events (SAE) of subthalamic deep brain stimulation (STN-DBS) in elderly patients with Parkinson's disease (PD). Methods: We investigated a group of 26 patients with PD who underwent STN-DBS at mean age 63.2 ± 3.3 years. The operated patients from the EARLYSTIM study (mean age 52.9 ± 6.6) were used as a comparison group. Incidences of SAE were compared between these groups. Results: A higher incidence of psychosis and hallucinations was found in these elderly patients compared to the younger patients in the EARLYSTIM study (p < 0.01). Conclusions: The higher incidence of STN-DBS-related psychiatric complications underscores the need for comprehensive psychiatric pre- and postoperative assessment in older DBS candidates. However, these psychiatric SAE were transient, and the benefits of DBS clearly outweighed its adverse effects. PMID:27375478

  7. The Evolution of the Society of Trauma Nurses' Leadership Institute.

    PubMed

    Krichten, Amy; Kyle, Amber

    2015-01-01

    The Society of Trauma Nurses (STN) understands the increasing complexity of trauma care and the vital leadership role nurses play. In 2009, the STN took the initiative to form a Leadership Committee tasked with researching the possibility of developing a mechanism to offer trauma leaders opportunities in leadership development. Investigation and collaboration among the committee members, with input from the Board of Directors and the organization's executive director, resulted in the STN Leadership Institute. The Leadership Institute design is to equip trauma nurses with the tools needed to effectively lead from the bedside to the boardroom and beyond through web-based modules. Operationalization of the plan took intense focus and dedicated leadership. Following a pilot study, the initial cohort ran the first quarter of 2015. Because of the positive feedback and identified opportunities for improvement, the program will continue to be offered with further expansion planning underway.

  8. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia.

  9. Effect of Subthalamic Deep Brain Stimulation on Levodopa-Induced Dyskinesia in Parkinson's Disease

    PubMed Central

    Kim, Ji Hee; Chang, Won Seok; Jung, Hyun Ho

    2015-01-01

    Purpose To evaluate the effect of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) on levodopa-induced peak-dose dyskinesia in patients with Parkinson's disease (PD). Materials and Methods A retrospective review was conducted on patients who underwent STN DBS for PD from May 2000 to July 2012. Only patients with levodopa-induced dyskinesia prior to surgery and more than 1 year of available follow-up data after DBS were included. The outcome measures included the dyskinesia subscore of the Unified Parkinson's Disease Rating Scale (UPDRS) part IV (items 32 to 34 of UPDRS part IV) and the levodopa equivalent daily dose (LEDD). The patients were divided into two groups based on preoperative to postoperative LEDD change at 12 months after the surgery: Group 1, LEDD decrease >15%; Group 2, all other patients. Group 2 was further divided by the location of DBS leads. Results Of the 100 patients enrolled, 67 were in Group 1, while those remaining were in Group 2. Twelve months after STN DBS, Groups 1 and 2 showed improvements of 61.90% and 57.14%, respectively, in the dyskinesia subscore. Group 1 was more likely to experience dyskinesia suppression; however, the association between the groups and dyskinesia suppression was not statistically significant (p=0.619). In Group 2, dyskinesia was significantly decreased by stimulation of the area above the STN in 18 patients compared to stimulation of the STN in 15 patients (p=0.048). Conclusion Levodopa-induced dyskinesia is attenuated by STN DBS without reducing the levodopa dosage. PMID:26256974

  10. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. PMID:26231574

  11. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease

    PubMed Central

    Callahan, Joshua W; Abercrombie, Elizabeth D

    2015-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder in which impairments in the processing of information between the cortex and basal ganglia are fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a pivotal role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in a hyperkinetic movement syndrome, similar to the HD phenotype. The aim of the present study was to examine the relationship between neuronal activity in the STN and cortex in an animal model of HD. We performed in vivo extracellular recordings in the STN to measure single-unit activity and local field potentials in the R6/2 transgenic mouse model of HD. These recordings were obtained during epochs of simultaneously acquired electrocorticogram (ECoG) in discrete brain states representative of global cortical network synchronization or desynchronization. Cortically patterned STN neuronal activity was less phase-locked in R6/2 mice, which is likely to result in less efficient coding of cortical inputs by the basal ganglia. In R6/2 mice, the power of the ECoG in lower frequencies (0.5–4 Hz) was diminished while the power expressed in higher frequencies (13–100 Hz) was increased. In addition, the spontaneous activity of STN neurons in R6/2 mice was reduced and neurons exhibited a more irregular firing pattern. Glutamatergic STN neurons provide the major excitatory drive to the output nuclei of the basal ganglia and altered discharge patterns could lead to aberrant basal ganglia output and disordered motor control in HD. PMID:25952461

  12. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia.

    PubMed

    Saowadee, N; Agersted, K; Bowen, J R

    2012-06-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria-stabilized zirconia (YSZ) and Nb-doped strontium titanate (STN) to optimize data quality and acquisition time for 3D-EBSD experiments by FIB serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality of STN samples compared to a mechanically polished surface but yielded a high pattern quality on YSZ. The difference between STN and YSZ pattern quality is thought to be caused by difference in the degree of ion damage as their backscatter coefficients and ion penetration depths are virtually identical. Reducing the FIB probe current from 5000 to 100 pA improved the pattern quality by 20% for STN but only showed a marginal improvement for YSZ. On STN, a conductive coating can help to improve the pattern quality and 5 kV polishing can lead to a 100% improvement of the pattern quality relatively to 30 kV FIB milling. For 3D-EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time. PMID:22582798

  13. Subthalamic Stimulation Reduces Vowel Space at the Initiation of Sustained Production: Implications for Articulatory Motor Control in Parkinson’s Disease

    PubMed Central

    Sidtis, John J.; Alken, Amy G.; Tagliati, Michele; Alterman, Ron; Van Lancker Sidtis, Diana

    2016-01-01

    Background: Stimulation of the subthalamic nuclei (STN) is an effective treatment for Parkinson’s disease, but complaints of speech difficulties after surgery have been difficult to quantify. Speech measures do not convincingly account for such reports. Objective: This study examined STN stimulation effects on vowel production, in order to probe whether DBS affects articulatory posturing. The objective was to compare positioning during the initiation phase with the steady prolongation phase by measuring vowel spaces for three “corner” vowels at these two time frames. Methods: Vowel space was measured over the initial 0.25 sec of sustained productions of high front (/i/), high back (/u/) and low vowels (/a/), and again during a 2 sec segment at the midpoint. Eight right-handed male subjects with bilateral STN stimulation and seven age-matched male controls were studied based on their participation in a larger study that included functional imaging. Mean values: age = 57±4.6 yrs; PD duration = 12.3±2.7 yrs; duration of DBS = 25.6±21.2 mos, and UPDRS III speech score = 1.6±0.7. STN subjects were studied off medication at their therapeutic DBS settings and again with their stimulators off, counter-balanced order. Results: Vowel space was larger in the initiation phase compared to the midpoint for both the control and the STN subjects off stimulation. With stimulation on, however, the initial vowel space was significantly reduced to the area measured at the mid-point. For the three vowels, the acoustics were differentially affected, in accordance with expected effects of front versus back position in the vocal tract. Conclusions: STN stimulation appears to constrain initial articulatory gestures for vowel production, raising the possibility that articulatory positions normally used in speech are similarly constrained. PMID:27003219

  14. Myths and facts about the EARLYSTIM study.

    PubMed

    Schüpbach, W M Michael; Rau, Jörn; Houeto, Jean-Luc; Krack, Paul; Schnitzler, Alfons; Schade-Brittinger, Carmen; Timmermann, Lars; Deuschl, Günther

    2014-12-01

    DBS of the STN improves quality of life (QoL) and motor function not only in advanced Parkinson's disease (PD), but also in PD with early motor complications, as shown in the recent EARLYSTIM study. In spite of the evidence in favor of STN-DBS, the findings of the EARLYSTIM study have recently been controversially debated. Here, we argue that a placebo or lessebo effect is unlikely to have relevantly contributed to the favorable outcome of STN-DBS in the EARLYSTIM study. The method of quantification of the placebo effect of DBS in a previous publication reveals flaws leading to implausible results, and therefore the placebo effect of DBS remains currently elusive, especially because blinding of PD patients with STN-DBS as a crucial preassumption for assessing a placebo effect is practically impossible. Moreover, we claim that the extent of such a placebo effect is most likely very small. Specific challenges of STN-DBS at an earlier stage of PD and inclusion criteria are the risk of inclusion of patients who later evolve to atypical parkinsonism, the risk of a floor effect for the benefit from DBS, the need for experienced multidisciplinary care including prevention of suicidal behavior, and the need for highly qualified long-term follow-up. The EARLYSTIM study has shown that STN-DBS may be proposed earlier on in the course of PD, as soon as motor complications start to cause relevant disability despite proper medical management. This can lead to a gain of several years of improved QoL. PMID:25399678

  15. Comparison of frequencies of non motor symptoms in Indian Parkinson’s disease patients on medical management versus deep brain stimulation: A case-control study

    PubMed Central

    Rukmini Mridula, Kandadai; Borgohain, Rupam; Jabeen, Shaik Afshan; Padmaja, Gaddamanugu; Bandaru, VCS Srinivasarao; Ankathi, Praveen; Kanikannan, Meena A; Ali Khan, Mohammed Shujath

    2015-01-01

    Background: Non motor symptoms (NMS) of idiopathic Parkinson’s disease (PD) are a major cause of disability and recognition of these symptoms and treatment is important for comprehensive health care. Deep brain stimulation of bilateral subthalamic nucleus deep brain stimulation (STN DBS) has been shown to improve motor symptoms in PD and effects on NMS are unknown. To investigate the NMS among PD patients who underwent STN DBS. Methods: We recruited prospectively 56 patients with PD, who had undergone bilateral STN DBS and 53 age and duration of illness matched PD patients on dopaminergic therapy (controls). NMS were assessed using 30 item questionnaire NMS Quest. These questions evaluated 9 domains, gastrointestinal, urinary, cardiovascular, sexual, cognition (apathy/attention/memory), anxiety/depression, hallucinations/delusions, sleep and miscellaneous. Comparison was done on individual symptoms as well as in various domains. This study was carried at Nizam’s Institution of Medical Sciences and study period was from January 2011 to December 2012. Results: Patients who underwent STN DBS had a significantly lower mean total score on NMS quest (6.7 ± 3.8) compared to controls (8.4 ± 3.7) (P < 0.00100). Symptoms in the domains of cardiovascular, gastrointestinal, sleep were significantly less frequent while sexual disturbances were significantly more frequent among patients compared to controls. On individual symptom analysis, nocturia  (P < 0.00010), unexplained pains (P < 0.00010), nausea and vomiting, constipation, lightheadedness, depression, and insomnia were less prevalent, while sexual disturbances were significantly more common in STN DBS group compared to controls. Conclusion: Bilateral STN DBS not only improves the motor symptoms but also improves many NMS in PD patients. PMID:26056553

  16. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response

    PubMed Central

    Benedetti, Fabrizio; Lanotte, Michele; Colloca, Luana; Ducati, Alessandro; Zibetti, Maurizio; Lopiano, Leonardo

    2009-01-01

    Placebo administration to Parkinson patients is known to induce dopamine release in the striatum and to affect the activity of subthalamic nucleus (STN) neurons. By using intraoperative single-neuron recording techniques in awake patients, here we extend our previous study on STN recording, and characterize part of the neuronal circuit which is affected by placebos. In those patients who showed a clinical placebo response, there was a decrease in firing rate in STN neurons that was associated with a decrease in the substantia nigra pars reticulata (SNr) and an increase in the ventral anterior (VA) and anterior ventral lateral (VLa) thalamus. These data show that placebo decreases STN and SNr activity whereas it increases VA/VLa activity. By contrast, placebo non-responders showed either a lack of changes in this circuit or partial changes in the STN only. Thus, changes in activity in the whole basal ganglia–VA/VLa circuit appear to be important in order to observe a clinical placebo improvement, although the involvement of other circuits, such as the direct pathway bypassing the STN, cannot be ruled out. The circuit we describe in the present study is likely to be a part of a more complex circuitry, including the striatum and the internal globus pallidus (GPi), that is modified by placebo administration. These findings indicate that a placebo treatment, which is basically characterized by verbal suggestions of benefit, can reverse the malfunction of a complex neuronal circuit, although these placebo-associated neuronal changes are short-lasting and occur only in some patients but not in others. PMID:19546163

  17. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response.

    PubMed

    Benedetti, Fabrizio; Lanotte, Michele; Colloca, Luana; Ducati, Alessandro; Zibetti, Maurizio; Lopiano, Leonardo

    2009-08-01

    Placebo administration to Parkinson patients is known to induce dopamine release in the striatum and to affect the activity of subthalamic nucleus (STN) neurons. By using intraoperative single-neuron recording techniques in awake patients, here we extend our previous study on STN recording, and characterize part of the neuronal circuit which is affected by placebos. In those patients who showed a clinical placebo response, there was a decrease in firing rate in STN neurons that was associated with a decrease in the substantia nigra pars reticulata (SNr) and an increase in the ventral anterior (VA) and anterior ventral lateral (VLa) thalamus. These data show that placebo decreases STN and SNr activity whereas it increases VA/VLa activity. By contrast, placebo non-responders showed either a lack of changes in this circuit or partial changes in the STN only. Thus, changes in activity in the whole basal ganglia-VA/VLa circuit appear to be important in order to observe a clinical placebo improvement, although the involvement of other circuits, such as the direct pathway bypassing the STN, cannot be ruled out. The circuit we describe in the present study is likely to be a part of a more complex circuitry, including the striatum and the internal globus pallidus (GPi), that is modified by placebo administration. These findings indicate that a placebo treatment, which is basically characterized by verbal suggestions of benefit, can reverse the malfunction of a complex neuronal circuit, although these placebo-associated neuronal changes are short-lasting and occur only in some patients but not in others.

  18. Stimulation of the Subthalamic Nucleus and Impulsivity

    PubMed Central

    Ballanger, Benedicte; van Eimeren, Thilo; Moro, Elena; Lozano, Andres M.; Hamani, Clement; Boulinguez, Philippe; Pellecchia, Giovanna; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E.; Strafella, Antonio P.

    2010-01-01

    Objective In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a “hold your horses” signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. Methods We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. Results Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. Interpretation The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation. PMID:20035509

  19. Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    PubMed Central

    Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767

  20. Dominant efficiency of nonregular patterns of subthalamic nucleus deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder in a data-driven computational model

    NASA Astrophysics Data System (ADS)

    Karamintziou, Sofia D.; Deligiannis, Nick G.; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stephan; David, Olivier; Stathis, Pantelis G.; Tagaris, George A.; Boviatsis, Efstathios J.; Sakas, Damianos E.; Polychronaki, Georgia E.; Tsirogiannis, George L.; Nikita, Konstantina S.

    2016-02-01

    Objective. Almost 30 years after the start of the modern era of deep brain stimulation (DBS), the subthalamic nucleus (STN) still constitutes a standard stimulation target for advanced Parkinson’s disease (PD), but the use of STN-DBS is also now supported by level I clinical evidence for treatment-refractory obsessive-compulsive disorder (OCD). Disruption of neural synchronization in the STN has been suggested as one of the possible mechanisms of action of standard and alternative patterns of STN-DBS at a local level. Meanwhile, recent experimental and computational modeling evidence has signified the efficiency of alternative patterns of stimulation; however, no indications exist for treatment-refractory OCD. Here, we comparatively simulate the desynchronizing effect of standard (regular at 130 Hz) versus temporally alternative (in terms of frequency, temporal variability and the existence of bursts or pauses) patterns of STN-DBS for PD and OCD, by means of a stochastic dynamical model and two microelectrode recording (MER) datasets. Approach. The stochastic model is fitted to subthalamic MERs acquired during eight surgical interventions for PD and eight surgical interventions for OCD. For each dynamical system simulated, we comparatively assess the invariant density (steady-state phase distribution) as a measure inversely related to the desynchronizing effect yielded by the applied patterns of stimulation. Main results. We demonstrate that high (130 Hz)—and low (80 Hz)—frequency irregular patterns of stimulation, and low-frequency periodic stimulation interrupted by bursts of pulses, yield in both pathologic conditions a significantly stronger desynchronizing effect compared with standard STN-DBS, and distinct alternative patterns of stimulation. In PD, values of the invariant density measure are proven to be optimal at the dorsolateral oscillatory region of the STN including sites with the optimal therapeutic window. Significance. In addition to providing

  1. Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson's disease: from preclinical to clinical studies.

    PubMed

    Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane

    2016-08-01

    OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy

  2. Subthalamic Nucleus Deep Brain Stimulation Modulate Catecholamine Levels with Significant Relations to Clinical Outcome after Surgery in Patients with Parkinson’s Disease

    PubMed Central

    Yamamoto, Tatsuya; Uchiyama, Tomoyuki; Higuchi, Yoshinori; Asahina, Masato; Hirano, Shigeki; Yamanaka, Yoshitaka; Kuwabara, Satoshi

    2015-01-01

    Aims Although subthalamic nucleus deep brain stimulation (STN-DBS) is effective in patients with advanced Parkinson’s disease (PD), its physiological mechanisms remain unclear. Because STN-DBS is effective in patients with PD whose motor symptoms are dramatically alleviated by L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, the higher preoperative catecholamine levels might be related to the better clinical outcome after surgery. We aimed to examine the correlation between the preoperative catecholamine levels and postoperative clinical outcome after subthalamic nucleus deep brain stimulation. The effectiveness of STN-DBS in the patient who responded well to dopaminergic medication suggest the causal link between the dopaminergic system and STN-DBS. We also examined how catecholamine levels were modulated after subthalamic stimulation. Methods In total 25 patients with PD were enrolled (Mean age 66.2 ± 6.7 years, mean disease duration 11.6 ± 3.7 years). Mean levodopa equivalent doses were 1032 ± 34.6 mg before surgery. Cerebrospinal fluid and plasma catecholamine levels were measured an hour after oral administration of antiparkinsonian drugs before surgery. The mean Unified Parkinson’s Disease Rating Scale scores (UPDRS) and the Parkinson’s disease Questionnaire-39 (PDQ-39) were obtained before and after surgery. Of the 25 patients, postoperative cerebrospinal fluid and plasma were collected an hour after oral administration of antiparkinsonian drugs during on stimulation at follow up in 11 patients. Results Mean levodopa equivalent doses significantly decreased after surgery with improvement in motor functions and quality of life. The preoperative catecholamine levels had basically negative correlations with postoperative motor scores and quality of life, suggesting that higher preoperative catecholamine levels were related to better outcome after STN-DBS. The preoperative plasma levels of L-DOPA had significantly negative correlations with

  3. Effects of One Cycle of Recurrent Selection for Early Blight Resistance in a Diploid Hybrid Solanum phureja-S. stenotomum Population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight, caused by Alternaria solani, is the second most important foliar disease in potatoes, after late blight, around the world. Heritable early blight resistance was previously identified in a diploid hybrid population of Solanum phureja-S. stenotomum (phu-stn). Seventy-two clones, consis...

  4. Pseudobulbar crying induced by stimulation in the region of the subthalamic nucleus.

    PubMed

    Okun, M S; Raju, D V; Walter, B L; Juncos, J L; DeLong, M R; Heilman, K; McDonald, W M; Vitek, J L

    2004-06-01

    We describe a case of pseudobulbar crying associated with deep brain stimulation (DBS) in the region of the subthalamic nucleus (STN). Patients with pseudobulbar crying show no other evidence of subjective feelings of depression such as dysphoria, anhedonia, or vegetative signs. This may be accompanied by other symptoms of pseudobulbar palsy and has been reported to occur with ischaemic or structural lesions in both cortical and subcortical regions of the brain. Although depression has been observed to result from DBS in the region of the STN, pseudobulbar crying has not been reported. A single patient who reported the symptoms of pseudobulbar crying after placement of an STN DBS was tested in the off DBS and on DBS conditions. The patient was tested using all four DBS lead contacts and the observations and results of the examiners were recorded. The Geriatric Depression Scale was used to evaluate for depression in all of the conditions. The patient exhibited pseudobulbar crying when on monopolar stimulation at all four lead contacts. The pseudobulbar crying resolved off stimulation. This case describes another type of affective change that may be associated with stimulation in the region of or within the STN. Clinicians should be aware of this potential complication, the importance of differentiating it from stimulation induced depression, and its response to a serotonin reuptake inhibitor, such as sertraline.

  5. Changes of oscillatory activity in the subthalamic nucleus during obsessive-compulsive disorder symptoms: two case reports.

    PubMed

    Bastin, Julien; Polosan, Mircea; Piallat, Brigitte; Krack, Paul; Bougerol, Thierry; Chabardès, Stéphan; David, Olivier

    2014-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has positive and negative effects on mood and cognition, as shown in patients suffering from Parkinson's disease (PD) and severe obsessive-compulsive disorders (OCD). Such behavioural and clinical effects suggest that the STN has an important function in limbic circuitry, which still needs to be clarified from electrophysiological recordings. Here we report two exceptional cases of OCD patients in whom local field potentials (LFP) of the anterior STN were directly recorded during acute obsessive-compulsive symptoms. We found significant symptom-related changes in different frequency bands, with no clear preferential oscillatory pattern. The overall modified STN activity during OCD symptoms suggests a mixture of both pathological and compensatory mechanisms that would reflect the maintenance of an over stable motor/cognitive/emotional set. Whether this activity propagates throughout the entire cognitive-limbic loops that are impaired in OCD is an interesting question for future research in larger series of patients. PMID:24552693

  6. Two-dimensional crystallization on lipid monolayers and three-dimensional structure of sticholysin II, a cytolysin from the sea anemone Stichodactyla helianthus.

    PubMed Central

    Martín-Benito, J; Gavilanes, F; de Los Ríos, V; Mancheño, J M; Fernández, J J; Gavilanes, J G

    2000-01-01

    Sticholysin II (Stn II), a potent cytolytic protein isolated from the sea anemone Stichodactyla helianthus, has been crystallized on lipid monolayers. With Fourier-based methods, a three-dimensional (3D) model of Stn II, up to a resolution of 15 A, has been determined. The two-sided plane group is p22(1)2, with dimensions a = 98 A, b = 196 A. The 3D model of Stn II displays a Y-shaped structure, slightly flattened, with a small curvature along its longest dimension (51 A). This protein, with a molecular mass of 19. 2 kDa, is one of the smallest structures reconstructed with this methodology. Two-dimensional (2D) crystals of Stn II on phosphatidylcholine monolayers present a unit cell with two tetrameric motifs, with the monomers in two different orientations: one with its longest dimension lying on the crystal plane and the other with this same axis leaning at an angle of approximately 60 degrees with the crystal plane. PMID:10827995

  7. FACS array profiling identifies Ecto-5' nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning.

    PubMed

    Ena, Sabrina L; De Backer, Jean-François; Schiffmann, Serge N; de Kerchove d'Exaerde, Alban

    2013-05-15

    The striatopallidal (STP) and striatonigral (STN) neurons constitute the main neuronal populations of the striatum. Despite the increasing knowledge concerning their involvement in multiple tasks associated with the striatum, it is still challenging to understand the precise differential functions of these two neuronal populations and to identify and study new genes involved in these functions. Here, we describe a reliable approach, applied on adult mouse brain, to generate specific STP and STN neuron gene profiles. STP and STN neurons were identified in the same animal using the transgenic Adora2A-Cre × Z/EG mouse model combined with retrograde labeling, respectively. Gene profiling was generated from FACS-purified neurons leading to the identification of new STP and STN neuron-specific genes. Knock-down models based on Cre-dependent lentiviral vector were developed to investigate their function either in striatal or in STP neurons. Thereby, we demonstrate that ecto-5'-nucleotidase (NT5e) is specifically expressed in STP neurons and is at the origin of most of the extracellular adenosine produced in the striatum. Behavioral analysis of striatal and STP neuron knock-down mouse models as well as NT5e knock-out mice demonstrates the implication of this STP neuron enzyme in motor learning.

  8. Changes in Vowel Articulation with Subthalamic Nucleus Deep Brain Stimulation in Dysarthric Speakers with Parkinson's Disease

    PubMed Central

    Langlois, Mélanie; Prud'Homme, Michel; Cantin, Léo

    2014-01-01

    Purpose. To investigate changes in vowel articulation with the electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN) in dysarthric speakers with Parkinson's disease (PD). Methods. Eight Quebec-French speakers diagnosed with idiopathic PD who had undergone STN DBS were evaluated ON-stimulation and OFF-stimulation (1 hour after DBS was turned off). Vowel articulation was compared ON-simulation versus OFF-stimulation using acoustic vowel space and formant centralization ratio, calculated with the first (F1) and second formant (F2) of the vowels /i/, /u/, and /a/. The impact of the preceding consonant context on articulation, which represents a measure of coarticulation, was also analyzed as a function of the stimulation state. Results. Maximum vowel articulation increased during ON-stimulation. Analyses also indicate that vowel articulation was modulated by the consonant context but this relationship did not change with STN DBS. Conclusions. Results suggest that STN DBS may improve articulation in dysarthric speakers with PD, in terms of range of movement. Optimization of the electrical parameters for each patient is important and may lead to improvement in speech fine motor control. However, the impact on overall speech intelligibility may still be small. Clinical considerations are discussed and new research avenues are suggested. PMID:25400977

  9. Commentary: Dealing with the Aftermath.

    PubMed

    Agid, Yves

    2016-10-01

    In 2006, our team reported our experience in the use of bilateral high-frequency stimulation of the subthalamic nucleus (STN) in patients with severe levodopa-responsive forms of Parkinson's disease (PD). 1 The aim was to better understand and manage the difficulties experienced by patients who undergo neurosurgery, and by their families. PMID:27634725

  10. Bilateral Deep Brain Stimulation of the Subthalamic Nucleus under Sedation with Propofol and Fentanyl.

    PubMed

    Lee, Woong-Woo; Ehm, Gwanhee; Yang, Hui-Jun; Song, In Ho; Lim, Yong Hoon; Kim, Mi-Ryoung; Kim, Young Eun; Hwang, Jae Ha; Park, Hye Ran; Lee, Jae Min; Kim, Jin Wook; Kim, Han-Joon; Kim, Cheolyoung; Kim, Hee Chan; Park, Eunkyoung; Kim, In Young; Kim, Dong Gyu; Jeon, Beomseok; Paek, Sun Ha

    2016-01-01

    Awakening during deep brain stimulation (DBS) surgery may be stressful to patients. The aim of the current study was to evaluate the effect on MER signals and their applicability to subthalmic nucleus (STN) DBS surgery for patients with Parkinson's disease (PD) under sedation with propofol and fentanyl. Sixteen consecutive patients with PD underwent STN-DBS surgery with propofol and fentanyl. Their MER signals were achieved during the surgery. To identify the microelectrodes positions, the preoperative MRI and postoperative CT were used. Clinical profiles were also collected at the baseline and at 6 months after surgery. All the signals were slightly attenuated and contained only bursting patterns, compared with our previous report. All electrodes were mostly located in the middle one third part of the STN on both sides of the brain in the fused images. Six months later, the patients were improved significantly in the medication-off state and they met with less dyskinesia and less off-duration. Our study revealed that the sedation with propofol and fentanyl was applicable to STN-DBS surgery. There were no significant problems in precise positioning of bilateral electrodes. The surgery also improved significantly clinical outcomes in 6-month follow-up. PMID:27018855

  11. Method to Select Metropolitan Areas of Epidemiologic Interest for Enhanced Air Quality Monitoring

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s current Speciation Trends Network (STN) covers most major U.S. metropolitan areas and a wide range of particulate matter (PM) constituents and gaseous co-pollutants. However, using filter-based methods, most PM constituents are measured ...

  12. Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson's disease: long-term observation.

    PubMed

    Romito, Luigi M; Contarino, Maria Fiorella; Vanacore, Nicola; Bentivoglio, Anna Rita; Scerrati, Massimo; Albanese, Alberto

    2009-03-15

    Stimulation of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease (PD), but the medication requirements after implant are poorly known. We performed a long-term prospective evaluation of 20 patients maintained at stable dopaminergic therapy for 5 years after bilateral STN implants, who were evaluated 6 months, 1 year, 3 years, and 5 years after surgery. We measured, during the entire observation period, the effect of deep brain stimulation on motor and functional outcome measures, the levodopa equivalent daily dose and the total electrical energy delivered. At 5 years, the UPDRS motor score had improved by 54.2% and levodopa equivalent dose was reduced by 61.9%, compared with preimplant. Dopaminergic medication remained stable during the observation period, but energy was progressively increased over time. Rest tremor, rigidity, gait, lower and upper limb akinesia, and total axial score were improved in decreasing order. Postural stability and speech improved transiently, whereas on-period freezing of gait, motor fluctuations and dyskinesias recovered durably. Functional measures did not show improvement in autonomy and daily living activities after STN implant. Chronic STN stimulation allows to replace for dopaminergic medications in the long-term at the expense of an increase of the total energy delivered. This is associated with marked improvement of motor features without a matching benefit in functional measures.

  13. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro.

    PubMed

    Liebig, Luise; von Ameln-Mayerhofer, Andreas; Hentschke, Harald

    2015-01-01

    3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

  14. Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions.

    PubMed

    Fumagalli, Manuela; Giannicola, Gaia; Rosa, Manuela; Marceglia, Sara; Lucchiari, Claudio; Mrakic-Sposta, Simona; Servello, Domenico; Pacchetti, Claudio; Porta, Mauro; Sassi, Marco; Zangaglia, Roberta; Franzini, Angelo; Albanese, Alberto; Romito, Luigi; Piacentini, Sylvie; Zago, Stefano; Pravettoni, Gabriella; Barbieri, Sergio; Priori, Alberto

    2011-01-01

    Although lesional, neuroimaging, and brain stimulation studies have provided an insight into the neural mechanisms of judgement and decision-making, all these works focused on the cerebral cortex, without investigating the role of subcortical structures such as the basal ganglia. Besides being an effective therapeutic tool, deep brain stimulation (DBS) allows local field potential (LFP) recordings through the stimulation electrodes thus providing a physiological "window" on human subcortical structures. In this study we assessed whether subthalamic nucleus LFP oscillations are modulated by processing of moral conflictual, moral nonconflictual, and neutral statements. To do so, in 16 patients with Parkinson's disease (8 men) bilaterally implanted with subthalamic nucleus (STN) electrodes for DBS, we recorded STN LFPs 4 days after surgery during a moral decision task. During the task, recordings from the STN showed changes in LFP oscillations. Whereas the 14--30 Hz band (beta) changed during the movement executed to perform the task, the 5--13 Hz band (low-frequency) changed when subjects evaluated the content of statements. Low-frequency band power increased significantly more during conflictual than during nonconflictual or neutral sentences. We conclude that STN responds specifically to conflictual moral stimuli, and could be involved in conflictual decisions of all kinds, not only those for moral judgment. LFP oscillations provide novel direct evidence that the neural processing of conflictual decision-making spreads beyond the cortex to the basal ganglia and encompasses a specific subcortical conflict-dependent component. PMID:21061226

  15. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  16. Articulatory Closure Proficiency in Patients with Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus and Caudal Zona Incerta

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik; van Doorn, Jan

    2014-01-01

    Purpose: The present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease. Method: Nineteen patients participated preoperatively and…

  17. Effects of Stimulation of the Subthalamic Nucleus on Naming and Reading Nouns and Verbs in Parkinson's Disease

    ERIC Educational Resources Information Center

    Silveri, Maria Caterina; Ciccarelli, Nicoletta; Baldonero, Eleonora; Piano, Carla; Zinno, Massimiliano; Soleti, Francesco; Bentivoglio, Anna Rita; Albanese, Alberto; Daniele, Antonio

    2012-01-01

    An impairment for verbs has been described in patients with Parkinson's disease (PD), suggesting that a disruption of frontal-subcortical circuits may result in dysfunction of the neural systems involved in action-verb processing. A previous study suggested that deep brain stimulation (DBS) of the subthalamic nucleus (STN) during verb generation…

  18. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  19. Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease.

    PubMed

    Boller, Jana K; Barbe, Michael T; Pauls, K Amande M; Reck, Christiane; Brand, Matthias; Maier, Franziska; Fink, Gereon R; Timmermann, Lars; Kalbe, Elke

    2014-04-01

    Inconsistent findings regarding the effects of dopaminergic medication (MED) and deep brain stimulation (DBS) of the subthalamic nucleus (STN) on decision making processes and impulsivity in Parkinson's disease (PD) patients have been reported. This study investigated the influence of MED and STN-DBS on decision-making under risk. Eighteen non-demented PD patients, treated with both MED and STN-DBS (64.3±10.2years, UPDRS III MED off, DBS off 45.5±17.1) were tested with the Game of Dice Task (GDT) which probes decision-making under risk during four conditions: MED on/DBS on, MED on/DBS off, MED off/DBS on, and MED off/DBS off. Task performance across conditions was compared analyzing two GDT-parameters: (i) the "net score" indicating advantageous decisions, and (ii) the patient's ability to use negative feedback. Significantly higher GDT net scores were observed in Med on in contrast to Med off conditions as well as in DBS on versus DBS off conditions. However, no effect of therapy for the patient's ability to make use of negative feedback could be detected. The data suggest a positive influence of both MED and STN-DBS on making decisions under risk in PD patients, an effect which seems to be mediated by mechanisms other than the use of negative feedback. PMID:24444545

  20. Software for Information Storage and Retrieval Tested, Evaluated and Compared: Part VI--Various Additional Programs.

    ERIC Educational Resources Information Center

    Sieverts, Eric G.; And Others

    1993-01-01

    Reports on tests evaluating nine microcomputer software packages designed for information storage and retrieval: BRS-Search, dtSearch, InfoBank, Micro-OPC, Q&A, STN-PFS, Strix, TINman, and ZYindex. Tables and narrative evaluations detail results related to security, hardware, user features, search capability, indexing, input, maintenance of files,…

  1. Reward circuit DBS improves Parkinson's gait along with severe depression and OCD.

    PubMed

    Williams, Nolan R; Hopkins, Thomas R; Short, E Baron; Sahlem, Gregory L; Snipes, Jonathan; Revuelta, Gonzalo J; George, Mark S; Takacs, Istvan

    2016-01-01

    A 59-year-old Caucasian man with a past history of Parkinson's disease (PD) status post-bilateral subthalamic nucleus (STN) deep brain stimulation (DBS), who also had treatment-resistant (TR) obsessive-compulsive disorder (OCD), and treatment-resistant depression (TRD), presented for further evaluation and management of his TR OCD. After an unsuccessful attempt to treat his OCD by reprogramming his existing STN DBS, he was offered bilateral ventral capsule/ventral striatum (VC/VS) DBS surgery. In addition to the expected improvement in OCD symptoms, he experienced significant improvement in both PD-related apathy and depression along with resolution of suicidal ideation. Furthermore, the patient's festinating gait dramatically improved. This case demonstrates that DBS of both the STN and VC/VS appears to have an initial signal of safety and tolerability. This is the first instance where both the STN and the VC/VS DBS targets have been implanted in an individual and the first case where a patient with PD has received additional DBS in mood-regulatory circuitry. PMID:26644268

  2. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys

    PubMed Central

    Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai

    2016-01-01

    The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049

  3. Cortical Hemiballism: A Case of Hemiballismus Associated with Parietal Lobe Infarct

    PubMed Central

    Shrestha, Pragya; Adhikari, Janak; Poudel, Dilli; Pathak, Ranjan; Karmacharya, Paras

    2015-01-01

    Context: Hemiballismus is characterized by involuntary, irregular, large amplitude, and violent flinging movements of limbs. Stroke (middle and posterior cerebral artery) remains the most common etiology with 2/3 being lacunar. Lesions outside the substantia niagra (STN) can cause hemiballism, and only a minority by STN lesions, unlike the classical belief. Compared to those arising from STN, cortical hemiballismus is usually less severe with a good prognosis. Case Report: A 61-year-old man presented with sudden onset involuntary flinging movements of his right upper extremity accompanied by numbness and tingling. Past medical history was significant for stroke 2 years back with no residual deficits. Vitals signs were blood pressure of 165/84 mm Hg, and heart rate - 82 beats/min. Irregular, arrhythmic, jerky flinging movement, and decreased sensation to light touch in right upper extremity was noted. Magnetic resonance imaging of the brain revealed acute posterior left parietal lobe infarction. He was treated with aspirin and atorvastatin. Thrombolytic therapy was offered but declined. The movements resolved spontaneously over the next 2 days. No further episodes occurred at 3-month follow-up. Conclusion: Lesions affecting various areas outside the STN can cause hemiballism and usually carries a good prognosis with spontaneous resolution. Acute thrombolytic therapy may be considered on an individual basis. Treatment with antipsychotics can be useful for severe and recurring symptoms. PMID:26942135

  4. Registration of ‘Ok102’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ok102’ (Reg. no. CV-941, PI 632635) is a hard red winter wheat (Triticum aestivum L.) developed cooperatively by the Oklahoma Agric. Exp. Stn. and the USDA-ARS. Ok102 was released in March 2002, primarily on the basis of its resistance to several foliar diseases, excellent milling quality, and desi...

  5. Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions

    PubMed Central

    Chaturvedi, Ashutosh; Butson, Christopher R.; Lempka, Scott F.; Cooper, Scott E.; McIntyre, Cameron C.

    2010-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become the surgical therapy of choice for medically intractable Parkinson’s disease. However, quantitative understanding of the interaction between the electric field generated by DBS and the underlying neural tissue is limited. Recently, computational models of varying levels of complexity have been used to study the neural response to DBS. The goal of this study was to evaluate the quantitative impact of incrementally incorporating increasing levels of complexity into computer models of STN DBS. Our analysis focused on the direct activation of experimentally measureable fiber pathways within the internal capsule (IC). Our model system was customized to an STN DBS patient and stimulation thresholds for activation of IC axons were calculated with electric field models that ranged from an electrostatic, homogenous, isotropic model to one that explicitly incorporated the voltage-drop and capacitance of the electrode-electrolyte interface, tissue encapsulation of the electrode, and diffusion-tensor based 3D tissue anisotropy and inhomogeneity. The model predictions were compared to experimental IC activation defined from electromyographic (EMG) recordings from eight different muscle groups in the contralateral arm and leg of the STN DBS patient. Coupled evaluation of the model and experimental data showed that the most realistic predictions of axonal thresholds were achieved with the most detailed model. Furthermore, the more simplistic neurostimulation models substantially overestimated the spatial extent of neural activation. PMID:20607090

  6. Comparative cognitive effects of bilateral subthalamic stimulation and subcutaneous continuous infusion of apomorphine in Parkinson's disease.

    PubMed

    Alegret, Montse; Valldeoriola, Francesc; Martí, MaJosé; Pilleri, Manuela; Junqué, Carme; Rumià, Jordi; Tolosa, Eduardo

    2004-12-01

    Bilateral subthalamic deep brain stimulation (STN-DBS) and continuous subcutaneous infusion of apomorphine (APM-csi) can provide a comparable improvement on motor function in patients with advanced Parkinson's disease (PD), but the mechanisms by which both therapies exert their effects are different. We analyzed the cognitive effects of APM-csi. We also compared neuropsychological effects induced by STN-DBS and APM-csi in advanced PD to ascertain the neuropsychological aspects relevant in determining the therapeutic procedure that is the most appropriate in a particular patient. We studied 9 patients treated with STN-DBS and 7 patients with APM-csi. Neuropsychological measures included Rey's Auditory-Verbal Learning, Stroop, Trail Making, phonetic verbal fluency, and Judgment of Line Orientation tests. In the APM-csi group, significant changes were not observed in the neuropsychological tests performance. By contrast, in the STN-DBS group, moderate worsening was found in phonetic verbal fluency and Stroop Naming scores that was partially reversible at long-term follow-up and did not have consequences on regular activities. Consequently, these findings could be interpreted as being not relevant in deciding the most suitable treatment in a given patient.

  7. Bilateral Deep Brain Stimulation of the Subthalamic Nucleus under Sedation with Propofol and Fentanyl

    PubMed Central

    Lee, Woong-Woo; Ehm, Gwanhee; Yang, Hui-Jun; Song, In Ho; Lim, Yong Hoon; Kim, Mi-Ryoung; Kim, Young Eun; Hwang, Jae Ha; Park, Hye Ran; Lee, Jae Min; Kim, Jin Wook; Kim, Han-Joon; Kim, Cheolyoung; Kim, Hee Chan; Park, Eunkyoung; Kim, In Young; Kim, Dong Gyu

    2016-01-01

    Awakening during deep brain stimulation (DBS) surgery may be stressful to patients. The aim of the current study was to evaluate the effect on MER signals and their applicability to subthalmic nucleus (STN) DBS surgery for patients with Parkinson’s disease (PD) under sedation with propofol and fentanyl. Sixteen consecutive patients with PD underwent STN-DBS surgery with propofol and fentanyl. Their MER signals were achieved during the surgery. To identify the microelectrodes positions, the preoperative MRI and postoperative CT were used. Clinical profiles were also collected at the baseline and at 6 months after surgery. All the signals were slightly attenuated and contained only bursting patterns, compared with our previous report. All electrodes were mostly located in the middle one third part of the STN on both sides of the brain in the fused images. Six months later, the patients were improved significantly in the medication-off state and they met with less dyskinesia and less off-duration. Our study revealed that the sedation with propofol and fentanyl was applicable to STN-DBS surgery. There were no significant problems in precise positioning of bilateral electrodes. The surgery also improved significantly clinical outcomes in 6-month follow-up. PMID:27018855

  8. Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study

    NASA Astrophysics Data System (ADS)

    Bellinger, S. C.; Miyazawa, G.; Steinmetz, P. N.

    2008-09-01

    Deep brain stimulation has been used for over a decade to relieve the symptoms of Parkinson's disease, although its mechanism of action remains poorly understood. To better understand the direct effects of DBS on central neurons, a computational model of a myelinated axon has been constructed which includes the effects of K+ accumulation within the peri-axonal space. Using best estimates of anatomic and electrogenic model parameters for in vivo STN axons, the model predicts a functional block along the axon due to K+ accumulation in the submyelin space. The functional block occurs for a range of model parameters: high stimulation frequencies (>130 Hz); high extracellular K+ concentrations (>3 × 10-3 M); low maximum Na+/K+ ATPase current densities (<0.026 A m-2); low diffusion coefficients for K+ diffusion out of the submyelin space (<2.4 × 10-9 m2 s-1); small periaxonal space widths of the myelin attachment sections (<2.7 × 10-9 m) and perinodal/internodal sections (<8.4 × 10-9 m). These results suggest that therapeutic DBS of the STN likely results in a functional block for many STN axons, although a subset of STN axons may also be activated at the stimulating frequency.

  9. A Novel Concept for the Search and Retrieval of the Derwent Markush Resource Database.

    PubMed

    Barth, Andreas; Stengel, Thomas; Litterst, Edwin; Kraut, Hans; Matuszczyk, Henry; Ailer, Franz; Hajkowski, Steve

    2016-05-23

    The representation of and search for generic chemical structures (Markush) remains a continuing challenge. Several research groups have addressed this problem, and over time a limited number of practical solutions have been proposed. Today there are two large commercial providers of Markush databases: Chemical Abstracts Service (CAS) and Thomson Reuters. The Thomson Reuters "Derwent" Markush database is currently offered via the online services Questel and STN and as a data feed for in-house use. The aim of this paper is to briefly review the existing Markush systems (databases plus search engines) and to describe our new approach for the implementation of the Derwent Markush Resource on STN. Our new approach demonstrates the integration of the Derwent Markush Resource database into the existing chemistry-focused STN platform without loss of detail. This provides compatibility with other structure and Markush databases on STN and at the same time makes it possible to deploy the specific features and functions of the Derwent approach. It is shown that the different Markush languages developed by CAS and Derwent can be combined into a single general Markush description. In this concept the generic nodes are grouped together in a unique hierarchy where all chemical elements and fragments can be integrated. As a consequence, both systems are searchable using a single structure query. Moreover, the presented concept could serve as a promising starting point for a common generalized description of Markush structures.

  10. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  11. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  12. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  13. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia.

    PubMed

    Mandali, Alekhya; Chakravarthy, V Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  14. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  15. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia.

    PubMed

    Mandali, Alekhya; Chakravarthy, V Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  16. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa

    2016-01-01

    Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic

  17. Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson's disease.

    PubMed

    Péron, Julie; Grandjean, Didier; Le Jeune, Florence; Sauleau, Paul; Haegelen, Claire; Drapier, Dominique; Rouaud, Tiphaine; Drapier, Sophie; Vérin, Marc

    2010-03-01

    The recognition of facial emotions is impaired following subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD). These changes have been linked to a disturbance in the STN's limbic territory, which is thought to be involved in emotional processing. This was confirmed by a recent PET study where these emotional modifications were correlated with changes in glucose metabolism in different brain regions, including the amygdala and the orbitofrontal regions that are well known for their involvement in emotional processing. Nevertheless, the question as to whether these emotional changes induced by STN DBS in PD are modality-specific has yet to be answered. The objective of this study was therefore to examine the effects of STN DBS in PD on the recognition of emotional prosody. An original emotional prosody paradigm was administered to twenty-one post-operative PD patients, twenty-one pre-operative PD patients and twenty-one matched controls. Results showed that both the pre- and post-operative groups differed from the healthy controls. There was also a significant difference between the pre and post groups. More specifically, an analysis of their continuous judgments revealed that the performance of the post-operative group compared with that of the other two groups was characterized by a systematic emotional bias whereby they perceived emotions more strongly. These results suggest that the impaired recognition of emotions may not be specific to the visual modality but may also be present when emotions are expressed through the human voice, implying the involvement of the STN in the brain network underlying the recognition of emotional prosody.

  18. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  19. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate.

    PubMed

    Sato, F; Lavallée, P; Lévesque, M; Parent, A

    2000-01-31

    Axonal projections arising from the external segment of the globus pallidus (GPe) in cynomolgus monkeys (Macaca fascicularis) were mapped after labeling small pools (5-15 cells) of neurons with biotinylated dextran amine. Seventy-six single axons were reconstructed from serial sagittal sections with a camera lucida. The majority of labeled GPe cells displayed long, aspiny, and poorly branched dendrites that arborized mostly along the sagittal plane, whereas others showed dendrites radiating in all directions. Numerous GPe axons emitted short, intranuclear collaterals that arborized close to their parent cell body. Based on their axonal targets, four distinct types of GPe projection neurons have been identified: 1) neurons that project to the internal segment of the globus pallidus (GPi), the subthalamic nucleus (STN), and the substantia nigra, pars reticulata (SNr; 13.2%); 2) neurons that target the GPi and the STN (18.4%); 3) neurons that project to the STN and the SNr (52.6%); and 4) neurons that target the striatum (15.8%). Labeled GPe axons displayed large varicosities that often were closely apposed to the somata and proximal dendrites of STN, GPi, and SNr neurons. At striatal levels, however, GPe axons displayed small axonal varicosities that did not form perineuronal nets. These results suggest that the GPe is an important integrative locus in primate basal ganglia. This nucleus harbors several subtypes of projection neurons that are endowed with a highly patterned set of collaterals. This organization allows single GPe neurons to exert a multifarious effect not only on the STN, which is the claimed GPe target, but also on the two major output structures of the basal ganglia, the SNr and the GPi.

  20. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    PubMed

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  1. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    PubMed Central

    Gulberti, A.; Moll, C.K.E.; Hamel, W.; Buhmann, C.; Koeppen, J.A.; Boelmans, K.; Zittel, S.; Gerloff, C.; Westphal, M.; Schneider, T.R.; Engel, A.K.

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing. PMID:26594626

  2. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.

  3. [Effect of soil moisture on prediction of soil total nitrogen using NIR spectroscopy].

    PubMed

    An, Xiao-Fei; Li, Min-Zan; Zheng, Li-Hua; Liu, Yu-Meng; Sun, Hong

    2013-03-01

    As one of the most important components of soil liutrient, it is necessary to obtain the soil total nitrogen(STN)content in precision agriculture. It is a feasible method to predict soil total nitrogen content based on NIRS. However, the effect of soil moisture content (SMC) on the prediction of STN is very serious. In the present research, the effect of SMC was discussed from qualitative analysis and quantitative analysis by the Fourier spectrum analyzer MATRIX_I. Firstly, sixty soil samples with different STN and SMC were scanned by the MATRIX_I. It was found that the reflectince of soil samples in near infrared region decreased with the increase in SMC. Subsequently, Moisture absorbance index (MAI) was proposed by the diffuse of absorbance at the wavelengths of 1 450 and 1 940 nm to classify soil properties and then correction factor was present Finally, the STN forecasting model with BP NN method was established by the revised absorbance data at the six wavelengths of 940, 1 050, 1,100, 1,200, 1,300 and 1,550 nm. The model was evaluated by correlation coefficient of Rc, correlation coefficient of Rv, root mean square error of calibration (RMSEC), root mean square error of validation (RMSEP) and residual prediction deviation (RPD). Compared with the model obtained from original spectral data, both the accuracy and the stability were improved. The new model was with Rc of 0.86, Rv of 0.81, RMSEC of 0.06, RMSEP of 0.05, and RPD of 2.75. With the first derivative of the revised absorbance, the RPD became 2.90. The experiments indicated that the method could eliminate the effect of SMC on the prediction of STN efficiently.

  4. Dopamine Release in the Nonhuman Primate Caudate and Putamen Depends upon Site of Stimulation in the Subthalamic Nucleus

    PubMed Central

    Min, Hoon-Ki; Ross, Erika K.; Jo, Hang Joon; Cho, Shinho; Settell, Megan L.; Jeong, Ju Ho; Duffy, Penelope S.; Chang, Su-Youne; Bennet, Kevin E.; Blaha, Charles D.

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for medically refractory Parkinson's disease. Although DBS has recognized clinical utility, its biologic mechanisms are not fully understood, and whether dopamine release is a potential factor in those mechanisms is in dispute. We tested the hypothesis that STN DBS-evoked dopamine release depends on the precise location of the stimulation site in the STN and the site of recording in the caudate and putamen. We conducted DBS with miniature, scaled-to-animal size, multicontact electrodes and used functional magnetic resonance imaging to identify the best dopamine recording site in the brains of nonhuman primates (rhesus macaques), which are highly representative of human brain anatomy and circuitry. Real-time stimulation-evoked dopamine release was monitored using in vivo fast-scan cyclic voltammetry. This study demonstrates that STN DBS-evoked dopamine release can be reduced or increased by redirecting STN stimulation to a slightly different site. SIGNIFICANCE STATEMENT Electrical stimulation of deep structures of the brain, or deep brain stimulation (DBS), is used to modulate pathological brain activity. However, technological limitations and incomplete understanding of the therapeutic mechanisms of DBS prevent personalization of this therapy and may contribute to less-than-optimal outcomes. We have demonstrated that DBS coincides with changes in dopamine neurotransmitter release in the basal ganglia. Here we mapped relationships between DBS and changes in neurochemical activity. Importantly, this study shows that DBS-evoked dopamine release can be reduced or increased by refocusing the DBS on a slightly different stimulation site. PMID:27251623

  5. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels.

    PubMed

    Yang, Chen; Yan, Zhiqiang; Zhao, Bo; Wang, Julei; Gao, Guodong; Zhu, Junling; Wang, Wenting

    2016-06-01

    The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation.

  6. [Effect of soil moisture on prediction of soil total nitrogen using NIR spectroscopy].

    PubMed

    An, Xiao-Fei; Li, Min-Zan; Zheng, Li-Hua; Liu, Yu-Meng; Sun, Hong

    2013-03-01

    As one of the most important components of soil liutrient, it is necessary to obtain the soil total nitrogen(STN)content in precision agriculture. It is a feasible method to predict soil total nitrogen content based on NIRS. However, the effect of soil moisture content (SMC) on the prediction of STN is very serious. In the present research, the effect of SMC was discussed from qualitative analysis and quantitative analysis by the Fourier spectrum analyzer MATRIX_I. Firstly, sixty soil samples with different STN and SMC were scanned by the MATRIX_I. It was found that the reflectince of soil samples in near infrared region decreased with the increase in SMC. Subsequently, Moisture absorbance index (MAI) was proposed by the diffuse of absorbance at the wavelengths of 1 450 and 1 940 nm to classify soil properties and then correction factor was present Finally, the STN forecasting model with BP NN method was established by the revised absorbance data at the six wavelengths of 940, 1 050, 1,100, 1,200, 1,300 and 1,550 nm. The model was evaluated by correlation coefficient of Rc, correlation coefficient of Rv, root mean square error of calibration (RMSEC), root mean square error of validation (RMSEP) and residual prediction deviation (RPD). Compared with the model obtained from original spectral data, both the accuracy and the stability were improved. The new model was with Rc of 0.86, Rv of 0.81, RMSEC of 0.06, RMSEP of 0.05, and RPD of 2.75. With the first derivative of the revised absorbance, the RPD became 2.90. The experiments indicated that the method could eliminate the effect of SMC on the prediction of STN efficiently. PMID:23705431

  7. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states.

    PubMed

    van Albada, S J; Robinson, P A

    2009-04-21

    Parkinsonism leads to various electrophysiological changes in the basal ganglia-thalamocortical system (BGTCS), often including elevated discharge rates of the subthalamic nucleus (STN) and the output nuclei, and reduced activity of the globus pallidus external (GPe) segment. These rate changes have been explained qualitatively in terms of the direct/indirect pathway model, involving projections of distinct striatal populations to the output nuclei and GPe. Although these populations partly overlap, evidence suggests dopamine depletion differentially affects cortico-striato-pallidal connection strengths to the two pallidal segments. Dopamine loss may also decrease the striatal signal-to-noise ratio, reducing both corticostriatal coupling and striatal firing thresholds. Additionally, nigrostriatal degeneration may cause secondary changes including weakened lateral inhibition in the GPe, and mesocortical dopamine loss may decrease intracortical excitation and especially inhibition. Here a mean-field model of the BGTCS is presented with structure and parameter estimates closely based on physiology and anatomy. Changes in model rates due to the possible effects of dopamine loss listed above are compared with experiment. Our results suggest that a stronger indirect pathway, possibly combined with a weakened direct pathway, is compatible with empirical evidence. However, altered corticostriatal connection strengths are probably not solely responsible for substantially increased STN activity often found. A lower STN firing threshold, weaker intracortical inhibition, and stronger striato-GPe inhibition help explain the relatively large increase in STN rate. Reduced GPe-GPe inhibition and a lower GPe firing threshold can account for the comparatively small decrease in GPe rate frequently observed. Changes in cortex, GPe, and STN help normalize the cortical rate, also in accord with experiments. The model integrates the basal ganglia into a unified framework along with an

  8. Specific interactions of sticholysin I with model membranes: an NMR study.

    PubMed

    Castrillo, Inés; Araujo, Nelson A; Alegre-Cebollada, Jorge; Gavilanes, José G; Martínez-del-Pozo, Alvaro; Bruix, Marta

    2010-06-01

    Sticholysin I (StnI) is an actinoporin produced by the sea anemone Stichodactyla helianthus that binds biological and model membranes forming oligomeric pores. Both a surface cluster of aromatic rings and the N-terminal region are involved in pore formation. To characterize the membrane binding by StnI, we have studied by (1)H-NMR the environment of these regions in water and in the presence of membrane-mimicking micelles. Unlike other peptides from homologous actinoporins, the synthetic peptide corresponding to residues 1-30 tends to form helix in water and is more helical in either trifluoroethanol or dodecylphosphocholine (DPC) micelles. In these environments, it forms a helix-turn-helix motif with the last alpha-helical segment matching the native helix-alpha(1) (residues 14-24) present in the complete protein. The first helix (residues 4-9) is less populated and is not present in the water-soluble protein structure. The characterization of wild-type StnI structure in micelles shows that the helix-alpha(1) is maintained in its native structure and that this micellar environment does not provoke its detachment from the protein core. Finally, the study of the aromatic resonances has shown that the motional flexibility of specific rings is perturbed in the presence of micelles. On these bases, the implication of the aromatic rings of Trp-111, Tyr-112, Trp-115, Tyr-132, Tyr-136, and Tyr-137, in the interaction between StnI and the micelle is discussed. Based on all the findings, a revised model for StnI interaction with membranes is proposed, which accounts for differences in its behavior as compared with other highly homologous sticholysins.

  9. Specific interactions of sticholysin I with model membranes: an NMR study.

    PubMed

    Castrillo, Inés; Araujo, Nelson A; Alegre-Cebollada, Jorge; Gavilanes, José G; Martínez-del-Pozo, Alvaro; Bruix, Marta

    2010-06-01

    Sticholysin I (StnI) is an actinoporin produced by the sea anemone Stichodactyla helianthus that binds biological and model membranes forming oligomeric pores. Both a surface cluster of aromatic rings and the N-terminal region are involved in pore formation. To characterize the membrane binding by StnI, we have studied by (1)H-NMR the environment of these regions in water and in the presence of membrane-mimicking micelles. Unlike other peptides from homologous actinoporins, the synthetic peptide corresponding to residues 1-30 tends to form helix in water and is more helical in either trifluoroethanol or dodecylphosphocholine (DPC) micelles. In these environments, it forms a helix-turn-helix motif with the last alpha-helical segment matching the native helix-alpha(1) (residues 14-24) present in the complete protein. The first helix (residues 4-9) is less populated and is not present in the water-soluble protein structure. The characterization of wild-type StnI structure in micelles shows that the helix-alpha(1) is maintained in its native structure and that this micellar environment does not provoke its detachment from the protein core. Finally, the study of the aromatic resonances has shown that the motional flexibility of specific rings is perturbed in the presence of micelles. On these bases, the implication of the aromatic rings of Trp-111, Tyr-112, Trp-115, Tyr-132, Tyr-136, and Tyr-137, in the interaction between StnI and the micelle is discussed. Based on all the findings, a revised model for StnI interaction with membranes is proposed, which accounts for differences in its behavior as compared with other highly homologous sticholysins. PMID:20408172

  10. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages

    NASA Astrophysics Data System (ADS)

    VöRöSmarty, C. J.; Fekete, B. M.; Meybeck, M.; Lammers, R. B.

    2000-06-01

    The spatial organization of the Earth's land mass is analyzed using a simulated topological network (STN-30p) representing potential flow pathways across the entire nonglacierized surface of the globe at 30-min (longitude × latitude) spatial resolution. We discuss a semiautomated procedure to develop this topology combining digital elevation models and manual network editing. STN-30p was verified against several independent sources including map products and drainage basin statistics, although we found substantial inconsistency within the extant literature itself. A broad suite of diagnostics is offered that quantitatively describes individual grid cells, river segments, and complete drainage systems spanning orders 1 through 6 based on the Strahler classification scheme. Continental and global-scale summaries of key STN-30p attributes are given. Summaries are also presented which distinguish basins that potentially deliver discharge to an ocean (exorheic) from those that potentially empty into an internal receiving body (endorheic). A total of 59,122 individual grid cells constitutes the global nonglacierized land mass. At 30-min spatial resolution, the cells are organized into 33,251 distinct river segments which define 6152 drainage basins. A global total of 133.1 × 106 km2 bear STN-SOp flow paths with a total length of 3.24 × 106 km. The organization of river networks has an important role in linking land mass to ocean. From a continental perspective, low-order river segments (orders 1-3) drain the largest fraction of land (90%) and thus constitute a primary source area for runoff and constituents. From an oceanic perspective, however, the small number (n=101) of large drainage systems (orders 4-6) predominates; draining 65% of global land area and subsuming a large fraction of the otherwise spatially remote low-order rivers. Along river corridors, only 10% of land mass is within 100 km of a coastline, 25% is within 250 km, and 50% is within 750 km. The

  11. In situ synthesis and characterization of silver/polymer nanocomposites by thermal cationic polymerization processes at room temperature: initiating systems based on organosilanes and starch nanocrystals.

    PubMed

    Tehfe, Mohamad-Ali; Jamois, Romain; Cousin, Patrice; Elkoun, Saïd; Robert, Mathieu

    2015-04-14

    New methods for the preparation of silver nanoparticles/polymer nanocomposite materials by thermal cationic polymerization of ε-caprolactone (ε-CL) or α-pinene oxide (α-PO) at room temperature (RT) and under air were developed. The new initiating systems were based on silanes (Si), starch nanocrystals (StN) and metal salts. Excellent polymerization profiles were revealed. It was shown that silver nanoparticles (Ag(0) NPs) were in situ formed and that the addition of StN improves the polymerization efficiency. The as-synthesized nanocomposite materials contained spherical nanoparticles homogeneously dispersed in the polymer matrices. Polymers and nanoparticles were characterized by gel permeation chromatography (GPC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. A coherent picture of the involved chemical mechanisms is presented. PMID:25793620

  12. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson's disease: a randomized, blinded study.

    PubMed

    Lizarraga, Karlo J; Jagid, Jonathan R; Luca, Corneliu C

    2016-08-01

    Gait dysfunction in Parkinson's disease (PD) does not always respond to bilateral subthalamic nucleus deep brain stimulation (STN-DBS). Since right hemisphere motor networks may be dominant for gait control, identical stimulation of asymmetric circuits could account for gait dysfunction. We compared the effects of bilateral and unilateral STN-DBS on gait kinematics in PD patients who developed gait impairment after STN-DBS. Twenty-two PD patients with >50 % improvement in motor scores, but dopamine-resistant gait dysfunction 6-12 months after bilateral STN-DBS were blindly tested off dopaminergic effects in four randomly assigned DBS conditions: bilateral, right-sided, left-sided and off stimulation. Motor scores (MDS-UPDRS III), gait scores (MDS-UPRDS 2.11-2.13 + 3.9-3.13), turning time (seconds), stride length (meters) and velocity (meters/second) were measured 1 h after DBS changes. Motor and gait scores significantly improved with bilateral versus unilateral STN-DBS. Stride length and velocity (0.95 ± 0.06, 0.84 ± 0.07) significantly improved with bilateral (1.09 ± 0.04, 0.95 ± 0.05), right-sided (1.06 ± 0.04, 0.92 ± 0.05) and left-sided stimulation (1.01 ± 0.05, 0.90 ± 0.05) (p < 0.05). Stride length significantly improved with right-sided versus left-sided (0.05 ± 0.02) and bilateral versus left-sided stimulation (0.07 ± 0.02) (p < 0.05). Turning time (4.89 ± 0.6) tended to improve with bilateral (4.13 ± 0.5) (p = 0.15) and right-sided (4.27 ± 0.6) (p = 0.2) more than with left STN-DBS (4.69 ± 0.5) (p = 0.5). Bilateral STN-DBS yields greater improvement in motor and gait scores in PD patients. Yet, unilateral stimulation has similar effects on gait kinematics. Particularly, right-sided stimulation might produce slightly greater improvements. Although the clinical relevance of differential programming of right versus left-sided STN-DBS is unclear, this approach could be considered in the management of

  13. Painful cervical dystonia triggered by the extension wire of a deep brain stimulator.

    PubMed

    Spagnolo, F; Picozzi, P; Franzin, A; Martinelli, V; Comi, G; Volonte, M A

    2012-11-01

    Deep brain stimulation (DBS) can be complicated by adverse events, which are generally classified as surgical-hardware or stimulation-related. Here we report the onset of a painful cervical dystonia probably triggered by the extension wire of a subthalamic nucleus (STN)-DBS device in a woman suffering from advanced Parkinson's disease (PD). Two months after implantation of the STN-DBS device, our patient developed a painful cervical dystonia, which was not responsive to neurostimulation or to medication. No sign of infections or fibrosis was detected. A patch test with the components of the device was performed, revealing no hypersensibility. The patient was referred back to surgery to reposition the pulse generator in the contralateral subclavian region. A deeper channeling of the wire extensions produced a complete remission of the painful dystonia. PMID:22954791

  14. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.

    PubMed

    Shedayi, Arshad Ali; Xu, Ming; Naseer, Iqnaa; Khan, Babar

    2016-01-01

    This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from different forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic carbon (SOC) and STN was significantly positive with the values R(2) = 0.1684, p = 0.01, R(2) = 0.1537, p = 0.009 and R(2) = 0.856, p = 7.31E-10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest (22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and carbon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant (R(2) = 0.608, p = 0.003) and weak non-significant (R(2) = 0.04, p = 0.32) relationships were found in STN and STC with LM and HB respectively. SOC (75.15 %) was found to be the main contributor to

  15. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  16. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.

    PubMed

    Shedayi, Arshad Ali; Xu, Ming; Naseer, Iqnaa; Khan, Babar

    2016-01-01

    This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from different forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic carbon (SOC) and STN was significantly positive with the values R(2) = 0.1684, p = 0.01, R(2) = 0.1537, p = 0.009 and R(2) = 0.856, p = 7.31E-10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest (22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and carbon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant (R(2) = 0.608, p = 0.003) and weak non-significant (R(2) = 0.04, p = 0.32) relationships were found in STN and STC with LM and HB respectively. SOC (75.15 %) was found to be the main contributor to

  17. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment.

    PubMed

    Kim, Eugene; Hopke, Philip K; Qin, Youjun

    2005-08-01

    Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.

  18. Chemical mass balance source apportionment for combined PM 2.5 measurements from U.S. non-urban and urban long-term networks

    NASA Astrophysics Data System (ADS)

    Antony Chen, L.-W.; Watson, John G.; Chow, Judith C.; DuBois, David W.; Herschberger, Lisa

    2010-12-01

    The Minnesota Particulate Matter 2.5 (PM 2.5) Source Apportionment Study was undertaken to explore the utility of PM 2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance - Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM 2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49-71% of PM 2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20-70% of the primary PM 2.5 contribution, largely exceeding the proportion in the primary PM 2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources - including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM 2.5 episodes were explained by both local and regional pollution events.

  19. Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity.

    PubMed

    Mallet, Nicolas; Pogosyan, Alek; Márton, László F; Bolam, J Paul; Brown, Peter; Magill, Peter J

    2008-12-24

    Inappropriately synchronized beta (beta) oscillations (15-30 Hz) in the subthalamic nucleus (STN) accompany movement difficulties in idiopathic Parkinson's disease (PD). The cellular and network substrates underlying these exaggerated beta oscillations are unknown but activity in the external globus pallidus (GP), which forms a candidate pacemaker network with STN, might be of particular importance. Using a clinically relevant rat model of PD, we demonstrate that oscillatory activity in GP neuronal networks becomes excessively and selectively synchronized at beta frequencies in a spatially widespread and brain state-dependent manner after lesion of dopamine neurons. Although synchronization of GP unit activity increased by almost 100-fold during beta oscillations, the mean firing rate of GP neurons decreased compared with controls. Importantly, in parkinsonian animals, two main types of GP neuron were identified according to their distinct and inversely related firing rates and patterns. Moreover, neurons of the same type tended to fire together, with small phase differences, whereas different types of neuron tended not to do so. This functional dichotomy in temporal coupling persisted across extreme brain states, suggesting that maladaptive interactions are dominated by hardwiring. Finally, the precisely timed discharges of GP and STN neurons indicated that rhythmic sequences of recurrent excitation and inhibition in the STN-GP network, and lateral inhibition between GP neurons, could actively support abnormal beta oscillations. We propose that GP neurons, by virtue of their spatiotemporal synchronization, widespread axon collaterals and feed-back/feed-forward mechanisms, are well placed to orchestrate and propagate exaggerated beta oscillations throughout the entire basal ganglia in PD. PMID:19109506

  20. [Maintenance of information in the field of pharmaceutical research: scientific-bibliographic databases].

    PubMed

    Shkarenkova, L S; Orlovskaia, T T; Ovchinnikova, T V

    1996-01-01

    New possibilities for providing studies on pharmaceuticals with the required information are discussed. Characteristics of scientific bibliography data bases (DB) including large fragments of the information on pharmaceuticals as well as those of specific DBs are presented. The peculiarities of the information search in every DB and the possible access are discussed. The DBs are accessible via the World Net (STN INTERNATIONAL) which gives significant privileges to Russian scientists.

  1. Neuropsychological and psychiatric assessments following bilateral deep brain stimulation of the subthalamic nucleus in Japanese patients with Parkinson's disease.

    PubMed

    Aono, Michitaka; Iga, Jun-Ichi; Ueno, Shu-Ichi; Agawa, Masahito; Tsuda, Toshio; Ohmori, Tetsuro

    2014-09-01

    The physical benefits of subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients are well documented, but the mental benefits are uncertain, particularly in Japanese patients. This study evaluated the clinical and neuropsychological characteristics before and after STN-DBS surgery in Japanese PD patients. PD patients (n=13, age 67.0 ± 7.8 years) were evaluated pre-surgery (baseline) and at 1 and 6 months post-surgery by two trained psychiatrists. The motor symptoms were assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. The neuropsychological and psychiatric tests performed were the Mini-Mental State Examination, the Wisconsin Card Sorting Test (WCST), the Verbal Fluency Test (VFT), the Hamilton Depression Rating Scale and the Hamilton Anxiety Rating Scale (HAM-A). The UPDRS motor score (p<0.001) and HAM-A score (p=0.004) showed significant improvement at 1 month post-surgery, but a significant decline was observed in the WCST total error (p=0.005) and the semantic VFT score (p<0.001). The phonetic VFT also showed a substantial decline (p=0.015) at 1 month post-surgery. At 6 months post-surgery, the improvement in the UPDRS motor score was maintained, and the scores on the neuropsychological and psychiatric tests had returned to baseline. Although bilateral STN-DBS did not appear to have long-term effects on neuropsychological and psychiatric outcomes, the microlesion effects associated with STN-DBS appear to increase the risk of transient cognitive and psychiatric complications. These complications should be monitored by careful observation of neurological and psychiatric symptoms.

  2. A spiking Basal Ganglia model of synchrony, exploration and decision making.

    PubMed

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V Srinivasa; Moustafa, Ahmed A

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either "explore" or "exploit" or "not to take any action" for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  3. Subthalamic Nucleus Deep Brain Stimulation May Reduce Medication Costs in Early Stage Parkinson’s Disease

    PubMed Central

    Hacker, Mallory L.; Currie, Amanda D.; Molinari, Anna L.; Turchan, Maxim; Millan, Sarah M.; Heusinkveld, Lauren E.; Roach, Jonathon; Konrad, Peter E.; Davis, Thomas L.; Neimat, Joseph S.; Phibbs, Fenna T.; Hedera, Peter; Byrne, Daniel W.; Charles, David

    2016-01-01

    Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is well-known to reduce medication burden in advanced stage Parkinson’s disease (PD). Preliminary data from a prospective, single blind, controlled pilot trial demonstrated that early stage PD subjects treated with STN-DBS also required less medication than those treated with optimal drug therapy (ODT). Objective: The purpose of this study was to analyze medication cost and utilization from the pilot trial of DBS in early stage PD and to project 10 year medication costs. Methods: Medication data collected at each visit were used to calculate medication costs. Medications were converted to levodopa equivalent daily dose, categorized by medication class, and compared. Medication costs were projected to advanced stage PD, the time when a typical patient may be offered DBS. Results: Medication costs increased 72% in the ODT group and decreased 16% in the DBS+ODT group from baseline to 24 months. This cost difference translates into a cumulative savings for the DBS+ODT group of $7,150 over the study period. Projected medication cost savings over 10 years reach $64,590. Additionally, DBS+ODT subjects were 80% less likely to require polypharmacy compared with ODT subjects at 24 months (p <  0.05; OR = 0.2; 95% CI: 0.04–0.97). Conclusions: STN-DBS in early PD reduced medication cost over the two-year study period. DBS may offer substantial long-term reduction in medication cost by maintaining a simplified, low dose medication regimen. Further study is needed to confirm these findings, and the FDA has approved a pivotal, multicenter clinical trial evaluating STN-DBS in early PD. PMID:26967937

  4. An indirect basal ganglia pathway in anuran amphibians?

    PubMed

    Maier, Silke; Walkowiak, Wolfgang; Luksch, Harald; Endepols, Heike

    2010-09-01

    The mammalian subthalamic nucleus (STN) is a glutamatergic cell group within the indirect pathway of the basal ganglia. It receives input from the external globus pallidus (GP) and in turn projects to the internal GP and the substantia nigra pars reticulata (SNr). While the direct pathway from striatum to SNr is well established in anurans, it is unknown whether they possess an indirect pathway including a STN homologue. The subthalamic region comprises the dorsocaudal suprachiasmatic nucleus (dcSC), the posterior entopeduncular nucleus (EP), and the ventral part of the ventral thalamus (vVM/VL). In the fire-bellied toad Bombina orientalis we investigated whether one of these areas match the criteria established for the mammalian STN. We delineated the SNr in the midbrain tegmentum by labeling the striatonigral terminal field by means of GABA-, substance P-, and enkephalin immunohistochemistry and striatal tracer injections. Subsequently, we used double fluorescence tracing with injections into the SNr and GP to stain different parts of the indirect pathway. Confocal laser scan analysis revealed that dcSC, EP, and vVM/VL contain retrogradely labeled neurons projecting to the SNr, contacted by anterogradely labeled terminals arising in the GP. Immunohistochemical stainings with antibodies against glutamate and the glutamate transporters EAAC1 and vGluT2 demonstrated that the investigated nuclei contain glutamatergic neurons. Our results suggest that all regions in the subthalamic region fulfill our morphological criteria, except the connection back to the GP. An indirect basal ganglia pathway seems to be present in anuran amphibians, although we cannot exclusively delineate an STN homologue.

  5. Transient gender-related effects in Parkinson's disease patients with subthalamic stimulation.

    PubMed

    Romito, Luigi Michele; Contarino, Fiorella Maria; Albanese, Alberto

    2010-04-01

    Little is known about the gender-related long-term efficacy and safety after subthalamic nucleus deep brain stimulation (STN DBS) implant for Parkinson's disease (PD), although some differences could be expected as recently stated in a short-term report. We assessed the possible gender-related differences in clinical outcome and disease progression along a 5-year period after STN DBS for PD. A prospective cohort of PD patients who underwent STN DBS and reached the 5-year follow-up (FU) was considered. Clinical outcome, disease progression and side effects were assessed at baseline and 1, 3, and 5 years after surgery. Eleven men and nine women were included in the study. At baseline, no inter-gender difference of age at implant, disease duration and severity or levodopa responsiveness was detected. A higher motor responsiveness in men compared to women was detected only at 1-year FU: this difference was mainly related to worse lower limb akinesia and gait score in women. The difference was not confirmed at 3 and 5 years. Antiparkinsonian drugs reduction, improvement in motor fluctuations and dyskinesias, functional measures and progression of underlying PD, were comparable in both groups. Women had persistent adverse events comparable to men. The present long-term observation confirms the occurrence of slight gender-related differences in PD patients treated with STN DBS, indicating a transient poorer outcome in women. Further observational time and a wider number of patients are needed to better analyze the dimension of long-term gender-related differences.

  6. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    PubMed Central

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr (1967) scores ranged from 2–4 and their UPDRS III scores were 28.5 ± 5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7 ± 1.6). Microelectrode recording was performed in the globus pallidus internus (GPi) and subthalamic nucleus (STN) during pallidotomy (n = 12) or STN deep brain stimulation (DBS; bilateral, n = 12; unilateral, n = 6). The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs) and the corresponding coefficient of variation (CV). Results: A total of 295 neurons were identified from the GPi (n = 12) and STN (n = 18). These included 26 (8.8%) highly grouped discharge, 30 (10.2%) low frequency firing, 78 (26.4%) rapid tonic discharge, 103 (34.9%) irregular activity, and 58 (19.7%) tremor-related activity. There were significant differences between the two groups (p < 0.05) for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID. PMID:26635583

  7. A spiking Basal Ganglia model of synchrony, exploration and decision making

    PubMed Central

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V. Srinivasa; Moustafa, Ahmed A.

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either “explore” or “exploit” or “not to take any action” for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  8. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment

    SciTech Connect

    Eugene Kim; Philip K. Hopke; Youjun Qin

    2005-08-01

    Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter {lt} 2.5 {mu}m in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 {mu}g/m{sup 3} showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%) identified as the result of emissions from coal-fired power plants, secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.

  9. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson’s Disease

    PubMed Central

    Pavlides, Alex; Hogan, S. John; Bogacz, Rafal

    2015-01-01

    In Parkinson’s disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe). Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson’s disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters. PMID:26683341

  10. Interaction of Reinforced Elastomeric Bearings in Bridge Construction

    NASA Astrophysics Data System (ADS)

    Nittmannová, Ľubica; Magura, Martin

    2016-03-01

    The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.

  11. Task specific inter-hemispheric coupling in human subthalamic nuclei

    PubMed Central

    Darvas, Felix; Hebb, Adam O.

    2014-01-01

    Cortical networks and quantitative measures of connectivity are integral to the study of brain function. Despite lack of direct connections between left and right subthalamic nuclei (STN), there are apparent physiological connections. During clinical examination of patients with Parkinson’s disease (PD), this connectivity is exploited to enhance signs of PD, yet our understanding of this connectivity is limited. We hypothesized that movement leads to synchronization of neural oscillations in bilateral STN, and we implemented phase coherence, a measure of phase-locking between cortical sites in a narrow frequency band, to demonstrate this synchronization. We analyzed task specific phase synchronization and causality between left and right STN local field potentials (LFPs) recorded from both hemispheres simultaneously during a cued movement task in four subjects with PD who underwent Deep Brain Stimulation (DBS) surgery. We used a data driven approach to determine inter-hemispheric channel pairs and frequencies with a task specific increase in phase locking.We found significant phase locking between hemispheres in alpha frequency (8–12 Hz) in all subjects concurrent with movement of either hand. In all subjects, phase synchronization increased over baseline upon or prior to hand movement onset and lasted until the motion ceased. Left and right hand movement showed similar patterns. Granger causality (GC) at the phase-locking frequencies between synchronized electrodes revealed a unidirectional causality from right to left STN regardless of which side was moved.Phase synchronization across hemispheres between basal ganglia supports existence of a bilateral network having lateralized regions of specialization for motor processing. Our results suggest this bilateral network is activated by a unilateral motor program. Understanding phase synchronization in natural brain functions is critical to development of future DBS systems that augment goal directed behavioral

  12. Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys☆

    PubMed Central

    Devergnas, Annaelle; Pittard, Damien; Bliwise, Donald; Wichmann, Thomas

    2014-01-01

    Parkinsonism is associated with changes in oscillatory activity patterns and increased synchronization of neurons in the basal ganglia and cortex in patients and animal models of Parkinson's disease, but the relationship between these changes and the severity of parkinsonian signs remains unclear. We examined this relationship by studying changes in local field potentials (LFPs) in the internal pallidal segment (GPi) and the subthalamic nucleus (STN), and in encephalographic signals (EEG) from the primarymotor cortex (M1) in Rhesus monkeys which were rendered progressively parkinsonian by repeated systemic injections of small doses of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Observations during wakefulness and sleep (defined by EEG and video records) were analyzed separately. The severity of parkinsonism correlated with increases in spectral power at frequencies below 15.5 Hz in M1 and GPi and reductions in spectral power at frequencies above 15.6 Hz with little change in STN. The severity of parkinsonism also correlated with increases in the coherence betweenM1 EEG and basal ganglia LFPs in the low frequency band. Levodopa treatment reduced low-frequency activity and increased high-frequency activity in all three areas, but did not affect coherence. The state of arousal also affected LFP and EEG signals in all three structures, particularly in the STN. These results suggest that parkinsonism-associated changes in alpha and low-beta band oscillatory activity can be detected early in the parkinsonian state in M1 and GPi. Interestingly, oscillations detectable in STN LFP signals (including oscillations in the beta-band) do not appear to correlate strongly with the severity of mild-to-moderate parkinsonism in these animals. Levodopa-induced changes in oscillatoryM1 EEG and basal ganglia LFP patterns do not necessarily represent a normalization of abnormalities caused by dopamine depletion. PMID:24768805

  13. Preserved dichotomy but highly irregular and burst discharge in the basal ganglia in alert dystonic rats at rest.

    PubMed

    Kumbhare, Deepak; Chaniary, Kunal D; Baron, Mark S

    2015-10-22

    Despite its prevalence, the underlying pathophysiology of dystonia remains poorly understood. Using our novel tri-component classification algorithm, extracellular neuronal activity in the globus pallidus (GP), STN, and the entopeduncular nucleus (EP) was characterized in 34 normal and 25 jaundiced dystonic Gunn rats with their heads restrained while at rest. In normal rats, neurons in each nucleus were similarly characterized by two physiologically distinct types: regular tonic with moderate discharge frequencies (mean rates in GP, STN and EP ranging from 35-41 spikes/s) or irregular at slower frequencies (17-20 spikes/s), with a paucity of burst activity. In dystonic rats, these nuclei were also characterized by two distinct principal neuronal patterns. However, in marked difference, in the dystonic rats, neurons were primarily slow and highly irregular (12-15 spikes/s) or burst predominant (14-17 spikes/s), with maintained modest differences between nuclei. In GP and EP, with increasing severity of dystonia, burstiness was moderately further increased, irregularity mildly further increased, and discharge rates mildly further reduced. In contrast, these features did not appreciably change in STN with worsening dystonia. Findings of a lack of bursting in GP, STN and EP in normal rats in an alert resting state and prominent bursting in dystonic Gunn rats suggest that cortical or other external drive is normally required for bursting in these nuclei and that spontaneous bursting, as seen in dystonia and Parkinson's disease, is reflective of an underlying pathophysiological state. Moreover, the extent of burstiness appears to most closely correlate with the severity of the dystonia.

  14. Cerebral Activations Related to Ballistic, Stepwise Interrupted and Gradually Modulated Movements in Parkinson Patients

    PubMed Central

    Toxopeus, Carolien M.; Maurits, Natasha M.; Valsan, Gopal; Conway, Bernard A.; Leenders, Klaus L.; de Jong, Bauke M.

    2012-01-01

    Patients with Parkinson’s disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced

  15. Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in Parkinson patients.

    PubMed

    Toxopeus, Carolien M; Maurits, Natasha M; Valsan, Gopal; Conway, Bernard A; Leenders, Klaus L; de Jong, Bauke M

    2012-01-01

    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced

  16. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    PubMed

    Moayed, Fatemeh; Mashaghi, Alireza; Tans, Sander J

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  17. Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus.

    PubMed

    Yousif, Nada; Borisyuk, Roman; Pavese, Nicola; Nandi, Dipankar; Bain, Peter

    2012-07-01

    Deep brain stimulation (DBS) is a successful surgical therapy used to treat the disabling symptoms of movement disorders such as Parkinson's disease. It involves the chronic stimulation of disorder-specific nuclei. However, the mechanisms that lead to clinical improvements remain unclear. Consequently, this slows the optimization of present-day DBS therapy and hinders its future development and application. We used a computational model to calculate the distribution of electric potential induced by DBS and study the effect of stimulation on the spiking activity of a subthalamic nucleus (STN) projection neuron. We previously showed that such a model can reveal detailed spatial effects of stimulation in the vicinity of the electrode. However, this multi-compartmental STN neuron model can fire in either a burst or tonic mode and, in this study, we hypothesized that the firing mode of the cell will have a major impact on the DBS-induced effects. Our simulations showed that the bursting model exhibits behaviour observed in studies of high-frequency stimulation of STN neurons, such as the presence of a silent period at stimulation offset and frequency-dependent stimulation effects. We validated the model by simulating the clinical parameter settings used for a Parkinsonian patient and showed, in a patient-specific anatomical model, that the region of affected tissue is consistent with clinical observations of the optimal DBS site. Our results demonstrated a method of quantitatively assessing neuronal changes induced by DBS, to maximize therapeutic benefit and minimize unwanted side effects. PMID:22805069

  18. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  19. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha

    2015-01-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  20. Sparse representation of MER signals for localizing the Subthalamic Nucleus in Parkinson's disease surgery.

    PubMed

    Vargas Cardona, Hernán Darío; Álvarez, Mauricio A; Orozco, Álvaro A

    2014-01-01

    Deep brain stimulation (DBS) of Subthalamic Nucleus (STN) is the best method for treating advanced Parkinson's disease (PD), leading to striking improvements in motor function and quality of life of PD patients. During DBS, online analysis of microelectrode recording (MER) signals is a powerful tool to locate the STN. Therapeutic outcomes depend of a precise positioning of a stimulator device in the target area. In this paper, we show how a sparse representation of MER signals allows to extract discriminant features, improving the accuracy in identification of STN. We apply three techniques for over-complete representation of signals: Method of Frames (MOF), Best Orthogonal Basis (BOB) and Basis Pursuit (BP). All the techniques are compared to classical methods for signal processing like Wavelet Transform (WT), and a more sophisticated method known as adaptive Wavelet with lifting schemes (AW-LS). We apply each processing method in two real databases and we evaluate its performance with simple supervised classifiers. Classification outcomes for MOF, BOB and BP clearly outperform WT and AW-LF in all classifiers for both databases, reaching accuracy values over 98%.

  1. The influence of bilateral subthalamic nucleus deep brain stimulation on impulsivity and prepulse inhibition in Parkinson’s disease patients

    PubMed Central

    Gee, Lucy; Smith, Heather; Cruz, Priscilla De La; Campbell, Joannalee; Fama, Chris; Haller, Jessica; Ramirez-Zamora, Adolfo; Durphy, Jennifer; Hanspal, Era; Molho, Eric; Barba, Anne; Shin, Damian; Pilitsis, Julie G.

    2015-01-01

    Background At least 14% of Parkinson disease (PD) patients develop impulse control disorders (ICDs). The pathophysiology behind these behaviors and the impact of deep brain stimulation in a real-life setting remains unclear. Objectives We prospectively examined the impact of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on ICDs in PD patients, as well as the relationship between impaired sensorimotor gaiting and impulsivity. Methods Patients undergoing bilateral STN-DBS were assessed for ICDs preoperatively and 1-year postoperatively using a validated questionnaire (QUIP-RS). A subset of patients completed the Balloon Analog Risk Task (BART) and auditory pre-pulse inhibition (PPI) testing. Results Analysis revealed 12 patients had an improvement in score assessing ICDs (“good responders” – GR; p = 0.006) while 4 had a worse or stable score (“poor responders” – PR; p > 0.05). GR further exemplified a significant decrease in hypersexual behavior (p = 0.005) and binge eating (p = 0.01). Impaired PPI responses also significantly correlated with impulsivity in BART (r = −0.72, p = 0.044). Discussion Following bilateral STN-DBS 75% of our cohort had a reduction in ICDs, thus suggesting deep brain stimulation effectively manages ICDs in PD. The role of impaired PPI in predisposition to ICDs in PD warrants further investigation. PMID:26066569

  2. CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia.

    PubMed

    Pinto, Rita; Barros, Rita; Pereira-Castro, Isabel; Mesquita, Patricia; da Costa, Luis T; Bennett, Eric P; Almeida, Raquel; David, Leonor

    2015-07-01

    De novo expression of Sialyl-Tn (STn) antigen is one of the most common features of intestinal metaplasia (IM) and gastric carcinomas, and its biosynthesis has been mostly attributed to ST6GalNAc-I activity. However, the regulation of this glycosyltransferase expression is not elucidated. In IM lesions and in the intestine, CDX2 homeobox transcription factor is co-expressed with STn and ST6GalNAc-I. We therefore hypothesized that CDX2 might induce STn expression by positive regulation of ST6GalNAc-I. We showed that ST6GalNAc-I transcript levels and CDX2 have a coordinated expression upon Caco-2 in vitro differentiation, and overexpression of CDX2 in MKN45 gastric cells increases ST6GalNAc-I transcript levels. Nine putative CDX-binding sites in the ST6GalNAc-I-regulatory sequence were identified and analyzed by chromatin immunoprecipitation in Caco-2 cells and in IM. The results showed that CDX2 protein is recruited to all regions, being the most proximal sites preferentially occupied in vivo. Luciferase assays demonstrated that CDX2 is able to transactivate ST6GalNac-I-regulatory region. The induction was stronger for the regions mapped in the neighbourhood of ATG start codon and site-directed mutagenesis of these sites confirmed their importance. In conclusion, we show that CDX2 transcriptionally regulates ST6GalNAc-I gene expression, specifically in the preneoplastic IM lesion.

  3. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization

    SciTech Connect

    Baumann, K.; Jayanty, R.K.; Flanagan, J.B.

    2008-01-15

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. It was found that most PMF factors did not cleanly represent single source types and instead are 'contaminated' by other sources. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality 37 {+-} 10% winter vs. 55 {+-} 16% summer average. Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results. An appendix , available to members on the website www.awma lists stationary sources of PM2.5 within 10 km of the NHBM site and PM2.5 emissions greater than 1 ton per year. 71 refs., 7 figs., 9 tabs.

  4. CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia.

    PubMed

    Pinto, Rita; Barros, Rita; Pereira-Castro, Isabel; Mesquita, Patricia; da Costa, Luis T; Bennett, Eric P; Almeida, Raquel; David, Leonor

    2015-07-01

    De novo expression of Sialyl-Tn (STn) antigen is one of the most common features of intestinal metaplasia (IM) and gastric carcinomas, and its biosynthesis has been mostly attributed to ST6GalNAc-I activity. However, the regulation of this glycosyltransferase expression is not elucidated. In IM lesions and in the intestine, CDX2 homeobox transcription factor is co-expressed with STn and ST6GalNAc-I. We therefore hypothesized that CDX2 might induce STn expression by positive regulation of ST6GalNAc-I. We showed that ST6GalNAc-I transcript levels and CDX2 have a coordinated expression upon Caco-2 in vitro differentiation, and overexpression of CDX2 in MKN45 gastric cells increases ST6GalNAc-I transcript levels. Nine putative CDX-binding sites in the ST6GalNAc-I-regulatory sequence were identified and analyzed by chromatin immunoprecipitation in Caco-2 cells and in IM. The results showed that CDX2 protein is recruited to all regions, being the most proximal sites preferentially occupied in vivo. Luciferase assays demonstrated that CDX2 is able to transactivate ST6GalNac-I-regulatory region. The induction was stronger for the regions mapped in the neighbourhood of ATG start codon and site-directed mutagenesis of these sites confirmed their importance. In conclusion, we show that CDX2 transcriptionally regulates ST6GalNAc-I gene expression, specifically in the preneoplastic IM lesion. PMID:25867765

  5. Gender influence on selection and outcome of deep brain stimulation for Parkinson's disease

    PubMed Central

    Chandran, Shyambabu; Krishnan, Syam; Rao, Ravi Mohan; Sarma, S. Gangadhara; Sarma, P. Sankara; Kishore, Asha

    2014-01-01

    Background: Gender differences exist in Parkinson's disease (PD), both in clinical manifestations and response to medical treatment. We investigated whether gender differences occur in the clinical characteristics of patients selected for bilateral subthalamic nucleus deep brain stimulation (STN DBS) or in the outcome when resource limits influence treatment choices made by patients. Materials and Methods: Fifty-one consecutive patients were evaluated 1 month before, and 12 months after bilateral STN DBS. All patients were rated using Unified Parkinson's Disease Rating Scale, Parkinson's Disease Quality of Life (PDQL) Scale, Addenbrooke's Cognitive Examination and Beck Depression Inventory. Results: Pre-operative characteristics did not differ between the genders except for lower doses of drugs (P = 0.03), worse emotional scores in PDQL (P = 0.01) and worse depression (P = 0.03) in women. There was no gender difference in the surgical outcome, except a lesser reduction of dopaminergic drugs in women. Depression and quality of life (QOL) improved equally well in women and men. Conclusion: Bilateral STN DBS is equally efficacious in both genders as a treatment for motor complications of PD and for improving QOL. Women are likely to be undertreated because of more severe dyskinesia and may experience less emotional well-being, and could therefore potentially benefit from earlier surgical treatment. PMID:24753663

  6. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

    PubMed Central

    Bogacz, Rafal; Martin Moraud, Eduardo; Abdi, Azzedine; Magill, Peter J.; Baufreton, Jérôme

    2016-01-01

    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions. PMID:27389780

  7. A Polypeptide-DNA Hybrid with Selective Linking Capability Applied to Single Molecule Nano-Mechanical Measurements Using Optical Tweezers

    PubMed Central

    Tans, Sander J.

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications. PMID:23336001

  8. The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognition improvement.

    PubMed

    Stefani, Alessandro; Peppe, Antonella; Galati, Salvatore; Bassi, Mario Stampanoni; D'Angelo, Vincenza; Pierantozzi, Mariangela

    2013-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficacious therapy for Parkinson's disease (PD) but its effects on non-motor facets may be detrimental. The low-frequency stimulation (LFS) of the pedunculopontine nucleus (PPN or the nucleus tegmenti pedunculopontini - PPTg-) opened new perspectives. In our hands, PPTg-LFS revealed a modest influence on gait but increased sleep quality and degree of attentiveness. At odds with potential adverse events following STN-DBS, executive functions, under PPTg-ON, ameliorated. A recent study comparing both targets found that only PPTg-LFS improved night-time sleep and daytime sleepiness. Chances are that different neurosurgical groups influence either the PPN sub-portion identified as pars dissipata (more interconnected with GPi/STN) or the caudal PPN region known as pars compacta, preferentially targeting intralaminar and associative nucleus of the thalamus. Yet, the wide electrical field delivered affects a plethora of en passant circuits, and a fine distinction on the specific pathways involved is elusive. This review explores our angle of vision, by which PPTg-LFS activates cholinergic and glutamatergic ascending fibers, influencing non-motor behaviors. PMID:23761781

  9. Deep brain stimulation of the subthalamic nucleus facilitates coordination of hand preshaping in Parkinson's disease.

    PubMed

    Schettino, L F; Van Erp, E; Hening, W; Lessig, S; Song, D; Barba, D; Poizner, H

    2009-01-01

    Several studies have found that Parkinson's disease (PD) disrupts the organization of complex motor sequences regardless of the influence of parkinsonian medications. A clear candidate for the neural bases of such deficits, which we term "coordinative," is the failure to integrate propioceptive and visual information by cortico-striatal circuits in a timed fashion. Recent reports, however, have indicated that deep-brain stimulation of the subthalamic nucleus (STN DBS) may result in an improvement in coordinative deficits beyond the amelioration of "intensive deficits" such as bradykinesia and scaling errors. The present study examined the spatio-temporal organization underlying the shaping of the hand during reaching to grasp objects differing in shape. Six PD patients ON and OFF their STN DBS when OFF their concomitant medications and six age-matched controls participated in this study. STN DBS improved the coordination involved in preshaping the hand while grasping. We discuss these results in light of our earlier work with PD patients on and off dopamine replacement therapy. PMID:19922392

  10. The food reaching test: a sensitive test of behavioral improvements by deep brain stimulation in MPTP-treated monkey.

    PubMed

    Asakawa, Tetsuya; Sugiyama, Kenji; Akamine, Souichi; Yokoyama, Chihiro; Shukuri, Miho; Mizuma, Hiroshi; Tsukada, Hideo; Onoe, Hirotaka; Namba, Hiroki

    2012-10-01

    We modified an objective behavioral test, namely the food reaching test (FRT), for quantitative assessment of motor performance improved by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in the Parkinsonian monkeys. The symptomatic features and their severity in 3 monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were evaluated with a subjective monkey Parkinson's disease rating scale (PDRS). We then performed STN-DBS with the minimum current intensity that stopped the tremor. The time required for the monkeys to pick up all 5 pieces of potato (FRT time) was measured as a major index to evaluate bradykinesia. The success rate was adopted as another index for assessing overall motor impairments. Although both FRT time and PDRS score were similarly improved by STN-DBS, change of FRT time appeared more sensitive than that of PDRS scores. FRT is an easily trained behavioral test with high objectivity and sensitivity that can be applied for assessing motor performance in MPTP-treated monkeys during experiments in a restrained condition such as functional imaging of the brain.

  11. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease

    PubMed Central

    Villalba, Rosa M.; Mathai, Abraham; Smith, Yoland

    2015-01-01

    The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined. PMID:26441550

  12. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens

    PubMed Central

    Loureiro, Liliana R.; Carrascal, Mylène A.; Barbas, Ana; Ramalho, José S.; Novo, Carlos; Delannoy, Philippe; Videira, Paula A.

    2015-01-01

    The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment. PMID:26270678

  13. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    PubMed

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Fadri-Moskwik, Maria; Ye, Ping; Chai, Weihang

    2016-08-01

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance.

  14. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism

    PubMed Central

    Wessel, Jan R.; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H. E. M.; Aziz, Tipu Z.; Aron, Adam R.

    2016-01-01

    Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events. PMID:27088156

  15. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism.

    PubMed

    Wessel, Jan R; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H E M; Aziz, Tipu Z; Aron, Adam R

    2016-01-01

    Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events. PMID:27088156

  16. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours.

    PubMed

    Ricardo, Sara; Marcos-Silva, Lara; Pereira, Daniela; Pinto, Rita; Almeida, Raquel; Söderberg, Ola; Mandel, Ulla; Clausen, Henrik; Felix, Ana; Lunet, Nuno; David, Leonor

    2015-02-01

    The CA125 assay detects circulating MUC16 and is one of the most widely used cancer biomarkers for the follow-up of ovarian cancer. We previously demonstrated that detection of aberrant cancer-associated glycoforms of MUC16 as well as MUC1 in circulation could improve the yield of these serum assays. Our aim was to refine ovarian cancer biomarkers by detection of aberrant glycoforms (Tn, STn, and T) of MUC16 and MUC1 in ovarian cancer tissue using Proximity Ligation Assays (PLA). We studied two series of serous ovarian tumours, a pilot series of 66 ovarian tumours (27 cystadenomas, 16 borderline tumours and 23 adenocarcinomas) from Centro Hospitalar S. João, Porto and a validation series of 89 ovarian tumours (17 cystadenomas, 25 borderline tumours and 47 adenocarcinomas) from the Portuguese Institute of Oncology Francisco Gentil, Lisbon. PLA reactions for MUC16/Tn, MUC16/STn, MUC1/Tn and MUC1/STn were negative in benign lesions but often positive in borderline and malignant lesions, in both series. An even better yield was obtained based on positivity for any of the four glyco-mucin profiles, further increasing sensitivity to 72% and 83% in the two series, respectively, with 100% specificity. The strategy is designated glyco-mucin profiling and provides strong support for development of PLA-based serum assays for early diagnosis.

  17. Inclusion of Cocoa as a Dietary Supplement Represses Expression of Inflammatory Proteins in Spinal Trigeminal Nucleus in Response to Chronic Trigeminal Nerve Stimulation

    PubMed Central

    Cady, Ryan J.; Denson, Jennifer E.; Durham, Paul L.

    2013-01-01

    Scope Central sensitization is implicated in the pathology of temporomandibular joint disorder (TMD) and other types of orofacial pain. We investigated the effects of dietary cocoa on expression of proteins involved in the development of central sensitization in the spinal trigeminal nucleus (STN) in response to inflammatory stimulation of trigeminal nerves. Methods and results Male Sprague Dawley rats were fed either a control diet or an isocaloric diet consisting of 10% cocoa powder 14 days prior to bilateral injection of complete Freund’s adjuvant (CFA) into the temporomandibular joint to promote prolonged activation of trigeminal ganglion neurons and glia. While dietary cocoa stimulated basal expression of GLAST and MKP-1 when compared to animals on a normal diet, cocoa suppressed basal calcitonin gene-related peptide levels in the STN. CFA-stimulated levels of protein kinase A, P2X3, P-p38, GFAP, and OX-42, whose elevated levels in the STN are implicated in central sensitization, were repressed to near control levels in animals on a cocoa enriched diet. Similarly, dietary cocoa repressed CFA-stimulated inflammatory cytokine expression. Conclusion Based on our findings, we speculate that cocoa enriched diets could be beneficial as a natural therapeutic option for TMD and other chronic orofacial pain conditions. PMID:23576361

  18. High-Frequency Stimulation of the Rat Entopeduncular Nucleus Does Not Provide Functional or Morphological Neuroprotection from 6-Hydroxydopamine

    PubMed Central

    Fischer, D. Luke; Collier, Timothy J.; Cole-Strauss, Allyson; Wohlgenant, Susan L.; Lipton, Jack W.; Steece-Collier, Kathy; Manfredsson, Fredric P.; Kemp, Christopher J.; Sortwell, Caryl E.

    2015-01-01

    Deep brain stimulation (DBS) is the most common neurosurgical treatment for Parkinson’s disease (PD). Whereas the globus pallidus interna (GPi) has been less commonly targeted than the subthalamic nucleus (STN), a recent clinical trial suggests that GPi DBS may provide better outcomes for patients with psychiatric comorbidities. Several laboratories have demonstrated that DBS of the STN provides neuroprotection of substantia nigra pars compacta (SNpc) dopamine neurons in preclinical neurotoxin models of PD and increases brain-derived neurotrophic factor (BDNF). However, whether DBS of the entopeduncular nucleus (EP), the homologous structure to the GPi in the rat, has similar neuroprotective potential in preclinical models has not been investigated. We investigated the impact of EP DBS on forelimb use asymmetry and SNpc degeneration induced by 6-hydroxydopamine (6-OHDA) and on BDNF levels. EP DBS in male rats received unilateral, intrastriatal 6-OHDA and ACTIVE or INACTIVE stimulation continuously for two weeks. Outcome measures included quantification of contralateral forelimb use, stereological assessment of SNpc neurons and BDNF levels. EP DBS 1) did not ameliorate forelimb impairments induced by 6-OHDA, 2) did not provide neuroprotection for SNpc neurons and 3) did not significantly increase BDNF levels in any of the structures examined. These results are in sharp contrast to the functional improvement, neuroprotection and BDNF-enhancing effects of STN DBS under identical experimental parameters in the rat. The lack of functional response to EP DBS suggests that stimulation of the rat EP may not represent an accurate model of clinical GPi stimulation. PMID:26222442

  19. Effect of Deep Brain Stimulation on Parkinson's Nonmotor Symptoms following Unilateral DBS: A Pilot Study

    PubMed Central

    Hwynn, Nelson; Ul Haq, Ihtsham; Malaty, Irene A.; Resnick, Andrew S.; Dai, Yunfeng; Foote, Kelly D.; Fernandez, Hubert H.; Wu, Samuel S.; Oyama, Genko; Jacobson, Charles E.; Kim, Sung K.; Okun, Michael S.

    2011-01-01

    Parkinson's disease (PD) management has traditionally focused largely on motor symptoms. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus internus (GPi) are effective treatments for motor symptoms. Nonmotor symptoms (NMSs) may also profoundly affect the quality of life. The purpose of this pilot study was to evaluate NMS changes pre- and post-DBS utilizing two recently developed questionnaires. Methods. NMS-Q (questionnaire) and NMS-S (scale) were administered to PD patients before/after unilateral DBS (STN/GPi targets). Results. Ten PD patients (9 STN implants, 1 GPi implant) were included. The three most frequent NMS symptoms identified utilizing NMS-Q in pre-surgical patients were gastrointestinal (100%), sleep (100%), and urinary (90%). NMS sleep subscore significantly decreased (−1.6 points ± 1.8, P = 0.03). The three most frequent NMS symptoms identified in pre-surgical patients using NMS-S were gastrointestinal (90%), mood (80%), and cardiovascular (80%). The largest mean decrease of NMS scores was seen in miscellaneous symptoms (pain, anosmia, weight change, and sweating) (−7 points ± 8.7), and cardiovascular/falls (−1.9, P = 0.02). Conclusion. Non-motor symptoms improved on two separate questionnaires following unilateral DBS for PD. Future studies are needed to confirm these findings and determine their clinical significance as well as to examine the strengths/weaknesses of each questionnaire/scale. PMID:22220288

  20. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson’s disease: a meta-analysis of controlled clinical trials

    PubMed Central

    Xu, Fan; Ma, Wenbin; Huang, Yongmin; Qiu, Zhihai; Sun, Lei

    2016-01-01

    Background Parkinson’s disease (PD) is a common neurodegenerative disorder that affects many people every year. Deep brain stimulation (DBS) is an effective nonpharmacological method to treat PD motor symptoms. This meta-analysis was conducted to evaluate the efficacy of subthalamic nucleus (STN)-DBS versus globus pallidus internus (GPi)-DBS in treating advanced PD. Methods Controlled clinical trials that compared STN-DBS to GPi-DBS for short-term treatment of PD in adults were researched up to November 2015. The primary outcomes were the Unified Parkinson’s Disease Rating Scale Section (UPDRS) III score and the levodopa-equivalent dosage (LED) after DBS. The secondary outcomes were the UPDRS II score and the Beck Depression Inventory (BDI) score. Results Totally, 13 studies containing 1,148 PD patients were included in this meta-analysis to compare STN-DBS versus GPi-DBS. During the off-medication state, the pooled weighted mean difference (WMD) of UPDRS III and II scores were −2.18 (95% CI =−5.11 to 0.74) and −1.96 (95% CI =−3.84 to −0.08), respectively. During the on-medication state, the pooled WMD of UPDRS III and II scores were 0.15 (95% CI =−1.14 to 1.44) and 1.01 (95% CI =0.12 to 1.89), respectively. After DBS, the pooled WMD of LED and BDI were −254.48 (95% CI =−341.66) and 2.29 (95% CI =0.83 to 3.75), respectively. Conclusion These results indicate that during the off-medication state, the STN-DBS might be superior to GPi-DBS in improving the motor function and activities of daily living for PD patients; but during the on-medication state, the opposite result is observed. Meanwhile, the STN-DBS is superior at reducing the LED, whereas the GPi-DBS shows a significantly greater reduction in BDI score after DBS. PMID:27382286

  1. Efficacies of globus pallidus stimulation and subthalamic nucleus stimulation for advanced Parkinson’s disease: a meta-analysis of randomized controlled trials

    PubMed Central

    Tan, Zhi-Gang; Zhou, Qian; Huang, Tao; Jiang, Yugang

    2016-01-01

    Objectives Deep brain stimulation (DBS) is the surgical procedure for patients with advanced Parkinson’s disease. Globus pallidus internus (GPi) and subthalamic nucleus (STN) are the most targeted locations for the procedure. To investigate the variable efficiencies for the two different locations, we conducted a meta-analysis to compare both stimulation sites. Materials and methods A systematic search was performed in PubMed, Embase, and the Cochrane Library databases. Randomized controlled trials comparing the efficacies of GPi and STN DBS were included. Clinical outcomes of motor function, nonmotor function, and quality of life (QOL) were collected for the meta-analysis. Results Ten eligible trials with 1,034 patients were included in the analysis. Unified Parkinson’s disease rating scale III (UPDRS-III) scores were collected at 6, 12, and 24 months postsurgery separately to assess the motor function of the patients. A statistically significant effect in favor of the GPi DBS was obtained in the off-medication/on-stimulation phase of UPDRS-III at 12 months (mean difference [MD] =6.87, 95% confidence interval [95% CI]: 3.00–10.74, P=0.57, I2=0%). However, GPi DBS showed an opposite result at 24 months (MD =−2.46, 95% CI: −4.91 to −0.02, P=0.05, I2=0%). In the on-medication/on-stimulation phase, GPi DBS obtained a worse outcome compared with STN DBS (MD =−2.90, 95% CI: −5.71 to −0.09, P=0.05, I2=0%). Compared with STN DBS, increased dosage of levodopa equivalent doses was needed in GPi DBS (standardized MD =0.60, 95% CI: 0.46–0.74, P<0.00001, I2=24%). Meanwhile, Beck Depression Inventory II scores demonstrated that STN has a better performance (standardized MD =−0.31, 95% CI: −0.51 to −0.12, P=0.002, I2=0%). As for neurocognitive phase postsurgery, GPi DBS showed better performance in three of the nine tests, especially in verbal fluency. Use of GPi DBS was associated with a greater effect in eight of the nine subscales of QOL. Conclusion

  2. Movement-related discharge in the macaque globus pallidus during high-frequency stimulation of the subthalamic nucleus.

    PubMed

    Zimnik, Andrew J; Nora, Gerald J; Desmurget, Michel; Turner, Robert S

    2015-03-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an "informational lesion," whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism.

  3. Movement-Related Discharge in the Macaque Globus Pallidus during High-Frequency Stimulation of the Subthalamic Nucleus

    PubMed Central

    Zimnik, Andrew J.; Nora, Gerald J.; Desmurget, Michel

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an “informational lesion,” whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism. PMID:25740526

  4. Deep Brain Stimulation for Parkinson’s Disease: Recent Trends and Future Direction

    PubMed Central

    FUKAYA, Chikashi; YAMAMOTO, Takamitsu

    2015-01-01

    To date, deep brain stimulation (DBS) has already been performed on more than 120,000 patients worldwide and in more than 7,000 patients in Japan. However, fundamental understanding of DBS effects on the pathological neural circuitry remains insufficient. Recent studies have specifically shown the importance of cortico-striato-thalamo-cortical (CSTC) loops, which were identified as functionally and anatomically discrete units. Three main circuits exist in the CSTC loops, namely, the motor, associative, and limbic circuits. From these theoretical backgrounds, it is determined that DBS sometimes influences not only motor functions but also the cognitive and affective functions of Parkinson’s disease (PD) patients. The main targets of DBS for PD are subthalamic nucleus (STN) and globus pallidus interna (GPi). Ventralis intermedius (Vim)-DBS was found to be effective in improving tremor. However, Vim-DBS cannot sufficiently improve akinesia and rigidity. Therefore, Vim-DBS is seldom carried out for the treatment of PD. In this article, we review the present state of DBS, mainly STN-DBS and GPi-DBS, for PD. In the first part of the article, appropriate indications and practical effects established in previous studies are discussed. The findings of previous investigations on the complications caused by the surgical procedure and on the adverse events induced by DBS itself are reviewed. In the second part, we discuss target selection (GPi vs. STN) and the effect of DBS on nonmotor symptoms. In the final part, as issues that should be resolved, the suitable timing of surgery, symptoms unresponsive to DBS such as on-period axial symptoms, and the related postoperative programing of stimulation parameters, are discussed. PMID:25925761

  5. Unilateral and bilateral subthalamic nucleus stimulation in Parkinson's disease: effects on EMG signals of lower limb muscles during walking.

    PubMed

    Ferrarin, Maurizio; Carpinella, Ilaria; Rabuffetti, Marco; Rizzone, Mario; Lopiano, Leonardo; Crenna, Paolo

    2007-06-01

    The effects of subthalamic nucleus (STN) stimulation on the spatio-temporal organization of locomotor commands directed to lower limb muscles were studied in subjects with idiopathic Parkinson's Disease (PD) by recording the EMG activity produced during steady-state walking in representative thigh (rectus femoris, RF, and semimembranosus, SM) and leg (gatrocnemius medialis, GAM, and tibialis anterior, TA) muscles, under four experimental conditions: basal stimulation OFF, unilateral (right and left) stimulation ON, and bilateral stimulation ON. Locomotor profiles of all of the muscles tested were found to be substantially affected by STN stimulation, either in terms of restoration/enhancement of the main activity bursts or normalization of recruitment timing thereof. Responses showed relatively higher statistical significance in the distal groups (GAM and TA) and, within them, for the EMG components called into action over the ground-contact (ankle dorsiflexors) and midstance (ankle plantarflexors) phases of the stride cycle. In line with data obtained from clinical rating, unilateral stimulation produced less consistent EMG changes compared with bilateral stimulation. However, at variance with clinical effects, which prevailed on the side of the body contralateral to stimulation, EMG responses to unilateral stimulation were usually symmetrical. Results indicate that the impact of STN stimulation on locomotor activation of lower limb muscles in PD is characterized by: 1) substantial effects exhibiting differential topographical (distal versus proximal) and stride-phase (stance versus swing) consistency and 2) absence of the lateralized actions typically observed for the clinical signs of the disease. Interaction with the activity of functionally different executive systems might account for the observed pattern of responsiveness.

  6. Resiliency in adolescents at high-risk for substance abuse: flexible adaptation via subthalamic nucleus and linkage to drinking and drug use in early adulthood

    PubMed Central

    Weiland, Barbara J.; Nigg, Joel T.; Welsh, Robert C.; Yau, Wai-Ying Wendy; Zubieta, Jon-Kar; Zucker, Robert A.; Heitzeg, Mary M.

    2012-01-01

    Introduction The personality trait resiliency is the ability to flexibly adapt impulse control relative to contextual demand. Low resiliency has been linked to later alcohol/drug problems. The underlying psychological and neural mechanisms are unknown but neurocomputational models suggested relations between resiliency and working memory. Cortical-striatal connectivity has been proposed to underlie adaptive switches between cautious and risky behaviors. Methods Working memory was probed in sixty-seven 18–22 year olds from a larger community study of alcoholism, using the n-back task during functional magnetic resonance imaging. Functional connectivity between task-related regions was investigated with psychophysiological interaction analysis. Resiliency was measured in early teen years and related to early adulthood measures of drinking/drug use, task activation and connectivity. Relationships with risk factors, including family history, age of drinking onset and number of alcohol problems were also investigated. Results Higher resiliency was related to lower levels of substance use, fewer alcohol problems and better working memory performance. Whole brain regression revealed resiliency negatively correlated with activation of subthalamic nucleus (STN) and pallidum during the n-back. High and Low resiliency quartile groups (n=17 each) differed in coupling strength between STN and median cingulate cortex, a region of reduced activation during working memory. The High resiliency group had later onset of drinking, fewer alcohol problems, had used fewer illicit drugs and were less likely to smoke cigarettes than their Low resiliency counterparts, Conclusions These findings suggest that resiliency in early adolescence may protect against alcohol problems and drug use, though the direction of this effect is currently unknown. This protective factor may relate to executive functioning as supported by the finding of a neural link shared between resiliency and working

  7. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens.

    PubMed

    Zhang, S; Zhang, H S; Cordon-Cardo, C; Reuter, V E; Singhal, A K; Lloyd, K O; Livingston, P O

    1997-09-26

    Blood group-related antigens have been attractive targets for immunotherapy of cancer since their initial identification as cancer-related antigens. However, available information on the relative expression of most of these antigens on human malignant and normal tissues has been insufficient for selecting optimal antigens and tumors for immune attack. In this study, the distribution of the blood group-related antigens TF, Tn, sTn, Le(a), sialyl Le(a), Le(b), Le(x), sialyl Le(x), polyfucosyl Le(x) and Le(y) on 13 types of cancer and 16 normal tissues was compared. Our results show that sTn is strongly expressed on cancers of breast, colon, stomach, ovary, prostate and uterus; Tn on prostate cancer; TF on cancers of breast, colon, ovary, prostate and uterus; Le(y) on the cancers of colon, lung, pancreas and ovary; Le(a) and Le(x) on gastric cancer; and sialyl Le(a) and sialyl Le(x) on colon cancer. The complete absence of these antigens on cancers of neuroectodermal or mesodermal origin including melanoma, sarcoma, neuroblastoma and B cell lymphoma is as striking as their widespread presence on tumors of epithelial origin. Normal tissues were also tested. Tn and Le(b) were only detected on gastric and ovarian epithelia; sTn on Leydig cells of testis in addition to gastric and ovarian epithelia; Le(x) and sialyl Le(x) on polymorphonuclear leukocytes; and TF, Le(a), sialyl Le(a), Le(x), sialyl Le(x), polyfucosyl Le(x) and Le(y) on epithelia from a variety of tissues.

  8. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  9. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    PubMed Central

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. PMID:24723855

  10. Topography of dyskinesias and torticollis evoked by inhibition of substantia nigra pars reticulata.

    PubMed

    Dybdal, David; Forcelli, Patrick A; Dubach, Mark; Oppedisano, Michael; Holmes, Angela; Malkova, Ludise; Gale, Karen

    2013-04-01

    GABAergic neurons of the substantia nigra pars reticulata (SNpr) and globus pallidus pars interna (GPi) constitute the output pathways of the basal ganglia. In monkeys, choreiform limb dyskinesias have been described after inhibition of the GPi, but not the SNpr. Given the anatomical and functional similarities between these structures, we hypothesized that choreiform dyskinesias could be evoked by inhibition of an appropriate region within the SNpr. The GABAA receptor agonist, muscimol, was infused into various sites within the SNpr and the adjacent STN of freely moving macaques. The effect of the GABAA antagonist, bicuculline (BIC), was also examined. Muscimol (MUS) in SNpr evoked the following: (1) choreiform dyskinesias of the contralateral arm and/or leg from central and lateral sites; (2) contralaterally directed torticollis from central and posterior sites; and (3) contraversive quadrupedal rotation from anterior and lateral sites. MUS infusions into the adjacent SN pars compacta or STN were without effect, ruling out a contribution of drug spread to adjacent structures. BIC in SNpr induced ipsiversive postures without choreiform dyskinesia or torticollis, whereas in the STN, it evoked ballistic movements. This is the first report of choreiform dyskinesia evoked by inhibition of the SNpr. This highly site-specific effect was obtained from a restricted region within the SNpr distinct from that responsible for inducing torticollis. These results suggest that overactivity of different SNpr outputs mediates choreiform dyskinesia and torticollis. These abnormalities are symptoms of dystonia, Huntington's disease, and iatrogenic dyskinesias, suggesting that these conditions may result, in part, from a loss of function in SNpr efferent projections.

  11. Improved Sequence Learning with Subthalamic Nucleus Deep Brain Stimulation: Evidence for Treatment-Specific Network Modulation

    PubMed Central

    Mure, Hideo; Tang, Chris C.; Argyelan, Miklos; Ghilardi, Maria-Felice; Kaplitt, Michael G.; Dhawan, Vijay; Eidelberg, David

    2015-01-01

    We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson’s disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H2 15Opositron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p < 0.02). To determine whether similar changes occurred during dopaminergic pharmacotherapy, we studied the subjects during an intravenous levodopa infusion titrated to achieve a motor response equivalent to stimulation. Despite consistent improvement in motor ratings during infusion, levodopa did not alter learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA–STN projection pathways may underlie the improvement in learning found with stimulation. PMID:22357863

  12. Dopaminergic therapy and subthalamic stimulation in Parkinson's disease: a review of 5-year reports.

    PubMed

    Romito, Luigi M; Albanese, Alberto

    2010-11-01

    The long-term efficacy and safety of deep brain stimulation (DBS) implant for Parkinson's disease (PD) is described in several recent papers. This procedure has been reported to permit a stable reduction of dopaminergic therapy requirements for up to 5 years, although some expectation of deterioration in non-dopaminergic signs has been recently stated. Our aim is to perform a literature-based review of papers available describing long-term post-operative follow-up after a bilateral implant for subthalamic DBS (STN-DBS). Only peer-reviewed published papers with a post-operative follow-up of at least 5 years were considered. Clinical outcome, disease progression and side effects were assessed at baseline and 2 (or 3 years) and 5 years after surgery. Seven papers were included in the review. A total of 238 patients were analyzed. STN-DBS was confirmed to be an effective treatment for selected patients with PD. In all studies, off-related motor symptoms improved dramatically, compared with pre-implant, at 2 (or 3, according to the study) years and this result persisted at 5-year evaluations. Antiparkinsonian drug reductions, improvements in motor fluctuations and dyskinesias, functional measures and the progression of underlying PD were also reported in all series. Some axial scores, in particular postural stability and speech, improved transiently. Persisting adverse effects included eyelid opening apraxia, weight gain, psychiatric disorders, depression, dysarthria, dyskinesias, and apathy. The present review of the 5-year observations confirms that STN-DBS is a powerful method in the management of PD, but its long-term effects must be thoroughly assessed.

  13. Why do Parkinson's Disease Patients Sometimes Make Wrong Decisions?

    PubMed

    Damier, Philippe

    2015-01-01

    Our knowledge of the cerebral bases of decision making has grown considerably in the past decade. The dopamine system is closely involved in many aspects of the decisional process. It is therefore not surprising that the dysfunctions that occur in Parkinson's disease (PD) can alter some patients' decisions. Put simply, a decision is the final step of a process in which a subject weighs up the potential benefits and costs associated with each of the different options available for a given choice. The option that appears to have the best ratio of benefits to costs is chosen. In some PD patients, dopamine agonists destabilize the balance: the benefits are given an inappropriately high weighting relative to the costs, leading patients to take decisions they would not otherwise have taken. This might be one of the explanations for impulse control disorders observed in some PD patients. Dysfunction of the subthalamic nucleus (STN) induced by dopamine replacement or by deep brain stimulation is another mechanism that can alter decision making. The STN plays an active role in the decisional process, especially by slowing down the process when the difference between the options to be considered in a given choice is small (e.g. a win-win choice). Deep brain stimulation applied to the STN may interfere with its monitoring role and lead to an impulsive choice. Attention disorders and frontal lobe dysfunction, highly prevalent in the course of PD, are other factors that may alter a patient's decision making. Patients and caregivers need to be aware of this, since the consequences can sometimes be detrimental. PMID:26406144

  14. Local field potential recordings in a non-human primate model of Parkinsons disease using the Activa PC + S neurostimulator

    NASA Astrophysics Data System (ADS)

    Connolly, Allison T.; Muralidharan, Abirami; Hendrix, Claudia; Johnson, Luke; Gupta, Rahul; Stanslaski, Scott; Denison, Tim; Baker, Kenneth B.; Vitek, Jerrold L.; Johnson, Matthew D.

    2015-12-01

    Objective. Using the Medtronic Activa® PC + S system, this study investigated how passive joint manipulation, reaching behavior, and deep brain stimulation (DBS) modulate local field potential (LFP) activity in the subthalamic nucleus (STN) and globus pallidus (GP). Approach. Five non-human primates were implanted unilaterally with one or more DBS leads. LFPs were collected in montage recordings during resting state conditions and during motor tasks that facilitate the expression of parkinsonian motor signs. These recordings were made in the naïve state in one subject, in the parkinsonian state in two subjects, and in both naïve and parkinsonian states in two subjects. Main results. LFPs measured at rest were consistent over time for a given recording location and parkinsonian state in a given subject; however, LFPs were highly variable between subjects, between and within recording locations, and across parkinsonian states. LFPs in both naïve and parkinsonian states across all recorded nuclei contained a spectral peak in the beta band (10-30 Hz). Moreover, the spectral content of recorded LFPs was modulated by passive and active movement of the subjects’ limbs. LFPs recorded during a cued-reaching task displayed task-related beta desynchronization in STN and GP. The bidirectional capabilities of the Activa® PC + S also allowed for recording LFPs while delivering DBS. The therapeutic effect of STN DBS on parkinsonian rigidity outlasted stimulation for 30-60 s, but there was no correlation with beta band power. Significance. This study emphasizes (1) the variability in spontaneous LFPs amongst subjects and (2) the value of using the Activa® PC + S system to record neural data in the context of behavioral tasks that allow one to evaluate a subject’s symptomatology.

  15. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery.

    PubMed

    Campos, Diana; Freitas, Daniela; Gomes, Joana; Magalhães, Ana; Steentoft, Catharina; Gomes, Catarina; Vester-Christensen, Malene B; Ferreira, José Alexandre; Afonso, Luis P; Santos, Lúcio L; Pinto de Sousa, João; Mandel, Ulla; Clausen, Henrik; Vakhrushev, Sergey Y; Reis, Celso A

    2015-06-01

    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer. PMID:25813380

  16. Group I mGluRs Evoke K-ATP Current by Intracellular Ca2+ Mobilization in Rat Subthalamus Neurons

    PubMed Central

    Shen, Ke-Zhong

    2013-01-01

    We reported previously that Ca2+ influx through N-methly-d-aspartate-gated channels evokes ATP-sensitive K+ (K-ATP) currents in rat subthalamic nucleus (STN) neurons. By using whole-cell patch clamp recordings in brain slices, we investigated the ability of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, to evoke K-ATP currents. DHPG (20 µM) evoked outward current at −70 mV and was associated with a positive slope conductance of 2.7 nS. The sulfonylurea agent tolbutamide (100 µM) converted the positive slope to negative slope conductance, indicating mediation by K-ATP channels (ATP-sensitive K+ channels). Currents evoked by DHPG were significantly reduced by a combination of mGluR1 and mGluR5 negative allosteric modulators. DHPG-evoked outward current was blocked by cyclopiazonic acid and thapsigargin and mimicked by caffeine, suggesting mediation by release of intracellular Ca2+. DHPG outward current was also blocked by ryanodine and 2-aminoethoxydiphenylborane, suggesting mediation by ryanodine- and inositol 1,4,5-triphosphate-sensitive Ca2+ release. The nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester and inhibitors of protein kinase G activity also suppressed DHPG-induced outward current. Voltage recordings showed that tolbutamide prolonged depolarizing plateau potentials and increased the spontaneous firing rate of STN neurons recorded in the presence of DHPG. These results show that group I mGluR stimulation generates K-ATP current by a nitric oxide- and protein kinase G-dependent process that is mediated by release of Ca2+ from intracellular stores. Because burst firing is linked to symptoms of Parkinson’s disease, we suggest that K-ATP channels might provide a physiologically important inhibitory influence on STN neuronal activity. PMID:23335392

  17. Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains.

    PubMed

    Suorsa, Marjaana; Rantala, Marjaana; Mamedov, Fikret; Lespinasse, Maija; Trotta, Andrea; Grieco, Michele; Vuorio, Eerika; Tikkanen, Mikko; Järvi, Sari; Aro, Eva-Mari

    2015-10-01

    Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.

  18. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson's Disease

    PubMed Central

    Wang, Xiao-Hong; Zhang, Lin; Sperry, Laura; Olichney, John; Farias, Sarah Tomaszewski; Shahlaie, Kiarash; Chang, Norika Malhado; Liu, Ying; Wang, Su-Ping; Wang, Cui

    2015-01-01

    Objective: This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients. PMID:26668154

  19. Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson's disease.

    PubMed

    Kahan, Josh; Mancini, Laura; Urner, Maren; Friston, Karl; Hariz, Marwan; Holl, Etienne; White, Mark; Ruge, Diane; Jahanshahi, Marjan; Boertien, Tessel; Yousry, Tarek; Thornton, John S; Limousin, Patricia; Zrinzo, Ludvic; Foltynie, Tom

    2012-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) has become an accepted treatment for patients experiencing the motor complications of Parkinson's disease (PD). While its successes are becoming increasingly apparent, the mechanisms underlying its action remain unclear. Multiple studies using radiotracer-based imaging have investigated DBS-induced regional changes in neural activity. However, little is known about the effect of DBS on connectivity within neural networks; in other words, whether DBS impacts upon functional integration of specialized regions of cortex. In this work, we report the first findings of fMRI in 10 subjects with PD and fully implanted DBS hardware receiving efficacious stimulation. Despite the technical demands associated with the safe acquisition of fMRI data from patients with implanted hardware, robust activation changes were identified in the insula cortex and thalamus in response to therapeutic STN DBS. We then quantified the neuromodulatory effects of DBS and compared sixteen dynamic causal models of effective connectivity between the two identified nodes. Using Bayesian model comparison, we found unequivocal evidence for the modulation of extrinsic (between region), i.e. cortico-thalamic and thalamo-cortical connections. Using Bayesian model parameter averaging we found that during voluntary movements, DBS reversed the effective connectivity between regions of the cortex and thalamus. This casts the therapeutic effects of DBS in a fundamentally new light, emphasising a role in changing distributed cortico-subcortical interactions. We conclude that STN DBS does impact upon the effective connectivity between the cortex and thalamus by changing their sensitivities to extrinsic afferents. Furthermore, we confirm that fMRI is both feasible and is tolerated well by these patients provided strict safety measures are adhered to.

  20. Therapeutic Subthalamic Nucleus Deep Brain Stimulation Reverses Cortico-Thalamic Coupling during Voluntary Movements in Parkinson's Disease

    PubMed Central

    Kahan, Josh; Mancini, Laura; Urner, Maren; Friston, Karl; Hariz, Marwan; Holl, Etienne; White, Mark; Ruge, Diane; Jahanshahi, Marjan; Boertien, Tessel; Yousry, Tarek; Thornton, John S.; Limousin, Patricia; Zrinzo, Ludvic; Foltynie, Tom

    2012-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) has become an accepted treatment for patients experiencing the motor complications of Parkinson's disease (PD). While its successes are becoming increasingly apparent, the mechanisms underlying its action remain unclear. Multiple studies using radiotracer-based imaging have investigated DBS-induced regional changes in neural activity. However, little is known about the effect of DBS on connectivity within neural networks; in other words, whether DBS impacts upon functional integration of specialized regions of cortex. In this work, we report the first findings of fMRI in 10 subjects with PD and fully implanted DBS hardware receiving efficacious stimulation. Despite the technical demands associated with the safe acquisition of fMRI data from patients with implanted hardware, robust activation changes were identified in the insula cortex and thalamus in response to therapeutic STN DBS. We then quantified the neuromodulatory effects of DBS and compared sixteen dynamic causal models of effective connectivity between the two identified nodes. Using Bayesian model comparison, we found unequivocal evidence for the modulation of extrinsic (between region), i.e. cortico-thalamic and thalamo-cortical connections. Using Bayesian model parameter averaging we found that during voluntary movements, DBS reversed the effective connectivity between regions of the cortex and thalamus. This casts the therapeutic effects of DBS in a fundamentally new light, emphasising a role in changing distributed cortico-subcortical interactions. We conclude that STN DBS does impact upon the effective connectivity between the cortex and thalamus by changing their sensitivities to extrinsic afferents. Furthermore, we confirm that fMRI is both feasible and is tolerated well by these patients provided strict safety measures are adhered to. PMID:23300524

  1. Comparative evaluation of the impact of WRF/NMM and WRF/ARW meteorology on CMAQ simulations for PM2.5 and its related precursors during the 2006 TexAQS/GoMACCS study

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Pouliot, G.; Wong, D.; Eder, B.; Schere, K.; Gilliam, R.; Rao, S. T.

    2011-12-01

    This study presents a comparative evaluation of the impact of WRF-NMM and WRF-ARW meteorology on CMAQ simulations of PM2.5, its composition and related precursors over the eastern United States with the intensive observations obtained by aircraft (NOAA P-3), ship and surface monitoring networks (AIRNow, IMPROVE, CASTNet and STN) during the 2006 TexAQS/GoMACCS study. The results at the AIRNow surface sites show that both ARW-CMAQ and NMM-CMAQ reproduced day-to-day variations of observed PM2.5 and captured the majority of observed PM2.5 within a factor of 2 with a NMB value of -0.4% for ARW-CMAQ and -18% for NMM-CMAQ. Both models performed much better at the urban sites than at the rural sites, with greater underpredictions at the rural sites. Both models consistently underestimated the observed PM2.5 at the rural IMPROVE sites by -1% for the ARW-CMAQ and -19% for the NMM-CMAQ. The greater underestimations of SO42-, OC and EC by the NMM-CMAQ contributed to increased underestimation of PM2.5 at the IMPROVE sites. The NMB values for PM2.5 at the STN urban sites are 15% and -16% for the ARW-CMAQ and NMM-CMAQ, respectively. The underestimation of PM2.5 at the STN sites by the NMM-CMAQ mainly results from the underestimations of the SO42-, NH4+ and TCM components, whereas the overestimation of PM2.5 at the STN sites by the ARW-CMAQ results from the overestimations of SO42-, NO3-, and NH4+. The comparison with P-3 aircraft measurements reveals that both ARW-CMAQ and NMM-CMAQ have very similar model performance for vertical profiles for PM2.5 chemical components (SO42-, NH4+) and related gaseous species (HNO3, SO2, NH3, isoprene, toluene, terpenes) as both models used the same chemical mechanisms and emissions. The results of ship along the coast of southeastern Texas over the Gulf of Mexico show that both models captured the temporal variations and broad synoptic change seen in the observed HCHO and acetaldehyde with the means NMB <30% most of the time but they

  2. Comparative evaluation of the impact of WRF/NMM and WRF/ARW meteorology on CMAQ simulations for PM2.5 and its related precursors during the 2006 TexAQS/GoMACCS study

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Pouliot, G.; Wong, D.; Eder, B.; Schere, K.; Gilliam, R.; Rao, S. T.

    2012-05-01

    This study presents a comparative evaluation of the impact of WRF-NMM and WRF-ARW meteorology on CMAQ simulations of PM2.5, its composition and related precursors over the eastern United States with the intensive observations obtained by aircraft (NOAA WP-3), ship and surface monitoring networks (AIRNow, IMPROVE, CASTNet and STN) during the 2006 TexAQS/GoMACCS study. The results at the AIRNow surface sites show that both ARW-CMAQ and NMM-CMAQ reproduced day-to-day variations of observed PM2.5 and captured the majority of observed PM2.5 within a factor of 2 with a NMB value of -0.4% for ARW-CMAQ and -18% for NMM-CMAQ. Both models performed much better at the urban sites than at the rural sites, with greater underpredictions at the rural sites. Both models consistently underestimated the observed PM2.5 at the rural IMPROVE sites by -1% for the ARW-CMAQ and -19% for the NMM-CMAQ. The greater underestimations of SO42-, OC and EC by the NMM-CMAQ contributed to increased underestimation of PM2.5 at the IMPROVE sites. The NMB values for PM2.5 at the STN urban sites are 15% and -16% for the ARW-CMAQ and NMM-CMAQ, respectively. The underestimation of PM2.5 at the STN sites by the NMM-CMAQ mainly results from the underestimations of the SO42-, NH4+ and TCM components, whereas the overestimation of PM2.5 at the STN sites by the ARW-CMAQ results from the overestimations of SO42-, NO3-, and NH4+. The Comparison with WP-3 aircraft measurements reveals that both ARW-CMAQ and NMM-CMAQ have very similar model performance for vertical profiles for PM2.5 chemical components (SO42-, NH4+) and related gaseous species (HNO3, SO2, NH3, isoprene, toluene, terpenes) as both models used the same chemical mechanisms and emissions. The results of ship along the coast of southeastern Texas over the Gulf of Mexico show that both models captured the temporal variations and broad synoptic change seen in the observed HCHO and acetaldehyde with the means NMB <30% most of the time but they

  3. The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST complex.

    PubMed

    Wan, Bingbing; Tang, Ting; Upton, Heather; Shuai, Jin; Zhou, Yuanzhe; Li, Song; Chen, Juan; Brunzelle, Joseph S; Zeng, Zhixiong; Collins, Kathleen; Wu, Jian; Lei, Ming

    2015-12-01

    Tetrahymena telomerase holoenzyme subunits p75, p45 and p19 form a subcomplex (7-4-1) peripheral to the catalytic core. We report structures of p45 and p19 and reveal them as the Stn1 and Ten1 subunits of the CST complex, which stimulates telomerase complementary-strand synthesis. 7-4-1 binds telomeric single-stranded DNA, and mutant p19 overexpression causes telomere 3'-overhang elongation. We propose that telomerase-tethered Tetrahymena CST coordinates telomere G-strand and C-strand synthesis.

  4. Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations

    NASA Technical Reports Server (NTRS)

    Shapiro, Bruce E.; Levchenko, Andre; Meyerowitz, Elliot M.; Wold, Barbara J.; Mjolsness, Eric D.

    2003-01-01

    Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.

  5. Analysis of Indoor Environment in Classroom Based on Hygienic Requirements

    NASA Astrophysics Data System (ADS)

    Javorček, Miroslav; Sternová, Zuzana

    2016-06-01

    The article contains the analysis of experimental ventilation measurement in selected classrooms of the Elementary School Štrba. Mathematical model of selected classroom was prepared according to in-situ measurements and air exchange was calculated. Interior air temperature and quality influences the students ´ comfort. Evaluated data were compared to requirements of standard (STN EN 15251,2008) applicable to classroom indoor environment during lectures, highlighting the difference between required ambiance quality and actually measured values. CO2 concentration refers to one of the parameters indicating indoor environment quality.

  6. Sensory contribution to vocal emotion deficit in Parkinson's disease after subthalamic stimulation.

    PubMed

    Péron, Julie; Cekic, Sezen; Haegelen, Claire; Sauleau, Paul; Patel, Sona; Drapier, Dominique; Vérin, Marc; Grandjean, Didier

    2015-02-01

    Subthalamic nucleus (STN) deep brain stimulation in Parkinson's disease induces modifications in the recognition of emotion from voices (or emotional prosody). Nevertheless, the underlying mechanisms are still only poorly understood, and the role of acoustic features in these deficits has yet to be elucidated. Our aim was to identify the influence of acoustic features on changes in emotional prosody recognition following STN stimulation in Parkinson's disease. To this end, we analysed the performances of patients on vocal emotion recognition in pre-versus post-operative groups, as well as of matched controls, entering the acoustic features of the stimuli into our statistical models. Analyses revealed that the post-operative biased ratings on the Fear scale when patients listened to happy stimuli were correlated with loudness, while the biased ratings on the Sadness scale when they listened to happiness were correlated with fundamental frequency (F0). Furthermore, disturbed ratings on the Happiness scale when the post-operative patients listened to sadness were found to be correlated with F0. These results suggest that inadequate use of acoustic features following subthalamic stimulation has a significant impact on emotional prosody recognition in patients with Parkinson's disease, affecting the extraction and integration of acoustic cues during emotion perception.

  7. ACTS Satellite Telemammography Network Experiments

    NASA Technical Reports Server (NTRS)

    Kachmar, Brian A.; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architectures Branch of NASA's Glenn Research Center has developed and demonstrated several advanced satellite communications technologies through the Advanced Communications Technology Satellite (ACTS) program. One of these technologies is the implementation of a Satellite Telemammography Network (STN) encompassing NASA Glenn, the Cleveland Clinic Foundation. the University of Virginia, and the Ashtabula County Medical Center. This paper will present a look at the STN from its beginnings to the impact it may have on future telemedicine applications. Results obtained using the experimental ACTS satellite demonstrate the feasibility of Satellite Telemammography. These results have improved teleradiology processes and mammography image manipulation, and enabled advances in remote screening methodologies. Future implementation of satellite telemammography using next generation commercial satellite networks will be explored. In addition, the technical aspects of the project will be discussed, in particular how the project has evolved from using NASA developed hardware and software to commercial off the shelf (COTS) products. Development of asymmetrical link technologies was an outcome of this work. Improvements in the display of digital mammographic images, better understanding of end-to-end system requirements, and advances in radiological image compression were achieved as a result of the research. Finally, rigorous clinical medical studies are required for new technologies such as digital satellite telemammography to gain acceptance in the medical establishment. These experiments produced data that were useful in two key medical studies that addressed the diagnostic accuracy of compressed satellite transmitted digital mammography images. The results of these studies will also be discussed.

  8. Deep brain stimulation in addiction: a review of potential brain targets.

    PubMed

    Luigjes, J; van den Brink, W; Feenstra, M; van den Munckhof, P; Schuurman, P R; Schippers, R; Mazaheri, A; De Vries, T J; Denys, D

    2012-06-01

    Deep brain stimulation (DBS) is an adjustable, reversible, non-destructive neurosurgical intervention using implanted electrodes to deliver electrical pulses to areas in the brain. DBS is currently investigated in psychiatry for the treatment of refractory obsessive-compulsive disorder, Tourette syndrome and depressive disorder. Although recent research in both animals and humans has indicated that DBS may be an effective intervention for patients with treatment-refractory addiction, it is not yet entirely clear which brain areas should be targeted. The objective of this review is to provide a systematic overview of the published literature on DBS and addiction and outline the most promising target areas using efficacy and adverse event data from both preclinical and clinical studies. We found 7 animal studies targeting six different brain areas: nucleus accumbens (NAc), subthalamic nucleus (STN), dorsal striatum, lateral habenula, medial prefrontal cortex (mPFC) and hypothalamus, and 11 human studies targeting two different target areas: NAc and STN. Our analysis of the literature suggests that the NAc is currently the most promising DBS target area for patients with treatment-refractory addiction. The mPFC is another promising target, but needs further exploration to establish its suitability for clinical purposes. We conclude the review with a discussion on translational issues in DBS research, medical ethical considerations and recommendations for clinical trials with DBS in patients with addiction.

  9. Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson's patients during performance of implicit and declarative memory tasks: a report of two subjects.

    PubMed

    Buchanan, Robert J; Gjini, Klevest; Darrow, David; Varga, Georgeta; Robinson, Jennifer L; Nadasdy, Zoltan

    2015-03-01

    The basal ganglia, typically associated with motor function, are involved in human cognitive processes, as demonstrated in behavioral, lesion, and noninvasive functional neuroimaging studies. Here we report task-contingent changes in concentrations of the neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) in the globus pallidus internus (GPi) of two patients with Parkinson's disease undergoing deep brain stimulation surgery by utilizing in-vivo microdialysis measurements during performance of implicit and declarative memory tasks. Performance of an implicit memory task (weather prediction task-WPT) was associated with increased levels of glutamate and GABA in the GPi compared to their concentrations at baseline. On the other hand, performance of a declarative memory task (verbal learning task-VLT) was associated with decreased levels of glutamate and GABA in GPi compared to baseline during the encoding and immediate recall phase with less conclusive results during the delayed recall phase. These results are in line with hypothesized changes in these neurotransmitter levels: an increase of excitatory (Glu) input from subthalamic nucleus (STN) to GPi during implicit memory task performance and a decrease of inhibitory inputs (GABA) from globus pallidus externus (GPe) and striatum to GPi during declarative memory performance. Consistent with our previous report on in-vivo neurotransmitter changes during tasks in STN, these data provide corroborative evidence for the direct involvement of basal ganglia in cognitive functions and complements our model of the functional circuitry of basal ganglia in the healthy and Parkinson's disease affected brain.

  10. Instability and growth of nanoscale Ce0.8Gd0.2O1.9/NiO infiltrate in Sr0.94Ti0.9Nb0.1O3-Zr0.84Y0.16O1.92 anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Theil Kuhn, Luise; Stanley Jørgensen, Peter; Reddy Sudireddy, Bhaskar; Jonna Bentzen, Janet; Bernuy-Lopez, Carlos; Veltzé, Sune; Ramos, Tânia

    2014-07-01

    Microstructural evolution of Ce0.8Gd0.2O1.9/NiO (CGO/NiO) co-infiltrated nanoparticles in Sr0.94Ti0.9Nb0.1O3-Zr0.84Y0.16O1.92 (STN94-YSZ) anodes for solid oxide fuel cells (SOFCs) is investigated during electrochemical testing in a symmetric cell setup. The CGO/NiO infiltrated symmetric cells were subjected to varying atmospheres of H2O/H2 between 650 and 850 °C and characterized by electrochemical impedance spectroscopy. Analytical high resolution transmission electron microscopy showed that the CGO/NiO infiltrate was found to coalesce and grow from an indistinguishable CGO/NiO fluorite structure of an average diameter of 5 nm to individual well-connected, but phase-separated, CGO and Ni particles of 50 nm in average. This study confirms that instability and growth of CGO/NiO infiltrates in STN-based SOFC electrodes affect the morphology and can potentially be linked to reported losses in electrochemical performance.

  11. Amniotic fluid embolism: pathophysiology and new strategies for management.

    PubMed

    Kanayama, Naohiro; Tamura, Naoaki

    2014-06-01

    The registry program of amniotic fluid embolism (AFE) in Japan started in 2003. More than 400 hundred clinical diagnosed amniotic fluid embolism has been accumulated. Those data showed that there were two etiologies of AFE: the fetal materials create physical obstructions in the maternal microvessels in various organs, such as the lung; and (ii) the liquids cause an anaphylactoid reaction that leads to pulmonary vasospasm and activation of platelets, white blood cells and/or complements. The clinical findings showed that AFE was characterized mainly by cardiopulmonary collapse, the other involves the presence of disseminated intravascular coagulation (DIC) and atonic bleeding. Zinc coproporphyrin-1, sialyl Tn antigen (STN), complement C3, C4 and interleukin-8 have been used as serum markers of AFE. The levels of zinc coproporphyrin-1 and STN were increased in cardiopulmonary collapse type AFE, and a marked reduction of C3 and C4 was observed in DIC type AFE. At the primary medical institution, initial treatments for shock airway management, vascular management, fluid replacement, administration of anti-DIC therapy such as antithrombin, and administration of fresh frozen plasma should be provided. C1 esterase inhibitor activity in AFE cases was significantly lower than those of normal pregnant women. C1 esterase inhibitor may be a promising candidate of treatment of AFE.

  12. Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L.--a multipurpose tree.

    PubMed

    Naaz, Afshan; Shahzad, Anwar; Anis, Mohammad

    2014-05-01

    An efficient method for cloning Syzygium cumini (above 40 years old) through mature nodal segments has been successfully developed and that could be exploited for large-scale production of this valuable multipurpose tree. Nodal segments from mature tree were taken as explants and cultured on MS basal medium with different cytokinins (BA, Kin, AdS). The application of BA proved to be the best responsive cytokinin for the induction of shoot buds and shoots, but the proliferated shoots exhibited slower and stunted growth accompanied with abscission of leaves and shoot tip necrosis (STN). The problem of leaf abscission and STN was considerably reduced by the application of an adjuvant, adenine sulphate (AdS) in the optimal medium which led to the production of a maximum of 14 shoots. Further improvement in shoot bud regeneration and improved growth pattern of the regenerating tissue was obtained on the media comprised of MS + BA (10 μM) + GA3 (2.5 μM). A total number of 15 shoots with mean shoot length of 5.9 cm was obtained. The healthy elongated shoots were then rooted on MS basal augmented with NAA (5 μM). The plantlets obtained were healthy and were successfully acclimatized and transferred under field condition with 70 % survival rate.

  13. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    PubMed

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495

  14. Serotonin-dependent depression in Parkinson's disease: a role for the subthalamic nucleus?

    PubMed

    Tan, Sonny K H; Hartung, Henrike; Sharp, Trevor; Temel, Yasin

    2011-09-01

    Depression is the most common neuropsychiatric co-morbidity in Parkinson's disease (PD). The underlying mechanism of depression in PD is complex and likely involves biological, psychosocial and therapeutic factors. The biological mechanism may involve changes in monoamine systems, in particular the serotonergic (5-hydroxytryptamine, 5-HT) system. It is well established that the 5-HT system is markedly affected in the Parkinsonian brain, with evidence including pathological loss of markers of 5-HT axons as well as cell bodies in the dorsal and median raphe nuclei of the midbrain. However, it remains unresolved whether alterations to the 5-HT system alone are sufficient to confer vulnerability to depression. Here we propose low 5-HT combined with altered network activity within the basal ganglia as critically involved in depression in PD. The latter hypothesis is derived from a number of recent findings that highlight the close interaction between the basal ganglia and the 5-HT system, not only in motor but also limbic functions. These findings include evidence that clinical depression is a side effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN), a treatment option in advanced PD. Further, it has recently been demonstrated that STN DBS in animal models inhibits 5-HT neurotransmission, and that this change may underpin depressive-like side effects. This review provides an overview of 5-HT alterations in PD and a discussion of how these changes might combine with altered basal ganglia network activity to increase depression vulnerability.

  15. Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson's disease.

    PubMed

    Devos, David; Defebvre, L; Bordet, R

    2010-08-01

    Gait disorders form one component of the axial disorders observed in Parkinson's disease (PD). Indeed, short steps with a forward-leaning stance are diagnostic criteria for PD in the early stages of the condition. Gait disorders also represent a major source of therapeutic failure in the advanced stages of PD (with the appearance of freezing of gait and falls) because they do not respond optimally to the two hand late-stage therapeutics--levodopa and electrical subthalamic nucleus (STN) stimulation. The late onset of doparesistance in these disorders may be linked to propagation of neurodegeneration to structures directly involved in gait control and to non-dopaminergic neurotransmitter systems. The coeruleus locus (a source of noradrenaline) is rapidly and severely affected, leading to a major motor impact. The pedunculopontine nucleus (PPN) and lateral pontine tegmentum (rich in acetylcholine) are both involved in gait. Degenerative damage to the serotoninergic raphe nuclei appears to be less severe, although serotonin-dopamine interactions are numerous and complex. Lastly, dopaminergic depletion leads to glutamatergic hyperactivity of the efferent pathways from the the STN to the PPN. However, the relationships between the various parkinsonian symptoms (and particularly gait disorders) and these pharmacological targets have yet to be fully elucidated. The goal of this review is to develop the various pathophysiological hypotheses published to date, in order to underpin and justify ongoing fundamental research and clinical trials in this disease area.

  16. The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor

    NASA Astrophysics Data System (ADS)

    Tass, Peter; Smirnov, Dmitry; Karavaev, Anatoly; Barnikol, Utako; Barnikol, Thomas; Adamchic, Ilya; Hauptmann, Christian; Pawelcyzk, Norbert; Maarouf, Mohammad; Sturm, Volker; Freund, Hans-Joachim; Bezruchko, Boris

    2010-02-01

    To study the dynamical mechanism which generates Parkinsonian resting tremor, we apply coupling directionality analysis to local field potentials (LFP) and accelerometer signals recorded in an ensemble of 48 tremor epochs in four Parkinsonian patients with depth electrodes implanted in the ventro-intermediate nucleus of the thalamus (VIM) or the subthalmic nucleus (STN). Apart from the traditional linear Granger causality method we use two nonlinear techniques: phase dynamics modelling and nonlinear Granger causality. We detect a bidirectional coupling between the subcortical (VIM or STN) oscillation and the tremor, in the theta range (around 5 Hz) as well as broadband (>2 Hz). In particular, we show that the theta band LFP oscillations definitely play an efferent role in tremor generation, while beta band LFP oscillations might additionally contribute. The brain→tremor driving is a complex, nonlinear mechanism, which is reliably detected with the two nonlinear techniques only. In contrast, the tremor→brain driving is detected with any of the techniques including the linear one, though the latter is less sensitive. The phase dynamics modelling (applied to theta band oscillations) consistently reveals a long delay in the order of 1-2 mean tremor periods for the brain→tremor driving and a small delay, compatible with the neural transmission time, for the proprioceptive feedback. Granger causality estimation (applied to broadband signals) does not provide reliable estimates of the delay times, but is even more sensitive to detect the brain→tremor influence than the phase dynamics modelling.

  17. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    PubMed

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors.

  18. The NR2B antagonist, ifenprodil, corrects the l-DOPA-induced deficit of bilateral movement and reduces c-Fos expression in the subthalamic nucleus of hemiparkinsonian rats.

    PubMed

    Igarashi, Masakazu; Habata, Toshiya; Akita, Hisanao; Noda, Kazuko; Ogata, Masanori; Saji, Makoto

    2015-07-01

    The use of NR2B antagonists in Parkinsonism is still controversial. To examine their anti-parkinsonian effects, the NR2B antagonist, ifenprodil, and L-DOPA were administered together and separately in hemiparkinsonian rats (hemi-PD) that were subjected to a cylinder test. Recovery from hypoactivity was achieved by single administration of 3-7 mg/kg of L-DOPA; however, improvement in the deficit of bilateral forelimb use was not observed. When administered alone, ifenprodil had no anti-parkinsonian effects; however, combined administration of ifenprodil and 7 mg/kg of L-DOPA significantly reversed the deficit of bilateral forelimb use without adversely affecting the L-DOPA-induced improvement in motor activity. Next, in order to identify the brain area influenced by L-DOPA and ifenprodil, quantitative analysis of L-DOPA-induced c-Fos immunoreactivity was performed in various brain areas of hemi-PD following administration of L-dopa with and without ifenprodil. Among brain areas with robust c-Fos expression within the motor loop circuit in dopamine-depleted hemispheres, co-administered ifenprodil markedly attenuated L-DOPA-induced c-Fos expression in only the subthalamic nucleus (STN), suggesting that the STN is the primary target for the anti-parkinsonian action of NR2B antagonists.

  19. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase [alpha

    SciTech Connect

    Sun, Jia; Yang, Yuting; Wan, Ke; Mao, Ninghui; Yu, Tai-Yuan; Lin, Yi-Chien; DeZwaan, Diane C.; Freeman, Brian C.; Lin, Jing-Jer; Lue, Neal F.; Lei, Ming

    2011-08-24

    Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase {alpha} (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.

  20. Neuronal discharge patterns in the globus pallidus pars interna in a patient with Parkinson's disease and hemiballismus secondary to subthalamotomy.

    PubMed

    Cerquetti, Daniel; Obeso, José Angel; Merello, Marcelo

    2011-09-01

    Alterations in the basal ganglia-thalamocortical "motor" circuit activity, have been proposed to explain many features associated with hypokinetic and hyperkinetic movement disorders. We describe the firing pattern of the globus pallidus pars interna in a Parkinson disease's patient who developed Hemichorea-Ballismus subsequent to ipsilateral subthalamotomy, and compare findings to those from PD patients submitted to pallidotomy while in the OFF-medication state. Single units obtained from extracellular recordings were extracted and mean discharge frequency, interspike interval and coefficient of variation (defined as Tonicity Score) were computed. Discharge density histograms, analysis of distribution and spectral analysis were also performed. Mean firing frequency showed no significant difference between PD patients in the OFF state and the patient we report. However, a significant difference in tonicity was found for this patient characterized by a regular, non-bursting firing pattern. The findings indicate that in HB caused by lesions to STN in the parkinsonian state, GPi firing rates can be similar to and firing pattern more regular than those observed in GPi of PD patients OFF-medication with intact STN. PMID:21786135

  1. Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson's disease.

    PubMed

    Greenhouse, Ian; Gould, Sherrie; Houser, Melissa; Aron, Adam R

    2013-06-01

    Switching between responses is a key executive function known to rely on the frontal cortex and the basal ganglia. Here we aimed to establish with greater anatomical specificity whether such switching could be mediated via different possible frontal-basal-ganglia circuits. Accordingly, we stimulated dorsal vs. ventral contacts of electrodes in the subthalamic nucleus (STN) in Parkinson's patients during switching performance, and also studied matched controls. The patients underwent three sessions: once with bilateral dorsal contact stimulation, once with bilateral ventral contact stimulation, and once Off stimulation. Patients Off stimulation showed abnormal patterns of switching, and stimulation of the ventral contacts but not the dorsal contacts normalized the pattern of behavior relative to controls. This provides some of the first evidence in humans that stimulation of dorsal vs. ventral STN DBS contacts has differential effects on executive function. As response switching is an executive function known to rely on prefrontal cortex, these results suggest that ventral contact stimulation affected an executive/associative cortico-basal ganglia circuit.

  2. The Effects of Bilateral Subthalamic Nucleus Stimulation on Cognitive and Neuropsychiatric Functions in Parkinson’s Disease: A Case-Control Study #

    PubMed Central

    Mahdavi, Reza; Malakouti, Seyed Kazem; Shahidi, Gholam Ali; Parvaresh-Rizi, Mansour

    2013-01-01

    Introduction Parkinson's disease is one of the most disabling diseases which by electrode implantation and stimulation of subthalamic nucleus (STN), much progress has been made in the treatment of drug resistant patient. This new method of neurosurgery may have some neuropsychological side effects on the patients. The main aim of this study is to evaluate the effects of this kind of treatment on the different neuropsychological aspect of patients. Methods The case-control study designed for comparing two groups of patients with Parkinson's disease. Thirty patients, who underwent electrode implantation and Deep Brain Stimulation (DBS), compare with 60 patients treated with antiparkinson's drugs. These two groups matched in age, sex, Parkinson's disease duration and Parkinson's severity scores. Measurements: the UPDR scale was used to assess the severity of the Parkinson's severity. Beck Depression Inventory questionnaire (BDI) and Hamilton Anxiety Rating Scale questionnaire (HARS) were used to evaluate the depression and anxiety consequences of DBS. Mini Mental Status Examination (MMSE) and Clock Drawing Test (CDT) were used to evaluate the cognitive and executive function of the study subjects. Results Patients with STN stimulation showed lower level of anxiety and depression, however, the cognitive status were more deteriorated in study subjects than control group. Discussion Patient with DBS surgery have to be followed up for neuropsychiatric symptoms particularly for the cognitive deterioration in long term period. PMID:25337350

  3. Role of the Indirect Pathway of the Basal Ganglia in Perceptual Decision Making

    PubMed Central

    Wei, Wei; Rubin, Jonathan E.

    2015-01-01

    The basal ganglia (BG) play an important role in motor control, reinforcement learning, and perceptual decision making. Modeling and experimental evidence suggest that, in a speed–accuracy tradeoff, the corticostriatal pathway can adaptively adjust a decision threshold (the amount of information needed to make a choice). In this study, we go beyond the focus of previous works on the direct and hyperdirect pathways to examine the contribution of the indirect pathway of the BG system to decision making in a biophysically based spiking network model. We find that the mechanism of adjusting the decision threshold by plasticity of the corticostriatal connections is effective, provided that the indirect pathway counterbalances the direct pathway in their projections to the output nucleus. Furthermore, in our model, changes within basal ganglia connections similar to those that arise in parkinsonism give rise to strong beta oscillations. Specifically, beta oscillations are produced by an abnormal enhancement of the interactions between the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe) in the indirect pathway, with an oscillation frequency that depends on the excitatory cortical input to the STN and the inhibitory input to the GPe from the striatum. In a parkinsonian state characterized by pronounced beta oscillations, the mean reaction time and range of threshold variation (a measure of behavioral flexibility) are significantly reduced compared with the normal state. Our work thus reveals a specific circuit mechanism for impairments of perceptual decision making associated with Parkinson's disease. PMID:25740532

  4. Impulsivities and Parkinson's disease: delay aversion is not worsened by Deep Brain Stimulation of the subthalamic nucleus.

    PubMed

    Torta, Diana M E; Vizzari, Vincenzo; Castelli, Lorys; Zibetti, Maurizio; Lanotte, Michele; Lopiano, Leonardo; Geminiani, Giuliano

    2012-01-01

    Deep Brain Stimulation (DBS) of the Subthalamic Nucleus (STN) improves motor symptoms in Parkinson's disease (PD), but can exert detrimental effects on impulsivity. These effects are especially related to the inability to slow down when high-conflict choices have to be made. However, the influence that DBS has on delay aversion is still under-investigated. Here, we tested a group of 21 PD patients on and off stimulation (off medication) by using the Cambridge Gamble Task (CGT), a computerized task that allows the investigation of risk-related behaviours and delay aversion, and psychological questionnaires such as the Barratt Impulsiveness Scale (BIS), the Sensitivity to Punishment and to Reward Questionnaire (SPSRQ), and the Quick Delay Questionnaire (QDQ). We found that delay aversion scores on the CGT were no higher when patients were on stimulation as compared to when they were off stimulation. In contrast, PD patients reported feeling more impulsive in the off stimulation state, as revealed by significantly higher scores on the BIS. Higher scores on the sensitivity to punishment subscale of the SPSRQ highlighted that possible punishments influence patients' behaviours more than possible rewards. Significant correlations between delay aversion scores on the CGT and QDQ delay aversion subscale suggest that these two instruments can be used in synergy to reach a convergent validity. In conclusion, our results show that not all impulsivities are detrimentally affected by DBS of the STN and that the joint use of experimental paradigms and psychological questionnaires can provide useful insights in the study of impulsivity. PMID:22984415

  5. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    PubMed Central

    Prakash, Aishwarya; Natarajan, Amarnath; Marky, Luis A.; Ouellette, Michel M.; Borgstahl, Gloria E. O.

    2011-01-01

    Replication protein A (RPA), a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA-) binding domains (DBDs) A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties. PMID:21772997

  6. Verbal Memory Decline following DBS for Parkinson’s Disease: Structural Volumetric MRI Relationships

    PubMed Central

    Geevarghese, Ruben; Lumsden, Daniel E.; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Background Parkinson’s disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Objectives Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. Methods A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. Results A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Conclusion Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes. PMID:27557088

  7. Teaching Chemical Information in a Liberal Arts Curriculum

    NASA Astrophysics Data System (ADS)

    Ricker, Alison Scott; Thompson, Robert Q.

    1999-11-01

    We first offered Chemical Information as a one-credit, semester-long course in 1993 and have continued to team-teach it each fall. We offer this summary of our course as a model that might be adapted in other settings, acknowledging that no single course can adequately prepare chemists for the many challenges involved in finding, evaluating, and utilizing chemical information. The focus on information retrieval, evaluation, and presentation in a separate course has worked well for us, successfully integrating concepts of information literacy in a chemical context. We cover a wide array of topics, beginning with print and electronic resources on our campus and moving quickly to databases and other sources on the Internet. Searching CA Online via STN Express and STN Easy is emphasized more than any other single source. We have described the course in some detail elsewhere and give here a synopsis of our current approach and significant changes in the course over the last two years.

  8. New targets for DBS.

    PubMed

    Benabid, Alim Louis; Torres, Napoleon

    2012-01-01

    The specific effect of DBS at high frequency, discovered during a VIM thalamotomy, was extended to the older targets of ablative neurosurgery such as the pallidum, for tremor in Parkinson's disease (PD), dyskinesias, essential tremor, as well as the internal capsule to treat psychiatric disorders (OCD). A second wave of targets came from basic research, enabled by the low morbidity, reversibility, and adaptability of DBS. This was the case for the subthalamic nucleus (STN) which improves the triad of dopaminergic symptoms, and the pedunculopontine nucleus (PPN) for gait disorders in PD. The new concepts of the role of basal ganglia in psychiatric disorders indicate the subgenual cortex CG 25 for severe resistant depression, the accumbens nucleus for depression, anorexia nervosa, and addiction, and the thalamus intralaminar nuclei for minimally conscious states. Serendipity and a scientific approach have provided several instances where targets have produced unexpected effects (such as STN in OCD), as well as limbic effects observed during attempts at VMH stimulation for obesity: this might offer a novel way to treat mild cognitive impairment, or memory deficits reported in Alzheimer's disease. While these might provide solutions for as yet unsolved problems, attention must be paid to ethical considerations. PMID:22166437

  9. Swallowing and deep brain stimulation in Parkinson's disease: a systematic review.

    PubMed

    Troche, Michelle S; Brandimore, Alexandra E; Foote, Kelly D; Okun, Michael S

    2013-09-01

    The purpose of this review is to assess the current state of the literature on the topic of deep brain stimulation (DBS) and its effects on swallowing function in Parkinson's disease (PD). Pubmed, Cochrane review, and web of science searches were completed on all articles addressing DBS that contained a swallowing outcome measure. Outcome measures included the penetration/aspiration scale, pharyngeal transit time, oropharyngeal residue, drooling, aspiration pneumonia, death, hyolaryngeal excursion, epiglottic inversion, UPDRS scores, and presence of coughing/throat clearing during meals. The search identified 13 studies specifically addressing the effects of DBS on swallowing. Critical assessment of the 13 identified peer-reviewed publications revealed nine studies employing an experimental design, (e.g. "on" vs. "off", pre- vs. post-DBS) and four case reports. None of the nine experimental studies were found to identify clinically significant improvement or decline in swallowing function with DBS. Despite these findings, several common threads were identified across experimental studies and will be examined in this review. Additionally, available data demonstrate that, although subthalamic nucleus (STN) stimulation has been considered to cause more impairment to swallowing function than globus pallidus internus (GPi) stimulation, there are no experimental studies directly comparing swallowing function in STN vs. GPi. Moreover, there has been no comparison of unilateral vs. bilateral DBS surgery and the coincident effects on swallowing function. This review includes a critical analysis of all experimental studies and discusses methodological issues that should be addressed in future studies.

  10. Frequency-Specific Synchronization in the Bilateral Subthalamic Nuclei Depending on Voluntary Muscle Contraction and Relaxation in Patients with Parkinson’s Disease

    PubMed Central

    Kato, Kenji; Yokochi, Fusako; Iwamuro, Hirokazu; Kawasaki, Takashi; Hamada, Kohichi; Isoo, Ayako; Kimura, Katsuo; Okiyama, Ryoichi; Taniguchi, Makoto; Ushiba, Junichi

    2016-01-01

    The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of bilateral STNs were recorded in patients with Parkinson’s disease (PD) while performing externally paced VMC and VMR tasks of the unilateral wrist extensor muscle. The VMC- or VMR-related oscillatory activities and their functional couplings were investigated over the theta (4–7 Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (40–100 Hz) frequency bands. Alpha and beta desynchronizations were observed in bilateral STNs at the onset of both VMC and VMR tasks. On the other hand, theta and gamma synchronizations were prominent in bilateral STNs specifically at the onset of the VMC task. In particular, just after VMC, theta functional coupling between the bilateral STNs increased, and the theta phase became coupled to the gamma amplitude within the contralateral STN in a phase-amplitude cross-frequency coupled manner. On the other hand, the prominent beta-gamma cross-frequency couplings observed in the bilateral STNs at rest were reduced by the VMC and VMR tasks. These results suggest that STNs are bilaterally involved in the different performances of muscle contraction and relaxation through the theta-gamma and beta-gamma networks between bilateral STNs in patients with PD. PMID:27064969

  11. Development of ceftriaxone resistance affects the virulence properties of Salmonella enterica serotype Typhimurium strains.

    PubMed

    Li, Liang; Yang, Yu-Rong; Liao, Xiao-Ping; Lei, Chun-Yin; Sun, Jian; Li, Lu-Lu; Liu, Bao-Tao; Yang, Shou-Shen; Liu, Ya-Hong

    2013-01-01

    Development of antibiotic resistance may alter the virulence properties of bacterial organisms. In this study, nine clinical ceftriaxone-susceptible Salmonella enterica serotype Typhimurium strains were subjected to stepwise selection with increasing concentrations of ceftriaxone in culture media. Mutations in virulence-associated genes and antibiotic efflux genes were analyzed by polymerase chain reaction (PCR) and DNA sequencing. The expression levels of virulence genes invA and stn as well as efflux pump genes tolC, arcA, and arcB before and after the selection were measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The stepwise selection resulted in the development of Salmonella strains that were highly resistant to ceftriaxone. Sequence analysis did not reveal any mutations or deletions in the examined virulence genes and regulatory gene, but a silent mutation (T423C) in acrR (encoding a repressor for the efflux pump) was detected in most of the ceftriaxone-resistant strains. The qRT-PCR revealed increased expression of the AcrAB-TolC efflux pump and decreased expression of invA and stn in the ceftriaxone-resistant strains. Moreover, decreased invasion into cultured epithelial cells and reduced growth rates were observed with the resistant strains. These results suggest that acquisition of ceftriaxone resistance is associated with the overexpression of the AcrAB-TolC efflux pump and leads to reduced virulence in Salmonella Typhimurium.

  12. Optimizing photosynthesis under fluctuating light

    PubMed Central

    Pesaresi, Paolo; Hertle, Alexander; Pribi, Mathias; Schneider, Anja; Kleine, Tatjana

    2010-01-01

    Optimal photosynthetic performance requires that equal amounts of light are absorbed by photosystem ii (PSii) and photosystem i (PSi), which are functionally linked through the photosynthetic electron transport chain. However, photosynthetic organisms must cope with light conditions that lead to the preferential stimulation of one or the other of the photosystems. Plants react to such imbalances by mounting acclimation responses that redistribute excitation energy between photosystems and restore the photosynthetic redox poise. in the short term, this involves the so-called state transition process, which, over periods of minutes, alters the antennal crosssections of the photosystems through the reversible association of a mobile fraction of light-harvesting complex ii (LHCii) with PSi or PSii. Longer-lasting changes in light quality initiate a long-term response (LTr), occurring on a timescale of hours to days, that redresses imbalances in excitation energy by changing the relative amounts of the two photosystems. Despite the differences in their timescales of action, state transitions and LTr are both triggered by the redox state of the plastoquinone (PQ) pool, via the activation of the thylakoid kinase STN7, which appears to act as a common redox sensor and/or signal transducer for both responses. This review highlights recent findings concerning the role of STN7 in coordinating short- and long-term photosynthetic acclimation responses. PMID:20592803

  13. The Antiparkinsonian and Antidyskinetic Mechanisms of Mucuna pruriens in the MPTP-Treated Nonhuman Primate

    PubMed Central

    Lieu, Christopher A.; Venkiteswaran, Kala; Gilmour, Timothy P.; Rao, Anand N.; Petticoffer, Andrew C.; Gilbert, Erin V.; Deogaonkar, Milind; Manyam, Bala V.; Subramanian, Thyagarajan

    2012-01-01

    Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD. PMID:22997535

  14. PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans.

    PubMed

    Kota, Swathi; Charaka, Vijaya Kumar; Misra, H S

    2014-08-01

    PprA, a pleiotropic protein involved in radioresistance of Deinococcus radiodurans was detected in multiprotein DNA processing complex identified from this bacterium. pprA mutant expressing GFP-PprA could restore its wild type resistance of γ radiation. Under normal conditions, GFP-PprA expressing cells showed PprA localization on both septum trapped nucleoids (STN) and nucleoids located elsewhere (MCN). Cell exposed to 4 kGy γ radiation showed nearly 2 h growth lag and during this growth arrest phase, the majority of the cells had GFP-PprA located on MCN. While in late phase (~120 min) PIR cells, when cells are nearly out of growth arrest, PprA was maximally found with STN. These cells when treated with nalidixic acid showed diffused localization of PprA across the septum. gyrA disruption mutant of D. radiodurans showed growth inhibition, which increased further in gyrA pprA mutant. Interestingly, gyrA mutant showed ~20-fold less resistance to γ radiation as compared to wild type, which did increase further in gyrA pprA mutant. These results suggested that PprA localization undergoes a dynamic change during PIR, and its localization on nucleoid near septum and functional interaction with gyrase A might suggest a mechanism that could explain PprA role in genome segregation possibly through topoisomerase II.

  15. Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Wong, S.; Baltuch, G. H.; Jaggi, J. L.; Danish, S. F.

    2009-04-01

    Microelectrode recordings are a useful adjunctive method for subthalamic nucleus localization during deep brain stimulation surgery for Parkinson's disease. Attempts to quantitate and standardize this process, using single computational measures of neural activity, have been limited by variability in patient neurophysiology and recording conditions. Investigators have suggested that a multi-feature approach may be necessary for automated approaches to perform within acceptable clinical standards. We present a novel data visualization algorithm and several unique features that address these shortcomings. The algorithm extracts multiple computational features from the microelectrode neurophysiology and integrates them with tools from unsupervised machine learning. The resulting colour-coded map of neural activity reveals activity transitions that correspond to the anatomic boundaries of subcortical structures. Using these maps, a non-neurophysiologist is able to achieve sensitivities of 90% and 95% for STN entry and exit, respectively, to within 0.5 mm accuracy of the current gold standard. The accuracy of this technique is attributed to the multi-feature approach. This activity map can simplify and standardize the process of localizing the subthalamic nucleus (STN) for neurostimulation. Because this method does not require a stationary electrode for careful recording of unit activity for spike sorting, the length of the operation may be shortened.

  16. The Effect of Cholesterol on the Long-Range Network of Interactions Established among Sea Anemone Sticholysin II Residues at the Water-Membrane Interface

    PubMed Central

    García-Linares, Sara; Alm, Ida; Maula, Terhi; Gavilanes, José G.; Slotte, Johan Peter; Martínez-del-Pozo, Álvaro

    2015-01-01

    Actinoporins are α-pore forming proteins with therapeutic potential, produced by sea anemones. Sticholysin II (StnII) from Stichodactyla helianthus is one of its most extensively characterized members. These proteins remain stably folded in water, but upon interaction with lipid bilayers, they oligomerize to form a pore. This event is triggered by the presence of sphingomyelin (SM), but cholesterol (Chol) facilitates pore formation. Membrane attachment and pore formation require changes involving long-distance rearrangements of residues located at the protein-membrane interface. The influence of Chol on membrane recognition, oligomerization, and/or pore formation is now studied using StnII variants, which are characterized in terms of their ability to interact with model membranes in the presence or absence of Chol. The results obtained frame Chol not only as an important partner for SM for functional membrane recognition but also as a molecule which significantly reduces the structural requirements for the mentioned conformational rearrangements to occur. However, given that the DOPC:SM:Chol vesicles employed display phase coexistence and have domain boundaries, the observed effects could be also due to the presence of these different phases on the membrane. In addition, it is also shown that the Arg51 guanidinium group is strictly required for membrane recognition, independently of the presence of Chol. PMID:25815890

  17. Time-course of coherence in the human basal ganglia during voluntary movements

    PubMed Central

    Talakoub, Omid; Neagu, Bogdan; Udupa, Kaviraja; Tsang, Eric; Chen, Robert; Popovic, Milos R.; Wong, Willy

    2016-01-01

    We are interested in characterizing how brain networks interact and communicate with each other during voluntary movements. We recorded electrical activities from the globus pallidus pars interna (GPi), subthalamic nucleus (STN) and the motor cortex during voluntary wrist movements. Seven patients with dystonia and six patients with Parkinson’s disease underwent bilateral deep brain stimulation (DBS) electrode placement. Local field potentials from the DBS electrodes and scalp EEG from the electrodes placed over the motor cortices were recorded while the patients performed externally triggered and self-initiated movements. The coherence calculated between the motor cortex and STN or GPi was found to be coupled to its power in both the beta and the gamma bands. The association of coherence with power suggests that a coupling in neural activity between the basal ganglia and the motor cortex is required for the execution of voluntary movements. Finally, we propose a mathematical model involving coupled neural oscillators which provides a possible explanation for how inter-regional coupling takes place. PMID:27725721

  18. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson's disease.

    PubMed

    Ramirez-Zamora, Adolfo; Kahn, Max; Campbell, Joannalee; DeLaCruz, Priscilla; Pilitsis, Julie G

    2015-03-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is the most common surgical treatment for managing motor complications in Parkinson's disease (PD). Ultimately, outcomes depend on a variety of factors including lead location, access and expertize in programming and PD medical management. Nevertheless, achieving ideal programming settings can be difficult in certain patients, leading to suboptimal control of symptoms and stimulation-induced side effects, notably dysarthria and dyskinesia. Interleaved stimulation (ILS) is a newer programming technique that attempts to optimize the stimulation field, improving control of symptoms while minimizing stimulation-induced adverse effects. A retrospective chart review was performed on PD patients receiving STN DBS over the past 12 months. Clinical and demographic data were collected from patients identified as having received ILS. The rationale and clinical efficacy of ILS was analyzed. Nine patients received ILS due to incomplete PD symptom control or stimulation-induced side effects after attempting multiple programming options. Appropriate lead location was confirmed with postoperative MRI except in one case. Following ILS, patients reported improvement in symptoms and resolution of side effects, while preserving adequate control in Parkinsonism with a mean improvement in UPDRS-MOTOR scores of 51.2 %. ILS continues to emerge as a safe and effective programming strategy for maximizing symptom control in PD while diminishing stimulation-induced side effects.

  19. A movable microelectrode array for chronic basal ganglia single-unit electrocorticogram co-recording in freely behaving rats.

    PubMed

    Zheng, Xiaobin; Zeng, Jia; Chen, Ting; Lin, Yuanxiang; Yu, Lianghong; Li, Ying; Lin, Zhangya; Wu, Xiyue; Chen, Fuyong; Kang, Dezhi; Zhang, Shizhong

    2014-09-01

    The basal ganglia-cortical circuits are important for information process to brain function. However, chronic recording of single-unit activities in the basal ganglia nucleus has not yet been well established. We present a movable bundled microwire array for chronic subthalamic nucleus (STN) single-unit electrocorticogram co-recording. The electrode assembly contains a screw-advanced microdrive and a microwire array. The array consists of a steel guide tube, five recording wires and one referenced wire which form the shape of a guiding hand, and one screw electrode for cortico-recording. The electrode can acquire stable cortex oscillation-driven STN firing units in rats under different behaving conditions for 8 weeks. We achieved satisfying signal-to-noise ratio, portions of cells retaining viability, and spike waveform similarities across the recording sections. Using this method, we investigated neural correlations of the basal ganglia-cortical circuits in different behaving conditions. This method will become a powerful tool for multi-region recording to study normal statements or movement disorders.

  20. The Antiparkinsonian and Antidyskinetic Mechanisms of Mucuna pruriens in the MPTP-Treated Nonhuman Primate.

    PubMed

    Lieu, Christopher A; Venkiteswaran, Kala; Gilmour, Timothy P; Rao, Anand N; Petticoffer, Andrew C; Gilbert, Erin V; Deogaonkar, Milind; Manyam, Bala V; Subramanian, Thyagarajan

    2012-01-01

    Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD. PMID:22997535

  1. Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson's disease: clinical, anatomical and functional imaging study.

    PubMed

    Ulla, Miguel; Thobois, Stéphane; Llorca, Pierre-Michel; Derost, Philippe; Lemaire, Jean-Jacques; Chereau-Boudet, Isabelle; de Chazeron, Ingrid; Schmitt, Audrey; Ballanger, Bénédicte; Broussolle, Emmanuel; Durif, Franck

    2011-06-01

    Hypomanic symptoms depending on anatomical location of contacts are reported in patients with Parkinson's disease (PD) treated by deep brain stimulation (DBS) of the subthalamic nucleus (STN). However, the underlying cortical and subcortical dysfunction is debated. In this study, five PD patients implanted with DBS-STN who presented with reversible and reproducible hypomanic symptoms after stimulation of specific 'manic' contacts were investigated. Hypomanic symptoms were assessed using the Bech and Rafaelsen Mania Scale (MAS). Three dimensional anatomical location of 'euthymic' and 'manic' contacts, after matching the postoperative CT scan with the preoperative stereotactic MRI, and a H(2)(15)O positron emission tomography (PET) study testing 'euthymic' and 'manic' contacts, were performed. Under 'euthymic' conditions, MAS score (mean±SD) was 0.6±0.5 compared with 7.8±3.1 under 'manic' conditions. Nine of 10 'manic' contacts were located in the substantia nigra, mainly in its ventral part. PET showed that hypomania was associated with strong asymmetrical cerebral activation involving preferentially the right hemisphere and was mediated by activation of the anterior cingulate and medial prefrontal cortex. The present study demonstrates the role of the subcortical structures in the genesis of hypomania in PD patients treated with DBS and stresses the involvement of the substantia nigra.

  2. Motor task event detection using Subthalamic Nucleus Local Field Potentials.

    PubMed

    Niketeghad, Soroush; Hebb, Adam O; Nedrud, Joshua; Hanrahan, Sara J; Mahoor, Mohammad H

    2015-08-01

    Deep Brain Stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson's disease. Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and DBS side effects. In such systems, DBS parameters are adjusted based on patient's behavior, which means that behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local Field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. A practical behavior detection method should be able to detect behaviors asynchronously meaning that it should not use any prior knowledge of behavior onsets. In this paper, we introduce a behavior detection method that is able to asynchronously detect the finger movements of Parkinson patients. As a result of this study, we learned that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We used non-linear regression method to measure this connectivity and use it to detect the finger movements. Performance of this method is evaluated using Receiver Operating Characteristic (ROC). PMID:26737550

  3. Cryopreservation of cultivated and wild potato varieties by droplet vitrification: effect of subculture of mother-plants and of preculture of shoot tips.

    PubMed

    Yoon, Ju-Won; Kim, Haeng-Hoon; Ko, Ho-Cheol; Hwang, Hae-Sung; Hong, Eun-Sun; Cho, Eun-Gi; Engelmann, Florent

    2006-01-01

    In this paper, we studied the effect of subculture of mother-plants and of preculture of shoot tips of two potato varieties (Dejima, cultivated and STN13, wild) cryopreserved using the droplet-vitrification technique. The subculture conditions (light intensity, aeration and planting density) significantly affected survival of both non-cryopreserved and cryopreserved shoot-tips in both varieties. The subculture duration and the position of the shoot tips on the axis of the in vitro plantlets had a significant (P<0.0001) effect on survival of cryopreserved shoot tips. The optimal subculture duration was 7 and 5 weeks and the optimal size of shoot tips was 1.5-2.0 and 1.0-1.5 mm for var. Dejima and STN13, respectively. Survival of cryopreserved shoot tips was influenced by the sucrose concentration in the preculture medium and the preculture duration. The highest survival of cryopreserved shoot tips was observed after preculture with 0.3 M sucrose for 8 h followed by 0.7 M sucrose for 18 h. These results indicate that the parameters of the subculture of mother-plants and of preculture of shoot tips should be carefully optimized, especially in the case of wild species.

  4. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Schmidt, Katrin; Atkinson, Angus; Venables, Hugh J.; Pond, David W.

    2012-01-01

    The spawning success of Antarctic krill ( Euphausia superba) is generally assumed to depend on substantial winter sea ice extent, as ice biota can serve as a food source during winter/spring and the seasonal ice melt conditions the upper water column for extensive phytoplankton blooms. However, direct observations during spring are rare. Here we studied krill body condition and maturity stage in relation to feeding (i.e. stomach fullness, diet, absorption of individual fatty acids and defecation rate) across the Scotia Sea in November 2006. The phytoplankton concentrations were low at the marginal ice zone (MIZ) in the southern Scotia Sea (Stn. 1, 2, and 3), high in open waters of the Southern Antarctic Circumpolar Current Front (SACCF) in the central Scotia Sea (Stn. 5), and moderate further north (Stn. 6 and 7). Krill had low lipid reserves (˜6.5% of dry mass, DM), low mass:length ratios (˜1.7 mg DM mm -1), and small digestive glands (˜7% of total DM) near the ice edge. The stomachs contained lithogenic particles, diatom debris, and bacterial fatty acids, but low proportions of diatom-indicating fatty acids, which suggest that these krill were feeding on detritus rather than on fresh ice algae. In the SACCF, krill had higher lipid reserves (˜10% of DM), high mass:length ratios (˜2.2 mg DM mm -1), and large digestive glands (˜16% of total DM). Stomach content and tissue composition indicate feeding on diatoms. In the north, moderate food concentrations co-occurred with low lipid reserves in krill, and moderate mass:length ratios and digestive gland sizes. Only in the phytoplankton bloom in the SACCF had the mating season already started and some females were about to spawn. Based on the way krill processed their food at the different stations, we indicate two mechanisms that can lead to fast regeneration of body reserves and oocyte maturation in E. superba. One is "superfluous" feeding at high food concentrations, which maximises the overall nutrient gain

  5. Tuning the Brake While Raising the Stake: Network Dynamics during Sequential Decision-Making

    PubMed Central

    Meder, David; Haagensen, Brian Numelin; Hulme, Oliver; Morville, Tobias; Gelskov, Sofie; Herz, Damian Marc; Diomsina, Beata; Christensen, Mark Schram; Madsen, Kristoffer Hougaard

    2016-01-01

    When gathering valued goods, risk and reward are often coupled and escalate over time, for instance, during foraging, trading, or gambling. This escalating frame requires agents to continuously balance expectations of reward against those of risk. To address how the human brain dynamically computes these tradeoffs, we performed whole-brain fMRI while healthy young individuals engaged in a sequential gambling task. Participants were repeatedly confronted with the option to continue with throwing a die to accumulate monetary reward under escalating risk, or the alternative option to stop to bank the current balance. Within each gambling round, the accumulation of gains gradually increased reaction times for “continue” choices, indicating growing uncertainty in the decision to continue. Neural activity evoked by “continue” choices was associated with growing activity and connectivity of a cortico-subcortical “braking” network that positively scaled with the accumulated gains, including pre-supplementary motor area (pre-SMA), inferior frontal gyrus, caudate, and subthalamic nucleus (STN). The influence of the STN on continue-evoked activity in the pre-SMA was predicted by interindividual differences in risk-aversion attitudes expressed during the gambling task. Furthermore, activity in dorsal anterior cingulate cortex (ACC) reflected individual choice tendencies by showing increased activation when subjects made nondefault “continue” choices despite an increasing tendency to stop, but ACC activity did not change in proportion with subjective choice uncertainty. Together, the results implicate a key role of dorsal ACC, pre-SMA, inferior frontal gyrus, and STN in computing the trade-off between escalating reward and risk in sequential decision-making. SIGNIFICANCE STATEMENT Using a paradigm where subjects experienced increasing potential rewards coupled with increasing risk, this study addressed two unresolved questions in the field of decision

  6. Atlas-based identification of targets for functional radiosurgery

    SciTech Connect

    Stancanello, Joseph; Romanelli, Pantaleo; Modugno, Nicola; Cerveri, Pietro; Ferrigno, Giancarlo; Uggeri, Fulvio; Cantore, Giampaolo

    2006-06-15

    Functional disorders of the brain, such as Parkinson's disease, dystonia, epilepsy, and neuropathic pain, may exhibit poor response to medical therapy. In such cases, surgical intervention may become necessary. Modern surgical approaches to such disorders include radio-frequency lesioning and deep brain stimulation (DBS). The subthalamic nucleus (STN) is one of the most useful stereotactic targets available: STN DBS is known to induce substantial improvement in patients with end-stage Parkinson's disease. Other targets include the Globus Pallidus pars interna (GPi) for dystonia and Parkinson's disease, and the centromedian nucleus of the thalamus (CMN) for neuropathic pain. Radiosurgery is an attractive noninvasive alternative to treat some functional brain disorders. The main technical limitation to radiosurgery is that the target can be selected only on the basis of magnetic resonance anatomy without electrophysiological confirmation. The aim of this work is to provide a method for the correct atlas-based identification of the target to be used in functional neurosurgery treatment planning. The coordinates of STN, CMN, and GPi were identified in the Talairach and Tournoux atlas and transformed to the corresponding regions of the Montreal Neurological Institute (MNI) electronic atlas. Binary masks describing the target nuclei were created. The MNI electronic atlas was deformed onto the patient magnetic resonance imaging-T1 scan by applying an affine transformation followed by a local nonrigid registration. The first transformation was based on normalized cross correlation and the second on optimization of a two-part objective function consisting of similarity criteria and weighted regularization. The obtained deformation field was then applied to the target masks. The minimum distance between the surface of an implanted electrode and the surface of the deformed mask was calculated. The validation of the method consisted of comparing the electrode-mask distance to

  7. Complementary roles of different oscillatory activities in the subthalamic nucleus in coding motor effort in Parkinsonism.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2013-10-01

    The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were studied while motor performance was improved by dopaminergic medication. In line with previous studies we observed power increase in the theta/alpha band (4-12 Hz), power suppression in the beta band (13-30 Hz) and power increase in the gamma band (55-90 Hz) and high frequency band (101-375 Hz) during voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely, gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple regression models incorporating the four different spectral changes confirmed that the modulation of power in the beta band was the only independent predictor of effort during grips made with efforts rated <5. In contrast, increases in gamma band activity were the only independent predictor of effort during grips made with efforts ≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activities in the STN in motor effort coding. The latter function

  8. Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types.

    PubMed

    Wang, Jun; Sainju, Upendra M

    2014-01-01

    Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0-20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and

  9. Rates of N2 production and diversity and abundance of functional genes associated with denitrification and anaerobic ammonium oxidation in the sediment of the Amundsen Sea Polynya, Antarctica

    NASA Astrophysics Data System (ADS)

    Choi, Ayeon; Cho, Hyeyoun; Kim, Sung-Han; Thamdrup, Bo; Lee, SangHoon; Hyun, Jung-Ho

    2016-01-01

    A combination of molecular microbiological analyses and metabolic rate measurements was conducted to elucidate the diversity and abundance of denitrifying and anaerobic ammonium oxidation (anammox) bacteria and the nitrogen gas (N2) production rates in sediment underlying the highly productive polynya (Stns. 10 and 17) and the sea-ice zone on the outer shelf (Stn. 83) of the Amundsen Sea, Antarctica. Despite the high water column productivity, the N2 production rates by denitrification (0.04-0.31 nmol N cm-3sed. h-1) and anammox (0.13-0.26 nmol N cm-3 sed. h-1) were lower than those measured in other polar regions. In contrast, gene copy number (106-107 copies cm-3 of nirS and nosZ genes targeting denitirifiers and 105-107 copies cm-3 of 16S rRNA genes related to anammox bacteria) of the two bacterial groups at Stn. 17 was similar compared to those of other organic-rich environments. The majority of the nirS sequences were affiliated with Gammaproteobacteria (54% and 61% of the total nirS gene at Stns. 17 and 83, respectively), which were closely related to Pseudomonas aeruginosa. Most nosZ sequences (92% and 72% of the total nosZ genes at Stns. 17 and 83, respectively) were related to the Alphaproteobacteria, which were closely related to Ruegeria pomeroyi and Roseobacter denitrificans. Most (98%) of the sequences related to anammox bacteria were affiliated with Candidatus Scalindua at Stn. 17. Consequently, despite the low metabolic activity, the abundance and composition of most denitrifying and anammox bacteria detected from the ASP were similar to those reported from a variety of marine environments. Our results further imply that increased labile organic matter production resulting from a shift of the phytoplankton community from Phaeocystis to diatoms in response to rapid melting of sea ice stimulates metabolic activities of the denitrifying and anammox bacteria, thereby enhancing the N removal process in the ASP.

  10. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    PubMed

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  11. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation

  12. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis.

    PubMed

    Pinzaru, Alexandra M; Hom, Robert A; Beal, Angela; Phillips, Aaron F; Ni, Eric; Cardozo, Timothy; Nair, Nidhi; Choi, Jaehyuk; Wuttke, Deborah S; Sfeir, Agnel; Denchi, Eros Lazzerini

    2016-06-01

    Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL) patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1) function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  13. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions.

    PubMed

    Jiang, Jiansen; Chan, Henry; Cash, Darian D; Miracco, Edward J; Ogorzalek Loo, Rachel R; Upton, Heather E; Cascio, Duilio; O'Brien Johnson, Reid; Collins, Kathleen; Loo, Joseph A; Zhou, Z Hong; Feigon, Juli

    2015-10-30

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.

  14. Effect of muscle type, sire breed, and time of weaning on fatty acid composition of finishing steers.

    PubMed

    Sexten, A K; Krehbiel, C R; Dillwith, J W; Madden, R D; McMurphy, C P; Lalman, D L; Mateescu, R G

    2012-02-01

    Thirty-three steer calves were used to determine the effect of sire breed (Angus or Charolais), time of weaning [normal weaned at approximately 210 d of age (NW) or late weaned at approximately 300 d of age (LW)], and muscle type [LM and semitendinosus muscle (STN)] on fatty acid composition. The whole plot consisted of a 2 (sire breed) × 2 (time of weaning) treatment arrangement, and the subplot treatment was muscle type. Body weights were recorded at 28-d intervals to determine animal performance. Muscle biopsies were collected on d 127 and 128 of finishing. All calves were slaughtered on d 138, and carcass data were collected. Angus-sired steers had lighter initial BW (271 vs. 298 kg; P = 0.02), and LW steers were heavier (351 vs. 323 kg; P = 0.03) on d 28, but no other differences in BW were noted. Charolais-sired steers had larger LM area (P = 0.03), reduced yield grades (P = 0.01), less 12th-rib fat (P < 0.01), and less marbling (P < 0.01) than Angus-sired steers. Carcass measures overall indicate Angus-sired steers were fatter. Hot carcass weight was heavier (348 vs. 324 kg; P = 0.04) in LW steers than NW steers. No other differences (P > 0.05) were observed for feedlot performance or carcass characteristics. Total lipids were extracted from muscle biopsies, derivatized to their methyl esters, and analyzed using gas chromatography. The LM had greater SFA (43.94 vs. 35.76%; P < 0.01) and decreased unsaturated fatty acids (UFA; 56.90 vs. 66.19%; P < 0.01) compared with the STN. Percent total MUFA was greater in STN than LM (51.05 vs. 41.98%; P < 0.01). Total SFA, UFA, and MUFA did not differ due to sire breed or time of weaning. Total PUFA differed (P = 0.04) due to a sire breed × time of weaning interaction but did not differ due to muscle type, with greater PUFA in NW Charolais than any other sire breed × time of weaning combination. Observed changes in percent MUFA may be a result of greater Δ(9)-desaturase activity. The calculated desaturase index

  15. Satellite systems requirements for land mobile communications

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1983-01-01

    The system design objective is to provide a satellite link through a gateway station, connecting mobile users in areas not served by a terrestrial cellular system to the switched telephone network (STN). The proposed frequency allocation comprises a pair of 10-MHz bands in the 806-890 MHz range specified by the 1979 World Administrative Radio Conference (WARC) for land-mobile satellite service (LMSS). The satellite design is constrained by projected STS capability with an upper stage of the wide-body Centaur or Integral Propulsion System (IPS) type. For the latter (a TRW design), the payload is limited to approximately 10,400 lb. The design is to be based on 1990's technology, with initial operating capability scheduled for 1995. The satellite should be designed for a 7-year life. Mobile-unit compatibility with cellular system specifications is desirable, if consistent with other system requirements.

  16. The Evaluation of Flammability Properties Regarding Testing Methods

    NASA Astrophysics Data System (ADS)

    Osvaldová, Linda Makovická; Gašpercová, Stanislava

    2015-12-01

    In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.

  17. Sector imaging radar for enhanced vision (SIREV): simulation and processing techniques

    NASA Astrophysics Data System (ADS)

    Mittermayer, Josef; Wendler, Michael; Krieger, Gerhard; Sutor, Thomas; Moreira, Alberto; Buckreuss, Stefan

    2000-06-01

    This paper presents a new formulation of the Extended Chirp Scaling algorithm (ECS)1+/, suitable for the processing of data from the forward looking SAR system SIREV (Sector Imaging Radar for Enhanced Vision. This system is presently under development at the German Aerospace Center (DLR). It is shown that the SIREV data acquisition has several similarities with the ScanSAR mode of operation. Also the differences between SIREV and ScanSAR mode are analyzed. According to these differences, the ECS for ScanSAR has been modified. The modified equations of the ECS are presented and several simulation results demonstrate the good performance of the ECS for SIREV processing. The SIREV project at DLR was partially funded by STN Atlas Elektronik, Bremen. This company also holds the SIREV license rights.

  18. Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex.

    PubMed

    Raffa, Grazia D; Raimondo, Domenico; Sorino, Cristina; Cugusi, Simona; Cenci, Giovanni; Cacchione, Stefano; Gatti, Maurizio; Ciapponi, Laura

    2010-08-01

    Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.

  19. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution.

    PubMed

    Lewis, Karen A; Wuttke, Deborah S

    2012-01-11

    Recent advances in our structural understanding of telomerase and telomere-associated proteins have contributed significantly to elucidating the molecular mechanisms of telomere maintenance. The structures of telomerase TERT domains have provided valuable insights into how experimentally identified conserved motifs contribute to the telomerase reverse transcriptase reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have revealed that, across evolution, telomere-maintenance mechanisms employ common structural elements. For example, the single-stranded 3' overhang of telomeric DNA is specifically and tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1, and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-stranded telomeric DNA in divergent species use homeodomains to execute their functions (human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, which is found in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical for protein-protein interaction. In addition to revealing the common underlying themes of telomere maintenance, structures have also elucidated the specific mechanisms by which many of these proteins function, including identifying a telomere-specific domain in Stn1 and how the human TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution structures of telomerase and telomere-associated proteins and discuss the emergent common structural themes among these proteins. We also address how these high-resolution structures complement biochemical and cellular studies to enhance our understanding of telomere maintenance and function.

  20. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres.

    PubMed

    Lloyd, Neil R; Dickey, Thayne H; Hom, Robert A; Wuttke, Deborah S

    2016-09-27

    Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.

  1. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat

    PubMed Central

    Long, Lauren L.; Podurgiel, Samantha J.; Haque, Aileen F.; Errante, Emily L.; Chrobak, James J.; Salamone, John D.

    2016-01-01

    Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders. PMID:27378874

  2. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    PubMed

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  3. Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin A (IgA) nephropathy and healthy individuals.

    PubMed

    Lehoux, Sylvain; Mi, Rongjuan; Aryal, Rajindra P; Wang, Yingchun; Schjoldager, Katrine T-B G; Clausen, Henrik; van Die, Irma; Han, Yoosun; Chapman, Arlene B; Cummings, Richard D; Ju, Tongzhong

    2014-11-01

    Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant, undergalactosylated O-glycans, for example, Tn antigen and its sialylated version, SialylTn (STn), but the mechanisms underlying aberrant O-glycosylation are not well understood. Here we have used serial lectin separation technologies, Western blot, enzymatic modifications, and mass spectrometry to explore whether there are different glycoforms of IgA1 in plasma from patients with IgAN and healthy individuals. Although total plasma IgA in IgAN patients was elevated ∼ 1.6-fold compared with that in healthy donors, IgA1 in all samples was unexpectedly separable into two distinct glycoforms: one with core 1 based O-glycans, and the other exclusively containing Tn/STn structures. Importantly, Tn antigen present on IgA1 from IgAN patients and controls was convertible into the core 1 structure in vitro by recombinant T-synthase. Our results demonstrate that undergalactosylation of O-glycans in IgA1 is not restricted to IgAN and suggest that in vivo inefficiency of T-synthase toward IgA1 in a subpopulation of B or plasma cells, as well as overall elevation of IgA, may contribute to IgAN pathogenesis.

  4. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    NASA Astrophysics Data System (ADS)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  5. Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression.

    PubMed

    Rummel, Julia; Voget, Mareike; Hadar, Ravit; Ewing, Samuel; Sohr, Reinhard; Klein, Julia; Sartorius, Alexander; Heinz, Andreas; Mathé, Aleksander A; Vollmayr, Barbara; Winter, Christine

    2016-10-01

    Deep brain stimulation (DBS) of several targets induces beneficial responses in approximately 60% of patients suffering from treatment-resistant depression (TRD). The remaining 40% indicate that these stimulation sites do not bear therapeutic relevance for all TRD patients and consequently DBS-targets should be selected according to individual symptom profiles. We here used two animal models of depression known to have different genetic backgrounds and behavioral responses: the therapy-responsive Flinders sensitive line (FSL) and the therapy-refractory congenitally learned helpless rats (cLH) to study symptom-specific DBS effects i) of different brain sites ii) at different stimulation parameters, and iii) at different expressions of the disease. Sham-stimulation/DBS was applied chronic-intermittently or chronic-continuously to either the ventromedial prefrontal cortex (vmPFC, rodent equivalent to subgenual cingulate), nucleus accumbens (Nacc) or subthalamic nucleus (STN), and effects were studied on different depression-associated behaviors, i.e. anhedonia, immobility/behavioral despair and learned helplessness. Biochemical substrates of behaviorally effective versus ineffective DBS were analyzed using in-vivo microdialysis and post-mortem high-performance liquid chromatography (HPLC). We found that i) vmPFC-DBS outperforms Nacc-DBS, ii) STN-DBS increases depressive states, iii) chronic-continuous DBS does not add benefits compared to chronic-intermittent DBS, iv) DBS-efficacy depends on the disease expression modeled and iv) antidepressant DBS is associated with an increase in serotonin turnover alongside site-specific reductions in serotonin contents. The reported limited effectiveness of vmPFC DBS suggests that future research may consider the specific disease expression, investigation of different DBS-targets and alternative parameter settings.

  6. A new biomarker for subthalamic deep brain stimulation for patients with advanced Parkinson’s disease—a pilot study

    NASA Astrophysics Data System (ADS)

    Gmel, Gerrit E.; Hamilton, Tara J.; Obradovic, Milan; Gorman, Robert B.; Single, Peter S.; Chenery, Helen J.; Coyne, Terry; Silburn, Peter A.; Parker, John L.

    2015-12-01

    Objective. Deep brain stimulation (DBS) has become the standard treatment for advanced stages of Parkinson’s disease (PD) and other motor disorders. Although the surgical procedure has improved in accuracy over the years thanks to imaging and microelectrode recordings, the underlying principles that render DBS effective are still debated today. The aim of this paper is to present initial findings around a new biomarker that is capable of assessing the efficacy of DBS treatment for PD which could be used both as a research tool, as well as in the context of a closed-loop stimulator. Approach. We have used a novel multi-channel stimulator and recording device capable of measuring the response of nervous tissue to stimulation very close to the stimulus site with minimal latency, rejecting most of the stimulus artefact usually found with commercial devices. We have recorded and analyzed the responses obtained intraoperatively in two patients undergoing DBS surgery in the subthalamic nucleus (STN) for advanced PD. Main results. We have identified a biomarker in the responses of the STN to DBS. The responses can be analyzed in two parts, an initial evoked compound action potential arising directly after the stimulus onset, and late responses (LRs), taking the form of positive peaks, that follow the initial response. We have observed a morphological change in the LRs coinciding with a decrease in the rigidity of the patients. Significance. These initial results could lead to a better characterization of the DBS therapy, and the design of adaptive DBS algorithms that could significantly improve existing therapies and help us gain insights into the functioning of the basal ganglia and DBS.

  7. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    PubMed Central

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson’s disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  8. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation

    PubMed Central

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A.

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  9. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    PubMed

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  10. Nitric Oxide-Mediated Modulation of Central Network Dynamics during Olfactory Perception

    PubMed Central

    Kobayashi, Suguru; Kitamura, Yoshiichiro; Hamasaki, Yuuta; Saito, Minoru

    2015-01-01

    Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity. PMID:26360020

  11. Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models

    PubMed Central

    Jamshidi, S.; Yadollahi, A.; Ahmadi, H.; Arab, M. M.; Eftekhari, M.

    2016-01-01

    Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO3-, NH4+, Ca2+, K+, Mg2+, PO42-, SO42-, and Cl−) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH4+ (301.7), and NO3-, NH4+ (64), SO42- (54.1), K+ (40.4), and NO3- (35.1) in OHF and Ca2+ (23.7), NH4+ (10.7), NO3- (9.1), NH4+ (317.6), and NH4+ (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO3-, 5.7 NH4+, 2.7 Ca2+, 31.5 K+, 3.3 Mg2+, 2.6 PO42-, 5.6 SO42-, and 3.5 Cl− could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO3-, 13.1 NH4+, 5.5 Ca2+, 35.7 K+, 1.5 Mg2+, 2.1 PO42-, 3.6 SO42-, and 3 Cl−. PMID:27066013

  12. Thermal/Optical Methods for Elemental Carbon Quantification in Soils and Urban Dusts: Equivalence of Different Analysis Protocols

    PubMed Central

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method. PMID:24358286

  13. Nitric Oxide-Mediated Modulation of Central Network Dynamics during Olfactory Perception.

    PubMed

    Watanabe, Satoshi; Takanashi, Fumihito; Ishida, Kohei; Kobayashi, Suguru; Kitamura, Yoshiichiro; Hamasaki, Yuuta; Saito, Minoru

    2015-01-01

    Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity. PMID:26360020

  14. Emotion recognition in early Parkinson’s disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants

    PubMed Central

    McIntosh, Lindsey G.; Mannava, Sishir; Camalier, Corrie R.; Folley, Bradley S.; Albritton, Aaron; Konrad, Peter E.; Charles, David; Park, Sohee; Neimat, Joseph S.

    2015-01-01

    Parkinson’s disease (PD) is traditionally regarded as a neurodegenerative movement disorder, however, nigrostriatal dopaminergic degeneration is also thought to disrupt non-motor loops connecting basal ganglia to areas in frontal cortex involved in cognition and emotion processing. PD patients are impaired on tests of emotion recognition, but it is difficult to disentangle this deficit from the more general cognitive dysfunction that frequently accompanies disease progression. Testing for emotion recognition deficits early in the disease course, prior to cognitive decline, better assesses the sensitivity of these non-motor corticobasal ganglia-thalamocortical loops involved in emotion processing to early degenerative change in basal ganglia circuits. In addition, contrasting this with a group of healthy aging individuals demonstrates changes in emotion processing specific to the degeneration of basal ganglia circuitry in PD. Early PD patients (EPD) were recruited from a randomized clinical trial testing the safety and tolerability of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) in early-staged PD. EPD patients were previously randomized to receive optimal drug therapy only (ODT), or drug therapy plus STN-DBS (ODT + DBS). Matched healthy elderly controls (HEC) and young controls (HYC) also participated in this study. Participants completed two control tasks and three emotion recognition tests that varied in stimulus domain. EPD patients were impaired on all emotion recognition tasks compared to HEC. Neither therapy type (ODT or ODT + DBS) nor therapy state (ON/OFF) altered emotion recognition performance in this study. Finally, HEC were impaired on vocal emotion recognition relative to HYC, suggesting a decline related to healthy aging. This study supports the existence of impaired emotion recognition early in the PD course, implicating an early disruption of fronto-striatal loops mediating emotional function. PMID:25653616

  15. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers

    PubMed Central

    Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens

    2016-01-01

    Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159

  16. Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Nishimura, Suzushi

    2013-09-01

    The authors have developed liquid crystalline retardation films to improve certain aspects of LCD image quality such as viewing angle performance and coloration. We have successfully created several types of optical retardation films using a rod-like liquid crystalline polymer. The resulting liquid crystalline polymer films have several advantages over conventional uni- or biaxially stretched retardation films. Precisely controlled structures such as twisted nematic, homogeneous nematic, hybrid nematic and homeotropic structures can provide ideal compensation of various LCD types, such as STN, TN, ECB, VA and IPS-LCDs. Twisted nematic film effectively prevents coloration of STN-LCDs, which is a critical flaw affecting color representation. Short pitch cholesteric film, which utilizes said rod-like liquid crystalline polymer and is the optical equivalent of a negative C-plate, can expand the viewing angle of VA-LCDs. Hybrid nematic film is quite unique in that the film functions not only as a wave plate but also as a viewing angle compensator for TN and ECB-LCDs. Homeotropic film, which acts as a positive-C plate, greatly improves the viewing angle performance of IPS and CPVA-LCDs. Our homeotropically aligned liquid crystalline film, called "NV film", is the world's thinnest retardation film. The thickness of the liquid crystalline layer is a mere 1 micrometer. Homeotropic film can be used to expand the viewing angle not only of LCDs but also OLED displays. And NV film, when used in in combination with a quarter wavelength plate, can expand the viewing angles of the circular polarizers used to prevent reflection in OLED displays.

  17. Intrinsically unstructured phosphoprotein TSP9 regulates light harvesting in Arabidopsis thaliana.

    PubMed

    Fristedt, Rikard; Carlberg, Inger; Zygadlo, Agnieszka; Piippo, Mirva; Nurmi, Markus; Aro, Eva-Mari; Scheller, Henrik Vibe; Vener, Alexander V

    2009-01-20

    Thylakoid-soluble phosphoprotein of 9 kDa, TSP9, is an intrinsically unstructured plant-specific protein [Song, J., et al. (2006) Biochemistry 45, 15633-15643] with unknown function but established associations with light-harvesting proteins and peripheries of both photosystems [Hansson, M., et al. (2007) J. Biol. Chem. 282, 16214-16222]. To investigate the function of this protein, we used a combination of reverse genetics and biochemical and fluorescence measurement methods in Arabidopsis thaliana. Differential gene expression analysis of plants with a T-DNA insertion in the TSP9 gene using an array of 24000 Arabidopsis genes revealed disappearance of high light-dependent induction of a specific set of mostly signaling and unknown proteins. TSP9-deficient plants had reduced levels of in vivo phosphorylation of light-harvesting complex II polypeptides. Recombinant TSP9 was phosphorylated in light by thylakoid membranes isolated from the wild-type and mutant plants lacking STN8 protein kinase but not by the thylakoids deficient in STN7 kinase, essential for photosynthetic state transitions. TSP9-lacking mutant and RNAi plants with downregulation of TSP9 showed reduced ability to perform state transitions. The nonphotochemical quenching of chlorophyll fluorescence at high light intensities was also less efficient in the mutant compared to wild-type plants. Blue native electrophoresis of thylakoid membrane protein complexes revealed that TSP9 deficiency increased relative stability of photosystem II dimers and supercomplexes. It is concluded that TSP9 regulates plant light harvesting acting as a membrane-binding protein facilitating dissociation of light-harvesting proteins from photosystem II. PMID:19113838

  18. Photosystem II Function and Dynamics in Three Widely Used Arabidopsis thaliana Accessions

    PubMed Central

    Yin, Lan; Fristedt, Rikard; Vener, Alexander V.; Schoefs, Benoît; Spetea, Cornelia

    2012-01-01

    Columbia-0 (Col-0), Wassilewskija-4 (Ws-4), and Landsberg erecta-0 (Ler-0) are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL). The photosystem II (PSII) complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis mutants, and also

  19. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also

  20. Subthalamic nucleus deep brain stimulation in elderly patients – analysis of outcome and complications

    PubMed Central

    Vesper, Jan; Haak, Susanne; Ostertag, Christoph; Nikkhah, Guido

    2007-01-01

    Background There is an ongoing discussion about age limits for deep brain stimulation (DBS). Current indications for DBS are tremor-dominant disorders, Parkinson's disease, and dystonia. Electrode implantation for DBS with analgesia and sedation makes surgery more comfortable, especially for elderly patients. However, the value of DBS in terms of benefit-risk ratio in this patient population is still uncertain. Methods Bilateral electrode implantation into the subthalamic nucleus (STN) was performed in a total of 73 patients suffering from Parkinson's disease. Patients were analyzed retrospectively. For this study they were divided into two age groups: group I (age <65 years, n = 37) and group II (age ≥ 65 years, n = 36). Examinations were performed preoperatively and at 6-month follow-up intervals for 24 months postoperatively. Age, UPDRS motor score (part III) on/off, Hoehn & Yahr score, Activity of Daily Living (ADL), L-dopa medication, and complications were determined. Results Significant differences were found in overall performance determined as ADL scores (group I: 48/71 points, group II: 41/62 points [preoperatively/6-month postoperatively]) and in the rate of complications (group I: 4 transient psychosis, 4 infections in a total of 8 patients, group II: 2 deaths [unrelated to surgery], 1 intracerebral hemorrhage, 7 transient psychosis, 3 infections, 2 pneumonia in a total of 13 patients), (p < 0.05). Interestingly, changes in UPDRS scores, Hoehn & Yahr scores, and L-dopa medication were not statistically different between the two groups. Conclusion DBS of the STN is clinically as effective in elderly patients as it is in younger ones. However, a more careful selection and follow-up of the elderly patients are required because elderly patients have a higher risk of surgery-related complications and a higher morbidity rate. PMID:17367531

  1. Supporting clinical decision making during deep brain stimulation surgery by means of a stochastic dynamical model

    NASA Astrophysics Data System (ADS)

    Karamintziou, Sofia D.; Tsirogiannis, George L.; Stathis, Pantelis G.; Tagaris, George A.; Boviatsis, Efstathios J.; Sakas, Damianos E.; Nikita, Konstantina S.

    2014-10-01

    Objective. During deep brain stimulation (DBS) surgery for the treatment of advanced Parkinson's disease (PD), microelectrode recording (MER) in conjunction with functional stimulation techniques are commonly applied for accurate electrode implantation. However, the development of automatic methods for clinical decision making has to date been characterized by the absence of a robust single-biomarker approach. Moreover, it has only been restricted to the framework of MER without encompassing intraoperative macrostimulation. Here, we propose an integrated series of novel single-biomarker approaches applicable to the entire electrophysiological procedure by means of a stochastic dynamical model. Approach. The methods are applied to MER data pertinent to ten DBS procedures. Considering the presence of measurement noise, we initially employ a multivariate phase synchronization index for automatic delineation of the functional boundaries of the subthalamic nucleus (STN) and determination of the acceptable MER trajectories. By introducing the index into a nonlinear stochastic model, appropriately fitted to pre-selected MERs, we simulate the neuronal response to periodic stimuli (130 Hz), and examine the Lyapunov exponent as an indirect indicator of the clinical effectiveness yielded by stimulation at the corresponding sites. Main results. Compared with the gold-standard dataset of annotations made intraoperatively by clinical experts, the STN detection methodology demonstrates a false negative rate of 4.8% and a false positive rate of 0%, across all trajectories. Site eligibility for implantation of the DBS electrode, as implicitly determined through the Lyapunov exponent of the proposed stochastic model, displays a sensitivity of 71.43%. Significance. The suggested comprehensive method exhibits remarkable performance in automatically determining both the acceptable MER trajectories and the optimal stimulation sites, thereby having the potential to accelerate precise

  2. Functional connectivity in inhibitory control networks and severity of cannabis use disorder

    PubMed Central

    Filbey, Francesca; Yezhuvath, Uma

    2015-01-01

    Background Loss of control is a prominent feature of cannabis use disorders (CUD) and involves orchestrated activity from several brain inhibitory control networks. Objectives In this study, we determined the associations between inhibitory control network activation and connectivity and CUD severity. Methods To that end, we compared cannabis-dependent (N = 44) vs. nondependent (N = 30) users during a Stop Signal Task. First, we compared differences in neural response during response inhibition via general linear model analysis within a priori regions of interest. Second, we examined functional connectivity via psychophysiological interaction (PPI) analysis between the right frontal control network (seed region) and inhibitory control networks. Results There was no significant difference in network activation between cannabis-dependent and nondependent users in any of the inhibitory control networks. However, preliminary findings using the PPI analysis showed that during successful response inhibition, cannabis-dependent users had greater connectivity between right frontal control network and substantia nigra/subthalamic nucleus (STN) network compared to nondependent users (small volume correction, FWE-corrected p<0.05). Further, multiple regression analyses on the PPI maps showed modulatory effects of age of onset and quantity of cannabis use in the nondependent users. Conclusions Taken together, these findings suggest that functional connectivity between frontal control and substantia nigra/STN networks during response inhibition is sensitive to the effects of CUD severity unlike behavioral task performance and neural activation in inhibitory control networks. Further, modulators of this connectivity, such as onset and quantity of cannabis use, show attenuated effects with progression of CUD. PMID:24200208

  3. Development of efficient amine-modified mesoporous silica SBA-15 for CO{sub 2} capture

    SciTech Connect

    Zhang, Xiaoyun; Qin, Hongyan; Zheng, Xiuxin; Wu, Wei

    2013-10-15

    Graphical abstract: - Highlights: • A secondary amine AN-TEPA is used to modify the SBA-15. • CO{sub 2} adsorption capacity (180.1 mg g{sup −1}-adsorbent for 70% amine loading) is high. • The sorbent exhibits a high stability after 12 cycling runs. • The modified SBA-15 achieves complete desorption at low temperature (100 °C). - Abstract: A novel CO{sub 2} sorbent was prepared by impregnating mesoporous silica, SBA-15, with acrylonitrile (AN)-modified tetraethylenepentamine (TEPA) in order to increase CO{sub 2} adsorption capacity and improve cycling stability. The mesoporous silica with pre- and post-surface modification was investigated by X-ray diffraction characterization (XRD), N{sub 2} adsorption–desorption test (N{sub 2}-BET), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The adsorption/desorption performance of S-TN (TN: AN modified TEPA) and S-TEPA was studied by dynamic adsorption. Test results showed that the solid base-impregnated SBA-15 demonstrated high CO{sub 2} adsorption capacity (180.1 mg g{sup −1}-adsorbent for 70% amine loading level). Compared to S-TEPA (24.1% decrease of initial capacity), S-TN with 50% amine loading exhibited improved cycling stability, 99.9% activity reserved (from initial 153.0 mg g{sup −1} to 151.3 mg g{sup −1}) after 12 cycles of adsorption/desorption at 100 °C. A mechanism of molecular structure of the loaded amine was attributed to the improved performance.

  4. Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography.

    PubMed

    Tachibana, Kouichi; Nakamura, Sachiko; Wang, Han; Iwasaki, Hiroko; Tachibana, Kahori; Maebara, Kanako; Cheng, Lamei; Hirabayashi, J; Narimatsu, H

    2006-01-01

    Jacalin, a lectin from the jackfruit Artocarpus integrifolia, has been known as a valuable tool for specific capturing of O-glycoproteins such as mucins and IgA1. Though its sugar-binding preference for T/Tn-antigens is well established, its detailed specificity has not been elucidated. In this study, we prepared a series of mucin-type glycopeptides using human glycosyltransferases, that is, ST6GalNAc1, Core1Gal-T1 and -T2, beta3Gn-T6, and Core2GnT1, and investigated their binding to immobilized Jacalin by frontal affinity chromatography (FAC). As a result, consistent with the previous observation, Jacalin showed high affinity for T-antigen (Core1) and Tn-antigen (alpha N-acetylgalactosamine)-attached peptides. Furthermore, we here show as novel findings that (1) Jacalin also showed significant affinity for Core3 and sialyl-T (ST)-attached peptides, but (2) Jacalin could not bind to Core2, Core6, and sialyl-Tn (STn)-attached peptides. The results were also confirmed by FAC using p-nitrophenyl (pNP)-derivatized saccharides. In conclusion, Jacalin binds to a GalNAcalpha1-peptide, in which C6-OH of alphaGalNAc is free (i.e., Core1, Tn, Core3, and ST), whereas it cannot recognize a GalNAcalpha1-peptide with a substitution at the C6 position (i.e., Core2, Core6, and STn). These findings provide useful information when applying jacalin for functional analysis of mucin-type glycoproteins and glycopeptides.

  5. Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression.

    PubMed

    Rummel, Julia; Voget, Mareike; Hadar, Ravit; Ewing, Samuel; Sohr, Reinhard; Klein, Julia; Sartorius, Alexander; Heinz, Andreas; Mathé, Aleksander A; Vollmayr, Barbara; Winter, Christine

    2016-10-01

    Deep brain stimulation (DBS) of several targets induces beneficial responses in approximately 60% of patients suffering from treatment-resistant depression (TRD). The remaining 40% indicate that these stimulation sites do not bear therapeutic relevance for all TRD patients and consequently DBS-targets should be selected according to individual symptom profiles. We here used two animal models of depression known to have different genetic backgrounds and behavioral responses: the therapy-responsive Flinders sensitive line (FSL) and the therapy-refractory congenitally learned helpless rats (cLH) to study symptom-specific DBS effects i) of different brain sites ii) at different stimulation parameters, and iii) at different expressions of the disease. Sham-stimulation/DBS was applied chronic-intermittently or chronic-continuously to either the ventromedial prefrontal cortex (vmPFC, rodent equivalent to subgenual cingulate), nucleus accumbens (Nacc) or subthalamic nucleus (STN), and effects were studied on different depression-associated behaviors, i.e. anhedonia, immobility/behavioral despair and learned helplessness. Biochemical substrates of behaviorally effective versus ineffective DBS were analyzed using in-vivo microdialysis and post-mortem high-performance liquid chromatography (HPLC). We found that i) vmPFC-DBS outperforms Nacc-DBS, ii) STN-DBS increases depressive states, iii) chronic-continuous DBS does not add benefits compared to chronic-intermittent DBS, iv) DBS-efficacy depends on the disease expression modeled and iv) antidepressant DBS is associated with an increase in serotonin turnover alongside site-specific reductions in serotonin contents. The reported limited effectiveness of vmPFC DBS suggests that future research may consider the specific disease expression, investigation of different DBS-targets and alternative parameter settings. PMID:27367210

  6. Growth and virulence properties of biofilm-forming Salmonella enterica serovar typhimurium under different acidic conditions.

    PubMed

    Xu, Hua; Lee, Hyeon-Yong; Ahn, Juhee

    2010-12-01

    This study was designed to characterize the viability and potential virulence of bofilm-forming Salmonella enterica serovar Typhimurium under different pH levels, ranging from 5 to 7. The plate count method and real-time reverse transcription-PCR (RT-PCR) were used to evaluate the survival of S. Typhimurium grown in Trypticase soy broth (TSB) adjusted to pH 5, 6, and 7 (TSB-5, TSB-6, and TSB-7, respectively) at 37°C for 10 days. In TSB-5 and TSB-6, the numbers of viable cells estimated by using the real-time RT-PCR were greater than the culturable counts enumerated by the plate count method. Reflectance micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to evaluate the biochemical changes in biofilm cells. Considerable changes in chemical components were observed in the biofilm cells grown in TSB-5 and TSB-6 when compared to the cells grown in TSB-7. The enterotoxin production and invasive ability of planktonic and biofilm S. Typhimurium cells were inferred by the relative levels of expression of stn and invA. The levels of expression of stn and invA were significantly increased in biofilm S. Typhimurium cells grown in TSB-5 (1.9-fold and 3.2-fold) and TSB-6 (2.1-fold and 22.3-fold) after 10 days of incubation. These results suggest that the biofilm-forming S. Typhimurium under different pH levels might change the virulence production and stress response mechanisms.

  7. Nitric Oxide-Mediated Modulation of Central Network Dynamics during Olfactory Perception.

    PubMed

    Watanabe, Satoshi; Takanashi, Fumihito; Ishida, Kohei; Kobayashi, Suguru; Kitamura, Yoshiichiro; Hamasaki, Yuuta; Saito, Minoru

    2015-01-01

    Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity.

  8. Cancer-associated autoantibodies to MUC1 and MUC4—A blinded case–control study of colorectal cancer in UK collaborative trial of ovarian cancer screening

    PubMed Central

    Pedersen, Johannes W; Gentry-Maharaj, Aleksandra; Nøstdal, Alexander; Fourkala, Evangelia-Ourania; Dawnay, Anne; Burnell, Matthew; Zaikin, Alexey; Burchell, Joy; Papadimitriou, Joyce Taylor; Clausen, Henrik; Jacobs, Ian; Menon, Usha; Wandall, Hans H

    2014-01-01

    Recent reports suggest that autoantibodies directed to aberrantly glycosylated mucins, in particular MUC1 and MUC4, are found in patients with colorectal cancer. There is, however, limited information on the autoantibody levels before clinical diagnosis, and their utility in cancer screening in the general population. In our study, we have generated O-glycosylated synthetic MUC1 and MUC4 peptides in vitro, to mimic cancer-associated glycoforms, and displayed these on microarrays. The assay’s performance was tested through an initial screening of serum samples taken from patients at the time of colorectal cancer diagnosis and healthy controls. Subsequently, the selected biomarkers were evaluated in a blinded nested case–control study using stored serum samples from among the 50,640 women randomized to the multimodal arm of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), where women gave annual blood samples for several years. Cases were 97 postmenopausal women who developed colorectal cancer after recruitment and were age-matched to 97 women without any history of cancer. MUC1-STn and MUC1-Core3 IgG autoantibodies identified cases with 8.2 and 13.4% sensitivity, respectively, at 95% specificity. IgA to MUC4 glycoforms were unable to discriminate between cases and controls in the UKCTOCS sera. Additional analysis was undertaken by combining the data of MUC1-STn and MUC1-Core3 with previously generated data on autoantibodies to p53 peptides, which increased the sensitivity to 32.0% at 95% specificity. These findings suggest that a combination of antibody signatures may have a role as part of a biomarker panel for the early detection of colorectal cancer. PMID:24122770

  9. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    PubMed

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  10. Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models.

    PubMed

    Jamshidi, S; Yadollahi, A; Ahmadi, H; Arab, M M; Eftekhari, M

    2016-01-01

    Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO[Formula: see text], NH[Formula: see text], Ca(2+), K(+), Mg(2+), PO[Formula: see text], SO[Formula: see text], and Cl(-)) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH[Formula: see text] (301.7), and NO[Formula: see text], NH[Formula: see text] (64), SO[Formula: see text] (54.1), K(+) (40.4), and NO[Formula: see text] (35.1) in OHF and Ca(2+) (23.7), NH[Formula: see text] (10.7), NO[Formula: see text] (9.1), NH[Formula: see text] (317.6), and NH[Formula: see text] (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO[Formula: see text], 5.7 NH[Formula: see text], 2.7 Ca(2+), 31.5 K(+), 3.3 Mg(2+), 2.6 PO[Formula: see text], 5.6 SO[Formula: see text], and 3.5 Cl(-) could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO[Formula: see text], 13.1 NH[Formula: see text], 5.5 Ca(2+), 35.7 K(+), 1.5 Mg(2+), 2.1 PO[Formula: see text], 3.6 SO[Formula: see text], and 3 Cl(-). PMID:27066013

  11. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2013-10-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern (EUS) and western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (shortwave cloud forcing (SWCF)) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and longwave cloud forcing (LWCF) very well for the 4 km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF

  12. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    PubMed

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  13. GENOTYPE AND DRUG RESISTANCE OF CLINICAL AND ENVIRONMENTAL VIBRIO CHOLERAE NON-O1/NON-O139 IN NORTHEASTERN THAILAND.

    PubMed

    Chomvarin, Chariya; Jumroenjit, Warin; Tangkanakul, Waraluk; Hasan, Nur A; Chaicumpar, Kunyaluk; Faksri, Kiatichai; Huq, Anwar

    2014-11-01

    A total of 124 V cholerae non-O1/non-O139 isolates were collected in Khon Kaen, Thailand from diarrheal patients, asymptomatic carriers and environmental water. The presence of virulence-associated and regulatory genes including ctxA, tcpA, zot, ace, ompU, stn, hlyA and toxR) were examined using multiplex PCR. The genomic diversity of the various V. cholerae isolates were differentiated using the random amplified polymorphic DNA (RAPD) method. Antimicrobial susceptibility was tested using disk diffusion. All of V. cholerae non-O/non-O139 isolates carried hlyA and toxR and none carried ctxA and tcpA. The zot, ace and both genes together were found in 1.6%, 4.7% and 4.7% of 64 clinical V. cholerae non-O1 isolates, respectively, while the environmental ones did not. The stn gene was found in 3.1% (2/64) of the clinical and 3.3% (2/60) of the environmental isolates. The RAPD patterns were differentiated into 45 types (A to 2S). RAPD type A (32.3%) was the most frequently found in both clinical and environmental V cholerae non-O1 strains (34.4% and 30.0%, respectively); indicating that there was a clonal relationship between some clinical and environmental isolates whereas almost all of the environmental isolates belonged to different clones. All strains were sensitive to ciprofloxacin and norfloxacin. The environmental isolates (30%) were more resistant than the clinical ones (21.9%). Resistance to sulfamethoxazole/trimethoprim and tetracycline among the clinical isolates occurred in 9.4% (6/64) in 2007, during which period the prevalence of V cholerae O1 increased. We conclude that V. cholerae non-O1/non-O139 from the aquatic environment are potentially pathogenic and this same aquatic environment may be a source of antimicrobial resistance in V. cholerae.

  14. Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease.

    PubMed

    Antoniades, Chrystalina A; Rebelo, Pedro; Kennard, Christopher; Aziz, Tipu Z; Green, Alexander L; FitzGerald, James J

    2015-09-23

    The frontal cortex and basal ganglia form a set of parallel but mostly segregated circuits called cortico-basal ganglia loops. The oculomotor loop controls eye movements and can direct relatively simple movements, such as reflexive prosaccades, without external help but needs input from "higher" loops for more complex behaviors. The antisaccade task requires the dorsolateral prefrontal cortex, which is part of the prefrontal loop. Information flows from prefrontal to oculomotor circuits in the striatum, and directional errors in this task can be considered a measure of failure of prefrontal control over the oculomotor loop. The antisaccadic error rate (AER) is increased in Parkinson's disease (PD). Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has no effect on the AER, but a previous case suggested that DBS of the globus pallidus interna (GPi) might. Our aim was to compare the effects of STN DBS and GPi DBS on the AER. We tested eye movements in 14 human DBS patients and 10 controls. GPi DBS substantially reduced the AER, restoring lost higher control over oculomotor function. Interloop information flow involves striatal neurons that receive cortical input and project to pallidum. They are normally silent when quiescent, but in PD they fire randomly, creating noise that may account for the degradation in interloop control. The reduced AER with GPi DBS could be explained by retrograde stimulation of striatopallidal axons with consequent activation of inhibitory collaterals and reduction in background striatal firing rates. This study may help explain aspects of PD pathophysiology and the mechanism of action of GPi DBS. Significance statement: Parkinson's disease causes symptoms including stiffness, slowness of movement, and tremor. Electrical stimulation of specific areas deep in the brain can effectively treat these symptoms, but exactly how is not fully understood. Part of the cause of such symptoms may be impairments in the way information flows

  15. Dopamine and the Biology of Creativity: Lessons from Parkinson’s Disease

    PubMed Central

    Lhommée, Eugénie; Batir, Alina; Quesada, Jean-Louis; Ardouin, Claire; Fraix, Valérie; Seigneuret, Eric; Chabardès, Stéphan; Benabid, Alim-Louis; Pollak, Pierre; Krack, Paul

    2014-01-01

    Background: Parkinson’s disease (PD) is characterized by reduced flexibility, conceptualization, and visuo-spatial abilities. Although these are essential to creativity, case studies show emergence of creativity during PD. Knowledge about the role of dopamine in creativity so far only stems from a few case reports. We aim at demonstrating that creativity can be induced by dopaminergic treatments in PD, and tends to disappear after withdrawal of dopamine agonists. Methods: Eleven consecutive creative PD patients were selected from candidates for subthalamic nucleus deep brain stimulation (STN DBS) surgery, and compared to 22 non-creative control PD patients. Motor disability (UPDRS III), cognition (Frontal score, Mattis scale), and behavior (Ardouin scale) were assessed before surgery and 1 year after. Results: Before surgery, whereas cognitive and motor assessments were similar between groups, dopamine agonist (but not levodopa) dosages were higher in creative patients (p = 0.01). The Ardouin scale revealed also a specific psycho-behavioral profile of creative patients which had higher scores for mania (p < 0.001), hobbyism (p = 0.001), nocturnal hyperactivity (p = 0.041), appetitive functioning (p = 0.003), and ON euphoria (p = 0.007) and lower scores for apathy and OFF dysphoria (p = 0.04 for each). Post-operative motor, cognitive, and behavioral scores as dopaminergic treatment dosages were equivalent between groups. Motor improvement allowed for a 68.6% decrease in dopaminergic treatment. Only 1 of the 11 patients remained creative after surgery. Reduction of dopamine agonist was significantly correlated to the decrease in creativity in the whole population of study (Spearman correlation coefficient ρ = 0.47 with confidence index of 95% = 0.16; 0.70, p = 0.0053). Conclusion: Creativity in PD is linked to dopamine agonist therapy, and tends to disappear after STN DBS in parallel to reduction of dopamine agonists

  16. GPi Oscillatory Activity Differentiates Tics from the Resting State, Voluntary Movements, and the Unmedicated Parkinsonian State

    PubMed Central

    Jimenez-Shahed, Joohi; Telkes, Ilknur; Viswanathan, Ashwin; Ince, Nuri F.

    2016-01-01

    Background: Deep brain stimulation (DBS) is an emerging treatment strategy for severe, medication-refractory Tourette syndrome (TS). Thalamic (Cm-Pf) and pallidal (including globus pallidus interna, GPi) targets have been the most investigated. While the neurophysiological correlates of Parkinson's disease (PD) in the GPi and subthalamic nucleus (STN) are increasingly recognized, these patterns are not well characterized in other disease states. Recent findings indicate that the cross-frequency coupling (CFC) between beta band and high frequency oscillations (HFOs) within the STN in PD patients is pathologic. Methods: We recorded intraoperative local field potentials (LFPs) from the postero-ventrolateral GPi in three adult patients with TS at rest, during voluntary movements, and during tic activity and compared them to the intraoperative GPi-LFP activity recorded from four unmedicated PD patients at rest. Results: In all PD patients, we noted excessive beta band activity (13–30 Hz) at rest which consistently modulated the amplitude of the co-existent HFOs observed between 200 and 400 Hz, indicating the presence of beta-HFO CFC. In all 3TS patients at rest, we observed theta band activity (4–7 Hz) and HFOs. Two patients had beta band activity, though at lower power than theta oscillations. Tic activity was associated with increased high frequency (200–400 Hz) and gamma band (35–200 Hz) activity. There was no beta-HFO CFC in TS patients at rest. However, CFC between the phase of 5–10 Hz band activity and the amplitude of HFOs was found in two TS patients. During tics, this shifted to CFC between the phase of beta band activity and the amplitude of HFOs in all subjects. Conclusions: To our knowledge this is the first study that shows that beta-HFO CFC exists in the GPi of TS patients during tics and at rest in PD patients, and suggests that this pattern might be specific to pathologic/involuntary movements. Furthermore, our findings suggest that during tics

  17. Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease

    PubMed Central

    Rebelo, Pedro; Kennard, Christopher; Aziz, Tipu Z.; Green, Alexander L.

    2015-01-01

    The frontal cortex and basal ganglia form a set of parallel but mostly segregated circuits called cortico-basal ganglia loops. The oculomotor loop controls eye movements and can direct relatively simple movements, such as reflexive prosaccades, without external help but needs input from “higher” loops for more complex behaviors. The antisaccade task requires the dorsolateral prefrontal cortex, which is part of the prefrontal loop. Information flows from prefrontal to oculomotor circuits in the striatum, and directional errors in this task can be considered a measure of failure of prefrontal control over the oculomotor loop. The antisaccadic error rate (AER) is increased in Parkinson's disease (PD). Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has no effect on the AER, but a previous case suggested that DBS of the globus pallidus interna (GPi) might. Our aim was to compare the effects of STN DBS and GPi DBS on the AER. We tested eye movements in 14 human DBS patients and 10 controls. GPi DBS substantially reduced the AER, restoring lost higher control over oculomotor function. Interloop information flow involves striatal neurons that receive cortical input and project to pallidum. They are normally silent when quiescent, but in PD they fire randomly, creating noise that may account for the degradation in interloop control. The reduced AER with GPi DBS could be explained by retrograde stimulation of striatopallidal axons with consequent activation of inhibitory collaterals and reduction in background striatal firing rates. This study may help explain aspects of PD pathophysiology and the mechanism of action of GPi DBS. SIGNIFICANCE STATEMENT Parkinson's disease causes symptoms including stiffness, slowness of movement, and tremor. Electrical stimulation of specific areas deep in the brain can effectively treat these symptoms, but exactly how is not fully understood. Part of the cause of such symptoms may be impairments in the way information

  18. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  19. Accuracy and safety of targeting using intraoperative "O-arm" during placement of deep brain stimulation electrodes without electrophysiological recordings.

    PubMed

    Sharma, Mayur; Deogaonkar, Milind

    2016-05-01

    The aim of our study was to investigate the accuracy of targeting using intraoperative "O-arm" during deep brain stimulation (DBS) surgery. Intraoperative O-arm (Medtronic, Minneapolis, MN, USA) images were obtained to confirm the accuracy of placement. The difference between intended and actual target coordinates was calculated based on intraoperative images and postoperative CT scan. Euclidian vector error was obtained to estimate the directional error. Correlation of targeting error with the pneumocephalus and the deviation from the planned trajectory was also estimated. Twenty eight DBS leads (globus pallidus internus [GPi], n=13; subthalamic nucleus [STN], n=9; ventralis intermedius nucleus [VIM], n=6) were implanted in 20 patients using the stereotactic Leksell frame (Elekta AB, Stockholm, Sweden) under general anesthesia over a period of 1year. The mean age was 63.6±standard error of the mean (SEM) 15.7years and 60% of patients were males. The mean absolute difference (+SEM) between intended and actual target in x, y and z coordinates based on intraoperative CT scan was 0.65±0.09 (p=0.84), 0.58±0.08 (p=0.98), 1.13±0.10 (p=0.08), respectively, and postoperative (1month) CT scan was 0.82±0.15 (p=0.89), 0.55±0.11 (p=0.97), and 1.58±0.29 (p=0.08), respectively. The Euclidean vector error was 1.59±0.10 and 2.16±0.26 based on intraoperative and postoperative images, respectively. There was no statistically significant targeting error based on fusion of intraoperative CT images to either preoperative CT scan or MRI as registration series, the presence of pneumocephalus, deviation from planned trajectory or the anatomical target (STN versus VIM versus GPi) (p>0.05). Superficial skin infection was encountered in a single patient in this study. The mean total operating room time was 193.5±74.6 minutes. None of the patients required revision in our study. DBS leads can be implanted safely and accurately using intraoperative O-arm with a frame based targeting

  20. Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy

    NASA Astrophysics Data System (ADS)

    Landry, Michael R.; Decima, Moira; Simmons, Melinda P.; Hannides, Cecelia C. S.; Daniels, Emy

    2008-05-01

    As part of E-Flux III cruise studies in March 2005, plankton net collections were made to assess the effects of a cyclonic cold-core eddy (Cyclone Opal) on the biomass and grazing of mesozooplankton. Mesozooplankton biomass in the central region of Cyclone Opal, an area of uplifted nutricline and a subsurface diatom bloom, averaged 0.80±0.24 and 1.51±0.59 g DW m -2, for day and night tows, respectively. These biomass estimates were about 80% higher than control (OUT) stations, with increases more or less proportionately distributed among size classes from 0.2 to >5 mm. Though elevated relative to surrounding waters south of the Hawaiian Islands (Hawai'i lee), total biomass and size distribution in Cyclone Opal were almost exactly the same as contemporary measurements made at Stn. ALOHA, 100 km north of the islands, by the HOT (Hawaii Ocean Time-series) Program. Mesozooplankton biomass and community composition at the OUT stations were also similar to ALOHA values from 1994 to 1996, preceding a recent decadal increase. These comparisons may therefore provide insight into production characteristics or biomass gradients associated with decadal changes at Stn. ALOHA. Gut fluorescence estimates were higher in Opal than in ambient waters, translating to grazing impacts of 0.11±0.02 d -1 (IN) versus 0.03±0.01 d -1 (OUT). Over the depth-integrated euphotic zone, mesozooplankton accounted for 30% of the combined grazing losses of phytoplankton to micro- and meso-herbivores in Opal, as compared to 13% at control stations. Estimates of active export flux by migrating zooplankton averaged 0.81 mmol C m -2 d -1 in Cyclone Opal and 0.37 mmol C m -2 d -1 at OUT stations, 53% and 24%, respectively, of the carbon export measured by passive sediment traps. Migrants also exported 0.18 mmol N m -2 d -1 (117% of trap N flux) in Cyclone Opal compared to 0.08 mmol N m -2 d -1 (51% of trap flux) at control stations. Overall, the food-web importance of mesozooplankton increased in

  1. The response of nitrifying microbial assemblages to ammonium (NH4+) enrichment from salmon farm activities in a northern Chilean Fjord

    NASA Astrophysics Data System (ADS)

    Elizondo-Patrone, Claudia; Hernández, Klaudia; Yannicelli, Beatriz; Olsen, Lasse Mork; Molina, Verónica

    2015-12-01

    The consequences of aquaculture include alterations in nitrogen cycling in aquatic environments that may lead to ecosystem degradation. Herein salmon aquaculture release of ammonium (NH4+) to the water column and its effects on natural archaea and bacteria ammonia-oxidizers (AOA and AOB) and nitrite-oxidizing bacteria (NOB) community structure were studied in the Comau fjord using molecular approaches, such as: cloning (AOA and AOB richness), qPCR for C. Nitrosopumilus maritimus (AOA) and Nitrospina sp. (NOB) abundance (DNA) and RT-qPCR only for Nitrospina sp activity (RNA). Sampling was carried out in brackish (0.7-25 salinity, <5 m depth) and marine (>30 salinity, 25 m depth) waters during contrasting salmon production periods: rest (winter 2012), growth and harvest (summer and winter 2013). During the rest period, the highest NH4+ concentration was observed at Vodudahue River, whereas during productive periods NH4+ accumulated in the brackish layer inside salmon cages and in the vicinty (up to 700 m distance from the cages). The nitrifier community from the fjord reference station (Stn-C) was characterized by C. N. maritimus (AOA) and Nitrosomonas sp. (AOB) sequences affiliated with cosmopolitan ecotypes (e.g., marine, freshwater, hydrothermal), maxima abundances of C. N. maritimus (AOA) and Nitrospina sp. and extreme ranges of Nitrospina sp. activity occurred in the brackish layer. During productive periods, abundances of C. N. maritimus were co-varied with NH4+ concentrations inside salmon cages (summer) and the adjacent areas (winter). Productive periods were characterized by lower abundances but more homogeneity between brackish and marine areas than for the Stn-C nitrifiers. The physiological state of Nitrospina sp. estimated from cDNA:DNA ratios indicated higher growth during winter 2013 associated with NH4+ enrichment derived from production and river input. Our results suggest that in Comau Fjord, NH4+ enrichment events occur during salmon production and

  2. Source apportionment of airborne particulate matter for the Speciation Trends Network site in Cleveland, OH.

    PubMed

    Zhou, Liming; Hopke, Philip K; Zhao, Weixiang

    2009-03-01

    Aerosol composition data from the Speciation Trends Network (STN) site (East 14th Street) in Cleveland, OH, were analyzed by advanced receptor model methods for source apportionment as well as by the standard positive matrix factorization (PMF) using PMF2. These different models are used in combination to test model limitations. These data were 24-hr average mass concentrations and compositions obtained for samples taken every third day from 2001 to 2003. The Multilinear Engine (ME) was used to solve an expanded model to estimate the source profiles and source contributions and also to investigate the wind speed, wind direction, time-of-day, weekend/weekday, and seasonal effects. PMF2 was applied to the same dataset. Potential source contribution function (PSCF) and conditional probability function (CPF) analyses were used to locate the regional and local sources using the resolved source contributions and appropriate meteorological data. Very little difference was observed between the results of the expanded model and the PMF2 values for the profiles and source contribution time series. The identified sources were as ferrous smelter, secondary sulfate, secondary nitrate, soil/combustion mixture, steel mill, traffic, wood smoke, and coal burning. The CPF analysis was useful in helping to identify local sources, whereas the PSCF results were only useful for regional source areas. Both of these analyses were more useful than the wind directional factor derived from the expanded factor analysis. However, the expanded analysis provided direct information on seasonality and day-of-week behavior of the sources.

  3. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis.

    PubMed

    Pietrzykowska, Malgorzata; Suorsa, Marjaana; Semchonok, Dmitry A; Tikkanen, Mikko; Boekema, Egbert J; Aro, Eva-Mari; Jansson, Stefan

    2014-09-01

    Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago. PMID:25194026

  4. Speech motor program maintenance, but not switching, is enhanced by left-hemispheric deep brain stimulation in Parkinson's disease.

    PubMed

    Jones, Harrison N; Kendall, Diane L; Okun, Michael S; Wu, Samuel S; Velozo, Craig; Fernandez, Hubert H; Spencer, Kristie A; Rosenbek, John C

    2010-10-01

    Speech reaction time (SRT) was measured in a response priming protocol in 12 participants with Parkinson's disease (PD) and hypokinetic dysarthria "on" and "off" left-hemispheric deep brain stimulation (DBS). Speech preparation was measured during speech motor programming in two randomly ordered speech conditions: speech maintenance and switching. Double blind testing was completed in participants with DBS of globus pallidus pars interna (GPi) (n = 5) or subthalamic nucleus (STN) (n = 7). SRT was significantly faster in the maintenance vs switch task, regardless of DBS state. SRT was faster in the speech maintenance task "on" stimulation, while there was no difference in speech switching "on" and "off" DBS. These data suggest that left-hemispheric DBS may have differential effects on aspects of speech preparation in PD. It is hypothesized that speech maintenance improvements may result from DBS-induced cortical enhancements, while the lack of difference in switching may be related to inhibition deficits mediated by the right-hemisphere. Alternatively, DBS may have little influence on the higher level motor processes (i.e., motor planning) which it is believed the switch task engaged to a greater extent than the maintenance task.

  5. Methods development for measuring and classifying flammability/combustibility of refrigerants. Interim report, Task 1 -- Annotated bibliography and summary

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.

    1994-06-01

    For Task 1 of the flammable refrigerant methods development contract, NMERI performed a literature search to identify references on the flammability of refrigerants. A database to store a bibliographic record of the literature search was then developed. This database is contained in the Microsoft Access{reg_sign} relational database management system for Windows{trademark}. Searches for applicable sources were made on-line using the STN{reg_sign} scientific and technical network; off-line using the National Technical Information Service (NTIS) database; WorldCat CD-rom database; the University of New Mexico library search; the Air-Conditioning and Refrigeration institute (ARI) Refrigerant Database; and personal contacts. Three specific areas were searched: refrigerant properties, flammability test methods, and ignition technology. Many of the articles retrieved fall into multiple categories. Ignition technology was included as a separate category because of the importance of the ignition process to flammability and the vast amount of information available on ignition of gaseous fuels, especially hydrocarbons. Over 90 separate references have been entered into the database. Two separate report formats have been developed to display the results of the literature search. Appendix B is the short report format--without abstract, while Appendix C is the long format--with abstract.

  6. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    PubMed Central

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437

  7. Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism.

    PubMed

    Tikkanen, Mikko; Gollan, Peter J; Mekala, Nageswara Rao; Isojärvi, Janne; Aro, Eva-Mari

    2014-04-19

    The amount of light energy that is harvested and directed to the photosynthetic machinery is regulated in order to control the production of reactive oxygen species (ROS) in leaf tissues. ROS have important roles as signalling factors that instigate and mediate a range of cellular responses, suggesting that the mechanisms regulating light-harvesting and photosynthetic energy transduction also affect cell signalling. In this study, we exposed wild-type (WT) Arabidopsis and mutants impaired in the regulation of photosynthetic light-harvesting (stn7, tap38 and npq4) to transient high light (HL) stress in order to study the role of these mechanisms for up- and downregulation of gene expression under HL stress. The mutants, all of which have disturbed regulation of excitation energy transfer and distribution, responded to transient HL treatment with surprising similarity to the WT in terms of general 'abiotic stress-regulated' genes associated with hydrogen peroxide and 12-oxo-phytodienoic acid signalling. However, we identified distinct expression profiles in each genotype with respect to induction of singlet oxygen and jasmonic acid-dependent responses. The results of this study suggest that the control of excitation energy transfer interacts with hormonal regulation. Furthermore, the photosynthetic pigment-protein complexes appear to operate as receptors that sense the energetic balance between the photosynthetic light reactions and downstream metabolism.

  8. Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation

    PubMed Central

    van Hartevelt, Tim J.; Cabral, Joana; Møller, Arne; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu Z.; Deco, Gustavo; Kringelbach, Morten L.

    2015-01-01

    It is unclear whether Hebbian-like learning occurs at the level of long-range white matter connections in humans, i.e., where measurable changes in structural connectivity (SC) are correlated with changes in functional connectivity. However, the behavioral changes observed after deep brain stimulation (DBS) suggest the existence of such Hebbian-like mechanisms occurring at the structural level with functional consequences. In this rare case study, we obtained the full network of white matter connections of one patient with Parkinson’s disease (PD) before and after long-term DBS and combined it with a computational model of ongoing activity to investigate the effects of DBS-induced long-term structural changes. The results show that the long-term effects of DBS on resting-state functional connectivity is best obtained in the computational model by changing the structural weights from the subthalamic nucleus (STN) to the putamen and the thalamus in a Hebbian-like manner. Moreover, long-term DBS also significantly changed the SC towards normality in terms of model-based measures of segregation and integration of information processing, two key concepts of brain organization. This novel approach using computational models to model the effects of Hebbian-like changes in SC allowed us to causally identify the possible underlying neural mechanisms of long-term DBS using rare case study data. In time, this could help predict the efficacy of individual DBS targeting and identify novel DBS targets. PMID:26175675

  9. Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of northern china.

    PubMed

    Xu, Min-Yun; Xie, Fan; Wang, Kun

    2014-01-01

    Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0-50 cm were highest under UG (13.3 kg C m-2 and 1.69 kg N m-2) and lowest under HG (9.8 kg C m-2 and 1.22 kg N m-2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm-2) than under other treatments (725-731 kg N hm-2) in the 0-50 cm. Our results indicate that the pasture management of "take half-leave half" has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region. PMID:24819162

  10. Response of Vegetation and Soil Carbon and Nitrogen Storage to Grazing Intensity in Semi-Arid Grasslands in the Agro-Pastoral Zone of Northern China

    PubMed Central

    Xu, Min-yun; Xie, Fan; Wang, Kun

    2014-01-01

    Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0–50 cm were highest under UG (13.3 kg C m−2 and 1.69 kg N m−2) and lowest under HG (9.8 kg C m−2 and 1.22 kg N m−2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm−2) than under other treatments (725–731 kg N hm−2) in the 0–50 cm. Our results indicate that the pasture management of “take half-leave half” has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region. PMID:24819162

  11. Preliminary Ecotoxicity and Biodegradability Assessment of Metalworking Fluids

    NASA Astrophysics Data System (ADS)

    Gerulová, Kristína; Amcha, Peter; Filická, Slávka

    2010-01-01

    The main aim of this study was to evaluate the potential of activated sludge from sewage treatment plant to degrade selected MWFs (ecotoxicity to bacterial consortium) and to evaluate the ecotoxicity by Lemna minor-higher plant. After evaluating the ecotoxicity, biodegradations rate with activated sludge was assessed on the basis of COD measurement. Preliminary study of measuring the ecotoxicity according to OECD 221 by Lemna minor shows effective concentration of Emulzin H at the rate of 81.6 mg l-1, for Ecocool 82.9 mg l-1, for BC 25 about 99.3 mg l-1, and for Dasnobor about 97.3 mg l-1. Preliminary study of measuring the ecotoxicity by bacterial consortium according to OECD 209 (STN EN ISO 8192) shows effective concentration of Blasocut BC 25 at the rate 227.4 mg l-1. According to OECD 302B, the biodegradations level of Emulzin H, Ecocool and BC 25 achieved 80% in 10 days. It can be stated that these MWFs have potential to ultimate degradation, but the statement has to be confirmed by a biodegradability test with other parameters than COD, which exhibits some disadvantages in testing O/W emulsions.

  12. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  13. [Computer-assisted insertion of zygomatic implants (Brånemark system) after extensive tumor surgery].

    PubMed

    Schramm, A; Gellrich, N C; Schimming, R; Schmelzeisen, R

    2000-09-01

    Installation of fixtures for prosthetic reconstruction of the upper jaw in patients with extensive bone and soft tissue defects is still a challenge. The new fixture developed by Brånemark System achieves immediate prosthetic reconstruction by anchoring implants in the zygomatic bone to offer sufficient support without bone grafts. The dimension of these zygomatic fixtures and the complex anatomy due to previous surgical procedures demand specific treatment for a precise and safe insertion of the implants. On the basis of an axial spiral CT data set, the STN navigation system (Stryker-Leibinger/Zeiss) was used for preoperative planning and intraoperative control of the insertion of zygomatic fixtures after subtotal maxillectomy. Computer-assisted insertion of zygomatic fixtures was successfully completed. The implants could be positioned precisely as preoperatively planned. The use of zygomatic fixtures after ablative tumor surgery with resection of the maxillary bone provides immediate prosthetic reconstruction without additional bone grafting. Computer-assisted insertion of these implants improves preoperative planning and facilitates clinical procedure.

  14. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    PubMed Central

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; Miracco, Edward J.; Ogorzalek Loo, Rachel R.; Upton, Heather E.; Cascio, Duilio; Johnson, Reid O’Brien; Collins, Kathleen; Loo, Joseph A.; Zhou, Z. Hong; Feigon, Juli

    2015-01-01

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3′-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function. PMID:26472759

  15. Sources of fine urban particulate matter in Detroit, MI.

    PubMed

    Gildemeister, Amy E; Hopke, Philip K; Kim, Eugene

    2007-10-01

    Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality.

  16. Anatomy of the ICDS series: A bibliometric analysis

    NASA Astrophysics Data System (ADS)

    Cardona, Manuel; Marxa, Werner

    2007-12-01

    In this article, the proceedings of the International Conferences on Defects in Semiconductors (ICDS) have been analyzed by bibliometric methods. The papers of these conferences have been published as articles in regular journals or special proceedings journals and in books with diverse publishers. The conference name/title changed several times. Many of the proceedings did not appear in the so-called “source journals” covered by the Thomson/ISI citation databases, in particular by the Science Citation Index (SCI). But the number of citations within these source journals can be determined using the Cited Reference Search mode under the Web of Science (WoS) and the SCI offered by the host STN International. The search functions of both systems were needed to select the papers published as different document types and to cover the full time span of the series. The most cited ICDS papers were identified, and the overall numbers of citations as well as the time-dependent impact of these papers, of single conferences, and of the complete series, was established. The complete of citing papers was analyzed with respect to the countries of the citing authors, the citing journals, and the ISI subject categories.

  17. A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM–p53 signaling

    PubMed Central

    Wang, Yifan; Xu, Qikai; Sack, Laura; Kang, Chanhee; Elledge, Stephen J.

    2016-01-01

    Senescence stimuli activate multiple tumor suppressor pathways to initiate cycle arrest and a differentiation program characteristic of senescent cells. We performed a two-stage, gain-of-function screen to select for the genes whose enhanced expression can bypass replicative senescence. We uncovered multiple genes known to be involved in p53 and Rb regulation and ATM regulation, two components of the CST (CTC1–STN1–TEN1) complex involved in preventing telomere erosion, and genes such as REST and FOXO4 that have been implicated in aging. Among the new genes now implicated in senescence, we identified DLX2, a homeobox transcription factor that has been shown to be required for tumor growth and metastasis and is associated with poor cancer prognosis. Growth analysis showed that DLX2 expression led to increased cellular replicative life span. Our data suggest that DLX2 expression reduces the protein components of the TTI1/TTI2/TEL2 complex, a key complex required for the proper folding and stabilization of ATM and other members of the PIKK (phosphatidylinositol 3-kinase-related kinase) family kinase, leading to reduced ATM–p53 signaling and senescence bypass. We also found that the overexpression of DLX2 exhibited a mutually exclusive relationship with p53 alterations in cancer patients. Our functional screen identified novel players that may promote tumorigenesis by regulating the ATM–p53 pathway and senescence. PMID:26833729

  18. Sector imaging radar for enhanced vision (SIREV): theory and applications

    NASA Astrophysics Data System (ADS)

    Sutor, Thomas; Buckreuss, Stefan; Wendler, Michael; Witte, Franz

    2000-06-01

    The demand for supplementing existing airborne radar systems with enhanced forward looking abilities has considerably increased. Available radar systems are not able to accomplish the needed requirements for enhanced vision. Instead a new approach has to be taken to cover the forward lying sector with respect to the flight path. Presently a system called SIREV (Sector Imaging Radar for Enhanced Vision) is under development at DLR> Due to the all-weather capability of the system and its ability to present radar images very similar to optical images either as top view (mapping mode) or as pilot view (central perspective mode) the system is essentially qualified for navigation support, autonomous landing approaches or taxi support at the ground. IN this paper the authors will describe the idea the new SIREV system originates from and the relation of the SIREV principle to the SAR principle. Different modes of operation and thereby obtainable performance numbers will be discussed with regard to the special advantages of each sensor. Some potential applications of either sensor will be explained in detail. Finally a summarized overview of the system under development at DLR together with a description of a test field setup at Oberpfaffenhofen airfield will be given. The SIREV project at DLR was partially funded by STN Atlas Elektronik Bremen. This company also holds the SIREV license rights.

  19. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    SciTech Connect

    M Mitchell; J Smith; M Mason; S Harper; D Speicher; F Johnson; E Skordalakes

    2011-12-31

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

  20. Cdc13 N-Terminal Dimerization, DNA Binding, and Telomere Length Regulation ▿ †

    PubMed Central

    Mitchell, Meghan T.; Smith, Jasmine S.; Mason, Mark; Harper, Sandy; Speicher, David W.; Johnson, F. Brad; Skordalakes, Emmanuel

    2010-01-01

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres. PMID:20837709

  1. Some ecological aspects and potential threats to an intertidal gastropod, Umbonium vestiarium.

    PubMed

    Sivadas, S; Ingole, B; Sen, A

    2012-11-01

    Kalbadevi Bay in Ratgnairi has been identified as potential site for placer mining along the west coast of India. Since, U. vestiarium is a keystone species of the region; study on some ecological aspect was carried. The paper also discusses the possible impact of beach sand mining and other threats to this ecologically important gastropod. Seasonal sampling was carried in 2004-2005 at 13 transects by quadrate method. U. vestiarium was restricted to mid and low tide zone of Station 1-3 and 8-10 located at the north and south ends of the beach. Abundance was highest at Station 10 MT (16 to 12488 ind m(-2)). Based on the size-frequency, it may be considered that U. vestiarium like other tropical fauna recruit during monsoon. Eleven different colour patterns of U. vestiarium were observed. However, average individual size was larger in the samples collected from the north (stn. 1-3) end of the beach. The fastidious nature and sporadic distribution of U. vestiarium make them vulnerable to natural and anthropogenic disturbance.

  2. International energy: Research organizations, 1986 - 1990

    NASA Astrophysics Data System (ADS)

    Hendricks, P.; Jordan, S.

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE), and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science and Technology on DIALOG and Energy on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  3. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease.

    PubMed

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson's disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson's Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson's disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.

  4. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  5. Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers.

    PubMed

    Zhou, Zhifang; Mondal, Mohabul; Liao, Guochao; Guo, Zhongwu

    2014-05-28

    A fully synthetic carbohydrate-based cancer vaccine is an attractive concept, but an important topic in the area is to develop proper vaccine carriers that can improve the immunogenicity and other immunological properties of tumor-associated carbohydrate antigens (TACAs). In this context, four monophosphoryl derivatives of Neisseria meningitidis lipid A were synthesized via a highly convergent and effective strategy and evaluated as vaccine carriers and adjuvants. The conjugates of these monophosphoryl lipid A (MPLA) derivatives with a modified form of the sTn antigen were found to elicit high titers of antigen-specific IgG antibodies, indicating a T cell-dependent immune response, in the absence of an external adjuvant. It was concluded that MPLAs could be utilized as potent vaccine carriers and built-in adjuvants to create fully synthetic self-adjuvanting carbohydrate-based cancer vaccines. The lipid composition and structure of MPLA were shown to have a significant influence on its immunological activity, and among the MPLAs examined, natural N. meningitidis MPLA exhibited the most promising properties. Moreover, Titermax Gold, a conventional vaccine adjuvant, was shown to inhibit, rather than promote, the immunological activity of MPLA conjugates, maybe via interacting with MPLA.

  6. Automatic identification of various nuclei in the basal ganglia for Parkinson's disease neurosurgery.

    PubMed

    Pinzon-Morales, Ruben-Dario; Garces-Arboleda, Maribel; Orozco-Gutierrez, Alvaro-Angel

    2009-01-01

    Stereotactic neurosurgery for Parkinson's disease (PD) is one of the most used treatments for relief symptoms of this degenerative disorder. Current methods include ablation and deep brain stimulation (DBS) that can be applied to the various nuclei in the basal ganglia (BG), for instance to the Subthalamic nucleus (STN) or the Ventral medial nucleus (Vim). Identification of thus regions must be rigorous and within a minimum position error. Usually, skilled specialist identifies the brain area by comparing and listening to the rhythm created by the temporal and spatial aggregation of action potentials presented in microelectrode recordings (MER). We present a novel system for automatic identification of the various nuclei in the BG which addresses the limitations of the subjectivity and the non-stationary nature of MER signals. This system incorporates the time-frequency analysis using the Hilbert-Huang Transform (HHT), which is a recent tool for processing nonlinear and non-stationary data, with a dynamic classifier based on Hidden Markov Models (HMM). Classification accuracy in two different databases is compared to validate the performance of the proposed method. Results show that system can recognize selected nuclei with a mean accuracy of 90%.

  7. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior.

    PubMed

    Bailey, Matthew R; Simpson, Eleanor H; Balsam, Peter D

    2016-09-01

    All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in an environment in which essential resources may be limited. A variety of influences ranging from an organism's environment, experiential history, and physiological state all influence a cost-benefit analysis which allows motivation to energize behavior and direct it toward specific goals. Here we review the substantial amount of research aimed at discovering the interconnected neural circuits which allow organisms to carry-out the cost-benefit computations which allow them to behave in adaptive ways. We specifically focus on how the brain deals with different types of costs, including effort requirements, delays to reward and payoff riskiness. An examination of this broad literature highlights the importance of the extended neural circuits which enable organisms to make decisions about these different types of costs. This involves Cortical Structures, including the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex (IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus Accumbens (NAcc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. Some regions are involved in multiple aspects of cost-benefit computations while the involvement of other regions is restricted to information relating to specific types of costs. PMID:27427327

  8. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease.

    PubMed

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson's disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson's Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson's disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437

  9. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation.

    PubMed

    Wang, Wen-Hua; He, En-Ming; Chen, Juan; Guo, Ying; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2016-04-01

    Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.

  10. Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana.

    PubMed

    Nellaepalli, Sreedhar; Kodru, Sireesha; Raghavendra, Agepati S; Subramanyam, Rajagopal

    2015-05-01

    We investigated the mechanism involved in triggering state transitions at 40°C in Arabidopsis thaliana. Leaves (1-6 week old) exposed to 40°C exhibited state II transition indicating its role as one of the earliest stress responsive mechanism apart from regulation of light energy distribution between photosystem (PS)II and PSI. Post illumination transients (rise in Fo') revealed that non-photochemical reduction of PQ pool at 40°C in dark is responsible for activation of STN7 kinase, consequently light harvesting complex (LHC)II phosphorylation leading to state II condition. Later, in pgr5 mutant, non-photochemical reduction of PQ pool was observed indicating the involvement of alternative electron transfer routes. In chlororespiratory mutant crr2-2, state II transition occurred signifying that the reduction of PQ pool is independent from NDH mediated cyclic electron transfer. Further, antimycin A inhibitor studies in wt and mutants revealed its inhibitory action on non-photochemical reduction of PQ pool affecting both LHCII phosphorylation and migration to PSI which leads to state I. Thus, our study showed that antimycin A sensitive pathway independent from PGR5 dependent cyclic electron transfer, is responsible for inducing non-photochemical reduction of PQ pool and state transitions at 40°C.

  11. International energy: Research organizations, 1986--1990

    SciTech Connect

    Hendricks, P.; Jordan, S. )

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  12. Analyses of Candida Cdc13 Orthologues Revealed a Novel OB Fold Dimer Arrangement, Dimerization-Assisted DNA Binding, and Substantial Structural Differences between Cdc13 and RPA70

    PubMed Central

    Yu, Eun Young; Sun, Jia

    2012-01-01

    The budding yeast Cdc13-Stn1-Ten1 complex is crucial for telomere protection and has been proposed to resemble the RPA complex structurally and functionally. The Cdc13 homologues in Candida species are unusually small and lack two conserved domains previously implicated in telomere regulation, thus raising interesting questions concerning the mechanisms and evolution of these proteins. In this report, we show that the unusually small Cdc13 homologue in Candida albicans is indeed a regulator of telomere lengths and that it associates with telomere DNA in vivo. We demonstrated high-affinity telomere DNA binding by C. tropicalis Cdc13 (CtCdc13) and found that dimerization of this protein through its OB4 domain is important for high-affinity DNA binding. Interestingly, CtCdc13-DNA complex formation appears to involve primarily recognition of multiple copies of a six-nucleotide element (GGATGT) that is shared by many Candida telomere repeats. We also determined the crystal structure of the OB4 domain of C. glabrata Cdc13, which revealed a novel mechanism of OB fold dimerization. The structure also exhibits marked differences to the C-terminal OB fold of RPA70, thus arguing against a close evolutionary kinship between these two proteins. Our findings provide new insights on the mechanisms and evolution of a critical telomere end binding protein. PMID:22025677

  13. International energy: Research organizations, 1988--1992. Revision 1

    SciTech Connect

    Hendricks, P.; Jordan, S.

    1993-06-01

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  14. Using on-line altered auditory feedback treating Parkinsonian speech

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen, Leo; de Vries, Meinou H.

    2005-09-01

    Patients with advanced Parkinson's disease tend to have dysarthric speech that is hesitant, accelerated, and repetitive, and that is often resistant to behavior speech therapy. In this pilot study, the speech disturbances were treated using on-line altered feedbacks (AF) provided by SpeechEasy (SE), an in-the-ear device registered with the FDA for use in humans to treat chronic stuttering. Eight PD patients participated in the study. All had moderate to severe speech disturbances. In addition, two patients had moderate recurring stuttering at the onset of PD after long remission since adolescence, two had bilateral STN DBS, and two bilateral pallidal DBS. An effective combination of delayed auditory feedback and frequency-altered feedback was selected for each subject and provided via SE worn in one ear. All subjects produced speech samples (structured-monologue and reading) under three conditions: baseline, with SE without, and with feedbacks. The speech samples were randomly presented and rated for speech intelligibility goodness using UPDRS-III item 18 and the speaking rate. The results indicted that SpeechEasy is well tolerated and AF can improve speech intelligibility in spontaneous speech. Further investigational use of this device for treating speech disorders in PD is warranted [Work partially supported by Janus Dev. Group, Inc.].

  15. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  16. The Light-Harvesting Chlorophyll a/b Binding Proteins Lhcb1 and Lhcb2 Play Complementary Roles during State Transitions in Arabidopsis[C][W][OPEN

    PubMed Central

    Pietrzykowska, Malgorzata; Suorsa, Marjaana; Semchonok, Dmitry A.; Tikkanen, Mikko; Boekema, Egbert J.; Aro, Eva-Mari

    2014-01-01

    Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago. PMID:25194026

  17. Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres.

    PubMed

    Raffa, Grazia D; Ciapponi, Laura; Cenci, Giovanni; Gatti, Maurizio

    2011-01-01

    In most organisms, telomeres are extended by telomerase and contain GC-rich repeats. Drosophila telomeres are elongated by occasional transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the sequence of the DNA termini. Recent work has shown that Drosophila telomeres are capped by a complex, we call terminin, which includes HOAP, HipHop, Moi and Ver; these are fast-evolving proteins that prevent telomere fusion, directly interact with each other, and appear to localize and function only at telomeres. With the possible exception of Ver that contains an OB fold domain structurally similar to the Stn1 OB fold, none of the terminin proteins is evolutionarily conserved outside the Drosophila species. Human telomeres are protected by the shelterin complex, which comprises six proteins that bind chromosome ends in a sequence-dependent manner. Shelterin subunits are not fast-evolving proteins and are not conserved in flies, but localize and function only at telomeres like the terminin components. Based on these findings, we propose that concomitant with telomerase loss Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent fashion, and that terminin is functionally analogous to shelterin. PMID:21989238

  18. Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats

    SciTech Connect

    Kuttner-Hirshler, Y.; Biegon, A.; Kuttner-Hirshler, Y.; Polat, U.; Biegon, A.

    2009-12-21

    Deep brain stimulation (DBS) is an established treatment for advanced Parkinson's disease (PD). The procedure entails intracranial implantation of an electrode in a specific brain structure followed by chronic stimulation. Although the beneficial effects of DBS on motor symptoms in PD are well known, it is often accompanied by cognitive impairments, the origin of which is not fully understood. To explore the possible contribution of the surgical procedure itself, we studied the effect of electrode implantation in the subthalamic nucleus (STN) on regional neuroinflammation and memory function in rats implanted bilaterally with stainless steel electrodes. Age-matched sham and intact rats were used as controls. Brains were removed 1 or 8 weeks post-implantation and processed for in vitro autoradiography with [(3)H]PK11195, an established marker of microglial activation. Memory function was assessed by the novel object recognition test (ORT) before surgery and 2 and 8 weeks after surgery. Electrode implantation produced region-dependent changes in ligand binding density in the implanted brains at 1 as well as 8 weeks post-implantation. Cortical regions showed more intense and widespread neuroinflammation than striatal or thalamic structures. Furthermore, implanted animals showed deficits in ORT performance 2 and 8 weeks post-implantation. Thus, electrode implantation resulted in a widespread and persistent neuroinflammation and sustained memory impairment. These results suggest that the insertion and continued presence of electrodes in the brain, even without stimulation, may lead to inflammation-mediated cognitive deficits in susceptible individuals, as observed in patients treated with DBS.

  19. Report on twisted nematic and supertwisted nematic device characterization program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.

  20. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets.

    PubMed

    Abd-Elghany, S M; Sallam, K I; Abd-Elkhalek, A; Tamura, T

    2015-04-01

    SUMMARY This study was undertaken to survey the presence of Salmonella in 200 chicken samples collected from Mansoura, Egypt. Salmonella was detected in 16% (8/50), 28% (14/50), 32% (16/50) and 60% (30/50) of whole chicken carcasses, drumsticks, livers and gizzards, respectively, with an overall prevalence of 34% (68/200) among all samples. One hundred and sixty-six isolates were identified biochemically as Salmonella, and confirmed genetically by PCR, based on the presence of invA and stn genes. The spvC gene, however, was detected in only 25.3% (42/166) of the isolates. Isolates were serotyped as Salmonella Enteritidis (37.3%), S. Typhimurium (30.1%), S. Kentucky (10.8%), S. Muenster (8.4%), S. Virchow (4.8%), S. Anatum (4.8%), S. Haifa (1.2%), and four were non-typable. Antimicrobial susceptibility tests of the Salmonella isolates revealed that 100% were resistant to each of erythromycin, penicillin, and amoxicillin, while 98.8%, 96.4%, 95.2%, and 91.6% were resistant to nalidixic acid, sulphamethoxazole, oxytetracycline, and ampicillin, respectively. Multidrug resistance was evident for 92.8% of the isolates. The high contamination level of chicken meat with multidrug-resistant Salmonella can constitute a problem for public health.

  1. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  2. Teaching with Internet Telescopes: Some Lessons Learned

    NASA Astrophysics Data System (ADS)

    Stencel, Robert

    Observational astronomy is often difficult for pre-college students and teachers because: (1) school occurs in daytime and visual observing at night; (2) light pollution hides the stars from students living in cities; (3) few schools have teachers trained to use and maintain astronomy equipment; (4) there is lack of access to expertise when needed; (5) physically disabled students cannot easily access a telescope eypiece. Internet access to computer controlled telescopes with digital cameras can solve many of these difficulties. The Web enables students and teachers to access well-maintained internet-controllable telescopes at dark-site locations and to consult more readily with experts. This paper reports on a three-month pilot project exploring this situation conducted Feb-May 2002 which allowed high school students to access a CCD-equipped accurately-pointing and tracking telescope located in New Mexico controllable over the Web with a user-friendly skymap browser tool. User interest proved phenomenal and user statistics proved diverse. There were distinct lessons learned about how to enhance student participation in the research process. Details available at website www.du.edu/~rstencel/stn.htm. We thank the ICSRC for a grant to Denver University and acknowledge in-kind support from the estate of William Herschel Womble.

  3. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila

    PubMed Central

    Zhang, Liang; Beaucher, Michelle; Cheng, Yan; Rong, Yikang S

    2014-01-01

    In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres is linked to telomere replication. The HeT-A-encoded ORF1p protein is expressed predominantly in S phase, particularly in early S phase. Orf1p binds HeT-A transcripts and forms spherical structures at telomeres undergoing DNA replication. HeT-A sphere formation requires Verrocchio, a putative homolog of the conserved Stn1 telomeric protein. Our results suggest that coupling of telomere elongation and telomere replication is a universal feature, and raise the possibility that transposon recruitment to Drosophila telomeres is mechanistically related to telomerase recruitment in other organisms. Our study also supports a co-adaptive relationship between the Drosophila host and HeT-A mobile elements. PMID:24733842

  4. Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres.

    PubMed

    Raffa, Grazia D; Ciapponi, Laura; Cenci, Giovanni; Gatti, Maurizio

    2011-01-01

    In most organisms, telomeres are extended by telomerase and contain GC-rich repeats. Drosophila telomeres are elongated by occasional transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the sequence of the DNA termini. Recent work has shown that Drosophila telomeres are capped by a complex, we call terminin, which includes HOAP, HipHop, Moi and Ver; these are fast-evolving proteins that prevent telomere fusion, directly interact with each other, and appear to localize and function only at telomeres. With the possible exception of Ver that contains an OB fold domain structurally similar to the Stn1 OB fold, none of the terminin proteins is evolutionarily conserved outside the Drosophila species. Human telomeres are protected by the shelterin complex, which comprises six proteins that bind chromosome ends in a sequence-dependent manner. Shelterin subunits are not fast-evolving proteins and are not conserved in flies, but localize and function only at telomeres like the terminin components. Based on these findings, we propose that concomitant with telomerase loss Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent fashion, and that terminin is functionally analogous to shelterin.

  5. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion

    PubMed Central

    Gu, Peili; Min, Jin-Na; Wang, Yang; Huang, Chenhui; Peng, Tao; Chai, Weihang; Chang, Sandy

    2012-01-01

    The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1–STN1–TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear. To address this question, we conditionally deleted CTC1 from mice. We report here that CTC1 null mice experience rapid onset of global cellular proliferative defects and die prematurely from complete bone marrow failure due to the activation of an ATR-dependent G2/M checkpoint. Acute deletion of CTC1 does not result in telomere deprotection, suggesting that mammalian CST is not involved in capping telomeres. Rather, CTC1 facilitates telomere replication by promoting efficient restart of stalled replication forks. CTC1 deletion results in increased loss of leading C-strand telomeres, catastrophic telomere loss and accumulation of excessive ss telomere DNA. Our data demonstrate an essential role for CTC1 in promoting efficient replication and length maintenance of telomeres. PMID:22531781

  6. Heart wall myofibers are arranged in minimal surfaces to optimize organ function

    PubMed Central

    Savadjiev, Peter; Strijkers, Gustav J.; Bakermans, Adrianus J.; Piuze, Emmanuel; Zucker, Steven W.; Siddiqi, Kaleem

    2012-01-01

    Heart wall myofibers wind as helices around the ventricles, strengthening them in a manner analogous to the reinforcement of concrete cylindrical columns by spiral steel cables [Richart FE, et al. (1929) Univ of Illinois, Eng Exp Stn Bull 190]. A multitude of such fibers, arranged smoothly and regularly, contract and relax as an integrated functional unit as the heart beats. To orchestrate this motion, fiber tangling must be avoided and pumping should be efficient. Current models of myofiber orientation across the heart wall suggest groupings into sheets or bands, but the precise geometry of bundles of myofibers is unknown. Here we show that this arrangement takes the form of a special minimal surface, the generalized helicoid [Blair DE, Vanstone JR (1978) Minimal Submanifolds and Geodesics 13–16], closing the gap between individual myofibers and their collective wall structure. The model holds across species, with a smooth variation in its three curvature parameters within the myocardial wall providing tight fits to diffusion magnetic resonance images from the rat, the dog, and the human. Mathematically it explains how myofibers are bundled in the heart wall while economizing fiber length and optimizing ventricular ejection volume as they contract. The generalized helicoid provides a unique foundation for analyzing the fibrous composite of the heart wall and should therefore find applications in heart tissue engineering and in the study of heart muscle diseases. PMID:22645368

  7. Diversity and Seasonality of Bioluminescent Vibrio cholerae Populations in Chesapeake Bay▿