Science.gov

Sample records for 50-foot-long orbiter boom

  1. Investigation of sonic boom for the Space Shuttle: High cross-range orbiter

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Mendoza, Joel P.; Levy, Lionel L., Jr.

    1993-01-01

    Recent studies of a proposed low cross-range straight-wing space shuttle orbiter have shown that the sonic boom created during reentry may be objectionable, particularly at low supersonic Mach number. Because of this, additional tests have been conducted to determine the sonic-boom overpressure for a blended wing-body shape proposed for use as a high cross-range shuttle orbiter. Two mission profiles, in which a constant angle of attack was held during the supersonic portion of the flight, were studied. In one case the angle of attack was 60 degrees; in the other 25 degrees. The sonic-boom pressure signatures were measured in a wind tunnel and used to estimate overpressures for both missions. A technique for alleviating the boom is indicated.

  2. Deployable dynamic analysis and on-orbit experiment for inflatable gravity-gradient boom

    NASA Astrophysics Data System (ADS)

    Wei, Jianzheng; Tan, Huifeng; Wang, Weizhi; Cao, Xu

    2015-01-01

    Inflatable structures have numerous advantages, such as small folding size, high deployable reliability, and low cost. This paper accomplishes several tasks with a focus on the gravity-gradient boom of microsatellite. An inflatable boom model balanced by inflatable deployment and delaminating resistance is presented. A system is established to simulate agravic deployment. The inflatable deployment of a tip mass has been tested with the aid of a 3.0 m rolled deployable boom. The perturbation moment during the inflatable deployment is analyzed. Three inflatable booms are tested in a thermal vacuum chamber further. Based on the tests and analyses, the microsatellite which carried an inflatable gravity-gradient boom was launched into orbit successfully in November 2012. After being stored on-orbit for 6 months, the inflatable method was applied to the inflatable boom to unfold the 2.0 kg tip mass steadily at a distance 3.0 m away from the microsatellite in May 2013. This work completes the test of inflatable on-orbit deployment on the base of microsatellite for the first time internationally.

  3. Structural health monitoring of an inflatable boom subjected to simulated micrometeoroid/orbital debris damage

    NASA Astrophysics Data System (ADS)

    Tarazaga, Pablo A.; Peairs, Daniel M.; Wilkie, W. Keats; Inman, Daniel J.

    2006-03-01

    Inflatable-rigidizeable composite space structures are an emerging technology that could revolutionize the design of large on-orbit satellites. These structural systems have the advantages of low mass, high packaging efficiency, low life cycle cost, low part counts, and high deployment reliability. As they are rigidized on-orbit, they do not depend on internal pressure to maintain their shape once deployed. However, as thin-walled structures, micrometeoroids and orbital debris (MMOD) are still a potential threat to their structural integrity. Such impacts will create punctures on the structure of varying sizes related to the size and kinetic energy of the debris/meteorite. For closed-cell geometries, such as booms or struts, MMOD objects can penetrate the outer wall twice, once on initial impact and once upon exiting the structure. As impact damage and structural degradation will be cumulative over time, being able to monitor the structural integrity of these satellites would be of great interest. Impedance-based structural health monitoring schemes using distributed piezoelectric transducers are one possible approach. In this study, several Macro-Fiber Composite (MFC) piezoelectric devices were installed on a representative space-inflatable rigidizeable composite boom and used in ground tests as collocated sensor-actuators for detecting and assessing simulated micrometeoroid/orbital debris strike damage. Electrical impedance signatures were compared before and after application of the simulated damage to determine the extent of the damage sustained. Both small and large footprint MFC piezocomposite sensor/actuators were shown to be effective in characterizing simulated MMOD punctures along the entire length of the boom.

  4. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  5. Zip Boom

    NASA Technical Reports Server (NTRS)

    Swan, Scott; Smallcombe, Richard

    1995-01-01

    Lightweight deployable structural elements combined in stiff geometry. Three ribbons of spring material joined at edges to form triangular boom. Flexible case zips around extending boom to keep it triangular.

  6. Influence of vehicle configuration and flight profile on X-30 sonic booms

    NASA Astrophysics Data System (ADS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Hicks, John

    1990-10-01

    The role of vehicle configuration and the flight profile on sonic booms produced by the experimental NASP X-30 is investigated. Sonic boom signatures, overpressure levels, and footprints for X-30 are presented and compared with sonic boom measurements for F-104, SR-71, Concorde, XB-70, and STS Orbiter. Results show that the sonic boom signatures for X-30 fall within those of previous high-speed planes.

  7. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  8. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  9. Self-deploying boom

    NASA Technical Reports Server (NTRS)

    Tumulty, W. T.; Sours, W. P.

    1972-01-01

    Development and operation of metal ribbon which acts like self deploying boom are described. Metal ribbon is retained on two rollers for storage and extends into nonretractable tubular structure upon release. Illustration of equipment is provided.

  10. The Voyager magnetometer boom

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1979-01-01

    The Voyager spacecraft magnetometer experiment utilizes two sensors on a deployable boom. The boom is an Astromast. The implementation of the Astromast into the Voyager design is described along with the hardware used to hold, latch, and deploy the mast and the tests to demonstrate damping, deployment, and alignments. Several problems encountered are discussed and their solutions are given. Flight deployment and preliminary alignment results are presented. Finally, the design is evaluated in retrospect.

  11. Sonic boom acceptability studies

    NASA Astrophysics Data System (ADS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; McCurdy, David A.

    1992-04-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  12. Sonic boom acceptability studies

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.

    1992-01-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  13. An eight-meter inflatable reflectarray antenna and its inflatable/self-rigidizable booms

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Huang, John; Quijano, Ubaldo O.; Hsia, Lih-Min; Sorokin, Nicholas; Polanco, Otto

    2006-01-01

    This paper presents the analysis and test results related to buckling capability, modal characteristics, and thermal expansion coefficient of STR aluminum laminate inflatable/self-rigidizable booms with lengths up to 10 metes. STR booms are fundamental building blocks of space inflatable/self-rigidizable reflectarray antennas. These boom characteristics are essential for analyzing structural integrity, in orbit dynamic response, and in orbit thermal distortion of the 8-mter reflectarray antenna. Distinct advantages of the STR booms will also be identified and presented by this paper.

  14. The Prep School Boom

    ERIC Educational Resources Information Center

    Stent, Angela

    1976-01-01

    Applications to preparatory schools have risen dramatically in the past five years, as much as 500 percent at some prestigious institutions. Most educators agree that the main reason for this boom is the growing disenchantment with vast, anomic public high schools, both urban and suburban. (LBH)

  15. Boom Rendezvous Alternative Docking Approach

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.

    2006-01-01

    Space rendezvous and docking has always been attempted with primarily one philosophic methodology. The slow matching of one vehicle's orbit by a second vehicle and then a final closing sequence that ends in matching the orbits with perfect precision and with near zero relative velocities. The task is time consuming, propellant intensive, risk inherent (plume impingement, collisions, fuel depletion, etc.) and requires substantial hardware mass. The historical background and rationale as to why this approach is used is discussed in terms of the path-not-taken and in light of an alternate methodology. Rendezvous and docking by boom extension is suggested to have inherent advantages that today s technology can readily exploit. Extension from the primary spacecraft, beyond its inherent large inertia, allows low inertia connections to be made rapidly and safely. Plume contamination issues are eliminated as well as the extra propellant mass and risk required for the final thruster (docking) operations. Space vehicle connection hardware can be significantly lightened. Also, docking sensors and controls require less fidelity; allowing them to be more robust and less sensitive. It is the potential safety advantage and mission risk reduction that makes this approach attractive, besides the prospect of nominal time and mass savings.

  16. Status of knowledge of sonic booms

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Carlson, H. W.; Hubbard, H. H.

    1979-01-01

    The status of sonic boom technology with emphasis on the recent research results is summarized. Included are definitions of the boom carpets, both primary and secondary, a discussion of existing experience with primary booms including the status of overpressure predictions and boom minimization methodology through airplane design, an indication of the boom waveforms and audibility, and a discussion of focus booms resulting from aircraft maneuvers as well as the effect of abnormal atmospheric conditions on these maneuver booms.

  17. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  18. The next boom

    SciTech Connect

    Gipe, P.

    1995-02-01

    In 1994, global windpower projects generated electricity valued at nearly $500 million. The 3,400 MW installed worldwide is split about evenly between the United States and Europe. Windpower`s growth continues as more companies expand and upgrade their product lines while pursuing broader markets. If capacity continues its upward growth - with the potential to double by 2000 - the remainder of the decade may look like the 1980s windpower boom.

  19. Calculating Sonic-Boom Propagation

    NASA Technical Reports Server (NTRS)

    Darden, C. M.; Ting, L.

    1987-01-01

    Nonlinear effects included, enabling more-realistic modeling. Modified Method of Characteristics Sonic Boom Extrapolation Program (MMOC) is computer program for sonic-boom propagation that includes shock coalescence and incorporates effects of asymmetries due to volume and lift. Numerically integrates nonlinear governing equations using data on initial data line approximately one body length from aircraft and yields sonic-boom pressure at ground as function of time or of position at given time. MMOC written in FORTRAN IV.

  20. Sonic Boom Modeling Technical Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2007-01-01

    This viewgraph presentation reviews the technical challenges in modeling sonic booms. The goal of this program is to develop knowledge, capabilities and technologies to enable overland supersonic flight. The specific objectives of the modeling are: (1) Develop and validate sonic boom propagation model through realistic atmospheres, including effects of turbulence (2) Develop methods enabling prediction of response of and acoustic transmission into structures impacted by sonic booms (3) Develop and validate psychoacoustic model of human response to sonic booms under both indoor and outdoor listening conditions, using simulators.

  1. Booming Dune Instability

    NASA Astrophysics Data System (ADS)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the “song of dunes.” Here, we show through theory that a homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band forms at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field measurements.

  2. Booming dune instability.

    PubMed

    Andreotti, B; Bonneau, L

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the "song of dunes." Here, we show through theory that a homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band forms at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field measurements. PMID:20366176

  3. The Galeleo spacecraft magnetometer boom

    NASA Technical Reports Server (NTRS)

    Packard, D. T.; Benton, M. D.

    1985-01-01

    The Galileo spacecraft utilizes a deployable lattice boom to position three science instruments at remote distances from the spacecraft body. An improved structure and mechanism to precisely control deployment of the boom, and the unique deployment of an outer protective cover are described.

  4. Portable Sonic Boom Simulation

    NASA Astrophysics Data System (ADS)

    Salamone, Joe

    2006-05-01

    A method is presented to simulate sonic booms using high fidelity and custom-built audio equipment that output to an acoustically treated listening environment, all of which is contained in a portable vehicle. The audio system has inherent low and high frequency performance limitations and also introduces distortion due to the frequency response of the system. The limitations of the system are compensated for by band-pass filtering a full-fidelity sonic boom signature and applying a system equalization filter. The purpose of the band-pass filter is to remove frequency content above and below the capabilities of the system yet retain the audible and felt characteristics of the full-fidelity waveform. The equalization filter, computed from time-domain Wiener filtering, compensates for the frequency-dependent system response of the audio system at several listening positions. The system performance is evaluated by comparing the PLdB, SEL(A) and SEL(C) of the measured system output to the full-fidelity waveform. Results show good agreement between the loudness levels of the full-fidelity waveform and the corresponding measured system output.

  5. New western boom towns

    SciTech Connect

    Daneke, G.A.

    1980-09-30

    The Mountain West, particularly isolated rural communities, can expect rapid growth which cannot be accurately predicted by the usual population-forecasting techniques. Mining and defense projects, combined with a general population shift to the South and West, have already brought some anticipatory migration to areas that have not prepared an infrastructure to handle the social and economic demands of boom towns. The relationship between meeting the physical and human needs of a community are poorly understood, with the result that most local planners concentrate on the water, sewer, and street planning of traditional urban-sprawl patterns and contribute to community disintegration. A carefully planned infrastructure which incorporates social-service planning could anticipate many problems and introduce innovative environmental and energy-saving ideas. (DCK)

  6. A Boom in Boomerangs

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ted Bailey, a highly-ranked international boomerang designer and thrower, used information from a variety of NASA technical reports on aerodynamics and low-speed airfoils to design more competitive boomerangs. Because the boomerang is essentially an airfoil like an airplane wing, the technology transferred effectively and even contributed to the 1981 American victory over Australian throwers. In 1985, using four NASA reports, Bailey designed a new MTA (maximum time aloft) boomerang that broke the one-minute barrier, enabled throwers to throw and catch in less than three minutes and allowed competitors to complete the difficult "Super Catch" - five throw/catch sequences after launching the original boom while it is still aloft. Bailey is now considering other boomerang applications.

  7. The booming dune instability

    NASA Astrophysics Data System (ADS)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well defined frequency, a phenomenon called the "song of dunes". Here, we show theoretically that an homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band form at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field records performed in the Atlantic Sahara. We finally show that several characteristics predicted by the model and observed in the field allow to dismiss former hypothesis based on resonances or the synchronisation of sand grain collisions.

  8. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  9. Seismic detection of sonic booms.

    PubMed

    Cates, Joseph E; Sturtevant, Bradford

    2002-01-01

    The pressure signals from a sonic boom will produce a small, but detectable, ground motion. The extensive seismic network in southern California, consisting of over 200 sites covering over 50000 square kilometers, is used to map primary and secondary sonic boom carpets. Data from the network is used to analyze three supersonic overflights in the western United States. The results are compared to ray-tracing computations using a realistic model of the stratified atmospheric at the time of the measurements. The results show sonic boom ground exposure under the real atmosphere is much larger than previously expected or predicted by ray tracing alone. Finally, seismic observations are used to draw some inferences on the origin of a set of "mystery booms" recorded in 1992-1993 in southern California. PMID:11837967

  10. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. An evaluation of the MSBLS/nose boom interference for the approach and landing test

    NASA Technical Reports Server (NTRS)

    Tate, J. M.

    1975-01-01

    An analysis was performed to investigate whether or not the obstruction caused by boom-mounted probes forward of the Orbiter nose could cause Microwave Scan Beam Landing System (MSBLS) data dropout during the autoland flight phase of the Approach and Landing Test (ALT). The results indicate that there will be no interference from the nose boom to cause MSBLS data dropout for the flight conditions under which the ALT is to be performed. Additional analysis considering approach trajectories in more extreme wind conditions than anticipated for the ALT also indicates that the nose boom creates no interference.

  12. Status of knowledge of sonic booms

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Carlson, H. W.; Hubbard, H. H.

    1980-01-01

    The effects of primary and secondary sonic boom carpets are reviewed with reference to waveform characteristics and audibility, role of the atmosphere, source characteristics, carpet measurements and predictions, effects of aircraft maneuvers, and sonic boom minimization. It is shown that primary booms which involve only propagation in the lower atmosphere are well predicted by means of current methods and are amendable to minimization.

  13. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  14. Realism Assessment of Sonic Boom Simulators

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  15. Georgia Tech sonic boom simulator

    NASA Technical Reports Server (NTRS)

    Ahuja, Krish K.

    1992-01-01

    To examine the building and human response to sonic boom in the range 3 Hz to 30 Hz, Georgia Institute of Technology is building a special acoustic driver system to simulate sonic boom. To support the NASA LaRC program on building and human response, this simulator's capability has been extended to an upper frequency of 4 KHz. A residential test house was made available by Georgia Tech for these tests. At the time of preparation of this document, most of the acoustic drivers and the associated electronics have been built and assembled. The system has, however, not been fully tested. The following pages provide an overview of the progress to date. The acoustic driver systems, and the principle of their operation together with the test house are described. Future plans are also summarized.

  16. Boom and chassis articulation joints

    NASA Technical Reports Server (NTRS)

    Murphy, Joel T., Jr.; Nguyen, Vien; Turner, Bonnie; Wheeler, Bobby; Williams, Kimberlyn

    1992-01-01

    The primary goal of our design project was to develop articulation joints for the chassis and boom of the proof-of-concept lunar vehicle. This is an ongoing project and the work of previous student groups was extensively reviewed. Some of the ideas generated are variations of past proposals. Although the project is funded by NASA/USRA, it is totally a student design effort.

  17. Stowage and Deployment of Slit Tube Booms

    NASA Technical Reports Server (NTRS)

    Adams, Larry (Inventor); Turse, Dana (Inventor); Richardson, Doug (Inventor)

    2016-01-01

    A system comprising a boom having a first end, a longitudinal length, and a slit that extends along the longitudinal length of the boom; a drum having an elliptic cross section and a longitudinal length; an attachment mechanism coupled with the first end of the boom and the drum such that the boom and the drum are substantially perpendicular relative to one another; an inner shaft having a longitudinal length, the inner shaft disposed within the drum, the longitudinal length of the inner shaft is aligned substantially parallel with the longitudinal length of the drum, the inner shaft at least partially rotatable relative to the drum, and the inner shaft is at least partially rotatable with the drum; and at least two cords coupled with the inner shaft and portions of the boom near the first end of the boom.

  18. Electric Field Wire Boom System and instrument for CubeSats

    NASA Astrophysics Data System (ADS)

    Stromberg, E. M.; Burr, S.; Hui, D.; Swenson, C.

    2009-12-01

    The viability of CubeSats as meaningful platforms for observing the upper atmosphere depends upon the development of suitable scientific instrumentation. One of the most fundamental parameters to observe in the space environment is the electric fields which drive the motions of the plasma in the ionosphere and magnetosphere. A well known technique for observing electric fields is the double probe with sensors deployed several meters from the space vehicle. A compact wire boom system, deploying sensors from opposite sides of a spinning CubeSat has been developed at Utah State University. We present the development of a 10 meter tip-to-tip wire boom system to deploy four 1-cm spherical double probe sensors. The wire boom mechanism consists of a spool which is actuated with a small non-magnetic, piezoelectric motor, to control deployment. The wire boom and electric field instrument is 1.25cm high and fits a standard 10 x10 cm CubeSat cross section. The spherical sensors at the end of the wire booms are gold plated to minimize geometric work function dissimilarities and to provide surface electrical stability. We present an analysis of the expected performance and lifetime of this boom in low Earth orbit. The proposed design permits the measurement of the two-dimensional DC-electric field determined only by the spacecraft velocity and the instrument sampling rate.

  19. Research at NASA on Human Response to Sonic Booms

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2008-01-01

    NASA used its sonic boom simulator to study human response to shaped sonic booms and concluded that a loudness metric, such as Perceived Level, predicts human reaction to outdoor booms more accurately than overpressure. To investigate the importance of indoor phenomena (rattle, reverberation) under controlled laboratory conditions, NASA is building an "indoor sonic boom simulator." The intention is to develop a psychoacoustic model that describes human response as a function of boom shape (spectrum), boom intensity, reverberation, and varying rattle characteristics.

  20. Community Response to an Oil Boom.

    ERIC Educational Resources Information Center

    Copp, James H.

    A study of the process of a 1977-1983 oil and gas boom in Caldwell, Texas, disproved the assumption that local social effects of rapid energy development are severe and negative. Using interviews, surveys, observation, local newspapers, and other writings as data sources, researchers determined that during the boom, Caldwell's population grew…

  1. Status of sonic boom methodology and understanding

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Powell, Clemans A.; Hayes, Wallace D.; George, Albert R.; Pierce, Allan D.

    1989-01-01

    In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.

  2. Sonic boom interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Giddings, Thomas E.

    1994-01-01

    A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.

  3. Sonic Boom: Six Decades of Research

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.

    2014-01-01

    Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.

  4. Study on thermally induced vibration of flexible boom in various thermal environments of vacuum chamber

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Oh, Kyung-Won; Park, Hyun-Bum; Sugiyama, Y.

    2005-02-01

    In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft such as the thin solar panel and the flexible cantilever with the attached tip mass in space, the thermally-induced vibration including thermal flutter of the flexible thin boom with the concentrated tip mass was experimentally investigated at various thermal environments using a heat lamp and both vacuum and air condition using the vacuum chamber. In this experimental study, divergence speed, natural frequency and thermal strains of the thermally-induced vibration were comparatively evaluated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the earth orbit satellite in solar radiation environment from the earth eclipse region including umbra and penumbra was simulated using the vacuum chamber and power control of the heating lamp.

  5. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  6. What is that mysterious booming sound?

    USGS Publications Warehouse

    Hill, David P.

    2011-01-01

    The residents of coastal North Carolina are occasionally treated to sequences of booming sounds of unknown origin. The sounds are often energetic enough to rattle windows and doors. A recent sequence occurred in early January 2011 during clear weather with no evidence of local thunder storms. Queries by a local reporter (Colin Hackman of the NBC affiliate WETC in Wilmington, North Carolina, personal communication 2011) seemed to eliminate common anthropogenic sources such as sonic booms or quarry blasts. So the commonly asked question, “What's making these booming sounds?” remained (and remains) unanswered.

  7. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-10-01

    7/16/10 12:23 PM UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime. 7/16/10 12:23 PM 7/16/10 12:23 PM

  8. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-12-01

    Cassini UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by roughly π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime.

  9. NASA Engineer Larry Cliatt: Softening Sonic Booms

    NASA Video Gallery

    A sudden sonic boom can startle persons unfamiliar with the phenomenon. As a result, supersonic flight over the United States is currently prohibited, except in several restricted testing areas. La...

  10. Activities of the Boom and Chassis Group

    NASA Technical Reports Server (NTRS)

    Dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom

    1992-01-01

    Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.

  11. Activities of the Boom and Chassis Group

    NASA Astrophysics Data System (ADS)

    dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom

    Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.

  12. Sleipner mishap jolts booming Norway

    SciTech Connect

    Not Available

    1991-09-02

    This paper reports on Norway's buoyant offshore industry that was stunned when the concrete substructure for Sleipner natural gas field's main production platform sank in the Grandsfjord off Stavanger late last month. The accident, a blow to Norway's gas sales program in Europe, came with offshore activity in the Norwegian North Sea moving into a new boom period. Currently, 10 oil and gas fields are under development, and several projects are on the drawing board. Aker Oil and Gas, a leading offshore firm, says the country's construction industry will be working at capacity for the next 4 years. Norwegian oil production has been hovering just below 2 million b/d since the beginning of this year, making Norway the North Sea's largest producer, a position formerly held by the U.K. Gas production averages about 3 bcfd. With European gas demand sharply increasing, Norway is under pressure to increase output from new fields in the mid to late 1990s. The Sleipner setback forces state owned Den norske stats oljeselskap AS (Statoil) to cast around for supplies. Sleipner was to have begun deliveries to a consortium of continental gas companies in October 1993. Statoil believes it can fill the gap from existing fields in Norwegian waters.

  13. A Compilation of Space Shuttle Sonic Boom Measurements - Supplemental STS Sonic Boom Files

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Supplemental STS Sonic Boom Files for NASA/CR-2011-217080. Data files included on CDROM formatted to ISO 9660 standards. Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  14. Graphite Composite Booms with Integral Hinges

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James

    2006-01-01

    A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

  15. Sonic boom focusing prediction and delta wing shape optimization for boom mitigation studies

    NASA Astrophysics Data System (ADS)

    Khasdeo, Nitin

    Supersonic travel over land would be a reality if new aircraft are designed such that they produce quieter ground sonic booms, no louder than 0.3 psf according to the FAA requirement. An attempt is made to address the challenging goal of predicting the sonic boom focusing effects and mitigate the sonic boom ground overpressure for delta wing geometry. Sonic boom focusing is fundamentally a nonlinear phenomenon and can be predicted by numerically solving the nonlinear Tricomi equation. The conservative time domain scheme is developed to carry out the sonic boom focusing or super boom studies. The computational scheme is a type differencing scheme and is solved using a time-domain scheme, which is called a conservative type difference solution. The finite volume method is used on a structured grid topology. A number of input signals Concorde wave, symmetric and ax symmetric ramp, flat top and typical N wave type are simulated for sonic boom focusing prediction. A parametric study is launched in order to investigate the effects of several key parameters that affect the magnitude of shock wave amplification and location of surface of amplification or "caustics surface." A parametric studies includes the effects of longitudinal and lateral boundaries, footprint and initial shock strength of incoming wave and type of input signal on sonic boom focusing. Another very important aspect to be looked at is the mitigation strategies of sonic boom ground signature. It has been decided that aerodynamic reshaping and geometrical optimization are the main goals for mitigating the ground signal up to the acceptance level of FAA. Biconvex delta wing geometry with a chord length of 60 ft and maximum thickness ratio of 5% of the chord is used as a base line model to carry out the fundamental research focus. The wing is flying at an altitude 40,000 ft with a Mach number of 2.0. Boom mitigation work is focused on investigating the effects of wing thickness ratio, wing camber ratio, wing

  16. Disturbance of sleep by sonic booms.

    PubMed

    Griefahn, B; Jansen, G

    1975-05-01

    After a pilot study (2 subjects, 19 nights) we tested two different subjects during 57 nights, administering sonic booms (1 mb, 300 ms; sound level of sonic boom in the bedroom 80-85 dB (A) and recording EEG and peripheral blood volume. After 7 nights without noise, 30 nights with either 2 or 4 sonic booms (alternately) were applied. After 10 more nights without noise, four nights with 8 and 16 bangs followed alternately. The last 6 nights were used as a comparison phase. Results showed that distrubance was obvious during all periods of noise. No adaptation could be observed during any of the experiments. On the contrary, during the night with 4 bangs there was a tendency for compensation, e.g., in the last two thirds of nights with 4 bangs, the total time of deep sleep was comparable with the nights without any noise. PMID:1145178

  17. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  18. Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.

    2015-01-01

    Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.

  19. Measured N-wave sonic boom events and sensitivity in sonic boom metrics

    NASA Astrophysics Data System (ADS)

    Palmer, Joshua; Sparrow, Victor W.

    2015-10-01

    Various sonic boom noise metrics have been calculated for a number of sonic boom, N-wave signatures. The newly computed metrics dataset utilized high-quality recordings from the Superboom Caustic Analysis and Measurement Program (SCAMP) experiment conducted by NASA. With this signature dataset comprised of microphone measurements by long linear arrays, one can assess the waveform variability due to atmospheric turbulence influences across the arrays. Preferred boom events from these NASA datasets were then chosen after review of the flight conditions, flight objectives and actual waveforms generated in order to study only the non-focused, N-wave sonic boom signatures. The sonic boom noise metrics calculated for the preferred boom events include Stevens Mark VII Perceived Level (PLdB), un-weighted Sound Exposure Level (SELz) as well as Sound Exposure Level with A, B, C, D, and E weightings applied to the waveforms. The results show, for example, that the A-weighted sound exposure levels and Steven's Mark VII Perceived Levels had standard deviations in the range of 1.4 dB to 6.1 dB for the SCAMP measurements. Such sensitivity results should be helpful in assessing the applicability of sonic boom metrics for use in future en-route certification standards for civilian supersonic aircraft.

  20. NASA Researches the 'FaINT' Side of Sonic Booms

    NASA Video Gallery

    As the latest in a continuing progression of NASA supersonics research projects aimed at reducing or mitigating the effect of sonic booms, the Farfield Investigation of No Boom Threshold, or FaINT,...

  1. NASA Studies Sonic Booms' Effect on Big Structures

    NASA Video Gallery

    NASA recently conducted flight experiments at Edwards Air Force Base in Southern California to examine the effect of low-amplitude sonic booms on large office buildings. As part of the Sonic Booms ...

  2. 53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER 75 IN BACKGROUND LEFT, AND BOOM SPEEDER 59 IN BACKGROUND RIGHT - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  3. VIEW OF FEEDER TABLE WITH THE BOOM OF THE UNLOADER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FEEDER TABLE WITH THE BOOM OF THE UNLOADER IN BACKGROUND. THE CASE HYDRAULIC BOOM HOIST IS TO THE RIGHT. VIEW FROM THE SOUTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  4. Status and capabilities of sonic boom simulators

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Powell, C. A.

    1986-01-01

    The current status and capabilities of sonic boom simulators which might be used in future studies of the effects of sonic boom on people, animals, or structures is summarized. The list of candidate simulators is based on a literature search which was confined to the United States and Canada. Some of the simulators are fully operational, others could be made operational with a modest investment, and still others would require a major investment. For the sake of the completeness, some simulators which were the subject of a previous review, but which no longer exist, are also included herein.

  5. A practical low-boom overpressure signature based on minimum sonic boom theory

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Haglund, George T.

    1992-01-01

    A brief resume of sonic boom minimization methods is given to provide a background for a new, empirical modification of the Seebass and George minimum-nose-shock sonic boom F-function and signature. The new 'hybrid' F-function has all the inherent flexibility of application found with the Darden-modified Seebass and George F-function. In addition, it has enhanced this flexibility and applicability with neglegible increase in nose and/or tail shock strength. A description of this 'hybrid' F-function and signature is provided, and the benefits of using them to design high-performance, low-boom aircraft are discussed.

  6. Impact of Weather and Flight Condition on Secondary Booms

    NASA Technical Reports Server (NTRS)

    Poling, Hugh W.

    1996-01-01

    The objective of this study is to determine the occurrence and acoustic characteristics of secondary booms from HSCT aircraft for varying weather and flight conditions. Temperature and wind conditions allowing secondary booms will be determined. The ground location and acoustic impact of secondary booms for an HSCT aircraft will be estimated.

  7. The Economic Effects of a Booming Sector.

    ERIC Educational Resources Information Center

    Corden, W. M.

    1983-01-01

    Since the 1970s, economists have recognized that a booming export sector of the economy can have unfortunate consequences for other sectors and lead to both appreciation of that nation's currency and a weakening position for its exports. A model to stimulate the effects of this situation is discussed. (IS)

  8. The Baby Boom--Entering Midlife.

    ERIC Educational Resources Information Center

    Bouvier, Leon F.; De Vita, Carol J.

    1991-01-01

    The U.S. baby-boom generation, born between 1946 and 1964, is the largest generation in the nations's history. Numbering over 80 million people in 1990, this giant generation has indelibly changed U.S. society, requiring adjustments in schools, labor markets, housing markets, and government programs. Perhaps more than any other institution,…

  9. Variability of measured sonic boom signatures

    NASA Technical Reports Server (NTRS)

    Elmer, K. R.; Joshi, M. C.

    1994-01-01

    The topics discussed include the following: atmospheric turbulence; BOOMFILE Database description; BOOMFILE flight conditions; XB-70 Database descriptions; analysis progression; extended database; prediction method; overpressure variability dependence on flight conditions; loudness variability on flight conditions; sonic boom variability in repeat flights; and statistical distributions.

  10. Mapping the Stratigraphy of Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2008-12-01

    Booming dunes emit a loud rumbling sound after a man-made or natural sand avalanche is generated on the slip face of a large desert dune. The sound consist of one dominant frequency (70 - 105 Hz) with several higher harmonics. A recent publication (Vriend et al., 2007) presented a model of an internal, natural waveguide that propagates the booming emission, amplifies the sound, and sets the booming frequency. The mapping of the subsurface layering, which is necessary for the existence of a waveguide, prompted additional work on the dune structure and stratigraphy. The current work highlights geophysical measurements at Eureka Dunes in Death Valley National Park, CA and Dumont Dunes in the Mojave Desert, CA. Seismic refraction studies indicate strong layering with large velocity jumps across the interfaces. Ground Penetrating Radar (GPR) profiles, at frequencies of 100 MHz and 200 MHz, map out the stratigraphic structure of the dunes. Variations in the near surface layering are able to predict the seasonal variability in booming frequency both quantitatively and qualitatively. The Kirchhoff migrated GPR profiles are superimposed on the local topography obtained with a laser rangefinder. The complex dune structure is resolved to a depth of over 30 meters for the 100 MHz antenna. The GPR profiles of the longitudinal Eureka dune display complex internal structures from old dune crests. Both slopes have slip faces at 30 degrees with parallel layering (< 2m) at the near surface. At the transverse Dumont dune the GPR profile exhibits strong parallel layering on the booming leeward slipface only. The shallower windward face features a remarkable tilted repetitive layering that cuts through the surface. At Dumont Dunes the layering on the leeward face explains the change in booming frequency between 70 - 95 Hertz in the period 2005 - 2008. The tilted layering structure of the shallow windward face prevents the formation of a waveguide and is never able to sustain the

  11. Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa, A.; Wayman, Thomas R.; Waithe, Kenrick A.; Howe, Donald C.; Bangert, Linda S.

    2012-01-01

    A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included.

  12. Sonic-boom research: Selected bibliography with annotation

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.

    1986-09-01

    Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.

  13. Conceptual analyses of extensible booms to support a solar sail

    NASA Technical Reports Server (NTRS)

    Crawford, R. F.; Benton, M. D.

    1977-01-01

    Extensible booms which could function as the diagonal spars and central mast of an 800 meter square, non-rotating Solar Sailing Vehicle were conceptually designed and analyzed. The boom design concept that was investigated is an extensible lattice boom which is stowed and deployed by elastically coiling and uncoiling its continuous longerons. The seven different free-span lengths in each spar which would minimize the total weights of the spars and mast were determined. Boom weights were calculated by using a semi-empirical formulation which related the overall weight of a boom to the weight of its longerons.

  14. Sonic-boom research: Selected bibliography with annotation

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.

    1986-01-01

    Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.

  15. Subjective response to simulated sonic booms with ground reflections

    NASA Technical Reports Server (NTRS)

    Sullivan, B. M.; Leatherwood, J. D.

    1993-01-01

    The Sonic Boom Simulator at NASA LaRC was used for the following: (1) quantify subjective loudness of simulated composite sonic booms, each of which was comprised of a simulated direct (non-reflected) boom combined with a simulated reflection of the direct boom; and (2) evaluate several metrics as estimators of loudness for these composite booms. The direct booms consisted of selected N-wave and minimized signatures having front-shock rise times of 3, 6, and 9 milliseconds and durations of 300 milliseconds. Delay times of the reflected booms ranged from 0 to 12 milliseconds. Subjective loudness results indicated that composite booms formed using reflections with non-zero delay times were generally rated as being less loud than composite booms containing non-delayed reflections. The largest reductions in loudness occurred when delay times were equal to the front shock rise times of the direct booms and were, in some cases, equivalent to reductions in Perceived Level of 6 to 7 dB. Results also showed Perceived Level to be an effective metric for assessing subjective loudness effects for the composite signatures. This was confirmed by statistical analysis, which showed that, for equal Perceived Level, no significant differences existed between the subjective loudness responses to composite booms containing reflections with zero delay and those containing reflections with non-zero delays.

  16. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  17. Concorde sonic booms as an atmospheric probe.

    PubMed

    Balachandran, N K; Donn, W L; Rind, D H

    1977-07-01

    Infrasound generated by the sonic boom from the inbound Concorde supersonic transport is recorded at Palisades, New York (Lamont-Doherty Geological Observatory), as a series of impulses from distances varying from 165 to about 1000 kilometers. Refraction effects determined by temperature and wind conditions return the signal to the surface from both stratospheric (40 to 50 kilometers) and thermospheric (100 to 130 kilometers) levels. The frequency of the recorded signal is a function of the level of reflection; the frequency decreases from impulse stretching as the atmosphere becomes more rarified relative to the sound pressure. The horizontal trace velocity of the signal across the array of instruments is equal to the acoustic velocity at the reflection level. The sonic boom can thus be used to provide temperature-wind parameters at reflection levels estimated from the signal frequency. Daily observed signal variations have indicated significant variations in these parameters. PMID:17828888

  18. High-Quality Seismic Observations of Sonic Booms

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Haering, E. A.; Price, M.

    2011-12-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  19. High-Quality Seismic Observations of Sonic Booms

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  20. Current research in sonic-boom minimization

    NASA Technical Reports Server (NTRS)

    Darden, C. M.; Mack, R. J.

    1976-01-01

    A review is given of several questions as yet unanswered in the area of sonic-boom research. Efforts, both here at Langley and elsewhere, in the area of minimization, human response, design techniques and in developing higher order propagation methods are discussed. In addition, a wind-tunnel test program being conducted to assess the validity of minimization methods based on a forward spike in the F-function is described.

  1. Sonic boom prediction for the Langley Mach 2 low-boom configuration

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    1992-01-01

    Sonic boom pressure signatures and aerodynamic force data for the Langley Mach 2 low sonic boom configuration were computed using the TranAir full-potential code. A solution-adaptive Cartesian grid scheme is utilized to compute off-body flow field data. Computations were performed with and without nacelles at several angles of attack. Force and moment data were computed to measure nacelle effects on the aerodynamic characteristics and sonic boom footprints of the model. Pressure signatures were computed both on and off ground-track. Near-field pressure signature computations on ground-track were in good agreement with experimental data. Computed off ground-track signatures showed that maximum pressure peaks were located off ground-track and were significantly higher than the signatures on ground-track. Bow shocks from the nacelle inlets increased lift and drag, and also increased the magnitude of the maximum pressure both on and off ground-track.

  2. Two HSCT Mach 1.7 low sonic boom designs

    NASA Technical Reports Server (NTRS)

    Haglund, George T.; Ogg, Steven S.

    1992-01-01

    The objective of this study was to provide low sonic boom concepts, geometry, and analysis to support wind tunnel model designs. Within guidelines provided by NASA, two High Speed Civil Transport (HSCT) configurations were defined with reduced sonic boom that have low drag, high payload, and good performance. To provide information for assessing the feasibility of reduced sonic boom operation, the two designs were analyzed in terms of their sonic boom characteristics, as well as aerodynamics, weight and balance, and performance characteristics. Low drag and high payload were achieved, but both of the blended arrow-wing configurations have deficiencies in high lift capability, fuel volume, wing loading, balance, and takeoff gross weight. Further refinement of the designs is needed to better determine the commercial viability of low boom operation. To help in assessing low boom design technology, the two configurations were defined as wind tunnel models with altered aft-bodies for the wind tunnel sting mounting system.

  3. Laboratory testing of a flexible boom for ice management

    SciTech Connect

    Loeset, S. . Norwegian Hydrotechnical Lab.); Timco, G.W. )

    1993-08-01

    Combating oil spills in the Arctic is a major challenge. Drilling or producing oil or gas in the marginal ice zone (MIZ) may allow booms to be deployed upstream of an offshore structure to clear the water of ice, thereby enabling conventional oil spill countermeasures to be used. Such a boom would be kept in place by two ice-going service vessels or by moored buoys. SINTEF NHL and NRC have performed a number of small-scale tests with a flexible boom in the NRC ice basin in Ottawa. The purpose of the tests was to measure the effectiveness of using a flexible boom for collecting ice, and to determine the loads associated with collecting the ice. In the tests, various boom configurations were towed against a broken ice field consisting of ice pieces typically 50--100 mm across and 30 mm thick. The ice concentration was usually 10/10, but it was reduced to 8/10 and 5/10 for two tests. The boom was towed at speeds of 20 and 50 mm-s[sup [minus]1]. Both the width of the boom and the slackness of the boom were varied over reasonable ranges. Two six-component dynamometers were used to support the boom. Thus, the force components on each end of the boom were measured. Further, two video cameras were used to record the effectiveness of each boom configuration. In this paper, the full results of this test program are presented and the application of the test results to the full-scale situation are discussed. The tests show that, under certain conditions, the use of boom is feasible for ice management in oil-contaminated water.

  4. High-Speed Research: Sonic Boom, volume 2

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.

  5. High-Speed Research: Sonic Boom, volume 1

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.

  6. [Building and testing of Pickard Line-up Boom

    SciTech Connect

    Not Available

    1992-01-01

    The Packard Line-up Boom is a device for controlling the placing together of the ends of two sections of pipe for clamping and welding. Consistently better weld quality is possible because the optimum weld space is achieved and held constant throughout every stringer bead, regardless of the welding method. With the use of the Pickard Line-Up Boom, there will be a minimum of pipe movement while the stringer bead is being run. Since the welder can rely on conditions being the same throughout the weld, he can regulate the weld to eliminate backwelding almost entirely. During the grant period and with the assistance of DOE grant funds, Pickard Line-up Boom Associates (PLUBA) successfully completed Task 1, construction of the Packard Boom. PLUBA contracted with Sawyer Manufacturing Company (1031 North Columbia Place, Tulsa, Oklahoma) to construct the new boom. After completion of the new boom by Sawyer, the boom was successfully tested by PLUBA, thereafter PLUBA attempted to obtain lease agreements with pipeline contractors (Tasks 2 and 3). Toward the end of the project period, PLUBA entered into a license/marketing agreement with Sabre International with. the objective of first securing contracts outside of the United States. Once this is achieved and the Packard Boom is used successfully in the field, it is believed that pipeline contractors may be more willing to use the Packard Boom in the United States.

  7. Performance of floating oil booms in unsheltered waters

    NASA Astrophysics Data System (ADS)

    Iglesias, Gregorio; Castro, Alberte

    2013-04-01

    Oil booms are a fundamental tool to diminish the impact of an oil spill. They tend to perform reasonably well in sheltered waters, e.g. within a harbour. However, their performance is often inadequate in open water conditions, under waves, winds and currents. And it is precisely in those conditions that they are needed if oil slicks are to be prevented from reaching certain particularly sensitive areas, such as estuaries, rias, etc. (Castro et al., 2010; Iglesias et al., 2010). In this work the performance of floating oil booms under waves and currents is assessed on the basis of laboratory experiments carried out in a state-of-the-art wave-current flume. Different oil boom models are used, representative of booms with long and short skirts and with different weights. The results show that different booms behave very differently under waves and currents, hence the importance of selecting the boom design that is appropriate for the actual conditions under which it will have to contain the oil slick. Thus, different oil booms should be used for different areas. References A. Castro, G. Iglesias, R. Carballo, J.A. Fraguela, 2010. Floating boom performance under waves and currents, Journal of Hazardous Materials 174, 226-235 G. Iglesias, A.Castro, J.A.Fraguela, 2010. Artificial intelligence applied to floating boom behavior under waves and currents, Ocean Engineering 37, 1513-1521.

  8. 23. Historic American Buildings Survey POTOMAC AQUEDUCT CONSTRUCTION: BOOMS House ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Historic American Buildings Survey POTOMAC AQUEDUCT CONSTRUCTION: BOOMS House Document 459 (1838) - Potomac Aqueduct, Georgetown abutment at Georgetown waterfront, Washington, District of Columbia, DC

  9. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  10. Multidisciplinary design optimization for sonic boom mitigation

    NASA Astrophysics Data System (ADS)

    Ozcer, Isik A.

    Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for

  11. Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hodgdon, Kathleen K.; Krecker, Peg; Cowart, Robbie; Hobbs, Chris; Wilmer, Clif; Koening, Carrie; Holmes, Theresa; Gaugler, Trent; Shumway, Durland L.; Rosenberger, James L.; Philips, Daisy

    2014-01-01

    The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods.

  12. GEOS-20 m cable boom mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, B. K.; Suttner, K.

    1977-01-01

    The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  13. The GEOS-20 m Cable Boom Mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Suttner, K.

    1977-01-01

    The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  14. The Effect of Sonic Booms on Earthquake Warning Systems

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  15. Potential for Sonic Boom Reduction of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  16. USAF single-event sonic boom prediction model: PCBoom3

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Downing, Micah; Page, Juliet A.

    1994-01-01

    The Air Force has developed PCBoom3, a general-purpose, single-event sonic boom prediction model. The model operates on an IBM PC or compatible, under DOS or Windows. It is accessed via an integrated environment which controls building of input cases, running boom calculations, displaying contours and signatures, and managing all associated data. The primary boom calculation is via a variation of FOBOOM, the focus-boom extension of Thomas's program. Aircraft input is either via a user-provided F-function, or simple N-wave F-functions tabulated for about 20 current aircraft. A fast boom calculation, based on Plotkin's SBORT algorithms, is included for simple N-wave F-functions in a windless atmosphere and flight altitudes up to 60,000 feet. After a run is complete, the user can access an index identifying significant events (focal zones, beginning of footprint, etc.), then plot boom amplitude contours and signatures or spectra at any point in the footprint. The primary uses of this program are expected to be operational planning and boom incident investigation. However, because of the commonality between FOBOOM and the MDBOOM program currently being used for low boom configuration design, this program is of interest to the HSCT community, especially as supersonic route planning activity increases. The Air Force recently conducted a flight test program to evaluate the focal zone capabilities of PCBoom3. Initial results of that program validate the prediction of focal zone geometry, amplitudes, and waveforms.

  17. Baby Boom Equals Career Bust. Monographs on Career Education.

    ERIC Educational Resources Information Center

    Moore, Charles Guy

    Presenting the Baby Boom (1946-1965) as both a potential social problem and opportunity for American leadership, this monograph discusses the following aspects of this population concern: (1) its immediate and long-term impact on career opportunities for those college graduates who make up the baby boom generation; (2) its impact on those whose…

  18. Sonic-boom minimization with nose-bluntness relaxation

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1979-01-01

    A procedure which provides sonic-boom-minimizing equivalent area distributions for supersonic cruise conditions is described. This work extends previous analyses to permit relaxation of the extreme bluntness required by conventional low-boom shapes and includes propagation in a real atmosphere. The procedure provides area distributions which minimize either shock strength or overpressure.

  19. 12. BOOM, FROM SUPERSTRUCTURE DECK (ABOVE WINCH ROOM), SHOWING DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BOOM, FROM SUPERSTRUCTURE DECK (ABOVE WINCH ROOM), SHOWING DETAIL OF GEARED WHEEL OF BOOM, FLYBRIDGE AT LEFT. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  20. Field measurements of sonic boom penetration into the ocean

    PubMed

    Sohn; Vernon; Hildebrand; Webb

    2000-06-01

    Six sonic booms, generated by F-4 aircraft under steady flight at a range of altitudes (610-6100 m) and Mach numbers (1.07-1.26), were measured just above the air/sea interface, and at five depths in the water column. The measurements were made with a vertical hydrophone array suspended from a small spar buoy at the sea surface, and telemetered to a nearby research vessel. The sonic boom pressure amplitude decays exponentially with depth, and the signal fades into the ambient noise field by 30-50 m, depending on the strength of the boom at the sea surface. Low-frequency components of the boom waveform penetrate significantly deeper than high frequencies. Frequencies greater than 20 Hz are difficult to observe at depths greater than about 10 m. Underwater sonic boom pressure measurements exhibit excellent agreement with predictions from analytical theory, despite the assumption of a flat air/sea interface. Significant scattering of the sonic boom signal by the rough ocean surface is not detected. Real ocean conditions appear to exert a negligible effect on the penetration of sonic booms into the ocean unless steady vehicle speeds exceed Mach 3, when the boom incidence angle is sufficient to cause scattering on realistic open ocean surfaces. PMID:10875353

  1. USM3D Analysis of Low Boom Configuration

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Campbell, Richard L.; Nayani, Sudheer N.

    2011-01-01

    In the past few years considerable improvement was made in NASA's in house boom prediction capability. As part of this improved capability, the USM3D Navier-Stokes flow solver, when combined with a suitable unstructured grid, went from accurately predicting boom signatures at 1 body length to 10 body lengths. Since that time, the research emphasis has shifted from analysis to the design of supersonic configurations with boom signature mitigation In order to design an aircraft, the techniques for accurately predicting boom and drag need to be determined. This paper compares CFD results with the wind tunnel experimental results conducted on a Gulfstream reduced boom and drag configuration. Two different wind-tunnel models were designed and tested for drag and boom data. The goal of this study was to assess USM3D capability for predicting both boom and drag characteristics. Overall, USM3D coupled with a grid that was sheared and stretched was able to reasonably predict boom signature. The computational drag polar matched the experimental results for a lift coefficient above 0.1 despite some mismatch in the predicted lift-curve slope.

  2. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... may operate a civil aircraft for which the maximum operating limit speed MM0 exceeds a Mach number...

  3. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... may operate a civil aircraft for which the maximum operating limit speed MM0 exceeds a Mach number...

  4. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... may operate a civil aircraft for which the maximum operating limit speed MM0 exceeds a Mach number...

  5. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... may operate a civil aircraft for which the maximum operating limit speed MM0 exceeds a Mach number...

  6. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... may operate a civil aircraft for which the maximum operating limit speed MM0 exceeds a Mach number...

  7. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  8. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  9. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  10. Subjective loudness of "minimized" sonic boom waveforms.

    PubMed

    Niedzwiecki, A; Ribner, H S

    1978-12-01

    For very long supersonic aircraft the "midfield" sonic boom signature may not have evolved fully into an N wave at ground level. Thus in current boom minimization techniques the shape of the aircraft may be tailored to optimize this midfield wave form for reduced subjective loudness. The present investigation tests a family of "flat-top" waveforms cited by Darden: all but one have a front shock height (deltapSH) less than the peak amplitude (deltapMAX). For equal subjective loudness, "flat top" vs N wave (peak overpressure deltapN), the peak amplitude of the "flat top" signature was found to be substantially higher than that of the N wave; thus for equal peak amplitude the "flat-top" signature was quieter. The results for equal loudness were well fitted by an emperical law deltapSH + 0.11deltapMAX = deltapN; the equivalence shows how the front shock amplitude (deltapSH) dominates the loudness. All this was found compatible with predictions by the method of Johnson and Robinson. PMID:739097

  11. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  12. Audiometric effects of simulated sonic booms in guinea pigs

    NASA Astrophysics Data System (ADS)

    Reinis, S.; Weiss, D. S.; Featherstone, J. W.; Tsaros, C.

    1987-03-01

    Changes of hearing thresholds have been studied in guinea pigs following exposure to 100 simulated sonic booms. Simulated sonic booms increased the hearing thresholds at frequencies above 30 kHz. The only early structural change observed was an appearance of a small blood clot in the scala tympani of the basal turn of the cochlea. Although these changes may be specific for small laboratory animals only, they indicate that caution is necessary in exposing people to repeated or intense sonic booms. Also, the data indicate that, following the exposure to the sonic booms, the high frequency hearing is influenced first. Therefore, audiometric testing following the sonic boom exposure should not be limited to the routine audiometric curve ending at 8 kHz.

  13. High-Speed Research: Sonic Boom, Volume 1

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A. (Editor)

    1994-01-01

    The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.

  14. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  15. Quiet Sonic Booms: A NASA and Industry Progress Report

    NASA Technical Reports Server (NTRS)

    Larson, David Nils; Martin, Roy; Haering, Edward A.

    2011-01-01

    The purpose of this Oral Presentation is to present a progress report on NASA and Industry efforts related to Quiet Sonic Boom Program activities. This presentation will review changes in aircraft shaping to produce quiet supersonic booms and associated supersonic flight test methods and results. In addition, new flight test profiles have been recently developed that have allowed for the generation of sonic booms of varying intensity. These new flight test profiles have allowed for ground testing of the response of various building structures to sonic booms and the associated public acceptability to various sonic boom intensities. The new flight test profiles and associated ground measurement test methods will be reviewed. Finally, this Oral Presentation will review the International Regulatory requirements that would be involved to change aviation regulation and allow for overland quiet supersonic flight.

  16. Sonic boom signature data from cruciform microphone array experiments during the 1966-1967 EAFB national sonic boom evaluation program

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.

    1990-01-01

    Tables are provided of measured sonic boom signature data derived from supersonic flyover tests of the XB-70, B-58 and F-104 aircraft for ranges of altitude and Mach number. These tables represent a convenient hard copy version of available electronic files and complement preliminary information included in a reference National Sonic Boom Evaluation Office document.

  17. Power outages, power externalities, and baby booms.

    PubMed

    Burlando, Alfredo

    2014-08-01

    Determining whether power outages have significant fertility effects is an important policy question in developing countries, where blackouts are common and modern forms of family planning are scarce. Using birth records from Zanzibar, this study shows that a month-long blackout in 2008 caused a significant increase in the number of births 8 to 10 months later. The increase was similar across villages that had electricity, regardless of the level of electrification; villages with no electricity connections saw no changes in birth numbers. The large fertility increase in communities with very low levels of electricity suggests that the outage affected the fertility of households not connected to the grid through some spillover effect. Whether the baby boom is likely to translate to a permanent increase in the population remains unclear, but this article highlights an important hidden consequence of power instability in developing countries. It also suggests that electricity imposes significant externality effects on rural populations that have little exposure to it.

  18. Brazil's sugarcane boom could affect regional temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-04-01

    With the world seeking to cut its dependence on fossil fuels, the use of bioethanol and other biofuels is on the rise. In Brazil, the second largest producer and consumer of bioethanol, this has led to a boom in sugarcane production. Based on new laws and trade agreements, researchers expect Brazil's production of sugarcane-derived ethanol to increase tenfold over the next decade, with considerable land being converted for growing sugarcane. Much of this expansion is expected to come at a loss of some of the country's cerrado savannas. So while a major aim of the turn to biofuels is to reduce the transfer of carbon to the atmosphere and mitigate global climate change, the shifting agricultural activity could have direct consequences on Brazil's climate by changing the region's physical and biogeochemical properties.

  19. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  20. A Compilation of Space Shuttle Sonic Boom Measurements

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  1. STS-41 ISAC deployed on remote manipulator system (RMS) lower arm boom

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 International Telecommunications Satellite Organization (INTELSAT) Solar Array Coupon (ISAC) witness plates are mounted on remote manipulator system (RMS) lower arm boom and are exposed to space environment conditions. The RMS with the ISAC material samples is extended above Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB) and over the Earth's surface. One witness plate contains an 8.5 x 12-inch solar array coupon and three 5 x 8-inch aluminum plates painted to provide three different temperatures. The second witness plate contains one 8.5 x 12-inch solar array coupon and a 46-position sample holder. This JSC-designed experiment is in preparation for the possible 1992 rescue of INTELSAT-VI, stranded in low orbit earlier this year. Quantitative data on the interaction of atomic oxygen with the solar array silver interconnects and other INTELSAT materials will be obtained.

  2. Experimental and Computational Sonic Boom Assessment of Boeing N+2 Low Boom Models

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Elmiligui, Alaa; Cliff, Susan E.; Winski, Courtney S.; Carter, Melissa B.; Walker, Eric L.

    2015-01-01

    Near-field pressure signatures were measured and computational predictions made for several sonic boom models representing Boeing's Quiet Experimental Validation Concept (QEVC) supersonic transport, as well as three axisymmetric calibration models. Boeing developed the QEVC under a NASA Research Announcement (NRA) contract for Experimental Systems Validations for N+2 Supersonic Commercial Transport Aircraft, which was led by the NASA High Speed Project under the Fundamental Aeronautics Program. The concept was designed to address environmental and performance goals given in the NRA, specifically for low sonic boom loudness levels and high cruise efficiency, for an aircraft anticipated to enter service in the 2020 timeframe. Wind tunnel tests were conducted on the aircraft and calibration models during Phases I and II of the NRA contract from 2011 to 2013 in the NASA Ames 9- by 7-Foot and NASA Glenn 8- by 6-Foot Supersonic Wind Tunnels. Sonic boom pressure signatures were acquired primarily at Mach 1.6 and 1.8, and force and moment data were acquired from Mach 0.8 to 1.8. The sonic boom test data were obtained using a 2-in. flat-top pressure rail and a 14-in. round-top tapered "reflection factor 1" (RF1) pressure rail. Both rails capture an entire pressure signature in one data point, and successive signatures at varying positions along or above the rail were used to improve data quality through spatial averaging. The sonic boom data obtained by the rails were validated with high-fidelity numerical simulations of off-body pressures using the CFD codes USM3D, Cart3D, and OVERFLOW. The test results from the RF1 rail showed good agreement between the computational and experimental data when a variety of testing techniques including spatial averaging of a series of pressure signatures were employed, however, reflections off the 2-in. flat-top rail caused distortions in the signatures that did not agree with the CFD predictions. The 9 x 7 and 8 x 6 wind tunnels generally

  3. Boom-Constrained Drag Minimization for Design of Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.; Li, Wu; Geiselhart, Karl

    2010-01-01

    This paper presents an approach to modifying an existing baseline configuration that has been designed to achieve low-boom characteristics in order to minimize drag while not severely penalizing baseline sonic boom levels. The baseline configuration that was used is the result of using a mixed-fidelity CFD-based low-boom design process that has been tested and verified. Shape modifications are carried out by using arbitrary shape-deformation algorithms. The focus of this paper is the integration of several key enabling techniques and methods for efficient redesign under stringent constraints.

  4. Shaped Sonic Boom Demonstration/Experiment Airborne Data

    NASA Technical Reports Server (NTRS)

    Haering ,Edward A., Jr.; Murray, James E.

    2004-01-01

    This viewgraph presentation reviews NASA's project to demonstrate that careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. The areas in covered in this presentation are: (1) Past airborne shock measurement efforts, (2) SR-71 Sonic Boom Propagation Experiment (3) F-5E Inlet Spillage Shock Measurement (4) Flight test approach (5) GPS data (6) Shaped Sonic Boom Demonstration (SSBD) Mach calibration (7) Super Blanik L-23 sailplane (8) Near-field probing (8a)Maneuvers (8b) Control Room Displays (8c) Pressure Instrumentation (8d) Signatures.

  5. Sonic boom theory - Its status in prediction and minimization

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1976-01-01

    This paper gives a brief review of the currently accepted understanding of sonic boom phenomena and describes the manner in which modified linearized theory and geometric acoustics are used to predict the sonic boom caused by a complex aircraft configuration. Minimization methods that have evolved in recent years are discussed with particular attention given to a method developed by Seebass and George for an isothermal atmosphere which was modified for the real atmosphere by Darden. An additional modification which permits the relaxation of the nose bluntness requirement in the defining aircraft is also discussed. Finally, an overview of current areas of sonic boom research is given.

  6. State of the art of sonic boom modeling.

    PubMed

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models. PMID:11837958

  7. Sonic Boom Computations for a Mach 1.6 Cruise Low Boom Configuration and Comparisons with Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Cliff, Susan E.; Wilcox, Floyd; Nemec, Marian; Bangert, Linda; Aftosmis, Michael J.; Parlette, Edward

    2011-01-01

    Accurate analysis of sonic boom pressure signatures using computational fluid dynamics techniques remains quite challenging. Although CFD shows accurate predictions of flow around complex configurations, generating grids that can resolve the sonic boom signature far away from the body is a challenge. The test case chosen for this study corresponds to an experimental wind-tunnel test that was conducted to measure the sonic boom pressure signature of a low boom configuration designed by Gulfstream Aerospace Corporation. Two widely used NASA codes, USM3D and AERO, are examined for their ability to accurately capture sonic boom signature. Numerical simulations are conducted for a free-stream Mach number of 1.6, angle of attack of 0.3 and Reynolds number of 3.85x10(exp 6) based on model reference length. Flow around the low boom configuration in free air and inside the Langley Unitary plan wind tunnel are computed. Results from the numerical simulations are compared with wind tunnel data. The effects of viscous and turbulence modeling along with tunnel walls on the computed sonic boom signature are presented and discussed.

  8. Earth Orbit Raise Design for the Artemis Mission

    NASA Technical Reports Server (NTRS)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  9. 14. FLYBRIDGE, LOOKING TOWARDS PORT, SHOWING BOOM CONTROLS, PILOT HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FLYBRIDGE, LOOKING TOWARDS PORT, SHOWING BOOM CONTROLS, PILOT HOUSE AT LEFT. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  10. 12. BOOM, FROM SUPERSTRUCTURE DECK (ABOVE WINCH ROOM), LOOKING TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BOOM, FROM SUPERSTRUCTURE DECK (ABOVE WINCH ROOM), LOOKING TOWARDS BOW. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  11. 13. DETAIL OF BOOM'S GEARED WHEEL, FROM SUPERSTRUCTURE DECK (ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF BOOM'S GEARED WHEEL, FROM SUPERSTRUCTURE DECK (ABOVE WINCH ROOM), FLYBRIDGE IS AT LEFT. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  12. 5. DETAIL OF THE INSIDE ROBERTS AND SCHAEFER LOADING BOOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF THE INSIDE ROBERTS AND SCHAEFER LOADING BOOM, WITH COUNTERWEIGHT (RIGHT), NOTE METAL CONVEYOR BELT (FOREGROUND) - Nuttallburg Mine Complex, Tipple, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  13. 14. Photocopy of c. 1906 photograph of 70 foot boom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of c. 1906 photograph of 70 foot boom crane that unloaded the sugar cane. - Laurel Valley Sugar Plantation, Sugar Mill, 2 miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  14. 1. Distant view of mill ruins with boom crane for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Distant view of mill ruins with boom crane for unloading sugar cane in foreground, looking W. - Laurel Valley Sugar Plantation, Sugar Mill, 2 miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  15. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING BOOM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING BOOM IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  16. A summary of XB-70 sonic boom signature data

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.

    1992-01-01

    A compilation is provided of measured sonic boom signature data derived from 39 supersonic flights (43 passes) of the XB-70 airplane over the Mach number range of 1.11 to 2.92 and an altitude range of 30500 to 70300 ft. These tables represent a convenient hard copy version of available electronic files which include over 300 digitized sonic boom signatures with their corresponding spectra. Also included in the electronic files is information regarding ground track position, aircraft operating conditions, and surface and upper air weather observations for each of the 43 supersonic passes. In addition to the sonic boom signature data, a description is also provided of the XB-70 data base that was placed on electronic files along with a description of the method used to scan and digitize the analog/oscillograph sonic boom signature time histories. Such information is intended to enhance the value and utilization of the electronic files.

  17. Construction Boom Seen on Campuses over Next 5 Years.

    ERIC Educational Resources Information Center

    Evangelauf, Jean

    1987-01-01

    Campus construction is projected to boom as colleges and universities catch up on deferred maintenance and replace outdated classrooms and laboratories. Severe problems identified include roofs, heating systems, asbestos removal, and electical systems. (LB)

  18. Subjective Response to Simulated Sonic Booms in Homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  19. Magnetic docking aid for orbiter to ISS docking

    NASA Technical Reports Server (NTRS)

    Schneider, William C.; Nagy, Kornel; Schliesing, John A.

    1996-01-01

    The present docking system for the Orbiter uses mechanical capture latches that are actuated by contact forces. The forces are generated when the two approaching masses collide at the docking mechanism. There is always a trade-off between having high enough momentum to effect capture and low enough momentum to avoid structural overload or unacceptable angular displacements. The use of the present docking system includes a contact thrusting maneuver that causes high docking loads to be included into Space Station. A magnetic docking aid has been developed to reduce the load s during docking. The magnetic docking aid is comprised of two extendible booms that are attached adjacent to the docking structure with electromagnets attached on the end of the boom. On the mating vehicle, two steel plates are attached. As the Orbiter approaches Space Station, the booms are extended, and the magnets attach to the actuated (without thrusting), by slowly driving the extendible booms to the stowed position, thus reacting the load into the booms. This results in a docking event that has lower loads induced into Space Station structure. This method also greatly simplifies the Station berthing tasks, since the Shuttle Remote Manipulation System (SRMS) arm need only place the element to be berthed on the magnets (no load required), rather than firing the Reaction Control System (RCS) jets to provide the required force for capture latch actuation. The Magnetic Docking Aid was development testing on a six degree-of-freedom (6 DOF) system at JSC.

  20. Initial Results from the Variable Intensity Sonic Boom Database

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Gabrielson, Thomas; Sparrow, Victor W.; Locey, Lance L.; Bunce, Thomas J.

    2008-01-01

    43 sonic booms generated (a few were evanescent waves) a) Overpressures of 0.08 to 2.20 lbf/sq ft; b) Rise-times of about 0.7 to 50 ms. Objectives: a) Structural response of a house of modern construction; b) Sonic boom propagation code validation. Approach: a) Measure shockwave directionality; b) Determine effect of height above ground on acoustic level; c) Generate atmospheric turbulence filter functions.

  1. Human Response to Simulated Low-Intensity Sonic Booms

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2004-01-01

    NASA's High Speed Research (HSR ) program in the 1990s was intended to develop a technology base for a future High-Speed Civil Transport (HSCT). As part of this program, the NASA Langley Research Center sonic boom simulator (SBS) was built and used for a series of tests on subjective response to sonic booms. At the end of the HSR program, an HSCT was deemed impractical, but since then interest in supersonic flight has reawakened, this time focusing on a smaller aircraft suitable for a business jet. To respond to this interest, the Langley sonic boom simulator has been refurbished. The upgraded computer-controlled playback system is based on an SGI O2 computer, in place of the previous DEC MicroVAX. As the frequency response of the booth is not flat, an equalization filter is required. Because of the changes made during the renovation (new loudspeakers), the previous equalization filter no longer performed as well as before, so a new equalization filter has been designed. Booms to be presented in the booth are preprocessed using the filter. When the preprocessed signals are presented into the booth and measured with a microphone, the results are very similar to the intended shapes. Signals with short rise times and sharp "corners" are observed to have a small amount of "ringing" in the response. During the HSR program a considerable number of subjective tests were completed in the SBS. A summary of that research is given in Leatherwood et al. (Individual reports are available at http://techreports.larc.nasa.gov/ltrs/ltrs.html.) Topics of study included shaped sonic booms, asymmetrical booms, realistic (recorded) boom waveforms, indoor and outdoor booms shapes, among other factors. One conclusion of that research was that a loudness metric, like the Stevens Perceived Level (PL), predicted human reaction much more accurately than overpressure or unweighted sound pressure level. Structural vibration and rattle were not included in these studies.

  2. Research on Subjective Response to Simulated Sonic Booms at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2005-01-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people s houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  3. Overview of NASA human response to sonic boom program

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.

    1992-01-01

    For some routes the ability to fly at supersonic speeds over land as well as over water would greatly enhance the time benefit to the passenger. It would also increase the productivity and economic viability of the aircraft. There are no reliable guidelines which can be used to determine a sonic boom exposure which would be acceptable for overland supersonic flight. In addition to the peak pressure of the sonic boom, the detailed shape of the signature will also influence the perception, and therefore the community response, to sonic boom exposures. Initially, the program aims to develop the capability to predict human response to individual sonic booms. This will enable a quantitative assessment of the benefit of 'low boom' aircraft configurations and will also serve to guide the design of the aircraft and its operating conditions. This capability will form the foundation of studies to determine the relationship between sonic boom exposure and community response. Only then will it be possible to assess the feasibility of acceptable overland supersonic flight.

  4. Development in helicopter tail boom strake applications in the US

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  5. Assessment of Near-Field Sonic Boom Simulation Tools

    NASA Technical Reports Server (NTRS)

    Casper, J. H.; Cliff, S. E.; Thomas, S. D.; Park, M. A.; McMullen, M. S.; Melton, J. E.; Durston, D. A.

    2008-01-01

    A recent study for the Supersonics Project, within the National Aeronautics and Space Administration, has been conducted to assess current in-house capabilities for the prediction of near-field sonic boom. Such capabilities are required to simulate the highly nonlinear flow near an aircraft, wherein a sonic-boom signature is generated. There are many available computational fluid dynamics codes that could be used to provide the near-field flow for a sonic boom calculation. However, such codes have typically been developed for applications involving aerodynamic configuration, for which an efficiently generated computational mesh is usually not optimum for a sonic boom prediction. Preliminary guidelines are suggested to characterize a state-of-the-art sonic boom prediction methodology. The available simulation tools that are best suited to incorporate into that methodology are identified; preliminary test cases are presented in support of the selection. During this phase of process definition and tool selection, parallel research was conducted in an attempt to establish criteria that link the properties of a computational mesh to the accuracy of a sonic boom prediction. Such properties include sufficient grid density near shocks and within the zone of influence, which are achieved by adaptation and mesh refinement strategies. Prediction accuracy is validated by comparison with wind tunnel data.

  6. Optical MEMS: boom, bust, and beyond

    NASA Astrophysics Data System (ADS)

    Payne, Richard S.

    2005-01-01

    Optical Telecommunications bandwidth, spurred by the growth of the internet, experienced unprecedented growth in the late 1990's. The creation of new enterprises was vast and the expansion of established component, system and services companies was also breathtaking. This period of speculative growth was followed in 2001-2004 by one of the most significant market crashes in history. While $20B of venture capital was invested in optical telecom in the last 10 years, the vast majority of that has been written off in the last 4. Countless start-ups inaugurated with great fanfare at the end of the 20th century were unceremoniously shut down at the start of the 21st century.(1) As in all speculative bubbles innovative technologies were born and were buried. Nonetheless, new capabilities emerge from the chaos and disruption; one such example is the advent of Optical MEMS (MOEMS). Its development was vigorously pursued in both academic and corporate laboratories during the boom and, in the author's view; MOEMS constitutes a powerful and versatile tool set that will be an invaluable residual of the last few years. In Telecommunications, MOEMS have been proven to be the technology of choice for many optical switching and wavelength management applications.(2) Variable Optical Attenuators (VOA), Wavelength Blockers (WB), Dynamic Gain Equalizers (DGE), and most recently Wavelength Selective Switches (WSS) are being used in the numerous recent network deployments. Moreover, agile networks of the future will have MOEMS at every node. This presentation will provide an overview of the history of MOEMS in Telecommunications, discuss their byproducts and project the future of the technology.

  7. Optical MEMS: boom, bust and beyond

    NASA Astrophysics Data System (ADS)

    Ramani, Chandra Mouli

    2005-10-01

    Optical Telecommunications bandwidth, spurred by the growth of the internet, experienced unprecedented growth in the late 1990's. The creation of new enterprises was vast and the expansion of established component, system and services companies was also breathtaking. This period of speculative growth was followed in 2001-2004 by one of the most significant market crashes in history. While $20B of venture capital was invested in optical telecom in the last 10 years, the vast majority of that has been written off in the last four. Countless start-ups inaugurated with great fanfare at the end of the 20th century were unceremoniously shut down at the start of the 21st. (1) As in all speculative bubbles, innovative technologies were born and buried. Nonetheless, new capabilities emerge from the chaos and disruption; one such example is the advent of Optical MEMS (MOEMS). Its development was vigorously pursued in both academic and corporate laboratories during the boom and, in the author's view; MOEMS constitutes a powerful and versatile tool set that is an invaluable residual of the last few years. In Telecommunications, MOEMS has proven to be the technology of choice for many optical switching and wavelength management applications. (2) Variable Optical Attenuators (VOA), Wavelength Blockers (WB), Dynamic Gain Equalizers (DGE), and most recently Wavelength Selective Switches (WSS) are being used in the numerous recent network deployments. Moreover, agile networks of the future will have MOEMS at every node. This presentation will provide an overview of the history of MOEMS in Telecommunications, discuss its byproducts and project the future of the technology.

  8. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  9. Initial Results from the Variable Intensity Sonic Boom Propagation Database

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Bunce, Thomas J.; Gabrielson, Thomas B.; Sparrow, Victor W.; Locey, Lance L.

    2008-01-01

    An extensive sonic boom propagation database with low- to normal-intensity booms (overpressures of 0.08 lbf/sq ft to 2.20 lbf/sq ft) was collected for propagation code validation, and initial results and flight research techniques are presented. Several arrays of microphones were used, including a 10 m tall tower to measure shock wave directionality and the effect of height above ground on acoustic level. A sailplane was employed to measure sonic booms above and within the atmospheric turbulent boundary layer, and the sailplane was positioned to intercept the shock waves between the supersonic airplane and the ground sensors. Sailplane and ground-level sonic boom recordings were used to generate atmospheric turbulence filter functions showing excellent agreement with ground measurements. The sonic boom prediction software PCBoom4 was employed as a preflight planning tool using preflight weather data. The measured data of shock wave directionality, arrival time, and overpressure gave excellent agreement with the PCBoom4-calculated results using the measured aircraft and atmospheric data as inputs. C-weighted acoustic levels generally decreased with increasing height above the ground. A-weighted and perceived levels usually were at a minimum for a height where the elevated microphone pressure rise time history was the straightest, which is a result of incident and ground-reflected shock waves interacting.

  10. Atmospheric effects on sonic boom: A program review

    NASA Astrophysics Data System (ADS)

    McAninch, Gerry L.

    1992-04-01

    The program goals were determined after consideration of the weaknesses in our understanding of atmospheric effects on sonic boom waveforms left in the wake of the cancellation of the U.S. SST in the 70's and the advancements in acoustics and atmospheric science since that time. For example, a considerable body of knowledge on molecular absorption has built up in the acoustics community over the last 15 years and this has not been incorporated into the sonic boom theory. Further, it was felt that the understanding of atmospheric turbulence had also advanced considerably during that time period. Therefore, key elements of the current program are the development of an improved atmospheric absorption model and an improved atmospheric turbulence model. The advances made in computer power over the last 15 years were also considered, and will be utilized to remove restrictions on the analytical model for turbulence effects on sonic boom waveforms. Although the majority of disturbing sonic booms will not occur at focuses or caustics, it was felt that this was an area that required further understanding, thus it will be looked into. Finally, in order to insure that the current effort, which is basically analytical in nature, retains a firm grasp on reality, a data base of sonic boom waveforms and associated weather data is being compiled, and a set of scale model experiments is being planned to guide the overall efforts.

  11. Atmospheric effects on sonic boom: A program review

    NASA Technical Reports Server (NTRS)

    Mcaninch, Gerry L.

    1992-01-01

    The program goals were determined after consideration of the weaknesses in our understanding of atmospheric effects on sonic boom waveforms left in the wake of the cancellation of the U.S. SST in the 70's and the advancements in acoustics and atmospheric science since that time. For example, a considerable body of knowledge on molecular absorption has built up in the acoustics community over the last 15 years and this has not been incorporated into the sonic boom theory. Further, it was felt that the understanding of atmospheric turbulence had also advanced considerably during that time period. Therefore, key elements of the current program are the development of an improved atmospheric absorption model and an improved atmospheric turbulence model. The advances made in computer power over the last 15 years were also considered, and will be utilized to remove restrictions on the analytical model for turbulence effects on sonic boom waveforms. Although the majority of disturbing sonic booms will not occur at focuses or caustics, it was felt that this was an area that required further understanding, thus it will be looked into. Finally, in order to insure that the current effort, which is basically analytical in nature, retains a firm grasp on reality, a data base of sonic boom waveforms and associated weather data is being compiled, and a set of scale model experiments is being planned to guide the overall efforts.

  12. Orbit to orbit transportation

    NASA Astrophysics Data System (ADS)

    Bergeron, R. P.

    1980-07-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  13. Shuttle sonic boom - Technology and predictions. [environmental impact

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  14. Review and status of sonic boom penetration into the ocean.

    PubMed

    Sparrow, Victor W

    2002-01-01

    Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments. PMID:11837959

  15. Scattering of sonic booms by anisotropic turbulence in the atmosphere

    PubMed

    Kelly; Raspet; Bass

    2000-06-01

    An earlier paper [J. Acoust. Soc. Am. 98, 3412-3417 (1995)] reported on the comparison of rise times and overpressures of sonic booms calculated with a scattering center model of turbulence to measurements of sonic boom propagation through a well-characterized turbulent layer under moderately turbulent conditions. This detailed simulation used spherically symmetric scatterers to calculate the percentage of occurrence histograms of received overpressures and rise times. In this paper the calculation is extended to include distorted ellipsoidal turbules as scatterers and more accurately incorporates the meteorological data into a determination of the number of scatterers per unit volume. The scattering center calculation overpredicts the shifts in rise times for weak turbulence, and still underpredicts the shift under more turbulent conditions. This indicates that a single-scatter center-based model cannot completely describe sonic boom propagation through atmospheric turbulence. PMID:10875351

  16. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  17. Origins and Overview of the Shaped Sonic Boom Demonstration Program

    NASA Technical Reports Server (NTRS)

    Pawlowski, Joseph W.; Graham, David H.; Boccadoro, Charles H.; Coen, Peter G.; Maglieri, Domenic J.

    2005-01-01

    The goal of the DARPA Shaped Sonic Boom Demonstration (SSBD) Program was to demonstrate for the first time in flight that sonic booms can be substantially reduced by incorporating specialized aircraft shaping techniques. Although mitigation of the sonic boom via specialized shaping techniques was theorized decades ago, until now, this theory had never been tested with a flight vehicle subjected to actual flight conditions in a real atmosphere. The demonstrative success, which occurred on 27 August 2003 with repeat flights in the supersonic corridor at Edwards Air Force Base, is a critical milestone in the development of next generation supersonic aircraft that could one day fly unrestricted over land and help usher in a new era of time-critical air transport. Pressure measurements obtained on the ground and in the air confirmed that the specific modifications made to a Northrop Grumman F-5E aircraft not only changed the shape of the shock wave signature emanating from the aircraft, but also produced a flat-top signature whose shape persisted, as predicted, as the pressure waves propagated through the atmosphere to the ground. This accomplishment represents a major advance towards reducing the startling and potentially damaging noise of a sonic boom. This paper describes the evolution of the SSBD program, including the rationale for test article selection, and provides an overview of the history making accomplishments achieved during the SSBD effort, as well as, the follow-on NASA Shaped Sonic Boom Experiment (SSBE) Program, whose goal was to further evaluate the characteristics and robustness of shaped boom signatures.

  18. Sonic boom predictions using a modified Euler code

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1992-01-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  19. Special features of the CLUSTER antenna and radial booms design, development and verification

    NASA Technical Reports Server (NTRS)

    Gianfiglio, G.; Yorck, M.; Luhmann, H. J.

    1995-01-01

    CLUSTER is a scientific space mission to in-situ investigate the Earth's plasma environment by means of four identical spin-stabilized spacecraft. Each spacecraft is provided with a set of four rigid booms: two Antenna Booms and two Radial Booms. This paper presents a summary of the boom development and verification phases addressing the key aspects of the Radial Boom design. In particular, it concentrates on the difficulties encountered in fulfilling simultaneously the requirements of minimum torque ratio and maximum allowed shock loads at boom latching for this two degree of freedom boom. The paper also provides an overview of the analysis campaign and testing program performed to achieve sufficient confidence in the boom performance and operation.

  20. RMS upper boom framed by aft flight deck viewing window W10

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.

  1. Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram K.

    2010-01-01

    A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.

  2. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  3. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  4. View looking north west showing the boom, top of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking north west showing the boom, top of the center mast and boom angle reeving of the 175-ton derrick. Note in the background of the view, just above the center mast is the F-1 Static-Test Stand used for test firing the Saturn V engines and subsequent program's engine testing. Also in the background center is the Redstone Static Test Stand (center right) and it's cold calibration tower (center left). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  5. Prediction of Airplane Sonic-Boom Pressure Fields

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McLean, F. Edward; Middleton, Wilbur D.

    1965-01-01

    This paper presents a discussion of the sensitivity of supersonic-transport design and operation to sonic-boom considerations and shows the necessity for a study of these problems early in the development program. Methods of predicting pressure signatures are outlined and examples of the correlation of these estimates with wind-tunnel and flight measurements are shown. Estimates of sonic-boom characteristics for a representative supersonic transport show that in the critical transonic acceleration portion of the flight, overpressures somewhat lower than estimated by the use of far-field assumptions may be expected. Promising design possibilities for the achievement of further overpressure reductions are explored.

  6. Design of a Cascade Controller for a Flexible Spray Boom

    NASA Astrophysics Data System (ADS)

    Ramon, H.; De Baerdemaeker, J.; van Brussel, H.

    1996-03-01

    Longitudinal accelerations and yawning angular accelerations of a tractor induce horizontal flexible spray boom deformations which cannot be reduced sufficiently by simple structural adaptations. An electro-hydraulic control system has therefore been developed in order to attenuate the negative effect of longitudinal tractor accelerations on a spray boom. The linear quadratic Gaussian theory with loop transfer recovery has been used to design the compensator. Four different variants of the compensator are implemented in an experimental set-up to test the performance and the robustness of the feedback system and to investigate the applicability of the electro-hydraulic devices in active vibration control.

  7. A methodology for designing aircraft to low sonic boom constraints

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1991-01-01

    A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.

  8. Sonic boom measurements from accelerating supersonic tracked sleds

    NASA Technical Reports Server (NTRS)

    Reed, J. W.

    1974-01-01

    Supersonic sled tests on the Sandia 1524-m (5000-ft) track generate sonic booms of sufficient intensity to allow some airblast measurements at distance scales not obtained from wind tunnel or flight tests. During acceleration, an emitted curved boom wave propagates to a caustic, or focus. Detailed measurements around these caustics may help to clarify the overpressure magnification which can occur from real aircraft operations. Six fixed pressure gages have been operated to document the general noise field, and a mobile array of twelve gages.

  9. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  10. Sonic boom measurement test plan for Space Shuttle STS-5 launch

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1982-01-01

    Sonic booms measurements are obtained at key locations within the focus region and the lateral attenuation rate during ascent is determined in order to assess the validity of existing capability to predict the extent of focus boom area, the number of booms within the various zones (focus and nonfocus regions), the overpressures, and focus factors. The sonic boom focus region, consists of a region on the ground (in the form of an inverted 'horseshoe' pattern) in which higher than nominal overpressures can occur.

  11. CFD prediction of the near-field sonic boom environment for two low boom HSCT configurations. [High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Darden, C. M.

    1991-01-01

    Current efforts to reduce the sonic boom of a future High Speed Civil Transport (HSCT) by careful shaping have led to the need for more accurate predictions of the near-field flow conditions of the configuration. A fully three-dimensional Euler finite volume code is used to predict sonic boom pressure signatures for two low boom concepts - one designed to cruise at Mach 2 and the other at Mach 3. Calculations were carried out using a grid topology that has been modified to reduce the inaccuracies caused by grid spreading often suffered with CFD methods when calculations several body lengths downstream become necessary. Comparisons of CFD results and experimental wind tunnel signatures are shown. Ground signatures are predicted by extrapolating the pressures predicted by the Euler code with an extrapolation method based on the Whitham theory.

  12. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.

    PubMed

    Lipkens, Bart

    2002-01-01

    In previous papers, we have shown that model experiments are successful in simulating the propagation of sonic booms through the atmospheric turbulent boundary layer. The results from the model experiment, pressure wave forms of spark-produced N waves and turbulence characteristics of the plane jet, are used to test various sonic boom models for propagation through turbulence. Both wave form distortion models and rise time prediction models are tested. Pierce's model [A. D. Pierce, "Statistical theory of atmospheric turbulence effects on sonic boom rise times," J. Acoust. Soc. Am. 49, 906-924 (1971)] based on the wave front folding mechanism at a caustic yields an accurate prediction for the rise time of the mean wave form after propagation through the turbulence. PMID:11837956

  13. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Booms and masts; minimum distance from...

  14. Effects of sonic booms on breeding gray seals and harbor seals on Sable Island, Canada.

    PubMed

    Perry, Elizabeth A; Boness, Daryl J; Insley, Stephen J

    2002-01-01

    The Concorde produces audible sonic booms as it passes 15 km north of Sable Island, Nova Scotia, where gray and harbor seals occur year round. The purpose of this research was to assess how sonic booms affect these seals. The intensity of the booms was measured and three types of data (beach counts, frequency of behavior, and heart rate) were collected before and after booms during the breeding seasons of the two species. In addition to the data taken during breeding, beach counts were made before and after booms during the gray seal moult. The greatest range in overpressure within a single boom was 2.70 psf during gray seal breeding and 2.07 psf during harbor seal breeding. No significant differences were found in the behavior or beach counts of gray seals following sonic booms, regardless of the season. Beach counts and most behaviors of harbor seals also did not differ significantly following booms, however, harbor seals became more vigilant. The heart rates of four gray seal mothers and three pups showed no clear change as a result of booms, but six male harbor seals showed a nonsignificant tendency toward elevated heart rates during the 15-s interval of the boom. These results suggest sonic booms produced by the Concorde, in level flight at altitude and producing on average a sonic boom of 0.9 psf, do not substantially affect the breeding behavior of gray or harbor seals. PMID:11837965

  15. Effects of sonic booms on breeding gray seals and harbor seals on Sable Island, Canada

    NASA Astrophysics Data System (ADS)

    Perry, Elizabeth A.; Boness, Daryl J.; Insley, Stephen J.

    2002-01-01

    The Concorde produces audible sonic booms as it passes 15 km north of Sable Island, Nova Scotia, where gray and harbor seals occur year round. The purpose of this research was to assess how sonic booms affect these seals. The intensity of the booms was measured and three types of data (beach counts, frequency of behavior, and heart rate) were collected before and after booms during the breeding seasons of the two species. In addition to the data taken during breeding, beach counts were made before and after booms during the gray seal moult. The greatest range in overpressure within a single boom was 2.70 psf during gray seal breeding and 2.07 psf during harbor seal breeding. No significant differences were found in the behavior or beach counts of gray seals following sonic booms, regardless of the season. Beach counts and most behaviors of harbor seals also did not differ significantly following booms, however, harbor seals became more vigilant. The heart rates of four gray seal mothers and three pups showed no clear change as a result of booms, but six male harbor seals showed a nonsignificant tendency toward elevated heart rates during the 15-s interval of the boom. These results suggest sonic booms produced by the Concorde, in level flight at altitude and producing on average a sonic boom of 0.9 psf, do not substantially affect the breeding behavior of gray or harbor seals.

  16. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Booms and masts; minimum distance from...

  17. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Booms and masts; minimum distance from...

  18. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Booms and masts; minimum distance from...

  19. High speed civil transport: Sonic boom softening and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1994-01-01

    An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.

  20. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  1. Design and development of a telescopic axial boom

    NASA Technical Reports Server (NTRS)

    Felkai, Roland

    1986-01-01

    A special telescopic boom has been design-optimized, developed and qualified to carry an S-band antenna for the German Telecommunication Satellite is discussed. The design driver requirements, the alternatives investigated, the final technical solution, the tests performed, and special problem areas encountered during its development are discussed.

  2. 16. FLYBRIDGE LOOKING TO PORT. PILOTHOUSE IS TO LEFT, BOOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. FLYBRIDGE LOOKING TO PORT. PILOTHOUSE IS TO LEFT, BOOM CONTROLS AT RIGHT (COVER DOWN OVER CONTROLS). - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  3. High speed civil transport: Sonic boom softening and aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Cheung, Samson

    1994-07-01

    An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.

  4. Sonic Boom Assessment for the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Herron, Marissa

    2007-01-01

    The Constellation Environmental Impact Statement (Cx EIS) requires that an assessment be performed on the environmental impact of sonic booms during the reentry of the Crew Exploration Vehicle (CEV). This included an analysis of current planned vehicle trajectories for the Crew Module (CM) and the Service Module (SM) debris and the determination of the potential impact to the overflown environment.

  5. Jim Driver, Panola County Oil and Gas Boom.

    ERIC Educational Resources Information Center

    Wyatt, Bobbie, Ed.

    1981-01-01

    Written by history students at Gary High School, Gary, Texas, this volume presents several diverse pictures of life in East Texas. The first article, "Jim Driver, Panola County Oil and Gas Boom," (Bobby Kelly and Billy Anderson) talks about drilling for oil and gas and the concerns of an employee of the drilling company. "When I Was Nine Years…

  6. 1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING CEDAR LOGS FROM TRUCKS AT LOG DUMP, ADJACENT TO MILL; TRUCKS FORMERLY USED TRIP STAKES, THOUGH FOR SAFER HANDLING OF LOGS WELDED STAKES ARE NOW REQUIRED; AS A RESULT LOADING IS NOW DONE WITH A CRANE - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  7. Effect of sonic boom asymmetry on subjective loudness

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1992-01-01

    The NASA Langley Research Center's sonic boom apparatus was used in an experimental study to quantify subjective loudness response to a wide range of asymmetrical N-wave sonic boom signatures. Results were used to assess the relative performance of several metrics as loudness estimators for asymmetrical signatures and to quantify in detail the effects on subjective loudness of varying both the degree and direction of signature loudness asymmetry. Findings of the study indicated that Perceived Level (Steven's Mark 7) and A-weighted sound exposure level were the best metrics for quantifying asymmetrical boom loudness. Asymmetrical signatures were generally rated as being less loud than symmetrical signatures of equivalent Perceived Level. The magnitude of the loudness reductions increased as the degree of boom asymmetry increased, and depended upon the direction of asymmetry. These loudness reductions were not accounted for by any of the metrics. Corrections were determined for use in adjusting calculated Perceived Level values to account for these reductions. It was also demonstrated that the subjects generally incorporated the loudness components of the complete signatures when making their subjective judgments.

  8. A Quick Method for Evaluating the Merits of a Proposed Low Sonic Boom Concept

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2003-01-01

    The characteristics of a proposed low-boom aircraft concept cannot be adequately assessed unless it is given an extensive, time-consuming, mission-performance, and sonic-boom analyses. So, it would be useful to have a method for performing a quick first-order sonic-boom and mission-range analysis. The evaluation method outlined in this report has the attributes of being both fast and reasonably accurate. It can also be used as a design tool to estimate the sonic-boom ground overpressures, mission range, and beginning-cruise weight of a new low-boom concept during the first stages of preliminary design.

  9. Implications for high speed research: The relationship between sonic boom signature distortion and atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Gionfriddo, Thomas A.

    1994-01-01

    In this study there were two primary tasks. The first was to develop an algorithm for quantifying the distortion in a sonic boom. Such an algorithm should be somewhat automatic, with minimal human intervention. Once the algorithm was developed, it was used to test the hypothesis that the cause of a sonic boom distortion was due to atmospheric turbulence. This hypothesis testing was the second task. Using readily available sonic boom data, we statistically tested whether there was a correlation between the sonic boom distortion and the distance a boom traveled through atmospheric turbulence.

  10. A Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl A.

    2010-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft as a viable approach for designing a practical low-boom supersonic configuration. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. Tail lift is included to help tailor the aft portion of the ground signature. A comparison of low- and high-fidelity analysis results demonstrates the necessity of using computational fluid dynamics (CFD) analysis in a low-boom supersonic configuration design process. The fuselage shape is modified iteratively to obtain a configuration with a CFD equivalent-area distribution that matches a predetermined low-boom target distribution. The mixed-fidelity approach can easily refine the low-fidelity low-boom baseline into a low-boom configuration with the use of CFD equivalent-area analysis. The ground signature of the final configuration is calculated by using a state-of-the-art CFD-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the CFD equivalent-area distribution. This result confirms the validity of the low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  11. Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

    2011-01-01

    A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

  12. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean

  13. Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.

    2012-01-01

    This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.

  14. Design for a Unitary Graphite Composite Instrument Boom

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Sturm, James; Rossoni, Peter

    2004-01-01

    This paper describes development of a Unitary graphite composite instrument boom that incorporates carpenter-tape like hinges for stowage. While light and stiff, graphite composite is not ordinarily thought of as a flexible material. This design has taken advantage of the stiffness of the composite in tubular geometry, yet leveraged its thin- section behavior to place flexibility at the required locations. Key is the proprietary layup, which results in a tough yet flexible hinge capable of rotating over 90 degrees in each direction. When the boom deploys, there is enough torque to overcome parasitic resistance from harness, etc. It will snap to the fully extended, rigid shape. The design has addressed materials issues such as out-of-plane bending, edge cracking, and interlaminar ply separation.

  15. Aerodynamic Effects of a 24-foot Multisegmented Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.

    2008-01-01

    An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicate that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was conducted to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom's influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.

  16. Aerodynamic Effects of a 24-Foot, Multisegmented Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.

    2007-01-01

    An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicated that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was flown to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom s influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.

  17. Summary of recent NASA studies of human response to sonic booms.

    PubMed

    Leatherwood, Jack D; Sullivan, Brenda M; Shepherd, Kevin P; McCurdy, David A; Brown, Sherilyn A

    2002-01-01

    NASA Langley Research Center has conducted three groups of studies on human response to sonic booms: laboratory, "inhome," and field. The laboratory studies were designed to: (1) quantify loudness and annoyance response to a wide range of shaped sonic boom signatures and (2) assess several noise descriptors as estimators of sonic boom subjective effects. The studies were conducted using a sonic boom simulator capable of generating and playing, with high fidelity, both user-prescribed and recorded boom waveforms to test subjects. Results showed that sonic boom waveform shaping provided substantial reductions in loudness and annoyance and that perceived level was the best estimator of subjective effects. Booms having asymmetrical waveforms were found to be less loud than symmetrical waveforms of equivalent perceived level. Subjective responses to simulated ground-reflected waveforms were fully accounted for by perceived level. The inhome study presented participants with simulated sonic booms played within their normal home environment. The results showed that the equal energy theory of annoyance applied to a variety of multiple sonic boom exposures. The field studies concluded that sonic boom annoyance is greater than that in a conventional aircraft noise environment with the same continuous equivalent noise exposure. PMID:11837964

  18. Loudness and annoyance response to simulated outdoor and indoor sonic booms

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1993-01-01

    The sonic boom simulator of the Langley Research Center was used to quantify subjective loudness and annoyance response to simulated indoor and outdoor sonic boom signatures. The indoor signatures were derived from the outdoor signatures by application of house filters that approximated the noise reduction characteristics of a residential structure. Two indoor listening situations were simulated: one with the windows open and the other with the windows closed. Results were used to assess loudness and annoyance as sonic boom criterion measures and to evaluate several metrics as estimators of loudness and annoyance. The findings indicated that loudness and annoyance were equivalent criterion measures for outdoor booms but not for indoor booms. Annoyance scores for indoor booms were significantly higher than indoor loudness scores. Thus, annoyance was recommended as the criterion measure of choice for general use in assessing sonic boom subjective effects. Perceived level was determined to be the best estimator of annoyance for both indoor and outdoor booms, and of loudness for outdoor booms. It was recommended as the metric of choice for predicting sonic boom subjective effects.

  19. 4. VIEW FROM POINT OF BOOM LOOKING TOWARDS THE STERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW FROM POINT OF BOOM LOOKING TOWARDS THE STERN OF DREDGE. BOTH HALVES OF DIPPER STICK ARE IN FOREFRONT OF PICTURE. THE SADDLE BLOCK GOES THROUGH THE MIDDLE OF THE DIPPER STICK. ROLLERS, CALLED THE CAT HEADS, HELD THE DIPPER STICK RACK IRON TEETH IN MESH WITH THE PINION GEARS. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  20. Variability of measured sonic boom signatures. Volume 2: Data report

    NASA Technical Reports Server (NTRS)

    Elmer, K. R.; Joshi, M. C.

    1994-01-01

    Sonic boom signatures from two databases, the BOOMFILE and the XB-70, were analyzed in terms of C-weighted sound exposure level (CSEL), A-weighted sound exposure level (ASEL), and Stevens Mark VII perceived level (PLdB), as well as the more traditional peak positive overpressure and rise time. The variability of these parameters due to propagation through atmosphere was analyzed for different aircraft Mach number and altitude groups. The low Mach number/low altitude group had significantly greater variation in rise time, overpressure, and loudness level than the high Mach number/high altitude group. The loudness of measured booms were found to have a variation of up to 25 dB relative to the loudness of boom predicted for a non-turbulent atmosphere. This is due primarily to the steeper ray paths of the high Mach number/high altitude group and the corresponding shorter distances traveled by these rays through the lower atmosphere resulting in reduced refraction effects. The general trend of decreased overpressure and loudness level with increasing lateral distance was also seen. Sonic boom signatures from early morning flights had less variation in rise time and overpressure than afternoon flights because of reduced turbulence. Measures of asymmetry (difference between compression and expansion portion of the signature) showed that the variability in Delta loudness level was greater than the variability in Delta overpressure due to the large influence of turbulence on rise time. Lastly, analysis of data within 50 percent of lateral cutoff showed that the mean value for overpressure and loudness level was independent of time of day but that the frequency with which it occurred was greater in the morning. This is a clear indicator of increased turbulence in the afternoon.

  1. Variability of measured sonic boom signatures. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Elmer, K. R.; Joshi, M. C.

    1994-01-01

    Sonic boom signatures from two databases, the BOOMFILE and the XB-70, were analyzed in terms of C-weighted sound exposure level (CSEL), A-weighted sound exposure level (ASEL), and Stevens Mark VII perceived level (PLdB), as well as the more traditional peak positive overpressure and rise time. The variability of these parameters due to propagation through atmosphere was analyzed for different aircraft Mach number and altitude groups. The low Mach number/low altitude group had significantly greater variation in rise time, overpressure, and loudness level than the high Mach number/high altitude group. The loudness of measured booms were found to have a variation of up to 25 dB relative to the loudness of boom predicted for a non-turbulent atmosphere. This is due primarily to the steeper ray paths of the high Mach number/high altitude group and the corresponding shorter distances traveled by these rays through the lower atmosphere resulting in reduced refraction effects. The general trend of decreased overpressure and loudness level with increasing lateral distance was also seen. Sonic boom signatures from early morning flights had less variation in rise time and overpressure than afternoon flights because of reduced turbulence. Measures of asymmetry (difference between compression and expansion portion of the signature) showed that the variability in Delta loudness level was greater than the variability in Delta overpressure due to the large influence of turbulence on rise time. Lastly, analysis of data within 50 percent of lateral cutoff showed that the mean value for overpressure and loudness level was independent of time of day but that the frequency with which it occurred was greater in the morning. This is a clear indicator of increased turbulence in the afternoon.

  2. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  3. Influence of chair vibrations on indoor sonic boom annoyance

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-10-01

    One goal of NASA's Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  4. Large-Scale Low-Boom Inlet Test Overview

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie

    2011-01-01

    This presentation provides a high level overview of the Large-Scale Low-Boom Inlet Test and was presented at the Fundamental Aeronautics 2011 Technical Conference. In October 2010 a low-boom supersonic inlet concept with flow control was tested in the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). The primary objectives of the test were to evaluate the inlet stability and operability of a large-scale low-boom supersonic inlet concept by acquiring performance and flowfield validation data, as well as evaluate simple, passive, bleedless inlet boundary layer control options. During this effort two models were tested: a dual stream inlet intended to model potential flight hardware and a single stream design to study a zero-degree external cowl angle and to permit surface flow visualization of the vortex generator flow control on the internal centerbody surface. The tests were conducted by a team of researchers from NASA GRC, Gulfstream Aerospace Corporation, University of Illinois at Urbana-Champaign, and the University of Virginia

  5. Boom accomodation effects on plasma and field measurements with RPWI

    NASA Astrophysics Data System (ADS)

    Cervantes Correa, P.; Eriksson, A. I.; Wahlund, J.-E.; Odelstad, E.; Vaivads, A.; Bergman, J.

    2013-09-01

    While the JUICE spacecraft configuration and main contractor are yet to be decided, it is still possible to investigate general issues on the impact of various boom accomodation alternatives for measurements of plasma and electric fields using the Langmuir probe system of the Radio and Plasma Waves Investigation. These probes can be used as classical Langmuir probes, as electric field probes, or for mutual impedance measurements, and the impact of e.g. varying illumination and wake interference are different for each type of measurement. While there is a nominal JUICE trajectory for the main science mission, we have to do assumptions on the spacecraft pointing, e.g. nadir pointing during flybys of the various moons. The detailed spacecraft layout is not known, but we can arrive at general conclusions on the suitability of various boom accomodations by assuming a cube-like spacecraft with solar panels as rectangular wings. For disturbing structures like wakes and photoelectron clouds we use simple models based on previous simulations. Even though the detailed pointing and spacecraft design will quite certainly deviate from our assumptions, and the model has uncertainties also in other respects, we can still give some general conclusions on boom accomodation alternatives.

  6. Unstructured Grids for Sonic Boom Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Nayani, Sudheer N.

    2015-01-01

    An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.

  7. MMOC- MODIFIED METHOD OF CHARACTERISTICS SONIC BOOM EXTRAPOLATION

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    The Modified Method of Characteristics Sonic Boom Extrapolation program (MMOC) is a sonic boom propagation method which includes shock coalescence and incorporates the effects of asymmetry due to volume and lift. MMOC numerically integrates nonlinear equations from data at a finite distance from an airplane configuration at flight altitude to yield the sonic boom pressure signature at ground level. MMOC accounts for variations in entropy, enthalpy, and gravity for nonlinear effects near the aircraft, allowing extrapolation to begin nearer the body than in previous methods. This feature permits wind tunnel sonic boom models of up to three feet in length, enabling more detailed, realistic models than the previous six-inch sizes. It has been shown that elongated airplanes flying at high altitude and high Mach numbers can produce an acceptably low sonic boom. Shock coalescence in MMOC includes three-dimensional effects. The method is based on an axisymmetric solution with asymmetric effects determined by circumferential derivatives of the standard shock equations. Bow shocks and embedded shocks can be included in the near-field. The method of characteristics approach in MMOC allows large computational steps in the radial direction without loss of accuracy. MMOC is a propagation method rather than a predictive program. Thus input data (the flow field on a cylindrical surface at approximately one body length from the axis) must be supplied from calculations or experimental results. The MMOC package contains a uniform atmosphere pressure field program and interpolation routines for computing the required flow field data. Other user supplied input to MMOC includes Mach number, flow angles, and temperature. MMOC output tabulates locations of bow shocks and embedded shocks. When the calculations reach ground level, the overpressure and distance are printed, allowing the user to plot the pressure signature. MMOC is written in FORTRAN IV for batch execution and has been

  8. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  9. A study of loudness as a metric for sonic boom acceptability

    NASA Technical Reports Server (NTRS)

    Needleman, Kathy E.; Darden, Christine M.; Mack, Robert J.

    1991-01-01

    A parametric study of loudness levels with respect to weight, altitude, and Mach number for sonic boom signatures generated by two Mach 2.0 conceptual configurations is presented and compared with a similar study for nose shock overpressure. This paper discusses the relative importance of the two sonic boom metrics and the implications of the trends shown. Of the two configurations considered in this study, one was designed for optimum aerodynamic performance and the second was designed to produce a constrained overpressure sonic boom signature at cruise flight conditions. Results indicate that reductions in both loudness and overpressure level are possible when the configuration is shaped to produce a low boom signature. Results also prove that the loudness metric is a more reliable measure of the disturbance due to sonic booms than nose shock overpressure, because the overpressure does not include the sometimes significant effects of embedded shocks which are often present in mid-field low boom signatures.

  10. The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1996-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.

  11. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  12. Space Shuttle Orbiter crash and rescue information - Basic characteristics of the Space Shuttle system

    NASA Technical Reports Server (NTRS)

    Gray, N. C.

    1976-01-01

    Major fire and rescue activity procedures developed for the Space Shuttle Orbiter are reproduced, together with diagrams of the Orbiter's ejection seat and of emergency egress-ingress hatches and blowout panels. Duties assigned to the Manager of the Fire, Crash and Rescue division of the Space Shuttle Program are discussed, including training of both ground and flight personnel in accordance with the Orbiter Crash Rescue Information manual. The special problem of providing a means of egress and rescue for the flight and ground crews of the Orbiter while it is in the piggyback configuration on top the Boeing 747 carrier was solved by use of a modified 85-foot articulated boom.

  13. Comparisons of Methods for Predicting Community Annoyance Due to Sonic Booms

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1996-01-01

    Two approaches to the prediction of community response to sonic boom exposure are examined and compared. The first approach is based on the wealth of data concerning community response to common transportation noises coupled with results of a sonic boom/aircraft noise comparison study. The second approach is based on limited field studies of community response to sonic booms. Substantial differences between indoor and outdoor listening conditions are observed. Reasonable agreement is observed between predicted community responses and available measured responses.

  14. A precision six-meter deployable boom for the Mariner-Venus-Mercury 1973 magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Burdick, H. F.

    1975-01-01

    A unique deployable boom developed for accurately positioning magnetometers 6 meters (19.7 feet) from a spacecraft is described. Weight, mounting system, magnetic cleanliness, thermal dimensional stability, and natural frequency were critical constraints that were met. The boom was flown on Mariner 10 and deployed flawlessly. The design, development, and testing of the boom and optical alignment of the sensors are described. Design trades and problem solutions are discussed.

  15. Predicting transmission of shaped sonic booms into a residential house structure.

    PubMed

    Sizov, Natalia V; Plotkin, Kenneth J; Hobbs, Christopher M

    2010-06-01

    Human perception of sonic booms is a major impediment to commercial supersonic flight. Shaping, which reduces the audible shock waves of a boom, can make outdoor perception of booms acceptable. Perception of sonic booms experienced indoors is of concern, and it is not yet established whether shaped booms offer benefit to indoor listeners. A better understanding of the transmission of shaped booms into building structures is needed. In the authors' earlier work the vibration response of house elements subjected to different sonic boom wave shapes was evaluated using a single degree of freedom model. This paper expands that approach with a modal analysis model. The acceleration of building elements and the resulting sound pressure inside a room are computed in the time and frequency domains. Analytical results are compared with experimental data measured by NASA during sonic boom tests conducted at Edwards Air Force Base in 2007. The effects of wave signature parameters on transmission are studied to evaluate the advantages of various kinds of minimized boom shapes.

  16. Some effects of applying sonic boom minimization to supersonic cruise aircraft design

    NASA Technical Reports Server (NTRS)

    Mack, R. J.; Darden, C. M.

    1979-01-01

    This paper presents a discussion of an aircraft shaping method to control sonic boom over-pressure levels along with the analysis of wind-tunnel data which validated the method. The results indicate that the sonic boom minimization method can guide the design team choices of aircraft planform and component arrangement toward a low-boom-level configuration while permitting sufficient freedom and flexibility to satisfy other design criteria. Further, it is shown that off-design flight conditions do not drastically change the overpressure sonic boom shape and strength.

  17. Progress in Sonic-Boom Understanding: Lessons Learned and Next Steps

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1999-01-01

    In January 1988, representatives from NASA, NOAA, academia, and industry gathered at the NASA Langley Research Center to assess the status of understanding of the sonic boom which accompanies supersonic flight. As a result of that meeting, a research program on sonic boom within the NASA High-Speed Research (HSR) Program was implemented. This paper discusses the elements of the sonic-boom program, progress which has been made since 1988, and the current change in direction for the Sonic-Boom Element of the NASA HSR Program.

  18. Predicting transmission of shaped sonic booms into a residential house structure.

    PubMed

    Sizov, Natalia V; Plotkin, Kenneth J; Hobbs, Christopher M

    2010-06-01

    Human perception of sonic booms is a major impediment to commercial supersonic flight. Shaping, which reduces the audible shock waves of a boom, can make outdoor perception of booms acceptable. Perception of sonic booms experienced indoors is of concern, and it is not yet established whether shaped booms offer benefit to indoor listeners. A better understanding of the transmission of shaped booms into building structures is needed. In the authors' earlier work the vibration response of house elements subjected to different sonic boom wave shapes was evaluated using a single degree of freedom model. This paper expands that approach with a modal analysis model. The acceleration of building elements and the resulting sound pressure inside a room are computed in the time and frequency domains. Analytical results are compared with experimental data measured by NASA during sonic boom tests conducted at Edwards Air Force Base in 2007. The effects of wave signature parameters on transmission are studied to evaluate the advantages of various kinds of minimized boom shapes. PMID:20550235

  19. Reactions of Residents to Long-Term Sonic Boom Noise Environments

    NASA Technical Reports Server (NTRS)

    Fields, James M.

    1997-01-01

    A combined social survey and noise measurement program has been completed in 14 communities in two regions of the western United States that have been regularly exposed to sonic booms for many years. A total of 1,573 interviews were completed. Three aspects of the sonic booms are most disturbing: being startled, noticing rattles or vibrations, and being concerned about the possibility of damage from the booms. Sonic boom annoyance is greater than that in a conventional aircraft environment with the same continuous equivalent noise exposure. The reactions in the two study regions differ in severity.

  20. The baby boom, the baby bust, and the housing market.

    PubMed

    Mankiw, N G; Weil, D N

    1989-05-01

    This paper explores the impact of demographic changes on the housing market in the US, 1st by reviewing the facts about the Baby Boom, 2nd by linking age and housing demand using census data for 1970 and 1980, 3rd by computing the effect of demand on price of housing and on the quantity of residential capital, and last by constructing a theoretical model to plot the predictability of the jump in demand caused by the Baby Boom. The Baby Boom in the U.S. lasted from 1946-1964, with a peak in 1957 when 4.3 million babies were born. In 1980 19.7% of the population were aged 20-30, compared to 13.3% in 1960. Demand for housing was modeled for a given household from census data, resulting in the finding that demand rises sharply at age 20-30, then declines after age 40 by 1% per year. Thus between 1970 and 1980 the real value of housing for an adult at any given age jumped 50%, while the real disposable personal income per capita rose 22%. The structure of demand is such that the swelling in the rate of growth in housing demand peaked in 1980, with a rate of 1.66% per year. Housing demand and real price of housing were highly correlated and inelastic. If this relationship holds in the future, the real price of housing should fall about 3% per year, or 47% by 2007. The theoretical model, a variation of the Poterba model, ignoring inflation and taxation, suggests that fluctuations in prices caused by changes in demand are not foreseen by the market, even though they are predictable in principle 20 years in advance. As the effects of falling housing prices become apparent, there may be a potential for economic instability, but people may be induced to save more because their homes will no longer provide the funds for retirement.

  1. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  2. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  3. The development of a sonic boom simulator with detonable gases

    NASA Technical Reports Server (NTRS)

    Strugielski, R. T.; Fugelso, L. E.; Holmes, L. B.; Byrne, W. J.

    1971-01-01

    A sonic boom pressure profile was simulated in the far-field by detonation of a methane-oxygen mixture contained in a slender, shaped Mylar envelope. Ideal N-waves were synthesized with peak overpressures from two to five psf and durations of 30 to 75 milliseconds. The detonation of the gas mixture was initiated by a single Primacord strand running the length of balloon. The N-wave producing balloon was synthesized as a composite structure, utilizing experimental pressure profiles obtained from the detonations of slender, axisymmetric balloons with elementary, non-cylindrical shapes.

  4. Pendulation control system and method for rotary boom cranes

    DOEpatents

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  5. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect

    Not Available

    1992-11-16

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  6. Colorado's energy boom: impact on crime and criminal justice

    SciTech Connect

    Not Available

    1981-02-01

    Information is reported on the impact of rapid energy development on western slope criminal justice agencies. The focus is on crime rates, law enforcement, the courts, and juvenile justice problems. The problems that are likely to develop and what might be done to minimize the negative consequences are analyzed. The social characteristics of boom towns and the changes resulting from rapid growth, the changes in crime rates, the impact experienced by law enforcement agencies and the courts, and information on planning and funding in impact areas are described. (MCW)

  7. Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph

    2015-01-01

    An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.

  8. Nacelle and forebody considerations in design for reduced sonic boom

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1992-01-01

    Several aspects of designing for reduced sonic boom were investigated to assess the adequacy of the conventional modified linear theory. For a simple test case of a nacelle with a small forecowl angle (2 degrees) mounted below a flat plate, the linear theory compared favorably for a case with simulated nacelle lift and for a computational fluid dynamics (CFD) analysis. In a second study, several methods of analyzing the area distribution due to volume were examined. And finally, in a preliminary study, the effect of forebody shape on the rise time of the bow shock was investigated, indicating a significant increase (several msec) can be obtained by proper forebody shaping.

  9. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  10. Display Provides Pilots with Real-Time Sonic-Boom Information

    NASA Technical Reports Server (NTRS)

    Haering, Ed; Plotkin, Ken

    2013-01-01

    Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.

  11. America's Baby Boom Generation: The Fateful Bulge. Population Bulletin. Vol. 35, No. 1. April 1980.

    ERIC Educational Resources Information Center

    Bouvier, Leon F.

    This bulletin examines the baby boom, its causes, its size, and its impact on U.S. society. Nearly 42 million births occurred in the U.S. from 1955 to 1964. Several reasons are given for this baby boom which interrupted a century long fertility decline. Demographically the primary causes were more people marrying and having at least two children…

  12. Human Response to Low-Intensity Sonic Booms Heard Indoors and Outdoors

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Klos, Jacob; Buehrle, Ralph D.; McCurdy, David A.; Haering, Edward A., Jr.

    2010-01-01

    Test subjects seated inside and outside a house were exposed to low-intensity N-wave sonic booms during a 3-week test period in June 2006- The house was instrumented to measure the booms both inside and out. F-18 aircraft were flown to achieve a variety of boom overpressures from approximately .1 to .6 psf During four test days, seventy-seven test subjects heard the booms while seated inside and outside the house. Using the Magnitude Estimation methodology and artificial reference sounds ; the subjects rated the annoyance of the booms. Since the same subjects heard similar booms both inside and outside the house, comparative ratings of indoor and outdoor annoyance were obtained. For a given metric level, indoor subjects gave higher annoyance scores than outdoor subjects. For a given boom; annoyance scores inside were on average the same as those outside. In a post-test questionnaire, the majority of subjects rated the indoor booms as more annoying than the outdoor ones. These results are discussed in this paper.

  13. Assessment and design of low boom configurations for supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Shepherd, Kevin P.

    1992-01-01

    A review is presented of presently utilized sonic boom prediction and minimization techniques. The three-pronged approach - acceptability studies, atmospheric propagation studies, and configuration design and operation, to the sonic boom problem as an element of the High Speed Research Program are discussed. Experimental and theoretical results of concepts designed to validate present minimization methods are given.

  14. Sonic boom measurement test plan for Space Shuttle STS-2 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1981-01-01

    Procedures and system specifications associated with the space shuttle STS-2 sonic boom measurement program are described. Specifically included are details such as mobile data acquisition station locations, measurement systems calibration levels, predicted sonic boom overpressure levels, overpressure level assignment for each data acquisition station, data recording times on and off, universal coordinate time, and measurement system descriptions.

  15. A laboratory study of subjective response to sonic booms measured at White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Leatherwood, Jack D.

    1993-01-01

    The Sonic Boom Simulator of the Langley Research Center was used to quantify subjective loudness response to boom signatures consisting of: (1) simulator reproductions of booms recently recorded at White Sands Missile Range; (2) idealized N-waves; and (3) idealized booms having intermediate shocks. The booms with intermediate shocks represented signatures derived from CFD predictions. The recorded booms represented those generated by F15 and T38 aircraft flyovers and represented a variety of waveforms reflecting the effects of propagation through a turbulent atmosphere. These waveforms included the following shape categories: N-waves, peaked, rounded, and U-shaped. Results showed that Perceived Level and Zwicker Loudness Level were good estimators of the loudness of turbulence modified sonic booms. No significant differences were observed between loudness responses for the several shape categories when expressed in terms of Perceived Level. Thus, Perceived Level effectively accounted for waveform differences due to turbulence. Idealized booms with intermediate shocks, however, were rated as being approximately 2.7 dB(PL) less loud than the recorded signatures. This difference was not accounted for by PL.

  16. Simple atmospheric perturbation models for sonic-boom-signature distortion studies

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.

    1994-01-01

    Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.

  17. Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl

    2011-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft with a focus on fuselage shaping.A low-boom configuration that is based on low-fidelity analysis is used as the baseline. The fuselage shape is modified iteratively to obtain a configuration with an equivalent-area distribution derived from computational fluid dynamics analysis that attempts to match a predetermined low-boom target area distribution and also yields a low-boom ground signature. The ground signature of the final configuration is calculated by using a state-of-the-art computational-fluid-dynamics-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the computational fluid dynamics equivalent-area distribution. This result supports the validity of low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  18. What Do We Know: The Impact of the Baby Boom Echo.

    ERIC Educational Resources Information Center

    Mid-Atlantic Lab. for Student Success, Philadelphia, PA.

    The dramatic increase in the number of births after World War II, the "baby boom," lasted until the early 1960s. Another surge in births was recorded in 1977, the start of the baby boom echo. However, the number of births is not expected to decline again, with long-range projections indicating a rising number of births over the coming decades.…

  19. On the Cusp: A School District and Two Communities Respond to an Oil Pre-Boom

    ERIC Educational Resources Information Center

    Genareo, Vincent Roman

    2013-01-01

    This case study is an investigation of the attitudes, perceptions, and reactions of school staff and community members in a rural pre-boom school district. In the early stage of an oil boom, real and perceived disruptions commonly occur in the schools and communities that are affected. The preparations and responses that residents make to the…

  20. The Impact of the Baby Boom Echo on U.S. Public School Enrollments. Issue Brief.

    ERIC Educational Resources Information Center

    Bare, John

    Children of the Baby Boom generation have set off a population explosion in U.S. schools. This dramatic enrollment growth, known as the Baby Boom echo, began in the nation's elementary schools in 1984, and elementary enrollment has increased annually since then. At the secondary level, enrollment increases began in 1991 and are expected to…

  1. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    PubMed

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level.

  2. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    PubMed

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. PMID:21895057

  3. Underwater measurements and modeling of a sonic boom.

    PubMed

    Desharnais, Francine; Chapman, David M F

    2002-01-01

    During a sea trial on the Scotian Shelf, acoustic signals from a sonic boom were recorded on 11 hydrophones of a vertical array. The array spanned the lower 50 m of the water column above a sand bank at 76 m water depth. The source of the sonic boom was deduced to be a Concorde supersonic airliner traveling at about Mach 2. The waterborne waveform was observed to decay as an evanescent wave below the sea surface, as expected. The calm weather (sea state 1) resulted in low ambient noise and low self-noise at the hydrophones, and good signal-to-noise ratio on the upper hydrophones; however, the decreased signal amplitude is more difficult to detect towards the lower part of the water column. The period of the observed waveform is of the order 0.23 s, corresponding to a peak frequency of about 3 Hz. The shape of the measured waveform differs noticeably from the theoretical N-shape waveform predicted with Sawyers' theory [J. Acoust. Soc. Am. 44, 523-524 (1968)]. A simple shallow-ocean geoacoustic model suggests that this effect may be caused in part by seismo-acoustic interaction of the infrasonic waves with the elastic sediments that form the seabed. PMID:11858149

  4. Sonic Boom Propagation Codes Validated by Flight Test

    NASA Technical Reports Server (NTRS)

    Poling, Hugh W.

    1996-01-01

    The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS, implement current theory on air absorption using different computational concepts. Review of the codes with a realistic atmosphere model confirm the agreement of propagation results reported by others for idealized propagation conditions. ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred for practical aircraft analysis. The ZEPHYRUS code was used to propagate sonic boom waveforms measured approximately 1000 feet away from an SR-71 aircraft flying at Mach 1.25 to 5000 feet away. These extrapolated signatures were compared to measurements at 5000 feet. Pressure values of the significant shocks (bow, canopy, inlet and tail) in the waveforms are consistent between extrapolation and measurement. Of particular interest is that four (independent) measurements taken under the aircraft centerline converge to the same extrapolated result despite differences in measurement conditions. Agreement between extrapolated and measured signature duration is prevented by measured duration of the 5000 foot signatures either much longer or shorter than would be expected. The duration anomalies may be due to signature probing not sufficiently parallel to the aircraft flight direction.

  5. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  6. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  7. Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie

    2007-01-01

    In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.

  8. Reactions to sonic booms: a report of two studies and a general evaluation of startle effects.

    PubMed

    Thackray, R I; Touchstone, R M; Bailey, J P

    1975-04-01

    Two separate studies are reported. The first attempted to determine a sonic boom level below which startle would not occurr. Subjects were exposed indoors to six simulated sonic booms having outside overpressures of 50, 30, and 16 N/m-2 (inside levels of 74, 71, and 65 dBA). Approximately 20% of the subjects gave small arm-hand responses to the two higher exposure levels, while none responded to the lowest level. In the second study, subjects were exposed indoors to a series of 12 simulated booms in order to assess habituation effects. Outside overpressures were 130 and 50 N/m-2 (indoor levels of 81 and 72 dBA). Significant, but not complete, habituation occurred to booms of both levels. Autonomic and eyeblink responses, as well as ratings of annoyance, were obtained in both studies. The final section summarizes the expected behavioral, autonomic, and subjective effects of exposure to various levels of sonic booms. PMID:1147871

  9. A Study in a New Test Facility on Indoor Annoyance Caused by Sonic Booms

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2012-01-01

    A sonic-boom simulator at NASA Langley Research Center has been constructed to research the indoor human response to low-amplitude sonic booms. The research goal is the development of a psychoacoustic model for individual sonic booms to be validated by future community studies. The study in this report assessed the suitability of existing noise metrics for predicting indoor human annoyance. The test signals included a wide range of synthesized and recorded sonic-boom waveforms. Results indicated that no noise metric predicts indoor annoyance to sonic-boom sounds better than Perceived Level, PL. During the study it became apparent that structural vibrations induced by the test signals were contributing to annoyance, so the relationship between sound and vibration at levels of equivalent annoyance has been quantified.

  10. Application of magnitude estimation scaling to the assessment of subjective loudness response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Mcdaniel, S.; Leatherwood, J. D.; Sullivan, B. M.

    1992-01-01

    A laboratory study was conducted for the following reasons: (1) to investigate the application of magnitude estimation scaling for evaluating the subjective loudness of sonic booms; and (2) to compare the relative merits of magnitude estimation and numerical category scaling for sonic boom loudness evaluation. The study was conducted in the NASA LeRC's sonic boom simulator and used a total of 80 test subjects (48 for magnitude estimation and 32 for numerical category scaling). Results demonstrated that magnitude estimation was a practical and effective method for quantifying subjective loudness of sonic booms. When using magnitude estimation, the subjects made valid and consistent ratio judgments of sonic boom loudness irrespective of the frequency of presentation of the standard stimulus. Presentation of the standard as every fourth stimulus was preferred by the subjects and is recommended as the standard presentation frequency to be used in future tests.

  11. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  12. Feasibility of Supersonic Aircraft Concepts for Low-Boom and Flight Trim Constraints

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2015-01-01

    This paper documents a process for analyzing whether a particular supersonic aircraft configuration layout and a given cruise condition are feasible to achieve a trimmed low-boom design. This process was motivated by the need to know whether a particular configuration at a given cruise condition could be reshaped to satisfy both low-boom and flight trim constraints. Without such a process, much effort could be wasted on shaping a configuration layout at a cruise condition that could never satisfy both low-boom and flight trim constraints simultaneously. The process helps to exclude infeasible configuration layouts with minimum effort and allows a designer to develop trimmed low-boom concepts more effectively. A notional low-boom supersonic demonstrator concept is used to illustrate the analysis/design process.

  13. Effect of sonic boom on avalanches. Preparation for flight of a supersonic jet over the Lavay Valley

    NASA Technical Reports Server (NTRS)

    Schaffar, M.; Carrie, B.; Amardeil, P.

    1986-01-01

    An experiment to determine the effect of sonic booms on the stability of the snow mantle in the Lavey Valley is proposed. It includes provisions for the aircraft trajectory, line of fucus, boom zone, as well as the determination of boom intensity levels for the whole valley.

  14. [Orbital varices].

    PubMed

    Seceleanu, Andreea; Szabo, I; Călugăru, M; Dudea, S M; Preda, D

    2004-01-01

    The purpose of this study was to point out a case with orbital venous abnormalities at the left eye, associated with varices of the legs. The clinical picture of this case was: intermittent exophthalmos, venous malformations at the level of the lids and episclera, elevated ocular pressure. All this signs reveal an abnormality at the level of venous wall, indicating a constitutional weakness of the venous system. The case was investigated by imagistic methods: ultrasound examination, Doppler -ultrasound and magnetic resonance imaging. According to the facts offered by clinical and imagistic investigation this case can be included into the first type of orbital varices, associated with secondary glaucoma provoked by an elevated episcleral venous pressure. PMID:15598045

  15. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  16. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  17. Surface Waviness Influence on Submarine Sonic Boom Penetration

    NASA Astrophysics Data System (ADS)

    Cheng, H. K.; Lee, C. J.

    1997-11-01

    Interaction of incident sonic-boom waves with a wavy ocean can profoundly influence noise penetration under water, and may have impact on the ocean environment. The study exploits the extremely high water-to-air density ratio and a small departure (in slope) from a flat-ocean model. The time-dependent analysis for a sinusoidal surface-wave train, carried out in the Gallilian frame moving with the supersonic aircraft, yields a continuous wave-number spectrum for the submarine response. Applying the stationary-phase principle and by numerical evalution of the inverse Fourier transform, a re-enforcing mechanism is found to significantly reduce the signal attenuation rate, which renders the interaction an effect of the first-order importance and overwhelms the flat-surface wavefield at large depth. Examples are discussed to assess the significance/relevance of the interaction effects.

  18. Active control of shocks and sonic boom ground signal

    NASA Astrophysics Data System (ADS)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  19. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  20. Subjective response of people to simulated sonic booms in their homes

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    2004-09-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term ``10 * log(number of occurrences)'' to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.

  1. Laboratory Headphone Studies of Human Response to Low-Amplitude Sonic Booms and Rattle Heard Indoors

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Sullivan, Brenda M.; Klos, Jacob; Rathsam, Jonathan; Gavin, Joseph R.

    2013-01-01

    Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented.

  2. Subjective response of people to simulated sonic booms in their homes.

    PubMed

    McCurdy, David A; Brown, Sherilyn A; Hilliard, R David

    2004-09-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics. PMID:15478423

  3. Full-Carpet Design of a Low-Boom Demonstrator Concept

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Wintzer, Mathias; Rallabhandi, Sriram K.

    2015-01-01

    The Cart3D adjoint-based design framework is used to mitigate the undesirable o -track sonic boom properties of a demonstrator concept designed for low-boom directly under the flight path. First, the requirements of a Cart3D design mesh are determined using a high-fidelity mesh adapted to minimize the discretization error of the CFD analysis. Low-boom equivalent area targets are then generated at the under-track and one off-track azimuthal position for the baseline configuration. The under-track target is generated using a trim- feasible low-boom target generation process, ensuring that the final design is not only low-boom, but also trimmed at the specified flight condition. The o -track equivalent area target is generated by minimizing the A-weighted loudness using an efficient adjoint-based approach. The configuration outer mold line is then parameterized and optimized to match the off-body pressure distributions prescribed by the low-boom targets. The numerical optimizer uses design gradients which are calculated using the Cart3D adjoint- based design capability. Optimization constraints are placed on the geometry to satisfy structural feasibility. The low-boom properties of the final design are verified using the adaptive meshing approach. This analysis quantifies the error associated with the CFD mesh that is used for design. Finally, an alternate mesh construction and target positioning approach offering greater computational efficiency is demonstrated and verified.

  4. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  5. CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2009-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy, grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex. Although the one-dimensional isentropic nozzle plume results look reasonable, they fail to capture the sonic boom shock train in the highly underexpanded nozzle flow.

  6. Subjective response of people to simulated sonic booms in their homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    2004-01-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.

  7. Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1973-01-01

    The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.

  8. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  9. An in-home study of subjective response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    1994-01-01

    The proposed development of a second-generation supersonic commercial transport has resulted in increased research efforts to provide an environmentally acceptable aircraft. One of the environmental issues is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonically over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public and could possibly permit overland supersonic flight. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' rating and can be placed and operated in individuals' homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment.

  10. Subjective response to sonic booms having different shapes, rise times, and durations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1994-01-01

    Two laboratory experiments were conducted to quantify the subjective response of people to simulated outdoor sonic booms having different pressure signatures. The specific objectives of the experiments were to compare subjective response to sonic booms when described in terms of 'loudness' and 'annoyance'; to determine the ability of various noise metrics to predict subjective response to sonic booms; to determine the effects on subjective response of rise time, duration, and level; and to compare the subjective response to 'N-wave' sonic boom signatures with the subjective response to 'minimized' sonic boom signatures. The experiments were conducted in a computer-controlled, man-rated sonic boom simulator capable of reproducing user-specified pressure signatures for a wide range of sonic boom parameters. One hundred and fifty sonic booms representing different combinations of two wave shapes, four rise times, seven durations, and three peak overpressures were presented to 36 test subjects in each experiment. The test subjects in the first experiment made judgments of 'loudness' while the test subjects in the second experiment judged 'annoyance.' Subjective response to sonic booms was the same whether expressed in terms of loudness or in terms of annoyance. Analyses of several different noise metrics indicated that A-weighted sound exposure level and Perceived Level were the best predictors of subjective response. Further analyses indicated that, of these two noise metrics, only Perceived Level completely accounted for the effects of wave shape, rise time, and peak overpressure. Neither metric fully accounted for the effect of duration. However, the magnitude of the duration effect was small over the very wide range of durations considered.

  11. Economic booms and risky sexual behavior: evidence from Zambian copper mining cities.

    PubMed

    Wilson, Nicholas

    2012-12-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results suggest that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper mining cities. These effects were partly concentrated among young adults and copper boom induced in-migration to mining cities appears to have contributed to these reductions.

  12. Remediation of floating, open water oil spills: Comparative efficacy of commercially available polypropylene sorbent booms

    NASA Astrophysics Data System (ADS)

    Schrader, Ed L.

    1991-03-01

    Several complex methods of remediation are applied to open water oil spills. Sorbing the liquid hydrocarbons with polypropylene booms is an effective and less complex means of treating such events. There are, however, a variety of commercially available booms which display different performances in sorbing different viscosity hydrocarbons. There is no acceptable A.S.T.M. protocol to evaluate these booms for performance efficiency in various weather and hydrocarbon viscosity scenarios. The current paper proposes such a protocol and evaluates the most commonly used sorbent products with the new test procedures. Nine specific performance criteria, based on actual field applications, are demonstrated.

  13. Sonic boom measurement test plan for Space Shuttle STS-1 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1981-01-01

    Formal documentation for measurement procedures and system specifications, and general information are relating to the Space Shuttle STS-1 Sonic Boom Measurement Program are supplied. This test plan is designed to provide information, guidance, and assignment of responsibilities for the acquisition of sonic boom and atmospheric measurements, timing correlation, communications and other necessary supporting tasks. Specifically included are details such as mobile data acquisition station locations, measurement systems calibration levels, predicted sonic boom overpressure levels, overpressure level assignment for each data acquisition station, data recording times on and off, universal coordinated time, and measurement system descriptions.

  14. Sonic boom measurement test plan for Space Shuttle STS-4 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1982-01-01

    Formal documentation for measurement procedures and system specifications, and general information relating to the Space Shuttle STS-4 Sonic Boom Measurement Program are supplied. This test plan is designed to provide information, guidance, and assignment of responsibilities for the acquisition of sonic boom and atmospheric measurements, timing correlation, communications and other necessary supporting tasks. Specifically included are details such as mobile data acquisition station locations, measurement systems calibration levels, predicted sonic boom overpressure levels, overpressure level assignment for each data acquisition station, data recording times on and off, universal coordinated time, and measurement system descriptions.

  15. Laboratory study of sonic booms and their scaling laws. [ballistic range simulation

    NASA Technical Reports Server (NTRS)

    Toong, T. Y.

    1974-01-01

    This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.

  16. Noise and sonic-boom impact technology. BOOMAP2 computer program for sonic-boom research. Volume 1. Technical report. Final report, July 1986-November 1987

    SciTech Connect

    Wilby, E.G.; Haber, J.M.; Bishop, D.E.

    1988-08-01

    The BOOMAP2 and MOAOPS computer programs analyze noise from supersonic aircraft-operations by extracting information from the ACMI/TACTS computer tapes. The MOAOPS program extracts information from a TACTS/ACMI mission standard data tape and compiles a computer library of information concerning the supersonic operations. The BOOMAP2 program utilizes the library produced by the MOAOPS program. The program calculates various statistics on the supersonic operations and calculates expected sonic boom levels on the ground based on the extracted information. BOOMAP2 can: (1) generate various spatial/temporal distribution statistics; (2) interface with sonic-boom generation and propagation models; (3) calculate the intensity and location of sonic booms reaching the ground; and (4) provide the data file used by a commercial graphical software package, GRCP, to plot contours of boom exposure in units of average peak overpressure or C-weighted day-night average sound level (CDNL). These two programs, when used with an adequate library of aircraft sorties from Military Operating Areas, can be an invaluable tool for environmental planning purposes to predict boom intensity, frequency, and distribution. This report describes the technical basis for the BOOMAP2 program developed under this contract.

  17. Hermes Global Orbiter: a Discovery mission in gestation.

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Horn, L. J.; Weiss, J. R.; Smythe, W. D.

    The Hermes Global Orbiter (HGO) is a Discovery class mission under study, which is investigating the possibility of placing a small spacecraft in highly elliptical polar orbit about Mercury. The purpose of the mission is to conduct observations of the planet's surface, atmosphere and magnetosphere. The prospective mission calls for the spacecraft to be in Mercury orbit for one Earth year. The payload contains four subsystems: a multispectral imaging camera, an ultraviolet spectrometer, a lidar, and a magnetic field and plasma, experiment. The first three subsystems are mounted on a single axis scan platform and the magnetic field and plasma experiment is boom deployed. This payload is capable of making observations that address a number of fundamental questions about Mercury and its role as the planet which condensed in the hottest region of the solar nebula.

  18. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  19. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  20. MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.

    2005-01-01

    To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.

  1. A study of the limitations of linear theory methods as applied to sonic boom calculations

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1990-01-01

    Current sonic boom minimization theories have been reviewed to emphasize the capabilities and flexibilities of the methods. Flexibility is important because it is necessary for the designer to meet optimized area constraints while reducing the impact on vehicle aerodynamic performance. Preliminary comparisons of sonic booms predicted for two Mach 3 concepts illustrate the benefits of shaping. Finally, for very simple bodies of revolution, sonic boom predictions were made using two methods - a modified linear theory method and a nonlinear method - for signature shapes which were both farfield N-waves and midfield waves. Preliminary analysis on these simple bodies verified that current modified linear theory prediction methods become inadequate for predicting midfield signatures for Mach numbers above 3. The importance of impulse is sonic boom disturbance and the importance of three-dimensional effects which could not be simulated with the bodies of revolution will determine the validity of current modified linear theory methods in predicting midfield signatures at lower Mach numbers.

  2. Study to determine seismic response of sonic boom-coupled Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Legg, Mark R.; Haber, Jerold M.

    1990-05-01

    A literature search was performed regarding the seismic effects of sonic booms with emphasis on the coupled Rayleigh wave resonance phenomenon. The literature search covered 3 primary sources of information: (1) Air Force Environmental Impact Assessment Documents, (2) litigation and claims, and (3) open scientific literature. The literature regarding sonic boom structural damage was reviewed under Task Order 0010. The investigations of seismic waves induced by sonic booms found the amplitudes of the ground motion insufficient to damage structures. Few instances were reported, however, where the actual resonant conditions of the sonic boom-coupled Rayleigh wave were observed. The ground motion amplification accompanying the resonance documented in these cases did not reach damaging levels. Nevertheless, it is theoretically possible that conditions exist which could result in damaging levels of ground shaking. In order to define under what specific conditions, if any, such resonance could occur, an additional literature review was conducted.

  3. View south of boom structure of 350ton crane with pintle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south of boom structure of 350-ton crane with pintle in foreground. - Naval Base Philadelphia-Philadelphia Naval Shipyard, 350-Ton Hammerhead Crane, League Island, Philadelphia, Philadelphia County, PA

  4. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  5. A NASTRAN investigation of simulated projectile damage effects on a UH-1B tail boom model

    NASA Technical Reports Server (NTRS)

    Futterer, A. T.

    1980-01-01

    A NASTRAN model of a UH-1B tail boom that had been designed for another project was used to investigate the effect on structural integrity of simulated projectile damage. Elements representing skin, and sections of stringers, longerons and bulkheads were systematically deleted to represent projectile damage. The structure was loaded in a manner to represent the flight loads that would be imposed on the tail boom at a 130 knot cruise. The deflection of four points on the rear of the tail boom relative to the position of these points for the unloaded, undamaged condition of the tail boom was used as a measure of the loss of structural rigidity. The same procedure was then used with the material properties of the aluminum alloys replaced with the material properties of T300/5208 high strength graphite/epoxy fibrous composite material, (0, + or - 45, 90)s for the skin and (0, + or - 45)s for the longerons, stringers, and bulk heads.

  6. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-01-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  7. Residents' reactions to long-term sonic boom exposure: Preliminary results

    NASA Technical Reports Server (NTRS)

    Fields, James M.; Moulton, Carey; Baumgartner, Robert M.; Thomas, Jeff

    1994-01-01

    This presentation is about residents' reactions to sonic booms in a long-term sonic boom exposure environment. Although two phases of the data collection have been completed, the analysis of the data has only begun. The results are thus preliminary. The list of four authors reflects the complex multi-disciplinary character of any field study such as this one. Carey Moulton is responsible for Wyle Laboratories' acoustical data collection effort. Robert Baumgartner and Jeff Thomas of HBRS, a social science research firm, are responsible for social survey field work and data processing. The study is supported by the NASA Langley Research Center. The study has several objectives. The preliminary data addresses two of the primary objectives. The first objective is to describe the reactions to sonic booms of people who are living where sonic booms are a routine, recurring feature of the acoustical environment. The second objective is to compare these residents' reactions to the reactions of residents who hear conventional aircraft noise around airports. Here is an overview of the presentation. This study will first be placed in the context of previous community survey research on sonic booms. Next the noise measurement program will be briefly described and part of a social survey interview will be presented. Finally data will be presented on the residents' reactions and these reactions will be compared with reactions to conventional aircraft. Twelve community studies of residents' reactions to sonic booms were conducted in the United States and Europe in the 1960's and early 1970's. None of the 12 studies combined three essential ingredients that are found in the present study. Residents' long-term responses are related to a measured noise environment. Sonic booms are a permanent feature of the residential environment. The respondents' do not live on a military base. The present study is important because it provides the first dose/response relationship for sonic booms

  8. A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers

    NASA Astrophysics Data System (ADS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1994-05-01

    Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.

  9. Global variation of sonic boom overpressure due to seasonal changes in atmosphere

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Obayashi, Shigeru

    2012-09-01

    Global variation of sonic boom overpressures with the realistic atmospheric gradients was discussed. The atmospheric gradients were estimated by upper-air observational radiosonde data and a simple N-wave was extrapolated through all seasonal atmospheric gradients without winds around the world. Results demonstrated that sonic boom overpressure varies widely with season and geographic position compared to that of the standard atmospheric condition. The results also showed the tendencies of the global variation in overpressure.

  10. Sonic boom measurement test plan for Space Shuttle STS-3 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1982-01-01

    The lateral area from the reentry ground track affected by sonic boom overpressure levels is determined. Four data acquisition stations are deployed laterally to the STS-3 reentry flight track. These stations provide six intermediate band FM channels of sonic boom data, universal time synchronization, and voice annotation. All measurements are correlated with the vehicle reentry flight track information along with atmospheric and vehicle operation conditions.

  11. Effectiveness of large booms as nutation dampers for spin stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Eke, F. O.

    1991-01-01

    The issue of using long slender booms as pendulous nutation damping devices on spinning aircraft is discussed. Motivation comes from experience with the Galileo Spacecraft, whose magnetometer boom also serves as a passive nutation damper for the spacecraft. Performance analysis of a spacecraft system equipped with such systems are relatively insensitive to changes in the damping constant of the device. However, the size and arrangement of such a damper raises important questions concerning spacecraft stability in general.

  12. Extended torsional tests of an interlocked bi-stem satellite boom

    NASA Technical Reports Server (NTRS)

    Abercrombie, R. A.

    1973-01-01

    The effect is reported of continued oscillations of a 1.27-cm interlocked bi-stem satellite boom. The test setup oscillated a boom continuously between set torque limits and periodically recorded its hysteresis characteristics. Results showed that repeated oscillations affected torsional characteristics and that torsional rigidity changed as a function of the number of cycles oscillated within certain torque limits. Torsional characteristics changes caused by repeated oscillations were retained.

  13. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  14. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Ehernberger, L. J.; Whitmore, Stephen A.

    1995-01-01

    SR-71 sonic boom signatures were measured to validate sonic boom propagation prediction codes. An SR-71 aircraft generated sonic booms from Mach 1.25 to Mach 1.6, at altitudes of 31,000 to 48,000 ft, and at various gross weights. An F-16XL aircraft measured the SR-71 near-field shock waves from close to the aircraft to more than 8,000 ft below, gathering 105 signatures. A YO-3A aircraft measured the SR-71 sonic booms from 21,000 to 38,000 feet below, recording 17 passes. The sonic booms at ground level and atmospheric data were recorded for each flight. Data analysis is underway. Preliminary results show that shock wave patterns and coalescence vary with SR-71 gross weight, Mach number, and altitude. For example, noncoalesced shock wave signatures were measured by the YO-3A at 21,000 ft below the SR-71 aircraft while at a low gross weight, Mach 1.25, and 31,000-ft altitude. This paper describes the design and execution of the flight research experiment. Instrumentation and flight maneuvers of the SR-71, F-16XL, and YO-3A aircraft and sample sonic boom signatures are included.

  15. Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong

    2011-01-01

    The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.

  16. Long-term effects of simulated sonic booms on hearing in rhesus monkeys

    NASA Astrophysics Data System (ADS)

    Reinis, S.; Weiss, D. S.; Featherstone, J. W.; Tsaros, C.

    1987-03-01

    Two monkeys of the species Macaca mulatta were exposed at 1 min intervals to five simulated sonic booms lasting 200 ms at 200 Pa overpressure with a 10 ms rise time. Another group of five monkeys of the same species were exposed to 100 booms. Their hearing thresholds were tested 24 hours, two weeks, one month, two months, four months and six months later. In one animal exposed to five booms, changes of the hearing thresholds were observed 24 hours following the exposure, but not later. All five animals exposed to 100 sonic booms had threshold shifts in the high-frequency range 24 hours following the exposure. Of the three animals followed for the full period of six months, one recovered completely. In the two others, threshold shifts were still observed in the high frequency range. Histological examination revealed destruction of the organ of Corti in the basal turn of the cochlea. These data indicate that there is individual variability in the extent of the damage to the inner ear by the sonic boom (and, perhaps, by other types of impulsive noise). These data also indicate that there is a possibility of similar damage to human inner ears exposed either to sonic booms or to other types of impulsive noise, and that it may go undetected for a long time because the high-frequency hearing defect, over 8 kHz, may be overlooked when routine audiometric methods are used.

  17. An investigation into the effect of playback environment on perception of sonic booms when heard indoors

    NASA Astrophysics Data System (ADS)

    Carr, Daniel; Davies, Patricia

    2015-10-01

    Aircraft manufacturers are interested in designing and building a new generation of supersonic aircraft that produce shaped sonic booms of lower peak amplitude than booms created by current supersonic aircraft. To determine if the noise exposure from these "low"booms is more acceptable to communities, new laboratory testing to evaluate people's responses must occur. To guide supersonic aircraft design, objective measures that predict human response to modified sonic boom waveforms and other impulsive sounds are needed. The present research phase is focused on understanding people's reactions to booms when heard inside, and therefore includes consideration of the effects of house type and the indoor acoustic environment. A test was conducted in NASA Langley's Interior Effects Room (IER), with the collaboration of NASA Langley engineers. This test was focused on the effects of low-frequency content and of vibration, and subjects sat in a small living room environment. A second test was conducted in a sound booth at Purdue University, using similar sounds played back over earphones. The sounds in this test contained less very-low-frequency energy due to limitations in the playback, and the laboratory setting is a less natural environment. For the purpose of comparison, and to improve the robustness of the model, both sonic booms and other more familiar transient sounds were used in the tests. The design of the tests and the signals are briefly described, and the results of both tests will be presented.

  18. SCAMP: Rapid Focused Sonic Boom Waypoint Flight Planning Methods, Execution, and Results

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Delaney, Michael M., Jr.; Plotkin, Kenneth J.; Maglieri, Domenic J.; Brown, Jacob C.

    2012-01-01

    Successful execution of the flight phase of the Superboom Caustic Analysis and Measurement Project (SCAMP) required accurate placement of focused sonic booms on an array of prepositioned ground sensors. While the array was spread over a 10,000-ft-long area, this is a relatively small region when considering the speed of a supersonic aircraft and sonic boom ray path variability due to shifting atmospheric conditions and aircraft trajectories. Another requirement of the project was to determine the proper position for a microphone-equipped motorized glider to intercept the sonic boom caustic, adding critical timing to the constraints. Variability in several inputs to these calculations caused some shifts of the focus away from the optimal location. Reports of the sonic booms heard by persons positioned amongst the array were used to shift the focus closer to the optimal location for subsequent passes. This paper describes the methods and computations used to place the focused sonic boom on the SCAMP array and gives recommendations for their accurate placement by future quiet supersonic aircraft. For the SCAMP flights, 67% of the foci were placed on the ground array with measured positions within a few thousand feet of computed positions. Among those foci with large caustic elevation angles, 96% of foci were placed on the array, and measured positions were within a few hundred feet of computed positions. The motorized glider captured sonic booms on 59% of the passes when the instrumentation was operating properly.

  19. High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing

    NASA Technical Reports Server (NTRS)

    McCurdy, David A. (Editor)

    1999-01-01

    The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.

  20. An analysis of the response of Sooty Tern eggs to sonic boom overpressures.

    PubMed

    Ting, Carina; Garrelick, Joel; Bowles, Ann

    2002-01-01

    It has been proposed that sonic booms caused a mass hatching failure of Sooty Terns in the Dry Tortugas in Florida by cracking the eggshells. This paper investigates this possibility analytically, complementing previous empirical studies. The sonic boom is represented as a plane-wave excitation with an N-wave time signature. Two models for the egg are employed. The first model, intended to provide insight, consists of a spherical shell, with the embryo represented as a rigid, concentric sphere and the albumen as an acoustic fluid filling the intervening volume. The substrate is modeled as a doubling of the incident pressure. The second, numerical model includes the egg-shape geometry and air sac. More importantly, the substrate is modeled as a rigid boundary of infinite extent with acoustic diffraction included. The peak shell stress, embryo acceleration, and reactive force are predicted as a function of the peak sonic boom overpressure and compared with damage criteria from the literature. The predicted peak sonic boom overpressure necessary for egg damage is much higher than documented sonic boom overpressures, even for extraordinary operational conditions. Therefore, as with previous empirical studies, it is concluded that it is unlikely that sonic boom overpressures damage avian eggs. PMID:11837961

  1. A computational analysis of sonic booms penetrating a realistic ocean surface.

    PubMed

    Rochat, J L; Sparrow, V W

    2001-03-01

    The last decade has seen a revival of sonic boom research, a direct result of the projected market for a new breed of supersonic passenger aircraft, its design, and its operation. One area of the research involves sonic boom penetration into the ocean, one concern being the possible disturbance of marine mammals from the noise generated by proposed high-speed civil transport (HSCT) flyovers. Although theory is available to predict underwater sound levels due to a sonic boom hitting a homogeneous ocean with a flat surface, theory for a realistic ocean, one with a wavy surface and bubbles near the surface, is missing and will be presented in this paper. First, reviews are given of a computational method to calculate the underwater pressure field and the effects of a simple wavy ocean surface on the impinging sonic boom. Second, effects are described for the implementation of three additional conditions: a sonic boom/ocean "wavelength" comparison, complex ocean surfaces, and bubbles near the ocean surface. Overall, results from the model suggest that the realistic ocean features affect the penetrating proposed HSCT sonic booms by modifying the underwater sound-pressure levels only about 1 decibel or less. PMID:11303944

  2. CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2009-01-01

    A computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the Sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy. grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex.

  3. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  4. Ground-based sensors for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Norris, Stephen R.; Haering, Edward A., Jr.; Murray, James E.

    1995-01-01

    This paper describes ground-level measurements of sonic boom signatures made as part of the SR-71 sonic boom propagation experiment recently completed at NASA Dryden Flight Research Center, Edwards, California. Ground level measurements were the final stage of this experiment which also included airborne measurements at near and intermediate distances from an SR-71 research aircraft. Three types of sensors were deployed to three station locations near the aircraft ground track. Pressure data were collected for flight conditions from Mach 1.25 to Mach 1.60 at altitudes from 30,000 to 48,000 ft. Ground-level measurement techniques, comparisons of data sets from different ground sensors, and sensor system strengths and weaknesses are discussed. The well-known N-wave structure dominated the sonic boom signatures generated by the SR-71 aircraft at most of these conditions. Variations in boom shape caused by atmospheric turbulence, focusing effects, or both were observed for several flights. Peak pressure and boom event duration showed some dependence on aircraft gross weight. The sonic boom signatures collected in this experiment are being compiled in a data base for distribution in support of the High Speed Research Program.

  5. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  6. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    NASA Technical Reports Server (NTRS)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  7. Evaluation of human response to structural vibration induced by sonic boom

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Czech, J.

    1992-01-01

    This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.

  8. An Analysis of Measured Pressure Signatures From Two Theory-Validation Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2003-01-01

    Two wing/fuselage/nacelle/fin concepts were designed to check the validity and the applicability of sonic-boom minimization theory, sonic-boom analysis methods, and low-boom design methodology in use at the end of the 1980is. Models of these concepts were built, and the pressure signatures they generated were measured in the wind-tunnel. The results of these measurements lead to three conclusions: (1) the existing methods could adequately predict sonic-boom characteristics of wing/fuselage/fin(s) configurations if the equivalent area distributions of each component were smooth and continuous; (2) these methods needed revision so the engine-nacelle volume and the nacelle-wing interference lift disturbances could be accurately predicted; and (3) current nacelle-configuration integration methods had to be updated. With these changes in place, the existing sonic-boom analysis and minimization methods could be effectively applied to supersonic-cruise concepts for acceptable/tolerable sonic-boom overpressures during cruise.

  9. Subjective loudness of N-wave sonic booms.

    PubMed

    Niedzwiecki, A; Ribner, H S

    1978-12-01

    A loudspeaker-driven simulation booth with extended rise-time capability (down to 0.22 ms) has been used for subjective loudness tests of N-wave sonic booms. The test series compared signatures over a range of 0.22--10 ms in rise time, 100--250 ms in duration and 0.5--2.5 psf (24--120 Pa) in peak overpressure. In one sequence, the tradeoff between rise time and overpressure was measured for equal loudness; in another, the tradeoff between duration and overpressure. For equal loudness 10-ms rise time required 8-dB higher overpressure than for 1-ms rise time. Duration had little effect in the range 100--200 ms, but at 250 ms noticeably enhanced the loudness. These results confirm those measured by Shepherd and Sutherland made at 1-ms rise time and above (except for the anomalous enhancement at 250-ms duration), and extend the measurements down to 0.22 ms. There is also good agreement with theoretical predictions (Johnson-Robinson, Zepler-Harel methods) except for the 10-ms rise time and 250-ms duration cases. PMID:739096

  10. Pultrusion Process Development for Long Space Boom Model

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Miserentino, Robert

    1988-01-01

    Long flexible-boom models were required to develop ground-vibration test methods for very-low-frequency space structures with applications to the proposed Space Station. Pultruded quasi-isotropic composite beams were selected as an option over extruded aluminum alloy structures because of the lower cost potential, the higher specific strength, the flexural properties, and the dynamic similarity considerations. The reinforcement material that was used was biaxial (0 deg/90 deg) fiberglass roving held in place with knitted polyester yarn such that equal fiber volume in 0 deg and 90 deg orientations provided nearly equal strength in both longitudinal and transverse directions. An isophthalic polyester resin system was used as the matrix. Continuous lengths up to 270 ft were easily pultruded with biaxial fabric. Tracking problems were encountered with similar unidirectional fabrics. Analyses of processing problems were conducted to determine causes for delamination, scaling, and sloughing. Ultrasonic C-scanning and scanning electron microscope examinations were conducted as well as mechanical testing to failure. Test results indicate that pultrusion processes can be used to produce quasi-isotropic composite structures.

  11. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.

    2008-01-01

    This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.

  12. A sonic boom propagation model including mean flow atmospheric effects

    NASA Astrophysics Data System (ADS)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  13. Interaction of the sonic boom with atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Cole, Julian D.

    1994-01-01

    Theoretical research was carried out to study the effect of free-stream turbulence on sonic boom pressure fields. A new transonic small-disturbance model to analyze the interactions of random disturbances with a weak shock was developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustics equation that describes the propagation of sound beams with narrow angular spectrum. The model shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed type elliptic-hyperbolic flows around the shock wave was also developed. Numerical calculations of shock wave interactions with various deterministic and random fluctuations will be presented in a future report.

  14. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  15. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  16. A Summary of the Lateral Cutoff Analysis and Results from Nasa's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.; Arnac, Sarah R.

    2015-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  17. A summary of the lateral cutoff analysis and results from NASA's Farfield Investigation of No-boom Thresholds

    NASA Astrophysics Data System (ADS)

    Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.

    2015-10-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  18. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  19. Using FUN3D for Aeroelastic, Sonic Boom, and AeroPropulsoServoElastic (APSE) Analyses of a Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George

    2016-01-01

    An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.

  20. Design of Experiments for Both Experimental and Analytical Study of Exhaust Plume Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.

  1. Analysis of Plume Effects on Sonic Boom Signature for Isolated Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2008-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of underexpanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Near-field pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. The performance curve for this supersonic nozzle is flat, so there is not a significant loss in thrust coefficient as the NPR is increased. As a result, this benefit could be realized without significant loss of performance. Analyses were also collected for a high aspect ratio nozzle based on the baseline design for comparison. Pressure signatures were collected for nozzle pressure ratios from 8 to 12. Signatures were nearly twice as strong for the two-dimensional case, and trends also show a reduction in sonic boom signature as NPR is increased from 8 to 12. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts.

  2. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    NASA Technical Reports Server (NTRS)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  3. Additional F-Functions Useful for Preliminary Design of Shaped-Signature, Low-Boom, Supersonic-Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    Two additional low-boom F-functions have been described for use in designing low-boom, shaped-pressure-signature, supersonic-cruise aircraft. Based on the minimization studies of Seebass and George, the drag-nose shock strength trade-off modification of Darden, and the practical modification of Haglund, their use can aid in the design of conceptual low-boom aircraft, provide additional flexibility in the shaping of the low-boom aircraft nose section, and extend the applicability of shaped-pressure-signature methodology.

  4. Controlling the sonic boom from a thin body by means of local heating of the incoming flow

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2013-11-01

    The problem of reduction of the sonic boom level by heating the flow in front of the body is solved numerically. A combined method of “phantom bodies” is used for calculations. The sonic boom generated by an axisymmetric thin body for the flight Mach number of 2 with different levels of energy supply to the incoming flow is calculated. The calculation results show that the sonic boom can be reduced by means of local heat supply to a supersonic gas flow. Reduction of the sonic boom level is provided by specific gas-dynamic features of the flow behind the heat supply zone.

  5. Nano-booms — A new class of WIMP detectors

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Fagaly, R. L.; Bielski, R.

    2014-07-01

    Weakly Interacting Massive Particles (WIMPs) can constitute a large fraction of the dark matter (DM) in the universe. The importance of coherent scattering and detection of annual modulation effect (AME), diurnal modulation effect (DME) and direction sensitive AME was documented. In particular, DAMA/NaI and DAMA/LIBRA have released data collected during 14 annual cycles, which support in model independent way, the presence of DM particles in the galactic halo. There is a clear evidence of AME signature in DAMA data. Recently, positive hints have also been reported by CoGeNT on AME signature in Ge, while CREST-II and CDMS-Si have published some events in excess of estimated background; these events are compatible with WIMP-like candidates. If these results would be analyzed all together in some WIMP scenario, one could derive: MDM < 10 GeV/c2. Current generation of detectors is far from being optimal or in some cases even reliable when MDM approaches 5 GeV/c2. We propose a detector, which can detect the direction of incoming WIMPs. This paper focus on a particular implementation of the new class of nano-explosive DM detectors. The local heating ignites an explosion, which release chemical energy stored in such a nano-grain. Use of two component nano-explosive permits to amplify the bolometric effect due to WIMP-candidates. The energy available becomes 100,000-fold larger than the energy initially deposited by DM candidate. This leads to a sonic-boom, which can be detected remotely. This new class of nano-explosive detectors may be especially important in detection of WIMPs with very low mass, say MDM = O(5 GeV/c2). We describe a configuration, which leads to explosive-triode, and permits detection of the direction of incoming WIMPs.

  6. A new evaluation of noise metrics for sonic booms using existing data

    NASA Astrophysics Data System (ADS)

    Loubeau, Alexandra; Naka, Yusuke; Cook, Brian G.; Sparrow, Victor W.; Morgenstern, John M.

    2015-10-01

    An evaluation of noise metrics for predicting human perception of sonic booms was performed. Twenty-five metrics were chosen from standards and from the literature in an effort to include all potentially relevant metrics. Three different datasets of sonic boom waveforms and associated human response were chosen to span a variety of signals, including traditional N-waves with various shock shapes and rise times, and predicted waveforms from designs of low-boom aircraft for a variety of aircraft sizes. These datasets were derived from laboratory studies conducted in sonic boom simulators at NASA Langley Research Center and JAXA. Simulations of booms experienced in both outdoor and indoor environments were included by using different facilities at NASA or modifications to facility configurations at JAXA. American and Japanese test subjects participated at NASA and JAXA, respectively. Ratings of loudness using a magnitude estimation technique and ratings of annoyance using a category line scaling method are included. The evaluation consists of linear correlations of human response data with the objective noise metrics. Results are presented for each study, and eight metrics are suggested for further analysis.

  7. Innovative Escapement-Based Mechanism for Micro-Antenna Boom Deployment

    NASA Technical Reports Server (NTRS)

    Tokarz, Marta; Grygorczuk, Jerzy; Jarzynka, Stanislaw; Gut, Henryk

    2014-01-01

    This paper presents the prototype of a tubular boom antenna developed for the Polish BRITE-PL satellite by the Space Research Center of the Polish Academy of Sciences (CBK PAN). What is unique about our work is that we developed an original type of the tubular boom antenna deployment mechanism that can be used widely as a basic solution for compact electrical antennas, booms deploying sensitive instruments, ultra-light planetary manipulators etc. The invented electromagnetic driving unit provides a dual complementary action - it adds extra energy to the driving spring, making the system more reliable, and at the same time it moderates the deployment speed acting as a kind of damper. That distinguishing feature predetermines the mechanism to be applied wherever the dynamic nature of a spring drive introducing dangerous vibrations and inducing severe local stress in the structure needs to be mitigated. Moreover, the paper reveals a product unique in Europe - a miniature beryllium bronze tubular boom free of geometry and strain defects, which is essential for stiffness and fatigue resistance. Both the deployment mechanism and the technology of tubular boom manufacturing are protected by patent rights.

  8. Conceptual Design of Low-Boom Aircraft with Flight Trim Requirement

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Geiselhart, Karl A.; Fenbert, James W.

    2014-01-01

    A new low-boom target generation approach is presented which allows the introduction of a trim requirement during the early conceptual design of supersonic aircraft. The formulation provides an approximation of the center of pressure for a presumed aircraft configuration with a reversed equivalent area matching a low-boom equivalent area target. The center of pressure is approximated from a surrogate lift distribution that is based on the lift component of the classical equivalent area. The assumptions of the formulation are verified to be sufficiently accurate for a supersonic aircraft of high fineness ratio through three case studies. The first two quantify and verify the accuracy and the sensitivity of the surrogate center of pressure corresponding to shape deformation of lifting components. The third verification case shows the capability of the approach to achieve a trim state while maintaining the low-boom characteristics of a previously untrimmed configuration. Finally, the new low-boom target generation approach is demonstrated through the early conceptual design of a demonstrator concept that is low-boom feasible, trimmed, and stable in cruise.

  9. Sonic booms produced by US Air Force and US Navy aircraft: Measured data

    NASA Astrophysics Data System (ADS)

    Lee, R. A.; Downing, J. M.

    1991-01-01

    A sonic measurement program was conducted at Edwards Air Force Base. Sonic boom signatures, produced by F-4, F-14, F-15, F-16, F-18, F-111, SR-71, and T-38 aircraft, were obtained under the flight track and at various lateral sites which were located up to 18 miles off-track. Thirteen monitors developed by Det 1 AL/BBE were used to collect full sonic boom waveforms, and nine modified dosimeters were used to collect supplemental peak overpressures and the C-weighted Sound Exposure Levels (CSEL) for 43 near steady supersonic flights of the above United States Air Force and United States Navy aircraft. This report describes the measured database (BOOMFILE) that contains sonic boom signatures and overpressures, aircraft tracking, and local weather data. These measured data highlight the major influences on sonic boom propagation and generation. The data from this study show that a constant offset of 26 from the peak overpressure expressed in dB gives a good estimate of the CSEL of a sonic boom.

  10. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  11. Theory of satellite orbit-orbit resonance

    NASA Technical Reports Server (NTRS)

    Blitzer, L.; Anderson, J. D.

    1981-01-01

    On the basis of the strong mathematical and physical parallels between orbit-orbit and spin-orbit resonances, the dynamics of mutual orbit perturbations between two satellites about a massive planet are examined, exploiting an approach previously adopted in the study of spin-orbit coupling. Resonances are found to exist when the mean orbital periods are commensurable with respect to some rotating axis, which condition also involves the apsidal and nodal motions of both satellites. In any resonant state the satellites are effectively trapped in separate potential wells, and a single variable is found to describe the simultaneous librations of both satellites. The librations in longitude are 180 deg out-of-phase, with fixed amplitude ratio that depends only on their relative masses and semimajor axes. The theory is applicable to Saturn's resonant pairs Titan-Hyperion and Mimas-Tethys, and in these cases the calculated libration periods are in reasonably good agreement with the observed periods.

  12. A Supersonic Business-Jet Concept Designed for Low Sonic Boom

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2003-01-01

    Ongoing human-response studies of sonic-boom noise indicated that a previous level of 1.0 psf might still be too annoying. This led to studies of a Supersonic Business Jet (SBJ), which might generate lower, more acceptable ground overpressures. To determine whether methods for designing a High Speed Civil Transport (HSCT) could be successfully applied, a SBJ concept was designed at the langley Research Center. It would cruise at Mach 2, carry 10 passengers for 4000 nautical miles, and generate a 0.50 psf or less on the ground under the flight path at start of cruise. Results indicated that a 10-passenger, low-boom SBJ design was just as technically demanding as a 300-passenger, low-boom HSCT design. In this report, the sources of these technical problems are identified, and ideas for addressing them are discussed.

  13. Design methodology for a community response questionnaire on sonic boom exposure

    NASA Technical Reports Server (NTRS)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-01-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  14. Design methodology for a community response questionnaire on sonic boom exposure

    NASA Astrophysics Data System (ADS)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-05-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  15. An Euler code prediction of near field to midfield sonic boom pressure signatures

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Darden, C. M.

    1990-01-01

    A new approach is presented for computing sonic boom pressure signatures in the near field to midfield that utilizes a fully three-dimensional Euler finite volume code capable of analyzing complex geometries. Both linear and nonlinear sonic boom methodologies exist but for the most part rely primarily on equivalent area distributions for the prediction of far field pressure signatures. This is due to the absence of a flexible nonlinear methodology that can predict near field pressure signatures generated by three-dimensional aircraft geometries. It is the intention of the present study to present a nonlinear Euler method than can fill this gap and supply the needed near field signature data for many of the existing sonic boom codes.

  16. Impact of multipole matching resolution on supersonic aircraft sonic boom assessment

    NASA Astrophysics Data System (ADS)

    Salah El Din, I.; Le Pape, M.-C.; Minelli, A.; Grenon, R.; Carrier, G.

    2013-06-01

    Sonic boom assessment methods through numerical analysis have been ever-evolving since the development of the fundamental theory. With the growing need for efficient low-boom design tools and the increasing computational resources, original approaches using advanced numerical simulation techniques have been developed. Among the various existing methods, the three-layer resolution introduced in the 1990s is very convenient for low-boom aircraft design. It is based on near-field computational fluid dynamics (CFD) calculation which is matched with the far-field propagation code using a description of the source with multipoles before undergoing classical acoustic propagation through atmosphere. The present paper reviews the theory of the near- to far-field matching as well as the different resolution approaches and their limits. The impact of the resolution method on the ground propagated signal is also presented.

  17. Effect of the supersonic transport configuration on the sonic boom parameters

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.

    2011-12-01

    Results of numerical and experimental investigations of the sonic boom parameters for two configurations of civil supersonic transport are presented. Numerical modelling is performed by a combined method based on calculating the spatial flow in the near zone of the aircraft configuration and subsequent determination of disturbed flow parameters at large distances from the examined model. Numerical results are compared with experimental sonic boom parameters measured in the near zone and with results of their recalculation to large distances within the framework of the quasi-linear theory. This validation allows the degree of adequacy of the inviscid Euler model for solving the posed problem to be determined. Reasons for certain disagreement between the calculated and experimental data are discussed. The analysis confirms the possibility of attenuating the sonic boom generated by supersonic transport with an unconventional configuration based on a tandem arrangement of two wings on the fuselage.

  18. High-Speed Research: 1994 Sonic Boom Workshop: Atmospheric Propagation and Acceptability Studies

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A. (Editor)

    1994-01-01

    The workshop proceedings include papers on atmospheric propagation and acceptability studies. Papers discussing atmospheric effects on the sonic boom waveform addressed several issues. It has long been assumed that the effects of molecular relaxation are adequately accounted for by assuming that a steady state balance between absorption and nonlinear wave steepening exists. It was shown that the unsteadiness induced by the nonuniform atmosphere precludes attaining this steady state. Further, it was shown that the random atmosphere acts as a filter, effectively filtering out high frequency components of the distorted waveform. Several different propagation models were compared, and an analysis of the sonic boom at the edge of the primary carpet established that the levels there are bounded. Finally, a discussion of the levels of the sonic boom below the sea surface was presented.

  19. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  20. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  1. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.

  2. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.

  3. Application of Adjoint Methodology in Various Aspects of Sonic Boom Design

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2014-01-01

    One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.

  4. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  5. Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik

    2007-01-01

    Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly

  6. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  7. Oil spill recovery: Oil booms and skimmers. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations of selected patents concerning booms, skimmers, and skimming techniques used for oil spill recovery. Patents cover cleanup and containment systems, floating booms, collection and storage, barriers, and dispersants. Visible markings, lighters for transferring oil, and pollution monitoring systems are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  8. CAPITAL FLOWS, CONSUMPTION BOOMS AND ASSET BUBBLES: A BEHAVIOURAL ALTERNATIVE TO THE SAVINGS GLUT HYPOTHESIS.

    PubMed

    Laibson, David; Mollerstrom, Johanna

    2010-05-01

    Bernanke (2005) hypothesized that a "global savings glut" was causing large trade imbalances. However, we show that the global savings rates did not show a robust upward trend during the relevant period. Moreover, if there had been a global savings glut there should have been a large investment boom in the countries that imported capital. Instead, those countries experienced consumption booms. National asset bubbles explain the international imbalances. The bubbles raised consumption, resulting in large trade deficits. In a sample of 18 OECD countries plus China, movements in home prices alone explain half of the variation in trade deficits.

  9. The American Environmental Movement's Lost Victory: The Fight against Sonic Booms.

    PubMed

    Suisman, David

    2015-11-01

    Political contestation over sound can take many forms, with profound consequences for the aural environment. One example is found in the battles over the sonic booms associated with the US government's supersonic transport (SST) program in the 1960s and early 1970s--a program that had it been realized, would have filled the everyday soundscape with thunderous sonic blasts. This article analyzes the individuals and groups who mobilized against sonic booms and the SST and the activists' unlikely success over the SST in 1971. Today, this victory stands as an important, if largely forgotten, victory of the early environmental movement.

  10. Minimizing the transient vibroacoustic response of a window to sonic booms by using stiffeners.

    PubMed

    Ou, Dayi; Ming Mak, Cheuk

    2014-04-01

    A stiffened-window strategy is proposed for reducing the window's transient responses to sonic booms. Additional movable and controllable stiffeners are used, which can improve the window's transient vibration and noise isolation performance without significantly reducing transparency. A simple prediction model is proposed as a design tool for implementing the stiffened-window structure, which allows for the computation of a plate with arbitrary elastic boundary conditions and arbitrarily located stiffeners. The predicted results agree well with experimental data. Also, the feasibility and validity of the stiffened-window strategy for improving the window's performance in response to sonic booms is demonstrated by parametric studies. PMID:25234966

  11. The American Environmental Movement's Lost Victory: The Fight against Sonic Booms.

    PubMed

    Suisman, David

    2015-11-01

    Political contestation over sound can take many forms, with profound consequences for the aural environment. One example is found in the battles over the sonic booms associated with the US government's supersonic transport (SST) program in the 1960s and early 1970s--a program that had it been realized, would have filled the everyday soundscape with thunderous sonic blasts. This article analyzes the individuals and groups who mobilized against sonic booms and the SST and the activists' unlikely success over the SST in 1971. Today, this victory stands as an important, if largely forgotten, victory of the early environmental movement. PMID:26720994

  12. Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.

  13. CAPITAL FLOWS, CONSUMPTION BOOMS AND ASSET BUBBLES: A BEHAVIOURAL ALTERNATIVE TO THE SAVINGS GLUT HYPOTHESIS

    PubMed Central

    Laibson, David; Mollerstrom, Johanna

    2012-01-01

    Bernanke (2005) hypothesized that a “global savings glut” was causing large trade imbalances. However, we show that the global savings rates did not show a robust upward trend during the relevant period. Moreover, if there had been a global savings glut there should have been a large investment boom in the countries that imported capital. Instead, those countries experienced consumption booms. National asset bubbles explain the international imbalances. The bubbles raised consumption, resulting in large trade deficits. In a sample of 18 OECD countries plus China, movements in home prices alone explain half of the variation in trade deficits. PMID:23750045

  14. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  15. Charts for determining potential minimum sonic-boom overpressures for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1981-01-01

    Charts which give an estimation of minimum achievable sonic-boom levels for supersonic cruise aircraft are presented. A minimization method based on modified linear theory was analyzed. Results show several combinations of Mach number, altitude, and aircraft length and weight. Overpressure and impulse values are given for two types of sonic boom signatures for each of these conditions: (1) a flat top or minimum overpressure signature which has a pressure plateau behind the initial shock, and (2) a minimum shock signature which allows a pressure rise after the initial shock. Results are given for the effects of nose shape.

  16. Modification of sonic boom wave forms during propagation from the source to the ground.

    PubMed

    Bass, Henry E; Raspet, Richard; Chambers, James P; Kelly, Mark

    2002-01-01

    A number of physical processes work to modify the shape of sonic boom wave forms as the wave form propagates from the aircraft to a receiver on the ground. These include frequency-dependent absorption, nonlinear steepening, and scattering by atmospheric turbulence. In the past two decades, each of these effects has been introduced into numerical prediction algorithms and results compared to experimental measurements. There is still some disagreement between measurements and prediction, but those differences are now in the range of tens of percent. The processes seem to be understood. The present understanding of sonic boom evolution will be presented along with experimental justification. PMID:11837953

  17. Development of a model of startle resulting from exposure to sonic booms

    NASA Astrophysics Data System (ADS)

    Marshall, Andrew J.

    Aircraft manufacturers believe that it is possible to create supersonic business jets that would have quieter sonic booms than those that lead to the current ban on overland commercial supersonic flight over the US. In order to assess if the impact of these "low booms" is acceptable to the public, new human subject testing must occur. In recent studies, it was found that subjects' judgments of annoyance were highly correlated to judgments of startle and were unable to be fully explained by loudness judgments alone. However, this experiment utilized earphones for playback, which was unable to reproduce low frequencies (< 25 Hz) well. Building upon this study, an additional semantic differential experiment was conducted using a sonic boom simulator for playback which could reproduce these frequency components. Results of both experiments were similar and again it was found that average startle and annoyance ratings were highly correlated and that statistics of time-varying loudness were highly correlated with subjects' responses. However, it was unclear if subjects' judgments of startle corresponded to physiological responses associated with startle. To examine if physiological responses associated with startle were evoked by the low booms, two studies were conducted; a pilot study and a repeatability study. While physiological responses associated with startle were evoked by low booms, startle responses were found to have occurred infrequently. However, subjects' judgments of startle were found to be correlated with physiological responses and to have less day-to-day and subject to-subject variance. Candidate startle models were estimated from data obtained from an experiment where subjects' judged the startle evoked by a series of low amplitude sonic booms and boom-like noises. These candidate startle models were then tested in an additional study which used a more diverse set of stimuli. It was found that a linear model consisting of the maximum long-term Moore

  18. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  19. Migrant labor supply in a booming non-renewable resource economy: Cure and transmission mechanism for de-industrialization?

    NASA Astrophysics Data System (ADS)

    Nulle, Grant Mark

    This paper challenges the determinism that booming resource economies suffer from de-industrialization, the "Dutch Disease". For several decades, economists have attempted to explain how a sudden surge in mineral and energy extraction affects an economy's output and employment from an aggregate and sectoral perspective. Economic theory shows that a "boom" in mineral and energy production is welfare enhancing to the economy experiencing it. However, the phenomenon also induces inter-sectoral adjustments among non-renewable resource (NRR), traditional traded, and non-traded industries that tend to crowd out traditional export sectors such as agriculture and manufacturing. In turn, this paper asks two fundamental questions: 1) Can the inter-sectoral adjustments wrought by a boom in NRR production be mitigated in the resource-abundant economy experiencing it; 2) Can the inter-sectoral adjustments be exported to a neighboring non-resource economy by movements in migrant labor supply? The theoretical model and empirical estimation approach presented in this paper introduces an endogenous migrant labor supply response to booms in NRR output to test the extent traditional tradable sectors shrink in the NRR-abundant economy during the boom and if such effects are exported to a neighboring jurisdiction. Using data at the U.S. county level, the empirical results show that booming economies experience positive and statistically significant rates of real income and traded sector job growth during the boom, attributable to the influx of migrant labor. By contrast, little evidence is found that non-booming counties adjacent to the booming counties experience declines in income or job growth because of labor supply outflows. Instead, the results suggest the larger the number of potential "donor" counties that can supply labor to the booming economies, the more likely the transmission of booming economy effects, namely evidence of de-industrialization, is diffused across all of the

  20. The dynamics and optimal control of spinning spacecraft with movable telescoping appendages. Part C: Effect of flexibility during boom deployment

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; James, P. K.

    1977-01-01

    The dynamics of a spinning symmetrical spacecraft system during the deployment (or retraction) of flexible boom-type appendages were investigated. The effect of flexibility during boom deployment is treated by modelling the deployable members as compound spherical pendula of varying length (according to a control law). The orientation of the flexible booms with respect to the hub, is described by a sequence of two Euler angles. The boom members contain a flexural stiffness which can be related to an assumed effective restoring linear spring constant, and structural damping which effects the entire system. Linearized equations of motion for this system, when the boom length is constant, involve periodic coefficients with the frequency of the hub spin. A bounded transformation is found which converts this system into a kinematically equivalent one involving only constant coefficients.

  1. Noise and sonic-boom impact technology. PCBOOM computer program for sonic-boom research. Volume 1. Technical report. Final report, May 1987-October 1988

    SciTech Connect

    Bishop, D.E.

    1988-10-01

    The PCBOOM computer program, described in this technical report, calculates the location and magnitude of sonic-boom overpressures on the ground due to supersonic flight under standard atmosphere and no wind-propagation conditions. The program is intended for environmental planners and engineers who may need to estimate the noise impact from individual flights of supersonic military aircraft. The program runs on a Zenith Z-248 personal computer and also should run on most similarly configured IBM-compatible computers. The program contains information for all current military aircraft and allows updating for additional aircraft. The user can select either 'Quick look' computations which assume steady-state flight or detailed ray-tracing calculations which can handle non-steady flight and sonic-boom focus conditions. Several types of simple maneuvers can be selected for computations; the program will also handle up to ten connected straight-line segments. Flight segments from the MOAOPS library of supersonic combat training flights may also be selected. User-specified output for printer, plotter or screen includes tables of overpressures and graphic display of the sonic-boom overpressure 'footprints' on the ground. The footprint plots show the location of all ray positions that exceed overpressures of a given level. Flight track, Mach number, and altitude profile plots are also provided. This report summarizes the technical basis for PCBOOM. Two other reports provide a program users/computer operations manual and a program maintenance manual.

  2. Boom Softening and Nacelle Integration on an Arrow-Wing High-Speed Civil Transport Concept

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    During the last cycle of concept design and wind-tunnel testing, the goal of the low-boom- shaped HSCT concepts (the B-935, the LB-16, and the LB- 1 8) was to meet mission requirements and generate shaped, ground-level pressure signatures with nose shock strengths of 1.0 psf or less. The wind-tunnel tests of these concepts produced results that were partially successful and encouraging although not fully up to expectations. In spite of this, however, these conceptual designs were overly optimistic and not acceptable because: the wing planforms had excessive area; the wing structural aspect ratio was too high; one concept had aft-fuselage rather than under-the-wing engines; and the gross takeoff weights were unrealistically low because of engines that were early, high-tech versions of later, revised, more-realistic engines. The need for reducing the ground-level overpressure shock strengths still existed; a need to be met within more restrictive guidelines of mission performance and gross takeoff weight limitations. Therefore, it was decided that the next conceptual design cycle would focus on decreased nose shock strengths, "boom softening," in the signatures of the Boeing and the McDonnell Douglas baseline concepts rather than low-boom concepts with shaped-signature designs. Overly-optimistic results were not the only problem with these low-sonic-boom concepts. Papers given at the 1994 Sonic-Boom Workshop had demonstrated that the problem of successful nacelle integration on HSCT concepts had only been partially solved. Wind-tunnel pressure signature data, from the HSCT-11B (a.k.a. the LB-18) wind-tunnel model, showed that the Langley HSCT design and analysis method had been successful in reducing the nacelle-volume disturbances in the flow field. This was due.to the engine nacelles mounted behind the wing trailing-edge on the aft fuselage so that no nacelle-wing interference-lift flow-field disturbances were generated. While acceptable from a sonic-boom research

  3. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    Recently we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π, π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Expecially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  4. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  5. Of Booms and Gold Bricks: The First Crisis in Spanish Enrollments

    ERIC Educational Resources Information Center

    Siskin, H. Jay

    2012-01-01

    The first two decades of the twentieth century witnessed a sharp increase in Spanish enrollments at both the secondary and post-secondary level of instruction. This first "Spanish Boom" created opportunities for professional growth; yet, its very suddenness also highlighted numerous structural and institutional obstacles that hindered a coherent…

  6. Uncertainty Analysis of Sonic Boom Levels Measured in a Simulator at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Ely, Jeffry W.

    2012-01-01

    A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.

  7. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  8. Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2015-01-01

    A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.

  9. Simulator Study of Indoor Annoyance Caused by Shaped Sonic Boom Stimuli With and Without Rattle Augmentation

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2013-01-01

    The National Aeronautics and Space Administration's High Speed Project is developing a predictive capability for annoyance caused by shaped sonic booms transmitted indoors. The predictive capability is intended for use by aircraft designers as well as by aircraft noise regulators who are considering lifting the current prohibition on overland civil supersonic flight. The goal of the current study is to use an indoor simulator to validate two models developed using headphone tests for annoyance caused by sonic booms with and without rattle augmentation. The predictors in the proposed models include Moore and Glasberg's Stationary Loudness Level, the time derivative of Moore and Glasberg's time-varying short-term Loudness Level, and the difference between two weighted sound exposure levels, CSEL-ASEL. The indoor simulator provides a more realistic listening environment than headphones due to lowfrequency sound reproduction down to 6 Hz, which also causes perceptible tactile vibration. The results of this study show that a model consisting of {PL + (CSEL-ASEL)} is a reliable predictor of annoyance caused by shaped sonic booms alone, rattle sounds alone, and shaped sonic booms and rattle sounds together.

  10. Theoretical and Computational Studies on Sonic Boom Propagation and Its Submarine Impact

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Lee, C. J.; Hafez, M. M.; Guo, W. H.

    1996-01-01

    Sonic boom impact on the environment of populated area and habitat has been a major concern for the design, operation, and program planning of super/hypersonic vehicles as well as sE launch. Recent development in sonic boom studies reviewed has made evident need for amending the near-field analysis with nonlinear calculations, but an unambiguous matching procedure to assure waveform-prediction improvement is still lacking. Another problem receiving much attention recently is the renewed issue with 'transition focus booms' particularly the 'superboom' which occurs during a speed change through a threshold Mach number and gives rise to strong wave-focussing effects; however, its intensity and the extent of the impact area not be established from existing methods. A third aspect of a more recent concern is the potential sonic boom impact on pelagic and coastal environment, of which the methodology for defining impact has yet to be adequately developed. The study addresses these three aspects in the frame work of a wave-field analysis for a stratified atmosphere, employing coordinates fixed to the vehicle in steady horizontal motion.

  11. Measured Effects of Turbulence on the Loudness and Waveforms of Conventional and Shaped Minimized Sonic Booms

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Maglieri, Domenic J.; Sullivan, Brenda M.

    2005-01-01

    Turbulence has two distinctive effects on sonic booms: there is distortion in the form of random perturbations that appear behind the shock waves, and shock rise times are increased randomly. A first scattering theory by S.C. Crow in the late 1960s quantified the random distortions, and Crow's theory was shown to agree with available flight test data. A variety of theories for the shock thickness have been presented, all supporting the role of turbulence in increasing rise time above that of a basic molecular-relaxation structure. The net effect of these phenomena on the loudness of shaped minimized booms is of significant interest. Initial analysis suggests that there would be no change to average loudness, but this had not been experimentally investigated. The January 2004 flight test of the Shaped Sonic Boom Demonstrator (SSBD), together with a reference unmodified F-5E, included a 12500- foot linear ground sensor array with 28 digitally recorded sensor sites. This data set provides an opportunity to re-test Crow's theory for the post-shock perturbations, and to examine the net effect of turbulence on the loudness of shaped sonic booms.

  12. Population Bulletin, Vol. 35, No. 1. America's Baby Boom Generation: The Fateful Bulge.

    ERIC Educational Resources Information Center

    Bouvier, Leon F.

    During 1955 to 1964, nearly 42 million births occurred in the United States. This established a record unequaled to then and unlikely to soon be repeated. This bulletin explores the roots of the baby boom and its lasting impact on U.S. society; an impact accentuated by the unexpected interruption of a century-long fertility decline and the…

  13. View of the 200ton derrick from east showing the boom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the 200-ton derrick from east showing the boom on it's rest and both the 200 -ton hoist and the 40-ton hoist ant their respective block and tackle. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  14. Diffraction of sonic booms around buildings resulting in the building spiking effect.

    PubMed

    Cho, Sang-Ik T; Sparrow, Victor W

    2011-03-01

    The diffraction of a sonic boom around a building of finite dimensions yields amplification of the front shock and a positive spike that follows the tail shock in the pressure waveform recorded at the incident side of the building's exterior surface. This physical phenomenon is consistently found both in the data obtained from a 2006 NASA flight test and field experiment, and in the finite-difference time-domain simulation that models this particular experiment, and the authors call it the "building spiking" effect. This paper presents an analysis of the numerical and the accompanying experimental results used to investigate the cause of this effect. The simulation assumes linear acoustics only, which sufficiently describes the physics of interest. Separating the low and high frequency components of boom recordings using optimal finite impulse response filters with complementary magnitude responses shows that the building spiking effect can be attributed to the frequency dependent nature of diffraction. A comparison of the building spiking effect of a conventional N-wave and a low-amplitude sonic boom shows that a longer shock rise time leads to less pronounced amplification of the exterior pressure loading on buildings, and thus reveals an advantage of shaping a boom to elongate its rise time.

  15. Prediction of sonic boom from experimental near-field overpressure data. Volume 2: Data base construction

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Reiners, S. J.; Hague, D. S.

    1975-01-01

    A computerized method for storing, updating and augmenting experimentally determined overpressure signatures has been developed. A data base of pressure signatures for a shuttle type vehicle has been stored. The data base has been used for the prediction of sonic boom with the program described in Volume I.

  16. Non-asymptotic effects in the approach to the far field sonic boom.

    NASA Technical Reports Server (NTRS)

    Henderson, L. F.

    1971-01-01

    An extension is described for the Whitham theory (1952, 1954) which indicates small deviations from the ultimate N-wave for bodies with a continuous or discontinuous tangent. Some simple formulas are derived which yield a good reduction in the sonic boom intensity. The theory is elucidated by some numerical examples for a class of simple theoretically relevant shapes.

  17. Flight investigation of the effect of tail boom strakes on helicopter directional control

    NASA Technical Reports Server (NTRS)

    Kelly, Henry L.; Crowell, Cynthia A.; Yenni, Kenneth R.; Lance, Michael B.

    1993-01-01

    A joint U.S. Army/NASA flight investigation was conducted utilizing a single-rotor helicopter to determine the effectiveness of horizontally mounted tail boom strakes on directional controllability and tail rotor power during low-speed, crosswind operating conditions. Three configurations were investigated: (1) baseline (strakes off), (2) single strake (strake at upper shoulder on port side of boom), and (3) double strake (upper strake plus a lower strake on same side of boom). The strakes were employed as a means to separate airflow over the tail boom and change fuselage yawing moments in a direction to improve the yaw control margin and reduce tail rotor power. Crosswind data were obtained in 5-knot increments of airspeed from 0 to 35 knots and in 30 deg increments of wind azimuth from 0 deg to 330 deg. At the most critical wind azimuth and airspeed in terms of tail rotor power, the strakes improved the pedal margin by 6 percent of total travel and reduced tail rotor power required by 17 percent. The increase in yaw control and reduction in tail rotor power offered by the strakes can expand the helicopter operating envelope in terms of gross weight and altitude capability. The strakes did not affect the flying qualities of the vehicle at airspeeds between 35 and 100 knots.

  18. The Booming Economy and Food Insecure Families: A Puzzling Paradox. Family Review.

    ERIC Educational Resources Information Center

    Lindjord, Denise

    2000-01-01

    Discusses the continued incidence of food insecurity and hunger among American families despite a booming economy, and discusses the impact of malnutrition on children's development. Describes increases in demands for emergency food, suggesting changes in the Food Stamp Program. Identifies continued earnings inequalities. (KB)

  19. Vibroacoustic Response of Residential Housing due to Sonic Boom Exposure: A Summary of two Field Tests

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Buehrle, Ralph; Sullivan, Brenda; Gavin, Joseph; Salamone, Joseph; Haering, Edward A., jr.; Miller, Denise M.

    2008-01-01

    Two experiments have been performed to measure the vibroacoustic response of houses exposed to sonic booms. In 2006, an old home in the base housing area of Edwards Air Force Base, built around 1960 and demolished in 2007, was instrumented with 288 transducers. During a 2007 follow-on test, a newer home in the base housing area, built in 1997, was instrumented with 112 transducers. For each experiment, accelerometers were placed on walls, windows and ceilings in bedrooms of the house to measure the vibration response of the structure. Microphones were placed outside and inside the house to measure the excitation field and resulting interior sound field. The vibroacoustic response of each house was measured for sonic boom amplitudes spanning from 2.4 to 96 Pa (0.05 to 2 lbf/sq ft). The boom amplitudes were systematically varied using a unique dive maneuver of an F/A-18 airplane. In total, the database for both houses contains vibroacoustic response data for 154 sonic booms. In addition, several tests were performed with mechanical shaker excitation of the structure to characterize the forced response of the houses. The purpose of this paper is to summarize all the data from these experiments that are available to the research community, and to compare and contrast the vibroacoustic behavior of these two dissimilar houses.

  20. Numerical Simulation for sonic boom propagation through an Inhomogeneous atmosphere with winds

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masafumi; Hashimoto, Atsushi; Takahashi, Takashi; Kamakura, Tomoo; Sakai, Takeharu

    2012-09-01

    Noise annoyance due to sonic boom is one of the serious problems for development of next-generation supersonic transport. To decrease this sonic boom noise, the design and analysis techniques are developed at Japan Aerospace eXploration Agency (JAXA). To predict the sonic boom on the ground accurately, we have developed a numerical code (Xnoise) using the augmented Burgers equation combined with the ray tracing. In this method, effects of nonlinearity, geometrical spreading, inhomogeneity of atmosphere, thermoviscous attenuation, molecular vibration relaxation and winds are taken into account. This method gives an estimation of the rise times of ground signatures without resorting to the weak shock theory and area balancing techniques. The nonlinear term is evaluated by the finite difference scheme in this method. In ray-path calculation, an explicit updating methodology is adopted. The augmented Burgers equation is numerically solved by using the operator split method entirely in the time domain. As for the effects of nonlinearity, geometrical spreading, and atmospheric inhomogeneity, the result obtained with the augmented Burgers equation agrees well with that obtained with the waveform parameter method (Thomas' method). For the effects of absorption and dispersion, the calculation based on the augmented Burgers equation is verified by comparing with a detailed one-dimensional CFD analysis. Moreover, we show calculations which account the effect of winds on the propagation of a sonic boom. The validation of model is a future work.

  1. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing

    NASA Astrophysics Data System (ADS)

    Salamone, Joseph A., III

    Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.

  2. Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom.

    PubMed

    Marchiano, Régis; Coulouvrat, François; Grenon, Richard

    2003-10-01

    Weak shock wave focusing at fold caustics is described by the mixed type elliptic/hyperbolic nonlinear Tricomi equation. This paper presents a new and original numerical method for solving this equation, using a potential formulation and an "exact" numerical solver for handling nonlinearities. Validation tests demonstrate quantitatively the efficiency of the algorithm, which is able to handle complex waveforms as may come out from "optimized" aircraft designed to minimize sonic booms. It provides a real alternative to the approximate method of the hodograph transform. This motivated the application to evaluate the ground track focusing of sonic boom for an accelerating aircraft, by coupling CFD Euler simulations performed around the mock-up on an adaptated mesh grid, atmospheric propagation modeling, and the Tricomi algorithm. The chosen configuration is the European Eurosup mock-up. Convergence of the focused boom at the ground level as a function of the matching distance is investigated to demonstrate the efficiency of the numerical process. As a conclusion, it is indicated how the present work may pave the way towards a study on sonic superboom (focused boom) mitigation. PMID:14587578

  3. Diffraction of sonic booms around buildings resulting in the building spiking effect.

    PubMed

    Cho, Sang-Ik T; Sparrow, Victor W

    2011-03-01

    The diffraction of a sonic boom around a building of finite dimensions yields amplification of the front shock and a positive spike that follows the tail shock in the pressure waveform recorded at the incident side of the building's exterior surface. This physical phenomenon is consistently found both in the data obtained from a 2006 NASA flight test and field experiment, and in the finite-difference time-domain simulation that models this particular experiment, and the authors call it the "building spiking" effect. This paper presents an analysis of the numerical and the accompanying experimental results used to investigate the cause of this effect. The simulation assumes linear acoustics only, which sufficiently describes the physics of interest. Separating the low and high frequency components of boom recordings using optimal finite impulse response filters with complementary magnitude responses shows that the building spiking effect can be attributed to the frequency dependent nature of diffraction. A comparison of the building spiking effect of a conventional N-wave and a low-amplitude sonic boom shows that a longer shock rise time leads to less pronounced amplification of the exterior pressure loading on buildings, and thus reveals an advantage of shaping a boom to elongate its rise time. PMID:21428488

  4. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis

    SciTech Connect

    Manci, K.M.; Gladwin, D.N.; Villella, R.; Cavendish, M.G.

    1988-06-01

    An information base on the effects of aircraft noise and sonic booms on various animal species is necessary to assess potential impacts to wildlife populations from proposed military flight operations. Thus, in a joint U.S. Air Force/U.S. Fish and Wildlife Service effort, the National Ecology Research Center conducted a literature search of information pertaining to animal hearing and the effects of aircraft noise and sonic booms on domestic animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The literature is summarized in the report to provide an overview of current knowledge. No attempt was made to evaluate the appropriateness or adequacy or the scientific approach of each study. A brief overview of the physics of sound and aircraft noise and sonic-boom characteristics also is included to familiarize the reader with the terminology and concepts of aircraft noise and sonic-boom impact analysis.

  5. Laboratory study of effects of sonic boom shaping on subjective loudness and acceptability

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1992-01-01

    A laboratory study was conducted to determine the effects of sonic boom signature shaping on subjective loudness and acceptability. The study utilized the sonic boom simulator at the Langley Research Center. A wide range of symmetrical, front-shock-minimized signature shapes were investigated together with a limited number of asymmetrical signatures. Subjective loudness judgments were obtained from 60 test subjects by using an 11-point numerical category scale. Acceptability judgments were obtained using the method of constant stimuli. Results were used to assess the relative predictive ability of several noise metrics, determine the loudness benefits of detailed boom shaping, and derive laboratory sonic boom acceptability criteria. These results indicated that the A-weighted sound exposure level, the Stevens Mark 7 Perceived Level, and the Zwicker Loudness Level metrics all performed well. Significant reductions in loudness were obtained by increasing front-shock rise time and/or decreasing front-shock overpressure of the front-shock minimized signatures. In addition, the asymmetrical signatures were rated to be slightly quieter than the symmetrical front-shock-minimized signatures of equal A-weighted sound exposure level. However, this result was based on a limited number of asymmetric signatures. The comparison of laboratory acceptability results with acceptability data obtained in more realistic situations also indicated good agreement.

  6. 75 FR 49843 - Regulated Navigation Area; Boom Deployment Strategy Testing, Great Bay, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may submit a request.... SUMMARY: The Coast Guard is temporarily establishing a regulated navigation area (RNA) in navigable waters... maritime public from hazards associated with the boom deployment exercise. While the RNA is in effect,...

  7. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  8. 150ton Hulett Crane (YD25) carrying the boom from head of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    150-ton Hulett Crane (YD-25) carrying the boom from head of dock to the 50-ton Crane - looking northwest. Taken July 21, 1920. 14th Naval District Photo Collection Item No. 3304 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  9. Equity in an Educational Boom: Lessons from the Expansion and Marketisation of Tertiary Schooling in Poland

    ERIC Educational Resources Information Center

    Herbst, Mikolaj; Rok, Jakub

    2014-01-01

    This article shows how the probability of enrolment in tertiary schools has evolved for different social groups in Poland during the period of the educational boom. It also analyses how the socio-economic status influences the choices between full-time and part-time studies (the latter being of relatively low quality), and the probability of…

  10. Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Aftosmis, Michael J.; Campbell, Richard L.; Carter, Melissa B.; Cliff, Susan; Nangert, Linda S.

    2013-01-01

    The Supersonics Project of the NASA Fundamental Aeronautics Program organized an internal sonic boom workshop to evaluate near- and mid-field sonic boom prediction capability at the Fundamental Aeronautics Annual Meeting in Atlanta, Georgia on October 8, 2008. Workshop participants computed sonic boom signatures for three non-lifting bodies and two lifting configurations. A cone-cylinder, parabolic, and quartic bodies of revolution comprised the non-lifting cases. The lifting configurations were a simple 69-degree delta wing body and a complete low-boom transport configuration designed during the High Speed Research Project in the 1990s with wing, body, tail, nacelle, and boundary layer diverter components. The AIRPLANE, Cart3D, FUN3D, and USM3D ow solvers were employed with the ANET signature propagation tool, output-based adaptation, and a priori adaptation based on freestream Mach number and angle of attack. Results were presented orally at the workshop. This article documents the workshop, results, and provides context on previously available and recently developed methods.

  11. The Major Impacts of the Baby Boom Cohort upon American Life, Past, Present and Future.

    ERIC Educational Resources Information Center

    Whaley, Charles E.

    Impacts of the "Baby Boom" generation, the 75 million persons born between 1947 and 1962 in the United States, are analyzed. Factors influencing this unprecedented increase in birth rates included "catching up" by men who had been at war, a higher proportion of women in childbearing years, a decrease in the average marriage age, and the prosperous…

  12. Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.

  13. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Booms and masts; minimum distance from high-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  14. The Baby Boom Echo: Implications for Higher Education in the Mid-South.

    ERIC Educational Resources Information Center

    Chamberlin, Gary D.; Franklin, Kathy K.

    The purpose of this study was to analyze the influence of the generation born between 1977 and 1994, the "baby boom echo," on the demand for higher education and workforce development in Arkansas. Although the birthrate in Arkansas for this period does not correlate with the national trend, increased school enrollment and in-migration in the 1990s…

  15. Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1996-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  16. 78 FR 39610 - Safety Zone; Big Bay Boom, San Diego Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Security FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information The...) on May 20, 2013 (78 FR 29289). The Coast Guard received no comments on that NPRM and as such, no... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Bay Boom, San Diego Bay; San Diego,...

  17. 78 FR 29289 - Safety Zone; Big Bay Boom, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A. Public... Act notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Bay Boom, San Diego Bay, San Diego,...

  18. Higher Education and the Minerals Boom: A View from the Regions

    ERIC Educational Resources Information Center

    Bell, Philip

    2014-01-01

    This paper examines the impact of the minerals boom to date on the demand for higher education in Central Queensland, and the sustainability of higher education providers in high economic growth environments. Several datasets were used to examine changes in the demand for higher education among specific student groups within the region, the…

  19. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  20. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  1. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  2. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  3. Raptor responses to low-level jet aircraft and sonic booms.

    PubMed

    Ellis, D H; Ellis, C H; Mindell, D P

    1991-01-01

    We estimated effects of low-level military jet aircraft and mid- to high-altitude sonic booms (actual and simulated) on nesting peregrine falcons (Falco peregrinus) and seven other raptors by observing their responses to test stimuli, determining nesting success for the test year, and evaluating site reoccupancy rates for the year following the tests. Frequent and nearby jet aircraft passes: (1) sometimes noticeably alarmed birds, (2) occasionally caused birds to fly from perches or eyries, (3) most often evoked only minimal responses, and (4) were never associated with reproductive failure. Similarly, responses to real and simulated mid- to high-altitude sonic booms were often minimal and never appeared productivity limiting. Eighteen (95%) of 19 nest sites subjected to low-level jet flights and/or simulated sonic booms in 1980 fledged young during that year. Eighteen (95%) of 19 sites disturbed in 1980 were reoccupied by pairs or lone birds of the same species in 1981. We subjected four pairs of prairie falcons (Falco mexicanus) to low-level aircraft at ad libitum levels during the courtship and incubation phases when adults were most likely to abandon: all four eyries fledged young. From heart rate (HR) data taken via a telemetering egg at another prairie falcon eyrie, we determined that stimulus-induced HR alterations were comparable to rate changes for birds settling to incubate following flight. While encouraging, our findings cannot be taken as conclusive evidence that jet flights and/or sonic booms will have no long-term negative effects for other raptor species or for other areas. In addition, we did not experiment with totally naive wild adults, rotary-winged aircraft, or low-level sonic booms. PMID:15092075

  4. A wing design methodology for low-boom low-drag supersonic business jet

    NASA Astrophysics Data System (ADS)

    Le, Daniel B.

    2009-12-01

    The arguably most critical hindrance to the successful development of a commercial supersonic aircraft is the impact of the sonic boom signature. The sonic boom signature of a supersonic aircraft is predicted using sonic boom theory, which formulates a relationship between the complex three-dimensional geometry of the aircraft to the pressure distribution and decomposes the geometry in terms of simple geometrical components. The supersonic aircraft design process is typically based on boom minimization theory. This theory provides a theoretical equivalent area distribution which should be matched by the conceptual design in order to achieve the pre-determined sonic boom signature. The difference between the target equivalent area distribution and the actual equivalent area distribution is referred to here as the gap distribution. The primary intent of this dissertation is to provide the designer with a systematic and structured approach to designing the aircraft wings with limited changes to the baseline concept while achieving critical design goals. The design process can be easily overwhelmed and may be difficult to evaluate their effectiveness. The wing design is decoupled into two separate processes, one focused on the planform design and the other on the camber design. Moreover, this design methodology supplements the designer by allowing trade studies to be conducted between important design parameters and objectives. The wing planform design methodology incorporates a continuous gradient-based optimization scheme to supplement the design process. This is not meant to substitute the vast amount of knowledge and design decisions that are needed for a successful design. Instead, the numerical optimization helps the designer to refine creative concepts. Last, this dissertation integrates a risk mitigation scheme throughout the wing design process. The design methodology implements minimal design changes to the wing geometry white achieving the target design goal

  5. A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Deere, Karen A.

    2008-01-01

    NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (<10 body lengths below the aircraft) boom signatures at supersonic speeds using the USM3D unstructured grid flow solver. The study began by examining sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.

  6. Raptor responses to low-level jet aircraft and sonic booms

    USGS Publications Warehouse

    Ellis, D.H.; Ellis, C.H.; Mindell, D.P.

    1991-01-01

    We estimated effects of low-level military jet aircraft and mid- to high-altitude sonic booms (actual and simulated) on nesting peregrine falcons (Falco peregrinus) and seven other raptors by observing their responses to test stimuli, determining nesting success for the test year, and evaluating site reoccupancy rates for the year following the tests. Frequent and nearby jet aircraft passes: (1) sometimes noticeably alarmed birds, (2) occasionally caused birds toffy from perches or eyries, (3) most often evoked only minimal responses, and (4) were never associated with reproductive failure. Similarly, responses to real and simulated mid- to high-altitude sonic booms were often minimal and never appeared productivity limiting. Eighteen (95%) of 19 nest sites subjected to low-level jet flights and/or simulated sonic booms in 1980 fledged young during that year. Eighteen (95%) of l9 sites disturbed in 1980 were reoccupied by pairs or lone birds of the same species in 1981. We subjected four pairs of prairie falcons (Falco mexicanus) to low-level aircraft at ad libitum levels during the courtship and incubation phases when adults were most likely to abandon: all four eyries fledged young. From heart rate (HR) data taken via a telemetering egg at another prairie falcon eyrie, we determined that stimulus-induced HR alterations were comparable to rate changes for birds settling to incubate following flight. While encouraging, our findings cannot be taken as conclusive evidence that jet flights and/or sonic booms will have no long-term negative effects for other raptor species or for other areas. In addition, we did not experiment with totally naive wild adults, rotary-winged aircraft, or low-level sonic booms.

  7. A Performance Assessment of Eight Low-Boom High-Speed Civil Transport Concepts

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G.; McElroy, Marcus O.; Fenbert, James A.; Coen, Peter G.; Ozoroski, Lori P.; Domack, Chris S.; Needleman, Kathy E.; Geiselhart, Karl A.

    1999-01-01

    A performance assessment of eight low-boom high speed civil transport (HSCT) configurations and a reference HSCT configuration has been performed. Although each of the configurations was designed with different engine concepts, for consistency, a year 2005 technology, 0.4 bypass ratio mixed-flow turbofan (MFTF) engine was used for all of the performance assessments. Therefore, all original configuration nacelles were replaced by a year 2005 MFRF nacelle design which corresponds to the engine deck utilized. The engine thrust level was optimized to minimize vehicle takeoff gross weight. To preserve the configuration's sonic-boom shaping, wing area was not optimized or altered from its original design value. Performance sizings were completed when possible for takeoff balanced field lengths of 11,000 ft and 12,000 ft, not considering FAR Part 36 Stage III noise compliance. Additionally, an arbitrary sizing with thrust-to-weight ratio equal to 0.25 was performed, enabling performance levels to be compared independent of takeoff characteristics. The low-boom configurations analyzed included designs from the Boeing Commercial Airplane Group, Douglas Aircraft Company, Ames Research Center, and Langley Research Center. This paper discusses the technology level assumptions, mission profile, analysis methodologies, and the results of the assessment. The results include maximum lift-to-drag ratios, total fuel consumption, number of passengers, optimum engine sizing plots, takeoff performance, mission block time, and takeoff gross weight for all configurations. Results from the low-boom configurations are also compared with a non-low-boom reference configuration. Configuration dependent advantages or deficiencies are discussed as warranted.

  8. Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section

    NASA Technical Reports Server (NTRS)

    Caster, Raymond S.

    2010-01-01

    NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.

  9. An Evaluation of the Impact of the Niagara River Ice Boom on the Air Temperature Regime at Buffalo, New York.

    NASA Astrophysics Data System (ADS)

    Quinn, Frank H.; Assel, Raymond A.; Gaskill, Daniel W.

    1982-03-01

    The objective of this study was to determine if the Niagara River ice boom has prolonged the Lake Erie ice cover at Buffalo, New York, resulting in significant changes in the spring warm-up of Lake Erie and longer, colder winters in the area. Statistical analysis of Buffalo air temperatures compared with those for Lockport, NY does not reveal statistically significant cooling in the climate at Buffalo related to the operation of the ice boom. However, because of the distance of the airport (where the temperature gage is located) from the shore zone, the possibility of a localized effect of small magnitude within the vicinity of the ice boom cannot be ruled out. A comparison of the water temperature at the Buffalo intake as recorded in pre- and post-boom years also indicates that the ice boom has not had an impact on the timing of the spring rise in Lake Erie water temperature at Buffalo. Analysis of winter temperature trends since 1898 shows that the winter severity at Buffalo follows a general pattern characteristic not only of the region around the eastern end of Lake Erie but also of the Great Lakes Region as a whole. Winters have become colder since the installation of the ice boom, but these colder winters are part of a general climatic trend toward more severe winters beginning in 1958. Thus, there is no evidence to suggest that the ice boom has increased winter severity or duration at Buffalo relative to other areas around the Great Lakes.

  10. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  11. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  12. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2005-09-01

    Triggered by the desire to investigate numerically the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π,π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Especially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  13. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  14. KSC-05PD-0624

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.

  15. KSC-05PD-0625

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.

  16. A study of sonic boom overpressure trends with respect to weight, altitude, Mach number, and vehicle shaping

    NASA Technical Reports Server (NTRS)

    Needleman, Kathy E.; Mack, Robert J.

    1990-01-01

    This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.

  17. Ka Band Objects: Observation and Monitoring (KaBOOM)

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.

    2012-09-01

    NASA has embarked on a path that will enable the implementation of a high power, high resolution X/Ka band radar system using widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. We shall demonstrate Ka band coherent uplink arraying with real-time atmospheric compensation using three 12m antennas at the Kennedy Space Center (KSC). Our proposed radar system can complement and supplement the activities of the Space Fence. The proposed radar array has the advantages of filling the gap between dusk and dawn and offers the possibility of high range resolution (4 cm) and high spatial resolution (?10 cm at GEO) when used in a VLBI mode. KSC was chosen because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka band friendly), and [c] the test satellites have a low elevation adding more attenuation and turbulence to the demonstration. If Ka band coherent uplink arraying can be made to work at KSC, it will work anywhere. We expect to rebaseline X-band in 2013, and demonstrate Ka band uplink arraying in 2014.

  18. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect

    Mercurio, Angelique

    2012-01-16

    , New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The

  19. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  20. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  1. Orbital inflammation: Corticosteroids first.

    PubMed

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  2. Numerical Simulations of the Solar Orbiter Antenna System RPW ANT

    NASA Astrophysics Data System (ADS)

    Sampl, M.; Rucker, H. O.; Oswald, T. H.; Plettemeier, D.; Maksimovic, M.; Macher, W.

    The high-frequency electric sensors onboard Solar Orbiter are part of the radio and plasma wave experiment (RPW). The sensors consist of cylindrical antennas (ANT) mounted on three booms extruded from the central body of the spacecraft. Due to the parasitic effects of the conducting spacecraft body and solar panels the true antenna properties (effective axes and length, capacitances) do not coincide with their physical representations. The numerical analysis of the reception properties of these antennas is presented. In order to analyze the antenna system we applied a numerical method. The current distribution on the spacecraft body and the effective length vector was calculated, by solving the underlying field equations using electromagnetic code. In the applied method the spacecraft is modeled as a mesh-grid.

  3. Oil spill recovery: Oil booms and skimmers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations of selected patents concerning booms, skimmers and skimming techniques used for oil spill recovery. Patents covering oil absorbent materials, dispersants, floating booms, methods and equipment for oil spill containment and collection, marine barriers, cryogenic beach cleaners, microbial materials, and ultrasonic oil removal are included. Citations concerning oil/water separation for non-oil spill recovery applications are examined in a separate bibliography. (Contains a minimum of 177 citations and includes a subject term index and title list.)

  4. Dissolution Behaviour of UO{sub 2} in Anoxic Conditions: Comparison of Ca-Bentonite and Boom Clay

    SciTech Connect

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel

    2007-07-01

    In order to determine in how far the clay properties influence the dissolution of spent fuel, experiments were carried out with depleted UO{sub 2} in the presence of either compacted dry Ca-bentonite with Boom Clay groundwater (KB-BCW) or compacted dry Boom Clay with Boom Clay groundwater (BC-BCW). The leach tests were performed at 25 deg. C in anoxic atmosphere for 2 years. The U concentrations in the clay water were followed during these 2 years, and the amount of U in the clay was determined after 2 years in order to determine the UO{sub 2} dissolution rate. The uranium concentration after 0.45 {mu}m filtration was 50 times higher in the Boom Clay with Boom Clay water (2.0 x 10{sup -7} mol.L{sup -1}) than in Ca-bentonite with Boom Clay water (6.5 x 10{sup -9} mol.L{sup -1}), probably due to colloid formation in the Boom Clay system. Most released uranium was found in the clay. The fraction of uranium, dissolved from the UO{sub 2} pellet and found on the clay represents about 42 % of total uranium release in the system BC-BCW and more than 76 % in the system KB-BCW. The higher uranium retention of Boom Clay goes together with a higher dissolution rate. Global dissolution rates were estimated at about 2.0 x 10{sup -2} {mu}g.cm{sup -2}.d{sup -1} for the BCBCW system and 3.4 x 10{sup -3} {mu}g.cm{sup -2}.d{sup -1} for the KB-BCW system. This is not much lower than for similar tests with spent fuel, reported in literature. (authors)

  5. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  6. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  7. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  8. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  9. A unified approach to an augmented Burgers equation for the propagation of sonic booms.

    PubMed

    Yamamoto, Masafumi; Hashimoto, Atsushi; Aoyama, Takashi; Sakai, Takeharu

    2015-04-01

    Nonlinear propagation through a relaxing atmosphere of pressure disturbances extracted from a computational fluid dynamics (CFD) solution of the flow around a supersonic aircraft is simulated using an augmented Burgers equation. The effects of nonlinearity, geometrical spreading, atmospheric inhomogeneity, thermoviscous attenuation, and molecular vibration relaxation are taken into account. The augmented Burgers equation used for sonic boom propagation calculations is often solved by the operator splitting method, but numerical difficulties arise with this approach when dissipation is not effective. By re-examining the solution algorithms for the augmented Burgers equation, a stable method for handling the relaxation effect has been developed. This approach can handle the Burgers equation in a unified manner without operator splitting and, therefore, the resulting scheme is twice as fast as the original one. The approach is validated by comparing it with an analytical solution and a detailed CFD of dispersed plane wave propagation. In addition, a rise time prediction of low-boom supersonic aircraft is demonstrated.

  10. Human response to house vibrations caused by sonic booms or air blasts.

    PubMed

    Schomer, P D

    1978-07-01

    Descriptions of the effects of sonic booms of air blasts by observers in buildings have included such statements as "noticeable vibrations" in addition to phrases such as "the house rattles," "the windows rattle," or "bric-à-brac rattles." Analysis of studies of human response to vibrations, vibration complaints in the Toronto area, special tests by Kryter at Edwards Air Force Base, and laboratory studies of human response to sonic booms show that perceived vibration is not normally a factor that contributes significantly to human response to airborne, large-amplitude impulse noise. Rather, human response is solely the result of the impulse noise itself and of audible noise due to induced radiation from vibrating surfaces. PMID:711997

  11. Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts

    SciTech Connect

    Gladwin, D.N.; Manci, K.M.; Villella, R.

    1988-06-01

    The purpose of the document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop the document the National Ecology Research Center conducted a literature search of information pertaining to animal hearing and the effects of aircraft noise and sonic booms on domestic animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in the report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study. (A literature synthesis is available in a separate document.)

  12. A study to determine the feasibility of a low sonic boom supersonic transport

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    A study was made to determine the feasibility of supersonic transport configurations designed to produce a goal sonic boom signature with low overpressure. The results indicate that, in principle, such a concept represents a potentially realistic design approach assuming technology of the 1985 time period. Two sonic boom goals were selected which included: (1) A high speed design that would produce shock waves no stronger than 48 Newtons per square meter (1.0 psf); and an intermediate Mach number (mid-Mach) design that would produce shock waves no stronger than 24 Newtons per square meter. The high speed airplane design was a Mach 2.7 blended arrow wing configuration which was capable of carrying 183 passengers a distance of 7000 km (3780 nmi) while meeting the signature goal. The mid-Mach airplane designed was a Mach 1.5 low arrow wing configuration with a horizontal tail which could carry 180 passengers a distance of 5960 km (3220 nmi).

  13. Validation of sonic boom propagation codes using SR-71 flight test data.

    PubMed

    Ivanteyeva, Lyudmila G; Kovalenko, Victor V; Pavlyukov, Evgeny V; Teperin, Leonid L; Rackl, Robert G

    2002-01-01

    The results of two sonic boom propagation codes, ZEPHYRUS (NASA) and BOOM (TsAGI), are compared with SR-71 flight test data from 1995. Options available in the computational codes are described briefly. Special processing methods are described which were applied to the experimental data. A method to transform experimental data at close ranges to the supersonic aircraft into initial data required by the codes was developed; it is applicable at any flight regime. Data are compared in near-, mid-, and far fields. The far-field observation aircraft recorded both direct and reflected waves. Comparison of computed and measured results shows good agreement with peak pressure, duration, and wave shape for direct waves, thus validating the computational codes.

  14. Development and evaluation of a device to simulate a sonic boom

    NASA Technical Reports Server (NTRS)

    Rash, L. C.; Barrett, R. F.; Hart, F. D.

    1972-01-01

    A device to simulate the vibrational and acoustical properties of a sonic boom was developed and evaluated. The design employed a moving circular diaphragm which produced pressure variations by altering the volume of an air-tight enclosure that was located adjacent to an acoustical test chamber. A review of construction oriented problems, along with their solutions, is presented. The simulator is shown to produce the effects of sonic booms having pressure signatures with rise times as low as 5 milliseconds, durations as short as 80 milliseconds, and overpressures as high as 2.5 pounds per square foot. Variations in the signatures are possible by independent adjustments of the simulator. The energy spectral density is also shown to be in agreement with theory and with actual measurements for aircraft.

  15. Study of a 30-M Boom For Solar Sail-Craft: Model Extendibility and Control Strategy

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    2005-01-01

    Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the

  16. Minimization of sonic-boom parameters in real and isothermal atmospheres. [overpressure and acoustic impedance

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1975-01-01

    The procedure for sonic-boom minimization introduced by Seebass and George for an isothermal atmosphere was converted for use in the real atmosphere by means of the appropriate equations for sonic-boom pressure signature advance, ray-tube area, and acoustic impedance. Results of calculations using both atmospheres indicate that except for low Mach numbers or high altitudes, the isothermal atmosphere with a scale height of 7620 m (25 000 ft) gives a reasonable estimate of the values of overpressure, impulse, and characteristic overpressure obtained by using the real atmosphere. The results also show that for aircraft design studies, propagation of a known F-function, or minimization studies at low supersonic Mach numbers, the isothermal approximation is not adequate.

  17. A solid state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1972-01-01

    The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.

  18. Regional population collapse followed initial agriculture booms in mid-Holocene Europe.

    PubMed

    Shennan, Stephen; Downey, Sean S; Timpson, Adrian; Edinborough, Kevan; Colledge, Sue; Kerig, Tim; Manning, Katie; Thomas, Mark G

    2013-01-01

    Following its initial arrival in SE Europe 8,500 years ago agriculture spread throughout the continent, changing food production and consumption patterns and increasing population densities. Here we show that, in contrast to the steady population growth usually assumed, the introduction of agriculture into Europe was followed by a boom-and-bust pattern in the density of regional populations. We demonstrate that summed calibrated radiocarbon date distributions and simulation can be used to test the significance of these demographic booms and busts in the context of uncertainty in the radiocarbon date calibration curve and archaeological sampling. We report these results for Central and Northwest Europe between 8,000 and 4,000 cal. BP and investigate the relationship between these patterns and climate. However, we find no evidence to support a relationship. Our results thus suggest that the demographic patterns may have arisen from endogenous causes, although this remains speculative.

  19. Reduction of the sonic boom level in supersonic aircraft flight by the method of surface cooling

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.

    2013-12-01

    Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.

  20. Reduction of the sonic boom level in supersonic aircraft flight by the method of surface cooling

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.

    2014-12-01

    Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.

  1. Validation of sonic boom propagation codes using SR-71 flight test data.

    PubMed

    Ivanteyeva, Lyudmila G; Kovalenko, Victor V; Pavlyukov, Evgeny V; Teperin, Leonid L; Rackl, Robert G

    2002-01-01

    The results of two sonic boom propagation codes, ZEPHYRUS (NASA) and BOOM (TsAGI), are compared with SR-71 flight test data from 1995. Options available in the computational codes are described briefly. Special processing methods are described which were applied to the experimental data. A method to transform experimental data at close ranges to the supersonic aircraft into initial data required by the codes was developed; it is applicable at any flight regime. Data are compared in near-, mid-, and far fields. The far-field observation aircraft recorded both direct and reflected waves. Comparison of computed and measured results shows good agreement with peak pressure, duration, and wave shape for direct waves, thus validating the computational codes. PMID:11837960

  2. Validation of sonic boom propagation codes using SR-71 flight test data

    NASA Astrophysics Data System (ADS)

    Ivanteyeva, Lyudmila G.; Kovalenko, Victor V.; Pavlyukov, Evgeny V.; Teperin, Leonid L.; Rackl, Robert G.

    2002-01-01

    The results of two sonic boom propagation codes, ZEPHYRUS (NASA) and BOOM (TsAGI), are compared with SR-71 flight test data from 1995. Options available in the computational codes are described briefly. Special processing methods are described which were applied to the experimental data. A method to transform experimental data at close ranges to the supersonic aircraft into initial data required by the codes was developed; it is applicable at any flight regime. Data are compared in near-, mid-, and far fields. The far-field observation aircraft recorded both direct and reflected waves. Comparison of computed and measured results shows good agreement with peak pressure, duration, and wave shape for direct waves, thus validating the computational codes.

  3. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  4. Vibration/Libration Interaction Dynamics During the Orbiter Based Deployment of Flexible Members

    NASA Technical Reports Server (NTRS)

    Modi, V. J.; Ibrahim, A. M.

    1985-01-01

    Essential features of a general formulation for studying librational dynamics of a large class of spacecraft during deployment of flexible members are reviewed. The formulation is applicable to a variety of missions ranging from deployment of antennas, booms and solar panels to manufacturing of trusses for space platforms using the space shuttle. The governing nonlinear, non-autonomous and coupled equations of motion are extremely difficult to solve even with the help of a computer, not to mention the cost involved. To get some appreciation as to the complex interactions between flexibility, deployment and attitude dynamics as well as to help pursue stability and control analysis, the equations are linearized about their nominal deflected equilibrium configuration. The procedure is applied to the Space Shuttle based deployment of boom and plate-like members. Results suggest substantial influence of the inertia parameter, flexural rigidity of the appendages, orbit eccentricity, deployment velocity, initial conditions, etc. on the system response. The results should prove useful in planning of the Orbiter based experiments aimed at assessing effectiveness of procedures for studying dynamics and control of flexible orbiting members.

  5. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  6. Treatment of psychiatric problems a growth industry in midst of Chile's booming economy.

    PubMed Central

    Sagaris, L

    1996-01-01

    Five years after an elected government took over from a military regime, Chile has enjoyed booming economic growth and some measure of political stability but the scars of the legacy left by the regime of Augusto Pinochet run deep. Alcohol and drug abuse, family violence, depression and other mental-health problems are reported by a large proportion of the population. Fear is one of the permanent consequences of the military regime, says one sociologist. PMID:8673970

  7. Method for Standardizing Sonic-Boom Model Pressure Signatures Measured at Several Wind-Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2007-01-01

    Low-boom model pressure signatures are often measured at two or more wind-tunnel facilities. Preliminary measurements are made at small separation distances in a wind tunnel close at hand, and a second set of pressure signatures is measured at larger separation distances in a wind-tunnel facility with a larger test section. In this report, a method for correcting and standardizing the wind-tunnel-measured pressure signatures obtained in different wind tunnel facilities is presented and discussed.

  8. The design and testing of a memory metal actuated boom release mechanism

    NASA Technical Reports Server (NTRS)

    Powley, D. G.; Brook, G. B.

    1979-01-01

    A boom latch and release mechanism was designed, manufactured and tested, based on a specification for the ISEE-B satellite mechanism. From experimental results obtained, it is possible to calculate the energy available and the operating torques which can be achieved from a torsional shape memory element in terms of the reversible strain induced by prior working. Some guidelines to be followed when designing mechanisms actuated by shape memory elements are included.

  9. A Back to School Special Report on the Baby Boom Echo: No End in Sight.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This report measures the impact of the baby-boom echo--the 25 percent increase in the U.S. birth rate that began in the mid-1970s and reached its peak in 1990 with the birth of 4.1 million children. The paper reports that a record 53.2 million students will attend school in the next decade and that college enrollment will rise to a record 14.9…

  10. Surgical video displays and booms. We answer your questions about selection and installation.

    PubMed

    2011-05-01

    If you're renovating your operating rooms or constructing new ones, you probably have a lot of basic questions about device requirements and the purchasing process. Do devices need to meet electrical safety standards? Is equipment described as "medical grade" better? Is it important to buy your displays from your surgical boom vendor or your integration provider? Here are answers to those and other questions we're often asked.

  11. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  12. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  13. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  14. Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept

    NASA Technical Reports Server (NTRS)

    Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.

    2015-01-01

    The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.

  15. Rural North Dakota's oil boom and its impact on social services.

    PubMed

    Weber, Bret A; Geigle, Julia; Barkdull, Carenlee

    2014-01-01

    Over the last five years, North Dakota has experienced an oil boom based on high oil prices and hydraulic fracturing technologies. This has brought economic expansion and population growth to rural communities that had previously experienced decades of depopulation and economic struggle. Although the state has enjoyed many benefits--especially in juxtaposition to a sluggish national economy--the boom has also meant the arrival of economic refugees and dramatic impacts on largely rural social service systems. In the midst of a rapidly changing situation, available information tends to swing between euphoria over economic success and hysteria about rising crime and shifting cultures. In response, the authors used a primary focus group with county social service directors from across the state and a followup focus group with social workers operating on the edge of oil activity. Grounded in resilience theory, qualitative analysis of the primary focus group, and triangulation of data from other sources, this study provides a more objective report of the housing and social challenges, the benefits of the boom, and the challenges to solutions.

  16. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  17. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.

    PubMed

    Piacsek, Andrew A

    2002-01-01

    The propagation and subsequent distortion of sonic booms with rippled wave fronts are investigated theoretically using a nonlinear time-domain finite-difference scheme. This work seeks to validate the rippled wave front approach as a method for explaining the significant effects of turbulence on sonic booms [A. S. Pierce and D. J. Maglieri, J. Acoust. Soc. Am. 51, 702-721 (1971)]. A very simple description of turbulence is employed in which velocity perturbations within a shallow layer of the atmosphere form strings of vortices characterized by their size and speed. Passage of a steady-state plane shock front through such a vortex layer produces a periodically rippled wave front which, for the purposes of the present investigation, serves as the initial condition for a finite-difference propagation scheme. Results show that shock strength and ripple curvature determine whether ensuing propagation leads to wave front folding. High resolution images of the computed full wave field provide insights into the spiked and rounded features seen in sonic booms that have propagated through turbulence. PMID:11837957

  18. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  19. Reduction of the sonic boom level by heating the flow in front of the body

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2014-07-01

    A numerical study of the possibility of reducing the sonic boom level in the case of local heat release to a supersonic gas flow at Mach number equal to 2 ahead of a body is described. The computations are performed for a spherical heat supply zone located on the flight trajectory ahead of the tip of an axisymmetric thin body. For the numerical study the combined method of "phantom bodies" is used. Different magnitudes of heat supply to the incoming flow are tested. These calculations are performed with allowance for interaction of shock waves emanating from the heated gas region and from the body in the far field. The computational results show that the local heat supply to a supersonic gas flow ahead of a body can reduce the sonic boom level by more than 20 %. The reduction of the sonic boom level is ensured by changing the free-stream parameters ahead of the body and by preventing the coalescence of shock waves from the heat supply zone and from the body in the far field.

  20. Sonic-boom ground pressure measurements from the launch and reentry of Apollo 16

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Hilton, D. A.

    1974-01-01

    Sonic-boom pressure signatures recorded during the launch and reentry phases of the Apollo 16 mission are presented. Five measurements were obtained along the vehicle ground track: 69 km (37.3 n. mi.) 92 km (49.8 n. mi.), and 130 km (70.3 n. mi.) down range from the launch site during ascent, and at 185 km (100 n. mi.) and approximately 5.5 km (3 n. mi.) from the splash-down point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic-boom instrumentation deployment, flight profiles, and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the sonic-boom overpressures from Apollo 15 and 16 along with those from current aircraft are also presented.

  1. Overview of feasibility study on conducting overflight measurements of shaped sonic boom signatures using RPV's

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.; Bobbitt, Percy J.

    1992-01-01

    Before beginning this presentation, it is appropriate to acknowledge the sincere interest and financial support provided by the NASA LaRC under contract NAS9-17900. An outline of the material to be used in the present paper is given. It begins with a indication of the origin and objectives of the feasibility study. This is followed by a discussion of various simulation methods of establishing the persistence of shaped sonic boom signatures to large distances including the use of recoverable RPV/drones. The desirable features to be sought out in an RPV along with a rationale for the selection of a 'shaped' sonic boom signature will be addressed. Three candidate vehicles are examined as to their suitability with respect to a number of factors, in particular, modifiability. Area distributions and associated sonic boom signatures of the basic and modified Firebee vehicle will also be shown. An indication of the scope of the proposed wind tunnel and flight test programs will be presented including measurement technologies and predicted waveforms. Finally, some remarks will be made summarizing the study and highlighting the key findings.

  2. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2012-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

  3. Uncertainty Quantification and Certification Prediction of Low-Boom Supersonic Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Reuter, Bryan W.; Walker, Eric L.; Kleb, Bil; Park, Michael A.

    2014-01-01

    The primary objective of this work was to develop and demonstrate a process for accurate and efficient uncertainty quantification and certification prediction of low-boom, supersonic, transport aircraft. High-fidelity computational fluid dynamics models of multiple low-boom configurations were investigated including the Lockheed Martin SEEB-ALR body of revolution, the NASA 69 Delta Wing, and the Lockheed Martin 1021-01 configuration. A nonintrusive polynomial chaos surrogate modeling approach was used for reduced computational cost of propagating mixed, inherent (aleatory) and model-form (epistemic) uncertainty from both the computation fluid dynamics model and the near-field to ground level propagation model. A methodology has also been introduced to quantify the plausibility of a design to pass a certification under uncertainty. Results of this study include the analysis of each of the three configurations of interest under inviscid and fully turbulent flow assumptions. A comparison of the uncertainty outputs and sensitivity analyses between the configurations is also given. The results of this study illustrate the flexibility and robustness of the developed framework as a tool for uncertainty quantification and certification prediction of low-boom, supersonic aircraft.

  4. Hollow Cylinder Tests on Boom Clay: Modelling of Strain Localization in the Anisotropic Excavation Damaged Zone

    NASA Astrophysics Data System (ADS)

    François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric

    2014-01-01

    Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).

  5. Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce; Yoo, Seung

    2010-01-01

    A major goal of the Supersonics Project under NASA s Fundamental Aeronautics program is sonic boom reduction of supersonic aircraft. An important part of this effort is development and validation of sonic boom prediction tools used in aircraft design. NASA Dryden s F- 16XL was selected as a potential testbed aircraft to provide flight validation. Part of this task was predicting the handling qualities of the modified aircraft. Due to the high cost of modifying the existing F-16XL control laws, it was desirable to find modifications that reduced the aircraft sonic boom but did not degrade baseline aircraft handling qualities allowing for the potential of flight test without changing the current control laws. This was not a requirement for the initial modification design work, but an important consideration for proceeding to the flight test option. The primary objective of this work was to determine an aerodynamic and mass properties envelope of the F-16XL aircraft. The designers could use this envelope to determine the effect of proposed modifications on aircraft handling qualities.

  6. Overview of feasibility study on conducting overflight measurements of shaped sonic boom signatures using RPV's

    NASA Astrophysics Data System (ADS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.; Bobbitt, Percy J.

    1992-04-01

    Before beginning this presentation, it is appropriate to acknowledge the sincere interest and financial support provided by the NASA LaRC under contract NAS9-17900. An outline of the material to be used in the present paper is given. It begins with a indication of the origin and objectives of the feasibility study. This is followed by a discussion of various simulation methods of establishing the persistence of shaped sonic boom signatures to large distances including the use of recoverable RPV/drones. The desirable features to be sought out in an RPV along with a rationale for the selection of a 'shaped' sonic boom signature will be addressed. Three candidate vehicles are examined as to their suitability with respect to a number of factors, in particular, modifiability. Area distributions and associated sonic boom signatures of the basic and modified Firebee vehicle will also be shown. An indication of the scope of the proposed wind tunnel and flight test programs will be presented including measurement technologies and predicted waveforms. Finally, some remarks will be made summarizing the study and highlighting the key findings.

  7. Analysis of Exhaust Plume Effects on Sonic Boom for a 59-Degree Wing Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analyses showed how the shock wave formed at the nozzle lip interacted with the nozzle boat-tail expansion wave. The nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion. Lip shock movement caused a favorable change in the observed pressure signature. These results were applied to a simplified supersonic vehicle geometry with no inlets and no tail, in which the goal was to demonstrate how under-expanded nozzle operation reduced the sonic boom signature by twelve percent. A secondary goal was to demonstrate the use of the Cart3D inviscid code for off-body pressure signatures including the nozzle plume effect.

  8. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  9. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  10. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  11. New aspects of the RPW instrument antennas aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Kapper, Michael; Plettemeier, Dirk; Rucker, Helmut O.; Maksimovic, Milan

    2013-04-01

    The E-field sensors (boom antennas) of the RPW instrument aboard the Solar Orbiter spacecraft are subject to severe influence of the conducting spacecraft body and other large structures such as the solar panels in close vicinity of the antennas. In this contribution we outline our newest results in finding the true properties of the antennas with additional emphasis on the influence of the built-in heating circuit for deployment. Knowledge of the true properties of the connected antenna system and receiver hardware is an essential component in ensuring the overall performance of a scientific radio and plasma wave instrument. Compared to other spaceborne multiport scatterers, the ANT sensors aboard Solar Orbiter are more sophisticated in mechanical design with features including tubular shaped pipes with radiators along with several hinges. This combined with the challenging environment (closest proximity to Sun is about 0.29 AU) makes finding the true properties even more pressing than with previous spaceborne radio astronomy observatories. Our numerical investigations also provide an important benchmark against measured antenna characteristics using a scale model of the Solar Orbiter spacecraft in an anechoic chamber. The current calibration results are to provide useful input to goniopolarimetry techniques like polarization analysis, direction finding and ray tracing, all of which depend crucially on the effective axes, allowing for significant improvements to the corresponding scientific data analysis.

  12. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  13. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  14. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  15. Modified Linear Theory Aircraft Design Tools and Sonic Boom Minimization Strategy Applied to Signature Freezing via F-function Lobe Balancing

    NASA Astrophysics Data System (ADS)

    Jung, Timothy Paul

    Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce

  16. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.

  17. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  18. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  19. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  20. Research on the sonic boom problem. Part 1: Second-order solutions for the flow field around slender bodies in supersonic flow for sonic boom analysis

    NASA Technical Reports Server (NTRS)

    Landahl, M.; Loefgren, P.

    1973-01-01

    A second-order theory for supersonic flow past slender bodies is presented. Through the introduction of characteristic coordinates as independent variables and the expansion procedure proposed by Lin and Oswatitsch, a uniformly valid solution is obtained for the whole flow field in the axisymmetric case and for far field in the general three-dimensional case. For distances far from the body the theory is an extension of Whitham's first-order solution and for the domain close to the body it is a modification of Van Dyke's second-order solution in the axisymmetric case. From the theory useful formulas relating flow deflections to the Whitham F-function are derived, which permits one to determine the sonic boom strength from wind tunnel measurements fairly close to the body.

  1. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  2. Noise and sonic-boom impact technology. BOOMAP2 computer program for sonic-boom research. Volume 2. Program users/computer operations manual. Final report, July 86-November 1987

    SciTech Connect

    Day, P.J.; Reilly, T.M.; Seidman, H.

    1988-08-01

    The BOOMAP2 and MOAOPS computer programs analyze noise from supersonic aircraft operations by extracting information from a TACTS/ACMI mission standard data tape and compiles a computer library of information concerning the supersonic operations. The BOOMAP2 program utilizes the library produced by the MOAOPS program. The program calculates various statistics on the supersonic operations, and calculates expected sonic boom levels on the ground based on the extracted information. BOOMAP2 can: 1) generate various spatial/temporal distribution statistics; 2) interface with sonic boom generation and propagation models; 3) calculate the intensity and location of sonic booms reaching the ground; and 4) provide the data file used by a commercial graphical software package, GPCP, to plot contours of boom exposure in units of average peak overpressure or C-weighted day-night average sound level (CDNL). These two programs, when used with an adequate library of aircraft sorties from Military Operating Areas, can be an invaluable tool for environmental planning purposes to predict boom intensity, frequency, and distribution. This report provides the program user's manual and computer operation's manual for the BOOMAP2 program developed under this contract.

  3. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  4. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  5. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  6. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  7. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  8. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  9. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  10. Orbits of 6 Binaries

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.

  11. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  12. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  13. Sonic Booms on Big Structures (SonicBOBS) Phase I Database; NASA Dryden Sensors

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Arnac, Sarah Renee

    2010-01-01

    This DVD contains 13 channels of microphone and up to 22 channels of pressure transducer data collected in September, 2009 around several buildings located at Edwards Air Force Base. These data were recorded by NASA Dryden. Not included are data taken by NASA Langley and Gulfstream. Each day's data is in a separate folder and each pass is in a file beginning with "SonicBOBS_" (for microphone data) or "SonicBOBSBB_" (for BADS and BASS data) followed by the month, day, year as two digits each, followed by the hour, minute, sec after midnight GMT. The filename time given is for the END time of the raw recording file. In the case of the microphone data, this time may be several minutes after the sonic boom, and is according to the PC's uncalibrated clock. The Matlab data files have the actual time as provided by a GPS-based IRIG-B signal recorded concurrently with the data. Microphone data is given for 5 seconds prior to 20 seconds after the sonic boom. BADS and BASS data is given for the full recording, 6 seconds for the BADS and 10 seconds for the BASS. As an example of the naming convention, file "SonicBOBS_091209154618.mat" is from September 12, 2009 at 15:46:18 GMT. Note that data taken on September 12, 2009 prior to 01:00:00 GMT was of the Space Shuttle Discovery (a sonic boom of opportunity), which was on September 11, 2009 in local Pacific Daylight Time.

  14. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Effects of indoor rattle sounds on annoyance caused by sonic booms.

    PubMed

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2015-07-01

    To expand national air transportation capabilities, NASA's Commercial Supersonic Technology Project is working to make supersonic flight practical for commercial passengers. As an aid in designing and certifying quiet supersonic aircraft, a noise metric is sought that will correspond to indoor annoyance caused by sonic booms, including the effects of indoor rattle sounds. This study examines how well several common aircraft noise metrics predict indoor annoyance based on the indoor and outdoor sound fields. The results suggest notional community annoyance models that include the effects of indoor rattle sounds. PMID:26233059

  16. Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts

    USGS Publications Warehouse

    Gladwin, Douglas N.; Manci, Karen M.; Villella, Rita

    1988-01-01

    The purpose of this document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop this document the National Ecology Center conducted a literature search of information pertaining to animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in this report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study.

  17. Numerical investigation of the seismic detectability of carbonate thin beds in the Boom Clay formation

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2016-07-01

    The present study evaluates the capacity of the Boom Clay as a host rock for disposal purposes, more precisely its seismic characterization, which may assess its long-term performance to store radioactive wastes. Although the formation is relatively uniform and homogeneous, there are embedded thin layers of septaria (carbonates) that may affect the integrity of the Boom Clay. Therefore, it is essential to locate these geobodies. The seismic data to characterize the Boom Clay has been acquired at the Kruibeke test site. The inversion, which allowed us to obtain the anisotropy parameters and seismic velocities of the clay, is complemented with further information such as log and laboratory data. The attenuation properties have been estimated from equivalent formations (having similar composition and seismic velocities). The inversion yields quite consistent results although the symmetry of the medium is unusual but physically possible, since the anisotropy parameter ɛ is negative. According to a time-domain calculation of the energy velocity at four frequency bands up to 900 Hz, velocity increases with frequency, a behaviour described by the Zener model. Then, we use this model to describe anisotropy and anelasticity that are implemented into the equation of motion to compute synthetic seismograms in the space-time domain. The technique is based on memory variables and the Fourier pseudospectral method. We have computed reflection coefficients of the septaria thin layer. At normal incidence, the P-wave coefficient vanishes at specific thicknesses of the layer and there is no conversion to the S wave. For example, calculations at 600 Hz show that for thicknesses of 1 m the septarium can be detected more easily since the amplitudes are higher (nearly 0.8). Converted PS waves have a high amplitude at large offsets (between 30° and 80°) and can be useful to identify the target on this basis. Moreover, we have investigated the effect of septaria embedded in the Boom

  18. A solid-state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Shope, W. W.

    1974-01-01

    A solid-state converter, used in a system of instrumentation for measuring aircraft noise and sonic boom, features a dual-gate FET mixer and an output stage designed for compatibility with a zero drive amplifier. With a half-inch condenser microphone the converter itself has an operating frequency range from dc-28 kHz (-3 dB), a dynamic range of 72 dB, and a noise floor of 50 dB in the band from 22.4 Hz to 22.4 kHz; the system requires no impedance matching networks and is insensitive to cable length up to at least 3000 ft.

  19. Application of CFD to sonic boom near and mid flow-field prediction

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Edwards, Thomas A.; Lawrence, Scott L.

    1990-01-01

    A 3-D parabolized Navier-Stokes (PNS) code was used to calculate the supersonic overpressures from three different geometries at near- and mid-flow fields. Wind tunnel data is used for code validation. Comparison of the computed results with different grid refinements is shown. It is observed that a large number of grid points is needed to resolve the tail shock/expansion fan interaction. Therefore, an adaptive grid approach is employed to calculate the flow field. The agreement between the numerical results and the wind tunnel data confirms that computational fluid dynamics can be applied to the problem of sonic boom prediction.

  20. Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: June 2006 Field Test

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Buehrle, Ralph D.

    2007-01-01

    During the month of June 2006, a series of structural response measurements were made on a house on Edwards Air Force Base (AFB) property that was excited by sonic booms of various amplitudes. Many NASA personnel other than the authors of this report from both Langley Research Center and Dryden Flight Research Center participated in the planning, coordination, execution, and data reduction for the experiment documented in this report. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected.