Science.gov

Sample records for 500-year flood plains

  1. Surviving a 500-year flood.

    PubMed

    McFarland, H F

    2001-10-01

    In spite of what were thought to be adequate preparations, eastern North Carolina was devastated by the enormity of an unexpected and catastrophic flood, which followed on the heels of two hurricanes. The stories describing what happened during that time provide the information necessary to be ready for future disasters. Included is a quality improvement plan developed by one outpatient dialysis center after the flood.

  2. The flood of December 1982 and the 100- and 500-year flood on the Buffalo River, Arkansas

    USGS Publications Warehouse

    Neely, B.L.

    1985-01-01

    Flood profiles, peak discharges, and stages were determined for the December 1982, the 100-year, and the 500-year floods at 17 sites along the Buffalo River, Arkansas. Typical synthetic stage hydrographs for the 100- and 500-year floods were determined for each site. Flow duration data for gaging stations at St. Joe and Rush are shown. The average velocity of the water for the 100- and 500-year floods is shown for each site. Approximate flood boundaries delineating the 100- and 500-year floods are shown for Ponca, Steel Creek, Pruitt, St. Joe, and Buffalo Point. (Author 's abstract)

  3. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  4. Impact of the proposed I-326 crossing on the 500-year flood stages of the Congaree River near Columbia, South Carolina

    USGS Publications Warehouse

    Bennett, C.S.

    1984-01-01

    A two-dimensional finite-element surface water flow modeling system based on the shallow water equations was used to study the hydraulic impact of the proposed Interstate crossing on the 500-year flood. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite-element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-year flood that occurred in October 1976 were used to calibrate the model. The 500-year flood (630,000 cu ft/sec) was simulated using the dike on the left bank as the left boundary and the right edge of the flood plain as the right boundary. Simulations were performed without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from embankments, and velocities in the vicinity of the bridge openings. The results of the study indicate that the four bridge openings in the right flood plain should be adequate to handle the 500-yr flood flow. Forty percent of the flow passes through the main channel bridge, while the remaining 60% of the flow passes through the three overflow bridges. Average velocities in the bridge openings ranged from 3.4 ft/sec to 6.9 ft/sec with a maximum vertically averaged velocity of 9.3 ft/sec occurring at the right edge of one of the overflow bridges. (Author 's abstract)

  5. A 500-year history of floods in the semi arid basins of south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of

  6. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  7. Extreme floods in central Europe over the past 500 years: Role of cyclone pathway ``Zugstrasse Vb''

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; BöRngen, M.; Tetzlaff, G.; Grünewald, U.

    2004-12-01

    Anthropogenically induced climate change has been hypothesized to add to the risk of extreme river floods because a warmer atmosphere can carry more water. In the case of the central European rivers Elbe and Oder, another possibility that has been considered is a more frequent occurrence of a weather situation of the type "Zugstrasse Vb," where a low-pressure system travels from the Adriatic region northeastward, carrying moist air and bringing orographic rainfall in the mountainous catchment areas (Erzgebirge, Sudeten, and Beskids). Analysis of long, homogeneous records of past floods allows us to test such ideas. M. Mudelsee and co-workers recently presented flood records for the middle parts of the Elbe and Oder, which go continuously back to A.D. 1021 and A.D. 1269, respectively. Here we review the reconstruction and assess the data quality of the records, which are based on combining documentary data from the interval up to 1850 and measurements thereafter, finding both the Elbe and Oder records to provide reliable information on heavy floods at least since A.D. 1500. We explain that the statistical method of kernel occurrence rate estimation can overcome deficiencies of techniques previously used to investigate trends in the occurrence of climatic extremes, because it (1) allows nonmonotonic trends, (2) imposes no parametric restrictions, and (3) provides confidence bands, which are essential for evaluating whether observed trends are real or came by chance into the data. We further give a hypothesis test that can be used to evaluate monotonic trends. On the basis of these data and methods, we find for both the Elbe and Oder rivers (1) significant downward trends in winter flood risk during the twentieth century, (2) no significant trends in summer flood risk in the twentieth century, and (3) significant variations in flood risk during past centuries, with notable differences between the Elbe and Oder. The observed trends are shown to be both robust against

  8. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual

  9. Ontogeny of a flood plain

    USGS Publications Warehouse

    Moody, J.A.; Pizzuto, J.E.; Meade, R.H.

    1999-01-01

    The ontogeny of five flood-plain segments is described for a period of 18 yr following a major flood in 1978 on the Powder River in southeastern Montana. The flood plains developed on relatively elevated sand and gravel deposits left within the channel by the 1978 flood. In cross section, the flood plains resemble benches with well-developed natural levees. Flood-plain growth occurred as sediment was draped onto preexisting surfaces in layers of sand and mud a few centimeters to decimeters thick, resulting in some lateral, but mostly vertical accretion. Annual and biannual measurements indicated that, as the flood-plain segments grew upward, the annual rate of vertical accretion decreased as the partial duration recurrence interval for the threshold or bankfull discharge increased from 0.16 to 1.3 yr. It is clear that a constant recurrence interval for overbank flow cannot be meaningfully assigned to this type of flood-plain ontogeny. These flood plains did not grow on migrating point bars, and vertical accretion at least initially occurred within the channel, rather than across the valley flat during extensive overbank flows. Sediments of these flood plains define narrow, elongated stratigraphic units that border the active channel and onlap older flood-plain deposits. These characteristics are considerably different from those of many facies models for meandering river deposits. Facies similar to those described in this paper are likely to be preserved, thereby providing important evidence in the geologic record for episodes of periodic channel expansion by ancient rivers.

  10. A 500-year overview and analysis of flood changes in Europe: preliminary results

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2014-05-01

    Long-term flood series can be gained by combining evidence and systematic hydrological observations. Following various already existing local and regional studies, an important aim of the present work is to create a broad European database of long flood chronologies and to use them for detecting changes in flood regimes with respect to common break points. Another aim of the investigations is to reveal the main causes (e.g. atmospheric, human) of these changes and study spatial and temporal variability of floods on a European scale. In the presentation we provide an overview on the current stage of these Europe-wide investigations, including the available source types (i.e. documentary and instrumental), geographical coverage, temporal and spatial distribution of long-term flood series applied in the study. The first research results concerns basic information on magnitude, frequency and seasonality of floods (with special consideration of detectable changes). Full list of authors in alphabetic order: Mariano Barriendos (1), Günter Blöschl (2), Rudolf Brázdil (3), Gerardo Benito (4), Chiara Bertolin (5), Dario Camuffo (5), Gaston Demarée (6), Líbor Elleder (7), Silvi Enzi (8), Rüdiger Glaser (9), Julia Hall (2), Andrea Kiss (2), Oldrich Kotyza (10), Carmen Maria del Llasat (1), Neil MacDonald (11), Rui Perdigao (2), Dag Retsö (12), Lars Roald (13), Josep Luis Ruiz Bellet (1), Johannes Schönbeim (9), Petra Schmocker-Fackel (14), Lothar Schulte (1), Hubert Valasek (15), Oliver Wetter (16) (1) Faculty of Geography and History, University of Barcelona, Spain (2) Institute of Hydrological Engineering and Water Resources Management, TU Wien (3) Institute of Geography, Masaryk University Brno, Czech Republic (4) Laboratory of Hydrology and Geomorphology, Center of Env. Sciences, Madrid, Spain (5) Institute of Atmospheric Sciences and Climate, National Research Council, Rome, Italy (6) Royal Meteorological Institute, Brussels, Belgium (7) Research Group of

  11. Variability of floods, droughts and windstorms over the past 500 years in Central Europe based on documentary and instrumental data

    NASA Astrophysics Data System (ADS)

    Brazdil, Rudolf

    2016-04-01

    Hydrological and meteorological extremes (HMEs) in Central Europe during the past 500 years can be reconstructed based on instrumental and documentary data. Documentary data about weather and related phenomena represent the basic source of information for historical climatology and hydrology, dealing with reconstruction of past climate and HMEs, their perception and impacts on human society. The paper presents the basic distribution of documentary data on (i) direct descriptions of HMEs and their proxies on the one hand and on (ii) individual and institutional data sources on the other. Several groups of documentary evidence such as narrative written records (annals, chronicles, memoirs), visual daily weather records, official and personal correspondence, special prints, financial and economic records (with particular attention to taxation data), newspapers, pictorial documentation, chronograms, epigraphic data, early instrumental observations, early scientific papers and communications are demonstrated with respect to extraction of information about HMEs, which concerns usually of their occurrence, severity, seasonality, meteorological causes, perception and human impacts. The paper further presents the analysis of 500-year variability of floods, droughts and windstorms on the base of series, created by combination of documentary and instrumental data. Results, advantages and drawbacks of such approach are documented on the examples from the Czech Lands. The analysis of floods concentrates on the River Vltava (Prague) and the River Elbe (Děčín) which show the highest frequency of floods occurring in the 19th century (mainly of winter synoptic type) and in the second half of the 16th century (summer synoptic type). Reported are also the most disastrous floods (August 1501, March and August 1598, February 1655, June 1675, February 1784, March 1845, February 1862, September 1890, August 2002) and the European context of floods in the severe winter 1783/84. Drought

  12. Response of fishes to floodplain connectivity during and following a 500-year flood event in the unimpounded upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; O'Connell, M. T.

    2006-01-01

    We examined data collected on fish assemblage structure among three differing floodplain types (broad, moderate, and narrow) during the 1993 flood in the unimpounded reach of the upper Mississippi River. This 500 year flood event provided a unique opportunity to investigate fish-floodplain function because the main river channel is otherwise typically disjunct from approximately 82% of its floodplain by an extensive levee system. Fishes were sampled during three separate periods, and 42 species of adult and young-of-the-year (YOY) fishes were captured. Analysis of similarity (ANOSIM) revealed a significant and distinguishable difference between both adult and YOY assemblage structure among the three floodplain types. Analysis of variance revealed that Secchi transparency, turbidity, water velocity, and dissolved oxygen were significantly different among the floodplain types. However, only depth of gear deployment and Secchi transparency were significantly correlated with adult assemblage structure. None of these variables were significantly correlated with YOY assemblage structure. The numerically abundant families (adult and YOY catches combined) on the floodplain included Centrarchidae, Ictularidae, and Cyprinidae. Both native and non-native fishes were captured on the floodplain, and several of the numerically abundant species that were captured on the floodplain peaked in catch-per-unit-effort 1-3 years after the 1993 flood event. This suggests that some species may have used flooded terrestrial habitat for spawning, feeding, or both. The findings from our study provide much needed insight into fish-floodplain function in a temperate, channelized river system and suggest that lateral connectivity of the main river channel to less degraded reaches of its floodplain should become a management priority not only to maintain faunal biodiversity but also potentially reduce the impacts of non-native species in large river systems.

  13. Water-quantity and water-quality aspects of a 500-year flood - Nishnabotna River, southwest Iowa, June 1998

    USGS Publications Warehouse

    Kolpin, Dana W.; Fischer, Edward E.; Schnoebelen, Douglas J.

    2000-01-01

    This sampling demonstrates the importance of collecting both water-quantity and water-quality data during flood events to estimate contaminant loads. Potential environmental effects of a flood can only be understood when both components are measured.

  14. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  15. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  16. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  17. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  18. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  19. Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota

    USGS Publications Warehouse

    Carlson, George H.; Gue, Lowell C.

    1980-01-01

    Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.

  20. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  1. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  2. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  3. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  4. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  5. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  6. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    NASA Astrophysics Data System (ADS)

    O'Connor, Jim E.; Jones, Myrtle A.; Haluska, Tana L.

    2003-03-01

    half-lives of 300 to 500 years. Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200-500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  7. 500 years after Columbus.

    PubMed

    Imbach, A

    1992-01-01

    The astonishing range of plants and animals of Central America's 7 countries (Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa Rica and Panama) is disappearing, as 60% of its forests have been cut for lumber and firewood as well as for cotton, cattle, or subsistence crops. Up to 5 million Mayans lived sustainably for thousands of years in an area now being destroyed by a few hundred thousand inhabitants. The Spanish colonization that started 500 years ago was concentrated in Panama, Nicaragua, and Guatemala. The majority of the English-speaking country of Belize are descended from the black slave population whose culture spread down the coast to Central America. Panama's service economy is based on the Panama Canal and trade and finance. Costa Rica benefits from a tourist industry based on its natural beauty, however, it also has the highest rate of deforestation and its fast population growth could jeopardize earlier social and economic progress. In El Salvador and Guatemala long periods of civil conflict have taken their toll on the economy and the environment. El Salvador has a mountainous territory and limited natural resources and industrialization, while the best land is in the hands of a few families. Honduras and Nicaragua retain the highest proportion of forest cover of the countries in the region, despite Nicaragua's years of tyranny, then revolution and the Contra war, and Honduras's own turmoils. Belize has achieved some stability, and is now strengthening its Central American links. Its coral reefs and coastal areas offer potential for sustainable development through fishing and tourism. Central American countries face the challenges of their fragile environments and major social problems.

  8. 500 years after Columbus.

    PubMed

    Imbach, A

    1992-01-01

    The astonishing range of plants and animals of Central America's 7 countries (Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa Rica and Panama) is disappearing, as 60% of its forests have been cut for lumber and firewood as well as for cotton, cattle, or subsistence crops. Up to 5 million Mayans lived sustainably for thousands of years in an area now being destroyed by a few hundred thousand inhabitants. The Spanish colonization that started 500 years ago was concentrated in Panama, Nicaragua, and Guatemala. The majority of the English-speaking country of Belize are descended from the black slave population whose culture spread down the coast to Central America. Panama's service economy is based on the Panama Canal and trade and finance. Costa Rica benefits from a tourist industry based on its natural beauty, however, it also has the highest rate of deforestation and its fast population growth could jeopardize earlier social and economic progress. In El Salvador and Guatemala long periods of civil conflict have taken their toll on the economy and the environment. El Salvador has a mountainous territory and limited natural resources and industrialization, while the best land is in the hands of a few families. Honduras and Nicaragua retain the highest proportion of forest cover of the countries in the region, despite Nicaragua's years of tyranny, then revolution and the Contra war, and Honduras's own turmoils. Belize has achieved some stability, and is now strengthening its Central American links. Its coral reefs and coastal areas offer potential for sustainable development through fishing and tourism. Central American countries face the challenges of their fragile environments and major social problems. PMID:12317700

  9. Effects of flooding upon woody vegetation along parts of the Potomac River flood plain

    USGS Publications Warehouse

    Yanosky, T.M.

    1982-01-01

    A two-part study along the Potomac River flood plain near Washington, D.C., was undertaken to investigate the effects of flooding upon woody vegetation. Floods abrade bark, damage branches and canopies, and often uproot trees. The first study was of vegetation in five monumented flood-plain plots which differed in the frequency and severity of floodflow over a 10-year period. Basal area and survival of trees appears to be related to velocity of floodflow, which in turn is related to flood magnitude and channel shape. However, the effects of flooding also depend on the nature of the flood-plain surface and size and growth habit of vegetation. In the second study, a catastrophic flood after Hurricane Agnes in June 1972 was found to cause large-scale changes in the age, form, and species composition of flood-plain forest below Great Falls, Va. The impact of the flood depended primarily on the flow regime of the river; destruction was greatest in areas exposed to the maximum flood foce, and minimal at sheltered locations. Age determinations from dead trunks and surviving trees suggest that most trees in severely damaged areas started to grow since the last great flood, which occurred in 1952. Trees along sheltered reaches survived several previous catastrophic floods. In addition, species varied in ability to withstand damage from the Hurricane Agnes flood. Least likely to recover were species growing on infrequently flooded surfaces, which may explain, in part, their absence at lower flood-plain elevations. (USGS)

  10. Offshore suspensions plume deposit as a stratigraphic signature of catastrophic river floods during the last 500 years: the case of the Amalfi coast

    NASA Astrophysics Data System (ADS)

    Molisso, Flavia; Esposito, Eliana; Porfido, Sabina; Sacchi, Marco; Violante, Crescenzo

    2010-05-01

    The Amalfi coast is a segment of the southern slope of the Sorrento Peninsula, a narrow and elevated mountain range (up to 1444 m) along the SW coastal zone of Italy. The Peninsula is deeply cut by a complex of bedrock rivers and channels characterized by relatively high energy of the relief, small catchment areas and pronounced disequilibrium of the stream profiles. There is evidence suggesting that the dynamic regime of the alluvial fans and associated fan-deltas of the Amalfi coast are controlled by episodic, but often catastrophic sediment and water discharges that have caused repeated flooding of the fans and accumulation of large volumes of sediment in the fan-deltas over last centuries. Documentary source materials show that, since the 16th century, at least 106 severe floods occurred over the Amalfi coast. The most dramatic episodes occurred between XVI and XX centuries (1581, 1588, 1773, 1899, 1954 events), caused severe geomorphologic change, damage to buildings and a high number of victims. The flood events triggered landslide, mud flow, debris flow and rock falls phenomena as well as denudation and erosion upstream. This research is based on the of stratigraphic study of marine gravity cores, and high-resolution seismic profiles acquired in the fan-delta deposits that develop at the mouth of the hydrographic system of the Amalfi coast. Particularly, the integrated stratigraphic analysis of prodelta deposits, shows that there is a consistent correlation between documental evidence of historical catastrophic floodings and the occurrence of individual layers or claster of (2-3 cm thick) layers of suspension deposit associated with sustained hyperpycnal plumes (underflows) within the fan-delta sequence. The identification of suspension plume deposits, within fan-delta deposits off the cliffed Amalfi coasts, may thus be regarded as a useful tool in order to explore the occurrence of major flooding episodes back to stratigraphic record of the Late Holocene.

  11. Guide for selecting Manning's roughness coefficients for natural channels and flood plains

    USGS Publications Warehouse

    Arcement, George J.; Schneider, Verne R.

    1989-01-01

    Although much research has been done on Manning's roughness coefficient, n, for stream channels, very little has been done concerning the roughness values for densely vegetated flood plains. The n value is determined from the values of the factors that affect the roughness of channels and flood plains. In densely vegetated flood plains, the major roughness is caused by trees, vines, and brush. The n value for this type of flood plain can be determined by measuring the vegetation density of the flood plain. Photographs of flood-plain segments where n values have been verified can be used as a comparison standard to aid in assigning n values to similar flood plains.

  12. Flood-plain study of the Upper Iowa River in the vicinity of Decorah, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Eash, David A.

    2008-01-01

    The city of Decorah, Iowa, has experienced severe flooding from the Upper Iowa River resulting in property damage to homes and businesses. Streamflow data from two U.S. Geological Survey (USGS) streamflow-gaging stations, the Upper Iowa River at Decorah, Iowa (station number 05387500), located upstream from the College Drive bridge; and the Upper Iowa River near Decorah, Iowa (station number 05388000), at the Clay Hill Road bridge (locally known as the Freeport bridge) were used in the study. The three largest floods on the Upper Iowa River at Decorah occurred in 1941, 1961, and 1993, for which the estimated peak discharges were 27,200 cubic feet per second (ft3/s), 20,200 ft3/s, and 20,500 ft3/s, respectively. Flood-discharge information can be obtained from the World Wide Web at URL (uniform resource locator) http://waterdata.usgs.gov/nwis/. In response to the need to provide the City of Decorah and other flood-plain managers with an assessment of the risks of flooding to properties and facilities along an 8.5-mile (mi) reach of the Upper Iowa River, the USGS, in cooperation with the City of Decorah, initiated a study to map 100- and 500-year flood-prone areas.

  13. Evidence of Late-Holocene floods in the central Great Plains

    SciTech Connect

    May, D.W. . Dept. of Geography)

    1992-01-01

    From southwestern Kansas to northeastern Nebraska alluvial studies are revealing stratigraphic and morphological evidence of two brief periods of large-magnitude floods in the central Great Plains during the past 2,500 years. Evidence for these floods consists of deeply-scoured paleochannels, coarse-textured point-bar deposits overlying fine-grained deposits, soils on former floodplains that are buried by alluvium, and fluvial terraces. Wood and bone collagen in several deeply-scoured paleochannels date to about 2,300--2,000 yr B.P. Modest incision and floodplain reconstruction at this time is evident from both maps of fluvial landforms and C-14-dated stratigraphic sections in both large and small basins. Sediments near the base and top of inset gully fills in both trenched and untrenched tributary valleys to Great Plains rivers date to about 2,000 yr B.P. A second episode of large floods in the central Great Plains occurred about 1,300--850 yr B.P. Throughout most valleys a buried soil that developed in alluvium occurs from 50 cm to 1.0 m below terraces. Recently, stratified point-bar deposits beneath a low terrace in a small (9.6 km[sup 2]) basin in east-central Nebraska were exposed and studied. Crossbedded, gravelly sand strata alternative with massive, dark, silty strata. The C-14-dated section indicates that multiple floods occurred between 1,250 and 850 yr B.P. Such widespread evidence of flooding about 2,300--2,000 yr B.P. and again 1,250--850 yr B.P. attests to regional, and probably, global climate changes at these times. Discontinuities in the alluvial record have previously been recognized at 2,000 and 1,200 yr B.P. Furthermore, a discontinuity in the pollen record at 850 yr B.P. has long been recognized.

  14. Flood hydrology and methylmercury availability in coastal plain rivers.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Chapelle, Francis H; Lowery, Mark A; Conrads, Paul A

    2010-12-15

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  15. Flood hydrology and methylmercury availability in Coastal Plain rivers

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Chapelle, Francis H.; Lowery, Mark A.; Conrads, Paul A.

    2010-01-01

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  16. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Flood-plain and...

  17. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Flood-plain and...

  18. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Flood-plain and...

  19. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Flood-plain and...

  20. A two-dimensional dam-break flood plain model

    USGS Publications Warehouse

    Hromadka, T.V., II; Berenbrock, C.E.; Freckleton, J.R.; Guymon, G.L.

    1985-01-01

    A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches. ?? 1985.

  1. Flood-plain delineation using multispectral data analysis

    NASA Technical Reports Server (NTRS)

    Harker, G. R.; Rouse, J. W., Jr.

    1977-01-01

    The paper explores the application of a remote sensing technique that may permit the determination of flood-plain areas without the extensive work associated with existing techniques. Multispectral scanner data were simulated by utilizing the density differences in a color-infrared transparency for a section of the Navasota River, Texas. The transparency was taken from a low-flying aircraft and covered an area approximating a square mile. The simulated data were processed by an automatic classification technique previously developed in the remote sensing field. The technique used involves the application of the maximum likelihood rule in order to categorize the data being processed. An attempt was made to distinguish between areas known to be in the flood plain and those outside. A reasonabke correlation was found between boundaries based on computer-processed multispectral data and those produced by techniques currently in use.

  2. Properties of a 5500-year-old flood-plain in the Loup River Basin, Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.

    2003-12-01

    Flood-plain aggradation within the Loup River Basin of central Nebraska was episodic and alternated with incision throughout much of the Holocene. A widespread episode of flood-plain stability, however, occurred about 5700-5100 cal. year BP. The purpose of this paper is to describe the properties of this buried flood-plain at six sites in the basin, to consider why the properties of the buried flood-plain vary from site to site, and to evaluate possible reasons why the Loup River flood-plains stabilized 5500 years ago. Episodic valley-bottom aggradation was common during flood-plain formation at five of the six sites. The radiocarbon ages, particle-size data, and organic-carbon data for the buried flood-plain reveal that valley-bottom aggradation generally slowed between about 5700 and 5100 cal. year BP. Erratic down-profile changes in percentages of sand, clay, and organic matter indicate flood-plain sedimentation and soil formation were often episodic. Sand and clay rarely show a steady fining-upward trend. Organic matter fluctuates with depth; at some sites multiple, incipient A horizons were buried during waning valley-bottom aggradation. At two localities, the buried flood-plain is evident as a clay-rich stratum that must have been deposited in a paleochannel. Flood-plain stabilization between 5700 and 5100 cal. year BP probably occurred in response to the effects of external climate forcing on vegetation and hydrologic changes. Flood-plains of other rivers in the central Great Plains also stabilized at this time, further supporting a climatic explanation for slowing of valley aggradation and formation of a flood-plain at this time. Recognition of buried flood-plains is important to both soil mapping in valleys and to the discovery of cultural resources in valleys.

  3. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... Management Regulations § 60.5 Flood plain management criteria for flood-related erosion-prone areas. The... flood-related erosion-prone areas shall be based. If the Federal Insurance Administrator has...

  4. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... Management Regulations § 60.5 Flood plain management criteria for flood-related erosion-prone areas. The... flood-related erosion-prone areas shall be based. If the Federal Insurance Administrator has...

  5. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... Management Regulations § 60.5 Flood plain management criteria for flood-related erosion-prone areas. The... flood-related erosion-prone areas shall be based. If the Federal Insurance Administrator has...

  6. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... Management Regulations § 60.5 Flood plain management criteria for flood-related erosion-prone areas. The... flood-related erosion-prone areas shall be based. If the Federal Insurance Administrator has...

  7. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... Management Regulations § 60.5 Flood plain management criteria for flood-related erosion-prone areas. The... flood-related erosion-prone areas shall be based. If the Federal Insurance Administrator has...

  8. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  9. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  10. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  11. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  12. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  13. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  14. 44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties...

  15. 44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain...

  16. Inventory and analyses of information for flood plain management in North Dakota

    USGS Publications Warehouse

    Emerson, D.G.; Wald, J.D.

    1983-01-01

    Governmental units that have been identified as having flood hazard areas but do not have detailed base flood information are required to use the ' best available data ' to regulate new development or expansion of existing development in flood prone areas. Information for flood plain management has been identified for 95 governmental units in North Dakota and includes the determination of what data are available regarding flood hazards, hydraulics, and hydrology, and a review of these data to determine their adequacy for use in flood plain management. (USGS)

  17. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Setback and community flood plain management requirements. 63.12 Section 63.12 Emergency Management and Assistance FEDERAL EMERGENCY... Setback and community flood plain management requirements. (a) Where benefits have been paid under...

  18. Channel narrowing and vegetation development following a great plains flood

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M.

    1996-01-01

    Streams in the plains of eastern Colorado are prone to intense floods following summer thunderstorms. Here, and in other semiarid and arid regions, channel recovery after a flood may take several decades. As a result, flood history strongly influences spatial and temporal variability in bottomland vegetation. Interpretation of these patterns must be based on understanding the long-term response of bottomland morphology and vegetation to specific floods. A major flood in 1965 on Plum Creek, a perennial sandbed stream, removed most of the bottomland vegetatiqn and transformed the single-thread stream into a wider, braided channel. Channel narrowing began in 1973 and continues today. In 1991, we determined occurrences of 150 vascular plant species in 341 plots (0.5 m2) along a 7-km reach of Plum Creek near Louviers, Colorado. We related patterns of vegetation to elevation, litter cover, vegetative cover, sediment particle size, shade, and year of formation of the underlying surface (based on age of the excavated root flare of the oldest woody plants). Geomorphic investigation determined that Plum Creek fluvial surfaces sort into five groups by year of formation: terraces of fine sand formed before 1965; terraces of coarse sand deposited by the 1965 flood; stable bars formed by channel narrowing during periods of relatively high bed level (1973-1986); stable bars similarly formed during a recent period of low bed level (1987-1990); and the present channel bed (1991). Canonical correspondence analysis indicates a strong influence of elevation and litter cover, and lesser effects of vegetative cover, shade, and sediment particle size. However, the sum of all canonical eigenvalues explained by these factors is less than that explained by an analysis including only the dummy variables that define the five geomorphically determined age groups. The effect of age group is significant even when all five other environmental variables are specified as covariables. Therefore, the

  19. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  20. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  1. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  2. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    USGS Publications Warehouse

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  3. Nutrient yield of the Apalachicola River flood plain, Florida; water-quality assessment plan

    USGS Publications Warehouse

    Mattraw, H.C.; Elder, John F.

    1980-01-01

    The Apalachicola River in northwestern Florida is the location of one of four current U.S. Geological Survey National River Quality Assessments. The investigation of the Apalachicola River and flood plain is designed to quantify the organic detritus and nutrient yield to the productive, estuarine Apalachicola Bay. The extensive riverine flood plain is subject to seasonal flooding which transports large quantities of accumulated, decaying leaf litter from the flood plain into the river and ultimately into Apalachicola Bay. The Apalachicola River Quality Assessment has four major objectives; (1) Determine the accumulation of organic substances and trace elements in benthic organisms and fine-grained sediments; (2) Define the distribution of the major tree communities on the flood plain; (3) Assess the role of leaf fall and decomposition on nutrient yield; and (4) Identify and quantify major sources and pathways of nutrients to the river. Extensive emphasis is given to investigation approaches and techniques to facilitate technology transfer to similar wetland ecosystems. (USGS)

  4. Hot particles of the Yenisei River flood plain, Russia.

    PubMed

    Bolsunovsky AYa; Tcherkezian, V O

    2001-01-01

    Some high-activity hot particles (HP) were found in the flood plain of the Yenisei River, near the Krasnoyarsk Mining-and-Chemical Combine (MCC), and their radionuclide compositions were determined. The ratios of plutonium and caesium isotopes in the particles are indicative of their reactor origin. The 137Cs activity of the particles amounts to 29,200 kBq/particle, which is higher than the corresponding activities of the fuel particles that formed as a result of the accident at the Chernobyl NPP. All the particles have been divided into two major groups according to the 137Cs/34Cs ratio: in the first group, the 137Cs/134Cs ratio is more than or equal to 3000, and in the second the 137Cs/134Cs ratio is less than or equal to 1000. The particles of the first and the second groups were preliminarily estimated to be formed 30 and 20 years ago, which suggests that there must have been at least two accidents at the MCC reactors, with part of the fuel released into the Yenisei River.

  5. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  6. Backwater at bridges and densely wooded flood plains, Tallahala Creek at Waldrup, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1978-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Tallahala Creek at Waldrup, Miss. Water depths, velocities, and discharges through bridge openings on Tallahala Creek at Waldrup, Miss., for floods of April 14, 1969, February 21, 1971, and April 13, 1974, were measured together with peak water surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on graphs. (Woodard-USGS)

  7. Backwater at bridges and densely wooded flood plains, west fork Amite River near Liberty, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  8. Backwater at bridges and densely wooded flood plains, Thompson Creek near Clara, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Thompson Creek near Clara, MS: Water depths, velocities, and discharges through bridge openings on Thompson Creek near Clara, MS, for flood of March 3, 1971, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  9. Backwater at bridges and densely wooded flood plains, Yockanookany River near Thomastown, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Yockanookany River near Thomastown, Miss. Water depths, velocities, and discharges through bridge openings on Yockanookany River near Thomastown, Miss., for floods of April 12, 1969, January 2, 1970, and March 15, 1975, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (Kosco-USGS)

  10. Relation of sediment load and flood-plain formation to climatic variability, Paria River drainage basin, Utah and Arizona

    USGS Publications Warehouse

    Graf, J.B.; Webb, R.H.; Hereford, R.

    1991-01-01

    Flood-plain alluviation began about 1940 at a time of decreasing magnitude and frequency of floods in winter, summer, and fall. No floods with stages high enough to inundate the flood plain have occurred since 1980, and thus no flood-plain alluviation has occurred since then. The decrease in magnitude and frequency of floods appears to have resulted from a decrease in frequency of large storms, particularly dissipating tropical cyclones, and not from a decrease in annual or seasonal precipitation. -from Authors

  11. Geohazards (floods and landslides) in the Ndop plain, Cameroon volcanic line

    NASA Astrophysics Data System (ADS)

    Wotchoko, Pierre; Bardintzeff, Jacques-Marie; Itiga, Zénon; Nkouathio, David Guimolaire; Guedjeo, Christian Suh; Ngnoupeck, Gerald; Dongmo, Armand Kagou; Wandji, Pierre

    2016-07-01

    The Ndop Plain, located along the Cameroon Volcanic Line (CVL), is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually) and landslides (occasionally) occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people) tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide) maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered. The hazard maps revealed that 25% of the area is exposed to flood hazard (13% exposed to high flood hazard, 12% to moderate) and 5% of the area is exposed to landslide hazard (2% exposed to high landslide hazard, 3% to moderate). Some mitigation measures for floods (building of artificial levees, raising foundations of buildings and the meticulous regulation of the flood guards at Bamendjing Dam) and landslides (slope terracing, planting of trees, and building retaining walls) are proposed.

  12. Flood Plain Lakes Along the Elbe River - a Forgotten Risk

    NASA Astrophysics Data System (ADS)

    Heise, Susanne

    2014-05-01

    Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for

  13. 137Cs contamination of Techa river flood plain in Brodokalmak settlement.

    PubMed

    Chesnokov, A V; Govorun, A P; Ivanitskaya, M V; Liksonov, V I; Shcherbak, S B

    1999-06-01

    137Cs contamination of the Techa river flood plain inside the Brodokalmak settlement has been mapped. The collimated scintillated detector technique was used for 137Cs deposit measurements. The 137Cs contamination is very heterogeneous. A comparison of this technique with the traditional sample method was performed at selected locations. The sampling data are in good agreement with in-situ data. Soil surface activity of 90Sr was determined from the samples. It was shown that 137Cs contamination correlates with 90Sr contamination within the flood plain of the settlement.

  14. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil

    USGS Publications Warehouse

    Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.

    1998-01-01

    Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.

  15. A study of farmers' flood perceptions based on the entropy method: an application from Jianghan Plain, China.

    PubMed

    Luo, Xiaofeng; Lone, Todd; Jiang, Songying; Li, Rongrong; Berends, Patrick

    2016-07-01

    Using survey data from 280 farmers in Jianghan Plain, China, this paper establishes an evaluation index system for three dimensions of farmers' flood perceptions and then uses the entropy method to estimate their overall flood perception. Farmers' flood perceptions exhibit the following characteristics: (i) their flood-occurrence, flood-prevention, and overall flood perceptions gradually increase with age, whereas their flood-effects perception gradually decreases; (ii) their flood-occurrence and flood-effects perceptions gradually increase with a higher level of education, whereas their flood-prevention perception gradually decreases and their overall flood perception shows nonlinear change; (iii) flood-occurrence, flood-effects, and overall flood perceptions are higher among farmers who serve in public offices than among those who do not do so; (iv) the flood-occurrence, flood-effects, and overall flood perceptions of farmers who work off-farm are higher than those of farmers who work solely on-farm, contrary to the flood-prevention perception; and (v) the flood-effects and flood-prevention perceptions of male farmers are lower than those of female farmers, but the flood-occurrence and overall flood perceptions of male farmers are higher than those of female farmers. PMID:26576512

  16. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... floodplain or wetland; (2) If it is in a floodplain, that the assistance is in compliance with local land use... (determining if a proposed action is in the base floodplain) need be completed: (1) Actions located outside...

  17. Flood-plain delineation for Cub Run basin, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Flood-plain delineation for Cub Run basin water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that part of the Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet have been used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Cub Run basin in Fairfax County. (Woodard-USGS)

  18. Flood-plain delineation for Cameron Run Basin, Fairfax County-Alexandria City, Virginia

    USGS Publications Warehouse

    Soule, Pat L.

    1976-01-01

    Flood-Plain Delineation for Cameron Run Basin Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that part of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet have been used for a base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. Included are techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for that part of Cameron Run basin below Lake Barcroft in both Fairfax County and the city of Alexandria.

  19. Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India

    NASA Astrophysics Data System (ADS)

    Mondal, M. E. A.; Wani, H.; Mondal, Bulbul

    2012-09-01

    The Ganga basin in the Himalayan foreland is a part of the world's largest area of modern alluvial sedimentation. Flood plain sediments of the Hindon River of the Gangetic plain have been analyzed for sediment texture, major and trace elements including rare earth elements (REEs). The results have been used to characterize the source rock composition and to understand the intensity of chemical weathering, tectonics and their interplay in the Hindon flood plain. The sediments of the Hindon flood plain dominantly consist of sand sized particles with little silt and clay. The geochemistry of the Hindon sediments has been compared to the Siwalik mudstone of the Siwalik Group (Siwaliks). The Siwalik sedimentary rocks like sandstones, mudstones and conglomerates are the known source rocks for the Hindon flood plain sediments. Mudstone geochemistry has been considered best to represent the source rock characteristics. The UCC (Upper Continental Crust) normalized major and trace elements of the Hindon flood plain sediments are very similar to the Siwalik mudstone except for Th and Cr. Furthermore, the average chondrite normalized REE pattern of the Hindon flood plain sediments is similar to the Siwalik mudstone. Textural immaturity, K/Rb ratios and the average CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values of the Hindon flood plain sediments indicate that the sediments have not been affected by chemical weathering. Our study suggests that the active tectonics of the Himalayas and monsoon climate enhances only physical erosion of the source rocks (Siwaliks) rather than the chemical alteration. These factors help the Hindon sediments to retain their parental and tectonic signature even after recycling.

  20. Microbially mediated cycling of iron in flood plains and other wetlands

    NASA Astrophysics Data System (ADS)

    Szewzyk, Ulrich; Braun, Burga; Schmidt, Bertram; Schaudin, Christoph

    2010-05-01

    Floodplains are subjected to alternating changes of flooding and partly drying of the soil systems and are therefore prominent examples of ecosystems undergoing dramatic changes in redox conditions. During the last 5 years the flood plains and associated water systems of the National Park "Untere Oder" were examined for the presence and relevance of bacteria associated with the redox cycling of iron and manganese. Biofilms grown at different locations in the national park were used as source material for examinations on the diversity of iron bacteria. Besides classical microbiological cultivation techniques, culture independent methods were used to explore the phylogenetic diversity of bacteria in ochreous depositions. The natural grown biofilms were intensely examined and documented by light and scanning electron microscopy. Many of the classical morphotypes of iron bacteria were observed and documented. Parallel the biofilms were used for cultivation of iron related bacteria under various conditions. The 16s rDNA of the isolated strains was sequenced and phylogenetically affiliated. In addition, these biofilms were used for establishing 16S rDNA clone libraries. In comparison of the results from direct microscopic examinations, cultivation and culture independent detection methods (FISH) certain of the morphotypes from the biofilms could be assigned to phylogenetic lineages. Besides the biofilms from the Oder flood plains, ochreous depositing biofilms from Berlin drinking water wells, flood plains in Norway and various wetlands in terra de fuego were examined. The cultures and 16S rDNA-clones from the different sampling sites are being compared for biogeographic differences.

  1. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    NASA Astrophysics Data System (ADS)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  2. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    USGS Publications Warehouse

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  3. Hydrologic, Hydraulic, and Flood Analyses of the Blackberry Creek Watershed, Kendall County, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.

    2007-01-01

    Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.

  4. Computation of backwater and discharge at width constrictions of heavily vegetated flood plains

    USGS Publications Warehouse

    Schneider, V.R.; Board, J.W.; Colson, B.E.; Lee, F.N.; Druffel, Leroy

    1977-01-01

    The U.S. Geological Survey, cooperated with the Federal Highway Administration and the State Highway Departments of Mississippi, Alabama, and Louisiana, to develop a proposed method for computing backwater and discharge at width constrictions of heavily vegetated flood plains. Data were collected at 20 single opening sites for 31 floods. Flood-plain width varied from 4 to 14 times the bridge opening width. The recurrence intervals of peak discharge ranged from a 2-year flood to greater than a 100-year flood, with a median interval of 6 years. Measured backwater ranged from 0.39 to 3.16 feet. Backwater computed by the present standard Geological Survey method averaged 29 percent less than the measured, and that computed by the currently used Federal Highway Administration method averaged 47 percent less than the measured. Discharge computed by the Survey method averaged 21 percent more then the measured. Analysis of data showed that the flood-plain widths and the Manning 's roughness coefficient are larger than those used to develop the standard methods. A method to more accurately compute backwater and discharge was developed. The difference between the contracted and natural water-surface profiles computed using standard step-backwater procedures is defined as backwater. The energy loss terms in the step-backwater procedure are computed as the product of the geometric mean of the energy slopes and the flow distance in the reach was derived from potential flow theory. The mean error was 1 percent when using the proposed method for computing backwater and 3 percent for computing discharge. (Woodard-USGS)

  5. Alternating flood and drought hazards in the Drava Plain, Hungary

    NASA Astrophysics Data System (ADS)

    Lóczy, Dénes; Dezsö, József; Gyenizse, Péter; Ortmann-Ajkai, Adrienne

    2016-04-01

    Our research project covers the assessment of archive data and monitoring present-day water availability in the floodplain of the Hungarian Drava River. Historically flood hazard has been prevalent in the area. Recently, however, flood and drought hazards occur with equal frequency. Potential floodwater storage is defined from the analyses of soil conditions (grain size, porosity, water conductivity etc.) and GIS-based volumetric estimations of storage capacities in oxbows (including communication with groundwater). With the remarkable rate of river channel incision (2.4 m per century) and predictable climate change trends (increased annual mean temperature and decreased summer precipitation), the growing frequency and intensification of drought hazard is expected. For the assessment of drought hazard the impacts of hydrometeorological events, groundwater table dynamics and capillary rise are modelled, the water demands of natural vegetation and agricultural crops are studied. The project is closely linked to the ongoing Old Drava Programme, a comprehensive government project, which envisions floodplain rehabilitation through major transformations in water governance and land use of the region, and has numerous implications for regional development. Authors are grateful for financial support from the Hungarian National Scientific Research Fund (OTKA, contacts nos K 104552 and K 108755) as well as from the Visegrad Fund (31210058). The contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

  6. Flood plain analysis for Petris, , Troas, and Monoros, tia watersheds, the Arad department, Romania

    NASA Astrophysics Data System (ADS)

    Győri, M.-M.; Haidu, I.

    2012-04-01

    The present study sets out to determine the flood plains corresponding to flood discharges having 10, 50 and 100 year recurrence intervals on the Monoroštia, Petriš and Troaš Rivers, located in Western Romania, the Arad department. The data of the study area is first collected and pre-processed in ArcGIS. It consists of land use data, soil data, the DEM, stream gauges' and meteorological stations' locations, on the basis of which the watersheds' hydrologic parameters' are computed using the Geospatial Hydrologic Modelling Extension (HEC Geo-HMS). HEC Geo-HMS functions as an interface between ArcGIS and HEC-HMS (Hydrologic Engineering Centre- Hydrologic Modelling System) and converts the data collected and generated in ArcGIS to data useable by HEC-HMS. The basin model component in HEC-HMS represents the physical watershed. It facilitates the effective rainfall computation on the basis of the input hyetograph, passing the results to a transform function that converts the excess precipitation into runoff at the subwatersheds' outlet. This enables the estimation and creation of hydrographs for the ungauged watersheds. In the present study, the results are achieved through the SCS CN loss method and the SCS Unit hydrograph transform method. The simulations use rainfall data that is registered at the stations situated in the catchments' vicinity, data that spans over two decades (1989-2009) and which allows the rainfall hyetographs to be determined for the above mentioned return periods. The model will be calibrated against measured streamflow data from the gauging stations on the main rivers, leading to the adjustment of watershed parameters, such as the CN parameter. As the flood discharges for 10, 50 and 100 year return periods have been determined, the profile of the water surface elevation along the channel will be computed through a steady flow analysis, with HEC-RAS (Hydrologic Engineering Centre- River Analysis System). For each of the flood frequencies, a

  7. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  8. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, H.M.; Sohm, J.E.; Franklin, M.A.

    1982-01-01

    The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)

  9. Distribution of gamma exposure rates in a reactor effluent stream flood plain system.

    PubMed

    Gladden, J B; Brown, K L; Smith, M H; Towns, A

    1985-01-01

    Ground-level gamma dosimetry surveys were conducted along the length of a radiocesium-contaminated reactor effluent stream flood plain system to determine the extent and patterns of isotope distribution over a decade after reactor releases were stopped. The maximum mean exposure rates were found at upstream locations near the source of the contamination and in a downstream sedimentary delta. Gamma exposure rates were not uniformly distributed and high exposure rates were generally restricted to small areas of the flood plain. There was little similarity in either the spatial distribution or magnitudes of maximum gamma exposure rates across flood plains along the stream. Frequency the measured exposure rates tended to be highly skewed and most closely approximated the log-normal distribution in most areas along the stream. However, the complex and changing patterns of dose distributions strongly affected the ability to predict the probability of encountering unusually high exposure rates. Complex statistical and distributional models are required to provide precise descriptions of the dosimetry environment in such complex ecosystems and different models could be required on a site-by-site basis.

  10. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.

    1984-01-01

    The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak

  11. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    USGS Publications Warehouse

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not

  12. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance... which approval is required by Federal or State law, including section 404 of the Federal Water Pollution..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  13. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance... which approval is required by Federal or State law, including section 404 of the Federal Water Pollution..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  14. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance... which approval is required by Federal or State law, including section 404 of the Federal Water Pollution..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  15. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance... which approval is required by Federal or State law, including section 404 of the Federal Water Pollution..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  16. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance... which approval is required by Federal or State law, including section 404 of the Federal Water Pollution..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  17. Flood-plain delineation for Difficult Run Basin, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, P.L.

    1976-01-01

    Water-surface profiles of the 25-year and 100-year floods and maps on which the 25-, 50-, and 100-year flood boundaries are delineated for streams in the Difficult Run basin in Fairfax County, Virginia. The techniques used in the computation of the flood profiles and delineation of flood boundaries are presented. Difficult Run heads at about 500 ft. elevation near the city of Fairfax and discharges into the Potomac River at about 70 feet above mean sea level. Stream channel slopes are fairly steep, the main channel of Difficult Run has an average fall of about 25 feet per mile. Stream channels are well defined with established flood plains covered in most cases with trees and dense brush. Development within the basin has been gradual and mostly residential. In 1965 most of the development was in the area of Fairfax City and the town of Vienna and imperviousness for the basin at that time was computed to be less than 1 percent. Since 1965 considerable additional residential development has taken place within the basin in the Vienna and Reston areas and ultimate development with an overall imperviousness of 30 percent is anticipated with higher percentages of imperviousness near centers of anticipated development. (Woodard-USGS)

  18. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    PubMed

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation. PMID:25090953

  19. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    PubMed

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation.

  20. Spring Land Temperature Anomalies in Northwestern U.S. and Southern Plains Summer Extreme: Texas Droughts and Floods

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Oaida, C. M.; Diallo, I.; Vasic, R.; Neelin, J. D.; Li, S.; Lee, J.; De Sales, F.; Li, W.; Robinson, D. A.; Zhu, Y.

    2015-12-01

    Recurrent drought and associated heatwave as well as flood episodes are important features of the Southern Plains regional climate, such as the 2011 Texas drought and the 2015 Texas flood. Many studies have examined the remote connection between sea surface temperature (SST) changes and conterminous U.S. droughts and flood. However, less attention has been devoted to effects of large-scale land surface temperature changes, over shorter but still considerable distances, on droughts and flood. The present study combines two types of evidence: climate observations and model simulations. Our analysis of observational data shows that springtime land temperature in the U.S. Northwest is significantly correlated with rainfall anomalies and heat in the Southern Plains. Our model simulations of the 2011 Southern Plains drought and 2015 flood confirm the observed relationship between land temperature anomaly and extreme and suggest that the remote effect of land temperature changes in the U.S. Northwest on Southern Plains extreme is probably as large as the more familiar effects of SSTs and atmospheric internal variability. We conclude that the cool 2011 springtime climate conditions in the U.S. Northwest increased the probability of summer drought and abnormal heat in the Southern Plains. The preliminary results for the 2015 flood will also be presented. The present study suggests that catastrophic consequences likely occur in a region when forcing from ocean and land combine synergistically to favor an extreme and that there is a potential for skillful seasonal predictions of U.S. Southern Plains extreme when such facts as ones presented here are considered.

  1. Flood plain stability of the Peace River, southwestern Florida, since the last glacial lowstand of sea level

    SciTech Connect

    Guccione, M.J. . Geology Dept.)

    1993-03-01

    The 186 km long Peace River heads in the Central Highlands, dissects marine terraces of the Coastal Lowlands, and flows into the Gulf of Mexico. Between river kms 80 and 137 the gradient is low (0.1 to 0.3 m/km), sinuosity is moderate (1.2 to 1.8), and the flood plain is wide (0.6 to 2.5 km). The flood plain is underlain by a well-sorted fine/very fine-grained quartz sand overbank deposit. This overlies crossbedded and rippled, medium/coarse-grained quartz and phosphatic sand channel deposits, organic-rich loamy sand channel-fill deposits, and/or non-fluvial strata. Radiocarbon dates of organics in channel deposits at two sites 57 km apart indicate that aggradation of the flood plain was in progress by 24,760 [plus minus] 920 (Wauchula) and 21,870 [plus minus] 130 (Arcadia) years B.P. during a lowstand of sea level. Well-developed soils in the overlying fine sand have accumulated 12% and 9% clay respectively, indicating that the flood-plain surface has been stable for a considerable portion of the 22,000 years since deposition began. Between dated sites, soils are developed in nearly identical parent material with less, but varying degrees of development and clay accumulation, suggesting that other portions of the flood plain surface are younger. Because of the very low river gradient, both during lowstands and highstands of sea level, the Peace River cannot easily aggrade or degrade. It slowly reworks its flood-plain sediment resulting in a variety of soil development and surface ages on a single geomorphic surface.

  2. A Flood Detection and Mapping Algorithm Using MODIS Data: Assessment of Extreme Flooding Events in Eastern Ganga Plains (2000-2015)

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Patel, S.; Prasad, A. K.; Sarkar, B. C.

    2015-12-01

    Flood, a hydrological extreme, is a dominant and frequent phenomena over the eastern Ganga Plains comprising of alluvial plains of Bihar and adjoining Nepal Himalaya. Flood affects major parts of Bihar where Gandak and Koshi are the major tributaries of Ganga River causing inundation during the monsoon season. Due to heavy rainfall in the Eastern Himalaya and adjoining regions, the river discharge increases several folds causing severe flood in plains. Moderate Resolution Imaging Spectroradiometer (MODIS) derived data at 250 m resolution (year 2000-2015) have been used to identify flood water and calculate daily water fraction (water cover) using model adopted from previous studies. During the monsoon season, cloud cover in daily images is found to be extremely high leading to lot of gaps in the form of missing data. To account for missing grid cell values, an adaptive polynomial filter (Savitzky-Golay) have been used to fit the time series of daily data for each grid cell. The missing values in daily images have been filled with calculated values to create daily time series of flood water. Landsat data at 30 m grid resolution have been used to verify flood water detection algorithm used in this study. Time series analysis of satellite derived data reveal a strong spatial and temporal variation in the extent, duration and frequency (inter-annual and intra-annual) of flooding event over the study region. Statistical analysis of IDF (intensity, duration, and frequency) and trend have been carried out to identify regions which show greater flood risk. Reoccurrence interval and length of flooding event in the study region is found to be high compared to other river basins in the western India. Based on the historical occurrence of flood, the study area have been classified into different flood hazard zones where flood mitigation and management need to be prioritized. MODIS based flood monitoring and mapping model used in this study can be used for monitoring and

  3. Precise Dating of Flood-Plain Stratigraphy Using Changes in Tree-Ring Anatomy Following Burial

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Shafroth, P. B.; Vincent, K. R.; Scott, M. L.; Auble, G. T.

    2001-12-01

    Determination of sediment deposition rates from stratigraphy is typically limited by a scarcity of chronological information. We present a method for precise dating of sedimentary beds based on the change in anatomy of tree rings upon burial. When stems of tamarisk (Tamarix ramosissima)and sandbar willow (Salix exigua) are buried, subsequent annual rings in the buried portions become narrower and vessels within the rings become larger. Observation of these changes can be combined with tree ring counts to determine the year of deposition of sedimentary beds that are at least 10 cm thick. Using a backhoe we dug trenches across the flood plain at three locations along the arroyo of the Rio Puerco, New Mexico. At each cross section we prepared a detailed stratigraphic description and excavated several tamarisks to depths as great as 5 meters. From each excavated tree we cut and sanded 10-50 slabs for tree-ring analysis. We cross-dated slabs within and between plants and used the burial signature in the tree rings to date all sedimentary beds in the stratigraphic profile near each plant. We then used the trench stratigraphy to convert depths of sediment deposition around individual trees to areas of deposition in the cross section. In the lower Rio Puerco introduction of tamarisk in 1926 occurred just prior to the beginning of channel narrowing and arroyo filling. Thus the tamarisks record a process of channel change to which they may have contributed. Aggradation has not been synchronous along the lower arroyo. For example, near Highway 6 and Belen, the flood plain has aggraded more than 2 m since 1970, while there has been little aggradation downstream at Bernardo. Much of the sediment deposition in levies at Highway 6 occurred during a flood in 1988. Future work will document longitudinal variation in the arroyo so that we can convert areas of sediment deposition in cross sections to volumes in the arroyo.

  4. Principal Locations of Metal Loading from Flood-Plain Tailings, Lower Silver Creek, Utah, April 2004

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2007-01-01

    Because of the historical deposition of mill tailings in flood plains, the process of determining total maximum daily loads for streams in an area like the Park City mining district of Utah is complicated. Understanding the locations of metal loading to Silver Creek and the relative importance of these locations is necessary to make science-based decisions. Application of tracer-injection and synoptic-sampling techniques provided a means to quantify and rank the many possible source areas. A mass-loading study was conducted along a 10,000-meter reach of Silver Creek, Utah, in April 2004. Mass-loading profiles based on spatially detailed discharge and chemical data indicated five principal locations of metal loading. These five locations contributed more than 60 percent of the cadmium and zinc loads to Silver Creek along the study reach and can be considered locations where remediation efforts could have the greatest effect upon improvement of water quality in Silver Creek.

  5. Managing fish, flood plains and food security in the Lower Mekong Basin.

    PubMed

    Jensen, J G

    2001-01-01

    The "Lower Mekong Basin" in this paper refers to the part of the Mekong River Basin which is shared by Cambodia, Laos, Thailand and Viet Nam, all members of the Mekong River Commission, consisting of approx. 2,400 km of mainstream river, numerous tributaries and huge flood plains. Few river basins produce as much fish as the Mekong River Basin, and the fishery in the Lower Mekong Basin is among the biggest and most productive inland fisheries in the world. The flood plains of the Lower Mekong produce some four times as much fish per square kilometre as the North Sea, which is among the most productive marine areas in the world. It is quite clear that the fisheries in the Mekong Basin are very important for the population in respect to their food security and income. Its importance in nutrition is highest in the rural areas, where there are few other low cost sources of protein, and even in highland areas fish is of crucial importance in the diet. Most fish species in the Mekong Basin are migratory, and the economically most important ones are certainly so. However, with economic development gaining speed, the impact on migratory patterns and the competition for the water resources are becoming stronger. The water resources offer a large number of opportunities, and a lot of economic activities need access to the water resources for their development. However, what is seen in one sector as an opportunity may be considered as a threat in another, and a careful balance is necessary in order not to lose opportunities in important sectors. The fate of a large number of river basins in the world is frightening. Most have been left biologically near dead, with some of the big rivers reduced for a time, or forever, to be used as waste water canals for the new industries, and others almost dried out from excessive water extraction before they reach the sea.

  6. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Ito, Y.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  7. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain

    NASA Astrophysics Data System (ADS)

    Auerbach, L. W.; Goodbred, S. L., Jr.; Mondal, D. R.; Wilson, C. A.; Ahmed, K. R.; Roy, K.; Steckler, M. S.; Small, C.; Gilligan, J. M.; Ackerly, B. A.

    2015-02-01

    The Ganges-Brahmaputra river delta, with 170 million people and a vast, low-lying coastal plain, is perceived to be at great risk of increased flooding and submergence from sea-level rise. However, human alteration of the landscape can create similar risks to sea-level rise. Here, we report that islands in southwest Bangladesh, enclosed by embankments in the 1960s, have lost 1.0-1.5 m of elevation, whereas the neighbouring Sundarban mangrove forest has remained comparatively stable. We attribute this elevation loss to interruption of sedimentation inside the embankments, combined with accelerated compaction, removal of forest biomass, and a regionally increased tidal range. One major consequence of this elevation loss occurred in 2009 when the embankments of several large islands failed during Cyclone Aila, leaving large areas of land tidally inundated for up to two years until embankments were repaired. Despite sustained human suffering during this time, the newly reconnected landscape received tens of centimetres of tidally deposited sediment, equivalent to decades’ worth of normal sedimentation. Although many areas still lie well below mean high water and remain at risk of severe flooding, we conclude that elevation recovery may be possible through controlled embankment breaches.

  8. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  9. Pore scale to flood plain scale modeling of reactive transport processes

    NASA Astrophysics Data System (ADS)

    Steefel, C.; Molins, S.; Andre, B.; Trebotich, D.; Shen, C.; Landrot, G.; Maxwell, R. M.

    2012-12-01

    Reactive transport processes operate at a wide variety of scales in the subsurface, although modeling these across the scales remains a challenge. The need to treat reactive transport processes across scales is necessary because of the hierarchical nature of porous media in the subsurface, with physical, chemical, and potentially microbial heterogeneities present all the way from the pore to flood plain (watershed) or reservoir scale. The need to address the hierarchical nature of subsurface porous media is particularly important for resolving the long-standing "discrepancy" between laboratory and field rates, which are likely due at least in part to the development of gradients in concentration and thus reaction rate at all scales of heterogeneity. The huge range in modeling scales (microns to kilometers) are a computational challenge, but so is the need to consider differing constitutive equations, for example Navier-Stokes versus Darcy flow equations, or explicitly resolved mineral-microbe-fluid interfaces versus volume-averaged reactive surface areas, at the differing scales. Pore scale processes focusing on carbonate dissolution and precipitation are addressed by solving the Navier-Stokes or Stokes equation for flow at the pore scale coupled to reactive transport calculations in which the interfacial area for mineral dissolution and precipitation is taken directly from the pore geometry. Partial or complete diffusion control of reaction rates is accounted for directly by resolving velocity gradients in the vicinity of reactive mineral grains. Hydrologic accessibility of reactive surface area is also accounted for in this approach, although in general this is an additional factor that needs to be factored into simulations of reactive transport in volume-averaged porous media. At a scale above the pore scale, we use volume-averaged micro-continuum models to address reactivity and transport at the centimeter scale using a sample from the Cranfield formation in

  10. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  11. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  12. The economic importance of products extracted from Amazonian flood plain forests.

    PubMed

    Gram, S; Kvist, L P; Cáseres, A

    2001-09-01

    Rural people in the Peruvian Amazon practice agriculture and extract a wide range of products from natural forests, rivers and lakes. Their diversified livelihood system includes fish, game, and plant products. In 2 flood-plain villages, data for one year have been collected to compare the economy of local agriculture with the economy of extracted forest products for subsistence as well as for commerce. The study includes both fauna (game and fish) and flora (timber as well as nontimber). The results show that extracted forest products for subsistence, especially fish, are a main factor in the local economy. The daily net income from extraction activities exceeds both income from cultivation and the normal daily wages for unskilled workers, emphasizing the need for thorough socioeconomic investigations before any alternative land-use option is implemented. The average value per ha of natural forest used for extraction is in the order of USD 13 yr-1, and the average extraction area is 113 ha household-1. When yield from agriculture is included in the calculations, the total per ha value of current extraction and agricultural activities increases to USD 21 yr-1.

  13. Uptake of 244Cm, 238Pu and other radionuclides by trees inhabiting a contaminated flood plain.

    PubMed

    Pinder, J E; McLeod, K W; Alberts, J J; Adriano, D C; Corey, J C

    1984-09-01

    The plant uptake of 244Cm, 137Cs, 238Pu and 90Sr was measured for trees in a flood plain forest whose soils were contaminated by aqueous discharges from a nuclear-fuel chemical separations facility. Uptake of the naturally occurring radionuclide 226Ra was also measured. The relative availability of the nuclides was 238Pu less than 244Cm less than 137Cs less than 226Ra less than or equal to 90Sr. The concentration ratios for 238Pu and 244Cm, 3 X 10(-4) and 3.6 X 10(-3), respectively, were similar to those reported for other plant-soil systems. The ratios for 137Cs and 90Sr, 0.11 and 3.9, were similar to those reported for other southeastern soils. However, the ratio for 226Ra, 2.1, was greater than that normally reported. These ratios, which were determined in the field, were generally similar to those reported for greenhouse studies on the same soil.

  14. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains.

    PubMed

    Karrenberg, Sophie; Suter, Marianne

    2003-05-01

    We studied the relationship of seed mass to seed longevity (controlled conditions) and to seed number in six species of Salicaceae (Populus nigra, Salix alba, S. daphnoides, S. elaeagnos, S. purpurea, and S. triandra) that frequently co-occur on European flood plains. These species regenerate sexually in the same habitat but differ in seed mass. Half-viability periods, i.e., the time after which 50% of the initially viable seeds no longer germinate, were short (between 6.5 ± 0.1 and 23.3 ± 0.3 d), and large numbers of seeds were produced (between 10 000 and 1 × 10(6) per plant). Mean seed mass ranged from 0.02 ± 0.001 mg in S. triandra to 0.80 ± 0.05 mg in P. nigra. Whereas seed mass was, against expectation, positively related to half-viability periods, seed number generally decreased with increasing seed mass. Thus, a phenotypic trade-off between seed mass and seed number appears to be accentuated by an increase in seed longevity with increasing seed mass.

  15. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida: Chapter B, Apalachicola River quality assessment

    USGS Publications Warehouse

    Elder, John F.; Cairns, Duncan J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen

  16. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    PubMed

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  17. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  18. Effects of alternative Missouri River management plans on ground-water levels in the lower Missouri River flood plain

    USGS Publications Warehouse

    Kelly, Brian P.

    2000-01-01

    In 1998, the U.S. Army Corps of Engineers (USACE) proposed eight Alternative River Management Plans (ARMPs) for managing reservoir levels and water-release rates for the Missouri River. The plans include the Current Water Control Plan (CWCP), Conservation 18, 31, and 44 (C18, C31, and C44) that provide different levels of water conservation in the reservoirs during droughts, Fish and Wildlife 10, 15, and 20 (FW10, FW15, and FW20) that vary water-release rates to provide additional fish and wildlife benefits, and Mississippi River 66 (M66) that maintains a 66,000 cubic feet per second discharge at St. Louis to provide navigation support for the Mississippi River. Releases from Gavin?s Point Dam affect both the lower 1,305 kilometers of the Missouri River and ground-water levels in the lower Missouri River flood plain. Changes in the magnitude and timing of ground-water-level fluctuations in response to changes in river management could impact agriculture, urban development, and wetland hydrology along the lower Missouri River flood plain. This study compared simulated ground-water altitude and depth to ground water for the CWCP in the Missouri River alluvial aquifer near the Kansas City area between 1970 and 1980 with each ARMP, determined the average change in simulated ground-water level for selected river-stage flood pulses at selected distances from the river, and compared simulated flood pulse, ground-water responses with actual flood pulse, and ground-water responses measured in wells located at three sites along the lower Missouri River flood plain.For the model area, the percent total shallow ground-water area (depth to ground water less than 0.3048 meter) is similar for each ARMP because of overall similarities in river flow between ARMPs. The percent total shallow ground-water area for C18 is the most similar to CWCP followed by C31, M66, C44, FW10, FW15, and FW20. ARMPs C18, C31, C44, and M66 do not cause large changes in the percent shallow ground

  19. Survival of plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix ramosissima) seedlings in response to flooding

    USGS Publications Warehouse

    Gladwin, D.N.; Roelle, J.E.

    1998-01-01

    We examined the response of first year saltcedar (Tamarix ramosissima) and plains cottonwood (Populus deltoides subsp. monilifera) seedlings to flooding in fall (25 days) and spring (28 days) using potgrown plants (12-18 individuals/26.5-liter pot). Seedlings were initially counted in all pots prior to fall treatment. Survival was calculated as the proportion of seedlings in each pot still alive following spring treatment. Mean survival rates of seedlings flooded in fall (saltcedar = 0.8%, cottonwood = 20.8%, n = 14 pots) were lower compared to the spring flooding treatment (saltcedar = 91.1%, cottonwood = 92.2%, n = 13) and control (saltcedar = 93.9%, cottonwood = 98.7%, n = 14). We used multiple response permutation procedures to detect omnibus distributional differences in survival data (total tests = 9) because assumptions of normality and equal variance were not met. Survival distributions differed between saltcedar and cottonwood fall flooding groups (P 0.07). Smaller size and consequent lack of energy reserves may account for lower survival of saltcedar compared to cottonwood in the fall treatment and for lower survival of both species in the fall treatment compared to the spring treatment. Fall flooding for controlling first year saltcedar seedlings is suggested as a potentially useful technique in riparian habitat restoration and management in the southwestern United States.

  20. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  1. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  2. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  3. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  4. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  5. European climate reconstructed for the past 500 years based on documentary and instrumental evidence

    NASA Astrophysics Data System (ADS)

    Wheeler, Dennis; Brazdil, Rudolf; Pfister, Christian

    2010-05-01

    European climate reconstructed for the past 500 years based on documentary and instrumental evidence Dennis Wheeler, Rudolf Brázdil, Christian Pfister and the Millennium project SG1 team The paper summarises the results of historical-climatological research conducted as part of the EU-funded 6th FP project MILLENNIUM the principal focus of which was the investigation of European climate during the past one thousand years (http://www.millenniumproject.net/). This project represents a major advance in bringing together, for the first time on such a scale, historical climatologists with other palaeoclimatological communities and climate modellers from many European countries. As part of MILLENNIUM, a sub-group (SG1) of historical climatologists from ten countries had the responsibility of collating and comprehensively analysing evidence from instrumental and documentary archives. This paper presents the main results of this undertaking but confines its attention to the study of the climate of the past 500 years and represents a summary of 10 themed papers submitted for a special issue of Climatic Change. They range across a variety of topics including newly-studied documentary data sources (e.g. early instrumental records, opening of the Stockholm harbour, ship log book data), temperature reconstructions for Central Europe, the Stockholm area and Mediterranean based on different types of documentary evidence, the application of standard paleoclimatological approaches to reconstructions based on index series derived from the documentary data, the influence of circulation dynamics on January-April climate , a comparison of reconstructions based on documentary data with the model runs (ECHO-G), a study of the quality of instrumental data in climate reconstructions, a 500-year flood chronology in Europe, and selected disastrous European windstorms and their reflection in documentary evidence and human memory. Finally, perspectives of historical-climatological research

  6. The use of stable isotope to evaluate water mixing and water use by flood plain trees along the Garonne valley

    USGS Publications Warehouse

    Lambs, L.; Loubiat, M.; Richardson, W.

    2003-01-01

    Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.

  7. The use of stable isotopes to evaluate water mixing and water use by flood plain trees along the Garonne valley.

    PubMed

    Lambs, L; Loubiat, M; Richardson, W

    2003-12-01

    Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (delta18O: -9.1 per thousand to -9.0 per thousand, conductivity: 217-410 microS/cm) was distinctly different from groundwater (delta18O: -7.1 per thousand to -6.6 per thousand, conductivity: 600-900 microS/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (<30 cm), whereas trees further from the river relied on deeper ground water (>1 m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.

  8. [Results of prolonged study of flood plain-swamp endemic foci of tularemia, and its prophylaxis in the Leningrad Region].

    PubMed

    Ul'ianova, N I; Bessonova, M A; Panasik, L N; Svimonishvili, V N; Grishina, L S

    1982-02-01

    The results of a prolonged (more than 18 years), comprehensive study have revealed that stable natural foci of tularemia in backwater swamps are widely spread in the Leningrad region. These foci are located in the narrow swampy flood-plains of small watercourses with adjacent meadow areas among forests. Water from such small watercourses can often serve as the indicator of the epizootic process: during the above-mentioned period 346 Francicella tularensis strain have been isolated from water and 86 strains from small mammals. The water factor plays an important role in the circulation of the infective agent in natural foci.

  9. Sediment accumulation determined with 210Pb geochronology and geochemical tracers for Strickland River flood plains, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Aalto, R.; Swanson, K. M.; Dietrich, W. E.; Apte, S.

    2005-05-01

    The Strickland River is the primary sediment source for the Fly River system, a large tropical river that ranks in the global top 20 for both water and sediment discharge. As part of a "Source to Sink" NSF Margins program, the patterns and rates of floodplain sedimentation are being investigated. Previous research on the Middle Fly has documented an exponential decrease in sedimentation rates with distance from channel bank and a large influence of distributary floodplain channels in directing sediment to the floodplain environment. In the Strickland, a mine has discharged waste into the river since 1992, and though the total load increase is small for the lowland Strickland, elevated Ag and Pb levels occur in the river sediment, providing a clear environmental tracer across the floodplain. Work on other flood plain environments has demonstrated that 210Pb can be used to map the spatial and temporal patterns of sedimentation. Here we present geochronological results from an intensive floodplain coring campaign conducted in 2003 on the lower Strickland, which employed both 210Pb geochronology and Ag and Pb penetration depths to quantify sedimentation rates. We will first outline our procedure for dating Strickland sediment with 210Pb geochronology and summarize some early results from 36 cores. Flood plain accumulation rates appear to be highest upstream near the gravel-sand transition, low in the middle portion of the river, and higher again in the lower reaches of the Strickland near to its confluence with the Fly River. Overall patterns of sedimentation from 210Pb geochronology seem to be spatially consistent, for series of cores collected along single flood plain transects. We will next compare these results to accumulation rates determined from duplicate cores that were measured for the concentration of heavy metals from the upstream mine. These two techniques are independent and cover different temporal and spatial (in the vertical dimension) scales, so we

  10. Aggradation of Leveed Channels and Their Flood Plains in Arroyo Bottoms

    NASA Astrophysics Data System (ADS)

    Vincent, K. R.

    2005-12-01

    the emerging flood plain became dominated by silt (or clay) while the levees next to the channel remained dominated by fine or very fine sand. Furthermore, the channel and floodplain aggraded at similar rates and thus had come into geomorphic equilibrium. Vertical accretion of the channel banks, which are the flanks of channel-margin levees, was accomplished by deposition of inclined lamina and very thin beds dominated by silt that have fairly uniform thickness. This may have been promoted by rapid infiltration of stream water into the banks, filtering fine suspended sediment at the solid interface.

  11. An analysis on the relationship between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Chen, H.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Surface environments at the Kujukuri Plain in Chiba Prefecture, Japan, in 1970, 2004, and 2013, were analyzed and compared to discuss the possible impact of land subsidence on the occurrence of floods. The study area has been suffered from land subsidence due to ground deformation from paleo-earthquakes, tectonic activities, and human-induced subsidence by groundwater exploitation. Meteorological data, geomorphological data including DEM obtained from the airborne laser scanning (1-m spatial resolution), leveling data, and the result of our assessment map (Chen et al., 2015) were used in this study. Clear relationship between floods and land subsidence was not recognized, while geomorphological setting, urbanization, and change of precipitation pattern were found to contribute to the floods. The flood prone-area is distributed on the characteristic geomorphological setting such as floodplain and back swamp. It was revealed that the urban area has been expanded on these geomorphological setting in recent years. The frequency of hourly precipitation was also shown to be increased in the past ca. 40 years, and this could induce rapid freshet and overflow of small- and medium-sized rivers and sewerage lines. The distribution of depression areas was increased from 2004 to 2013. This change could be associated with the ground deformation after the Tohoku earthquake (Mw = 9.0) in 2011.

  12. Andreas Vesalius 500 years - A Renaissance that revolutionized cardiovascular knowledge

    PubMed Central

    Mesquita, Evandro Tinoco; de Souza Júnior, Celso Vale; Ferreira, Thiago Reigado

    2015-01-01

    The history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy. PMID:26107459

  13. Investigation of Soil Permeability and Hydrological Properties of Flood Plain Deposits of the Rio Grande in EL Paso TX

    NASA Astrophysics Data System (ADS)

    Schacht, D.; Jin, L.; Doser, D. I.

    2013-12-01

    The various soil types within the flood plains of Rio Grande in El Paso 's Lower Valley have long been utilized by local farmers. These soils are typically more conducive to farming than the more recent (Pliocene) sandy soils outside of the flood plain region. This project will explore the various properties of these soils types such as their grain size, depths, extent, and hydrological conductivity utilizing various geophysical and geochemical methods. The study site is located in El Paso 's Lower Valley and is situated in an actively farmed area. Soil maps from the Natural Resource Conservation Service (NRCS) and variations in vegetation growth will help delineate locations of soil types in the study area. The information that will be collected will produce baseline data to help track expected seasonal variations in the soil's moisture content and in the depth of the local water table. This project represents a collaboration between El Paso Community College's and the University of Texas at El Paso's Departments of Geological Sciences as a means for students majoring in Geological Sciences at El Paso Community College to gain hands on experience in researching geological issues through partnerships with their future institution and faculty.

  14. Secular variation of the aurora for the past 500 years

    SciTech Connect

    Silverman, S.M. )

    1992-11-01

    Direct observations of the Sun exist only since about 1700. Understanding of long-term solar variability thus depends on proxy data, such as visual auroral observations, measurements of magnetic activity, and the radiocarbon record. These also give information on the interaction between the solar wind, interplanetary field, and terrestrial magnetosphere, as well as, for the radiocarbon record, heliospheric conditions. This paper uses a data base of visual auroral observations for a period of about 500 years, from 1450 to 1948, comprising about 45,000 observations, in addition to the well-known sunspot series and the magnetic activity index [ital aa], from 1868 to 1990. The secular variation of the aurora is examined and compared to sunspot data and magnetic activity data. Blackman-Tukey power spectra are used to determine periodicities. The study confirms the variability of the periodicities in frequency and amplitude. The 11.1-year cycle disappears during the Mounder minimum and at the end of the eighteenth and beginning of the nineteenth century. While the 11.1-year period is normally strongly dominant for sunspots, other shorter periods become important for auroras and magnetic activity. Prolonged solar activity minima are clearly evident. In addition to the known Sporer, Mounder, Dalton, and 1901-1913 minima, a previously unrecognized minimum about 1765 is clearly evident in the data. Comparison of the depth of these minima shows that the Dalton minimum may rival the Mounder minimum in importance. Combining the polar data base with that of mid-latitudes provides a globally comprehensive historical record of auroral occurrence. The data provide confirmation of the anticorrelation of auroral occurrence in the polar regions with sunspot activity. The data provide a basis for understanding the variation over time of the general magnetic field of the Sun, in particular the polar field. 59 refs., 29 figs.

  15. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... which to meet the requirements of § 60.4(b). (c) A flood-related erosion-prone community applying for... community will be given a period of six months from the date the flood-related erosion areas having special erosion hazards are delineated in which to meet the requirements of § 60.5(b). (d) Communities...

  16. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... which to meet the requirements of § 60.4(b). (c) A flood-related erosion-prone community applying for... community will be given a period of six months from the date the flood-related erosion areas having special erosion hazards are delineated in which to meet the requirements of § 60.5(b). (d) Communities...

  17. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which to meet the requirements of § 60.4(b). (c) A flood-related erosion-prone community applying for... community will be given a period of six months from the date the flood-related erosion areas having special erosion hazards are delineated in which to meet the requirements of § 60.5(b). (d) Communities...

  18. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  19. Flood potential of Topopah Wash and tributaries, eastern part of Jackass Flats, Nevada Test Site, southern Nevada

    USGS Publications Warehouse

    Christensen, Rulon C.; Spahr, Norman E.

    1980-01-01

    Guidelines for the evaluation of potential surface facilities for the storage of high-level radioactive wastes on the Nevada Test Site in southern Nevada include the consideration of the potential for flooding. Those floods that are considered to constitute the principal flood hazards for these facilities are the 100- and 500-year floods, and the maximum potential flood. Flood-prone areas for the three floods with present natural-channel conditions were defined for the eastern part of Jackass Flats in the southwestern part of the Nevada Test Site. The 100-year flood-prone areas would closely parallel most stream channels with very few occurrences of overland flooding between adjacent channels. The 500-year flood and the maximum potential flood would exceed the discharge capacities of main channels and cause overland flooding between adjacent channels throughout most of the study area. Excluded areas would be those located immediately east of the upstream reach of Topopah Wash and between upstream channel reaches of some tributaries. Floodflow characteristics for the three floods were determined at 47 cross sections. The magnitudes of the estimated velocities indicate severe erosion of channels and flood plains would occur in parts of the study area. (USGS)

  20. Modeling the Impact of Biogeochemical Hotspots and Hot Moments on Subsurface Carbon Fluxes from a Flood Plain Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Steefel, C. I.; King, E.; Conrad, M. E.

    2015-12-01

    Biogeochemical hotspots and hot moments are known to account for a high percentage of carbon and nutrient cycling within flood plain environments. To quantify the impact of these hotspots and hot moments on the carbon cycle, a 2D reactive transport model was developed for the saturated-unsaturated zone of a flood plain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be hotspots and important regions for subsurface biogeochemical cycling. Wavelet analysis of geochemical concentrations at the site suggested that hydrologic and temperature variations are hot moments and exert an important control on biogeochemical conditions in the Rifle aquifer. Here, we describe the development of a reactive transport model that couples hydrologic and biogeochemical processes to microbial functional distributions inferred from site-specific 'omic' data. The model includes microbial contributions from heterotrophic and chemolithoautotrophic processes. We use Monod based formulations to represent biomass formation and consider energy partitioning between catabolic and anabolic processes. We use this model to explore community emergence at the Rifle site and further constrain the extent and rates of nutrient uptake as well as abiotic and biotic reactions using stable carbon isotopes. Results from 2D model simulations with only abiotic reactions predict lower CO2 partial pressures in the unsaturated zone and severely underpredict (~200%) carbon fluxes to the river compared to simulations with chemolithoautotrophic pathways. δ13C-CO2 profiles also point to biotic sources for the locally observed high CO2 concentrations above NRZs. Results further indicate that groundwater carbon fluxes from the Rifle site to the river are underestimated by almost 180% (to 3.3 g m-2 d-1) when temperature fluctuations are ignored in the simulations. Preliminary results demonstrate the emergence of denitrifiers at specific depths

  1. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  2. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    PubMed

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  3. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul A.; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1

  4. Simulation of Flood Profiles for Fivemile Creek at Tarrant, Alabama, 2006

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2007-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Fivemile Creek at Tarrant, Alabama. The 100-year flood stage published in the current flood insurance study for Tarrant by the Federal Emergency Management Agency was significantly exceeded by the March 2000 and May 2003 floods in this area. A peak flow of 14,100 cubic feet per second was computed by the U.S. Geological Survey for the May 2003 flood in the vicinity of Lawson Road. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and the surveyed high-water profile for the May 2003 flood, a flow model was calibrated to closely match this known event. The calibrated model was then used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence interval floods. The results indicate that for the 100-year recurrence interval, the flood profile is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The absolute maximum and minimum difference is 6.80 feet and 0.67 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency, except for cross section H. The results of this study provide the community with flood-profile information that can be used for existing flood-plain mitigation, future development, and safety plans for the city.

  5. Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Simon Wang, S.-Y.; Huang, Wan-Ru; Hsu, Huang-Hsiung; Gillies, Robert R.

    2015-10-01

    The climate anomalies leading to the May 2015 floods in Texas and Oklahoma were analyzed in the context of El Niño teleconnection in a warmer climate. A developing El Niño tends to increase late-spring precipitation in the southern Great Plains, and this effect has intensified since 1980. Anthropogenic global warming contributed to the physical processes that caused the persistent precipitation in May 2015: Warming in the tropical Pacific acted to strengthen the teleconnection toward North America, modification of zonal wave 5 circulation that deepened the stationary trough west of Texas, and enhanced Great Plains low-level southerlies increasing moisture supply from the Gulf of Mexico. Attribution analysis using the Coupled Model Intercomparison Project Phase 5 single-forcing experiments and the Community Earth System Model Large Ensemble Project indicated a significant increase in the El Niño-induced precipitation anomalies over Texas and Oklahoma when increases in the anthropogenic greenhouse gases were taken into account.

  6. Effects of proposed highway embankment modifications on water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana

    USGS Publications Warehouse

    Gilbert, J.J.; Schuck-Kolben, R. E.

    1987-01-01

    Major flooding in the lower Pearl River basin in recent years has caused extensive damage to homes and highways in the area. In 1980 and 1983, Interstate Highway 10 and U.S. Highway 190 were overtopped. In 1983, the Interstate Highway 10 crossing was seriously damaged by the flood. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, used a two-dimensional finite-element surface-water flow model to evaluate the effects the proposed embankment modifications at Interstate Highway 10 and U.S. Highway 90 on the water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana. The proposed modifications that were considered for the 1983 flood are: (1) Removal of all highway embankments, the natural condition, (2) extension of the West Pearl River bridge by 1,000 feet at U.S. Highway 90, (3) construction of a new 250-foot bridge opening in the U.S. Highways 190 and 90, west of the intersection of the highways. The proposed highway bridge modifications also incorporated lowering of ground-surface elevations under the new bridges to sea level. The modification that provided the largest reduction in backwater, about 35 percent, was a new bridge in Interstate Highway 10. The modification of the West Pearl River bridge at U.S. Highway 90 and replacement of the bridge in U.S. Highway 190 provide about a 25% reduction in backwater each. For the other modification conditions that required structural modifications, maximum backwater computed on the west side of the flood plain ranges from 0.0 to 0.8 foot and on the east side from 0.0 to 0.6 foot. Results show that although backwater is greater on the west side of the flood plain than on the east side, upstream of highway embankments, backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Analysis of the proposed modifications indicates that backwater would still occur on

  7. Floods

    MedlinePlus

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  8. Field and laboratory data describing physical and chemical characteristics of metal-contaminated flood-plain deposits downstream from Lead, west-central South Dakota

    USGS Publications Warehouse

    Marron, D.C.

    1988-01-01

    Samples from metal-contaminated flood-plain sediments at 9 sites downstream from Lead, in west-central South Dakota, were collected during the summers of 1985-87 to characterize aspects of the sedimentology, chemistry, and geometry of a deposit that resulted from the discharge of a large volume of mining wastes into a river system. Field and laboratory data include stratigraphic descriptions, chemical contents and grain-size distributions of samples, and surveyed flood-plain positions of samples. This report describes sampling-site locations, and methods of sample collection and preservation, and subsequent laboratory analysis. Field and laboratory data are presented in 4 figures and 11 tables in the ' Supplemental Data ' section at the back of the report. (USGS)

  9. Compared leaf anatomy of Nymphaea (Nymphaeaceae) species from Brazilian flood plain.

    PubMed

    Catian, G; Scremin-Dias, E

    2013-11-01

    Nymphaea has seven species already catalogued in the flood prone areas of the Brazilian Pantanal. However, some species remain difficult to identify and descriptions of the anatomy of vegetative organs are an important tool for infrageneric separation to aid in group taxonomy. The species collected in the Pantanal and prepared according to the usual techniques for anatomical studies showed similar structural characteristics, and data on the arrangement of vascular bundles in the midrib and petiole, as well as the form and distribution of sclereids, were consistent. Nymphaea oxypetala stands out from the other evaluated species for having a greater number of differential characters, including angular collenchyma and the absence of bicollateral bundles in the petiole. Nymphaea lingulata stands out as the only species to feature bicollateral bundles in the leaf blade. The results, summarised in the dichotomous key, facilitate the identification of species that use the flower as the main differentiation, but are in a vegetative stage.

  10. Compared leaf anatomy of Nymphaea (Nymphaeaceae) species from Brazilian flood plain.

    PubMed

    Catian, G; Scremin-Dias, E

    2013-11-01

    Nymphaea has seven species already catalogued in the flood prone areas of the Brazilian Pantanal. However, some species remain difficult to identify and descriptions of the anatomy of vegetative organs are an important tool for infrageneric separation to aid in group taxonomy. The species collected in the Pantanal and prepared according to the usual techniques for anatomical studies showed similar structural characteristics, and data on the arrangement of vascular bundles in the midrib and petiole, as well as the form and distribution of sclereids, were consistent. Nymphaea oxypetala stands out from the other evaluated species for having a greater number of differential characters, including angular collenchyma and the absence of bicollateral bundles in the petiole. Nymphaea lingulata stands out as the only species to feature bicollateral bundles in the leaf blade. The results, summarised in the dichotomous key, facilitate the identification of species that use the flower as the main differentiation, but are in a vegetative stage. PMID:24789398

  11. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse.

    PubMed

    Schröder, Thomas J; Hiemstra, Tjisse; Vink, Jos P M; van der Zee, Sjoerd E A T M

    2005-09-15

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected 194 soil samples at 133 sites distributed in the Dutch part of the Rhine and Meuse river systems. We measured the total amounts of As, Cd, Cr, Cu, Ni, Pb, and Zn in the soil samples and the metal fraction extractable by 2.5 mM CaCl2. We found a strong correlation between heavy metal contamination and organic matter content, which was almost identical for both river systems. Speciation calculations by a fully parametrized model showed the strengths and weaknesses of the mechanistic approach. Cu and Cd concentrations were predicted within one log scale, whereas modeling of Zn and Pb needs adjustment of some model parameters. The statistical fitting approach produced better results but is limited with regard to the understanding it provides. The log RMSE for this approach varied between 0.2 and 0.32 for the different metals. The careful modeling of speciation and adsorption processes is a useful tool for the investigation and understanding of metal availability in river flood plain soils. PMID:16201646

  12. Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S.

    NASA Astrophysics Data System (ADS)

    Steinschneider, Scott; Ho, Michelle; Cook, Edward R.; Lall, Upmanu

    2016-05-01

    This study explores whether it is possible to reconstruct the frequency of extreme precipitation occurrence across the contiguous United States (CONUS) using the Living Blended Drought Atlas (LBDA), a 500 year paleoclimate reconstruction of the summer (June-August) Palmer Drought Severity Index (PDSI). We first identify regions of the country where the LBDA may reflect the occurrence of extremes based on their seasonality and contribution to total annual moisture delivery. Correlation measures are used to assess the relationship between the frequencies of extreme precipitation occurrence and both the instrumental monthly PDSI and the annual LBDA-estimated PDSI. Extreme precipitation is found to account for a large portion of total precipitation west of the Mississippi River and clusters in particular seasons (winter and summer), supporting a strong relationship with the LBDA without much information loss from the instrumental PDSI data. Dimension reduction techniques are used to explore the joint spatiotemporal structure of extreme precipitation occurrence and LBDA across the country. The primary modes of variability of the LBDA and extreme precipitation occurrence relate remarkably well for a region centered over the southwest that exhibits an ENSO-like time-frequency structure. Generalized linear models (GLMs) are used to demonstrate the feasibility of reconstructing the annual extreme precipitation frequency over the 500 year prehistoric record at two sites in the southwest and Southern Plains. GLM-based reconstructions show a high degree of structured variability in the likelihood of extreme precipitation occurrences over the prehistoric record.

  13. Aspects of organic matter transport and processing within Savannah River Plant streams and the Savannah River flood plain swamp

    SciTech Connect

    Hauer, F.R.

    1985-06-01

    The studies were directed toward understanding; (1) the transport dynamics, storage, and retention of organic matter, (2) the processing of leaf material that enters the streams and swamp habitats of the SRP, and (3) how these factors are influenced by current or previous reactor operations at the SRP. Suspended particulate organic matter, benthic organic matter, and in-stream wood were investigated along selected reaches of Steel Creek from April 1983 to April 1984. Concentrations of organic seston ranged from 0.4 to 5.7 mg l/sup -1/. Steel Creek transported significantly higher concentrations of particulate organic matter than did either Meyers Branch or the waters at the swamp site. Seston and dissolved organic matter were investigated on Four Mile Creek, a thermal stream on the SRP, within three different reactor cycles; reactor not operating (cold flow), reactor operating in early portion of cycle (early hot flow), and reactor operating in late portion of cycle (late hot flow). Significantly higher concentrations of particulate organic matter were transported at all study sites during hot flow than during cold flow. Particulate organic matter and dissolved organic matter concentrations were investigated at twelve sampling sites to quantify input and output dynamics of organic matter to the flood plain swamp. Samples were taken biweekly from February 1983 to March 1984. Dissolved organic matter concentrations ranged from 1.3 to 9.9 mg l/sup -1/ and particulate organic matter concentrations ranged from 0.3 to 5.1 mg l/sup -1/. Leaf decomposition of three bottomland tree species was studied at six stream and four swamp sites under various temperature regimes.

  14. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria.

    PubMed

    Agbalagba, E O; Onoja, R A

    2011-07-01

    This paper presents the findings of a baseline study undertaken to evaluate the natural radioactivity levels in soil, sediment and water samples in four flood plain lakes of the Niger Delta using a hyper pure germanium (HPGe) detector. The activity profile of radionuclides shows low activity across the study area. The mean activity level of the natural radionuclides (226)Ra, (232)Th and (40)K is 20 ± 3, 20 ± 3 and 180 ± 50 Bq kg(-1), respectively. These values are well within values reported elsewhere in the country and in other countries with similar environments. The study also examined some radiation hazard indices. The mean values obtained are, 76 ± 14 Bq kg(-1), 30 ± 5.5 ηGy h(-1), 37 ± 6.8 μSv y(-1), 0.17 and 0.23 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D), Annual Effective Dose Rates (E(ff) Dose), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively. All the health hazard indices are well below their recommended limits. The soil and sediments from the study area provide no excessive exposures for inhabitants and can be used as construction materials without posing any significant radiological threat to the population. The water is radiologically safe for domestic and industrial use. The paper recommends further studies to estimate internal and external doses from other suspected radiological sources to the population of the Biseni kingdom.

  15. Flood Study of Warren Brook in Alstead and Cold River in Alstead, Langdon, and Walpole, New Hampshire, 2005

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report presents water-surface elevations and profiles as determined using the U.S. Army Corps of Engineers (USACE) one-dimensional Hydrologic Engineering Center River Analysis System, also known as HEC-RAS. Steady flow water-surface profiles were developed for two stream reaches: the Cold River from its confluence with the Connecticut River in Walpole, through Alstead to the McDermott Bridge in Langdon, NH, and Warren Brook from its confluence with the Cold River to Warren Lake in Alstead, NH. Flood events of a magnitude, which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval), were modeled using HEC-RAS as these flood events are recognized as being significant for flood-plain management, determination of flood insurance rates, and design of structures such as bridges and culverts. These flood events are referred to as the 10-, 50-, 100-, and 500-year floods and have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The recurrence intervals represent the long-term average between floods of a specific magnitude. The risk of experiencing rare floods at short intervals or within the same year increases when periods greater than one year are considered. The analyses in this study reflect the flooding potentials based on conditions existing in the communities of Walpole, Alstead and Langdon at the time of completion of this study.

  16. Modeling the Biogeochemical Response of a Flood Plain Aquifer Impacted By Seasonal Temperature and Water Table Variations

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Molins, S.; Steefel, C. I.

    2014-12-01

    for seasonal temperature changes to accurately represent lateral and vertical delivery of water and nutrients as well as biogeochemical transformations within the Rifle Flood Plain system.

  17. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  18. Aquifer tests in the flood-plain alluvium and Santa Fe group at the Rio Grande near Canutillo, El Paso County, Texas

    USGS Publications Warehouse

    Nickerson, Edward L.

    1989-01-01

    An aquifer system consisting of the Rio Grande flood-plain alluvium and Santa Fe Group underlying the southern Mesilla Valley in Dona Ana County, New Mexico and El Paso County, Texas has become an important source of water for both municipal and agricultural uses. Determination of aquifer properties is essential in order to evaluate groundwater potential for increasing water demand and potential streamflow depletion of the Rio Grande due to groundwater development. The aquifer system at the Canutillo well field hydrologic section was divided into a shallow, intermediate, and deep zone based on geohydrologic characteristics. Aquifer properties of specific zones at the test site were determined from a series of multiple-well aquifer tests conducted from December 3, 1985 through January 20, 1986. The Rio Grande is hydraulically connected to the shallow flood-plain alluvium. Water generally occurs within the shallow zone under unconfined conditions, within the intermediate zone under semiconfined conditions, and within the deep zone under confined conditions. (USGS)

  19. Dancetime! 500 Years of Social Dance. Volume I: 15th-19th Centuries. [Videotape].

    ERIC Educational Resources Information Center

    Teten, Carol

    This VHS videotape recording is the first in a two-volume series that presents 500 years of social dance, music, and fashion. It focuses on the 15th-19th centuries, including Renaissance nobility, Baroque extravagance, Regency refinement, and Victorian romanticism. Each era reflects the changing relationships between men and women through the…

  20. Dancetime! 500 Years of Social Dance. Volume II: 20th Century. [Videotape].

    ERIC Educational Resources Information Center

    Teten, Carol

    This 50-minute VHS videotape is the second in a 2-volume series that presents 500 years of social dance, music, and fashion. It features dance and music of the 20th century, including; 1910s: animal dances, castle walk, apache, and tango; 1920s: black bottom and charleston; 1930s: marathon, movie musicals, big apple, and jitterbug; 1940s: rumba;…

  1. Public Policy and Private Enterprise in the Development of Flood Plains: A Laboratory Exercise in Physical Geography

    ERIC Educational Resources Information Center

    Nunnally, Nelson R.; And Others

    1974-01-01

    This activity is designed to introduce college students to the concept of floods as natural hazards, to flood frequency analysis, to hazard adjustment, and to the mechanics of public policy formulation through a six hour laboratory exercise, culminating in a simulation game. (JH)

  2. Investigation of the 2006 Drought and 2007 Flood Extremes at the Southern Great Plains Through an Integrative Analysis of Observations

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin; Liu, W. Timothy; Lin, BIng; Deng, Yi; Jiang, Tianyu

    2010-01-01

    Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic

  3. Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.

  4. Chryse Planitia region, Mars: Channeling history, flood-volume estimates, and scenarios for bodies of water in the northern plains

    NASA Technical Reports Server (NTRS)

    Rotto, Susan L.; Tanaka, Kenneth L.

    1992-01-01

    The Chryse Planitia region of Mars includes several outflow channels that debouched into a single basin. Here we evaluate possible volumes and areal extents of standing bodies of water that collected in the northern lowland plains, based on evidence provided by topography, fluvial relations, and channel chronology and geomorphology.

  5. Flood study of the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, 2009

    USGS Publications Warehouse

    Flynn, Robert H.

    2010-01-01

    On May 15, 2006, a breach in the riverbank caused an avulsion in the Suncook River in Epsom, NH. The breach in the riverbank and subsequent avulsion changed the established flood zones along the Suncook River; therefore, a new flood study was needed to reflect this change and aid in flood recovery and restoration. For this flood study, the hydrologic and hydraulic analyses for the Suncook River were conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency. This report presents water-surface elevations and profiles determined using the U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Center River Analysis System model, also known as HEC-RAS. Steady-state water-surface profiles were developed for the Suncook River from its confluence with the Merrimack River in the Village of Suncook (in Allenstown and Pembroke, NH) to the upstream corporate limit of the town of Epsom, NH (approximately 15.9 river miles). Floods of magnitudes that are expected to be equaled or exceeded once on the average during any 2-, 5-, 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) were modeled using HEC-RAS. These flood events are referred to as the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and have a 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The 10-, 50-, 100-, and 500-year flood events are important for flood-plain management, determination of flood-insurance rates, and design of structures such as bridges and culverts. The analyses in this study reflect flooding potentials that are based on existing conditions in the communities of Epsom, Pembroke, and Allenstown at the time of completion of this study (2009). Changes in the 100-year recurrence-interval flood elevation from the 1979 flood study were typically less than 2 feet with the exception of a location 900 feet upstream from the avulsion that, because of backwater from the dams in the

  6. Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator); Holz, R. K.; Hulke, S. D.; Patton, P. C.; Penteado, M. M.

    1975-01-01

    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response.

  7. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  8. Epic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.

    2010-01-01

    Metropolitan Atlanta-September 2009 Floods * The epic floods experienced in the Atlanta area in September 2009 were extremely rare. Eighteen streamgages in the Metropolitan Atlanta area had flood magnitudes much greater than the estimated 0.2-percent (500-year) annual exceedance probability. * The Federal Emergency Management Agency (FEMA) reported that 23 counties in Georgia were declared disaster areas due to this flood and that 16,981 homes and 3,482 businesses were affected by floodwaters. Ten lives were lost in the flood. The total estimated damages exceed $193 million (H.E. Longenecker, Federal Emergency Management Agency, written commun., November 2009). * On Sweetwater Creek near Austell, Ga., just north of Interstate 20, the peak stage was more than 6 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. Flood magnitudes in Cobb County on Sweetwater, Butler, and Powder Springs Creeks greatly exceeded the estimated 0.2-percent (500-year) floods for these streams. * In Douglas County, the Dog River at Ga. Highway 5 near Fairplay had a peak stage nearly 20 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. * On the Chattahoochee River, the U.S. Geological Survey (USGS) gage at Vinings reached the highest level recorded in the past 81 years. Gwinnett, De Kalb, Fulton, and Rockdale Counties also had record flooding. South Georgia March and April 2009 Floods * The March and April 2009 floods in South Georgia were smaller in magnitude than the September floods but still caused significant damage. * No lives were lost in this flood. Approximately $60 million in public infrastructure damage occurred to roads, culverts, bridges and a water treatment facility (Joseph T. McKinney, Federal Emergency Management Agency, written commun., July 2009). * Flow at the Satilla River near Waycross, exceeded the 0.5-percent (200-year) flood. Flows at seven other stations in South Georgia exceeded the 1-percent (100-year) flood.

  9. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data

  10. Sediment capture in flood plains of the Mississippi River: A case study in Cat Island National Wildlife Refuge, Louisiana

    NASA Astrophysics Data System (ADS)

    Smith, M.; Bentley, S. J., Sr.

    2015-03-01

    To plan restoration of the Mississippi River Delta, it is imperative to know how much sediment the Mississippi River currently provides. Recent research has demonstrated that between Tarbert Landing and St Francisville on the Mississippi, as much as 67 million metric tons (Mt) per year is lost from river transport, of which ~16 Mt is muddy suspended sediment. So where does this sediment go? Two pathways for loss have been proposed: riverbed storage, and overbank deposition in regions that lack manmade levées. Cat Island National Wildlife Refuge, on the unleveed Mississippi River east bank near St Francisville, Louisiana, consists of undisturbed bottomland forest that is inundated most years by river flooding. To determine fluvial sediment accumulation rates (SAR) from flooding, pushcores 40-50 cm long were collected then dated by Pb-210 and Cs-137 geochronology. Preliminary data suggests that muddy sediment accumulation is 10-13% of muddy suspended sediment lost from river transport along this river reach.

  11. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    PubMed

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  12. Channel changes in the Jarama and Tagus rivers (central Spain) over the past 500 years

    NASA Astrophysics Data System (ADS)

    Uribelarrea, D.; Pérez-González, A.; Benito, G.

    2003-10-01

    Long-term channel changes of the Tagus and the Jarama Rivers in central Spain were studied in relation to variations in hydroclimatic factors, such as rainfall and flooding, and also with respect to human activities undertaken in their valleys. Data were taken from historical (1580-1823) and topographical (1877-1988) maps, as well as aerial photographs (1945-1999). The available hydroclimatic data consists of a series of monthly rainfall totals (1859-1994) and mean river flow values recorded at gauging stations (1911-1985). In addition, a historical flood record (1550-1947) was produced from documentary sources. Some of the data was incorporated into a geographical information system (GIS) to quantify the changes in the course of the rivers. The results show there have been two distinct periods: before and after human intervention in the river system, which took place around 1950. During the earlier period (1550-1950), a correlation exists between climate, frequency and magnitude of flooding and changes in fluvial geomorphology. Between 1860 and 1892 an increase in flood frequency and magnitude occurred, which produced half of the cut-offs recorded in the study area between 1823 and 1877. The meanders length ( L), width ( W) and radius of curvature (RC) of the Tagus River have decreased since 1750. However, those of the Jarama reached their maximum values during flood periods. Both rivers have different geomorphological responses during flood events, which can explain these different trends. Floods in the Jarama not only led to the cut-offs, but also enlarged the channel size ( L, W and RC). In the second period (1956—present), flow regulation via dams and gravel mining modified the system completely and impeded the natural development of these rivers.

  13. System of gigantic valleys northwest of Tharsis, Mars: Latent catastrophic flooding, northwest watershed, and implications for northern plains ocean

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Baker, V.R.; Ferris, J.C.; Hare, T.M.; Strom, R.G.; Rudd, L.P.; Rice, J. W.; Casavant, R.R.; Scott, D.H.

    2000-01-01

    Mars Orbiter Laser Altimeter (MOLA) reveals a system of gigantic valleys to the northwest of the huge martian shield volcano, Arsia Mons, in the western hemisphere of Mars. These newly identified northwestern slope valleys (NSVs) potentially signify previously undocumented martian catastrophic floods and may corroborate the northern ocean hypotheses. These features, which generally correspond spatially to gravity lows, were previously obscurred in Mariner and Viking Orbiter imagery by veneers of materials, including volcanic lava flows and air fall deposits. Geologic investigations of the Tharsis region suggest that the NSVs were mainly carved prior to the construction of Arsia Mons and its associated Late Hesperian and Amazonian age lava flows, concurrent with the early development of the outflow channels that debouch into Chryse Planitia.

  14. [90Sr, 137Cs, 238Pu, 239+240Pu, and 241Am radionuclides in macrophytes within the Krasnensky flood plain: species specificity of concentration and distribution in phytocenosis components].

    PubMed

    Gudkov, D I; Zub, L N; Derevets, V V; Kuz'menko, M I; Nazarov, A B; Kaglian, A E; Savitskiĭ, A L

    2002-01-01

    The analysis of the content of radionuclides 90Sr, 137Cs, 238Pu, 239 + 240Pu and 241Am in water vegetation of flood plain reservoirs has allowed studing features of radionuclide accumulation by various species of macrophytes and revealing bioindicators of radionuclide contamination. Thus species-specificity of radionuclide accumulation can essentially change the contribution of different species to a percentage ratio of the radionuclide content in phytomass of reservoirs in comparison with fund of higher aquatic plants.

  15. Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington

    USGS Publications Warehouse

    Atwater, Brian F.; Hemphill-Haley, Eileen

    1997-01-01

    Seven great earthquakes, or earthquake series, probably ruptured the southern Washington part of the Cascadia subduction zone in the past 3,500 years. Each earthquake was probably of magnitude 8 or larger. The earthquakes define six recurrence intervals that average about 500 years. The longest interval, about 700-1300 years, was followed by two of the shortest, which together lasted less than 800 years. Another long interval, 600-1000 years, ended with an earthquake 300 years ago.

  16. An analysis of region-of-influence methods for flood regionalization in the Gulf-Atlantic Rolling Plains

    USGS Publications Warehouse

    Eng, K.; Tasker, Gary D.; Milly, P.C.D.

    2005-01-01

    Region-of-influence (RoI) approaches for estimating streamflow characteristics at ungaged sites were applied and evaluated in a case study of the 50-year peak discharge in the Gulf-Atlantic Rolling Plains of the southeastern United States. Linear regression against basin characteristics was performed for each ungaged site considered based on data from a region of influence containing the n closest gages in predictor variable (PRoI) or geographic (GRoI) space. Augmentation of this count based cutoff by a distance based cutoff also was considered. Prediction errors were evaluated for an independent (split-sampled) dataset. For the dataset and metrics considered here: (1) for either PRoI or GRoI, optimal results were found when the simpler count based cutoff, rather than the distance augmented cutoff, was used; (2) GRoI produced lower error than PRoI when applied indiscriminately over the entire study region; (3) PRoI performance improved considerably when RoI was restricted to predefined geographic subregions.

  17. Precipitation Heterogeneity in Western and Central Indonesia During the Past 500 years: Proxy Records and Mechanisms

    NASA Astrophysics Data System (ADS)

    Konecky, B.; Russell, J. M.; Vuille, M.; Huang, Y.; Bijaksana, S.

    2012-12-01

    Precipitation in the Indonesian archipelago has varied significantly over the past millennium and is highly susceptible to future changes in atmospheric greenhouse gas concentrations. Modern studies reveal considerable spatial complexity in Indonesian precipitation and isotopes of precipitation, with strong teleconnections to large-scale tropical circulation patterns related to the Walker circulation, the Intertropical Convergence Zone (ITCZ), and regional monsoons. However, a paucity of continental precipitation proxy reconstructions and limited 20th century observations have lead to large uncertainties in Indonesian rainfall history, particularly on multi-decadal to centennial timescales, making the interactions among these mechanisms unclear. Stable isotopes in Indonesian precipitation reflect moisture source, transport, and rainfall amount, and thus provide a useful tool for discerning past and present circulation patterns. We present a new, decadally-resolved reconstruction of precipitation δD (δDprecip) from Lake Towuti, Sulawesi, central Indonesia. This reconstruction is based on the δD of terrestrial plant wax compounds (δDwax) preserved in the lake's sediments. We find ~30‰ variation in δDwax during the past 500 years in Sulawesi, with pronounced variability during the late Little Ice Age and significant D-enrichment, implying drying, during the late 19th and 20th centuries. We compare these findings to a recent, high-resolution δDwax record from Java, western Indonesia, where precipitation has steadily intensified over the past millennium, including the 20th century. Differences between Java and Sulawesi starting in the mid-19th century, as well as heterogeneity within other continental proxy reconstructions from the Indo-Pacific and East Africa, suggest that considerable spatial complexity in Indonesian precipitation has persisted for at least several centuries. As with modern precipitation, this complexity is likely due to regionally diverse

  18. Spatio-temporal variability of CH4 fluxes and environmental drivers on a modern flood plain of the Siberian Lena River Delta

    NASA Astrophysics Data System (ADS)

    Rößger, Norman; Wille, Christian; Kutzbach, Lars

    2016-04-01

    In the course of the amplified climate change in the Arctic, methane emissions may considerably increase due to more suitable production conditions comprising enhanced temperatures, greater abundance of moisture and increased availability of the carbon stock to microorganisms. Since methane exhibits a much higher global warming potential than carbon dioxide, a comprehensive understanding of its spatio-temporal dynamics as well as its key controls is of great importance. We study the carbon turnover with a focus on methane on the modern flood plain of Samoylov Island in the Lena River Delta (72°22'N, 126°28'E) using the eddy covariance technique. The heterogeneous area around the flux tower (footprint) is characterised by annual flooding, a variety of non-cryoturbated permafrost-affected soils with different degrees of organic matter accumulation, a tundra vegetation dominated by shrubs and sedges and a slightly undulating relief forming elevated, well drained areas und wet, partially inundated depressions. The measurements ran between June 2014 and September 2015 when methane fluxes were determined using a LICOR 7700 open-path CH4 analyser. The main emissions occurred between June and September determined by spring thaw and refreezing in autumn. The highest methane emissions took place in early August reaching up to 0.03 μmol m-2 s-1. Over the season, the mean methane flux amounted to 0.012 μmol m-2 s-1. This average is based on a large variability of methane fluxes which is to be attributed to the complexity of the footprint. The methane sources are unevenly distributed; thus, the capture of methane fluxes is highly dependent on atmospheric conditions such as stratification and wind direction. Explaining the variability in methane fluxes is based on three modelling approaches: step-wise regression, neural network and deterministic modelling using exponential relationships for flux drivers. For the identification of suitable flux drivers, a comprehensive data

  19. A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Seidel, J.; Imbery, F.

    2010-09-01

    A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events Against the background of an increasing world population and the changes that this is causing to the earth, the increasing industrialisation resulting in more emissions of greenhouse gases, it is indispensable to differentiate between natural and anthropogenic climate changes. This applies equally to global as well as regional climates. Due to the fact, that the weather data measurement series in the upper Rhine valley go back a maximum of 150 years, it is not possible to use this data to grasp long term climate fluctuations. For example, the current climate is integrated in long scale climate cycles which last thousands of years. To describe these changes accurately, it is necessary to reconstruct the climate beyond that of instrumental series measurements. With the application of direct and indirect data (proxy data) a climate reconstruction will be attempted for the area of region TriRhena. With the application of documentary data it is possible to reconstruct the climate prior to instrumental measurements. These historical records are made up of, for e.g. weather descriptions, information about the wine harvest and other agricultural products, as well as their price fluctuations. Using this data it is possible to calculate meteorological parameters creating an index of air temperature and precipitation values. Climate is an integration of weather and therefore its worth to set the focus also on single interesting weather events. Especially extreme events can contribute to the thesis "learning from the past for a better future". Aim of the research is to identify and apply extreme flood events of the past 500 years as a basis for further analysis like a contribution to improve current flood hazard maps. The data which will be presented were extracted from historical records such as local annuals and

  20. Detecting the Immune System Response of a 500 Year-Old Inca Mummy

    PubMed Central

    Corthals, Angelique; Koller, Antonius; Martin, Dwight W.; Rieger, Robert; Chen, Emily I.; Bernaski, Mario; Recagno, Gabriella; Dávalos, Liliana M.

    2012-01-01

    Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active pathogenic infection is suspected. PMID:22848450

  1. The Corvids Literature Database—500 years of ornithological research from a crow’s perspective

    PubMed Central

    Droege, Gabriele; Töpfer, Till

    2016-01-01

    Corvids (Corvidae) play a major role in ornithological research. Because of their worldwide distribution, diversity and adaptiveness, they have been studied extensively. The aim of the Corvids Literature Database (CLD, http://www.corvids.de/cld) is to record all publications (citation format) on all extant and extinct Crows, Ravens, Jays and Magpies worldwide and tag them with specific keywords making them available for researchers worldwide. The self-maintained project started in 2006 and today comprises 8000 articles, spanning almost 500 years. The CLD covers publications from 164 countries, written in 36 languages and published by 8026 authors in 1503 journals (plus books, theses and other publications). Forty-nine percent of all records are available online as full-text documents or deposited in the physical CLD archive. The CLD contains 442 original corvid descriptions. Here, we present a metadata assessment of articles recorded in the CLD including a gap analysis and prospects for future research. Database URL: http://www.corvids.de/cld PMID:26868053

  2. The complete mitogenome of a 500-year-old Inca child mummy.

    PubMed

    Gómez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martinón-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-01-01

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Native Americans. The expansion of C1b into the Americas, as estimated using 203 C1b mitogenomes, dates to the initial Paleoindian settlements (~18.3 thousand years ago [kya]); however, its internal variation differs between Mesoamerica and South America. By querying large databases of control region haplotypes (>150,000), we found only a few C1bi members in Peru and Bolivia (e.g. Aymaras), including one haplotype retrieved from ancient DNA of an individual belonging to the Wari Empire (Peruvian Andes). Overall, the results suggest that the profile of the mummy represents a very rare sub-clade that arose 14.3 (5-23.6) kya and could have been more frequent in the past. A Peruvian Inca origin for present-day C1bi haplotypes would satisfy both the genetic and paleo-anthropological findings. PMID:26561991

  3. The complete mitogenome of a 500-year-old Inca child mummy

    PubMed Central

    Gómez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martinón-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-01-01

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Native Americans. The expansion of C1b into the Americas, as estimated using 203 C1b mitogenomes, dates to the initial Paleoindian settlements (~18.3 thousand years ago [kya]); however, its internal variation differs between Mesoamerica and South America. By querying large databases of control region haplotypes (>150,000), we found only a few C1bi members in Peru and Bolivia (e.g. Aymaras), including one haplotype retrieved from ancient DNA of an individual belonging to the Wari Empire (Peruvian Andes). Overall, the results suggest that the profile of the mummy represents a very rare sub-clade that arose 14.3 (5–23.6) kya and could have been more frequent in the past. A Peruvian Inca origin for present-day C1bi haplotypes would satisfy both the genetic and paleo-anthropological findings. PMID:26561991

  4. Andreas Vesalius 500 years--A Renaissance that revolutionized cardiovascular knowledge.

    PubMed

    Mesquita, Evandro Tinoco; Souza Júnior, Celso Vale de; Ferreira, Thiago Reigado

    2015-01-01

    The history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy. PMID:26107459

  5. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years

    PubMed Central

    Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F. M.; Gao, Yongli; Edwards, R. Lawrence; Zhang, Haiwei; Du, Yajuan

    2015-01-01

    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520–1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events. PMID:26270656

  6. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years

    NASA Astrophysics Data System (ADS)

    Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F. M.; Gao, Yongli; Edwards, R. Lawrence; Zhang, Haiwei; Du, Yajuan

    2015-08-01

    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.

  7. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years.

    PubMed

    Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F M; Gao, Yongli; Edwards, R Lawrence; Zhang, Haiwei; Du, Yajuan

    2015-08-13

    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ(18)O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ(18)O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.

  8. Atlantic hurricanes and climate over the past 1,500 years.

    PubMed

    Mann, Michael E; Woodruff, Jonathan D; Donnelly, Jeffrey P; Zhang, Zhihua

    2009-08-13

    Atlantic tropical cyclone activity, as measured by annual storm counts, reached anomalous levels over the past decade. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise. Here we place recent activity in a longer-term context by comparing two independent estimates of tropical cyclone activity over the past 1,500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate uses a previously published statistical model of Atlantic tropical cyclone activity driven by proxy reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic tropical cyclone activity during medieval times (around ad 1000) followed by a subsequent lull in activity. The statistical model indicates that the medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results from the reinforcing effects of La-Niña-like climate conditions and relative tropical Atlantic warmth.

  9. Analysis of NAO In A 500-year Long Climate Simulation With Variable Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Dezolt, S.; Lionello, P.; Zorita, E.

    This study is based on a 500-year long simulation carried out with an AOGCM. The model, called ECHO-G model, consists of the ECHAM4 at T30 resolution and of the HOPE-G model at T42 resolution for the global atmospheric and ocean circulation, respectively. The simulation includes a VRF (Variable Radiative Forcing) based on historical records and proxies of solar activity, volcanic eruptions and GHG (Green House Gases, CO2 and methane) concentrations. A 1000-year long CTR (ConTRol) simulation has been carried out, using a fixed radiative forcing corresponding to the 1990 situation. The correlation between the NAO index and the spatial distribution of the surface temperature and of the atmospheric precipitation over Europe are similar in the VRF and CTR simulation. However, the characteristics of the time variability of the NAO index in the VRF and CTR simulations are different and the corresponding NAO spectra present significantly different features. A low, but statistically significant, correlation between the NAO index and the radiative forcing is identified. Though the NAO variability is underestimated in both the VRF and the CTR simulation, the VRF simulation appears to produce more realistic results.

  10. Timing and climate forcing of volcanic eruptions for the past 2,500 years.

    PubMed

    Sigl, M; Winstrup, M; McConnell, J R; Welten, K C; Plunkett, G; Ludlow, F; Büntgen, U; Caffee, M; Chellman, N; Dahl-Jensen, D; Fischer, H; Kipfstuhl, S; Kostick, C; Maselli, O J; Mekhaldi, F; Mulvaney, R; Muscheler, R; Pasteris, D R; Pilcher, J R; Salzer, M; Schüpbach, S; Steffensen, J P; Vinther, B M; Woodruff, T E

    2015-07-30

    Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

  11. Andreas Vesalius 500 years--A Renaissance that revolutionized cardiovascular knowledge.

    PubMed

    Mesquita, Evandro Tinoco; Souza Júnior, Celso Vale de; Ferreira, Thiago Reigado

    2015-01-01

    The history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy.

  12. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.

    2015-12-01

    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced

  13. Tropospheric Response to Estimated Spectrally Discriminated Solar Forcing Over the Past 500 Years

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2000-01-01

    The GISS Global Climate Middle Atmosphere Model (GCMAM) is used to investigate the effect of estimated solar irradiance changes on climate for the past 500 years. This model is employed to allow the impact of UV variations on the stratosphere to affect the troposphere via wave-mean flow interactions. Multiple experiments are done with only a total solar irradiance change (peaking at 0.2 percent from the Maunder Minimum to today); with estimated spectrally-varying irradiance changes (i.e., peak changes of 0.7 percent in the UV, 0.2 percent in the visible and near IR; and 0.07 percent in the IR greater than 1 micron); and the spectrally-varying changes in conjunction with model calculated ozone responses in the stratosphere. Results of the varying temperature patterns and radiation response will be discussed. Of interest is whether the different methods of forcing the solar-induced climate change produce different spatial surface temperature signatures, particularly ones that can be differentiated from greenhouse gas warming. In preliminary tests, spectrally-varying solar forcing with induced ozone changes for solar maximum minus solar minimum conditions results in a temperature signal that is primarily at high latitudes.The high latitude response arises due to solar/ozone-induced alterations in the stratospheric wind field that affect planetary wave propagation from the troposphere, and alter tropospheric advection patterns. In contrast, forcing by total solar irradiance changes produces significant response at low and subtropical latitudes as well, driven by water vapor and cloud feedbacks to the radiative perturbation.

  14. Subglacial flood event observed using in situ GPS data, CryoSat-2 altimetry, and MODIS image differencing on the Whillans Ice Plain, West Antarctica

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Fricker, H.; Roberts, M. W.; Scambos, T. A.

    2013-12-01

    The Whillans Ice Plain (WIP), at the confluence of the Whillans and Mercer Ice Streams on the Siple Coast, West Antarctica, has been observed to have a dynamic subglacial hydrological system, including subglacial lakes that fill and drain on sub-annual to decadal cycles. The initial data from the ICESat mission (2003-2009) provided a precise, yet spatially and temporally discontinuous, time-series of lake activity for nine subglacial lakes in the area. Here, we use an array of moderate-rate GPS units to monitor the subglacial hydrology on WIP during and after the ICESat/CryoSat-2 altimetry gap, assess the efficacy of CryoSat-2's Synthetic Aperture Radar-Interferometric (SIN) mode data for investigating active subglacial lakes, and tie the ICESat and Cryosat-2 datasets together through these in situ observations. Simultaneous ice-surface elevation measurements over Subglacial Lake Mercer (SLM) from GPS data and SIN-mode data reveal a subglacial lake drainage event lasting from August 2012 until March 2013, which is independently confirmed through MODIS image differencing. This event is similar in magnitude to the only previously documented SLM lake drainage (~30m3s-1 sustained over 6-8 months in 2005), but the GPS (at 30-second intervals) and CryoSat-2 data (at monthly intervals) have improved the temporal resolution of previous observations of WIP subglacial floods by orders of magnitude. This increase in both the temporal and spatial resolution at which we map subglacial water allows for a better mechanistic understanding of the subglacial hydrological system on a decelerating ice stream, and enables us to track the movement of subglacial drainage water downstream.

  15. 1,500 Year Periodicity in Central Texas Moisture Source Variability Reconstructed from Speleothems

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; James, E. W.; Silver, M. M.; Banner, J. L.; Musgrove, M.

    2014-12-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. Presently, there are few high-resolution Holocene climate records for this region, which limits the assessment of precipitation variability during a relatively stable climatic interval that comprises the closest analogue to the modern climate state. To address this, we present speleothem growth rate and δ18O records from two central Texas caves that span the mid to late Holocene, and assess hypotheses about the climate processes that can account for similarity in the timing and periodicity of variability with other regional and global records. A key finding is the independent variation of speleothem growth rate and δ18O values, suggesting the decoupling of moisture amount and source. This decoupling likely occurs because i) the often direct relation between speleothem growth rate and moisture availability is complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and ii) speleothem δ18O variations reflect changes in moisture source (i.e., proportion of Pacific- vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount. Furthermore, we document a 1,500-year periodicity in δ18O values that is consistent with variability in the percent of hematite-stained grains in North Atlantic sediments, North Pacific SSTs, and El Nino events preserved in an Ecuadorian lake. Previous modeling experiments and analysis of observational data delineate the coupled atmospheric-ocean processes that can account for the coincidence of such variability in climate archives across the northern hemisphere. Reduction of the thermohaline circulation results in North Atlantic cooling, which translates to cooler North Pacific SSTs. The resulting reduction of the meridional SST gradient in the Pacific

  16. Hydraulic reconstruction of historical floods at the Danube-Carpathian basin

    NASA Astrophysics Data System (ADS)

    Salinas, José Luis; Kiss, Andrea

    2013-04-01

    Estimation of flood quantiles with high return periods (i.e. low exceedance probabilities) is a key step in designing hydraulic structure and developing flood protection strategies. These estimates are always linked with a high prediction uncertainty that increases with larger return periods. One way to reduce this uncertainty is by introducing additional information in the analysis beyond the instrumental peak annual flow time series (Merz and Blöschl 2008 ab). In this study, values from historical floods from the Danube-Carpathian basin during the last 500 years are reconstructed from detailed archive information about cross section geometry, flood plain extent and water level. The historical information was mainly found in official documents and registers. Including this information into the analysis allows to verify or deny the stationarity assumption on which most of the flood quantiles estimation methods are based. On a second step we are able to introduce information about the historical floods into the prediction with the help of a Bayesian framework (Viglione et al. 2013). If the stationarity assumption is sufficiently fulfilled, this temporal expansion of information will reduce dramatically the uncertainty bounds of the flood frequency curve and provide more accurate estimates for high return periods. Merz, R., and G. Blöschl (2008a), Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information, Water Resour. Res., 44, W08432, doi:10.1029/2007WR006744. Merz, R., and G. Blöschl (2008b), Flood frequency hydrology: 2. Combining data evidence, Water Resour. Res., 44, W08433, doi:10.1029/2007WR006745. Viglione, A., R. Merz, J. L. Salinas, and G. Blöschl (2012), Flood frequency hydrology: 3. A Bayesian analysis, Water Resour. Res., doi:10.1029/2011WR010782, in press.

  17. Climate change and the response of phenology of Great Tit, Summer Oak and herbivorous caterpillars on flood plain forest ecosystem during 1961-2007

    NASA Astrophysics Data System (ADS)

    Bartosova, L.; Trnka, M.; Bauer, Z.; Bauerova, J.; Stepanek, P.; Mozny, M.; Zalud, Z.

    2009-04-01

    In this study are presented the phenophases of three animal and plant species, which were observed on research plot Vranovice during 1961 - 2007 (47 years). The observation took place at typical flood plain forest of southern Moravia. These are one common bird Great Tit (Parus major), tree Summer Oak (Quercus robur) and caterpillars Tortrix moth (Tortrix viridana) and Winter Moth (Operophthera brumata). These species are dependent on each other during their development and together create trophic chain. In case of Summer Oak the phenophases were observed since the bud break to full foliage on the same specimen during the whole 47 years. During the same period were observed nesting of 843 nesting pairs of Great Tit. We determined the first laying date (FLD), which was defined as the date when the first clutch in a given year was initiated and mean laying date (MLD), which was defined as the mean initiation date of the all first clutches in the population. The activity of caterpillars was observed indirectly using data on the intensity of caterpillars' frass fall-down that was systematically recorded throughout the study period. As the beginning of peak of excrement fall-down was taken the first day when this event was first observable. The conclusion phase was accompanied by migration of Winter Moth (Operophthera brumata) caterpillars to lower levels of the forest before the cocooning. Tortrix Moth (Tortrix viridana) caterpillars are cocooning (encapsulated) in folds of leaves. The phenophases of all three species has shifted to the earlier time during whole period of observation. The date of full foliage has advanced by 1.9 days per decade. FLD of Great Tit has shifted to the earlier time by 1.6 days and MLD has advanced by 1.5 days per decade. In both cases, the trends are statistically significant at α = 0.01. The dates of activity of caterpillars has shifted at the beginning by 2.02 and at the end by 2.06 days per decade. This trend is statictically highly

  18. Estimating the feeding range of a mobile consumer in a river-flood plain system using δ(13)C gradients and parasites.

    PubMed

    Bertrand, Micheline; Cabana, Gilbert; Marcogliese, David J; Magnan, Pierre

    2011-11-01

    1. The feeding range of an individual is central to food web dynamics as it determines the spatial scale of predator-prey interactions. However, despite recognition of its importance as a driving force in population dynamics, establishing feeding range is seldom done as detailed information on trophic interactions is difficult to obtain. 2. Biological markers are useful to answer this challenge as long as spatial heterogeneity in signal is present within the area investigated. A spatially complex ecosystem, Lake St. Pierre (LSP), a fluvial lake of the St Lawrence River (Québec, Canada), offered a unique opportunity to determine the feeding range of a secondary consumer, yellow perch (Perca flavescens) using isotopic ratios of carbon (δ(13)C). However, because food chains based on phytoplankton have generally more negative δ(13) C than those depending on periphyton, it was essential to determine the contribution of zooplankton in fish diet to correctly interpret spatial patterns of δ(13)C. We used parasites in perch to examine whether their δ(13)C was reflecting local δ(13)C baseline conditions rather than a feeding specialization on zooplankton. 3. δ(13)C of primary consumers was highly variable and exhibited a striking gradient along the shore-channel axis, suggesting that δ(13)C should reflect an individual consumer's spatial position in LSP. 4. This strong isotopic gradient allowed us to estimate the spatial scale of the resources used by individual perch following an approach presented by Rasmussen, Trudeau & Morinville (Journal of Animal Ecology, 78, 2009, 674). By comparing the δ(13)C variability in perch to that of primary consumers, we estimated that the adults feeding range was around 2 km along the shore-channel axis. 5. The combined use of isotopic ratios and parasites allowed us to determine that the adult population uses a wide range of habitats between the flood plain and the main channel. However, individually, each perch depended

  19. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  20. Flood-plain delineation for Horsepen Run, Sugarland Run, Nichols Run, Pond Branch, Clarks Branch, and Mine Run Branch basins, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps have a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Horsepen Run, Sugarland Run, Nichols Run, and Pond Branch basins in Fairfax County. (Woodard-USGS)

  1. 500-year April-September droughts in the Czech Lands based on documentary data and instrumental records

    NASA Astrophysics Data System (ADS)

    Řezníčková, Ladislava; Brázdil, Rudolf; Trnka, Miroslav; Dobrovolný, Petr; Kotyza, Oldřich; Štěpánek, Petr; Zahradníček, Pavel; Valášek, Hubert

    2013-04-01

    This paper analyses temporal and spatial variability of April-September (the vegetation period) droughts in the Czech Lands over the last 500 years. The study is based on different types of documentary data (e.g. chronicles, newspapers, economic sources, weather diaries) covering the pre-instrumental period AD 1501-1804 and on the systematic instrumental meteorological measurements afterwards. Historical-climatological database of the Czech Lands is used for the study of the duration and intensity of drought episodes based on the series of precipitation indices created from documentary data in a 7-degree scale from -3 (extremely dry) to +3 (extremely wet). For the instrumental period of 1805-2012 Palmer's Z-index and PDSI series for mean Czech temperature and precipitation series are used (they were calculated from homogeneous series of 10 and 14 stations respectively). Consequently the 500-year chronology of drought episodes derived from documentary and instrumental data is compiled and the temporal (frequency, seasonality and intensity) and spatial variability of droughts in the Czech Lands from AD 1501 is analysed. The most outstanding drought events are selected and analysed in detail also with respect to their human impacts. The results obtained for the Czech Lands are compared with drought episodes known in Central Europe from other studies and are evaluated with respect to climate variability in Central Europe during the last 500 years (this research is supported by projects InterDrought no. CZ.1.07/2.3.00/20.0248, and GA CR no. P209/11/0956).

  2. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  3. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  4. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  5. The Rosslyn Code: Can Physics Explain a 500-Year Old Melody Etched in the Walls of a Scottish Chapel?

    SciTech Connect

    Wilson, Chris

    2011-10-19

    For centuries, historians have puzzled over a series of 213 symbols carved into the stone of Scotland’s Rosslyn Chapel. (Disclaimer: You may recognize this chapel from The Da Vinci Code, but this is real and unrelated!) Several years ago, a composer and science enthusiast noticed that the symbols bore a striking similarity to Chladni patterns, the elegant images that form on a two- dimensional surface when it vibrates at certain frequencies. This man’s theory: A 500-year-old melody was inscribed in the chapel using the language of physics. But not everyone is convinced. Slate senior editor Chris Wilson travelled to Scotland to investigate the claims and listen to this mysterious melody, whatever it is. Come find out what he discovered, including images of the patterns and audio of the music they inspired.

  6. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years.

    PubMed

    Yin, Xuebin; Sun, Liguang; Zhu, Renbin; Liu, Xiaodong; Ruan, Diyun; Wang, Yuhong

    2007-03-01

    Strong positive correlations between selenium (Se) and total mercury (HgT) contents in the liver of marine mammals and mercury mine workers in modern times have been documented in numerous investigations. Herein, we report a positive correlation between Se and HgT concentrations over the past 1,500 years in the seal hairs and in the lake sediments amended by seal or penguin excrements on King George Island (63 degrees 23' S, 57 degrees 00' W), West Antarctica. Because the changes in the input of Se and Hg into the marine environments of the studied sites do not seem to be synchronous, this striking correlation indicates a self-protection mechanism in Antarctic seals and penguins: Every time there is heavier Hg burden, more Se is accumulated to reduce the toxicity of Hg. This positive correlation between Hg and Se contents in the seal hairs and excrement sediments, however, becomes insignificant in the recent 50 years for unknown reasons.

  7. Flood damage in Italy: towards an assessment model of reconstruction costs

    NASA Astrophysics Data System (ADS)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  8. The 1965 Mississippi River flood in Iowa

    USGS Publications Warehouse

    Schwob, Harian H.; Myers, Richard E.

    1965-01-01

    Flood data compiled for the part of the River along the eastern border include flood discharges, flood elevations, and the frequency of floods of varying magnitudes. They also include the daily or more frequent stage and discharge data for both the Mississippi River and the downstream gaging stations on Iowa tributaries for the period March-May 1965. Sufficient data are presented to permit studied for preparation of plans for protective works and plans for zoning or for flood plain regulation.

  9. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas, 1995

    USGS Publications Warehouse

    Bexfield, L.M.; Anderholm, S.K.

    1997-01-01

    From March to May of 1995, water samples were collected from 30 wells located in the flood plain of the Rio Grande between Cochiti Lake, New Mexico, and El Paso, Texas. These samples were analyzed for a broad host of constituents, including field parameters, major constituents, nutrients, dissolved organic carbon, trace elements, radiochemicals, pesticides, and volatile organic compounds. The main purpose of this study was to observe the quality of ground water in this part of the Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment program. The sampling effort was limited to the basin- fill aquifer beneath the above-defined reach of the Rio Grande flood plain because of the relative homogeneity of the hydrogeology, the large amount of ground-water use for public supply, and the potential for land-use activities to affect the quality of ground water. Most of the wells sampled for the study are used for domestic purposes, including drinking water. Depths to the tops of the sampling intervals in the 30 wells ranged from 10 to 345 feet below land surface, and the median was 161.5 feet; the sampling intervals in most of the wells spanned about 10 feet or less. Quality-control data were collected at three of the wells. A significant amount of variation was found in the chemical composition of ground water sampled throughout the study area, but the water generally was found to be of suitable chemical quality for use as drinking water, according to current enforceable standards established by the U.S. Environmental Protection Agency (EPA). Nutrients generally were measured at concentrations near or below their method reporting limits. The most dominant nutrient species was nitrite plus nitrate, at a maximum concentration of 1.9 milligrams per liter (as N). Only eight of the trace elements analyzed for had median concentrations greater than their respective minimum reporting levels. Water from one well exceeded the lifetime health

  10. Exploring the Role of Humans and Climate over the Balkan Landscape: 500 Years of Vegetational History of Serbia

    NASA Technical Reports Server (NTRS)

    Kulkarni, Charuta; Peteet, Dorothy; Boger, Rebecca; Heusser, Linda

    2016-01-01

    We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS C-14 dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras.

  11. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia.

    PubMed

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000-13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500-11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution.

  12. Exploring the role of humans and climate over the Balkan landscape: 500 years of vegetational history of Serbia

    NASA Astrophysics Data System (ADS)

    Kulkarni, Charuta; Peteet, Dorothy; Boger, Rebecca; Heusser, Linda

    2016-07-01

    We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS 14C dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras.

  13. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    PubMed

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected. PMID:24476890

  14. Patterns of northern emisphere mid-latitude temperature variability in a 500-year climate simulation with variable radiative forcing

    NASA Astrophysics Data System (ADS)

    Lionello, P.; de Zolt, S.; Zorita, E.

    2003-04-01

    This study is based on a 500-year long simulation carried out with an AOGCM which computes the climate evolution from the 15th to the end of the 20th century. The simulation includes a VRF (Variable Radiative Forcing) which accounts for variations of the solar activity, volcanic eruptions and recent increase of GHG (Green House Gases) concentration. The results are compared with a 1000-year long CTR (ConTRol) simulation which is based on a constant radiative forcing, corresponding to the 1990 level. The model, called ECHO-G model, consists of the global atmospheric model ECHAM4, at T30 resolution, and of the ocean circulation model HOPE-G, at 2.8 degs resolution. A clear (seasonal) signature of the radiative forcing variability on the temperature distribution is identified from the analysis of the fields associated with extreme radiative forcing values. The effect is present, though smaller, also on the sea level pressure fields. The dynamics behind these temperature and sea level pressure patterns are described and their importance for the temperature of the mid-latitudes in the Northern emisphere is shown.

  15. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia

    PubMed Central

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000–13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500–11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution. PMID:26230092

  16. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    PubMed

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  17. Flood Frequency Estimates and Documented and Potential Extreme Peak Discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the

  18. Floods n' Dams: A Watershed Model.

    ERIC Educational Resources Information Center

    Milne, Andrew; Etches, John

    1996-01-01

    Describes an activity meant to illustrate flooding in a watershed as it impinges on human activities. Shows how flood protection can be provided using the natural holding capacity of basins elsewhere in the water system to reduce the impact on the settled flood plain. The activity works well with intermediate and senior level students but can be…

  19. Streamflow regulation and multi-level flood plain formation: channel narrowing on the aggrading Green River in the eastern Uinta Mountains, Colorado and Utah

    NASA Astrophysics Data System (ADS)

    Grams, Paul E.; Schmidt, John C.

    2002-05-01

    The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan-eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan-eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches. In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels. The process of channel

  20. Estimating the magnitude and frequency of floods in rural basins of North Carolina

    USGS Publications Warehouse

    Pope, Benjamin F.; Tasker, Gary D.; Robbins, Jeanne C.

    2001-01-01

    A statewide study was conducted to develop two methods for estimating the magnitude and frequency of floods in rural ungaged basins in North Carolina. Flood-frequency estimates for gaged sites in North Carolina were computed by fitting the annual peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Basin characteristics for these gaged sites were computed by using a geographic information system and automated computer algorithms. Flood-frequency estimates and basin characteristics for 317 gaged sites were combined to form the data base that was used for this analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval discharges for rural ungaged basins in the Blue Ridge-Piedmont, Coastal Plain, and Sand Hills hydrologic areas. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations range from 36 to 65 percent. A region-of-influence method also was developed that interactively estimates recurrence interval discharges for rural ungaged basins in the Blue Ridge-Piedmont and Coastal Plain hydrologic areas of North Carolina. Regression techniques are used to develop a unique relation between flood discharge and basin characteristics for a subset of gaged sites with similar basin characteristics. This, then, can be used to estimate flood discharges at ungaged sites. Because the computations required for this method are somewhat complex, a computer application was developed that performs the computations and compares the predictive errors for this method. The computer application also includes the option of using the regression equations to compute estimated flood discharges and errors of

  1. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  2. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  3. High-Precision Reconstructions of Relative Sea-Level Changes in the NW Atlantic Ocean during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Gehrels, W. R.; Long, A. J.; Saher, M. H.; Barlow, N.

    2012-12-01

    We constructed multi-centennial records of relative sea-level change in four sites in the NW Atlantic Ocean (western Iceland, east coast of Nova Scotia, eastern Maine, eastern Connecticut). The aim of this work is to test for sustained sea-level responses to changes in polar ice-sheet dynamics, processes which are poorly constrained in IPCC sea-level predictions for the 21st century. Our sea-level reconstructions are especially detailed for the last 500 years and are dated by high-precision AMS14C, 'bomb-spike' AMS14C, 137Cs, 210Pb, stable Pb isotopic ratios, tephras, trace metal and pollen analyses. Diatoms and foraminifera from the surfaces of the marshes are used to construct transfer functions which relate the microfossils in the sediments to a height above sea level. Our proxy sea-level records reproduce accurately the (multi-)decadal relative sea-level trends of the last 100-150 years recorded by nearby tide gauges. In multi-proxy comparisons we found that diatoms are more precise sea-level indicators than foraminifera, but foraminifera are useful when fossil diatoms are poorly preserved or do not have good modern analogues. The Nova Scotia record, from a microtidal coast and based only on foraminifera, is the most precise reconstruction of all (age and height). Despite variability in the background rate of vertical land motion, primarily caused by glacial isostatic adjustment, we found that all four sites experienced accelerated sea-level rise between AD 1600 and 1800. This is compatible with reconstructions of relative sea-level change in SW Greenland, which show that in this period local relative sea-level rise slowed down due to isostatic rebound following ice mass loss. During the 19th century, sea-level rise in our NW Atlantic sites was relatively slow, but a second (global) sea-level acceleration occurred in the early 20th century. We hypothesize that North Atlantic sea-level variability during the last half-millennium has been controlled by changes in

  4. Techniques for estimating the magnitude and frequency of floods in rural basins of South Carolina, 1999

    USGS Publications Warehouse

    Feaster, Toby D.; Tasker, Gary D.

    2002-01-01

    Data from 167 streamflow-gaging stations in or near South Carolina with 10 or more years of record through September 30, 1999, were used to develop two methods for estimating the magnitude and frequency of floods in South Carolina for rural ungaged basins that are not significantly affected by regulation. Flood frequency estimates for 54 gaged sites in South Carolina were computed by fitting the water-year peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Flood-frequency analyses also were made for gaging stations that drain basins from more than one physiographic province. The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, updated these data from previous flood-frequency reports to aid officials who are active in floodplain management as well as those who design bridges, culverts, and levees, or other structures near streams where flooding is likely to occur. Regional regression analysis, using generalized least squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for rural ungaged basins in the Blue Ridge, Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations ranged from -16 to 19 percent for the 2-year recurrence-interval flow in the upper Coastal Plain to -34 to 52 percent for the 500-year recurrence interval flow in the lower Coastal Plain. A region-of-influence method also was developed that interactively estimates recurrence- interval flows for rural ungaged basins in the Blue Ridge of South Carolina. The region-of-influence method uses regression techniques to develop a unique

  5. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean.

    PubMed

    Murton, Julian B; Bateman, Mark D; Dallimore, Scott R; Teller, James T; Yang, Zhirong

    2010-04-01

    The melting Laurentide Ice Sheet discharged thousands of cubic kilometres of fresh water each year into surrounding oceans, at times suppressing the Atlantic meridional overturning circulation and triggering abrupt climate change. Understanding the physical mechanisms leading to events such as the Younger Dryas cold interval requires identification of the paths and timing of the freshwater discharges. Although Broecker et al. hypothesized in 1989 that an outburst from glacial Lake Agassiz triggered the Younger Dryas, specific evidence has so far proved elusive, leading Broecker to conclude in 2006 that "our inability to identify the path taken by the flood is disconcerting". Here we identify the missing flood path-evident from gravels and a regional erosion surface-running through the Mackenzie River system in the Canadian Arctic Coastal Plain. Our modelling of the isostatically adjusted surface in the upstream Fort McMurray region, and a slight revision of the ice margin at this time, allows Lake Agassiz to spill into the Mackenzie drainage basin. From optically stimulated luminescence dating we have determined the approximate age of this Mackenzie River flood into the Arctic Ocean to be shortly after 13,000 years ago, near the start of the Younger Dryas. We attribute to this flood a boulder terrace near Fort McMurray with calibrated radiocarbon dates of over 11,500 years ago. A large flood into the Arctic Ocean at the start of the Younger Dryas leads us to reject the widespread view that Agassiz overflow at this time was solely eastward into the North Atlantic Ocean.

  6. Novel Bacterial Community Associated with 500-Year-Old Unpreserved Archaeological Wood from King Henry VIII's Tudor Warship the Mary Rose

    PubMed Central

    Watts, Joy E. M.; Jones, Mark

    2012-01-01

    A 500-year-old unpreserved Mary Rose sample, historically containing an iron bolt, was analyzed using enrichment cultures and 16S sequencing. The novel community of bacteria present demonstrates a biological pathway of Fe and S oxidation and a range of acid-generating metabolisms, with implications for preservation and biogeochemical cycling. PMID:23023757

  7. Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California

    USGS Publications Warehouse

    Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.

    2002-01-01

    We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.

  8. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  9. Applicability of 1994-1995 USRADS{reg_sign} surveys of Bear Creek Valley flood plain and Operable Unit 1 to the radiological characterization of Y-12 grassy/wooded areas

    SciTech Connect

    Bogard, J.S.; Hamm, R.N.; Brown, K.S.

    1997-03-01

    This document, provided in support of the Y-12 Site Radiological Characterization Study, analyzes the utility of data from two reports by Chemrad Tennessee Corporation in identifying radiological contamination in excess of contamination control guidelines at the surface of soils in the Bear Creek Valley Flood Plain (BCVFP) and in Y-12 Operable Unit 1 (OU1). The Chemrad reports were developed under subcontract to Science Applications International Corporation for their remedial investigation of these sites for Martin Marietta Energy Systems Environmental Restoration Division. Surveys were performed by Chemrad using the UltraSonic Ranging and Data System (USRADS{reg_sign}), which utilizes ultrasonic triangulation to determine the location of a survey technician at the same time that radiological monitoring data are telemetered from his instruments to a remote receiving station. Floor monitor and Geiger-Mueller pancake meter results from the USRADS{reg_sign} surveys are shown to be sufficiently precise to reliably detect contamination in excess of the limiting radioactivity value of 1,000 dpm/100 cm{sup 2} for removable uranium contamination specified in 10 CFR 835 Appendix D. MicroRem meter survey results, also included as part of the USRADS{reg_sign} surveys, indicate that the derived limiting value of 56.8 {mu}rem/h for penetrating dose at 1 m (corresponding to 100 mrem/{gamma}) was not exceeded. However, both the pancake meter and floor monitor results suggest that surface contamination exceeding 1,000 dpm/100 cm{sup 2} is not uncommon. Sites in OU1 and BCVFP were visited, and independent surveys made with hand-held instruments, to confirm conclusions about the USRADS{close_quote} survey results and to verify that these results are from contamination uniformly distributed on the soil surface, and not from discrete sources which are not likely transferred to shoes, vehicles, or clothing.

  10. Magnitude and Frequency of Floods on Nontidal Streams in Delaware

    USGS Publications Warehouse

    Ries, Kernell G.; Dillow, Jonathan J.A.

    2006-01-01

    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  11. Swiss Re Global Flood Hazard Zones: Know your flood risk

    NASA Astrophysics Data System (ADS)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  12. Distribution and morphology of sinkholes triggered by flooding following Tropical Storm Alberto at Albany, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Hyatt, James A.; Jacobs, Peter M.

    1996-10-01

    Flooding of the Flint River in July 1994 triggered the collapse of at least 312 sinkholes in the karstic Dougherty Plain at Albany, Georgia. We examined the distribution and morphology of these new sinkholes to evaluate the mode of formation, to characterize early stages of the evolution of sinkhole form, and to estimate the lowering of the surface associated with the development of new sinkholes. Eighty-eight percent of sinkholes occur inside the limits of flooding, especially in areas of sandy overburden, and they often follow joint-controlled linear trends. Sinkhole dimensions are log-normally distributed with median values of circumference = 5.7 m, length = 1.8 m, width = 1.6 m, and depth = 0.7 m; asymmetry (L:W) = 1.2. Cross-sectional forms range from narrow cylinders to large bowls, with many sinkholes having undercut sides. Flooding triggered the formation of sinkholes by saturating and liquefying overburden, which caused soil arches to collapse and flow into cavities in bedrock. The prevalence of sinkholes near the periphery of flooding suggests that drainage and loss of buoyant support as flood waters subsided may also have contributed to failure. A volume ratio index is used to quantify the three dimensional geometric form of sinkholes. Initially, small cylindrical shafts open over a bedrock joint, followed by progressive slumping that leads to widening and increases in volume to a final bowl form. Estimates of the aggregate volume of overburden transported underground in flooded areas range from 7,990 to 11,130 m3. Averaged over flooded areas, this accounts for 0.26 to 0.37 mm/km 2 lowering of the surface. Based on a 500 year recurrence interval for the flood event, values for lowering of the surface range from 0.52 to 0.74 mm per 1,000 years. These values are an order of magnitude less than estimates of carbonate dissolution and suggest that transport of overburden underground is limited by triggering events.

  13. Flood-prone areas and land-use planning; selected examples from the San Francisco Bay region, California

    USGS Publications Warehouse

    Waananen, Arvi O.; Limerinos, J.T.; Kockelman, W.J.; Spangle, W.E.; Blair, M.L.

    1977-01-01

    The common goal of flood-plain regulation and use is protecting life, minimizing public expenditures, and reducing flood loss. A comprehensive program combining structural and nonstructural measures can yield substantial benefits and may present a practical approach for managing a flood plain. A review of flood-plain planning, management, and regulation in the San Francisco Bay region, Calif., as shown by a study of Napa County , demonstrates complex multijurisdictional involvements. (Woodard-USGS)

  14. Flood profiles in the Calapooya Creek basin, Oregon

    USGS Publications Warehouse

    Friday, John

    1982-01-01

    Water-surface profiles were computed for a 19.4-mile reach of Calapooya Creek in Douglas County, Oregon. The data will enable the county to evaluate flood hazards in the floodprone areas in the reach. Profiles for floods having recurrence intervals of 2, 10, 50, 100, and 500 years are shown in graphic and tabular form. A floodway, allowing encroachment of the 100-year floods, was designed with a maximum 1.0-foot surcharge limitation. A profile for a flood that occurred in November 1961 is also presented. All data were derived from a digital computer model developed for the study.

  15. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  16. Utopia Plain

    NASA Technical Reports Server (NTRS)

    2006-01-01

    5 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark-toned, cratered plain in southwest Utopia Planitia. Large, light-toned, windblown ripples reside on the floors of many of the depressions in the scene, including a long, linear, trough.

    Location near: 30.3oN, 255.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  17. Techniques for estimating flood discharges for unregulated streams in New Mexico

    USGS Publications Warehouse

    Thomas, Richard P.; Gold, Robert L.

    1982-01-01

    Equations for estimating flood magnitudes at selected recurrence intervals from 2 to 500 years were developed using multiple-regression analyses. These equations relate flood magnitudes to basin characteristics, contributing drainage area and site altitude, and only are applicable to unregulated streams in New Mexico that are relatively unaffected by urban runoff. Estimates of floods at or near gaged sites may be computed with an equation that adjusts discharges developed with the regression equations using station-specific discharges. (USGS)

  18. Revisiting Plain Language.

    ERIC Educational Resources Information Center

    Mazur, Beth

    2000-01-01

    Discusses the plain language movement and its origins. Reviews past and current resources related to plain language writing. Examines criticism of the movement while examining past and current plain language literature, with particular attention to the information design field. (SR)

  19. Activity Book. Columbus: 500 Years.

    ERIC Educational Resources Information Center

    Learning, 1991

    1991-01-01

    This activity book for teachers and students presents ideas for lessons on Christopher Columbus. Three sections offer teaching ideas and student activities focusing on Columbus's inspiration and preparation for departure, the science of navigation and the voyage, and the pros and cons of changes brought about by Columbus's voyage. (SM)

  20. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purpose ordinances (such as a flood plain ordinance, grading ordinance, or flood-related erosion control....e., mudflow) or flood-related erosion damage; (4) A list of the incorporated communities within the...., mudflow) and flood-related erosion prone areas concerning: (i) Population; (ii) Number of one to...

  1. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... purpose ordinances (such as a flood plain ordinance, grading ordinance, or flood-related erosion control....e., mudflow) or flood-related erosion damage; (4) A list of the incorporated communities within the...., mudflow) and flood-related erosion prone areas concerning: (i) Population; (ii) Number of one to...

  2. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purpose ordinances (such as a flood plain ordinance, grading ordinance, or flood-related erosion control....e., mudflow) or flood-related erosion damage; (4) A list of the incorporated communities within the...., mudflow) and flood-related erosion prone areas concerning: (i) Population; (ii) Number of one to...

  3. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... purpose ordinances (such as a flood plain ordinance, grading ordinance, or flood-related erosion control....e., mudflow) or flood-related erosion damage; (4) A list of the incorporated communities within the...., mudflow) and flood-related erosion prone areas concerning: (i) Population; (ii) Number of one to...

  4. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... purpose ordinances (such as a flood plain ordinance, grading ordinance, or flood-related erosion control....e., mudflow) or flood-related erosion damage; (4) A list of the incorporated communities within the...., mudflow) and flood-related erosion prone areas concerning: (i) Population; (ii) Number of one to...

  5. The Full-Glacial Environment of the Northern Seward Peninsula, Alaska, Reconstructed from the 21,500-Year-Old Kitluk Paleosol

    NASA Astrophysics Data System (ADS)

    Höfle, Claudia; Edwards, Mary E.; Hopkins, David M.; Mann, Daniel H.; Ping, Chien-Lu

    2000-03-01

    Paleoenvironmental conditions are reconstructed from soils buried under volcanic ash ca. 21,500 years ago on the Seward Peninsula. Soil development was minimal, reflecting the continuous regional deposition of loess, which originated from river floodplains and the exposed Chukchi shelf. Cryoturbated soil horizons, ice wedges, and ice-lens formation indicate a permafrost environment and mean annual temperatures below -6° to -8°C. Shallow active layers (average 45 cm), minimal evidence for chemical leaching of soils, and the presence of earthen hummocks indicate a cold and seasonally dry climate. Neither steppe nor polar desert soils are appropriate analogues for these zonal soils of loess-covered central Beringia. No exact analogues are known; however, soils underlying dry tundra near the arctic coast of northern Yakutia, Russia, and under moist, nonacidic tundra of the Alaskan North Slope have properties in common with the buried soils.

  6. 500-year Reconstructions of Circulation in the Northeastern Pacific and Western North America: Relation to Precipitation and Fire Conditions in California and Precipitation in Hawai'i

    NASA Astrophysics Data System (ADS)

    Wahl, E. R.; Zorita, E.; Trouet, V.; Diaz, H. F.

    2015-12-01

    A reconstruction of the position of the North Pacific Jet Stream (NPJ) over the past 500 years is evaluated in relation to dry and wet extremes in California and extremes of Sierra Nevada fire activity. This work represents a unique combination of independent annually-resolved paleoclimate and paleoecological reconstructions in the region. Results indicate that fire and precipitation extremes are both closely linked with NPJ winter position, with characteristic wet/low fire and dry/high fire NPJ spatial features in the Pacific adjacent to western North America. These features are in turn evaluated in 21st century climate model scenarios using transient integrations over the past millennium, the instrumental period, and the 21st century. The reconstruction of NPJ position is driven by an analog process that employs independent paleoclimate field reconstructions to select model states closest to the reconstructions; it is thus logically and scientifically most consistent to use comparable models to evaluate the future in relation to the past. Initial results indicate that relatively wet/low fire regional conditions are reasonably possible in the later 21st century under a high greenhouse gas forcing regime (RCP 8.5), even though temperatures rise significantly. Related hydroclimate research reconstructs a precipitation index for the Hawai'ian Islands (HI-precip) over the past 500 years. A northeastern Pacific sea level pressure index reconstructed using the analog process is employed as the driving variable in a calibration against HI-precip. Initial reconstruction results indicate significant bicentennial spectral power, which includes a long-term drying trend that began around 1850 and continues into the first decades of the 21st century. Related statistical downscaling of climate model output for HI-precip to the end of the 21st century suggests the possibility of continued drying under RCP 8.5.

  7. Contamination of the alluvial plain, feeding-stuffs and foodstuffs with polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs) and mercury from the River Elbe in the light of the flood event in August 2002.

    PubMed

    Stachel, B; Christoph, E H; Götz, R; Herrmann, T; Krüger, F; Kühn, T; Lay, J; Löffler, J; Päpke, O; Reincke, H; Schröter-Kermani, C; Schwartz, R; Steeg, E; Stehr, D; Uhlig, S; Umlauf, G

    2006-07-01

    Meadow soils, feeding-stuffs and foodstuffs from the alluvial plain of the river Elbe were analyzed in respect of PCDD/Fs, DL-PCBs and mercury with a view to assessing the consequences of the extreme flood of August 2002. The PCDD/F concentrations in the soils range from 3 to 2100 ng WHO-TEQ/kg dm, and for the DL-PCBs the range was 0.32 to 28 ng WHO-TEQ/kg dm. On the basis of established threshold values >40% of the areas are only fit for restricted usage. Mercury concentrations range from 0.11 to 17 mg/kg dm, whereby the action value of 2 mg/kg dm is exceeded in about 50% of the soil samples. A cumulative memory effect from past floods rather than a recent contamination from August 2002 is documented. Soils taken from behind broken dykes showed significantly lower concentrations. Grass, hay and grass silage originating from pasture land in Lower Saxony were taken before and immediately after the flooding. PCDD/Fs range from 0.29 to 16 ng WHO-TEQ/kg, the maximum permitted value of 0.75 ng WHO-TEQ/kg was exceeded in about 50% of the samples. Muscle-tissue from cattle, sheep, lamb and a roe deer as well as untreated milk from individual cows returned values ranging from 0.76 to 5.9 pg WHO-PCDD/F-TEQ/g fat, and 10% of the samples returned values higher than the permitted maximum of 3 pg WHO-PCDD/F-TEQ/g fat. The action value of 2 pg WHO-PCDD/F-TEQ/g fat was exceeded in 33% of the samples. No direct connection between these results and the effects of the flood could be established. A major input path for PCDD/Fs is the tributary Mulde, which discharges contaminated sediments from its catchment area into the Elbe. PMID:16199077

  8. Pakistan Flooding

    Atmospheric Science Data Center

    2013-04-16

    article title:  Flooding in Pakistan     View Larger Image In late July 2010, flooding caused by heavy monsoon rains began in several regions of Pakistan, ... and Aug 11, 2010 Images:  Pakistan Flood location:  Asia thumbnail:  ...

  9. Development of Flood GIS Database of River Indus using RS and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, Z.; Farooq, M.; Shah, S.

    Remote sensing and Geographic Information System (GIS) are information technologies that furnish a broad range of tools to assist in preparing for the next flood and for obtaining vital information about the flood plain. This type of information is used to improve flood forecasting and preparedness, monitoring flood conditions, assess flood damage, relief efforts, flood control etc. Severe floods of varied magnitudes have occurred in the river Indus and its tributaries viz; Jhelum, Chenab, Ravi and Sutlej during the past three decades covering the Indus flood plain from Cheshma Barrage in the province of Punjab to downstream of Kotri Barrage in the souh of Sindh province of Pakistan. Digital mapping of different floods in the Indus Basin was carried out using both MSS and TM data of Landsat yielding flood maps. These maps depict flood extent and other relevant information in the flood plain. In order to create comprehensive GIS database, various hydrologic information such as rainfall, river discharge, canal withdrawal, embankment, breach etc. were incorporated. Flood database provide comprehensive information both in separate layer and combination of multiple layers pertaining to floods that occurred in the past three decades . GIS database on flood provides easy access to updated in-situ geographic information to planners and irrigation engineers concerned with overall river Indus operation and management system. GIS database of Indus floods can als o be used to improve the efficiency of decision making and management by collecting, organizing and integrating geographic, environmental and socio-economic spatial data and information.

  10. Flood of May 2006 in York County, Maine

    USGS Publications Warehouse

    Stewart, Gregory J.; Kempf, Joshua P.

    2008-01-01

    A stalled low-pressure system over coastal New England on Mother's Day weekend, May 13-15, 2006, released rainfall in excess of 15 inches. This flood (sometimes referred to as the 'Mother's Day flood') caused widespread damage to homes, businesses, roads, and structures in southern Maine. The damage to public property in York County was estimated to be $7.5 million. As a result of these damages, a presidential disaster declaration was enacted on May 25, 2006, for York County, Maine. Peak-flow recurrence intervals for eight of the nine streams studied were calculated to be greater than 500 years. The peak-flow recurrence interval of the remaining stream was calculated to be between a 100-year and a 500-year interval. This report provides a detailed description of the May 2006 flood in York County, Maine. Information is presented on peak streamflows and peak-flow recurrence intervals on nine streams, peak water-surface elevations for 80 high-water marks at 25 sites, hydrologic conditions before and after the flood, comparisons with published Flood Insurance Studies, and places the May 2006 flood in context with historical floods in York County. At sites on several streams, differences were observed between peak flows published in the Flood Insurance Studies and those calculated for this study. The differences in the peak flows from the published Flood Insurance Studies and the flows calculated for this report are within an acceptable range for flows calculated at ungaged locations, with the exception of those for the Great Works River and Merriland River. For sites on the Mousam River, Blacksmith Brook, Ogunquit River, and Cape Neddick River, water-surface elevations from Flood Insurance Studies differed with documented water-surface elevations from the 2006 flood.

  11. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    NASA Astrophysics Data System (ADS)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  12. Development of a flood-warning network and flood-inundation mapping for the Blanchard River in Ottawa, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.

    2011-01-01

    Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.

  13. Young flood lavas in the Elysium Region, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1990-01-01

    The nature and origin of a smooth plains unit (the Cerberus Plains) in southeastern Elysium and western Amazonis are reported. The interpretation that the Cerberus Plains resulted from flood plains style volcanism late in martian history is presented which carries implications for martian thermal history and volcanic evolution of a global scale. Although central construct volcanism (e.g., Olympus Mons) has long been recognized as occurring late in time, flood volcanism has not. Flood volcanism has been suggested as the origin of the ridged plains units (e.g., Lunae Planum, Solis, and Sinai Planum). This type of volcanic activity generally occurred early, and in Tharsis, the style of volcanism evolved from flood eruptions into centralized eruptions which built the large Tharsis Montes and Olympus Mons shields. Volcanism in the Elysium region seems to have followed a similar trend from flood eruptions to central construct building. But, the Cerberus Plains indicate that the volcanic style returned to flood eruption again after central constructional volcanism had ended.

  14. Christopher Columbus and Culicoides: was C. jamaicensis Edwards, 1922 introduced into the Mediterranean 500 years ago and later re-named C. paolae Boorman 1996?

    PubMed

    Meiswinkel, R; Labuschagne, K; Goffredo, M

    2004-01-01

    The biting midge, Culicoides paolae Boorman, described from specimens collected in the extreme south of Italy in 1996, belongs in the subgenus Drymodesmyia. This subgenus was erected by Vargas in 1960 for the so-called Copiosus species group, an assemblage of 22 species endemic to the tropical regions of the New World and, where known, breed in vegetative materials including the decaying leaves (cladodes) and fruits of Central American cacti. The Mexican peoples have utilised these cacti for over 9,000 years; one of these, Opuntia ficus-indica Linnaeus, was brought to Europe by Christopher Columbus following his voyages of discovery. As a taxon C. paolae is very similar to the Central American C. jamaicensis Edwards, 1922 raising the possibility that it (or a closely related species of Drymodesmyia) was introduced into the Mediterranean Region at the time of Columbus, but was (perplexingly) discovered only 500 years later and named C. paolae. The comparison of Sardinian specimens of C. paolae with Panamanian material of C. jamaicensis (housed in the Natural History Museum in London) confirmed the two species to be very similar but unusual differences were noted around the precise distribution of the sensilla coeloconica on the female flagellum. Until it is understood whether these differences represent either intra- or interspecific variation, the question of the possible synonymy of C. paolae must be held in abeyance.

  15. Floods in Colorado

    USGS Publications Warehouse

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  16. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    NASA Astrophysics Data System (ADS)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  17. Assessment of flood potential for eight buildings at the Y-12 Plant

    SciTech Connect

    Eiffe, M.A.

    1997-12-12

    In 1995, P-SQUARED Technologies, Inc., (P2T) was tasked with defining the flood potential for seven buildings at the Y-12 Plant (Buildings 9204-2, 9204-2E, 9206, 9212, 9215, 9720-5, and 9995) in the assumed event of a design storm with a recurrence interval of 10,000 years. At the conclusion of the study, P2T prepared and submitted a report summarizing the flood potential for those seven buildings. In November of 1997, P2T was tasked with (1) defining flood potential for the same seven buildings listed above for design storms with recurrence intervals of 500 years and 2000 years, and (2) defining flood potential for Building 9720-38 for design storms with recurrence intervals of 500 years, 2000 years, and 10,000 years. This report presents the results of the analyses conducted to define flood potential at these locations and for these recurrence intervals. None of the buildings investigated are completely safe from flooding during the storms considered. Runoff from rooftops may cause limited flooding in any areas where water is allowed to pond next to doors, vents, windows, or other openings. Flooding depths inside buildings in these areas should be limited to 1 ft or less. Buildings with openings below the grade of adjacent roads are also subject to flooding, with flood levels dependent upon the topography in that location.

  18. Boron isotopic composition of Porites corals over the past 500 years in the South China Sea: Evaluating the potential controlling factors

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Hao; You, Chen-Feng; Liu, Yi; Chung, Chuan-Hsiung; Liu, Hou-Chun

    2016-04-01

    As the largest marginal sea in the East Asia, the South China Sea is sensitive to the environmental changes both in Asia landmass and western Pacific Ocean. Thus, the cause-consequence feedback systems between the seawater chemistry and environmental change in the South China Sea encompass various interactions and controlling factors on different spatial and temporal scales. Global and regional (e.g., continental sources, and the East Asian monsoon system) factors may have a simultaneous impact on the coral records. However, the representative meanings of coral records in the South China Sea are still poorly understood. Here we present an age-controlled coral boron isotopic (δ11B) record in the Xisha Islands, the northern South China Sea, from AD 1466 to AD 1960. We applied micro-sublimation technique and MC-ICP-MS measurement to provide a low-blank and highly precise δ11B measurement. The δ11B values of the coral specimens varied from 20.8‰ to 26.0‰ which the variation is larger than the observation in the western Pacific Ocean within the same periods. The δ11B data showed a gradual increase during AD 1466-1829 and a relatively sharp decline then until AD 1960. The anthropogenic emission of CO2 may explain the decline of coral-inferred seawater pH over the past 200 years but not for the period of AD 1466-1829. An evaluated correlation was observed between the variation of coral δ11B values and the monsoon-associated upwelling phenomenon, which implies a significant influence of the Asian monsoon system on boron geochemistry in the northern SCS. This study will provide a comprehensive discussion regarding the potential factors controlling the boron isotopic composition in the northern South China Sea over the past 500 years.

  19. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  20. Increased multidecadal hydroclimate variability over northern France during the past 500 years, and its relation to large-scale atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Dieppois, Bastien; Lawler, Damian; Slonosky, Victoria; Massei, Nicolas; Bigot, Sylvain; Fournier, Matthieu; Durand, Alain

    2016-04-01

    We examine secular changes and multidecadal climate variability on a seasonal scale in northern France over the last 500 years and examine the extent to which they are driven by large-scale atmospheric variability. Multiscale trend analysis and segmentation procedures show statistically significant increases of winter and spring precipitation amounts in Paris since the end of the 19th century. This changes the seasonal precipitation distribution from one with a pronounced summer peak at the end of the Little Ice Age to an almost uniform distribution in the 20th century. This switch is linked to an early warming trend in winter temperature. Changes in spring precipitation are also correlated with winter precipitation for time scales greater than 50 years, which suggests a seasonal persistence. Hydrological modelling results show similar rising trends in river flow for the Seine at Paris. However, such secular trends in the seasonal climatic conditions over northern France are substantially modulated by irregular multidecadal (50-80 years) fluctuations. Furthermore, since the end of the 19th century, we find an increasing variance in multidecadal hydroclimatic winter and spring, and this coincides with an increase in the multidecadal North Atlantic Oscillation (NAO) variability, suggesting a significant influence of large-scale atmospheric circulation patterns. However, multidecadal NAO variability has decreased in summer. Using Empirical Orthogonal Function analysis, we detect multidecadal North Atlantic sea-level pressure anomalies, which are significantly linked to the NAO during the Modern period. In particular, a south-eastward (south-westward) shift of the Icelandic Low (Azores High) drives substantial multidecadal changes in spring. Wetter springs are likely to be driven by potential changes in moisture advection from the Atlantic, in response to northward shifts of North Atlantic storm tracks over European regions, linked to periods of positive NAO. Similar

  1. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the

  2. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    NASA Astrophysics Data System (ADS)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-01-01

    analysis using documentary data (plus gauged record) improved the estimates of the probabilities of rare floods (return intervals of 100 year and higher). Under non-stationary modelling flood occurrence associated with an exceedance probability of 0.01 (i.e. return period of 100 year) has changed over the last 500 year due to decadal and multi-decadal variability of the NAO. Yet, frequency analysis under stationary models was successful on providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.

  3. Flood resilience urban territories. Flood resilience urban territories.

    NASA Astrophysics Data System (ADS)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    flood but also to restart as fast as possible (for example, the clearing of roads is a prerequisite for electricity's restoration which is a vital network for territory's functioning). While the waste management is a main stage of post crisis, these questions are still without answer. The extend of this network influence also leads us to think about the means to prevent from waste production and service's dysfunction. How to develop the territory to limit the floods' impact on the waste management network? Are there techniques or equipments allowing stakeholders to limit these impacts? How to increase population's, entrepreneur's or farmer's awareness to get ready to face floods, to limit the waste production, but also to react well during and after the floods? Throughout means of prevention and thanks to actor's technical and organizational adaptations towards the waste network, or by raising population's awareness and preparation, economic and institutional actors of urban territories might improve the waste's network flood resilience, and thus, cities' flood resilience. Through experience feedbacks about countries recently affected by large-extended floods and field reflection with local actors, the stakes of this PhD research are thus to think about means (1) to maintain the activity out of flood plains during a flood, (2) to increase the waste management network's activity in post crisis period in order to be able to deal with a new waste production both by its quality and its quantity, but also (3) to study the means to prevent this new production. This work will use the concept of urban system to describe urban territory because it allows us to study both its behaviour and functioning. The interest of this methodological choice is to take into account the impacts of the disruption of waste management networks on cities' functioning, and thus, on cities' flood resilience.

  4. Observations on the effect of flood on animals

    USGS Publications Warehouse

    Stickel, L.F.

    1948-01-01

    Summary. The flood plain of the Patuxent River is washed over periodically, and occasionally the entire bottomland is submerged to a depth of several feet. The effects of an unusually severe flood on the populations and home ranges of wood mice (Peromyscus leucopus) and box turtles (Terrapene carolina) were studied by means of collecting the animals before, during, and after the flood. The flood had little or no effect on the size of the populations, and individuals showed remarkable ability to remain within their home ranges despite the flood.

  5. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  6. Low-probability flood risk modeling for New York City.

    PubMed

    Aerts, Jeroen C J H; Lin, Ning; Botzen, Wouter; Emanuel, Kerry; de Moel, Hans

    2013-05-01

    The devastating impact by Hurricane Sandy (2012) again showed New York City (NYC) is one of the most vulnerable cities to coastal flooding around the globe. The low-lying areas in NYC can be flooded by nor'easter storms and North Atlantic hurricanes. The few studies that have estimated potential flood damage for NYC base their damage estimates on only a single, or a few, possible flood events. The objective of this study is to assess the full distribution of hurricane flood risk in NYC. This is done by calculating potential flood damage with a flood damage model that uses many possible storms and surge heights as input. These storms are representative for the low-probability/high-impact flood hazard faced by the city. Exceedance probability-loss curves are constructed under different assumptions about the severity of flood damage. The estimated flood damage to buildings for NYC is between US$59 and 129 millions/year. The damage caused by a 1/100-year storm surge is within a range of US$2 bn-5 bn, while this is between US$5 bn and 11 bn for a 1/500-year storm surge. An analysis of flood risk in each of the five boroughs of NYC finds that Brooklyn and Queens are the most vulnerable to flooding. This study examines several uncertainties in the various steps of the risk analysis, which resulted in variations in flood damage estimations. These uncertainties include: the interpolation of flood depths; the use of different flood damage curves; and the influence of the spectra of characteristics of the simulated hurricanes.

  7. Flood control failure: San Lorenzo River, California

    NASA Astrophysics Data System (ADS)

    Griggs, Gary B.; Paris, Lance

    1982-09-01

    The San Lorenzo River on the central California coast was the site of a major US Army Corps of Engineers flood control project in 1959. By excavating the channel below its natural grade and constructing levees, the capacity of the river was increased in order to contain approximately the 100 year flood. Production and transport of large volumes of sediment from the river's urbanizing watershed has filled the flood control project with sand and silt. The natural gradient has been re-established, and flood protection has been reduced to containment of perhaps the 30 year flood. In order for the City of Santa Cruz, which is situated on the flood plain, to be protected from future flooding,it must either initiate an expensive annual dredging program, or replan and rebuild the inadequately designed flood control channel. It has become clear, here and elsewhere, that the problem of flooding cannot simply be resolved by engineering. Large flood control projects provide a false sense of security and commonly produce unexpected channel changes.

  8. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies..., tested, and accepted by that agency for purposes of design of flood control structures or flood...

  9. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies..., tested, and accepted by that agency for purposes of design of flood control structures or flood...

  10. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies..., tested, and accepted by that agency for purposes of design of flood control structures or flood...

  11. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies..., tested, and accepted by that agency for purposes of design of flood control structures or flood...

  12. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies..., tested, and accepted by that agency for purposes of design of flood control structures or flood...

  13. Paleoenvironmental changes during the last 8,500 years recorded in annually laminated sediments from Lake Szurpiły, NE Poland

    NASA Astrophysics Data System (ADS)

    Kinder, Małgorzata; Tylmann, Wojciech; Bubak, Iwona; Enters, Dirk; Kupryjanowicz, Mirosława; Mayr, Christoph; Ohlendorf, Christian; Piotrowska, Natalia; Zolitschka, Bernd

    2014-05-01

    Annually laminated (varved) lake sediments provide a precise time scale for high-resolution paleoenvironmental reconstructions of climatic change and human impact. We reconstructed the environmental changes from Lake Szurpiły (NE Poland) using varve chronology and multi-proxy interdisciplinary approach. Our reconstruction is one of the few for NE Poland and extends the geographical network of laminated lacustrine sediments. This research was supported by the Polish Ministry of Science and Higher Education grants (N N306 275635, N N306 009337, N N306 291639). It is a contribution to the bilateral scientific program "Northern Polish Lake Research" (NORPOLAR). Parallel overlapping sediment cores with total length of 12.38 m and extending back to the Late Glacial were retrieved in 2007. The geochemical (X-ray Fluorescence, CNS, stable isotopes), microscopic (varve thickness and structure), biological (diatoms, pollen) and statistical analyses were applied and combined in an annual scale based on the varve chronology, which was verified by independent radiometric dating (Pb-210, Cs-137 and AMS radiocarbon dating). Due to the large slump, this study focuses on the almost continuously varved uppermost 7.58-m long section of the profile, covering the last 8,500 years. The climate fluctuations were the main cause of the environmental changes during the first 6,000 years. The geochemical record is mainly driven by the lake productivity, oxic conditions and minerogenic input. Although the first evidence of the anthropogenic impact is documented in pollen record at 8,000 BP, the environmental conditions were relatively stable until 2,500 BP, when the human activity increased significantly. Since that time the climatic and human influence are combined and more difficult to disentangle. Three settlement phases separated by natural regeneration of the environment occurred between 2,500-400 BP. The variation of geochemical and pollen data at 400-100 BP reflects climate

  14. Flooding in river mouths: human caused or natural events? Five centuries of flooding events in the SW Netherlands, 1500-2000

    NASA Astrophysics Data System (ADS)

    de Kraker, A. M. J.

    2015-01-01

    This paper looks into the flooding events of the past 500 years in the SW Netherlands addressing the issue what kind of flooding events have occurred and which ones have mainly natural causes and which ones are predominantly human induced. The flooding events are classified into two major categories: (a) flooding events that were caused during storm surges and (b) flooding events which happened during war fare. From both categories a selection of flooding events has been made. Each flooding event is discussed in terms time, location, extent of the flooded area and specific conditions. Among these conditions specific weather circumstances and how long they lasted, the highest water levels reached and dike maintenance are discussed as far as flooding events caused during storm surges are concerned. About the flooding events during war fare, offensive and defensive strategies are relevant. The paper demonstrates that although the strategic flooding events obviously were man-made, the natural feature, being the use of fresh water or sea water, of these events also played a major role. Flooding events caused during storm surge may have an obvious natural cause, but the extent of the flooding and damage it caused were largely determined by man.

  15. Flooding in river mouths: human caused or natural events? Five centuries of flooding events in the SW Netherlands, 1500-2000

    NASA Astrophysics Data System (ADS)

    de Kraker, A. M. J.

    2015-06-01

    This paper looks into flood events of the past 500 years in the SW Netherlands, addressing the issue of what kind of flooding events have occurred and which ones have mainly natural causes and which ones are predominantly human induced. The flood events are classified into two major categories: (a) flood events that were caused during storm surges and (b) flood events which happened during warfare. From both categories a selection of flood events has been made. Each flood event is discussed in terms of time, location, extent of the flooded area and specific conditions. Among these conditions, specific weather circumstances and how long they lasted, the highest water levels reached and dike maintenance are discussed as far as flood events caused during storm surges are concerned. Flood events during warfare as both offensive and defensive strategies are relevant; the paper demonstrates that although the strategic flood events obviously were man-made, the natural feature, being the use of fresh water or sea water, of these events also played a major role. Flood events caused during storm surge may have an obvious natural cause, but the extent of the flooding and damage it caused was largely determined by man.

  16. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  17. Water-surface profile and flood boundaries for the computed 100-year flood, Muddy Creek, Northern Cheyenne Indian Reservation, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1994-01-01

    Hydrologic and hydraulic evaluations of Muddy Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. Forty-three cross sections were surveyed and 14 cross sections were synthesized along a 6.7-mile reach of Muddy Creek. Data from the surveys were used to calculate the water-surface flood elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile shows the streambed elevation and the location of one bridge, one culvert, and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  18. Cascading ecohydrological transitions: Multiple changes in vegetation and hydrology over the past 500 years for a semiarid forest/woodland boundary zone in New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Allen, Craig D.

    2010-05-01

    On decadal and centennial time scales, multiple drivers can cause substantial changes in vegetation cover, which can trigger associated changes in runoff and erosion patterns and processes, with consequent feedbacks to the vegetation - cumulatively this can lead to a cascading series of non-equilibrial ecosystem changes through time. The work reported here provides a relatively detailed 500-year perspective of such changes on the mesas the eastern Jemez Mountains in northern New Mexico (USA), which today exhibit vegetation transitions along an elevational gradient between semiarid ponderosa pine (Pinus ponderosa) forests, mixed woodlands dominated by piñon (Pinus edulis) and one-seed juniper (Juniperus monosperma), and juniper savannas. Using multiple lines of evidence, a history of major ecosystem changes since ca. 1500 A.D. is reconstructed for a dynamic transition zone on one such mesa (Frijolito Mesa). Evidence includes intensive archaeological surveys, dendrochronological reconstructions of the demographic and spatial patterns of establishment and mortality for these three main tree species, dendrochronological reconstructions of fire regimes and climate patterns, broad-scale mapping of vegetation changes from historic aerial photographs since 1935, monitoring of vegetation from permanent transects since 1991, detailed soil maps and interpretations, intensive ecohydrological studies since 1993 on portions of this mesa, and research on the ecosystem effects of an experimental tree-thinning experiment conducted in 1997. Frijolito Mesa was fully occupied by large numbers of Native American farmers from the A.D. 1200's until the late 1500's, when they left these mesas for settlements in the adjoining Rio Grande Valley. Archaeological evidence and tree ages indicate that the mesa was likely quite deforested when abandoned, followed by episodic tree establishment dominated by ponderosa pine during the Little Ice Age. By the late 1700's Frijolito Mesa included

  19. Flooding on Russia's Lena River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nearly every year in the late spring, ice blocks the flow of water at the mouth of the Lena River in northeastern Russia and gives rise to floods across the Siberian plains. This year's floods can be seen in this image taken on June 2, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. The river runs down the left side of the image, and its delta is shrouded in ice (red) at the top of the image. Normally, the river would resemble a thin black line in MODIS imagery. The river, which is Russia's longest, flows 2,641 miles (4,250 kilometers) south to north through Siberia and into the Laptev Sea. In the winter, the river becomes nearly frozen. In the spring, however, water upstream thaws earlier than water at the mouth of the river. As the southern end of the river begins to melt, blocks of ice travel downstream to the still frozen delta, pile up, and often obstruct the flow of water. Flooding doesn't always occur on the same parts of the river. The floods hit further south last year. If the flooding grows severe enough, explosive charges are typically used to break up the ice jams. In these false-color images land areas are a dull, light green or tan, and water is black. Clouds appear pink, and ice comes across as bright red. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  20. Assessment of big floods in the Eastern Black Sea Basin of Turkey.

    PubMed

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman

    2013-01-01

    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  1. Floods of September 16, 1975 in the Tallaboa Valley, Puerto Rico

    USGS Publications Warehouse

    Johnson, Karl G.

    1981-01-01

    The most severe flood since 1928 inundated the Rio Tallaboa Valley on the south coast of Puerto Rico on September 16, 1975. Peak discharge was about 666 cubic meters per second. The flood has an estimated recurrence interval of 20 years. The data provided in the report can be used in making rational decisions in formulating effective flood-plain regulations that would minimize flood problems in the Tallaboa Valley. (USGS)

  2. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  3. Management of hazardous waste at RCRA facilities during the flood of `93 -- Methods used and lessons learned

    SciTech Connect

    Martin, T.; Jacko, R.B.

    1996-11-01

    During the summer of 1993, the state of Iowa experienced severe flooding that caused the release of many hazardous materials into the environment. Six months after the flood, the Iowa section of the RCRA branch, US EPA Region 7, sent inspectors to survey every RCRA facility in Iowa. Information was gathered through questionnaires to determine the flood`s impact and to learn potential lessons that could be beneficial in future flood disasters. The objective of this project was to use the information gathered to determine effective storage methods and emergency procedures for handling hazardous material during flood disasters. Additional data were obtained through record searches, phone interviews, and site visits. Data files and statistics were analyzed, then the evident trends and specific insights observed were utilized to create recommendations for RCRA facilities in the flood plain and for the federal EPA and state regulatory agencies. The recommendations suggest that RCRA regulated facilities in the flood plain should: employ the safest storage methods possible; have a flood emergency plan that includes the most effective release prevention available; and take advantage of several general suggestions for flood protection. The recommendations suggest that the federal EPA and state regulatory agencies consider: including a provision requiring large quantity generators of hazardous waste in the flood plain to include flood procedures in the contingency plans; establishing remote emergency storage areas during the flood disasters; encouraging small quantity generators (SQGs) within the flood plain to establish flood contingency plans; and promoting sound flood protection engineering practices for all RCRA facilities in the flood plain.

  4. Floods of August 1967 in east-central Alaska

    USGS Publications Warehouse

    Childers, Joseph M.; Meckel, James P.; Anderson, Gary S.

    1972-01-01

    East-central Alaska had record floods near Fairbanks following extensive rains of August 8-20, 1967. Precipitation during this period totaled as much as 10 inches, which is close to the average annual precipitation for this area. The most extensive flooding occurred in the White Mountains northeast of Fairbanks and along the major streams draining those mountains. Some of the major streams flooded were the Salcha, Chena, Chatanika, Tolovana, and lower Tanana Rivers, and Birch Creek west of Circle. Peak discharges on some streams in the flood area were from two to four times the probable 50-year flood. The peak discharge of 74,400 cubic feet per second of the Chena River at Fairbanks, from 1,980 square miles of drainage area, was 2.6 times the 50-year flood. The rise of ground-water levels in the Tanana River flood plain to the land surface during the flood caused foundation failures and prevented drainage of subsurface structures. Above-normal ground-water levels existed until the middle of September. Total flood damage was estimated in excess of $85 million. Six lives were reported lost, and about 12,000 persons were evacuated during the flood. This report has been prepared to furnish hydrologic data for development planning. Included are discussions of antecedent streamflow, meteorology of the storm, descriptions of floods, flood damage, flood frequency, ground-water conditions, and stages and discharges of major streams for August 1967.

  5. The Plains City Story

    ERIC Educational Resources Information Center

    van Olphen, Marcela; Rios, Francisco; Berube, William; Dexter, Robin; McCarthy, Robert

    2006-01-01

    This case study portrays a contemporary phenomenon that affects many U.S. school districts. Specifically, the authors address the challenges that the superintendent of the Plains City school district faced as a result of a change in the demographic distribution of his district. The gradual development of the pig farming industry in Plains City…

  6. Flood of May 5 and 6, 1981, Mobile, Alabama

    USGS Publications Warehouse

    Ming, C.O.; Nelson, G.H.

    1981-01-01

    Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)

  7. Effects of urbanization on the magnitude and frequency of floods in northeastern Illinois

    USGS Publications Warehouse

    Allen, Howard E.; Bejcek, Richard M.

    1979-01-01

    Changes in land use associated with urbanization have increased flood-peak discharges in northeastern Illinois by factors up to 3.2. Techniques are presented for estimating the magnitude and frequency of floods in the urban environment of northeastern Illinois, and for estimating probable changes in flood characteristics that may be expected to accompany progressive urbanization. Suggestions also are offered for estimating the effects of urbanization on flood characteristics in areas other than northeastern Illinois. Three variables, drainage area, channel slope, and percent imperviousness (an urbanization factor), are used to estimate flood magnitudes for frequencies ranging from 2 to 500 years. Multiple regression analyses were used to relate flood-discharge data to the above watershed characteristics for 103 gaged watersheds. These watersheds ranged in drainage area from 0.07 to 630 square miles, in channel slope from 1.1 to 115 feet per mile, and in imperviousness from 1 to 39 percent. (Woodard-USGS)

  8. Outwash plains and thermokarst on Mars

    USGS Publications Warehouse

    Costard, F.M.; Kargel, J.S.

    1995-01-01

    The spatial distribution of different types of rampart craters on Mars suggests a hemispheric asymmetry in the distribution of ground ice. The northern plains, especially major topographic depressions near the terminations of outflow channels, have high percentages of rampart craters. Two of these basins, Acidalia and Utopia Planitiae, received extraordinarily large amounts of water and sediment from the Chryse and Elysium outflow channels. In both regions, the analysis of high-resolution Viking pictures (12 m/pixel) indicates a concentration of kilometer-scale depressions that are similar in size and form to thermokarstic features in Yakutia (Siberia) and parts of the arctic coastal plain of North America. Accordingly, we infer that (1) Utopia Planitia and Acidalia Planitia may contain thick, laterally continuous, ice-rich sedimentary deposits related to outflow channel-forming floods, and (2) these areas of Mars may have experienced thermokarstic processes similar to modern thermokarstic processes in some periglacial regions of Earth.

  9. Flood-risk management strategies for an uncertain future: living with Rhine River floods in The Netherlands?

    PubMed

    Klijn, Frans; van Buuren, Michaël; van Rooij, Sabine A M

    2004-05-01

    Social pressure on alluvial plains and deltas is large, both from an economic point of view and from a nature conservation point of view. Gradually, flood risks increase with economic development, because the expected damage increases, and with higher dikes, because the flooding depth increases. Global change, changing social desires, but also changing views, require a revision of flood-risk management strategies for the long term. These should be based on resilience as opposed to the resistence strategy of heightening dikes. Resilience strategies for flood-risk management imply that the river is allowed to temporarily flood large areas, whereas the flood damage is minimized by adapting land use. Such strategies are thus based on risk management and 'living with floods' instead of on hazard control. For The Netherlands, one of the most densely populated deltas in the world, alternative resilience strategies have been elaborated and assessed for their hydraulic functioning and 'sustainability criteria'.

  10. Hydrologic Controls On Methylmercury Availability In Coastal Plain Rivers

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Brigham, M. E.; Burns, D. A.; Button, D. T.; Lutz, M. A.; Marvin-DiPasquale, M. C.; Riva-Murray, K.; Journey, C.

    2011-12-01

    Methylmercury (MeHg) in streams is often attributed to methylation in up-gradient wetland areas, with episodic flood events maximizing wetland-stream hydrologic connectivity and dominating MeHg supply to the stream habitat. A number of studies have demonstrated that Coastal Plain streams in the southeastern United States are particularly vulnerable to high MeHg bioaccumulation and have attributed this vulnerability to wetland abundance and strong hydrologic connectivity between wetland areas and adjacent stream aquatic habitat. Because characteristically coarse-grained Coastal Plain sediments favor vertical infiltration with little surface runoff, flood events attributable to Coastal Plain precipitation are driven by rising groundwater, promoting efficient transport of MeHg from wetland/floodplain source areas to the stream habitat and increasing in-stream availability. Several observations at McTier Creek, South Carolina, however, suggest that good hydrologic connectivity and efficient MeHg transport in Coastal Plain systems are not limited to flood conditions. Close correspondence between stream and shallow-groundwater water levels at McTier indicate good hydrologic connectivity exists prior to flood conditions. Dissolved MeHg concentrations do not increase under flood conditions. Thus, we assessed the flux of water and dissolved mercury (Hg) species (FMeHg and total Hg (FTHg)) from surface water and groundwater sources in a short reach at McTier Creek during separate events in April and July 2009, to determine the importance of shallow groundwater Hg transport from floodplain areas to the stream under non-flood conditions. Mass balance assessments indicated that, under non-flood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface-water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric deposition. The results indicate efficient transport of

  11. Use of indexed historical floods in flood frequency estimation with Fuzzy Bayesian methods

    NASA Astrophysics Data System (ADS)

    Salinas, Jose; Viglione, Alberto; Kiss, Andrea; Bloeschl, Guenter

    2015-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the existence of long time series of floods, for example in Central Europe and the Mediterranean region, which in some cases range longer than 500 years in the past. In most of the cases the flood time series are presented in terms of indices, representing a combination of socio-economic indicators for the flood impact, e.g. economic damage, flood duration and extension, ... In hydrological engineering, historical floods are very useful because they give additional information which will reduce the uncertainty in estimates of discharges with low annual exceedance probabilities, i.e. with high return periods. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but as commented, they are most usually given in term of indices. This work presents a novel method on how to obtain a prior distribution for the parameters of the annual peak discharges distribution from indexed historical floods time series. The prior distribution is incorporated in the flood frequency estimation via Bayesian methods (see e.g. Viglione et al., 2013) in order to reduce the uncertainties in the design flood estimates. The historical data used is subject to a high degree of uncertainty and unpreciseness. In this sense, a framework is presented where the discharge thresholds between flood indices are modeled as fuzzy numbers. These fuzzy thresholds will define a fuzzy prior distribution, which will requires to apply Fuzzy Bayesian Inference (Viertl, 2008ab) to obtain fuzzy credibility intervals for the design floods. Viertl, R. (2008a) Foundations of Fuzzy Bayesian Inference, Journal of Uncertain Systems, 2, 187-191. Viertl, R. (2008b) Fuzzy Bayesian Inference. In: Soft Methods For Handling Variability And Imprecision. Advances In Soft Computing. Vol. 48. Springer-Verlag Berlin, pp 10-15. Viglione, A., R. Merz

  12. Geologic history of the Cerberus Plains, Mars

    NASA Astrophysics Data System (ADS)

    Lanagan, Peter Denham

    This work examines the relative chronology of geologic units within the Cerberus Plains of Mars with an emphasis on lava flows emplaced after the last Marte Valles fluvial episode. High resolution images show the bulk of the Cerberus Plains is covered by platy-ridged and inflated lavas, which are interpreted as insulated sheet flows. Eastern Cerberus Plains lavas originate at Cerberus Fossae fissures and shields. Some flows extend for >2000 km through Marte Valles into Amazonis Planitia. Athabasca Valles are both incised into pristine lavas and embayed by pristine lavas, indicating that Athabascan fluvial events were contemporaneous with volcanic eruptions. Deposits of the Medusae Fossae Formation lie both over and under lavas, suggesting the deposition of the Medusae Fossae Formation was contemporaneous with volcanism. Statistics of small craters indicate lavas in the Western Cerberus Plains may be less than a million years old, but the model isochrons may be unreliable if the small crater population is dominated by secondary craters. Images showing no large craters with diameters >500 m superimposed on Western Cerberus Plains lavas indicate the same surface is younger than 49 Ma. High resolution Mars Orbiter Camera (MOC) images have revealed the existence of small cones in the Cerberus Plains, Marte Valles, and Amazonis Planitia. These cones are similar in both morphology and planar dimensions to the larger Icelandic rootless cones, which form due to explosive interactions between surficial lavas and near-surface groundwater. If martian cones form in the same manner as terrestrial rootless cones, then equatorial ground-ice or ground water must have been present near the surface in geologically recent times. Evidence for a shallow lake in the Western Cerberus Plains during the Late Amazonian is also presented. High-resolution images show features interpreted as flood-eroded scarps and fluvial spillways exiting the lake. Based on present-day topography, a lake

  13. Flood of May 26-27, 1984 in Tulsa, Oklahoma

    USGS Publications Warehouse

    Bergman, DeRoy L.; Tortorelli, Robert L.

    1988-01-01

    The greatest flood disaster in the history of Tulsa, Oklahoma occurred during 8 hours from 2030 hours May 26 to 0430 hours May 27, 1984, as a result of intense rainfall centered over the metropolitan area. Storms of the magnitude that caused this flood are not uncommon to the southern great plains. Such storms are seldom documented in large urban areas. Total rainfall depth and rainfall distribution in the Tulsa metropolitan area during the May 26-27 storm were recorded by 16 recording rain gages. This report presents location of recording rain gages with corresponding rainfall histograms and mass curves, lines of equal rainfall depth (map A), and flood magnitudes and inundated areas of selected streams within the city (map B). The limits of the study areas (fig. 1) are the corporate boundaries of Tulsa, an area of about 185 square miles. Streams draining the city are: Dirty Butter, Coal, and Mingo Creeks which drain northward into Bird Creek along the northern boundary of the city; and Cherry, Crow, Harlow, Joe Haikey, Fry, Vensel, Fred, and Mooser Creeks which flow into the Arkansas River along the southern part of the city. Flooding along Haikey, Fry, Fred, Vensel, and Mooser Creeks was not documented for this report. The Arkansas River is regulated by Keystone Dam upstream from Tulsa (fig. 1). The Arkansas River remained below flood stage during the storm. Flooded areas in Tulsa (map B) were delineated on the topographic maps using flood profiles based on surveys of high-water marks identified immediately after the flood. The flood boundaries show the limits of stream flooding. Additional areas flooded because of overfilled storm drains or by sheet runoff are not shown in this report. Data presented in this report, including rainfall duration and frequency, and flood discharges and elevations, provide city officials and consultants a technical basis for making flood-plain management decisions.

  14. Billing in Plain English.

    ERIC Educational Resources Information Center

    Hughes, Sarah Jane

    1987-01-01

    The author describes the efforts of the Federal Trade Commission to make credit communications more readable and informative. The group working on the project uses "plain English" as the writing model for forms and manuals. (CH)

  15. Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of Mechanisms from SGP ARM Data

    SciTech Connect

    Sumant Nigam

    2013-02-01

    Work reported included analysis of pentad (5 day) averaged data, proposal of a hypothesis concerning the key role of the Atlantic Multi-decadal Oscillation in 20th century drought and wet periods over the Great Plains, analysis of recurrent super-synoptic evolution of the Great Plains low-level jet, and study of pentad evolution of the 1988 drought and 1993 flood over the Great Plains from a NARR perspective on the atmospheric and terrestrial water balance.

  16. Floods of June 2012 in northeastern Minnesota

    USGS Publications Warehouse

    Czuba, Christiana R.; Fallon, James D.; Kessler, Erich W.

    2012-01-01

    During June 19–20, 2012, heavy rainfall, as much as 10 inches locally reported, caused severe flooding across northeastern Minnesota. The floods were exacerbated by wet antecedent conditions from a relatively rainy spring, with May 2012 as one of the wettest Mays on record in Duluth. The June 19–20, 2012, rainfall event set new records in Duluth, including greatest 2-day precipitation with 7.25 inches of rain. The heavy rains fell on three major watersheds: the Mississippi Headwaters; the St. Croix, which drains to the Mississippi River; and Western Lake Superior, which includes the St. Louis River and other tributaries to Lake Superior. Widespread flash and river flooding that resulted from the heavy rainfall caused evacuations of residents, and damages to residences, businesses, and infrastructure. In all, nine counties in northeastern Minnesota were declared Federal disaster areas as a result of the flooding. Peak-of-record streamflows were recorded at 13 U.S. Geological Survey streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 35 U.S. Geological Survey streamgages. Flood-peak streamflows in June 2012 had annual exceedance probabilities estimated to be less than 0.002 (0.2 percent; recurrence interval greater than 500 years) for five streamgages, and between 0.002 and 0.01 (1 percent; recurrence interval greater than 100 years) for four streamgages. High-water marks were identified and tabulated for the most severely affected communities of Barnum (Moose Horn River), Carlton (Otter Creek), Duluth Heights neighborhood of Duluth (Miller Creek), Fond du Lac neighborhood of Duluth (St. Louis River), Moose Lake (Moose Horn River and Moosehead Lake), and Thomson (Thomson Reservoir outflow near the St. Louis River). Flood-peak inundation maps and water-surface profiles were produced for these six severely affected communities. The inundation maps were constructed in a

  17. Floods of September 2010 in Southern Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Sanocki, Chris A.; Lorenz, David L.; Mitton, Gregory B.; Kruse, Gregory A.

    2011-01-01

    During September 22-24, 2010, heavy rainfall ranging from 3 inches to more than 10 inches caused severe flooding across southern Minnesota. The floods were exacerbated by wet antecedent conditions, where summer rainfall totals were as high as 20 inches, exceeding the historical average by more than 4 inches. Widespread flooding that occurred as a result of the heavy rainfall caused evacuations of hundreds of residents, and damages in excess of 64 million dollars to residences, businesses, and infrastructure. In all, 21 counties in southern Minnesota were declared Federal disaster areas. Peak-of-record streamflows were recorded at nine U.S. Geological Survey and three Minnesota Department of Natural Resources streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 27 U.S. Geological Survey and 5 Minnesota Department of Natural Resources streamgages and 5 ungaged sites. Flood-peak streamflows in 2010 had annual exceedance probabilities estimated to be less than 0.2 percent (recurrence interval greater than 500 years) at 7 streamgages and less than 1 percent (recurrence interval greater than 100 years) at 5 streamgages and 4 ungaged sites. High-water marks were identified and tabulated for the most severely affected communities of Faribault along the Cannon and Straight Rivers, Owatonna along the Straight River and Maple Creek, Pine Island along the North Branch and Middle Fork Zumbro River, and Zumbro Falls along the Zumbro River. The nearby communities of Hammond, Henderson, Millville, Oronoco, Pipestone, and Rapidan also received extensive flooding and damage but were not surveyed for high-water marks. Flood-peak inundation maps and water-surface profiles for the four most severely affected communities were constructed in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available. The flood maps and

  18. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  19. Flood of June 4-5, 2002, in the Maquoketa River Basin, east-central Iowa

    USGS Publications Warehouse

    Eash, David A.

    2004-01-01

    Severe flooding occurred on June 4-5, 2002, in the Maquoketa River Basin in Delaware, Dubuque, Jackson, and Jones Counties, following thunderstorm activity over east-central Iowa. The rain gage at Cascade, Iowa, recorded a 14-hour rainfall of 6.0 inches at noon on June 4. Radar indications estimated as much as 8 to 10 inches of rain fell in the upper-middle part of the Maquoketa River Basin. Peak discharges on the Maquoketa River at Monticello of 47,500 cubic feet per second (recurrence interval estimated to be greater than 500 years as computed using flood-estimation equations developed by the U.S. Geological Survey), and at the Maquoketa River near Maquoketa streamflow-gaging station of 47,900 cubic feet per second (recurrence interval about 50 years), were determined for the flood. The peak discharge of the 2002 flood is nearly equal that of the 1944 flood (48,000 cubic feet per second), the largest flood on record in the Maquoketa River Basin. The 2002 flood is the largest known flood in the North Fork Maquoketa River Basin. A peak discharge of 22,600 cubic feet per second (recurrence interval about 110 years) was determined for the flood at the North Fork Maquoketa River near Fulton gaging station. Information about the basin and flood history, the 2002 thunderstorms and associated flooding, and a profile of high-water marks are presented for selected reaches along the Maquoketa and North Fork Maquoketa Rivers.

  20. Tsunami flooding

    USGS Publications Warehouse

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  1. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    USGS Publications Warehouse

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  2. Flooding studies of proposed repository locations in the Palo Duro Basin of the Texas Panhandle

    SciTech Connect

    Not Available

    1985-04-01

    This report contains the results of flooding studies of those stream channels that drain the proposed locations of a high-level nuclear-waste repository in Deaf Smith and Swisher Counties, Texas. Included are computations of the flood hydrographs and water surface profiles of the 100-year, 500-year, and probable maximum floods for Palo Duro Creek, Tule Creek, and Pleasant Draw. The hydrographs were produced according to the method of the Soil Conservation Service for ungaged watersheds, and the computations were made with computer programs developed by the US Army Corps of Engineers. The flood hydrographs were computed with the HEC-1 Flood Hydrograph Package and the water surface elevations with the HEC-2 Water Surface Profiles program. 76 refs., 19 figs., 16 tabs.

  3. Flood potential of Fortymile Wash and its principal southwestern tributaries, Nevada Test Site, southern Nevada

    USGS Publications Warehouse

    Squires, R.R.; Young, R.L.

    1984-01-01

    Analysis of flood hazards for a 9-mile reach of Fortymile Wash and three of its tributaries was undertaken to aid in determining possible sites for the storage of radioactive wastes. Data from 12 peak-flow gaging stations adjacent to the Test Site were used to develop regression relations that permit an estimation of the magnitude of the 100-and 500-year flood peaks. The regional maximum flood was estimated on the basis of data from extreme floods elsewhere in Nevada and in surrounding states. On Fortymile Wash (drainage area at farthest downstreams cross section, 312 sq mi), the estimated maximum water depth for the three flood magnitudes are 8, 11, and 29 feet, respectively. Mean flow velocities would be as great as 9, 14, and 28 ft/s.

  4. Demonstrating the impact of flood adaptation using an online dynamic flood mapper

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; MacManus, K.; Doxsey-Whitfield, E.; Yetman, G.; Fisher, K.; Sanderson, E. W.; Giampieri, M.; Blumberg, A. F.

    2015-12-01

    Municipalities across the nation are weighing the value of coastal natural and nature-based features (NNBF) for flood risk reduction and the many ecosystem services they provide, yet there is limited quantitative information available to help make these decisions. Here, we describe a new "dynamic" flood mapping web-tool that demonstrates the modeled effects of NNBF on flood hazard zones for the highly populated areas surrounding Jamaica Bay, New York City. The tool also provides information on damages from flooding as well as cost-benefit analyses for NNBF adaptations for the bay. The project researchers are involved with development of a Jamaica Bay Coastal Master Plan, and the mapper will play an important role for increasing the public understanding of adaptation options. More broadly, dynamic flood mappers have many more possibilities than "static" mappers that simply add sea level rise onto pre-defined flood levels and bathtub them over flood plains. Dynamic modeling can enable inclusion of the response of coastal systems, imposed human adaptation, as well as flooding by surge, tide and precipitation.

  5. Flood Risk Assessments of Architectural Heritage - Case of Changgyeonggung Palace

    NASA Astrophysics Data System (ADS)

    Lee, Hyosang; Kim, Ji-sung; Lee, Ho-jin

    2014-05-01

    The risk of natural disasters such as flood and earthquake has increased due to recent extreme weather events. Therefore, the necessity of the risk management system to protect architectural properties, a cultural heritage of humanity, from natural disasters has been consistently felt. The solutions for managing flood risk focusing on architectural heritage are suggested and applied to protect Changgyeonggung Palace, a major palace heritage in Seoul. After the probable rainfall scenario for risk assessment (frequency: 100 years, 200 years, and 500 years) and the scenario of a probable maximum precipitation (PMP) are made and a previous rainfall event (from July 26th to 28th in 2011) is identified, they are used for the model (HEC-HMS, SWMM) to assess flood risk of certain areas covering Changgyeonggung Palace to do flood amount. Such flood amount makes it possible to identify inundation risks based on GIS models to assess flood risk of individual architectural heritage. The results of assessing such risk are used to establish the disaster risk management system that managers of architectural properties can utilize. According to the results of assessing flood risk of Changgyeonggung Palace, inundation occurs near outlets of Changgyeonggung Palace and sections of river channel for all scenarios of flood risk but the inundation risk of major architectural properties was estimated low. The methods for assessing flood risk of architectural heritage proposed in this study and the risk management system for Changgyeonggung Palace using the methods show thorough solutions for flood risk management and the possibility of using the solutions seems high. A comprehensive management system for architectural heritage will be established in the future through the review on diverse factors for disasters.

  6. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  7. Flood-inundation map and water-surface profiles for floods of selected recurrence intervals, Consumnes River and Deer Creek, Sacramento County, California

    USGS Publications Warehouse

    Guay, Joel R.; Harmon, Jerry G.; McPherson, Kelly R.

    1998-01-01

    The damage caused by the January 1997 floods along the Cosumnes River and Deer Creek generated new interest in planning and managing land use in the study area. The 1997 floodflow peak, the highest on record and considered to be a 150-year flood, caused levee failures at 24 locations. In order to provide a technical basis for floodplain management practices, the U.S. Goelogical Survey, in cooperation with the Federal Emergency Management Agency, completed a flood-inundation map of the Cosumnes River and Deer Creek drainage from Dillard Road bridge to State Highway 99. Flood frequency was estimated from streamflow records for the Cosumnes River at Michigan Bar and Deer Creek near Sloughhouse. Cross sections along a study reach, where the two rivers generally flow parallel to one another, were used with a step-backwater model (WSPRO) to estimate the water-surface profile for floods of selected recurrence intervals. A flood-inundation map was developed to show flood boundaries for the 100-year flood. Water-surface profiles were developed for the 5-, 10-, 50-, 100-, and 500-year floods.

  8. Adaptation to floods in future climate: a practical approach

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege

    2016-04-01

    In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  9. Evaluation of on-line DEMs for flood inundation modeling

    NASA Astrophysics Data System (ADS)

    Sanders, Brett F.

    2007-08-01

    Recent and highly accurate topographic data should be used for flood inundation modeling, but this is not always feasible given time and budget constraints so the utility of several on-line digital elevation models (DEMs) is examined with a set of steady and unsteady test problems. DEMs are used to parameterize a 2D hydrodynamic flood simulation algorithm and predictions are compared with published flood maps and observed flood conditions. DEMs based on airborne light detection and ranging (LiDAR) are preferred because of horizontal resolution, vertical accuracy (˜0.1 m) and the ability to separate bare-earth from built structures and vegetation. DEMs based on airborne interferometric synthetic aperture radar (IfSAR) have good horizontal resolution but gridded elevations reflect built structures and vegetation and therefore further processing may be required to permit flood modeling. IfSAR and shuttle radar topography mission (SRTM) DEMs suffer from radar speckle, or noise, so flood plains may appear with non-physical relief and predicted flood zones may include non-physical pools. DEMs based on national elevation data (NED) are remarkably smooth in comparison to IfSAR and SRTM but using NED, flood predictions overestimate flood extent in comparison to all other DEMs including LiDAR, the most accurate. This study highlights utility in SRTM as a global source of terrain data for flood modeling.

  10. Flood Hazard in Barpeta District, Assam: Environmental Perspectives

    NASA Astrophysics Data System (ADS)

    Talukdar, Naba Kumar

    The study deals with various aspects of flood hazard in Barpeta district of Assam, Northeast India. It is broadly confined to three basic themes - general perspectives, environmental perspectives and flood hazard mitigation. The first theme includes the study on flow characteristics of the major rivers of the district during rainy season and zoning of flood prone areas. The second theme deals with some environmental aspects of floods in the district, such as river water quality during floods, effects of floods on soil quality, human health and socioeconomic losses. Flood mitigation study includes discussion on measures adopted for flood mitigation in the district and suggested management strategies. The study covers a wide range of database generated from both primary and secondary sources. Primary data on relevant parameters of soil and water are generated by using proper sampling procedures and standard laboratory methods. Suitable graphical and statistical methods have been used to analyze and interpret different kinds of data. All the relevant data and surveyed information on the perspective of the flood plain dwellers of the district are integrated together in formulating flood management strategies. The Barpeta District of Assam covers an area of 3245 sq. km. comprising 4.2% of the total area of the state. The district has fascinating diversified landscape sloping from north to south which includes highlands covered by forests, plain fertile lands suitable for agricultural activities and low lying areas containing-water bodies and swamps. Flood is a perennial problem and all kinds of common flood damages prevail in the district. Floods cause large-scale damages to the socio-economic life of the people as well as to the ecology and environment of the district to a certain extent. The rivers Manas, Beki, Pahumara and Kaldia and their tributaries, which emerge from Eastern Himalaya, create flood havocs in the district. During monsoon period, these rivers are

  11. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and

  12. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  13. Floods, flood control, and bottomland vegetation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    2000-01-01

    Bottomland plant communities are typically dominated by the effects of floods. Floods create the surfaces on which plants become established, transport seeds and nutrients, and remove establish plants. Floods provide a moisture subsidy that allows development of bottomland forests in arid regions and produce anoxic soils, which can control bottomland plant distribution in humid regions. Repeated flooding produces a mosaic of patches of different age, sediment texture, and inundation duration; this mosaic fosters high species richness.

  14. Delineation of flooding within the upper Mississippi River Basin, flood of July 10 and 27, 1993, in Kansas City Missouri, and Kansas City, Kansas, and vicinity

    USGS Publications Warehouse

    Perry, Charles A.; Clement, Ralph W.; Studley, Seth E.

    1997-01-01

    During spring and summer 1993, record flooding inundated many of the stream and river valleys in the upper Mississippi and the Missouri River Basins. The flooding was the result of widespread and numerous intense thunderstorms that, together with saturated soils, produced large volumes of runoff. The magnitude of flooding exceeded the 100-year discharge values (1-percent chance of exceedance in any given year) at many streamflow-gaging stations in Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin. The flooding was unusual because of its long duration and widespread severe damage. The Mississippi and the Missouri Rivers were above flood stage for more than 1 month at several locations along their lengths. Millions of acres of agricultural and urban lands were inundated for weeks, and unofficial damage estimates exceeded $10 billion in the flooded States (Parrett and others, 1993),During summer 1993, large parts of Kansas City, Missouri, and Kansas City, Kansas, and vicinity were flooded from overflows of the Missouri and the Kansas Rivers and numerous smaller tributaries, This report provides flood-peak elevation data and delineates the arcalcktent of the 1993 floods in the Kansas City metropolitan area for July 10 and 27, 1993 (fig. 1A, sheet 1: B, sheet 2: C, sheet 3). The 1993 flood elevations and extent of flooding are compared with flood-plain boundaries defined by Flood Insurance Studies conducted by the Federal Emergency Management Agency (FEMA) for cities and counties in the area (U.S. Department of Housing and Urban Development, 1975–95).This report is one of a series of U.S. Geological Survey (USGS) investigations that document the effects of the 1993 flooding of the upper Mississippi and the Missouri River Basins and that improve the technical base from which flood-plain management decisions can be made by other agencies.

  15. The Productivity of Plain English.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    Focusing on a meeting held in January 1983, this pamphlet describes the Forum on the Productivity of Plain English, from which grew the permanent Plain English Forum, which is committed to spreading the message that plain English is good business. The pamphlet includes quotations from leaders in business and industry explaining why they feel that…

  16. Hydrologic inferences from ring widths of flood-damaged trees, Potomac River, Maryland

    USGS Publications Warehouse

    Yanosky, T.M.

    1982-01-01

    Year-to-year variability in the ring widths of trees on flood plains along two reaches of the Potomac River near Washington, D.C., seems in large part to be related to differences in flood-flow regimes. Trees directly exposed to high flood velocities are damaged more often than sheltered trees and thus exhibit more variable ring-width patterns. The ring-width variability of unsheltered trees on low levels of flood plains is greater than that of trees on high levels, indicating that variability values are positively correlated with flood frequency. Sheltered trees, however, have less variable ring-width patterns than those of unsheltered trees, and variability is not correlated with flood frequency. As a result, ring-width variations may be used to estimate the probability of flood damage along local channel reaches of a stream. Growth responses after hydrologic catastrophies in 1948 and 1972 indicate that rings of flood-plain trees can be used to document the occurrence and crest altitude of high-magnitude floods. ?? 1982 Springer-Verlag New York Inc.

  17. Flood of October 8 and 9, 2005, on Cold River in Walpole, Langdon, and Alstead and on Warren Brook in Alstead, New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2006-01-01

    Southwestern New Hampshire experienced damaging flooding on October 8 and 9, 2005. The flooding was the result of a storm producing at least 7 inches of rain in a 30-hour period. The heavy, intense rainfall resulted in runoff and severe flooding, especially in regions of steep topography that are vulnerable to flash flooding. Some of the worst property damage was in the towns of Alstead, Langdon, and Walpole, New Hampshire along Cold River and Warren Brook. Warren Brook was severely flooded and had flows that exceeded a 100-year recurrence interval upstream of Cooper Hill Road. Downstream of Cooper Hill Road, the flooding was worsened as a result of a sudden release of impounded water, making the flood levels greater than what would be experienced from a 500-year recurrence-interval flood. Along Cold River, upstream of its confluence with Warren Brook, flooding was at approximately a 100-year recurrence interval. Downstream of the confluence of Cold River and Warren Brook, the streamflows, which were swollen by the surge of water from Warren Brook, exceeded a 500year recurrence interval.

  18. Floods of November 12, 1974 in the Charlotte Amalie area, St Thomas, US Virgin Islands

    USGS Publications Warehouse

    Haire, W.J.; Johnson, K.G.

    1977-01-01

    The flood on St. Thomas, U.S. Virgin Islands, of November 12, 1974, was the largest recorded flood in the area from Fort Christian through Charlotte Amalie and Frenchtown to the end of Crown Bay. This flood has a recurrence interval of about 60 years. With the exception of a few narrow beaches, very little flooding occurred outside of the Charlotte Amalie area. The flood boundaries are controlled to a large extent by the prevailing channel and flood-plain conditions. Inundation from future floods may be affected by changes in channel conditions, alteration of waterway openings at roads, changes in runoff characteristics of the stream caused by increased urbanization, and other cultural developments. The areas inundated by the 1974 flood are shown on 2 maps. (Woodard-USGS)

  19. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... “critical actions” such as schools, hospitals, nursing homes, utilities, and facilities producing or storing... with official State or designated area water-quality plans. (4) Nonproject technical and financial... plantings (7 CFR Part 613, Plant Materials Centers, 16 U.S.C. 590 a-e, f, and 7 U.S.C. 1010-1011). If...

  20. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... “critical actions” such as schools, hospitals, nursing homes, utilities, and facilities producing or storing... with official State or designated area water-quality plans. (4) Nonproject technical and financial... plantings (7 CFR Part 613, Plant Materials Centers, 16 U.S.C. 590 a-e, f, and 7 U.S.C. 1010-1011). If...

  1. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... “critical actions” such as schools, hospitals, nursing homes, utilities, and facilities producing or storing... with official State or designated area water-quality plans. (4) Nonproject technical and financial... plantings (7 CFR Part 613, Plant Materials Centers, 16 U.S.C. 590 a-e, f, and 7 U.S.C. 1010-1011). If...

  2. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... “critical actions” such as schools, hospitals, nursing homes, utilities, and facilities producing or storing... with official State or designated area water-quality plans. (4) Nonproject technical and financial... plantings (7 CFR Part 613, Plant Materials Centers, 16 U.S.C. 590 a-e, f, and 7 U.S.C. 1010-1011). If...

  3. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... “critical actions” such as schools, hospitals, nursing homes, utilities, and facilities producing or storing... with official State or designated area water-quality plans. (4) Nonproject technical and financial... plantings (7 CFR Part 613, Plant Materials Centers, 16 U.S.C. 590 a-e, f, and 7 U.S.C. 1010-1011). If...

  4. Wintering birds in riverine tree communities: Yakima River flood plain

    SciTech Connect

    Rickard, W.H.

    1982-04-01

    For 20 years there has been little change in wintering bird species composition or their relative abundance in a Yakima River riverine tree community. Clandestine tree cutting has opened the community to the point where it is not acceptable as a daytime roost for the Great Horned Owl. In 1981-1982 the Robin was the most abundant bird observed. It was not observed in surveys conducted 10 and 20 years ago. 4 refs., 1 fig., 2 tabs.

  5. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    SciTech Connect

    Hathcock, Charles Dean

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  6. How to update design floods after the construction of small reservoirs and check dams: A case study from the Daqinghe river basin, China

    NASA Astrophysics Data System (ADS)

    Li, Jianzhu; Sun, Huafeng; Feng, Ping

    2016-06-01

    Several small reservoirs and a large number of check dams had been constructed in the Wangkuai reservoir watershed after 1970s, and flood time series lacked stationarity, which affected the original design flood hydrographs for the Wangkuai reservoir. Since the location, storage capacity and drainage area of the large number of check dams were unknown, we present a method to estimate their total storage capacities (TSC) and total drainage areas (TDA) by using the recorded rainstorm and flood data. On the basis of TSC and TDA, the flood events which occurred in an undisturbed period were reconstructed under current conditions to obtain a stationary flood series. A frequency analysis was subsequently performed to assess the design flood peak and volume for both small and medium design floods with a 10-200 year return period. For large and catastrophic floods, it was assumed that the upstream check dams and small reservoirs would be destroyed, and water stored in these hydraulic structures were re-routed to the Wangkuai reservoir by unit hydrograph. The modified flood peak and volume decreased for floods with a 10-200 year return period when compared to the current design flood. But for large design floods with a return period exceeding 500 years, peak discharge increased. This study provides a new method for design flood calculation or modification of the original design flood in watersheds with a large number of check dams.

  7. Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models

    USGS Publications Warehouse

    Ramos-Gines, Orlando

    1999-01-01

    Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.

  8. Water-surface profile and flood boundaries for the computed 100-year flood, Lame Deer Creek, Northern Cheyenne Indian Reservation, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1994-01-01

    Hydrologic and hydraulic evaluations of Lame Deer Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. SixtY-six cross sections were Surveyed and 25 cross sections were synthesized along a 9.5-mile reach of Lame Deer Creek. Data from the surveys were used to calculate the water-surface elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile shows the streambed elevation and the location of the bridge, culverts, and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  9. Comparison between changes in flood hazard and risk in Spain using historical information

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Mediero, Luis; Garrote, Luis; Gilabert, Joan

    2015-04-01

    Recently, the COST Action ES0901 "European procedures for flood frequency estimation (FloodFreq)" had as objective "the comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe". It was highlighted the improvement of regional analyses on at-site estimates, in terms of the uncertainty of quantile estimates. In the case of Spain, a regional analysis was carried out at a national scale, which allows identifying the flow threshold corresponding to a given return period from the observed flow series recorded at a gauging station. In addition, Mediero et al. (2014) studied the possible influence of non-stationarity on flood series for the period 1942-2009. In parallel, Barnolas and Llasat (2007), among others, collected documentary information of catastrophic flood events in Spain for the last centuries. Traditionally, the first approach ("top-down") usually identifies a flood as catastrophic, when its exceeds the 500-year return period flood. However, the second one ("bottom-up approach") accounts for flood damages (Llasat et al, 2005). This study presents a comparison between both approaches, discussing the potential factors that can lead to discrepancies between them, as well as accounting for information about major changes experienced in the catchment that could lead to changes in flood hazard and risk.

  10. Estimating the Magnitude and Frequency of Floods in Small Urban Streams in South Carolina, 2001

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladimir B.

    2004-01-01

    The magnitude and frequency of floods at 20 streamflowgaging stations on small, unregulated urban streams in or near South Carolina were estimated by fitting the measured wateryear peak flows to a log-Pearson Type-III distribution. The period of record (through September 30, 2001) for the measured water-year peak flows ranged from 11 to 25 years with a mean and median length of 16 years. The drainage areas of the streamflow-gaging stations ranged from 0.18 to 41 square miles. Based on the flood-frequency estimates from the 20 streamflow-gaging stations (13 in South Carolina; 4 in North Carolina; and 3 in Georgia), generalized least-squares regression was used to develop regional regression equations. These equations can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for small urban streams in the Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The most significant explanatory variables from this analysis were mainchannel length, percent impervious area, and basin development factor. Mean standard errors of prediction for the regression equations ranged from -25 to 33 percent for the 10-year recurrence-interval flows and from -35 to 54 percent for the 100-year recurrence-interval flows. The U.S. Geological Survey has developed a Geographic Information System application called StreamStats that makes the process of computing streamflow statistics at ungaged sites faster and more consistent than manual methods. This application was developed in the Massachusetts District and ongoing work is being done in other districts to develop a similar application using streamflow statistics relative to those respective States. Considering the future possibility of implementing StreamStats in South Carolina, an alternative set of regional regression equations was developed using only main channel length and impervious area. This was done because no digital coverages are currently

  11. Flood frequency analysis of Ganga river at Haridwar and Garhmukteshwar

    NASA Astrophysics Data System (ADS)

    Kamal, Vikas; Mukherjee, Saumitra; Singh, P.; Sen, R.; Vishwakarma, C. A.; Sajadi, P.; Asthana, H.; Rena, V.

    2016-02-01

    The Ganga River is a major river of North India and is known for its fertile alluvium deposits formed due to floods throughout the Indo-Gangetic plains. Flood frequency analysis has been carried out through various approaches for the Ganga River by many scientists. With changes in river bed brought out by anthropogenic changes the intensity of flood has also changed in the last decade, which calls for further study. The present study is in a part of the Upper Indo-Ganga plains subzone 1(e). Statistical distributions applied on the discharge data at two stations found that for Haridwar lognormal and for Garhmukteshwar Gumbel EV1 is applicable. The importance of this study lies in its ability to predict the discharge for a return period after a suitable distribution is found for an area.

  12. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  13. How Can Flood Affect the Real Estate Market?

    NASA Astrophysics Data System (ADS)

    Trejo Rangel, Miguel Angel; Sapač, Klaudija; Brilly, Mitja

    2016-04-01

    The purpose of this paper is to examine how actual flood events can affect the real estate for different case studies. Therefore, we have analysed the impact for two cases, the first is the flood event which occurred in 2013 in Boulder, Colorado, United States, city that is located in the eastern part of the Rocky Mountains, and the second event was the flood which occurred in 2010 the city of Ljubljana, capital and largest city of Slovenia, that is located between the Alpine and Balkan mountains.. The methodology that was used is comparison of mean prices of real estate, taking into account the flood events which have been chosen in accordance with the available data and previous studies, furthermore for the case study of Ljubljana, Slovenia questionnaires were sent through one civil organization which is actively working in the area (Civil Initiative for Flood Security SW part of Ljubljana). Analysed sales prices during the period 2009-2014 in the case study of Boulder, Colorado, United States showed that the flood event in 2013 did not significantly affect the mean price of real estate within the flooded area, besides prices inside the flood plain tended to stay above the prices outside the floodplain. Nevertheless, we have found that the flood event affected the real estate sector in terms of number of sales, being that after the flood event in 2013 sales decreased 52% regarding the previous years. For the case study of Ljubljana, Slovenia the results were unexpected somehow. In fact we expected that the prices of real estate located within the flooded areas, on average, would be lower than those located outside the flooded areas, and that was what shown in the results, which is actually opposite to what occurred for the case study of Boulder City. However the research showed that the flood event in 2010 did not affect the change in prices of real estate within the flooded areas and the trend was considerable similar to previous years the flood event in 2010

  14. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  15. Magnetically Derived Flood Recurrence Rate Estimates from Stalagmites in Southeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Lascu, I.; Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    The magnetism of speleothems remains an untapped resource of paleoclimatic, hydrogeologic, and geomagnetic information. Similar to other deposits containing magnetic minerals, speleothems chronicle the evolution of local environmental parameters via the concentration, composition and grain size of their magnetic mineral assemblages. Here we report a novel use of scanning SQUID microscopy to calculate flood recurrence rates from an annually laminated ~500 year old stalagmite from Spring Valley Caverns (SVC) in southeastern Minnesota. Mineral and organic detritus adheres to the surface of a speleothem as flood waters recede from a cavern, and are subsequently encapsulated by calcite as drip water conditions are reestablished. Such detritus typically consists of allochthonous grains of quartz, clay, and titanomagnetite with an average grain size of ~10 μm. Larger flood layers occur on polished surfaces as dark bands that delineate stalagmite growth horizons. We use scanning SQUID microscopy (with a nominal sensitivity of 10-16 Am2) to map the presence of these flood layers by measuring the vertical component of the stray magnetic field resulting from a 1 T isothermal remanent magnetization (IRM) imparted perpendicular to a polished surface. A magnetization model of the IRM field was then obtained by inverting the field data measured 210 μm above the sample using an algorithm in the Fourier domain. By integrating the magnetic data parallel to the stalagmite growth axis we produce a time series of IRM peaks, each of which corresponds to a flooding event. We calculate an average flood recurrence rate of 5 per century for the last 500 years. This rate increases to >10 floods per century in the last century, thereby capturing the combined effects of both climate change and agricultural land-use on karst hydrogeology. These results agree with recurrence rate estimates derived from historical records, tree ring studies, and geochemical analyses of speleothems. The presence

  16. Methodology of Historical Flood Evaluation from Korean Historical Documents during AD 1392 to 1910

    NASA Astrophysics Data System (ADS)

    Cho, H. B.; Kim, H.; Noh, S.; Jang, C.

    2007-12-01

    Study on extreme flood events has critical limitation of shortage of historical data because modern systematic data don't implement long time series. The historical documentary records hence can be one of the important sources to contribute additional information on extreme flood events which had occurred before the instrumental observations began. For the proper data mining, documentary records satisfying following four conditions are preferred. 1. Long enough time series, 2. Official archives covering over all Korean peninsular, 3. Abundant enough record number, and 4. Detailed damage description. The Annals of Choson Dynasty includes about 500 years and 511 number of flood records during Choson Dynasty in ancient Korea. According to the annals, there were highly dense flood damage records in the middle of 17th century and the largest human damage and residence damage occurred in 1739 and 1856 respectively. Another source is Jeungbo-Munheonbigo. Jeungbo-Munheonbigo is a taxonomic document categorized by the themes such as cultures, social systems, and climates as well as contains 79 number of flood damage records. An effective way to analyze those historical floods without water level data is to classify and categorize the flood damage records because all records are written in descriptive way. Consequently, 556 records are categorized into 10 items by flood damage types and each categorized record is classified into three grades by numerical level that is how much the record is expressed in numerical way. These grouping results are applied to decide reasonable period range to get detailed information from entire inspection period. In addition, Historical Flood Evaluation Index (HFEI) thereby can be derived from the processes in quantitative and statistical ways to evaluate the magnitude of each ancient flood. In this research, flood damage evaluation is mainly focused on the damage of human beings and residences. Also degree ranges based on cumulative

  17. Floods on White Rock Creek above White Rock Lake at Dallas, Texas

    USGS Publications Warehouse

    Gilbert, Clarence R.

    1963-01-01

    The White Rock Creek watershed within the city limits of Dallas , Texas, presents problems not unique in the rapid residential and industrial development encountered by many cities throughout the United States. The advantages of full development of the existing area within a city before expanding city boundaries, are related to both economics and civic pride. The expansion of city boundaries usually results in higher per capital costs for the operation of city governments. Certainly no responsible city official would oppose reasonable development of watersheds and flood plains and thus sacrifice an increase in tax revenue. Within the words "reasonable development" lies the problem faced by these officials. They are aware that the natural function of a stream channel, and its associated flood plain is to carry away excess water in time of flood. They are also aware that failure to recognize this has often led to haphazard development on flood plains with a consequent increase in flood damages. In the absence of factual data defining the risk involved in occupying flood plains, stringent corrective and preventative measures must be taken to regulate man's activities on flood plains to a point beyond normal precaution. Flood-flow characteristics in the reach of White Rock Creek that lies between the northern city boundary of Dallas and Northwest Highway (Loop 12) at the upper end of White Rock Lake, are presented in this report. Hydrologic data shown include history and magnitude of floods, flood profiles, outlines of areas inundated by three floods, and estimates of mean velocities of flow at selected points. Approximate areas inundated by floods of April 1942 and July 1962 along White Rock Creek and by the flood of October 1962 along Cottonwood Creek, Floyd Branch, and Jackson Branch, are delineated on maps. Greater floods have undoubtedly occurred in the past but no attempt is made to show their probable overflow limits because basic data on such floods could not

  18. Texas floods of 1940

    USGS Publications Warehouse

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  19. Dissolved phosphorus retention and release from southeastern USA Coastal Plain in-stream wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern USA Coastal Plain region, many inland surface water systems will meander through flat or depressional landscape areas prior to discharge into coastal estuaries. Slow water flow through these areas often causes flooding that promotes formation of in-stream wetlands with dense vege...

  20. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil

    NASA Technical Reports Server (NTRS)

    1982-01-01

    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  1. Controls on river morphology in the Ganga Plain

    NASA Astrophysics Data System (ADS)

    Dingle, Elizabeth; Sinclair, Hugh; Attal, Mikael; Milodowski, David; Singh, Vimal

    2016-04-01

    The Ganga Plain represents a large proportion of the current foreland basin to the Himalaya. The Himalayan-sourced waters irrigate the Plain via major river networks that support ~7% of the global population. However, some of these rivers are also the source of devastating floods. The tendency for some of these rivers to flood is directly linked to their large scale morphology. Systematic variations in the large scale morphology of the river systems are recognised across the extent of the Ganga foreland basin. In general, the rivers that drain the east Ganga Plain have channels that are perched at a higher elevation relative to their floodplain, leading to more frequent channel avulsion and flooding. In contrast, those further west have channels that are incised into the floodplain and are historically less prone to flooding. Understanding the controls on these contrasting river forms is fundamental to determining the sensitivity of these systems to projected climate change and the growing water resource demands across the Plain. Here, we present a new basin scale approach to quantifying floodplain and channel topography that identifies the degree to which channels are super-elevated or entrenched relative to their adjacent floodplain. We explore the probable controls on these observations through an analysis of basin subsidence rates, sediment grain size data and sediment supply from the main river systems that traverse the Plain (Yamuna, Ganga, Karnali, Gandak and Kosi rivers). Subsidence rates are approximated by combining basement profiles derived from seismic data with known convergence velocities; results suggest a more slowly subsiding basin in the west than the east. Grain size fining rates are also used as a proxy of relative subsidence rates along the strike of the basin; the results also indicate higher fining rates (and hence subsidence rates for given sediment supply) in the east. By integrating these observations, we propose that higher subsidence

  2. Flood-frequency relations for urban streams in Georgia; 1994 update

    USGS Publications Warehouse

    Inman, Ernest J.

    1995-01-01

    A statewide study of flood magnitude and frequency in urban areas of Georgia was made to develop methods of estimating flood characteristics at ungaged urban sites. A knowledge of the magnitude and frequency of floods is needed for the design of highway drainage structures, establishing flood- insurance rates, and other uses by urban planners and engineers. A U.S. Geological Survey rainfall-runoff model was calibrated for 65 urban drainage basins ranging in size from 0.04 to 19.1 square miles in 10 urban areas of Georgia. Rainfall-runoff data were collected for a period of 5 to 7 years at each station beginning in 1973 in Metropolitan Atlanta and ending in 1993 in Thomasville, Ga. Calibrated models were used to synthesize long-term annual flood peak discharges for these basins from existing Long-term rainfall records. The 2- to 500-year flood-frequency estimates were developed for each basin by fitting a Pearson Type III frequency distribution curve to the logarithms of these annual peak discharges. Multiple-regression analyses were used to define relations between the station flood-frequency data and several physical basin characteristics, of which drainage area and total impervious area were the most statistically significant. Using theseregression equations and basin characteristics, the magnitude and frequency of floods at ungaged urban basins can be estimated throughout Georgia.

  3. The August 2002 flood in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Sercl, P.; Stehlik, J.

    2003-04-01

    The floods in August 2002 in the Czech Republic were caused by very intensive and large-scale rainfall that hit mainly the southern and western part of the country. There were two following rainfall events, the first on the {6th} and {7th} August and the second on the {11th} and {12th} August. The total sum of areal rainfall was 150 to 200 mm; in mountain areas more than 250 mm and in some localities even more than 300 mm. Such large-scale rainfall amounts are extraordinary for Czech conditions. The first wave of rainfall caused floods in the majority of rivers. There were 10 to 20 year floods, exceptionally 100-year (and more) floods on rivers in the southern and western part of the country. When the second wave of rainfall followed the first one, rivers were already full of water and soils were saturated: therefore the runoff response was rapid and massive. Water levels in all rivers rose very quickly again and they reached their historical maxima in many places. Peak discharges in most streams reached or exceeded a 100-year flood and in some rivers a 1000-year flood. The capital of the Czech Republic, Prague, is situated at the confluence of two rivers, the Moldau and the Berounka (left hand tributary of the Moldau). The flow in the Moldau River can be partly controlled by operation of many reservoirs in the upstream reaches of the river (the Moldau cascade), the flow in Berounka is not influenced. During the first flood event the major part of the wave was retained by the reservoirs and the discharge in Prague was reduced. During the second event the inflow into the reservoir system was so high that reservoirs were filled before the peak occurred. The peak flow from the Berounka River coincided with the maximum outflow from the Moldau. As a consequence, on 14th August the peak discharge in Prague was about 5200 {m3/s} (the long-term mean discharge is 150 {m3/s}) and is preliminarily judged to be a 500-year flood. The influence of the Moldau cascade on the

  4. Flood of October 8, 1962, on Bachman Branch and Joes Creek at Dallas, Texas

    USGS Publications Warehouse

    Ruggles, Frederick H.

    1966-01-01

    This report presents hydrologic data that enable the user to define areas susceptible to flooding and to evaluate the flood hazard along Bachman Branch and Joes Creek. The data provide a technical basis for making sound decisions concerning the use of flood-plain lands. The report will be useful for preparing building and zoning regulations, locating waste disposal facilities, purchasing unoccupied land, developing recreational areas, and managing surface water in relation to ground-water resources. This is one of the series of reports delineating the flood hazard on streams in the Dallas area.

  5. On the seasonality of flooding across the continental United States

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele

    2016-01-01

    This study examines the seasonality of flooding across the continental United States using circular statistics. Analyses are based on 7506 USGS stream gage stations with a record of least 30 years of annual maximum instantaneous peak discharge. Overall, there is a very strong seasonality in flooding across the United States, reflecting differences in flood generating mechanisms. Most of the flood events along the western and eastern United States tend to occur during the October-March period and are associated with extratropical cyclones. The average seasonality of flood events shifts to April-May in regions where snowmelt is the dominant flood agent, and later in the spring-summer across the central United States. The strength of the seasonal cycle also varies considerably, with the weakest seasonality in the Appalachian Mountains and the strongest in the northern Great Plains. The seasonal distribution of flooding is described in terms of circular uniform, reflective symmetric and asymmetric distributions. There are marked differences in the shape of the distribution across the continental United States, with the majority of the stations exhibiting a reflective symmetric distribution. Finally, nonstationarities in the seasonality of flooding are examined. Analyses are performed to detect changes over time, and to examine changes that are due to urbanization and regulation. Overall, there is not a strong signal of temporal changes. The strongest impact of urbanization and regulation is on the strength of the seasonal cycle, with indications that the signal weakens (i.e., the seasonal distribution becomes wider) under the effects of regulation.

  6. Probable flood predictions in ungauged coastal basins of El Salvador

    USGS Publications Warehouse

    Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.

    2008-01-01

    A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.

  7. Dunes on Plains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03047 Dunes on Plains

    These dunes are located on the plains around Doanus Vallis.

    Image information: VIS instrument. Latitude 62.3S, Longitude 335.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Northern Plains Patterns

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-513, 14 October 2003

    Patterns are common on the northern plains of Mars. Like their terrestrial counterparts in places like Siberia, Alaska, and northern Canada, patterned ground on Mars might be an indicator of the presence of ground ice. Whether it is true that the patterns on Mars are related to ground ice and whether the ice is still present beneath the martian surface are unknown. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example of patterned ground on the martian northern plains near 72.4oN, 252.6oW. The dark dots and lines are low mounds and chains of mounds. The circular feature near the center of the image is the location of a buried meteor impact crater; its presence today is marked only by the dark boulders on its rim and ejecta blanket that have managed to remain uncovered at the martian surface. The area shown is 3 km (1.9 mi) wide and illuminated by sunlight from the lower left.

  9. Water-surface profile and flood boundaries for the computed 100-year flood, Rosebud Creek, Northern Cheyenne Indian Reservation, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1995-01-01

    Hydrologic and hydraulic evaluations of Rosebud Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. The magnitude of the 100-year flood was determined to range from 2,620 to 3,980 ft3/s, depending on location. Field surveys were made at 149 cross sections along a 39-mile reach of Rosebud Creek. An additional 33 cross sections along the same reach were synthesized. Data from the surveys were used to calculate the water-surface elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile also shows the streambed elevation and the location of the bridges and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  10. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    USGS Publications Warehouse

    Rydlund, Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  11. The role of plains volcanism in the formation of Mercury's crust

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Murchie, S. L.; Barnouin, O. S.; Blewett, D. T.; Chabot, N. L.; Ernst, C. M.; Head, J. W.; Ostrach, L. R.; Solomon, S. C.; Watters, T. R.

    2011-12-01

    Mercury has experienced widespread resurfacing. Plains cover much of the surface, and no terrain is as heavily cratered as the lunar highlands. Plains formation appears to have occurred throughout much of Mercury's history. Intercrater plains formation extended through the period of heavy bombardment, and smooth plains formation may have continued into the second half of solar system history, with a continuum of ages in between. However, the mode of formation of these plains is not clear in all cases. Strong evidence for a volcanic origin of many plains units indicates that volcanism played an important role in shaping Mercury's crust, but many plains units lack clear evidence for source regions, flooding or embayment relationships, or color boundaries, suggesting that alternate mechanisms of formation are possible (e.g., impact-produced melt or fluidized basin ejecta). We focus on the origin of these more ambiguous plains units, particularly the intercrater plains, to understand their role in crustal formation. Preliminary maps of plains covering ~55% of Mercury were produced from Mariner 10 and MESSENGER flyby data. We have extended these maps with global orbital image mosaics (monochrome at 250 m/pixel; color at 1 km/pixel) and targeted high-resolution images (up to ~10 m/pixel). We find many regions where morphologic boundaries between plains units are gradational and no difference in spectral properties is detected. The distinction between such units appears to be largely the enhanced population of secondary craters in some locations, which destroy evidence of an original morphologic boundary or mask the original character of the unit. Many of these units also lack a clear association with any large basin, suggesting that an origin as basin ejecta is unlikely. Thus, some portion of more heavily cratered plains units may simply be degraded versions of smooth plains and share a common volcanic origin. We also explore the origin of smooth plains units contained

  12. Late-stage flood lavas in the Elysium region, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1987-01-01

    In the southeastern part of the Elysium region is a unit that exhibits little texture and a generally low albedo and that has a very low crater frequency. This unit has been mapped as smooth plains material and previously interpreted as an eolian deposit on the basis of Mariner 9 images. More recently, the unit was mapped as material deposited during a channeling episode. The author interprets the smooth plains unit as being a volcanic deposit composed of low viscosity lava flows: both flood lavas and individual flows. The reasons for these conclusions are given and briefly discussed.

  13. Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Carlson, Carl S.

    2009-01-01

    A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than

  14. Estimation of flood flows on the Big Sioux River between Akron, Iowa, and North Sioux City, South Dakota

    USGS Publications Warehouse

    Niehus, C.A.

    1996-01-01

    This report presents estimated flood flows for specified frequencies at selected locations on the Big Sioux River between the Akron, Iowa, streamflow-gaging station and North Sioux City, South Dakota. The selected locations include: at the Akron gaging station, downstream from the Richland-Westfield Creek Basins, downstream from the Brule Creek Basin, downstream from the Upper West Boundary Big Ditch and Rock Creek Basins, downstream from Broken Kettle Basin, and downstream from North Sioux City. The flood flows for the 10-, 50-, 100-, and 500-year recurrence intervals will be used to support a Federal Emergency Management Agency Flood Insurance Study. Four methods were used to estimate the flood flows. The first method involved the use of drainage-area ratios raised to specified exponents to transfer the flood-frequency relation from the Akron gage to the selected downstream locations. The second method was a flood-frequency analysis based on a summation of the Akron gaging-station peak flows and concurrent tributary daily flows from within the various study reaches. The third method was an independence/dependence analysis of the Akron gaging-station flows and the tributary flows from the various study reaches. The fourth method was a flood-frequency analysis assuming complete dependence of the Akron peak flows and the tributary peak flows from the various study reaches. Based on the various analyses that were done, the drainage-area-ratio method best estimated the flood flows for the Akron to North Sioux City reach of the Big Sioux River. The best estimates of 10-, 50-, 100-, and 500-year flood flows at the location downstream from North Sioux City are 35,300, 70,400, 89,100, and 142,000 cubic feet per second, respectively.

  15. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    USGS Publications Warehouse

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a

  16. Channel geometry, flood elevations, and flood maps, lower Toutle and Cowlitz rivers, Washington, June 1980 to May 1981

    USGS Publications Warehouse

    Lombard, R.E.

    1986-01-01

    The volcanic eruption of Mount St. Helens on May 18, 1980, triggered mudflows that deposited upwards of 15 ft of sediment in the channels of the lower Toutle and Cowlitz Rivers. The major population areas along the lower Cowlitz River (Kelso, Longview,Lexington, and Castle Rock) were not flooded, but the channel capacity of the river was seriously reduced and the potential for unusually high flood elevations from fall and winter storms was an obvious concern. The U.S. Army Corps of Engineers began dredging operations in June 1980 to alleviate the flood hazard. Surveys to monitor the effect of changes to the channel and flood plains that resulted from dredging and additional sediment inflow from the upper Toutle River basin were started in June 1980 and continued until May 11, 1981, when dredging operations on the Cowlitz River had been completed. (USGS)

  17. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    NASA Astrophysics Data System (ADS)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  18. Reconstruction of The Extreme Flood Series of The Tiber River In Rome From The Xv Century

    NASA Astrophysics Data System (ADS)

    Calenda, G.; Calvani, L.; Mancini, C. P.; Volpi, E.

    The stage measurements of extreme flood events of the Tiber River in Rome constitute one of the longer available hydrologic records. In fact we are fairly sure of knowing the peak stages of all the extreme floods which flooded the town of Rome since the XV century. It is an almost complete record covering more than 500 years. An effort to evaluate the peak flow of the observed events may be very helpful for the understanding of the long term behaviour of the extreme flood events. The case of the Tiber River in Rome is particularly favourable, since several informations are available: a) a long record of daily stage measurements up to the XVIII century; b) several records of daily rainfall depth measurement at rain gauges in the Tiber catchment extending at least up to the middle of the XIX century; c) detailed surveys executed immediately after the great flood of 1870, that flooded the town of Rome, before the extensive modifications of the town and of the river bed, following the annexation of the town to the kingdom of Italy, including: the town and of the river bed, maximum flood levels in the river and in the town, the food hydrograph; d) a less detailed survey of the river bed executed in 1744; e) an extremely rich iconography, showing the conditions of the Tiber banks starting from the XVI century; f) contemporary description of several extreme floodings; g) a rich series of flow measurements and bed surveys after the great flood of 1870 to present days. Using a monodimensional steady state model to compute flow profiles in the river bed, a bidimensional hydrodinamic model to simulate the flooding of the town, and correlating the estimated flows and rainfall records for control purposes, a reasonable reconstruction of a five century long extreme flood series has been attempte.

  19. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  20. Flood Impact Modelling and Natural Flood Management

    NASA Astrophysics Data System (ADS)

    Owen, Gareth; Quinn, Paul; ODonnell, Greg

    2016-04-01

    Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.

  1. Channeling episodes of Kasei Valles, Mars, and the nature of ridged plains material

    NASA Technical Reports Server (NTRS)

    Chapman, Mary G.; Tanaka, Kenneth L.

    1991-01-01

    The geologic mapping compiled at 1:500,000 scale of the northern Kasei Valles area of Mars (MTMs 25062 and 25067) indicates (1) at least three periods of Kasei Valles channeling, (2) the development of Sacra Fossae (linear depressions on Tempe Terra and Lunae Planum) in relation to Kasei channeling episodes, and (3) the nature of ridged plains material dissected by Kasei Valles on northern Lunae Planum. (The three channeling periods consists of two flood events and a later, sapping related event). These findings suggest hydrologic conditions and processes that formed Kasei Valles and associated features and terrains. It is concluded that an early period of flooding, whose source is perhaps buried beneath lava flows of Tharsis Montes, may have eroded streamlined features in northern Lunae Planum. Also, later floods originating from Echus Chasma formed after the initial flooding and the mesas adjacent to the plateau. The Sacra Fossae formed after the initial flooding and during the second flooding by sapping, outbreak, scarp retreat, and collapse along joints and fractures in ridged plains materials.

  2. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  3. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  4. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  5. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    NASA Astrophysics Data System (ADS)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  6. Principal Component and Time Series Analysis of a 500-year Stalagmite Geochemical Record from Yucatán, Mexico Reveals Climate Variability, Land-use changes, and Volcanic Ashfall

    NASA Astrophysics Data System (ADS)

    Kuklewicz, K. B.; Frappier, A. E.

    2015-12-01

    Principal Component Analysis of stalagmite multivariate geochemical records can provide insight into climate variability as well as the frequency of high-magnitude events (i.e. volcanic eruptions) and even land use changes above cave systems. For most environmental proxies, large trace element data sets can pose difficulties for analysis and interpretation due to natural processes acting across wide ranges of time scales and magnitudes with overlapping influences on individual chemical species. To reduce the complexity of geochemical data, we applied Principal Component Analysis (PCA) and Evolutionary Spectral Analysis to a large high-resolution Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) stalagmite trace element data set from northern Yucatán, Mexico (CH-1), from about 1500-2007 CE. In our study, PCA identified five significant principal components (PCs) in this CH-1 record, which explain >83% of the data set's variability. Our analysis reveals that PC1 responds to overall trace element loading, including both short-lived trace element influxes associated with volcanic eruptions, and sustained land use changes associated with the Spanish settlement and Henequen (succulent plant) production. PC2 reflects prior calcite precipitation associated with regional dry climate anomalies by increasing Sr and Mg substitution in calcite. High loadings for B and Na indicate that PC3 is sensitive to wet climate anomalies. PCs 4 and 5 reflect related but lagged trace element transport mechanisms. Evolutionary spectral analysis results for the PCs reveal the changing influence of solar 11 and 22-year cycles and the 3-7 year El Niño/Southern Oscillation (ENSO) system over the last 500 years. This study adds to growing evidence that speleothems can record multivariate trace element fingerprints of volcanic eruptions, soil erosion, and different styles of climate variability, which can be useful for model verification and sensitivity testing studies.

  7. Flood of July 5, 1969 in the vicinity of Wooster, Ohio

    USGS Publications Warehouse

    Webber, Earl E.; Mayo, Ronald I.

    1970-01-01

    This report documents flood data for Killbuck Creek, Apple Creek, and Little Apple Creek at Wooster, Ohio, to show the high-water elevations and corresponding discharges produced by the July 5, 1969 flood. This flood resulted from a violent storm with officially recorded rainfall in excess of 10 inches and unofficial catches of over l4 inches in the vicinity of Wooster during the 18-hour storm period. A more detailed analysis of data for Killbuck Creek was made in order to define an estimated profile of the July 5 flood for an assumed condition with no obstructions present in the channel or on the flood plain. The 50-year frequency flood profiles on Killbuck Creek were also developed for existing conditions and for the assumed condition of no obstructions.

  8. Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Jain, Vikrant; Babu, G. Prasad; Ghosh, S.

    2005-09-01

    The extensive Gangetic alluvial plains are drained by rivers which differ strongly in terms of hydrological and sediment transport characteristics. These differences are manifested in the geomorphic diversity of the plains. The Western Gangetic Plains (WGP) are marked by a degradational topography with incised channels and extensive badland development in some parts, while the Eastern Gangetic Plains (EGP) are characterized by shallow, aggrading channels with frequent avulsions and extensive flooding. We interpret such geomorphic diversity in terms of differences in stream power and sediment supply from the catchment areas. The rivers draining the western plains are marked by higher stream power and lower sediment yield that result in degradation. In comparison, the rivers draining the eastern Gangetic Plains have lower stream power and higher sediment yield that result in aggradation. The variation of stream power, a function of channel slope and high sediment yield, is attributed to differences in rainfall and rate of uplift in the hinterland. It is suggested that such differences have resulted in a marked geomorphic diversity across the plains. It is also suggested that such diversity has existed for a fairly long time because of climatic and tectonic variance.

  9. Spatio-temporal dynamics in the flood exposure due to land use changes

    NASA Astrophysics Data System (ADS)

    Cammerer, H.; Thieken, A.

    2012-04-01

    Flood risk is expected to intensify in the future in many regions of the world. Consequently, the resulting flood damage is very likely to increase further on. Comprehensive flood risk analyses which are not only reliable for the contemporary state require therefore the consideration of the main drivers that influence flood risk. Human-induced changes in land use as well as climate change impacts on hydrological processes turned out to play a key role in future-orientated flood risk assessments. Even if there is strong evidence that global climate change will amplify flood risk especially in mountainous areas like the European Alps the accumulation of people and their assets in flood plains are seen as main causes of increasing flood risk. Therefore the analysis of spatio-temporal dynamics in the flood exposure due to land use changes is a crucial part for long-term and more robust flood risk analyses. Within the frame of a study in the region of Reutte in Tyrol (Austria) flood risk time series for the next decades are developed by estimating the hazard potential as well as the flood impact, i.e. the flood losses. For the latter, future flood exposed residential and industrial areas are assessed by applying a spatially explicit land use change model and various inundation scenarios. The land use simulations for the alpine study area were calculated by means of the CLUE-S model, respectively the newer Version Dyna-CLUE. This model simulates the spatial pattern of land-use in reaction to pre-defined changes of the future land use demand, suitable locations which are identified by means of logistic regression and user-specified decision rules as well as spatial policies (e.g. area zoning plans and danger zoning plans). For now, inundation areas were derived from the past flood event in August 2005 and the HORA project where flood extents for different recurrence intervals were simulated. The intersection of these flood plains with various land use scenarios allows

  10. Estimated Flood Discharges and Map of Flood-Inundated Areas for Omaha Creek, near Homer, Nebraska, 2005

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.

    2008-01-01

    Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.

  11. A 2000 year natural record of magnitudes and frequencies for the largest Upper Colorado River floods near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Greenbaum, Noam; Harden, Tessa M.; Baker, Victor R.; Weisheit, John; Cline, Michael L.; Porat, Naomi; Halevi, Rafi; Dohrenwend, John

    2014-06-01

    Using well-established procedures for paleoflood hydrology and employing optically stimulated luminescence (OSL) geochronology, we analyzed a very well-preserved natural record of 44 Upper Colorado River extreme floods with discharges ranging from 1800 to 9200 m3s-1. These are the largest floods occurring during the last 2140 ± 220 years, and this natural record indicates that large floods are much more frequent than can be estimated by extrapolation from the stream gaging record that extends back to 1914. Most of these large floods occurred during the last 500 years, and the two largest floods in the record both exceeded the probable maximum flood (PMF) estimated at 8500 m3s-1 (300,000 cfs) for nearby Moab, Utah. Another four floods, with discharges greater than 7000 m3s-1, occurred during the last two millennia. Flood frequency analyses using the FLDFRQ3 model yields the following values, depending on the Manning n roughness coefficients: 100 yr flood—4670-4990 m3s-1; 500 yr flood—6675-7270 m3s-1; 1000 yr flood—7680-8440 m3s-1. The presumed PMF discharge (8500 m3s-1) gets assigned a recurrence interval of about 1000 years, and the largest historical 1884 flood (3540 m3s-1)—a recurrence interval of <100 years. Flood frequency analysis for the Moab Valley based on the gaged record (1914-2012) yield 2730 m3s-1 for the 100 yr flood and 3185 m3s-1 for the 500 yr flood. This underestimation of the frequency of large floods from the gage data results from effects on that record by modern regulation of upstream river flow and associated water extraction for agriculture.

  12. Estimated flood peak discharges on Twin, Brock, and Lightning creeks, Southwest Oklahoma City, Oklahoma, May 8, 1993

    USGS Publications Warehouse

    Tortorelli, R.L.

    1996-01-01

    The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.

  13. Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    NASA Technical Reports Server (NTRS)

    Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.

    2012-01-01

    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.

  14. A simplified quasi-2d model of the Po River for the identification of large-scale flood-risk mitigation measures

    NASA Astrophysics Data System (ADS)

    Domeneghetti, A.; Castellarin, A.; Brath, A.; Colombo, A.

    2012-04-01

    The Flood Directive 2007/60/EC (European Commission, 2007) promotes a paradigm shift from engineering defences to flood-risk mitigation and management strategies. The actual implementation of the Directive necessarily implies the development of reliable procedures for assessing the flood-risk associated with flood prone areas. These procedures can then be adopted by Institutions and public bodies in charge of formulating robust flood risk management strategies for large European rivers for identifying optimal policies for a given area. Optimal policies need to be identified at catchment scale through a holistic approach, and this applies also to large European rivers. Our study focuses on the middle-lower reach of the River Po (~350 km), the longest Italian river and the largest in terms of streamflow. We show a large-scale application of a quasi two-dimensional (quasi-2D) model to support the identification of the optimal management strategy of an extreme flood event (recurrence interval ~500 years) by means of controlled flooding (flooding of portions of the flood-prone area located outside the main embankments through ad-hoc lateral structures) for a flood-prone area of ~6,1x103 square kilometres. Different flooding scenarios associated with several possible geometric configurations of the system of lateral structures are compared in terms of flood losses, characterized through the analysis of CORINE land cover data relative to the period 1990-2006. The results of the study show how a simplified quasi-2D model may be effectively used to: (1) provide useful indications on the flood-risk associated with a large flood prone area; (2) support the identification of optimal flood-risk mitigation strategies and (3) assess the impact of recent land-use dynamics (i.e. population-growth, changes agricultural practices, etc.) on flood-risk.

  15. Origin of lunar light plains

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.; Hodges, C. A.; Boyce, J. M.; Soderblom, L. A.

    1975-01-01

    In order to determine the origin of Cayley-type lunar light plains, their physical properties, distribution, and relative ages are examined from Apollo orbital and Lunar Orbiter photographs. The distribution and apparent age of the plains deposits and data on highly feldspathic breccias indicate that these superficial materials are neither locally derived nor part of the Imbrium ejecta. The existence of a planar facies of continuous ejecta at Orientale and in the ejecta blankets of small craters is demonstrated. The data and interpretation presented support the hypothesis that the surface and near-surface materials of some light plains, including those at the Apollo 16 site, are at least partly composed of ejecta from the Orientale basin and that the materials of many rugged areas, such as the Descartes highlands, are overlain by similar material. The possibility that some Cayley-type plains may have a different origin is not excluded.

  16. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    USGS Publications Warehouse

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft

  17. Rocky Martian Plain

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The rocky Martian plain surrounding Viking 2 is seen in high resolution in this 85-degree panorama sweeping from north at the left to east at right during the Martian afternoon on September 5. Large blocks litter the surface. Some are porous, sponge-like rocks like the one at the left edge (size estimate: 1 1/2 to 2 feet); others are dense and fine-grained, such as the very bright rounded block (1 to 1 1/2 feet across) toward lower right. Pebbled surface between the rocks is covered in places by small drifts of very fine material similar to drifts seen at the Viking 1 landing site some 4600 miles to the southwest. The fine-grained material is banked up behind some rocks, but wind tails seen by Viking 1 are not well-developed here. On the right horizon, flat-topped ridges or hills are illuminated by the afternoon sun. Slope of the horizon is due to the 8-degree tilt of the spacecraft.

  18. Alabama district flood plan

    USGS Publications Warehouse

    Hedgecock, T. Scott; Pearman, J. Leroy; Stricklin, Victor E.

    2002-01-01

    The purpose of this flood plan is to outline and record advance planning for flood emergencies, so that all personnel will know the general plan and have a ready-reference for necessary information. This will ensure that during any flood event, regardless of the extent or magnitude, the resources of the District can be mobilized into a maximum data collection operation with a mimimum of effort.

  19. Characterization of Lunar Farside Plains

    NASA Technical Reports Server (NTRS)

    Mest, S.C.; Garry, W. B.; Ostrach, L. R.; Han, S.-C.; Staid, M. I.

    2016-01-01

    The Moon contains broad and isolated areas of plains that have been recognized as mare, cryptomare, impact ejecta, or impact melt. These deposits have been extensively studied on the lunar nearside by remote sensing via telescopes and numerous spacecraft, and in some cases, in situ robotically and by astronauts. Only recently have the deposits on the entire farside been able to be observed and evaluated to the same degree. There are spatially extensive plains deposits located throughout the lunar farside highlands whose formation has remained ambiguous. Many of the plains deposits in the lunar farside highlands display higher albedos than mare materials. Some deposits are located in close proximity to relatively younger impact craters suggesting that plains could be composed of cryptomare or ejecta materials. Some deposits are within the range in which ejecta from large basin-forming events (e.g., SPA and Orientale) likely distributed large amounts of ejecta across the surface. Here we are conducting a series of observations and models in order to resolve the nature and origin of lunar farside plains deposits. Understanding these plains is important for understanding the volcanic and impact histories of the lunar farside, and is important for future mapping and thermal modeling studies.

  20. Root responses to flooding.

    PubMed

    Sauter, Margret

    2013-06-01

    Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.

  1. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  2. RASOR flood modelling

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the

  3. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2009-01-01

    This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream

  4. Constraints on the Derivation of Cerberus Plains Floodwaters From Cerberus Plains Volcanics

    NASA Astrophysics Data System (ADS)

    Lanagan, P. D.; Keszthelyi, L. P.; Burr, D. M.; McEwen, A. S.

    2002-12-01

    Based on calculations of volatile release from estimated total volumes of Cerberus Plains (CP) volcanics and estimated water content of martian basalts, Plescia [1] proposed that water vapor released by CP volcanism may have precipitated over the plains and produced fluvial systems. Since refined measurements of the dimensions of individual lava flows based on MOLA data is now possible, the dimensions of the youngest flows are easy to measure and lower bounds on the dimensions of older, embayed flows can be determined. If magmatically derived water vapor from individual volcanic events precipitated over the plains and provided the water for outflow events, then the mass of dissolved water should equal or exceed the mass of flood waters. Lava flows embaying Marte Valles (MV) extend for at least 1200 km, are roughly 40 km in width within the MV outflow channel, and have flow fronts approximately 25m high. The total volume for these flows is 1.2e3 km3. Assuming a bulk density of 2000 kg/m3 and 0.5 wt% H2O content, this equates to 1.2e13 kg H2O. Burr et al. [2] estimated a discharge of 5e6 m3/s for MV. If all the erupted water vapor were instantly condensed at the vent, it could provide the MV discharge rate for only about an hour. These values may overestimate the quantities of water released if the lavas were not devolatilized completely. It is also unlikely that all the H2O in the lava would contribute to MV flood waters as some of the water would likely be precipitated regionally and result in widespread networks of dendritic channels; networks of small dendritic channels are noted in the vicinity of MV [2], but they are confined to just a few locales. Additionally, it may be unlikely that all the volatiles were released simultaneously as the eruption duration of CP lavas was likely on the order of years [3]. For these reasons, we conclude that condensation from the eruption plume could not form the major erosional flood channels seen in the CP. If the lavas are

  5. Regional flood relations for unregulated lakes in west-central Florida

    USGS Publications Warehouse

    Lopez, M.A.; Hayes, R.D.

    1984-01-01

    Regional lake flood altitude in the Southwest Florida Water Management District for 2- to 500-year recurrence intervals was estimated by multiple linear-regression analysis. The average lake altitude was used as a reference above which flood volumes are related to lake geometry, watershed characteristics, and rainfall. Average altitude at surface-outflow lakes is related to the altitude of the lake surface shown on topographic maps, lake-outlet altitude, and annual rainfall. Average altitude at closed-basin lakes is related to the altitude of the lake surface shown on topographic maps. Flood volume above average altitude for surface-outflow lakes is related to lake geometry, watershed characteristics, and rainfall. The average standard error of estimate for regional relations of surface-outflow lakes ranges from 29 to 54 percent in the Central Lake District and from 50 to 58 percent in the Ocala Uplift District. The average standard error of estimate for regional relations of closed-basin lakes ranges from 22 to 40 percent. Regional relations for average altitude and flood volume above average altitude are used to weight station flood-altitude data. Tables comparing station, regional, and weighted lake flood altitudes are shown for 47 lakes used in the analysis. (USGS)

  6. Flood hydrology and dam-breach hydraulic analyses of five reservoirs in Colorado

    USGS Publications Warehouse

    Stevens, Michael R.; Hoogestraat, Galen K.

    2013-01-01

    The U.S. Department of Agriculture Forest Service has identified hazard concerns for areas downstream from five Colorado dams on Forest Service land. In 2009, the U.S. Geological Survey, in cooperation with the Forest Service, initiated a flood hydrology analysis to estimate the areal extent of potential downstream flood inundation and hazard to downstream life, property, and infrastructure if dam breach occurs. Readily available information was used for dam-breach assessments of five small Colorado reservoirs (Balman Reservoir, Crystal Lake, Manitou Park Lake, McGinnis Lake, and Million Reservoir) that are impounded by an earthen dam, and no new data were collected for hydraulic modeling. For each reservoir, two dam-breach scenarios were modeled: (1) the dam is overtopped but does not fail (break), and (2) the dam is overtopped and dam-break occurs. The dam-breach scenarios were modeled in response to the 100-year recurrence, 500-year recurrence, and the probable maximum precipitation, 24-hour duration rainstorms to predict downstream flooding. For each dam-breach and storm scenario, a flood inundation map was constructed to estimate the extent of flooding in areas of concern downstream from each dam. Simulation results of the dam-break scenarios were used to determine the hazard classification of the dam structure (high, significant, or low), which is primarily based on the potential for loss of life and property damage resulting from the predicted downstream flooding.

  7. Flood of June 4, 2002, in the Indian Creek Basin, Linn County, Iowa

    USGS Publications Warehouse

    Eash, David A.

    2004-01-01

    Severe flooding occurred on June 4, 2002, in the Indian Creek Basin in Linn County, Iowa, following thunderstorm activity over east-central Iowa. The rain gage at Cedar Rapids, Iowa, recorded a 24-hour rainfall of 4.76 inches at 6:00 p.m. on June 4th. Radar indications estimated as much as 6 inches of rain fell in the headwaters of the Indian Creek Basin. Peak discharges on Indian Creek of 12,500 cubic feet per second at County Home Road north of Marion, Iowa, and 24,300 cubic feet per second at East Post Road in southeast Cedar Rapids, were determined for the flood. The recurrence interval for these peak discharges both exceed the theoretical 500-year flood as computed using flood-estimation equations developed by the U.S. Geological Survey. Information about the basin and flood history, the 2002 thunderstorms and associated flooding, and a profile of high-water marks are presented for selected reaches along Indian and Dry Creeks.

  8. Floods of June 1965 in South Platte River basin, Colorado

    USGS Publications Warehouse

    Matthai, Howard Frederick

    1969-01-01

    Heavy, intense rains in three areas on three different days caused outstanding floods on many streams in the South Platte River basin from Plum Creek, just south of Denver, downstream to the Colorado-Nebraska State line. The flood-producing storms followed a relatively wet period, and rainfall of as much as 14 inches in a few hours was reported. The storms occurred over the Greeley-Sterling area on June 14-15, over the Plum Creek and Cherry Creek basins on June 16, and over the headwaters of Kiowa and Bijou Creeks on June 17 after heavy rains on June 15. The flood crest did not pass Julesburg, in the northeast corner of Colorado, until June 20. Previous record high discharges on many tributaries with drainage areas on the plains were exceeded, sometimes severalfold. The six principal tributaries carrying snowmelt runoff were contributing, but not significant, factors in the floods. The attenuation of the peak flow by channel storage as the flood passed through Denver was considerable; yet the peak discharge of 40,300 cfs (cubic feet per second) of the South Platte River at Denver was 1.8 times the previously recorded high of 22,000 cfs in a period of record starting in 1889. The 1965 peak would have been still higher except that all flow from Cherry Creek was stored in Cherry Creek Reservoir. Six persons were drowned, and two other deaths were attributed to the storms. The total damage amounted to $508.2 million, and about 75 percent of this occurred in the Denver metropolitan area. Descriptions of the storms and floods, detailed streamflow records, and information on damages, flood profiles, inundated areas, and flood frequency are included in this report. Several comparisons of the magnitude of the flood are made, and all indicate that an outstanding hydrologic event occurred.

  9. Using lake sediment archives to evaluate late Holocene flood history

    NASA Astrophysics Data System (ADS)

    Chiverrell, R. C.; Foster, G. F.

    2009-04-01

    The sediment trapping efficiency offered by lakes should allow their sediments to reflect changes in discharge; however studies linking lake records with changing catchment hydrology are rare (e.g. Foster et al., 2003; 2008). Research examining sediments from the last 500 years from Loch of the Lowes (Tweed catchment) reveal variations in sediment properties that have been related to variations in transport capacity (flow regime). Small lakes with moderately sized catchments and limited capacity for upstream sediment storage appear to produce a strong coupling between the catchment and the lake, which appears essential for the system to record a flood stratigraphy. In northwest England and southwest Scotland land-use related woodland clearances have rendered upland landscapes susceptible to erosion. These conditions have produced lake sediment records for the last 4-2000 years dominated by catchment soils and sediments. Careful separation of grain size, geochemical and environmental magnetic parameters can identify suites of signals that reflect variations in both (1) supply and (2) the capacity of the system to transport materials to the lake. The capacity parameters (e.g. sand, HIRM and HIRM/XLF) broadly reflect changes in discharge, can be interpreted in terms of flood frequency. Preliminary data for the Loch of the Lowes basin in the central Southern Uplands of Scotland show a strong correlation with the North Atlantic Oscillation. There the capacity-related lake proxies appear to identify phases of increased flooding ~AD 1625-1650, 1680-1700, 1730-1760, 1800-1815, 1850-1880, 1910-1930, 1960-1970 and possibly the 1990s. Good correspondence between the sediment ‘flood' archive and historical records of flooding in Scotland suggests that lake-catchment systems of this type have the potential to yield valuable information on past hydrological response. These issues are developed in relation to other lakes in northwest England.

  10. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    PubMed Central

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-01-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities. PMID:26907560

  11. Application of hydrological models for flood forecasting and flood control in India and Bangladesh

    NASA Astrophysics Data System (ADS)

    Refsgaard, J. C.; Havnø, K.; Ammentorp, H. C.; Verwey, A.

    A general mathematical modelling system for real-time flood forecasting and flood control planning is described. The system comprises a lumped conceptual rainfall-runoff model, a hydrodynamic model for river routing, reservoir and flood plain simulation, an updating procedure for real-time operation and a comprehensive data management system. The system is presently applied for real-time forecasting of the two 20 000 km 2 (Yamuna and Damodar) catchments in India as well as for flood control modelling at the same two catchments in India. In another project the system is being established for the entire Bangladesh with a coarse discretization and for the South East Region of Bangladesh with a fine model discretization. The objectives of the modelling application in Bangladesh are to enable predictions of the effects of alternative river regulation structures in terms of changes in water levels, inundations, siltration and salinity. The modelling system has been transferred to the Central Water Commission of India and the Master Plan Organization of Bangladesh in connection with comprehensive training programmes. The models are presently being operated by Indian and Bangladeshi engineers in the two countries.

  12. River diversions, avulsions and captures in the Tortuguero coastal plain

    NASA Astrophysics Data System (ADS)

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo

    2016-04-01

    documented before the Limón earthquake in 1991. (4) The Sucio, North Chirripó and Toro Amarillo rivers form a channel that takes an abnormal direction towards the NW instead of taking their natural direction towards the Caribbean Sea in the E. This anomalous behaviour is conditioned by the existence of a megafan recently recognized by using topographic data from the SRTM mission. The developed analysis is the first step towards improving the knowledge about the processes behind the observed anomalies. Current research is analyzing the role of active vulcanism and tectonics on Tortuguero rivers behaviour. This has implications on the consequences of torrent-related hazards (flash floods and lahars) that may divert river channels and change the landscape of the coastal plain in only one event.

  13. Progress in and prospects for fluvial flood modelling.

    PubMed

    Wheater, H S

    2002-07-15

    Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.

  14. Progress in and prospects for fluvial flood modelling.

    PubMed

    Wheater, H S

    2002-07-15

    Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis. PMID:12804257

  15. The Spokane flood controversy

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    An enormous plexus of proglacial channels that eroded into the loess and basalt of the Columbia Plateau, eastern Washington is studied. This channeled scabland contained erosional and depositional features that were unique among fluvial phenomena. Documentation of the field relationships of the region explains the landforms as the product of a relatively brief, but enormous flood, then so-called the Spokane flood.

  16. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.; ,

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  17. Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Continental flood basalts have been receiving considerable scientific attention lately. Recent publications have focused on several particular flood-basalt provinces (Brito-Arctic, Karoo, Parana', Deccan, and Columbia Plateau), and much attention has been given to the proposed connection between flood-basalt volcanism, bolide impacts, and mass extinctions. The editor of Continental Flood Basalts, J. D. Macdougall, conceived the book to assemble in a single volume, from a vast and scattered literature, an overview of each major post-Cambrian flood-basalt province.Continental Flood Basalts has 10 chapters; nine treat individual flood-basalt provinces, and a summary chapter compares and contrasts continental flood-basalts and mid-oceanic ridge basalts. Specifically, the chapters address the Columbia River basalt, the northwest United States including the Columbia River basalt, the Ethiopian Province, the North Atlantic Tertiary Province, the Deccan Traps, the Parana' Basin, the Karoo Province, the Siberian Platform, and Cenozoic basaltic rocks in eastern China. Each chapter is written by one or more individuals with an extensive background in the province.

  18. Discover Floods Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  19. Floods of April 1952 in the Missouri River basin

    USGS Publications Warehouse

    Wells, J.V.B.

    1955-01-01

    The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the

  20. Flood of April 2-3, 2005, Neversink River Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2006-01-01

    Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.

  1. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto

    2016-05-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays and sheet sands triggered by above-normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all 12 tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. The data suggest that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid-to-late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a yearly to decadal timescale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  2. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, U.

    2015-10-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays triggered by above normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all the twelve tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. I found that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid- to late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a year to decade time scale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  3. Flood characteristics of urban watersheds in the United States

    USGS Publications Warehouse

    Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.

    1983-01-01

    A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become

  4. Simulations of Flooding on Pea River and Whitewater Creek in the Vicinity of the Proposed Elba Bypass at Elba, Alabama

    USGS Publications Warehouse

    Hedgecock, T. Scott

    2003-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State

  5. Flood risk management in the Thames Estuary looking ahead 100 years.

    PubMed

    Lavery, Sarah; Donovan, Bill

    2005-06-15

    The River Thames tidal defences have provided protection against the increasing threat of tidal flooding from the North Sea for more than 2000 years. The flood of 1953 was the catalyst for the construction of the current system of River Thames tidal defences, which includes the Thames Barrier, and has provided one of the best standards of flood defence in the UK for over 20 years. Substantial growth is planned through "Thames Gateway", a regeneration initiative of the United Kingdom government. These new developments will fundamentally change the developed footprint in the Thames Estuary flood-plain, and will be in place for at least the next 100 years. This presents a challenge of planning future defence against a background of uncertainty over climate and other environmental change, while ensuring that correct decisions are made concerning the nature and location of new building in the tidal flood-plain. Through its "Thames Estuary 2100" project, the Environment Agency is developing a long-term strategy for flood risk management in the estuary. Implementation of major construction works on the River Thames could commence from around 2015. Alternatively, it may be decided that minimum works are undertaken to provide security and major investment is delayed until uncertainties over climate change have abated. Whatever long-term option is chosen, this must be preceded by a period of collaboration with the Thames Gateway developments to ensure appropriate and sustainable flood defences are incorporated in new riverside construction. PMID:16191661

  6. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  7. 78 FR 52954 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  8. 78 FR 52953 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  9. 78 FR 5820 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  10. 78 FR 5821 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  11. 78 FR 21143 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  12. Transdisciplinary and multiscale reconstruction of the major flash floods in NE Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Carles Balasch Solanes, Josep; Lluis Ruiz-Bellet, J.,; Tuset, Jordi; Barriendos, Mariano; Mazón, Jordi; Pino, David; Castelltort, Xavier

    2015-04-01

    Floods are the most severe natural hazard in the western Mediterranean basin. They, and especially flash floods in small catchments (<500 km2), cause most of the damages and most of the victims. Some of the selected flash floods caused more than one hundred casualties each and a large quantity of damages in infrastructures. Flash floods in the northeast of the Iberian Peninsula are caused by a limited array of meteorological processes, which must be identified and classified in order to improve flash floods forecasting. We studied ten of the most important flash floods -and the rainstorms that caused them- occurred in the northeast of the Iberian Peninsula in the last 500 years: 1617, 1787, 1842, 1853, 1874, 1907, 1937, 1940, 1962 and 1996. These floods were classified by spatial and time distribution, synoptic situation and convection indexes On the one hand, we searched information about the historical and modern events and located flood marks which allowed us to calculate the floods' peak flows, and in some cases, thanks to particular pieces of information about soil saturation and timing of the flood, even their hydrographs and the associated hyetographs, through hydraulic and hydrological modelling. On the other hand, we analysed the atmospheric synoptic situations at the time of each flood from the data provided by NOAA 20th Century Reanalysis and we compared it to the rainfall spatial distributions obtained with the hydrological modelling. Thus, we identified synoptic situations with a high probability of causing flash floods in the western Mediterranean basin and assessed how orography modified this probability at the local scale. Hydraulic and hydrological reconstructions give an idea of the magnitude of the flash floods. Specific peak flows range between 3.5 and 11.7 m3•s-1•km-2 and rank among the highest ever recorded or modelled in the region. Similarly, the calculated water velocities in some cross sections are highly destructive (between 6 and 10

  13. Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    2014-01-01

    In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  14. Combining non-precise historical information with instrumental measurements for flood frequency estimation: a fuzzy Bayesian approach

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the obtention of long time series of historical floods, which in some cases range longer than 500 years in the past. In hydrological engineering, historical floods are useful because they give additional information which improves the estimates of discharges with low annual exceedance probabilities, i.e. with high return periods, and additionally might reduce the uncertainty in those estimates. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but in most of the cases, the information related to historical floods is given, quantitatively, in a non-precise manner. This work presents an approach on how to deal with the non-precise historical floods, by linking the descriptions in historical records to fuzzy numbers representing discharges. These fuzzy historical discharges are then introduced in a formal Bayesian inference framework, taking into account the arithmetics of non-precise numbers modelled by fuzzy logic theory, to obtain a fuzzy version of the flood frequency curve combining the fuzzy historical flood events and the instrumental data for a given location. Two case studies are selected from the historical literature, representing different facets of the fuzziness present in the historical sources. The results from the cases studies are given in the form of the fuzzy estimates of the flood frequency curves together with the fuzzy 5% and 95% Bayesian credibility bounds for these curves. The presented fuzzy Bayesian inference framework provides a flexible methodology to propagate in an explicit way the imprecision from the historical records into the flood frequency estimate, which allows to assess the effect that the incorporation of non-precise historical information can have in the flood frequency regime.

  15. Challenges of Modeling Flood Risk at Large Scales

    NASA Astrophysics Data System (ADS)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The

  16. Bimodal magmatism, basaltic volcanic styles, tectonics, and geomorphic processes of the eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Hughes, S.S.; Smith, R.P.; Hackett, W.R.; McCurry, M.; Anderson, S.R.; Ferdock, G.C.

    1997-01-01

    Geology presented in this field guide covers a wide spectrum of internal and surficial processes of the eastern Snake River Plain, one of the largest components of the combined late Cenozoic igneous provinces of the western United States. Focus is on widespread Quaternary basaltic plains volcanism that produced coalescent shields and complex eruptive centers that yielded compositionally evolved magmas. The guide is constructed in several parts beginning with discussion sections that provide an overview of the geology followed by road directions, with explanations, for specific locations. The geology overview briefly summarizes the collective knowledge gained, and petrologic implications made, over the past few decades. The field guide covers plains volcanism, lava flow emplacement, basaltic shield growth, phreatomagmatic eruptions, and complex and evolved eruptive centers. Locations and explanations are also provided for the hydrogeology, groundwater contamination, and environmental issues such as range fires and cataclysmic floods associated with the region.

  17. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    PubMed

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  18. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  19. Nogales flood detention study

    USGS Publications Warehouse

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum

    2010-01-01

    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  20. Regional flood frequency analysis

    SciTech Connect

    Singh, V.P.

    1987-01-01

    This book, the fourth of a four volume set, contains five sections encompassing major aspects of regional flood frequency analysis. Each section starts usually with an invited state-of-the-art paper followed by contributed papers. The first section provides an assessment of regional flood frequency analysis. Methods for performing regional frequency analysis for ungaged watersheds are presented in Section 2. More discussion on regional frequency analysis is provided in Section 3. Selection and comparison of regional frequency methods are dealt with in Section 4; these are of great interest to the user. Increasing attention is being focused these days on paleohydrologic flood analysis. This topic is covered in Section 5.

  1. Development of flood index by characterisation of flood hydrographs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  2. Plain English Laws: Symbolic or Real?

    ERIC Educational Resources Information Center

    Timm, Paul R.; Oswald, Daniel

    1985-01-01

    Surveyed business communication educators and found widespread confusion about the existence and nature of Plain English laws. Concludes that legally compelling business to use plain language in consumer documents may be futile. (PD)

  3. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    NASA Astrophysics Data System (ADS)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  4. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  5. Plain Language Clear and Simple.

    ERIC Educational Resources Information Center

    National Literacy Secretariat, Ottawa (Ontario).

    Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…

  6. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  7. Ages of Lunar Light Plains

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Howes van der Bogert, Carolyn; Thiessen, Fiona; Robinson, Mark

    2013-04-01

    Light plains are characterized by their relative smoothness and lower crater densities (compared to the highlands), and their occurrence as crater fills. They also exhibit highland-like characteristics, such as high albedos (in comparison to mare basalts) and their geological and stratigraphic setting. Despite the long history of investigating light plains, there are still numerous open questions concerning their mode of emplacement, their mineralogical composition, their ages, and their origin. We dated 16 light plains with crater size-frequency distribution (CSFD) measurements. All dated regions were previously identified as light plains in the geologic maps [1-5] and either mapped as smooth light plains (Ip) or light plains with undulatory surfaces (INp). The studied light plains occur both inside and outside the South Pole-Aitken (SPA) basin within a latitudinal band between ~-36° and ~-75°. In particular, we investigated the following smooth light plains: Janssen (40.82°E, -44.96°; Ip [1]), Nishina (-170.8°E, -44.57°; Ip [2]), South of Nishina (Ip [2]), Obruchev (162.43°E, -38.67°; Ip [2]), Oresme (169.22°E, -42.61°, Ip [2]), Schrödinger (132.93°E, -74.73°; Ip [3]), Nearch (39.01°E, -58.58°; Ip [3]), Nasmyth (-56.39°E, -50.49°; Ip [3]), Manzinus (26.37°E, -67.51°; Ip [3]), Klaproth (-26.26°E, -69.85°; Ip [3]), Phocylides (-57.31°E, -52.79°, Ip [3]), Buffon (-133.53°E, -40.64°; Ip [4]), Roche (136.54°E, -42.37°; Ip [5]). We also dated the following light plains with undulatory surfaces: Koch (150.33°E, -42.13°; INp [2]), Garavito (156.78°E, -47.21°; INp [2]), Eötvös (134.43°E, -35.61°; INp [5]). Our CSFD measurements resulted in absolute model ages of 3.71 to 4.02 Ga for all investigated light plains, thus confirming the Imbrian and/or Nectarian ages of the geologic maps [1-5]. We only dated three INp light plains, but they appear to have ages that are close to the upper limit, i.e., 3.96-4.02 Ga. However, further CSFDs of INp

  8. Water-surface profile and flood boundaries for the computed 100-year flood, Big Muddy Creek, Fort Peck Indian Reservation and adjacent area, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1996-01-01

    Hydrologic and hydraulic evaluations of Big Muddy Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. The magnitude of the 100-year flood was determined to range from 13,600 to 20,400 ft3/s, depending on location. Field surveys were made at 39 cross sections along a 41-mile reach of Big Muddy Creek. An additional two cross sections along the same reach were synthesized. Data from the surveys were used to calculate the water-surface elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile also shows the streambed elevation and the location of the bridges and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  9. Significance of "high probability/low damage" versus "low probability/high damage" flood events

    NASA Astrophysics Data System (ADS)

    Merz, B.; Elmer, F.; Thieken, A. H.

    2009-06-01

    The need for an efficient use of limited resources fosters the application of risk-oriented design in flood mitigation. Flood defence measures reduce future damage. Traditionally, this benefit is quantified via the expected annual damage. We analyse the contribution of "high probability/low damage" floods versus the contribution of "low probability/high damage" events to the expected annual damage. For three case studies, i.e. actual flood situations in flood-prone communities in Germany, it is shown that the expected annual damage is dominated by "high probability/low damage" events. Extreme events play a minor role, even though they cause high damage. Using typical values for flood frequency behaviour, flood plain morphology, distribution of assets and vulnerability, it is shown that this also holds for the general case of river floods in Germany. This result is compared to the significance of extreme events in the public perception. "Low probability/high damage" events are more important in the societal view than it is expressed by the expected annual damage. We conclude that the expected annual damage should be used with care since it is not in agreement with societal priorities. Further, risk aversion functions that penalise events with disastrous consequences are introduced in the appraisal of risk mitigation options. It is shown that risk aversion may have substantial implications for decision-making. Different flood mitigation decisions are probable, when risk aversion is taken into account.

  10. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    NASA Astrophysics Data System (ADS)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  11. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  12. Techniques for estimating flood discharges for Oklahoma streams; techniques for calculating magnitude and frequency of floods in Oklahoma from rural and urban areas under 2500 square miles, with compilations of flood data through 1975

    USGS Publications Warehouse

    Thomas, W.O.; Corley, R.K.

    1977-01-01

    Statewide regression equations are defined for estimating peak discharges of floods having recurrence intervals ranging from 2 to 500 years. Contributing drainage area, main-channel slope and mean annual precipitation are the independent variables required for estimating flood discharges for rural streams. For urban streams the percentage of the basin that is impervious and served by storm sewers also is required. The regression equations are applicable for watersheds draining less than 2,500 square miles (6,500 square kilometers) that are not significantly affected by regulation. For the rural streams, the regression equations are presented in graphical form for easy application. Calibration of the U.S. Geological Survey rainfall-runoff model and synthesis of long-term annual peak data for 60 small watersheds is discussed. Synthetic frequency curves, generated using six long-term rainfall stations, are combined into one frequency curve and weighted with the observed frequency curve at each site. Use of the rainfall-runoff model parameters to estimate flood discharges reduces the standard error for selected frequencies by 9-12 percent. However, collection of the necessary rainfall-runoff data to determine the model parameters is time consuming and expensive. Annual peak data, basin and climatic characteristics, log-Pearson Type III statistics, and the flood-frequency relations are presented for 188 gaging stations. (PHOTOSTATIC COPIES ONLY ARE AVAILABLE OF THIS REPORT)

  13. Modelling long-term sediment deposition in a river floodplain during continues flood events

    NASA Astrophysics Data System (ADS)

    Guan, Mingfu; Ahilan, Sangaralingam; Wright, Nigel; Sleigh, P. Andrew

    2015-04-01

    River floodplains act as a form of storage during high discharges in a river. As a floodplain generally has a lower energy environment, sediment aggradation commonly occurs over the period of time, which will reduce the overall storage capacity of the floodplain. Also, in a river system sediments are generally considered as the carrier of pesticides and metal contamination from the upstream catchment. Hence, studying sediment deposition in a floodplain is not only helpful for local flood risk assessment, but also can improve our understanding of the dispersion of contaminants associated with the transfer of sediment between a river and its floodplain. This study adopts a recently updated two-dimensional hydro-morphodynamic model based on the full shallow water equations to model a long-term spatial migration of Johnson Creek, Portland, Oregon and its floodplain. The 500-year, 100-year, 50-year, 10-year, as well as the recorded flood events during 1941-2014 were simulated. Suspended load with three grain-sizes was transported to the river along with the floods. The results indicate that about 30 - 45% of total sediment load is deposited in the floodplain for the studied return period floods. The spatial distribution and amount of short and long-term sediment deposition on the floodplain is demonstrated, and the resulting potential loss of flood storage capacity is analysed and discussed.

  14. Floods of August 21-24, 2007, in Northwestern and North-Central Ohio

    USGS Publications Warehouse

    Straub, David E.; Ebner, Andrew D.; Astifan, Brian M.

    2009-01-01

    Heavy rains in northwestern and north-central Ohio on August 19-22, 2007, caused severe flooding and widespread damages to residential, public, and commercial structures in the communities of Bluffton, Bucyrus, Carey, Columbus Grove, Crestline, Findlay, Mansfield, Ottawa, and Shelby. On August 27, 2007, the Federal Emergency Management Agency (FEMA) issued a notice of a Presidential declaration of a major disaster affecting Allen, Crawford, Hancock, Hardin, Putnam, Richland, Seneca, and Wyandot Counties as a result of the severe flooding. Rainfall totals for most of the flooded area were 3 to 5 in., with some locations reporting as much as 8 to 10 in. Three National Weather Service (NWS) gages in the area indicated a rainfall recurrence interval of greater than 1,000 years, and two indicated a recurrence interval between 500 and 1,000 years. Total damages are estimated at approximately $290 million, with 8,205 residences registering for financial assistance. The U.S. Geological Survey (USGS) computed flood recurrence intervals for peak streamflows at 22 streamgages and 8 ungaged sites in and around the area of major flooding. The peak streamflows at Sandusky River near Bucyrus streamgage and at seven of the eight ungaged sites had estimated recurrence intervals of greater than 500 years. The USGS located and surveyed 421 high-water marks and plotted high-water profiles for approximately 44.5 miles of streams throughout the nine communities.

  15. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  16. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  17. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  18. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  19. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  20. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  1. Flood Bypass Capacity Optimization

    NASA Astrophysics Data System (ADS)

    Siclari, A.; Hui, R.; Lund, J. R.

    2015-12-01

    Large river flows can damage adjacent flood-prone areas, by exceeding river channel and levee capacities. Particularly large floods are difficult to contain in leveed river banks alone. Flood bypasses often can efficiently reduce flood risks, where excess river flow is diverted over a weir to bypasses, that incur much less damage and cost. Additional benefits of bypasses include ecosystem protection, agriculture, groundwater recharge and recreation. Constructing or expanding an existing bypass costs in land purchase easements, and levee setbacks. Accounting for such benefits and costs, this study develops a simple mathematical model for optimizing flood bypass capacity using benefit-cost and risk analysis. Application to the Yolo Bypass, an existing bypass along the Sacramento River in California, estimates optimal capacity that economically reduces flood damage and increases various benefits, especially for agriculture. Land availability is likely to limit bypass expansion. Compensation for landowners could relax such limitations. Other economic values could affect the optimal results, which are shown by sensitivity analysis on major parameters. By including land geography into the model, location of promising capacity expansions can be identified.

  2. Novel early flood warning in the Huaihe River basin in east-central China using the TIGGE database

    NASA Astrophysics Data System (ADS)

    He, Y.; Cloke, H.; Li, Z.; Wetterhall, F.; Pappenberger, F.

    2009-04-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. The last decade has seen an increase in flood preparedness across all levels of society in China. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction systems from short-term (a few hours) to medium-term (a few days) need to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of a number of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin located in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang model and a 1-D hydraulic model, to predict river discharge and flood inundation. Results from selected flood events will be presented.

  3. Tharsis-triggered Flood Inundations of the Lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.

    2003-01-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].

  4. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  5. Flood of April 2007 and Flood-Frequency Estimates at Streamflow-Gaging Stations in Western Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2009-01-01

    A spring nor'easter affected the East Coast of the United States from April 15 to 18, 2007. In Connecticut, rainfall varied from 3 inches to more than 7 inches. The combined effects of heavy rainfall over a short duration, high winds, and high tides led to widespread flooding, storm damage, power outages, evacuations, and disruptions to traffic and commerce. The storm caused at least 18 fatalities (none in Connecticut). A Presidential Disaster Declaration was issued on May 11, 2007, for two counties in western Connecticut - Fairfield and Litchfield. This report documents hydrologic and meteorologic aspects of the April 2007 flood and includes estimates of the magnitude of the peak discharges and peak stages during the flood at 28 streamflow-gaging stations in western Connecticut. These data were used to perform flood-frequency analyses. Flood-frequency estimates provided in this report are expressed in terms of exceedance probabilities (the probability of a flood reaching or exceeding a particular magnitude in any year). Flood-frequency estimates for the 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 exceedance probabilities (also expressed as 50-, 20-, 10-, 4-, 2-, 1-, and 0.2- percent exceedance probability, respectively) were computed for 24 of the 28 streamflow-gaging stations. Exceedance probabilities can further be expressed in terms of recurrence intervals (2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval, respectively). Flood-frequency estimates computed in this study were compared to the flood-frequency estimates used to derive the water-surface profiles in previously published Federal Emergency Management Agency (FEMA) Flood Insurance Studies. The estimates in this report update and supersede previously published flood-frequency estimates for streamflowgaging stations in Connecticut by incorporating additional years of annual peak discharges, including the peaks for the April 2007 flood. In the southwest coastal region of Connecticut, the

  6. Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER

    NASA Astrophysics Data System (ADS)

    Head, James W.; Chapman, Clark R.; Strom, Robert G.; Fassett, Caleb I.; Denevi, Brett W.; Blewett, David T.; Ernst, Carolyn M.; Watters, Thomas R.; Solomon, Sean C.; Murchie, Scott L.; Prockter, Louise M.; Chabot, Nancy L.; Gillis-Davis, Jeffrey J.; Whitten, Jennifer L.; Goudge, Timothy A.; Baker, David M. H.; Hurwitz, Debra M.; Ostrach, Lillian R.; Xiao, Zhiyong; Merline, William J.; Kerber, Laura; Dickson, James L.; Oberst, Jürgen; Byrne, Paul K.; Klimczak, Christian; Nittler, Larry R.

    2011-09-01

    MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury’s high northern latitudes and occupies more than 6% of the planet’s surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury’s post-heavy bombardment era.

  7. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER.

    PubMed

    Head, James W; Chapman, Clark R; Strom, Robert G; Fassett, Caleb I; Denevi, Brett W; Blewett, David T; Ernst, Carolyn M; Watters, Thomas R; Solomon, Sean C; Murchie, Scott L; Prockter, Louise M; Chabot, Nancy L; Gillis-Davis, Jeffrey J; Whitten, Jennifer L; Goudge, Timothy A; Baker, David M H; Hurwitz, Debra M; Ostrach, Lillian R; Xiao, Zhiyong; Merline, William J; Kerber, Laura; Dickson, James L; Oberst, Jürgen; Byrne, Paul K; Klimczak, Christian; Nittler, Larry R

    2011-09-30

    MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury's high northern latitudes and occupies more than 6% of the planet's surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury's post-heavy bombardment era. PMID:21960625

  8. Delineation of flooding within the upper Mississippi River Basin-flood of June 18 through August 4, 1993, in Des Moines and vicinity, Iowa

    USGS Publications Warehouse

    Schaap, Bryan D.

    1996-01-01

    This hydrologic investigations atlas shows the areas in and near Des Moines, Iowa, that were flooded by the Des Moines and the Raccoon Rivers and Walnut, Fourmile, and Beaver Creeks from June 18 through August 4, 1993. This map also depicts the Federal Emergency Management Agency 100-year flood boundaries. The area drained by the Des Moines River upstream from Des Moines received more than 100 percent of normal rainfall in May, June, and July, 1993. At Boone, which is located about 35 miles north-northeast of Des Moines, July rainfall was 424 percent of normal. The discharges at streamflow- gaging stations on the Des Moines River near Stratford, downstream from Saylorville Lake, and at Des Moines are shown. The cumulative discharge for inflow-gaging stations in the Des Moines area and discharge for the Des Moines River below the Raccoon River at Des Moines from July 8 through 21, 1993, are shown. The water-surface elevations of Saylorville Lake from June 18 through August 4, 1993, are shown. Profiles of the maximum water- surface elevations of the Des Moines and Raccoon Rivers during the 1993 flood in Des Moines and vicinity are higher than the respective Federal Emergency Management Agency 100- and 500-year flood profiles.

  9. Evidence of prehistoric flooding and the potential for future extreme flooding at Coyote Wash, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Glancy, Patrick A.

    1994-01-01

    Coyote Wash, east of Yucca Mountain and southwest of the Nevada Test Site, is the potential location for an exploratory shaft to investigate the feasibility of underground storage of radioactive waste. The potential for flooding and related fluvial-debris hazards was investigated with respect to the potential shaft location. Trenches excavated through fluvial sediment deposits revealed interstratified rock detritus emplaced by floods and debris flows. Most of the deposits are believed to be of late Quaternary age. Debros-flow deposits contain boulders as large as 3 feet in diameter. This evidence of intense prehistoric flooding and debris movement indicates the possibility of similar continuing activity. Empirical estimates of extreme flood flows in North Fork Coyote Wash, a 0.094- square-mile drainage to the shaft site, range from 900 to 2,600 cubic feet per second. Current (1992) knowledge indicates that flows of water and debris as much as 2,500 cubic feet per second can occur in the vicinity of the shaft from this drainage. Similar size flows from adjacent South Fork Coyote Wash, could arrive simultaneously in the vicinity of the shaft. Thus, cumulative water and debris from both tributaries could subject the alluvial flood plain near the shaft site to flows of as much as 5,000 cubic feet per second.

  10. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    did not detrimentally affect spawning success; catch of young-of-year increased by 20% in summer following the flood. Post-flood catch rates of nonnative fathead minnows (Pimephales promelas) in shorelines and backwaters, and plains killifish (Fundulus zebrinus) in backwaters decreased in the vicinity of the LCR, and fathead minnows increased near Hell's Hollow, suggesting that the flood displaced this nonnative species. Densities of rainbow trout and fathead minnows recovered to pre-flood levels eight months after the flood by reinvasion from tributaries and reproduction in backwaters. We concluded that the flood was of insufficient magnitude to substantially reduce populations of nonnative fishes, but that similar managed floods can disadvantage alien predators and competitors and enhance survival of native fishes.

  11. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    USGS Publications Warehouse

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  12. Chinese Tallow: Invading the Southeastern Coastal Plain

    USGS Publications Warehouse

    U.S. Geological Survey

    2000-01-01

    Chinese tallow is an ornamental tree with colorful autumn foliage that can survive full sunlight and shade, flooding, drought, and in some cases fire. To horticulturists this kind of tree sounds like a dream, but to ecologists, land managers, and land owners this kind of tree can be a nightmare, especially when it invades an area and takes over native vegetation. Chinese tallow (Triadica sebifera), a nonnative tree from China, is currently transforming the southeastern Coastal Plain. Over the last 30 years, Chinese tallow has become a common tree in old fields and bottomland swamps of coastal Louisiana. Several studies at the U.S. Geological Survey's National Wetlands Research Center (NWRC), Lafayette, Louisiana, are aimed at understanding the factors that contribute to Chinese tallow growth, spread, and management. When tallow invades, it eventually monopolizes an area, creating a forest without native animal or plant species. This tree exhibits classic traits of most nonnative invaders: it is attractive so people want to distribute it, it has incredible resiliency, it grows quickly and in a variety of soils, and it is resistant to pests. In the coastal prairie of Louisiana and Texas, Chinese tallow can grow up to 30 feet and shade out native sun-loving prairie species. The disappearing of prairie species is troublesome because less than 1% of original coastal prairie remains, and in Louisiana, less than 500 of the original 2.2 million acres still exist. Tallow reproduces and grows quickly and can cause large-scale ecosystem modification (fig. 1). For example, when it completely replaces native vegetation, it has a negative effect on birds by degrading the habitat. Besides shading out grasses that cattle like to eat, it can also be potentially harmful to humans and animals because of its berries (fig. 2) and plant sap that contain toxins. There is some concern its leaves may shed toxins that change the soil chemistry and make it difficult for other plants to grow.

  13. Analysis of the transport of sediment by the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, after the May 2006 flood

    USGS Publications Warehouse

    Flynn, Robert H.

    2011-01-01

    During May 13-16, 2006, rainfall in excess of 8.8 inches flooded central and southern New Hampshire. On May 15, 2006, a breach in a bank of the Suncook River in Epsom, New Hampshire, caused the river to follow a new path. In order to assess and predict the effect of the sediment in, and the subsequent flooding on, the river and flood plain, a study by the U.S. Geological Survey (USGS) characterizing sediment transport in the Suncook River was undertaken in cooperation with the Federal Emergency Management Agency (FEMA) and the New Hampshire Department of Environmental Services (NHDES). The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used to simulate flow and the transport of noncohesive sediments in the Suncook River from the upstream corporate limit of Epsom to the river's confluence with the Merrimack River in the Village of Suncook (Allenstown and Pembroke, N.H.), a distance of approximately 16 miles. In addition to determining total sediment loads, analyses in this study reflect flooding potentials for selected recurrence intervals that are based on the Suncook River streamgage flow data (streamgage 01089500) and on streambed elevations predicted by HEC-RAS for the end of water year 2010 (September 30, 2010) in the communities of Epsom, Pembroke, and Allenstown. This report presents changes in streambed and water-surface elevations predicted by the HEC-RAS model using data through the end of water year 2010 for the 50-, 10-, 2-, 1-, 0.2-percent annual exceedence probabilities (2-, 10-, 50-, 100-, and 500-year recurrence-interval floods, respectively), calculated daily and annual total sediment loads, and a determination of aggrading and degrading stream reaches. The model was calibrated and evaluated for a 400-day span from May 8, 2008 through June 11, 2009; these two dates coincided with field collection of stream cross-sectional elevation data. Seven sediment-transport functions were evaluated

  14. Estimation of flood-frequency characteristics of small urban streams in North Carolina

    USGS Publications Warehouse

    Robbins, J.C.; Pope, B.F.

    1996-01-01

    A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.

  15. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  16. Flash floods of August 10, 2009, in the Villages of Gowanda and Silver Creek, New York

    USGS Publications Warehouse

    Szabo, Carolyn O.; Coon, William F.; Niziol, Thomas A.

    2011-01-01

    Late during the night of August 9, 2009, two storm systems intersected over western New York and produced torrential rain that caused severe flash flooding during the early morning hours of August 10 in parts of Cattaraugus, Chautauqua, and Erie Counties. Nearly 6 inches of rain fell in 1.5 hours as recorded by a National Weather Service weather observer in Perrysburg, which lies between Gowanda and Silver Creek-the communities that suffered the most damage. This storm intensity had an annual exceedance probability of less than 0.2 percent (recurrence interval greater than 500 years). Although flooding along Cattaraugus Creek occurred elsewhere, Cattaraugus Creek was responsible for very little flooding in Gowanda. Rather the small tributaries, Thatcher Brook and Grannis Brook, caused the flooding in Gowanda, as did Silver Creek and Walnut Creek in the Village of Silver Creek. Damages from the flooding were widespread. Numerous road culverts were washed out, and more than one-quarter of the roads in Cattaraugus County were damaged. Many people were evacuated or rescued in Gowanda and Silver Creek, and two deaths occurred during the flood in Gowanda. The water supplies of both communities were compromised by damages to village reservoirs and water-transmission infrastructures. Water and mud damage to residential and commercial properties was extensive. The tri-county area was declared a Federal disaster area and more than $45 million in Federal disaster assistance was distributed to more than 1,500 individuals and an estimated 1,100 public projects. The combined total estimate of damages from the flash floods was greater than $90 million. Over 240 high-water marks were surveyed by the U.S. Geological Survey; a subset of these marks was used to create flood-water-surface profiles for four streams and to delineate the areal extent of flooding in Gowanda and Silver Creek. Flood elevations exceeded previously defined 0.2-percent annual exceedance probability (500-year

  17. Residual flood-risk: assessing the effectiveness of alternative large-scale mitigation strategies

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2016-04-01

    The EU Flood Directive (2007/60/CE) requires institutions and public bodies, in order to formulate robust flood-risk management strategies for large European rivers, to address several fundamental tasks. For instance, they have to address the problem of flood-risk mitigation from a global perspective (i.e., entire middle-lower river reaches) by identifying critical reaches, inundation areas and corresponding overflow volumes. To this aim, we focus on the identification of large-scale flood risk mitigation strategies for the middle-lower reach of the Po river, the longest Italian river and the largest in terms of streamflow. We refer to the so-called residual flood-risk and in particular to its portion referring to the possibility to experience events associated with larger return periods than the reference one (e.g. ~200 years in our case). In particular, being a further levee heightening not technically viable nor economically conceivable for the case study, the study develops and tests the applicability of a quasi-2D hydraulic model for the identification of large-scale flood-risk mitigation strategies relative to a 500-year flood event. In particular, we consider and model in the study different geometrical configurations of the main embankment system for a ~400km reach stretching from Isola S.Antonio to the Po river delta in the Adriatic Sea: overtopping without levee breaching, overtopping and natural levee breaching, overtopping and forced levee breaching. The simulations enable the assessment of the overflowed volumes and water depths on flooded areas. Expected damages are estimated using simplified graphical tools, which we termed "Vulnerability Hypsometric Curves" (HVCs) and report the extent of the area for a given land use category that is located below a certain elevation. The analysis aims at finding the optimal configuration that minimizes the expected damages in the areas prone to flood. The outcomes of our study indicate that coupling a large

  18. Young Craters on Smooth Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Young craters (the largest of which is about 100 kilometers in diameter) superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, radial ejecta deposits, and surrounding fields of secondary craters. Smooth plains have well-developed ridges extending NW and NE. This image (FDS 167), acquired during the spacecraft's first encounter with Mercury, is located approximately 60 degrees N, 175 degrees W.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  19. Plain Polynomial Arithmetic on GPU

    NASA Astrophysics Data System (ADS)

    Anisul Haque, Sardar; Moreno Maza, Marc

    2012-10-01

    As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast and plain algorithms. Those are employed for data of large and small size, respectively. Parallelizing both types of algorithms is required in order to achieve peak performances. In this paper, we show that the plain dense polynomial multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly optimized) FFT-based multiplication up to degree 212 while on CPU the same threshold is usually at 26. We also report on a GPU implementation of the Euclidean Algorithm which is both work-efficient and runs in linear time for input polynomials up to degree 218 thus showing the performance of the GCD algorithm based on systolic arrays.

  20. Flooding in Bifurcation

    NASA Astrophysics Data System (ADS)

    Aoki, Masakazu; Matumoto, Aoki

    2010-05-01

    Edo River to diverge from Tone River on the right side flows away through Tokyo downtown, and into Tokyo Bay. Tone River of main stream flows through the north region of Kanto into Chiba prefecture of rural aria. Tone River originally flowed through present Edo River into Tokyo downtown. So when Tokyo (Edo era) became the political center of Japan 400 years ago, this place had been suffered from flood caused by augmenting downstream flowing of rainfall over watershed catchment area. Edo Government extended near independent small rivers and connected with Tone River and led away most of flood water transportation into Chiba prefecture to be a rural reason. The present rout of the river has been determined in the mass during the 16th century. Created artificial Edo River experimentally divided into 40 percentage and artificial Tone River divided into 60 percentage of flood water transportation. After that Japanese Government confirmed a safety against flood and confirmed to be a safety Tokyo by using SFM (storage function method) and SNFM (steady non-uniform flow method). Japanese Government estimated Plan High Water Discharge 17,500m3/s at upstream of the divergent point and Edo river flowing through 40 percentage (7,000m3/s) of 17,500m3/s which was same ratio as Edo era. But SFM and SNFM could not explain dynamic flow phenomena. We surveyed how many channel storage amount were there in this river by using UFM (unsteady flow method). We reproduce real flowing shape and carried out more detail dynamic phenomena. In this research, we had taken up diverse and various 11floods from 1981. These floods were confirmed that Edo River to be bifurcated less than 40 percentages. Large flood are not always high ratio of diversion in to Edo River. It's almost smaller ratio rather than higher ratio. For example, peak discharge 11,117m3/s, Aug. 1982 flood was bifurcated into Edo river flowing through 20 percentage of 11,117m3/s. Small flood peak discharge 1,030m3/s, Aug. 1992

  1. Crowdsourcing detailed flood data

    NASA Astrophysics Data System (ADS)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  2. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  3. Modeling flood dynamics along the superelevated channel belt of the Yellow River over the last 3000 years

    NASA Astrophysics Data System (ADS)

    Chen, Yunzhen; Overeem, Irina; Kettner, Albert J.; Gao, Shu; Syvitski, James P. M.

    2015-07-01

    The Yellow River, China, experienced >1000 levee breaches during the last 3000 years. A reduced-complexity model is developed in this study to explore the effects of climate change and human activity on flood levels, levee breaches, and river avulsions. The model integrates yearly morphological change along a channel belt with daily river fluxes and hourly evolution of levee breaches. Model sensitivity analysis reveals that under natural conditions, superelevation of the channel belt dominates flood frequency. When there is significant human-accelerated basin erosion and breach repair, the dominant factors shift to a combination of mean annual precipitation, superelevation, critical shear stress of weak channel banks, and the time interval between breach initiation and its repair. The effect of precipitation on flood frequency is amplified by land use changes in the hinterland, particularly in the erodible Loess Plateau. Uncertainty analysis estimates the most likely values of the dominant factors for six historical periods between 850 B.C. and A.D. 1839, which are used to quantitatively reconstruct flood dynamics. During 850 B.C. to A.D. 1839, when the sediment load increased fourfold, the breach recurrence interval was shortened from more than 500 years to less than 6 years, and the breach outflow rate increased ~27 times. River management practices during A.D. 1579 to A.D. 1839 focused on levees and triggered a severe positive feedback of increased levee heights and flood hazard exacerbation. Raising the levee heights proved to be ineffective for sustainable flood management.

  4. Winter and summer-autumn flash floods as "drivers" of drought and seasonal flood characteristics (case study of European Russia)

    NASA Astrophysics Data System (ADS)

    Kireeva, Maria; Frolova, Natalia; Rets, Ekaterina; Ezerova, Natalia

    2016-04-01

    The presence of occasional flood periods on rivers is a typical feature of the hydrological regime of European Russia. Despite the fact that the main high-water phase of a hydrological year here is related to spring, flash floods in other seasons play an equally important role. For example, increased water content during autumn determines soil moisture content that determines the loss of runoff during spring flood. Winter floods caused by thaws result in a significant drawdown of a snow pack. And when it is followed by a return of cold weather an ice crust is formed on the surface of snowpack that significantly reduces rates of melt water filtration process.In recent decades, most of the rivers in the European part of Russia have experienced a significant increase of occasional flood flow share in total annual runoff. For example, in the Don basin this parameter has increased by almost 2 times, in the basin of Oka by 1.5. Though less intense, these trends can be traced in the eastern part of the region - in the basins of Kama and Vyatka. The increase here can is approximately 15-20%. In the north of the Eastern Plain (North Dvina, etc.) this tendency isn't observed. The number of flood waves has several times increased. Until 1970s 1-3 occasional floods a year were generally observed on the rivers of Central and Southern Russia. In the past three decades almost every year there are from 4 to 8 or more periods of high water. They are superimposed on each other, as well as the phase of the spring flood and low flow period. The ratio of the maximum discharge of occasional flood to maximum discharge of seasonal flood has increased several times. Now some outstanding floods can be compared with the spring flood wave or even exceed it.Thus, through winter floods an "interception" of spring flood runoff occurs. Spring floods have a lower height and volume and as a result they don't fully recharge a basin. Dry period in this case begins much earlier and though the moisture

  5. Fuzzyfication of historical flooding data: case study of the city of Passau, Germany

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Bloeschl, Guenter

    2014-05-01

    Hydrological information comes from a variety of sources, which do not necessarily coincide. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. A set of historical floodmarks was recently collected during a field campaign (Salinas and Kiss, 2013) in the German city of Passau. For the greatest floods during the last 500 years, the water levels at different location in the old city centre were read out from stone markings and similar, and the numeric values were not always identical for the same events. One possible way of modelling the inherent unpreciseness of these historical water levels is with the arithmetics of fuzzy numbers (Zadeh, 1965), described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents a formal approach on the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions with the aim to perform further hydraulic and statistical analyses in the framework of fuzzy numbers algebra. Salinas, J. L., and A. Kiss (2013), Hydraulic reconstruction of historical floods at the Danube-Carpathian basin, Geophysical Research Abstracts, Vol. 15, EGU2013-14036, 2013 Zadeh, L. A. (1965), Fuzzy sets, Information and Control, Vol. 8, pp 338-353.

  6. Multidisciplinary reconstruction of 1874 Santa Tecla flash-floods in the Ebro river basin (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Lluís Ruiz-Bellet, Josep; Barriendos, Mariano; Carles Balasch, J.; Tuset, Jordi; Mazón, Jordi; Pino, David

    2013-04-01

    Flash floods are among the most life-threatening natural hazards in the Western Mediterranean basin. Unfortunately, their study has only recently begun and, therefore, information is scarce and limited to contemporary events. This is a drawback when trying to analyze and classify this kind of events in a climatic change context, because important data belonging to past events is missing. However, historical archives keep raw data -such as maximum water depths, rainfall durations, channel morphologies, atmospheric variables- which, after proper collecting and processing, can enlarge present day records on flash floods. This research is a step more in the development of a multidisciplinary (hydrological, hydraulic and meteorological) methodology on historical flash floods reconstruction based on the analysis of a case study: 1874 Santa Tecla floods. The night of 22-23 September 1874 several flash floods occurred in many catchments throughout the central and eastern parts of the Ebro River basin. These floods -known as Santa Tecla floods- caused at least 600 casualties and are considered, as a whole, one of the heaviest events in the area in the last 500 years. Luckily, there is a lot of information on these floods, namely, water depths in many locations. Some of this information has already been used to calculate the peak flows of the floods in nine spots located in five catchments so far; the highest modelled specific peak flow is 10 m3•s-1•km-1, that is, among the highest ever measured in similar sized catchments in the Western Mediterranean region. Moreover, in one location the quality of the data even allowed the estimation of the hyetograph which caused the flood. Although a lot of this information has not yet been used in peak flow reconstruction, the raw water depth data can give a rough estimation of the total area affected, of the flood's magnitude and of the storm's movement. On the other hand, atmospheric pressure daily data are available for Early

  7. Fitness consequences of natural variation in flooding-induced shoot elongation in Rumex palustris.

    PubMed

    Chen, Xin; Visser, Eric J W; de Kroon, Hans; Pierik, Ronald; Voesenek, Laurentius A C J; Huber, Heidrun

    2011-04-01

    • Plants can respond to their environment by morphological plasticity. Generally, the potential benefits of adaptive plastic responses are beyond doubt under predictable environmental changes. However, the net benefits may be less straightforward when plants encounter temporal stresses, such as flooding in river flood plains. • Here, we tested whether the balance of costs and benefits associated with flooding-induced shoot elongation depends on the flooding regime, by subjecting Rumex palustris plants with different elongation capacity to submergence of different frequency and duration. • Our results showed that reaching the surface by shoot elongation is associated with fitness benefits, as under less frequent, but longer, flooding episodes plants emerging above the floodwater had greater biomass production than plants that were kept below the surface. As we predicted, slow-elongating plants had clear advantages over fast-elongating ones if submergence was frequent but of short duration, indicating that elongation also incurs costs. • Our data suggest that high costs select for weak plasticity under frequent environmental change. In contrast to our predictions, however, fast-elongating plants did not have an overall advantage over slow-elongating plants when floods lasted longer. This indicates that the delicate balance between benefits and costs of flooding-induced elongation depends on the specific characteristics of the flooding regime.

  8. Vistula River bed erosion processes and their influence on Warsaw's flood safety

    NASA Astrophysics Data System (ADS)

    Magnuszewski, A.; Moran, S.

    2015-03-01

    Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s-1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s-1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  9. 78 FR 5822 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  10. 77 FR 18846 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  11. 77 FR 18844 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  12. 77 FR 18841 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  13. 78 FR 5826 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  14. 78 FR 5824 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  15. 78 FR 49278 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  16. 78 FR 21143 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  17. 77 FR 18839 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  18. 77 FR 18842 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  19. 77 FR 18835 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  20. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  1. 77 FR 18837 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  2. Natural Flood Management in context: evaluating and enhancing the impact.

    NASA Astrophysics Data System (ADS)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2016-04-01

    The series of flood events in the UK throughout December 2015 have led to calls for a reappraisal of the country's approach to flood management. In parts of Cumbria so-called "1 in 100" year floods have occurred three times in the last ten years, leading to significant infrastructure damage. Hard-engineered defences upgraded to cope with an anticipated 20% increase in peak flows and these 1% AEP events have been overwhelmed. It has become more widely acknowledged that unsympathetic agricultural and upland management practices, mainly since the Second World War, have led to a significant loss of storage in mid and upper catchments and their consequent ability to retain and slow storm run-off. Natural Flood Management (NFM) is a nature-based solution to restoring this storage and flood peak attenuation through a network of small-scale features exploiting natural topography and materials. Combined with other "soft" interventions such as restoring flood plain roughness and tree-planting, NFM offers the attractive prospect of an intervention that can target both the ecological and chemical objectives of the Water Framework Directive and the resilience demanded by the Floods Directive. We developed a simple computerised physical routing model that can account for the presence of in-channel and offline features such as would be found in a NFM scheme. These will add storage to the channel and floodplain and throttle the downstream discharge at storm flows. The model was applied to the heavily-modified channel network of an agricultural catchment in North Yorkshire using the run-off simulated for two storm events that caused flooding downstream in the autumn of 2012. Using up to 60 online features we demonstrated some gains in channel storage and a small impact on the flood hydrograph which would, however, have been insufficient to prevent the downstream floods in either of the storms. Complementary research at JBA has applied their hydrodynamic model JFLOW+ to identify

  3. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  4. Flood of support.

    PubMed

    Musgrave, Shonagh

    A year on from the torrential floods that struck Cumbria, many people are still unable to return to their homes. A team of therapists is helping people to cope with the stress and frustration. The January 2005 floods came four years after foot and mouth disease hit Cumbria. The region depends on agriculture, hill walking and tourism for revenue. Therapists offer residents a choice of eight, different complementary therapies. Users of the service say the therapies reduce stress and help them relax. PMID:16629105

  5. Analysis of the transport of sediment by the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, after the May 2006 flood

    USGS Publications Warehouse

    Flynn, Robert H.

    2011-01-01

    During May 13-16, 2006, rainfall in excess of 8.8 inches flooded central and southern New Hampshire. On May 15, 2006, a breach in a bank of the Suncook River in Epsom, New Hampshire, caused the river to follow a new path. In order to assess and predict the effect of the sediment in, and the subsequent flooding on, the river and flood plain, a study by the U.S. Geological Survey (USGS) characterizing sediment transport in the Suncook River was undertaken in cooperation with the Federal Emergency Management Agency (FEMA) and the New Hampshire Department of Environmental Services (NHDES). The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used to simulate flow and the transport of noncohesive sediments in the Suncook River from the upstream corporate limit of Epsom to the river's confluence with the Merrimack River in the Village of Suncook (Allenstown and Pembroke, N.H.), a distance of approximately 16 miles. In addition to determining total sediment loads, analyses in this study reflect flooding potentials for selected recurrence intervals that are based on the Suncook River streamgage flow data (streamgage 01089500) and on streambed elevations predicted by HEC-RAS for the end of water year 2010 (September 30, 2010) in the communities of Epsom, Pembroke, and Allenstown. This report presents changes in streambed and water-surface elevations predicted by the HEC-RAS model using data through the end of water year 2010 for the 50-, 10-, 2-, 1-, 0.2-percent annual exceedence probabilities (2-, 10-, 50-, 100-, and 500-year recurrence-interval floods, respectively), calculated daily and annual total sediment loads, and a determination of aggrading and degrading stream reaches. The model was calibrated and evaluated for a 400-day span from May 8, 2008 through June 11, 2009; these two dates coincided with field collection of stream cross-sectional elevation data. Seven sediment-transport functions were evaluated

  6. Dating fluvial archives of the Riverine Plain, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Daniela; Cohen, Tim; Reinfelds, Ivars; Jacobs, Zenobia; Shulmeister, James

    2016-04-01

    The Riverine Plain of Southeastern Australia is characterized by a multiplicity of relict river channels. Compared to the modern drainage system the most prominent of those distinct features are defined by large bankfull channel widths, large meander wavelengths and coarse sediment loads. Such morphological differences provide evidence for regimes of higher discharge, stemming from significant changes in runoff volumes, flood-frequency regimes and sediment supply. An existing geochronology for some of these channels is based on multi-grain thermoluminescence (Murrumbidgee River; Page et al., 1996) or radio-carbon dating (Goulburn River; Bowler, 1978) and indicates enhanced fluvial activity between 30 to 13 ka. The absence of exact Last Glacial Maximum (LGM, 21 ± 3 ka) ages of the Murrumbidgee palaeochannels was interpreted to indicate decreased fluvial activity during the peak of the LGM but was not inferred for the nearby Goulburn River. Recent developments in optical dating, especially measurements of individual grains of quartz, allow for an examination of these previous findings. Key sites along the Murrumbidgee and Goulburn Rivers have been revisited and new sites of the adjacent Murray River have been investigated. A revised, high-resolution geochronology based on single-grain optically stimulated luminescence dating is used to examine the precise occurrence of those massive channels and their implications for the Southern Hemisphere LGM. References: Page, K., Nanson, G., Price, D. (1996). Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11(4): 311-326. Bowler, J. (1978). Quaternary Climate and Tectonics in the Evolution of the Riverine Plain, Southeastern Australia. In: Davies, J. & Williams, M. (Editors). Landform Evolution in Australia, Australian National University Press: Canberra. p. 70-112.

  7. Holocene history of the El Nino phenomenon as recorded in flood sediments of northern coastal Peru

    SciTech Connect

    Wells, L.E. )

    1990-11-01

    Significant precipitation along the north-central coast of Peru (lat 5{degree}-10{degree}S) occurs exclusively during El Nino incursions of warm water into the Peruvian littoral. Flood deposits from this region therefore provide a proxy record of extreme El Nino events. The author presents a 3,500 yr chronology of the extreme events based on radiocarbon dating of overbank flood sediments from the Rio Casma (lat 9.2{degree}S). The flood-plain stratigraphy suggests that the El Nino phenomenon has occurred throughout the Holocene and that flood events much larger than that which occurred during 1982-1983 occur here at least once very 1,000 yr.

  8. Understanding Extreme Spanish Coastal Flood Events

    NASA Astrophysics Data System (ADS)

    Diez, J. Javier; Esteban, M. Dolores; Silvestre, J. Manuel

    2013-04-01

    The Santa Irene flood event, at the end of October 1982, is one of the most dramatically widely reported flood events in Spain. Its renown is mainly due to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea level rise by storm surge accompanying rain process on the coastal plains inland floods. Looking at damages the presentation analyzes the adapted measures from the point of view of the aims of the FP7 SMARTeST Project related to the Flood Resilience improvement in urban areas through looking for Technologies, Systems and Tools an appropriate "road to de market". The event was due to the meteorological phenomenon known as "gota fría" (cold drop), a relatively frequent and intense rainy phenomenon affecting one or more basins on the Iberian Peninsula, particularly on the Spanish east to southeast inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn season there, and, as it happens, in other places around the world (East/Southeast Africa). Their occurrence, however shows a great space-temporal variability (in a similar way to hurricanes, on Caribbean and western North-Atlantic areas, or to typhoons do). As a matter of fact, all of these equivalent though different phenomena may have different magnitude each time. An overview of the very main events since 11th century in the East to Southeast areas in Spain is shown in the presentation, looking for relation with climatic conditions and Climate changes on one hand, and with geomorphologic and geotechnical conditions on the other It also describes the results of a detailed analysis and reflection about this cold

  9. Multivariate pluvial flood damage models

    SciTech Connect

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  10. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  11. [Effect of flooding disturbance on aboveground biomass of Leymus chinensis grassland--a preliminary study].

    PubMed

    Wang, Zhengwen; Zhu, Tingcheng

    2003-12-01

    To investigate the effect of flooding disturbance on the net primary productivity of Songnen steppe, a comparatively thorough study was conducted on Sanjiadian State-owned Rangeland in Da'an city, Jilin Province, which was partly flooded in 1998. The study site was located in the south Songnen plain of Northeastern China, dominated by Leymus chinensis grassland. An extensively mild slope with flooding gradients (from un-flooded to heavily flooded) was taken as the study site. Two flooded transects coded FL and FH which was respectively subjected to 3 and 9 months of flooding were designed, and an un-flooded one coded CK at a relatively higher elevation was set as a control. Before flooding occurred in 1998, the slope had an almost uniform soil and L. chinensis dominated vegetation. Each transect was 0.2 hm2 (100 m x 20 m) in size, and the two flooded transects were almost paralleled each other, with the longer sides of them perpendicular to the retrieving direction of floodwater. In each transect twenty 1 m2 sized quadrats were randomly chosen to survey the community structure and the aboveground biomass. Comparative analyses were made on the dynamics of soil water, soil N and P, and species composition of grassland communities that occurred in responses to flooding disturbance. The results showed that the lightly and heavily flooded transects had a significantly larger aboveground biomass than the control, with the increase of 89.54% and 113.45%, respectively. The heavily flooded transect had a slightly but insignificantly larger aboveground biomass than the lightly flooded one, indicating that on flooded sites, water was not the limiting factor of the aboveground biomass. The acute changes of soil water caused by flooding led to the changes of soil nutrients and species assemblages, which would impact community biomass. Just as the case for aboveground biomass, the soil water contents of the two flooded transects were significantly larger than that of control

  12. [Effect of flooding disturbance on aboveground biomass of Leymus chinensis grassland--a preliminary study].

    PubMed

    Wang, Zhengwen; Zhu, Tingcheng

    2003-12-01

    To investigate the effect of flooding disturbance on the net primary productivity of Songnen steppe, a comparatively thorough study was conducted on Sanjiadian State-owned Rangeland in Da'an city, Jilin Province, which was partly flooded in 1998. The study site was located in the south Songnen plain of Northeastern China, dominated by Leymus chinensis grassland. An extensively mild slope with flooding gradients (from un-flooded to heavily flooded) was taken as the study site. Two flooded transects coded FL and FH which was respectively subjected to 3 and 9 months of flooding were designed, and an un-flooded one coded CK at a relatively higher elevation was set as a control. Before flooding occurred in 1998, the slope had an almost uniform soil and L. chinensis dominated vegetation. Each transect was 0.2 hm2 (100 m x 20 m) in size, and the two flooded transects were almost paralleled each other, with the longer sides of them perpendicular to the retrieving direction of floodwater. In each transect twenty 1 m2 sized quadrats were randomly chosen to survey the community structure and the aboveground biomass. Comparative analyses were made on the dynamics of soil water, soil N and P, and species composition of grassland communities that occurred in responses to flooding disturbance. The results showed that the lightly and heavily flooded transects had a significantly larger aboveground biomass than the control, with the increase of 89.54% and 113.45%, respectively. The heavily flooded transect had a slightly but insignificantly larger aboveground biomass than the lightly flooded one, indicating that on flooded sites, water was not the limiting factor of the aboveground biomass. The acute changes of soil water caused by flooding led to the changes of soil nutrients and species assemblages, which would impact community biomass. Just as the case for aboveground biomass, the soil water contents of the two flooded transects were significantly larger than that of control

  13. Estimating the long-term historic evolution of exposure to flooding of coastal populations

    NASA Astrophysics Data System (ADS)

    Stevens, A. J.; Clarke, D.; Nicholls, R. J.; Wadey, M. P.

    2015-02-01

    Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain and sea-level rise. In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea level change modify exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk. The method is applicable anywhere that suitable floodplain geometry, sea level and population datasets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers.

  14. Estimating the long-term historic evolution of exposure to flooding of coastal populations

    NASA Astrophysics Data System (ADS)

    Stevens, A. J.; Clarke, D.; Nicholls, R. J.; Wadey, M. P.

    2015-06-01

    Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain, as well as sea-level rise. In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea-level change have modified exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of changing flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk. The method is applicable anywhere that suitable floodplain geometry, sea level and population data sets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers.

  15. Multi-scale model analysis and hindcast of the 2013 Colorado Flood

    NASA Astrophysics Data System (ADS)

    Gochis, David; Yu, Wei; Sampson, Kevin; Dugger, Aubrey; McCreight, James; Zhang, Yongxin; Ikeda, Kyoko

    2015-04-01

    While the generation of most flood and flash flood events is fundamentally linked to the occurrence of heavy rainfall, the physical mechanisms responsible for translating rainfall into floods are complex and manifold. These runoff generation processes evolve over many spatial and temporal scales during the course of flooding events. As such robust flood and flash flood prediction systems need to account for multitude of terrestrial processes occurring over a wide range of space and time scales. One such extreme multiscale flood event was the 2013 Colorado Flood in which over 400 mm of rainfall fell along the Rock Mountain mountain front region over the course of a few days. The flooding impacts from this heavy rainfall event included not only high, fast flows in steep mountain streams but also included large areas of inundation on the adjacent plains and numerous soil saturation excess impacts such as hillslope failures and groundwater intrusions into domestic structures. A multi-scale and multi-process evaluation of this flood event is performed using the community WRF-Hydro modeling system. We incorporate several operational quantitative precipitation estimate and quantitative precipitation forecast products in the analysis and document the skill of multiple configurations of WRF-Hydro physics options across a range of contributing area length scales. Emphasis is placed on assessing how well the different model configurations capture the multi-scale streamflow response from small headwater catchments out to the entire South Platte River basin whose total contributing area exceeds 25,000 sq km. In addition to streamflow we also present evaluations of event simulations and hindcasts of soil saturation fraction, groundwater levels and inundated areas as a means of assessing different runoff generation mechanisms. Finally, results from a U.S. national-scale, fully-coupled hydrometeorological hindcast of the 2013 Colorado flood event using the combined WRF atmospheric

  16. Flood of June 15-17, 1998, Nishnabotna and East Nishnabotna rivers, Southwest Iowa

    USGS Publications Warehouse

    Fischer, E.E.

    1999-01-01

    Record flooding occurred June 15-17, 1998, in the Nishnabotna and East Nishnabotna River basins following severe thunderstorm activity over southwest Iowa. More than 8 inches of rain fell over a large part of Cass County. The rain gage at Atlantic, Iowa recorded a 24-hour total rainfall of 13.18 inches, which established a new official State record for the greatest amount of rainfall in a 24-hour period. The peak discharge was 41,400 cubic feet per second in the East Nishnabotna River near Atlantic, 60,500 cubic feet per second in the East Nishnabotna River at Red Oak, and 65,100 cubic feet per second in the Nishnabotna River above Hamburg. The peak discharge at Atlantic was greater than the theoretical 200-year flood and the peak discharges at Red Oak and Hamburg were greater than the respective theoretical 500-year floods. Information about the basin, the rain storms, the flooding, and a profile of high water marks at selected intervals along the Nishnabotna and East Nishnabotna Rivers are presented in this report.

  17. A combined GIS-HEC procedure for flood hazard evaluation

    SciTech Connect

    McLin, S.G.

    1993-09-01

    A technique is described for incorporating a drainage recognition capability into a graphical information system (GIS) database. This capability is then utilized to export digital topographic profiles of stream-channel cross-sectional geometries to the Hydrologic Engineering Center`s Water Surface Profile (HEC-2) model. This model is typically used in conjunction with the Flood Hydrograph (HEC-1) package to define floodplain boundaries in complex watersheds. Once these floodplain boundaries are imported back into the GIS framework, they can be uniquely referenced to the New Mexico state plane coordinate system. A combined GIS-HEC application in ungaged watersheds at Los Alamos National Laboratory is demonstrated. This floodplain mapping procedure uses topographic data from the Laboratory`s MOSS database. Targeted stream channel segments are initially specified in the MOSS system, and topographic profiles along stream-channel cross-sections am extracted automatically. This procedure is initiated at a convenient downstream location within each watershed, and proceeds upstream to a selected termination point. HEC-2 utilizes these MOSS channel data and HEC-1 generated storm hydrographs to uniquely define the floodplain. The computed water surface elevations at each channel section am then read back into the MOSS system. In this particular application, 13 separate elongated watersheds traverse Laboratory lands, with individual channels ranging up to 11 miles in length. The 50, 100, and 500-year floods, and the Probable Maximum Flood (PMF) are quantified in HEC-1. Individual floodplains are then defined for each channel segment in HEC-2 at 250 foot intervals, and detailed 1:4800 scale maps am generated. Over 100 channel miles were mapped using this combined GIS-HEC procedure.