Science.gov

Sample records for 51cr neutrino source

  1. The 51Cr neutrino source and Borexino: a desirable marriage

    NASA Astrophysics Data System (ADS)

    Ferrari, N.; Fiorentini, G.; Ricci, B.

    1996-02-01

    Exposure to a 51Cr neutrino source as that used in Gallex will provide an excellent overall performance test of Borexino, which should collect about 1400 source induced events, with an initial rate of about 35 counts per day. This will be particularly important if MSW-small-angle turns out to be the solution of the solar neutrino problem. In addition, if an independent, accurate calibration is available, one will have an interesting experiment on neutrino properties: as an example, a neutrino magnetic moment of the order 5 . 10-11 μB could be detected/excluded at the 90% C.L.

  2. Calorimetric method for determination of {sup 51}Cr neutrino source activity

    SciTech Connect

    Veretenkin, E. P. Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-15

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  3. Current status of new SAGE project with 51Cr neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V.; Cleveland, B.; Danshin, S.; Elliott, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Knodel, T.; Kozlova, Yu.; Malyshkin, Yu.; Matveev, V.; Mirmov, I.; Nico, J.; Robertson, R. G. H.; Shikhin, A.; Sinclair, D.; Veretenkin, E.; Wilkerson, J.

    2015-03-01

    A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ˜3 MCi to search for transitions of active neutrinos to sterile states with Δ m 2 ˜1 eV2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements.

  4. Preliminary results from the {sup 51}Cr neutrino source experiment in GALLEX

    SciTech Connect

    Hampel, W.; Heusser, G.; Kiko, J.

    1996-09-01

    The GALLEX collaboration performed a second {sup 51}Cr neutrino source experiment during fall 1995. The full results from this second source experiment will not be available before the end of 1996. Meanwhile, we present a short description and preliminary results in this informal note. The (preliminary) value of the activity obtained form direct measurements has been found equal to (68.7 {+-}0.7) PBq (with 1-sigma error). This value, which is about 10% higher than the activity of the first source, was achieved by optimizing the irradiation conditions in the Silo{acute e} reactor and doing a longer irradiation of the enriched chromium. Preliminary results show that the ratio, R, of the radiochemically determined activity from {sup 71}Ge counting (57.1 {+-} PBq) to the directly measured activity is (0.83 {+-} 0.10). The combined value of R for the two source experiments is (0.92 {+-} 0.08).

  5. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  6. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    SciTech Connect

    Gorbachev, V. V. Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-15

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  7. PREFACE: Neutrino physics at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  8. Detection of extended galactic sources with an underwater neutrino telescope

    SciTech Connect

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.; Lenis, D.

    2014-11-18

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects.

  9. SOX: Short distance neutrino Oscillations with BoreXino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fernandes, G.; Fomenko, K.; Franco, D.; Galbiati, C.; Ghiano, C.; Göger-Neff, M.; Goretti, A.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Krasnicky, D.; Kryn, D.; Laubenstein, M.; Link, J. M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Pantic, E.; Papp, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2013-08-01

    The very low radioactive background of the Borexino detector, its large size, and the well proved capability to detect both low energy electron neutrinos and antineutrinos make an ideal case for the study of short distance neutrino oscillations with artificial sources at Gran Sasso. This paper describes the possible layouts of 51Cr ( ν e ) and 144Ce-144Pr source experiments in Borexino and shows the expected sensitivity to eV mass sterile neutrinos for three possible different phases of the experiment. Expected results on neutrino magnetic moment, electroweak mixing angle, and couplings to axial and vector currents are shown too.

  10. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  11. Study of accelerator neutrino detection at a spallation source

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang

    2016-06-01

    We study the detection of accelerator neutrinos produced at the China Spallation Neutron Source (CSNS). Using the code FLUKA, we have simulated the production of neutrinos in a proton beam on a tungsten target and obtained the yield efficiency, numerical flux, and average energy of different flavors of neutrinos. Furthermore, detection of these accelerator neutrinos is investigated in two reaction channels: neutrino-electron reactions and neutrino-carbon reactions. The expected numbers of different flavors of neutrinos have also been calculated. Supported by National Natural Science Foundation of China (11205185, 11175020)

  12. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  13. Flavor composition of ultrahigh energy neutrinos at source and at neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Rodejohann, Werner

    2009-12-01

    We parametrize the initial flux composition of high energy astrophysical neutrinos as ({phi}{sub e}{sup 0} ratio {phi}{sub {mu}}{sup 0} ratio {phi}{sub {tau}}{sup 0})=(1 ratio n ratio 0), where n characterizes the source. All usually assumed neutrino sources appear as limits of this simple parametrization. We investigate how precise neutrino telescopes can pin down the value of n. We furthermore show that there is a neutrino mixing scenario in which the ratio of muon neutrinos to the other neutrinos takes a constant value regardless of the initial flux composition. This occurs when the muon neutrino survival probability takes its minimal allowed value. The phenomenological consequences of this very predictive neutrino mixing scenario are given.

  14. Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source

    SciTech Connect

    Scholberg, Kate

    2006-02-01

    Rates of coherent neutrino-nucleus elastic scattering at a high-intensity stopped-pion neutrino source in various detector materials (relevant for novel low-threshold detectors) are calculated. Sensitivity of a coherent neutrino-nucleus elastic scattering experiment to new physics is also explored.

  15. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  16. High-Energy Neutrinos from Galactic Sources

    NASA Astrophysics Data System (ADS)

    Kappes, Alexander

    2011-10-01

    Even 100 years after the discovery of cosmic rays their origin remains a mystery. In recent years, TeV gamma-ray detectors have discovered and investigated many Galactic sources where particles are accelerated up to energies of 100 TeV. However, it has not been possible up to now to identify these sites unambiguously as sources of hadronic acceleration. The observation of cosmic high-energy neutrinos from these or other sources will be a smoking-gun evidence for the sites of the acceleration of cosmic rays.

  17. The Spallation Neutron Source and the Neutrino Physics Program

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we describe the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL), along with a proposed long-term neutrino physics program to study neutrino-nucleus cross-sections and neutrino oscillations.

  18. The enriched chromium neutrino source for GALLEX

    SciTech Connect

    Hartmann, F.X.; Hahn, R.L.

    1991-01-18

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs.

  19. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  20. Searches for Point-like Sources of Astrophysical Neutrinos with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Feintzeig, Jacob

    Cosmic rays are accelerated to high energies in astrophysical objects, and create neutrinos when interacting with matter or photons. Observing a point source of high-energy astro-physical neutrinos would therefore be a smoking gun signature of cosmic ray acceleration. While evidence for a diffuse flux of astrophysical neutrinos was recently found, the origin of this flux is not yet known. We present three analyses searching for neutrino point sources with the IceCube Neutrino Observatory, a cubic kilometer Cherenkov detector located at the geographic South Pole. The analyses target astrophysical sources emitting neutrinos of all flavors, and cover energies from TeV to EeV. The first analysis searches point source emission of muon neutrinos using throughgoing muon tracks. The second analysis searches for spatial clustering among high-energy astrophysical neutrino candidate events, and is sensitive to neutrinos of all three flavors. The third analysis selects starting track events, muon neutrinos with interactions vertices inside the detector, to lower the energy threshold in the southern hemisphere. In each analysis, an un-binned likelihood method tests for spatial clustering of events anywhere in the sky as well as for neutrinos correlated with known gamma-ray sources. All results are consistent with the background-only hypothesis, and the resulting upper limits on E-2 neutrino emission are the most stringent throughout the entire sky. In the northern hemisphere, the upper limits are beginning to constrain emission models. In the southern hemisphere, the upper limits in the 100 TeV energy range are an order of magnitude lower than previous IceCube results, but are not yet probing predicted flux levels. By comparing the point source limits to the observed diffuse astrophysical neutrino flux, we also constrain the minimum number of neutrino sources and investigate the properties of potential source populations contributing to the diffuse flux. Additionally, an a

  1. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  2. sup 51 Cr release and oxidative stress in the lens

    SciTech Connect

    Stewart-DeHaan, P.J.; Sanwal, M.; Creighton, M.O.; Inch, W.R.; Trevithick, J.R. )

    1989-01-01

    Examination of the opaque areas of human cortical cataracts has shown that a large portion of the opacity could be attributed to the globules found there. We tested models involving globule formation as a result of oxidative damage to rat lens cells in culture and whole chick embryo lenses. When cell monolayers from a lens cell line were exposed to oxidizing conditions they developed globules on the cell surface. The cells were protected from damage by the addition of glutathione and vitamin C. Thirteen-day chick embryo lenses were also incubated in oxidizing conditions and the amount of cellular damage was assessed using a chromium-51 release assay we have developed. After 24 hr the percent 51Cr in the medium increased by an average of 20% as a result of 10 mM hydrogen peroxide treatment. The addition of the 10 mM vitamin C to the hydrogen peroxide significantly reduced the 51Cr leakage to the control level. Light microscopy of sections of the lens showed a breakdown of the equatorial fibre arrangement in the presence of H2O2, while addition of vitamin C restored the fibre organization to almost normal. The findings suggest that oxidative stress is an important step in cataractogenesis and point towards the use of water soluble antioxidants as protective agents.

  3. SEARCH FOR ASTROPHYSICAL NEUTRINO POINT SOURCES AT SUPER-KAMIOKANDE

    SciTech Connect

    Thrane, E.; Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.

    2009-10-10

    It has been hypothesized that large fluxes of neutrinos may be created in astrophysical 'cosmic accelerators'. The primary background for a search for astrophysical neutrinos comes from atmospheric neutrinos, which do not exhibit the pointlike directional clustering that characterizes a distant astrophysical signal. We perform a search for neutrino point sources using the upward-going muon data from three phases of operation (SK-I, SK-II, and SK-III) spanning 2623 days of live time taken from 1996 April 1 to 2007 August 11. The search looks for signals from suspected galactic and extragalactic sources, transient sources, and uncataloged sources. While we find interesting signatures from two objects-RX J1713.7-3946 (97.5% CL) and GRB 991004D (95.3% CL)-these signatures lack compelling statistical significance given trial factors. We set limits on the flux and fluence of neutrino point sources above energies of 1.6 GeV.

  4. Neutrino signal from extended Galactic sources in IceCube

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Aguilar, J. A.; Neronov, A.; Montaruli, T.

    2013-12-01

    Context. The Galactic plane is the brightest source of γ rays in the sky. It should also be one of the brightest very-high-energy neutrino sources, if a neutrino flux comparable to the γ-ray flux is produced by the cosmic ray interactions in the interstellar medium. Aims: We explore the detectability of the neutrino flux from the entire Galactic plane or from a part of it with the IceCube neutrino detector. Methods: We calculated the normalization and the spectral index of the neutrino power-law spectrum from different regions of the Galactic plane, based on the observed spectral characteristics of the pion decay γ-ray diffuse emission observed by the Fermi/LAT telescope in the energy band above 100 GeV. We compared the neutrino flux calculated in this way with the sensitivity of IceCube for the detection of extended sources. Results: Assuming a binned extended source analysis method, we find that the only possible evidence of neutrino emission for sources located in the northern hemisphere after 20 years of exposure is from the Cygnus region. For other parts of the Galactic plane even a 20 year exposure with IceCube is not sufficient for the detection. Taking into account marginal significance of the detectable source in the Cygnus region, we find a precise position and size of the source region that optimizes the signal-to-noise ratio for neutrinos. We also calculated the low-energy threshold above which the neutrino signal can be detected with the highest signal-to-noise ratio. This calculation of precise source position, size, and energy range, based on the γ-ray data, can be used to remove the so-called trial factor in the analysis of the real neutrino data of IceCube. We notice that the diffuse neutrino emission from the inner Galactic plane in the southern hemisphere is much brighter. A neutrino detector with characteristics equivalent to IceCube, but placed at the northern hemisphere (such as KM3NeT), would detect several isolated neutrino sources in

  5. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  6. The physics and theory of astrophysical neutrino sources

    NASA Astrophysics Data System (ADS)

    Fang, Ke

    2016-01-01

    The origin of astrophysical neutrinos remains a mystery. Absence of detection of EeV neutrinos questions, among other properties, the mass composition and the pion production efficiency of highest energy sources in the Universe. Growing statistics from the IceCube Observatory at TeV-PeV energies starts to reveal important features of the sources, including their energy spectrum, spacial distribution, emission rates, and Galactic/extragalactic origin. At sub-TeV, tensions exist between the fluxes of neutrinos and isotropic diffusive gamma-ray background, challenging some of the existing astrophysical and dark matter scenarios. In light of these observational constraints and implications, I will review a wide range of potential neutrino sources, focusing on their neutrino production mechanism and multi-messenger signatures.

  7. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  8. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2008-02-01

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  9. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  10. Measuring Active-Sterile Neutrino Oscillations with a Stopped Pion Neutrino Source

    NASA Astrophysics Data System (ADS)

    van de Water, Richard; Louis, Bill; Mills, Geoff

    2007-04-01

    The question of the existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the LSND oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, and Lorentz violation. Here we consider an experiment at a stopped pion neutrino source (the Spallation Neutron Source at ORNL) to determine if active-sterile neutrino oscillations with δm ^2 greater than 0.1 eV^2 can account for the signal. By exploiting stopped +circ decay to produce a monoenergetic νμ source, and measuring the rate of the neutral current reaction νx0.05in ^12C ->νx0.05in ^12C^*(15.11) as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed.

  11. First Search for Point Sources of High-energy Cosmic Neutrinos with the ANTARES Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Aguilar, J. A.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-12-01

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 ± 0.1 deg. The neutrino flux sensitivity is 7.5 × 10-8(E ν/ GeV)-2 GeV-1 s-1 cm-2 for the part of the sky that is always visible (δ < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed. We dedicate this Letter to the memory of our colleague and friend Luciano Moscoso, who passed away during the preparation of this Letter.

  12. Artificial neutrino source based on the {sup 37}Ar isotope

    SciTech Connect

    Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Kotelnikov, N. A.; Markov, S. Yu.; Selin, V. V.; Shakirov, Z. N.; Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N. Shikhin, A. A.; Yants, V. E.; Khomyakov, Yu. S.; Cleveland, B. T.

    2007-02-15

    In April 2004, a neutrino source was produced by irradiating a 330-kg piece of pressed calcium oxide at the fast-neutron reactor BN-600 (Zarechny, Russia) for six months. The {sup 37}Ar isotope was obtained via the (n, {alpha}) reaction on {sup 40}Ca, and {sup 37}Ar was extracted from an aqueous solution of nitric acid in which the solid target was dissolved. After that, {sup 37}Ar was purified and sealed into a capsule. This source was used to measure the neutrino-capture rate in metalic gallium for neutrinos from {sup 37}Ar decay, which have an energy close to that of the main line of solar {sup 7}Be neutrinos (863 keV). The target of the SAGE Gallium-Germanium Neutrino Telescope was irradiated by using this source at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences). The source activity was measured by several methods during its production, in the course of irradiation, and after its completion. The weighted mean of the activity for six measurements was 409 {+-} 2 kCi at the beginning of irradiation of the gallium target (04:00 Moscow time, 30.04.2004). The scatter in the activity values obtained by different methods does not exceed 5%.

  13. Right-handed neutrinos as the source of density perturbations

    SciTech Connect

    Boubekeur, Lotfi; Creminelli, Paolo

    2006-05-15

    We study the possibility that cosmological density perturbations are generated by the inhomogeneous decay of right-handed neutrinos. This will occur if a scalar field whose fluctuations are created during inflation is coupled to the neutrino sector. Robust predictions of the model are a detectable level of non-Gaussianity and, if standard leptogenesis is the source of the baryon asymmetry, a baryon isocurvature perturbations at the level of the present experimental constraints.

  14. Guaranteed and prospective Galactic TeV neutrino sources

    SciTech Connect

    Kistler, Matthew D.; Beacom, John F.

    2006-09-15

    Recent observations, particularly from the HESS Collaboration, have revealed rich Galactic populations of TeV gamma-ray sources, including a collection unseen in other wavelengths. Many of these gamma-ray spectra are well measured up to {approx}10 TeV, where low statistics make observations by air Cerenkov telescopes difficult. To understand these mysterious sources, especially at much higher energies--where a cutoff should eventually appear--new techniques are needed. We point out the following: (1) For a number of sources, it is very likely that pions, and hence TeV neutrinos, are produced; (2) As a general point, neutrinos should be a better probe of the highest energies than gamma rays, due to increasing detector efficiency; and (3) For several specific sources, the detection prospects for km{sup 3} neutrino telescopes are very good, {approx}1-10 events/year, with low atmospheric neutrino background rates above reasonable energy thresholds. Such signal rates, as small as they may seem, will allow neutrino telescopes to powerfully discriminate between models for the Galactic TeV sources, with important consequences for our understanding of cosmic-ray production.

  15. Ion source choices - an h- source for the high intensity neutrino source

    SciTech Connect

    Moehs, Douglas P.; Welton, Robert F.; Stockli, Martin P.; Peters, Jens; Alessi, James; /Brookhaven

    2006-08-01

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  16. Neutrino oscillations in a model with a source and detector

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1998-03-01

    We study the oscillations of neutrinos in a model in which the neutrino is coupled to a localized, idealized source and detector. By varying the spatial and temporal resolution of the source and detector we are able to model the full range of source and detector types ranging from coherent to incoherent. We find that this approach is useful in understanding the interface between the quantum mechanical nature of neutrino oscillations on the one hand and the production and detection systems on the other hand. This method can easily be extended to study the oscillations of other particles such as the neutral K and B mesons. We find that this approach gives a reliable way to treat the various ambiguities which arise when one examines the oscillations from a wave packet point of view. We demonstrate that the conventional oscillation formula is correct in the relativistic limit and that several recent claims of an extra factor of 2 in the oscillation length are incorrect. We also demonstrate explicitly that the oscillations of neutrinos which have separated spatially may be ``revived'' by a long coherent measurement.

  17. Search for point sources of high energy neutrinos with Amanda

    SciTech Connect

    Ahrens, J.

    2002-08-01

    Report of search for likely point sources for neutrinos observed by the Amanda detector. Places intensity limits on observable point sources. This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m{sup 2} for E{sub {mu}} {approx} 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E{sub {nu}}{sup -2} and declination larger than +40{sup o}, we obtain E{sup 2} (dN{sub {nu}}/dE) {le} 10{sup -6} GeV cm{sup -2} s{sup -1} for an energy threshold of 10 GeV.

  18. Intestinal permeability to (/sup 51/Cr)EDTA in children with Crohn's disease and celiac disease

    SciTech Connect

    Turck, D.; Ythier, H.; Maquet, E.; Deveaux, M.; Marchandise, X.; Farriaux, J.P.; Fontaine, G.

    1987-07-01

    (/sup 51/Cr)EDTA was used as a probe molecule to assess intestinal permeability in 7 healthy control adults, 11 control children, 17 children with Crohn's disease, and 6 children with untreated celiac disease. After subjects fasted overnight, 75 kBq/kg (= 2 microCi/kg) /sup 51/Cr-labeled EDTA was given by mouth; 24-h urinary excretion of (/sup 51/Cr)EDTA was measured and expressed as a percentage of the total oral dose. Mean and SD were as follows: control adults 1.47 +/- 0.62, control children 1.59 +/- 0.55, and patients with Crohn's disease or celiac disease 5.35 +/- 1.94. The difference between control children and patients was statistically significant (p less than 0.001). These results show that intestinal permeability to (/sup 51/Cr)EDTA is increased among children with active or inactive Crohn's disease affecting small bowel only or small bowel and colon, and with untreated celiac disease. The (/sup 51/Cr)EDTA permeability test could facilitate the decision to perform more extensive investigations in children suspected of small bowel disease who have atypical or poor clinical and biological symptomatology.

  19. High-energy Neutrinos from Sources in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Olinto, Angela V.

    2016-09-01

    High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by the accretion of gas during the formation of large-scale structures, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report the cumulative cosmic-ray and neutrino spectra generated by galaxy clusters, including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and γ rays for reasonable choices of parameters and source scenarios.

  20. Searches for Point-like and Extended Neutrino Sources Close to the Galactic Center Using the ANTARES Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Chiarusi, T.; Circella, M.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsäßer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Mueller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüßler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-05-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46.°8 and decl. = -64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E -2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E -2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10-8 GeV cm-2 s-1, depending on the exact location of the source.

  1. (51Cr)EDTA intestinal permeability in children with cow's milk intolerance

    SciTech Connect

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.; Jansen, J. )

    1990-02-01

    Making use of ({sup 51}Cr)EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. ({sup 51}Cr)EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that the ({sup 51}Cr)EDTA test can be helpful for the diagnosis of cow's milk intolerance.

  2. Point source searches with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Feintzeig, Jacob

    2013-04-01

    Observing a point source of astrophysical neutrinos would be a ``smoking gun'' signature of a cosmic ray accelerator. Here we discuss past and future searches for point sources using IceCube, a cubic kilometer Cherenkov detector at the South Pole. Results from three years of partial-detector data will be shown. I will then describe how upcoming analyses will improve IceCube's sensitivity to point sources by including two years of full-detector data and incorporating new event reconstruction techniques.

  3. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  4. Intestinal permeability to (/sup 51/Cr)EDTA in children with cystic fibrosis

    SciTech Connect

    Leclercq-Foucart, J.; Forget, P.; Sodoyez-Goffaux, F.; Zappitelli, A.

    1986-05-01

    Intestinal permeability was investigated in 14 children with cystic fibrosis making use of (/sup 51/Cr)EDTA as probe molecule. Ten normal young adults and 11 children served as controls. After oral administration of (/sup 51/Cr)EDTA, 24 h urine was collected. Urinary radioactivity was calculated and results expressed as percentage of oral dose excreted in 24 h urine. Mean and SEM were as follows: 2.51 +/- 0.21, 2.35 +/- 0.24, and 13.19 +/- 1.72 for control children, normal adults, and cystic fibrosis patients, respectively. The permeability differences between cystic fibrosis patients and either control children or control adults are significant (p less than 0.001).

  5. Studies with nonradioisotopic sodium chromate. II. Single- and double-label sup 52 Cr/ sup 51 Cr posttransfusion recovery estimations

    SciTech Connect

    Heaton, W.A.; Keegan, T.; Hanbury, C.M.; Holme, S.; Pleban, P. )

    1989-10-01

    A recently developed nonradioisotopic 52Cr technique was used to measure either red cell volume or posttransfusion recovery of stored red cells. The experimental method uses Zeeman electrothermal atomic absorption spectrophotometry to measure red cell chromium. Results from the 52Cr method were compared with those from 51Cr single-label and 125I-albumin/51Cr double-label procedures using 49-day AS-1 red cell concentrates drawn and prepared according to standard procedures. In the first group of five donors, red cell volume was estimated concurrently with both 52Cr-labeled fresh red cells and 125I-albumin. The latter measured plasma volume from which red cell volume was estimated on the basis of the hematocrit (125I red cell volume). 51Cr-labeled stored red cells were transfused to measure posttransfusion recoveries. The correlation between 52Cr and 125I red cell volumes was significant (r = 0.68, p less than 0.01), and, in this group, the differences were not significant (p less than 0.05). Twenty-four-hour posttransfusion recoveries of 51Cr-labeled stored red cells averaged 66 +/- 5 percent when measured with the 125I/51Cr technique and 69 +/- 8 percent when measured with the 52Cr/51Cr method. In the second group of five donors, red cell volume was estimated by the 125I-albumin technique, and the posttransfusion recovery of stored red cells was quantitated by 51Cr- and 52Cr-labeled stored cells simultaneously. In this group, posttransfusion recoveries with 125I/51Cr averaged 73 +/- 7 percent; with 125I/52Cr, they averaged 75 +/- 10 percent. Using the single-label method of calculation, recoveries averaged 76 +/- 7 and 75 +/- 10 percent for the 51Cr and 52Cr methods, respectively.

  6. Neutrino physics at meson factories and spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Burman, R. L.; Louis, W. C.

    2003-11-01

    This article provides a brief review of neutrino research at LAMPF and at ISIS, including the early history of both programmes. The techniques adopted for the characterization of the neutrino fluxes, and a description of the neutrino experimental programmes at both facilities are given.

  7. Constraining GRB as Source for UHE Cosmic Rays through Neutrino Observations

    NASA Astrophysics Data System (ADS)

    Chen, P.

    2013-07-01

    The origin of ultra-high energy cosmic rays (UHECR) has been widely regarded as one of the major questions in the frontiers of particle astrophysics. Gamma ray bursts (GRB), the most violent explosions in the universe second only to the Big Bang, have been a popular candidate site for UHECR productions. The recent IceCube report on the non-observation of GRB induced neutrinos therefore attracts wide attention. This dilemma requires a resolution: either the assumption of GRB as UHECR accelerator is to be abandoned or the expected GRB induced neutrino yield was wrong. It has been pointed out that IceCube has overestimated the neutrino flux at GRB site by a factor of ~5. In this paper we point out that, in addition to the issue of neutrino production at source, the neutrino oscillation and the possible neutrino decay during their flight from GRB to Earth should further reduce the detectability of IceCube, which is most sensitive to the muon-neutrino flavor as far as point-source identification is concerned. Specifically, neutrino oscillation will reduce the muon-neutrino flavor ratio from 2/3 per neutrino at GRB source to 1/3 on Earth, while neutrino decay, if exists and under the assumption of normal hierarchy of mass eigenstates, would result in a further reduction of muon-neutrino ratio to 1/8. With these in mind, we note that there have been efforts in recent years in pursuing other type of neutrino telescopes based on Askaryan effect, which can in principle observe and distinguish all three flavors with comparable sensitivities. Such new approach may therefore be complementary to IceCube in shedding more lights on this cosmic accelerator question.

  8. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  9. Searches for Time-dependent Neutrino Sources with IceCube Data from 2008 to 2012

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Baker, M.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.; IceCube Collaboration

    2015-07-01

    In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft γ-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.

  10. DAEδALUS: A Phased Neutrino Physics Program Using Cyclotron Decay-at-Rest Neutrino Sources

    NASA Astrophysics Data System (ADS)

    Toups, M.

    DAEδALUS is a proposed phased neutrino physics program consisting of two flagship experiments: a search for CP violation in the neutrino sector and a definitive search for sterile neutrinos. Ultimately, DAEδALUS will comprise several accelerator-based modules located at three different distances from a single, large underground detector such as LENA, MEMPHYS, or Hyper-K. Each of these modules will employ new low cost, high power cyclotrons to produce pion decay-at-rest neutrino beams, which can be used to search for evidence of CP violation in the oscillation probability of muon antineutrinos to electron antineutrinos over baselines of ∼20 km. However, at an early phase of the program, the high power DAEδALUS injector cyclotron can also be used to produce an intense isotope decay-at-rest neutrino beam. IsoDAR is a proposed experiment, which uses a 8Li decay-at-rest neutrino beam to preform a definitive search for sterile neutrinos by installing the DAEδALUS injector cyclotron in an underground lab close to a large liquid scintillator detector such as KamLAND. IsoDAR can rule out the parameter space allowed by global fits to the Reactor, SAGE, and GALLEX anomalies at 20σ in 5 years. These two flagship searches make a compelling case for the DAEδALUS phased neutrino physics program.

  11. A facility for neutrino-nucleus cross-section measurements at the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Efremenko, Yu.

    2005-01-01

    In this paper we discuss the possibility of building a neutrino facility at the Spallation Neutron Source presently under construction at ORNL. At such a facility an extensive long-term program can be established to study neutrino nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  12. Type IIn supernovae as sources of high energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2016-05-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35° from Type IIn supernova 2005bx.

  13. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Kowalski, M.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Leier, D.; Leuthold, M.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-05-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=((E)/(1TeV))γ·(dΦ)/(dE) to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν¯μ0+Φντ+ν¯τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν¯μ0/Φντ+ν¯τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν¯μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties.

  14. The 16N calibration source for the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Dragowsky, M. R.; Hamer, A.; Chan, Y. D.; Deal, R.; Earle, E. D.; Frati, W.; Gaudette, E.; Hallin, A.; Hearns, C.; Hewett, J.; Jonkmans, G.; Kajiyama, Y.; McDonald, A. B.; Moffat, B. A.; Norman, E. B.; Sur, B.; Tagg, N.

    2002-04-01

    A calibration source using γ-rays from 16N ( t1/2=7.13 s) β-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO 2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D 2O or H 2O) in a CO 2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic β-particles yet permit the primary branch 6.13 MeV γ-rays to exit. Detection of the coincident β-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source γ-ray output and performance.

  15. Enhanced intestinal permeability to 51Cr-labeled EDTA in dogs with small intestinal disease.

    PubMed

    Hall, E J; Batt, R M

    1990-01-01

    Intestinal permeability in dogs with small intestinal disease was measured by quantitation of 24-hour urinary excretion of 51Cr-labeled EDTA following intragastric administration. Permeability was high in dogs with a variety of naturally acquired small intestinal diseases including wheat-sensitive enteropathy of Irish Setters, small intestinal bacterial over-growth, and giardiasis, and permeability was decreased after successful treatment. These findings indicate that the assessment of intestinal permeability may be a useful technique for detecting small intestinal disease and for monitoring the efficacy of treatment in dogs. PMID:2104825

  16. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  17. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    SciTech Connect

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.; Collins, S.M.; Coates, G.; Hunt, R.H.; Bienenstock, J.

    1987-11-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered /sup 51/Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion of /sup 51/Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease.

  18. Use of a /sup 51/Cr technique to detect gastrointestinal microbleeding associated with nonsteroidal antiinflammatory drugs

    SciTech Connect

    Lussier, A.; Arsenault, A.; Varady, J.; de Medicis, R.; Lussier, Y.; LeBel, E.

    1987-02-01

    Of techniques used to evaluate gastrointestinal (GI) bleeding, use of radiochromium (/sup 51/Cr)-tagged erythrocytes is the most quantitative and scientifically acceptable method. The value of this technique as well as systematic errors possible with its use are discussed. The medical literature concerning /sup 51/Cr evaluation of GI microbleeding with naproxen therapy is critically reviewed. We suggest that future studies using this technique be parallel, randomized, double-blind, and include a 1-week placebo baseline phase for all subjects. Treatment with nonsteroidal antiinflammatory drugs (NSAIDs) should last 3 to 4 weeks. A parallel group of subjects should receive placebo throughout the study. For valid statistical analyses, randomization must achieve baseline comparability of weight, height, age, and sex in the treatment groups. Data transformations may be necessary to satisfy the assumptions of the statistical model. Following these guidelines will enable investigators to better evaluate GI microbleeding during treatment with naproxen or other NSAIDs, and, hopefully, to establish the safety profiles of these drugs.37 references.

  19. A search for cosmic sources of high energy neutrinos with small underground detectors

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.; Castagnoli, C.; Galeotti, P.

    1985-01-01

    On the basis of standard source calculations of high energy neutrino fluxes, some models of astrophysical object (single stars and binary systems) are discussed from which a detectable muon flux is expected in small underground detectors.

  20. Preliminary limits on the flux of muon neutrinos from extraterrestrial point sources

    SciTech Connect

    Bionta, R.M.; Blewitt, G.; Bratton, C.B.; Casper, D.; Cortez, B.G.; Chrysicopoulou, P.; Claus, R.; Dye, S.T.; Errede, S.; Foster, G.W.

    1985-07-03

    We present the arrival directions of 117 upward-going muon events collected with the IMB proton lifetime detector during 317 days of live detector operation. The rate of upward-going muons observed in our detector was found to be consistent with the rate expected from atmospheric neutrino production. The upper limit on the total flux of extraterrestrial neutrinos >1 GeV is <0.06 neutrinos/cm/sup 2/-sec. Using our data and a Monte Carlo simulation of high energy muon production in the earth surrounding the detector, we place limits on the flux of neutrinos from a point source in the Vela X-2 system of <0.009 neutrinos/cm/sup 2/-sec with E > 1 GeV. 6 refs., 5 figs.

  1. A New Method for Finding Point Sources in High-energy Neutrino Data

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Miller, M. Coleman

    2016-08-01

    The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ˜50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source, additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.

  2. Measurement of the response of a Ga solar neutrino experiment to neutrinos from a {sup 37}Ar source

    SciTech Connect

    Abdurashitov, J.N.; Gavrin, V.N.; Girin, S.V.

    2006-04-15

    An intense source of {sup 37}Ar was produced by the (n,{alpha}) reaction on {sup 40}Ca by irradiating 330 kg of calcium oxide in the fast neutron breeder reactor at Zarechny, Russia. The {sup 37}Ar was released from the solid target by dissolution in acid, collected from this solution, purified, sealed into a small source, and brought to the Baksan Neutrino Observatory where it was used to irradiate 13 tonnes of gallium metal in the Russian-American gallium solar neutrino experiment SAGE. Ten exposures of the gallium to the source, whose initial strength was 409{+-}2kCi, were carried out during the period April to September 2004. The {sup 71}Ge produced by the reaction {sup 71}Ga({nu}{sub e},e{sup -}){sup 71}Ge was extracted, purified, and counted. The measured production rate was 11.0{sub -0.9}{sup +1.0} (stat){+-}0.6 (syst) atoms of {sup 71}Ge/d, which is 0.79{sub -0.10}{sup +0.09} of the theoretically calculated production rate. When all neutrino source experiments with gallium are considered together, there is an indication the theoretical cross section has been overestimated.

  3. Measurement of the activity of an artificial neutrino source based on {sup 37}Ar

    SciTech Connect

    Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N. Shikhin, A. A.; Yants, V. E.; Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Markov, S. Yu.; Shakirov, Z. N.; Cleveland, B. T.

    2007-02-15

    The activity of an artificial neutrino source based on {sup 37}Ar was measured by a specially developed method of directly counting {sup 37}Ar decays in a proportional counter. This source was used to irradiate the target of the SAGE radiochemical gallium-germanium neutrino telescope at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences, Moscow), whereupon the measurements were performed at the Institute of Reactor Materials (Zarechny, Sverdlovsk oblast, Russia). The method used to prepare gaseous samples for measurements in proportional counters and the counting procedure are described. The measured activity of the {sup 37}Ar neutrino source is 405.1 {+-} 3.7 kCi (corrected for decays that occurred within the period between the instant of activity measurement and the commencement of the irradiation of Ga target at 04:00 Moscow time, 30.04.2004)

  4. Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; Kabadi, Neel V.

    2015-07-01

    The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5 /3 inverse power law as has been previously assumed. In this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the power spectrum is absent or evident, respectively. Since neutrinos of a given energy will exhibit these two effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the power spectrum present in the neutrino burst signal from a Galactic supernova.

  5. A maximum-likelihood search for neutrino point sources with the AMANDA-II detector

    NASA Astrophysics Data System (ADS)

    Braun, James R.

    Neutrino astronomy offers a new window to study the high energy universe. The AMANDA-II detector records neutrino-induced muon events in the ice sheet beneath the geographic South Pole, and has accumulated 3.8 years of livetime from 2000 - 2006. After reconstructing muon tracks and applying selection criteria, we arrive at a sample of 6595 events originating from the Northern Sky, predominantly atmospheric neutrinos with primary energy 100 GeV to 8 TeV. We search these events for evidence of astrophysical neutrino point sources using a maximum-likelihood method. No excess above the atmospheric neutrino background is found, and we set upper limits on neutrino fluxes. Finally, a well-known potential dark matter signature is emission of high energy neutrinos from annihilation of WIMPs gravitationally bound to the Sun. We search for high energy neutrinos from the Sun and find no excess. Our limits on WIMP-nucleon cross section set new constraints on MSSM parameter space.

  6. Relationship between intestinal permeability to ( sup 51 Cr)EDTA and inflammatory activity in asymptomatic patients with Crohn's disease

    SciTech Connect

    Pironi, L.; Miglioli, M.; Ruggeri, E.; Levorato, M.; Dallasta, M.A.; Corbelli, C.; Nibali, M.G.; Barbara, L. )

    1990-05-01

    The relationship between intestinal permeability to an oral dose (100 mu Ci) of (51CR)EDTA and the inflammatory activity of Crohn's disease was studied in 63 adult patients (32 unresected and 31 resected) who underwent 162 evaluations. The results of the (51CR)EDTA test were compared with the serum levels of the acute-phase reactant proteins (APRP) and with the result of the (111In)leukocyte scanning, respectively, as an indirect and direct method to assess intestinal inflammation. In a group of healthy adult controls, the upper normal value for the 24-hr urinary (51CR)EDTA excretion was 3.61 (97.5% percentile) and the mean coefficient of variation was 21%. Sensitivity and specificity of the (51CR)EDTA test in identifying active inflammation expressed by increased serum levels of APRP were, respectively, 97% and 54% in the unresected group and 68% and 52% in the resected group of patients. The low specificity of the test was due to the presence of increased (51CR)EDTA urinary excretion in about half the cases with normal serum levels of APRP. The (111In)leukocyte scanning was performed in a subgroup of 11 patients (three unresected and eight resected) with normal serum levels of APRP, six with increased and five with normal (51CR)EDTA urinary excretion. All six patients with increased intestinal permeability had a positive 111In image of mild to moderate degree of activity. A positive 111In scan was present in two of the five patients with normal permeability; these were two resected patients.

  7. Search for neutrino point sources with ANTARES 2007-2012 data

    SciTech Connect

    Zornoza, J. D.

    2014-11-18

    Neutrinos are unique probes to study the high energy Universe, since they are neutral, only interact weakly and are stable. Furthermore, they can provide key information about several fundamental questions in Physics like the origin of cosmic rays and the nature of dark matter. The ANTARES neutrino telescope, installed in the Mediterranean Sea, has been taking data since 2007. In this paper we review the results concerning the search for point sources of cosmic neutrinos, using data of 2007–2012. Two main strategies have been followed: to look towards the direction of sources candidate to emmit neutrinos and to make an all-sky scan. Although no significant cluster has been found above the background, flux limits have been set at the level of E{sup 2}φν{sup 90CL}∼1–2×10{sup −8} GeV cm{sup −}2s{sup −1}.

  8. Neutrino

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-04-01

    The most basic Quantum are the particles who mutual rotation, quantum is composed of basic quantum.Quantum convergence or divergence is conditional, the faster the particle rotates, the smaller the orbiting radius will be, the greater quality is, the more density will be. The orbiting radius of less than 10-15 meters in the order of convergence, convergence of neutron, proton, and then they are in the formation of the nucleus, and the convergence of quantum can make extra nuclear electron and the formation of atomic; if rotation radius is more than 10-15 meters of magnitude, the internal quantum atoms diverge to outer space in the form of electromagnetic waves. The quality of magnetic wave particle is composed of the rotation speed of the particle which is internal of the electromagnetic, it doesn't matter about the electromagnetic wave propagation velocity of particles. Neutrinos are orbiting particles, the orbiting radius is about 10-15 meters, is a special kind of radiation. Neutrino is between the virtual particles (according to modern science, the electromagnetic wave doesn't have quality) and modern scientific (the particle who has quality) special particles

  9. VizieR Online Data Catalog: AGN neutrino source candidates (Achterberg+, 2006)

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Atlee, D. W.; Bahcall, J. N.; Bair, X.; Baret, B.; Bartelt, M.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Boeser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Clem, J.; Collin, B.; Conrad, J.; Cooley, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Desiati, P.; De Young, T.; Dreyer, J.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Ellsworth, R. W.; Evenson, P. A.; Fazely, A. R.; Feser, T.; Filimonov, K.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Greene, M. G.; Grullon, S.; Gross, A.; Gunasingha, R. M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Koepke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Lang, R.; Leich, H.; Leuthold, M.; Liubarsky, I.; Lundbert, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Meszaros, P.; Minor, R. H.; Miocinovic, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Munich, K.; Nahnhauer, R.; Nam, J. W.; Niessen, P.; Nygren, D. R.; Oegelman, H.; Olbrechts, Ph.; Olivas, A.; Patton, S.; Pena-Garay, C.; Perez de los Heros, C.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Refflinghaus, F.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rizzo, A.; Robbins, S.; Rott, C.; Rutledge, D.; Sander, H.-G.; Schlenstedt, S.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G.M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Steele, D.; Stezelberger, T.; Stokstad, R.G.; Stoufer, M. C.; Stoyanov, S.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T.J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Toale, P. A.; Turcan, D.; Van Eijndhoven, T. J.; Vandenbroucke, J.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiesbusch, C. H.; Wikstroem, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; Biermann, P.L.

    2007-02-01

    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high-energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found. (11 data files).

  10. Time-Dependent Searches for Neutrino Point Sources with the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Baker, Michael Francis

    The IceCube Neutrino Observatory is a km³ detector which recently completed construction at the geographic South Pole. Here we present four searches for flaring point-sources sources of neutrinos using IceCube data using maximum-likelihood techniques. For the first time, a search is performed over the entire parameter space of energy, direction and time with sensitivity to neutrino flares lasting between 20 mus and a year duration from astrophysical sources. This work is also an important step for the IceCube experiment in utilizing a multi-messenger approach, driving IceCube neutrino analysis with information from photon observatories. The use of time information is useful since integrated searches over time are less sensitive to flares as they are affected by a larger background of atmospheric neutrinos and moons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei and gamma-ray bursts, are promising candidate neutrino emitters. One search is "untriggered" in the sense that it looks for any possible flare in the entire sky. The other two searches are triggered by multi-wavelength information on flares. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. A search for periodic emission of neutrinos is also performed on binary systems in the galaxy which are thought to be sources of particle acceleration. The searches use data taken by 40 strings of IceCube between Apr 5, 2008 and May 20, 2009 and by 59 strings of IceCube between May 20, 2009 and May 31, 2010. The results from all searches are compatible with a fluctuation of the background.

  11. Use of 125I- and 51Cr-Labeled Albumin for the Measurement of Gastrointestinal and Total Albumin Catabolism*

    PubMed Central

    Kerr, Robert M.; Bois, John J. Du; Holt, Peter R.

    1967-01-01

    A method for the simultaneous measurement of gastrointestinal protein loss and total albumin turnover entailing the use of a combination of 125iodine- and 51chromium-labeled albumin is described. Albumin turnover was calculated by the measurement of albumin-125I plasma decay and cumulative urinary excretion, and the results obtained agreed closely with previous studies utilizing albumin-131I. Gastrointestinal catabolism was calculated from the rate of fecal excretion of 51Cr and the specific activity of plasma albumin-51Cr, and these data were related to the calculated albumin turnover results. During the period of 6-14 days after administration, the ratio of specific activties of albumin-125I and -51Cr in plasma and in extravascular spaces or gastric and biliary secretions remained almost identical. Fecal excretion of 51Cr was also quite stable at this time. In six normal subjects gastrointestinal catabolism accounted for less than 10% of total albumin catabolism. Excessive gastrointestinal protein losses did not contribute to the low serum albumin in three patients with cirrhosis or in two adults with the nephrotic syndrome. Multiple mechanisms leading to hypoalbuminemia were demonstrated in other subjects with a variety of gastrointestinal disorders. Images PMID:5630419

  12. How Far Away Are the Sources of IceCube Neutrinos? Constraints from the Diffuse Teraelectronvolt Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu

    2016-07-01

    The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As the diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.

  13. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Efremenko, Y.V.

    1999-02-14

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure {bar {nu}}{sub {mu}} {r_arrow} {bar {nu}}{sub e} neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 {le} 10{sup {minus}4}). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin{sup 2} {theta}{sub W}, search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics.

  14. Constraining Very High-Energy Gamma Ray Sources Using IceCube Neutrino Observations

    NASA Astrophysics Data System (ADS)

    Vance, Gregory; Feintzeig, J.; Karle, A.; IceCube Collaboration

    2014-01-01

    Modern gamma ray astronomy has revealed the most violent, energetic objects in the known universe, from nearby supernova remnants to distant active galactic nuclei. In an effort to discover more about the fundamental nature of such objects, we present searches for astrophysical neutrinos in coincidence with known gamma ray sources. Searches were conducted using data from IceCube Neutrino Observatory, a cubic-kilometer neutrino detector that is sensitive to astrophysical particles with energies above 1 TeV. The detector is situated at the South Pole, and uses more than 5,000 photomultiplier tubes to detect Cherenkov light from the interactions of particles within the ice. Existing models of proton-proton interactions allow us to link gamma ray fluxes to the production of high-energy neutrinos, so neutrino data from IceCube can be used to constrain the mechanisms by which gamma ray sources create such energetic photons. For a few particularly bright sources, such as the blazar Markarian 421, IceCube is beginning to reach the point where actual constraints can be made. As more years of data are analyzed, the limits will improve and stronger constraints will become possible. This work was supported in part by the National Science Foundation's REU Program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  15. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    SciTech Connect

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C.; Baret, B.; Bouhou, B.; Basa, S.; Biagi, S.; and others

    2012-11-20

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  16. A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux

    NASA Astrophysics Data System (ADS)

    Hooper, Dan

    2016-09-01

    We present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.

  17. Beam simulation tools for GEANT4 (and neutrino source applications)

    SciTech Connect

    V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris

    2002-12-03

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider.

  18. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  19. First combined search for neutrino point-sources in the southern sky with the ANTARES and IceCube neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Barrios-Martí, J.; Finley, C.

    2016-04-01

    A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data were collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. An unbinned maximum likelihood method is used to search for a localized excess of muon events in the southern sky assuming an E-2 neutrino source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  20. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    NASA Astrophysics Data System (ADS)

    Dornic, Damien; Brunner, Jurgen; Basa, Stéphane; Al Samarai, Imen; Bertin, Vincent; Boer, Michel; Busto, José; Escoffier, Stéphanie; Klotz, Alain; Mazure, Alain; Vallage, Bertrand; ANTARES Collaboration; TAROT Collaboration

    2011-01-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of “golden” neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  1. Permeability of the small intestine to (/sup 51/Cr)EDTA in children with acute gastroenteritis or eczema

    SciTech Connect

    Forget, P.; Sodoyez-Goffaux, F.; Zappitelli, A.

    1985-06-01

    Increased gut permeability to macromolecules is thought to be an important factor in the development of food hypersensitivity. The latter can develop in the course of acute gastroenteritis and could play a role in infantile eczema. The authors studied gut permeability in 10 normal adults, 11 control children, 7 children with acute gastroenteritis, and 8 patients with infantile eczema, making use of (/sup 51/Cr)EDTA as probe molecule. (/sup 51/Cr)EDTA was given orally (50-100 microCi); 24-h urinary excretion of (/sup 51/Cr)EDTA was measured and expressed as a percentage of the oral dose. Mean and standard error were 2.35 +/- 0.24, 2.51 +/- 0.21, 9.96 +/- 3.44, and 10.90 +/- 2.05 in normal adults, control children, and gastroenteritis and eczema patients, respectively. Differences between controls and either gastroenteritis (p less than 0.001) or eczema (p less than 0.001) patients are significant. The results support the hypothesis that increased gut permeability could play a role in food hypersensitivity.

  2. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  3. The First Combined Search for Neutrino Point-sources in the Southern Hemisphere with the ANTARES and IceCube Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; De Young, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-05-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E ‑2.5 and E ‑2 power-law spectra with different energy cut-offs.

  4. FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-05-14

    We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.

  5. Extending the search for neutrino point sources with IceCube above the horizon

    SciTech Connect

    IceCube Collaboration; Abbasi, R.

    2009-11-20

    Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.

  6. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  7. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac

    NASA Astrophysics Data System (ADS)

    Baussan, E.; Blennow, M.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Davenne, T.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.-P.; Lindroos, M.; Loveridge, P.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J. Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wilcox, D.; Wildner, E.; Wurtz, J.

    2014-08-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μs with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.

  8. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  9. Design of a neutrino source based on beta beams

    NASA Astrophysics Data System (ADS)

    Wildner, E.; Hansen, C.; Benedetto, E.; Jensen, E.; Stora, T.; Mendonca, T. Melo; Vlachoudis, V.; Bouquerel, E.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophime, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Chancé, A.; Payet, J.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Mezzetto, M.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Moro, R.; Palladino, V.; Gelli, N.; Mazzocco, M.; Signorini, C.; Hirsh, T. Y.; Hass, M.; Berkovits, D.; Stahl, A.; Schaumann, M.; Wehner, J.

    2014-07-01

    "Beta beams" produce collimated pure electron (anti)neutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is He6 and Ne18. However, before the EUROnu studies one of the required isotopes, Ne18, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, Li8 and B8, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the Li8 and B8 isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of Li8 and B8, using the production ring for production of Li8 and B8, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the Ne18 isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the Li8 and B8 have been developed and the lattice for He6 and Ne18 has been optimized to ensure the high intensity ion beam stability.

  10. Radiolabeled red cell viability. I. Comparison of /sup 51/Cr, /sup 99m/Tc, and /sup 111/In for measuring the viability of autologous stored red cells

    SciTech Connect

    Marcus, C.S.; Myhre, B.A.; Angulo, M.C.; Salk, R.D.; Essex, C.E.; Demianew, S.H.

    1987-09-01

    The simultaneous determination of autologous /sup 99m/Tc red cell (RBC) and /sup 51/Cr RBC viability at 24 hours was measured in 19 normal volunteers whose RBCs had been stored in additive media (Nutracel) for 42 or 49 days. The ratio of the /sup 51/Cr:/sup 99m/Tc value was 1.23. In this experiment we also calculated /sup 51/Cr RBC viability by both the single-isotope method (extrapolation) and the double-isotope method (using /sup 125/I human serum albumin for an independent plasma volume) in the same volunteers. The corresponding viability values were not significantly different. The simultaneous determination of autologous /sup 111/In-oxine RBC and /sup 51/Cr RBC viability at 24 hours was measured in 19 other normal volunteers whose RBCs had been stored in citrate-phosphate-dextrose-adenine (CPDA-1) for 1 or 15 days. The ratio of the /sup 51/Cr:/sup 111/In value was 1.1. Use of these 24-hour viability ratios as conversion factors permits direct comparison of /sup 99m/Tc or /sup 111/In RBC viability with a /sup 51/Cr standard, and therefore expands the application of these newer RBC radiolabels.

  11. Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ

    SciTech Connect

    Heyns A du, P.; Badenhorst, P.N.; Loetter, M.G.P.; Pieters, H.; Wessels, P.; Kotze, H.F.

    1986-01-01

    Mean platelet survival and turnover were simultaneously determined with autologous 111In-labeled platelets (111In-AP) and homologous 51Cr-labeled platelets (51Cr-HP) in ten patients with chronic immune thrombocytopenic purpura (ITP). In vivo redistribution of the 111In-AP was quantitated with a scintillation camera and computer-assisted image analysis. The patients were divided into two groups: those with splenic platelet sequestration (spleen-liver 111In activity ratio greater than 1.4), and those with diffuse sequestration in the reticuloendothelial system. The latter patients had more severe ITP reflected by pronounced thrombocytopenia, decreased platelet turnover, and prominent early hepatic platelet sequestration. Mean platelet life span estimated with 51Cr-HP was consistently shorter than that of 111In-AP. Platelet turnover determined with 51Cr-HP was thus over-estimated. The difference in results with the two isotope labels was apparently due to greater in vivo elution of 51Cr. Although the limitations of the techniques should be taken into account, these findings indicate that platelet turnover is not always normal or increased in ITP, but is low in severe disease. We suggest that this may be ascribed to damage to megakaryocytes by antiplatelet antibody. The physical characteristics in 111In clearly make this radionuclide superior to 51Cr for the study of platelet kinetics in ITP.

  12. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-04-01

    We consider gamma-ray burst (GRB) jets that are choked by extended material as sources of high-energy cosmic neutrinos. We take into account the jet propagation physics both inside the progenitor star and the surrounding dense medium. Radiation constraints, which are relevant for high-energy neutrino production, are considered as well. Efficient shock acceleration of cosmic rays is possible for sufficiently low-power jets and/or jets buried in a dense, extended wind or outer envelope. Such conditions also favor GRB jets to become stalled, and the necessary conditions for stalling are explicitly derived. Such choked jets may explain transrelativistic supernovae (SNe) and low-luminosity (LL) GRBs, giving a unified picture of GRBs and GRB-SNe. Focusing on this unified scenario for GRBs, we calculate the resulting neutrino spectra from choked jets, including the relevant microphysical processes such as multipion production in p p and p γ interactions, as well as the energy losses of mesons and muons. We obtain diffuse neutrino spectra using the latest results for the luminosity function of LL GRBs. Although uncertainties are large, we confirm that LL GRBs can potentially give a significant contribution to the diffuse neutrino flux. Our results are consistent with the present IceCube data and do not violate the stacking limits on classical high-luminosity GRBs. We find that high-energy neutrino production in choked jets is dominated by p γ interactions. These sources are dark in GeV-TeV gamma rays and do not contribute significantly to the Fermi diffuse gamma-ray background. Assuming stalled jets can launch a quasispherical shock in the dense medium, "precursor" TeV neutrinos emerging prior to the shock breakout gamma-ray emission can be used as smoking-gun evidence for a choked jet model for LL GRBs. Our results strengthen the relevance of wide field-of-view sky monitors with better sensitivities in the 1-100 keV range.

  13. Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-03-01

    I will discuss choked gamma-ray burst (GRB) jets as possible sources of very high-energy (VHE) cosmic neutrinos. The jet propagation physics and radiation constraints are taken into account. We find that efficient shock acceleration of cosmic rays inside a high density stellar environment is possible for sufficiently low-powered jets and/or jets buried in an extended optically think envelope. Such conditions are favorable also for the GRB jets to become stalled. Such choked jets may explain transrelativistic SNe or low-luminosity GRBs by launching quasi-spherical shocks that breakout in the optically thick wind. Focusing on this possibility, we calculate the resulting diffuse neutrino spectra using the latest results of the local llGRB rate and luminosity function. We confirm that llGRBs can potentially give a significant contribution to the measured neutrino flux. The results are compatible with the IceCube (IC) data around 10-100 TeV without contradicting other IC limits on classical GRBs. Choked and llGRBs are dark in GeV-TeV gamma rays, and do not contribute significantly to the Fermi diffuse gamma-ray background. Precursor TeV neutrinos emerging prior to the shock breakout emission can be used as smoking gun evidence for a choked jet model for llGRBs.

  14. Studies of the Sudbury Neutrino Observatory detector and sonoluminescence using a sonoluminescent source

    NASA Astrophysics Data System (ADS)

    McDonald, Douglas Steven

    The Sudbury Neutrino Observatory (SNO) is the first heavy water Cerenkov solar neutrino detector. 1000 metric tonnes of heavy water is used as a neutrino target and detection medium. SNO is designed to measure the flux and energy spectrum of high energy solar electron neutrinos via charged current interactions of electron neutrinos with deuterons in the heavy water. SNO can also measure the total high energy solar neutrino flux of neutrinos of all flavors via neutral current interactions with deuterons. The physics of solar models and solar neutrinos is presented. The physics of SNO and the SNO detector are described in detail. Two sonoluminescence sources were developed for use in calibrations of the SNO detector. The sonoluminescence source outperformed the standard SNO optical source, a nitrogen laser with a diffuser ball, by 25% in measurements of photomultiplier tube timing accuracy. Two systematic effects with the SNO electronics were discovered. Electronic crosstalk between channels has been measured for charges greater than 5 photoelectrons. An efficient cut has been developed to minimize this systematic error with an upper limit on signal loss of 0.4% times the PMT occupancy. Electronics crosstalk will affect solar neutrino analyses as it falsely adds PMT hits to some fraction of the events. A small anticorrelation of photomultiplier charges for electronics channels in close proximity has been measured. It has been shown that this subtle effect does not affect the number of photons detected, only the photomultiplier charges. A SL source and the SNO detector were used to study three properties of sonoluminescence. An analysis of SL data with regard to back-to-back photon correlations is presented. The results are consistent with no back-to- back photon correlations with an upper limit on the strength of back-to-back photon correlations of 3.16% for unfiltered SL light, and 0.5% for filtered SL light (λ = 420 nm) at the 95% confidence level. The SL photon

  15. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  16. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  17. Atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.

    2016-05-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  18. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  19. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  20. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    NASA Astrophysics Data System (ADS)

    Sahakyan, N.

    2016-07-01

    The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE) neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible). Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs) and Pulsar Wind Nebulae (PWNe) and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net). It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  1. Measurement of glomerular filtration rate in homozygous sickle cell disease: a comparison of 51Cr-EDTA clearance, creatinine clearance, serum creatinine and beta 2 microglobulin.

    PubMed Central

    Aparicio, S A; Mojiminiyi, S; Kay, J D; Shepstone, B J; de Ceulaer, K; Serjeant, G R

    1990-01-01

    Glomerular filtration rates (GFR) were measured with 51Cr-EDTA in 38 patients (aged 40-75 years) with homozygous sickle cell disease and compared with serum beta 2 microglobulin concentrations in 38 patients and with creatinine clearance in 21 patients. GFR estimated with 51Cr-EDTA was closely correlated with single serum creatinine measurements and the inverse of serum beta 2 microglobulin. Creatinine clearance was also found to be correlated, but values were, on average, 32% below those obtained by the 51Cr-EDTA method, and this difference was significant. It is concluded that measurements of beta 2 microglobulin, single serum creatinine, and creatinine clearance are valuable indicators of GFR in homozygous sickle cell disease. Measurement of beta 2 microglobulin was a useful and reliable method of estimating GFR from single plasma measurements and is therefore a useful means of screening the population. PMID:2115049

  2. Potential of KM3NeT to observe galactic neutrino point-like sources

    NASA Astrophysics Data System (ADS)

    Trovato, Agata

    2016-07-01

    KM3NeT (http://www.km3net.org">http://www.km3net.org) will be the next-generation cubic-kilometre-scale neutrino telescope to be installed in the depths of the Mediterranean Sea. This location will allow for surveying the Galactic Centre, most of the Galactic Plane as well as a large part of the sky. We report KM3NeT discovery potential for the SNR RXJ1713.7-3946 and the PWN Vela X and its sensitivity to point-like sources with an E-2 spectrum.

  3. A fast chopper for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect

    Madrak, R.; Wildman, D.; Dymokde-Bradshaw, A.; Hares, J.; Kellett, P.

    2008-10-01

    A fast chopper capable of kicking single 2.5 MeV H-bunches spaced at 325 MHz, at rates greater than 50 MHz is needed for the Fermilab High Intensity Neutrino Source (HINS) [1]. Four 1.2 kV fast pulsers, designed and manufactured by Kentech Instruments Ltd., will drive a 0.5 m long meander made from a copper plated ceramic composite. Test results showing pulses from the first 1.2 kV pulser and meander results will be presented.

  4. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2016-03-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  5. Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Vénos, D.; Slezák, M.; Dragoun, O.; Inoyatov, A.; Lebeda, O.; Pulec, Z.; Sentkerestiová, J.; Špalek, A.

    2014-12-01

    The metastable 83mKr with short half-life of 1.83 h is intended as a space distributed source of monoenergetic electrons for energy calibration and systematic studies in the Karlsruhe tritium neutrino experiment (KATRIN). The efficient production of the parent radionuclide 83Rb at cyclotron U-120M was implemented. The release of the 83mKr from zeolite (molecular sieve), in which the parent radionuclide 83Rb (T1/2 = 86.2 d) was trapped, was studied under various conditions using the gamma spectroscopy. Residual gas analysis of ultra high vacuum over the zeolite was performed as well.

  6. Comparison of whole body and tissue blood volumes in rainbow trout (Salmo gairdneri) with 125I bovine serum albumin and 51Cr-erythrocyte tracers

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.

    1989-01-01

    Total, packed cell and, plasma volume estimates were made for the whole body and selected tissues of rainbow trout by the simultaneous injection of radiolabelled trout erythrocyte (51Cr-RBC) and radioiodinated bovine serum albumin (125I-BSA) tracers. Blood volumes were estimated with both markers separately by the tracer-hematocrit method and as the combination of the 51Cr-RBC packed cell and 125I-BSA plasma volumes. Mean whole body blood volume was significantly less when calculated from the 51Cr-RBC tracer data (3.52±0.78 ml/100 g; ±SD) than when calculated with the 125I-BSA tracer (5.06±0.86 ml/100 g) or as the sum of the two volumes combined (4.49±0.60 ml/100 g). The whole body hematocrit (28±5%), estimated as the quotient of the 51Cr-RBC volume divided by the sum of the 125I-BSA and the 51Cr-RBC volumes, also was significantly less than the dorsal aortic microhematocrit (36±4%). Estimates of total blood volumes in most tissues were significantly smaller when calculated from the51Cr-RBC data than when calculated by the other two methods. Tissue blood volumes were greatest in highly vascularized and well perfused tissues and least in poorly vascularized tissues. The relative degree of vascularization among tissues generally remained the same regardless of whether the red cell or the plasma tracer was used to calculated blood volume. It is not clear whether the expanded plasma volume is the result of the distribution of erythrocyte-poor blood into the secondary circulation or the result of extravascular exchange of plasma proteins.

  7. Comparative gastrointestinal blood loss associated with placebo, aspirin, and nabumetone as assessed by radiochromium (/sup 51/Cr)

    SciTech Connect

    Lussier, A.; Davis, A.; Lussier, Y.; Lebel, E.

    1989-03-01

    Nabumetone differs from most other nonsteroidal anti-inflammatory drugs. It is presented to the gut as a nonacidic prodrug, and is metabolized to its active form after absorption. Studies in animals and humans suggest it is less irritating to the gastrointestinal mucosa. This study compared the gastrointestinal microbleeding induced by nabumetone to aspirin (acetylsalicylic acid, ASA), and placebo in a double blind parallel study using chromium /sup 51/Cr labelled red cells to quantitate fecal blood loss (FBL) in healthy volunteers. Thirty subjects were randomized to treatment with nabumetone (2000 mg), ASA (3.6 g) or placebo for 21 days following a 7 day placebo period. Six subjects served as untreated controls. FBL in nabumetone treated subjects was not significantly different to placebo or untreated subjects. In contrast, ASA-treated subjects exhibited significantly increased FBL than the other 3 groups (P less than .0001).

  8. Neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1980-01-01

    Current knowledge and proposed experiments in the field of neutrino astronomy are reviewed, with particular emphasis on expected sources and existing and proposed detectors for intermediate-energy (10 to 50 MeV) and ultrahigh energy (greater than 10 GeV) neutrinos. Following a brief discussion of the counting rate obtained in the solar neutrino experiment of Davis (1978) and possible statistical sources for the discrepancy between the expected and observed rates, consideration is given to the physics of neutrino ejection in stellar gravitational collapse and sources of high-energy proton collisions giving rise to ultrahigh energy neutrinos. The capabilities of operating Cerenkov detectors at the Homestake Gold Mine, the Mt. Blanc Tunnel and in the Soviet Caucasus are considered in relation to the detection of gravitational collapse in the center of the galaxy, and it is pointed out that neutrino detectors offer a more reliable means of detecting collapses in the Galaxy than do gravitational wave detectors. The possibility of using Cerenkov detectors for ultrahigh energy neutrino detection is also indicated, and applications of large neutrino detectors such as the proposed DUMAND array to measure the lifetime of the proton are discussed.

  9. Probing of the neutrino magnetic moment at the level of 10{sup -22} μ{sub B} with an intense tritium source of (anti)neutrino and helium target (project)

    SciTech Connect

    Martemyanov, V.P.; Aleshin, V.I.; Tarasenko, V.G.; Tsinoev, V.G.; Sabelnikov, A.A.; Yukhimchuk, A.A.; Popov, V.V.; Baluev, V.V.; Golubkov, A.N.; Klevtsov, V.G.; Kuryakin, A.V.; Sitdikov, D.T.; Bogdanova, L.N.

    2015-03-15

    We present research results of the preparation project for the experimental measurement of the (anti)neutrino magnetic moment at the level of 10{sup -12} μ{sub B} using an intense tritium source of antineutrinos and a liquid helium scintillation detector. The neutrino detection in the scintillation detector is based on the scattering of neutrinos by the electrons of the helium atoms that produces fast electrons able to ionize and exciting helium atoms. The detection of the atomic radiation emitted during the relaxation process of the helium atoms and the knowledge of its parameters will allow us to conclude on the neutrino properties.

  10. ν-SNS, A Neutrino Program at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Efremenko, Yuri

    2007-11-01

    During the past few years, outstanding progress has been made in our understanding of the neutrino properties. Recent results from neutrino experiments have conclusively shown that neutrinos undergo oscillations, that is they can change from one type of neutrino to another, and the fact that neutrinos do oscillate is indicative of the various neutrino species having non zero mass. However, there still remain many open questions regarding the role that neutrinos play in the various physical processes that occur in the Universe. One of these open questions is the role that neutrinos play in Supernova explosions. Neutrinos can carry away up to 99% of the total energy that is released during the core collapse. They thus affect the both the dynamics of the supernova explosion and the nucleosynthesis. To understand the role that neutrinos play during the supernova explosion, it is necessary to have precise knowledge of neutrino interactions with the nuclei at the low energy. The ν-SNS program at ORNL is directed toward accurately measuring the neutrino-nucleus cross section at supernovae neutrino energies for a wide range of nuclei.

  11. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a

  12. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-06-25

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs.

  13. Simultaneous measurement of 59Fe and 51Cr in iron absorption studies using a whole-body scanner with mobile shielding.

    PubMed

    Marx, J J; van den Beld, B; van Dongen, R; Strackee, L H

    1980-07-01

    A whole-body scanner is described with a mobile shadow shield which affords a considerable reduction in space. The scanner has two NaI(T1) scintillation crystals of 4 x 6", placed at opposite sites of the subject. Background radiation, efficiency and geometric qualities made the scanner very useful for clinical whole-body counting. The equipment was used in iron absorption studies using a double isotope technique with 59Fe and 51Cr. After ingestion of an oral test dose total body kinetics of 59Fe and 51Cr was followed up to 60 days in 4 volunteers. Between days 3 and 10 the 51Cr, which was used as an non-absorbable indicator, had left the body completely. The 59Fe reached a constant value not before day 10, indicating that iron retention cannot be measured before that time. From repeated measurement of 59Fe and 51Cr directly after ingestion until the first defaecation it could be deduced that the coefficient of variation for 59Fe was less than 1.5% with a scanning time of 600 sec, and for 51Cr less than 5%. Extreme variations in geometry, such as measurement of the activity in a beaker and of the same amount after ingestion in the body, yielded practically the same value for 59Fe. The double isotope technique made it possible to measure not only iron retention but also mucosal uptake and mucosal transfer of iron. It is pointed out that measurement of the last two parameters of iron absorption is not possible in patients with serious obstipation or with very low mucosal uptake values. PMID:6780983

  14. Determination of optimal sampling times for a two blood sample clearance method using (51)Cr-EDTA in cats.

    PubMed

    Vandermeulen, Eva; De Sadeleer, Carlos; Piepsz, Amy; Ham, Hamphrey R; Dobbeleir, André A; Vermeire, Simon T; Van Hoek, Ingrid M; Daminet, Sylvie; Slegers, Guido; Peremans, Kathelijne Y

    2010-08-01

    Estimation of the glomerular filtration rate (GFR) is a useful tool in the evaluation of kidney function in feline medicine. GFR can be determined by measuring the rate of tracer disappearance from the blood, and although these measurements are generally performed by multi-sampling techniques, simplified methods are more convenient in clinical practice. The optimal times for a simplified sampling strategy with two blood samples (2BS) for GFR measurement in cats using plasma (51)chromium ethylene diamine tetra-acetic acid ((51)Cr-EDTA) clearance were investigated. After intravenous administration of (51)Cr-EDTA, seven blood samples were obtained in 46 cats (19 euthyroid and 27 hyperthyroid cats, none with previously diagnosed chronic kidney disease (CKD)). The plasma clearance was then calculated from the seven point blood kinetics (7BS) and used for comparison to define the optimal sampling strategy by correlating different pairs of time points to the reference method. Mean GFR estimation for the reference method was 3.7+/-2.5 ml/min/kg (mean+/-standard deviation (SD)). Several pairs of sampling times were highly correlated with this reference method (r(2) > or = 0.980), with the best results when the first sample was taken 30 min after tracer injection and the second sample between 198 and 222 min after injection; or with the first sample at 36 min and the second at 234 or 240 min (r(2) for both combinations=0.984). Because of the similarity of GFR values obtained with the 2BS method in comparison to the values obtained with the 7BS reference method, the simplified method may offer an alternative for GFR estimation. Although a wide range of GFR values was found in the included group of cats, the applicability should be confirmed in cats suspected of renal disease and with confirmed CKD. Furthermore, although no indications of age-related effect were found in this study, a possible influence of age should be included in future studies. PMID:20452793

  15. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  16. Searches for extended and point-like neutrino sources with four years of IceCube data

    SciTech Connect

    Aartsen, M. G.; Ackermann, M.; Berghaus, P.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Arguelles, C.; BenZvi, S.; Ahrens, M.; Altmann, D.; Anderson, T.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Berley, D.; Collaboration: IceCube Collaboration; and others

    2014-12-01

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E {sup –2} spectrum, the observed 90% C.L. flux upper limits are ∼10{sup –12} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 1 TeV and 1 PeV in the northern sky and ∼10{sup –11} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

  17. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  18. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    SciTech Connect

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  19. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  20. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  1. Measurement of the solar neutrino capture rate with gallium metal, part III

    SciTech Connect

    Elliott, Steven Ray

    2008-01-01

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keY of 65.4{sup +3.1}{sub 3.0} (stat) {sup +2.6}{sub -2.8} (syst) SNU. The weighted average of the results of all three Ga solar neUlrino experiments, SAGE, Gallex, and GNO, is now 66.1 {+-} 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.88 {+-} 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63--67 SNU with an uncertainly of about 5%, in good agreement with experiment. We derive the current value of the pp neutrino flux produced in the Sun to be {phi}{sup {circle_dot}}{sub pp} = (6.1 {+-} 0.8) x 10{sup 10}/(cm{sup 2} s), which agrees well with the flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  2. Sensitivity of the KM3NeT detector to neutrino fluxes from Galactic point-like sources

    SciTech Connect

    Trovato, A.; Coniglione, R.; Sapienza, P.; Kooijman, P.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration has started the implementation of the first phase of a cubic-kilometre-scale neutrino telescope in the Northern hemisphere with an integrated platform for Earth and deep sea sciences. The location in the Mediterranean Sea will allow for surveying a large part of the sky, including most of the Galactic Plane and the Galactic Centre, thus complementing the sky coverage of IceCube at the South Pole. Amongst the potential Galactic neutrino sources, SuperNova Remnants are particularly promising since their measured gamma-ray emission extends to several tenths of TeV and exhibits indications for hadronic processes. Assuming a hadronic origin of the gamma-ray emission, the models for neutrino emission from SuperNova Remnants and also from other source types such as pulsars are robustly constrained by gamma-ray measurements. We report expected KM3NeT sensitivities for neutrino fluxes from RXJ1713.7-3946 and Vela X. The sensitivity to point-like sources with a E{sup −2} power law energy spectrum is also reported and compared to the other existing detectors.

  3. Experimental and theoretical study for the production of 51Cr using p, d, 3He and 4He projectiles on V, Ti and Cr targets

    NASA Astrophysics Data System (ADS)

    Solieman, A. H. M.; Al-Abyad, M.; Ditroi, F.; Saleh, Z. A.

    2016-01-01

    Production of 51Cr (T1/2 = 27.7 d) have been studied experimentally through the reaction of proton and 3He on natV and natTi targets respectively by using a variable energy cyclotrons. Reaction cross sections were obtained at different energies using the stacked-foil technique. High resolution gamma ray spectrometers were used for measuring the γ-ray spectra. Comparison between the present experimental results and the previously reported data has been carried out and discussed. The possibility of producing 51Cr with reasonable yield using different projectiles and different natural targets was studied and reported. Excitation functions for the reactions of proton, deuteron, 3He and 4He particles on natural vanadium, titanium and chromium targets have been evaluated using two theoretical codes TALYS-1.6 and EMPIRE-3.1. The recommended cross-sections and the integral yields as well were obtained.

  4. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  5. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  6. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  7. Neutrino oscillation studies with reactors

    DOE PAGESBeta

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  8. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    SciTech Connect

    J. Donald Cossairt

    2000-05-15

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work.

  9. Proton Linac Front End for High Intensity Neutrino Source at Fermilab

    NASA Astrophysics Data System (ADS)

    Tam, Wai-Ming; Apollinari, Giorgio; Madrak, Robyn; Moretti, Alfred; Ristori, Leonardo; Romanov, Gennady; Steimel, James; Webber, Robert; Wildman, David

    2008-04-01

    Fermilab has recently proposed the construction of an 8 GeV superconducting linac for the exploration of the high intensity frontier. The High Intensity Neutrino Source (HINS) R&D program was established to explore the feasibility of certain technical solutions proposed for the front end of a high intensity linac. The low energy (˜60 MeV) section operates at 325 MHz and comprises an RFQ, two re-buncher cavities, 16 room temperature (RT) and 29 superconducting cross-bar H-type resonators, and superconducting solenoid focusing elements. One of the distinguishing features of this linac is the use of one klystron to feed multiple radio frequency (RF) elements. As an example, the RFQ, the re-bunchers and the 16 RT cavities are powered by a single 2.5 MW pulsed klystron. To achieve individual control over the phase and the voltage amplitude, each of the RF elements is equipped with a high power vector modulator. The RF control system will be discussed. The first RT cavity is completed with a power coupler, two mechanical tuners, vacuum and cooling systems, and has been RF conditioned. Preliminary tests on resonance frequency stability control and tests results of the cavity resonance frequency response to cooling water temperature and tuner position will also be discussed.

  10. Bayesian approach for counting experiment statistics applied to a neutrino point source analysis

    NASA Astrophysics Data System (ADS)

    Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.

    2013-12-01

    In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.

  11. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  12. Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2015-06-01

    Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of ∼ 60TeV to the PeV-scale [1]. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an E-2 energy spectrum ranges from ∼ 1.5 ·10-8 GeV/cm2 s-1, in the case of one assumed source, to ∼ 4 ·10-10 GeV/cm2 s-1, in the case of 3500 assumed sources.

  13. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  14. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  15. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period

    SciTech Connect

    Abdurashitov, J. N.; Gavrin, V. N.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.; Yants, V. E.; Zatsepin, G. T.; Bowles, T. J.; Elliott, S. R.; Teasdale, W. A.; Nico, J. S.; Cleveland, B. T.; Wilkerson, J. F.

    2009-07-15

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4{sub -3.0}{sup +3.1} (stat) {sub -2.8}{sup +2.6} (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1{+-}3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.87{+-}0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63 SNU to 66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be {phi}{sub pp}{sup {center_dot}}=(6.0{+-}0.8)x10{sup 10}/(cm{sup 2} s), which agrees well with the pp flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  16. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  17. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  18. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  19. An Experimentalist's Overview of Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  20. Neutrino geophysics at baksan: On searches for antineutrinos and radiogenic-heat sources in the interior of the earth

    SciTech Connect

    Domogatsky, G. V.; Kopeikin, V. I. Mikaelyan, L. A.; Sinev, V. V.

    2006-01-15

    Antineutrinos produced in the Earth (geoneutrinos) carry information that is of crucial importance for the understanding of the origin and evolution of our planet. It is shown that the Baksan Neutrino Observatory of the Institute for Nuclear Research (Moscow, Russian Academy of Sciences) may become one of the best laboratories for studying geoneutrinos with the aid of a large scintillation spectrometer. The article also presents a brief history of the development of concepts of the Earth as a source of antineutrinos-it dates back to 1960, spanning a period of nearly 45 years (1960-2004)

  1. Electron Cloud induced instabilities in the Fermilab Main Injector(MI) for the High Intensity Neutrino Source (HINS) project

    SciTech Connect

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini,Marco; Celata, Christine; Grote, David

    2006-04-15

    The electrostatic particle-in-cell codeWARP is currently being expanded in order to study electron cloud effects on the dynamics of the beam in storage rings. Results for the Fermilab main injector (MI) show the existence of a threshold in the electron density beyond which there is rapid emittance growth. The Fermilab MI is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort, which will result in a significant increasing of the bunch intensity relative to its present value, placing it in a regime where electron-cloud effects are expected to become important. Various results from the simulations using WARP are discussed here.

  2. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  3. Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  4. GALAXY MERGERS AS A SOURCE OF COSMIC RAYS, NEUTRINOS, AND GAMMA RAYS

    SciTech Connect

    Kashiyama, Kazumi; Mészáros, Peter

    2014-07-20

    We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ∼0.1-1 EeV and possibly beyond, with a hard spectral index of Γ ≈ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ∼10% of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by the Cherenkov Telescope Array. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ∼20%-60% of the isotropic background detected by IceCube.

  5. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  6. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  7. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  8. High Energy Neutrino Astronomy and Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Kouchner, A.

    2015-04-01

    Neutrinos constitute a unique probe since they escape from their sources, travel undisturbed on cosmological distances and are produced in high-energy (HE) hadronic processes. In particular they would allow a direct detection and unambiguous identification of the acceleration sites of HE baryonic cosmic rays (CR), which remain unknown. Recent results from the ICECUBE collaboration present the first highly significant indication for the detection of high-energy extraterrestrial neutrinos, after several decades of instrumental efforts. We briefly report on this important results which open the route for the high-energy neutrino astronomy era. We then focus on the ANTARES detector, which despite its modest size with respect to ICECUBE is the largest deep-sea neutrino telescope in the world. The primary goal is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or Galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  9. Bioelimination of /sup 51/Cr and /sup 85/Sr by cockroaches, Gromphadorhina portentosa (Orthoptera: Blaberidae), as affected by mites, Gromphadorholaelaps schaeferi (parasitiformes: laelapidae)

    SciTech Connect

    Schowalter, T.D.; Crossley, D.A. Jr.

    1982-03-01

    This paper describes rates of Chromium-51 and Strontium-85 assimilation and bioelimination by the hissing cockroach, Gromphadorhina portentosa (Schaum), when the symbiotic mite, Gromphadorholaelaps schaeferi Till, was present or removed. Mite-infested cockroaches had significantly higher rates of /sup 51/Cr elimination relative to mite-free cockroaches, implying more rapid gut clearance times. We did not find a significant mite effect on /sup 85/Sr elimination by the host, but mite effects could have been masked by the apparently unique process of nutrient assimilation and elimination by G. portentosa. Conventional models of radioactive tracer bioelimination predict a rapid initial loss of tracer due to gut clearance, followed by a slower loss due to excretion of assimilated tracer. Our results indicated that assimilated /sup 85/Sr was eliminated earlier than unassimilated /sup 85/Sr was lost by defecation.

  10. Bioelimination of /sup 51/Cr and /sup 85/Sr by cockroaches, Gromphadorhina portentosa (orthoptera: blaberidae), as affected by mites, Gromphadorholaelaps schaeferi (parasitiformes: laelapidae)

    SciTech Connect

    Schowalter, T.D.; Crossley, D.A. Jr.

    1982-03-01

    The rates of Chromium-51 and Strontium-85 assimilation and bioelimination by the hissing cockroach, Gromphadorhina portentosa (Schaum) are described when the symbiotic mite, Gromphadorholaelaps schaeferi Till, was present or removed. Mite-infested cockroaches had significantly higher rates of /sup 51/Cr elimination relative to mite-free cockroaches, implying more rapid gut clearance times. The authors did not find a significant mite effect on /sup 85/Sr elimination by the host, but mite effects could have been masked by the apparently unique process of nutrient assimilation and elimination by G. portentosa. Conventional models of radioactive tracer bioelimination predict a rapid initial loss of tracer due to gut clearance, followed by a slower loss due to excretion of assimilated tracer. The results indicated that assimilated /sup 85/Sr was eliminated earlier than unassimilated /sup 85/Sr, which was lost by defecation.

  11. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  12. Radiokinetic study on nucleation process of 65Zn(OH)2, 65Zn3(PO4)2 and 51CrPO4 crystals in gelatin and agar

    NASA Astrophysics Data System (ADS)

    Cecal, Al; Palamaru, M.; Chisca, S.; Balan, A.

    1999-01-01

    The nucleation process of 65Zn(OH)2, 65Zn3(PO4)2, and 51CrPO4 crystals in gelatin and agar was studied by using radioactive tracers. The diffusion rate, constants for 65Zn2+ and 51Cr3+ cations through gel, and the reaction rate constants of nucleation process as well as the beginning time of crystal appearance were established. It was found that the reaction rate constant of the low-soluble crystal is higher, and consequently, in a given colloidal medium this parameter varies as follows: k * Zn(PO4)2> k * Zn(OH) 2> k * CrPO 4

  13. Radiokinetic study on nucleation process of 65Zn(OH)2, 65Zn3(PO4)2 and 51CrPO4 crystals in gelatin and agar

    NASA Astrophysics Data System (ADS)

    Cecal, Al; Palamaru, M.; Chisca, S.; Balan, A.

    1999-01-01

    The nucleation process of 65Zn(OH)2, 65Zn3(PO4)2, and 51CrPO4 crystals in gelatin and agar was studied by using radioactive tracers. The diffusion rate, constants for 65Zn2+ and 51Cr3+ cations through gel, and the reaction rate constants of nucleation process as well as the beginning time of crystal appearance were established. It was found that the reaction rate constant of the low-soluble crystal is higher, and consequently, in a given colloidal medium this parameter varies as follows: k * Zn(PO4)2>k * Zn(OH) 2>k * CrPO 4

  14. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  15. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  16. ANTARES deep sea neutrino telescope results

    SciTech Connect

    Mangano, Salvatore; Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  17. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Yu; Liu, Ruo-Yu

    2016-04-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that the high flux of neutrinos at ˜30 TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended, optically thick envelope around the black hole, which results from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutrinos via interaction with the surrounding dense photons. All three TDE jets discovered so far are not detected by Fermi/LAT, suggesting that GeV-TeV gamma rays are absorbed in these jets. The cumulative neutrino flux from TDE jets can account for the neutrino flux observed by IceCube at PeV energies and may also account for the higher flux at ˜30 TeV if less powerful, choked jets are present in the majority of TDEs.

  18. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  19. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  20. Survival of density subpopulations of rabbit platelets: use of /sup 51/Cr-or /sup 111/In-labeled platelets to measure survival of least dense and most dense platelets concurrently

    SciTech Connect

    Rand, M.L.; Packham, M.A.; Mustard, J.F.

    1983-02-01

    The origin of the density heterogeneity of platelets was studied by measuring the survival of density subpopulations of rabbit platelets separated by discontinuous Stractan density gradient centrifugation. When a total population of /sup 51/Cr-labelled platelets was injected into recipient rabbits, the relative specific radioactivity of the most dense platelets decreased rapidly. In contrast, that of the least dense platelets had not changed 24 hr after injection, and then decreased slowly. To distinguish between the possibilities that most dense platelets are cleared from the circulation more quickly than least dense platelets or that platelets decrease in density as they age in the circulation, the concurrent survival of least dense and most dense platelets, labelled with either /sup 51/Cr or /sup 111/In-labelled total platelet populations, determined concurrently in the same rabbits, are identical, calculated from 1 hr values as 100%. However, the 1-hr recovery of /sup 111/In-labelled platelets was slightly but significantly less than that of /sup 51/Cr-labelled platelets. Therefore, researchers studied the survival of /sup 51/Cr-labelled least dense and /sup 111/In-labelled most dense platelets as well as that of /sup 111/In-labelled least dense and /sup 51/Cr-labelled most dense platelets. Mean 1-hr recovery of least dense platelets, labelled with either isotope (78% +/- 7%, SD) was similar to that of most dense platelets, labelled with either isotope (77% +/- 8%; SD). Mean survival of least dense platelets was 47.3 +/- 18.7 hr (SD), which was significantly less than that of most dense platelets (76.1 +/- 21.6 hr; SD) (p less than 0.0025). These results indicate that platelets decrease in buoyant density as they age in the circulation and that most dense platelets are enriched in young platelets, and least dense in old.

  1. Quantifying the impact of various radioactive background sources on germanium-76 zero-neutrino-double-beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Mizouni, Katarina Leila

    The goal of searching for 0nubetabeta-decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0nubetabeta-decay is an explicit instance of lepton-number non-conservation. To detect the rare events such as 0nubetabeta-decay, half-lives of the order of 10 25-1027 years have to be probed. Using an active detector with a large volume, such as hundreds of kilograms of HPGe in the case of MAJORANA, and taking efficient measures to mitigate background of cosmic and primordial origins are necessary for the success of a sensitive 0nubetabeta-decay experiment. One focus of the present research is the analysis of data from Cascades, a HPGe crystal array developed at Pacific Northwest National Laboratory in Richland, WA, to determine an upper bound on primordial radiation levels in the cryostat constructed with electroformed copper similar to that electroformed for MAJORANA. It will be shown, however, that there are sources of background much more serious than cryostats in 76Ge experiments. Additionally, experimental applications of the Cascades detector were studied by predicting the sensitivity for a 0nuBB-decay experiment using GEANT4 simulations. Tellurium-130, an even-even nucleus that can undergo 0nubetabeta-decay to either the ground state or first 01+ excited state of 130Xe, was used as an example. The present work developed techniques that will be used for a number of measurements of betabeta-decay half-lives for decays to excited states of the daughter isotopes.

  2. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  3. Double-Chooz Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Palomares, Carmen; Double Chooz Collaboration

    2011-12-01

    The Double Chooz experiment will use the electron anti-neutrinos produced by the Chooz nuclear power station to search for a non-vanishing value of the θ13 neutrino mixing angle. Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from the neutrino source to reduce the systematic errors due to the uncertainties on the neutrino flux and to the detector acceptance. The far detector will be operative by the beginning of 2011. Installation of the near detector will occur in 2012.

  4. Viable chaotic inflation as a source of neutrino masses and leptogenesis

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2016-06-01

    We show that the seesaw mechanism as well as leptogenesis are natural outcomes of a viable chaotic inflation in supergravity. The inflation model contains two superfields, the inflaton and stabilizer fields, which, being singlets under the standard model gauge symmetry, naturally couple to the lepton and Higgs doublets. The inflaton decays into leptons and Higgs fields, and the reheating temperature is predicted to be of O (1013) GeV, for which thermal leptogenesis is possible. On the other hand, gravitinos are copiously produced, and various solutions to the gravitino problem are discussed. We also argue that, if the shift symmetry of the inflaton is explicitly broken down to a discrete one, neutrino Yukawa couplings are periodic in the inflaton field, and masses of leptons and Higgs do not blow up even if the inflaton takes super-Planckian field values. The inflaton potential is given by a sum of sinusoidal functions with different height and periodicity, the so-called multi-natural inflation. We show that the predicted scalar spectral index and tensor-to-scalar ratio lie in the region favored by the Planck data.

  5. Cross sections of the 56Fe(n ,α ) 53Cr and 54Fe(n ,α ) 51Cr reactions in the MeV region

    NASA Astrophysics Data System (ADS)

    Wang, Zhimin; Fan, Xiao; Zhang, Luyu; Bai, Huaiyong; Chen, Jinxiang; Zhang, Guohui; Gledenov, Yu. M.; Sedysheva, M. V.; Krupa, L.; Khuukhenkhuu, G.

    2015-10-01

    Cross sections of the 56Fe(n ,α ) 53Cr and 54Fe(n ,α )51Cr reactions were measured at En=5.5 and 6.5 MeV and En=4.0 ,4.5 ,5.5 ,and 6.5 MeV , respectively, using a double-section gridded ionization chamber as the α -particle detector. Natural iron and enriched 56Fe and 54Fe foil samples were prepared. A deuterium gas target was used to produce monoenergetic neutrons through the 2H(d ,n )3He reaction. Two rounds of experiments were performed at the 4.5-MV Van de Graaff Accelerator of Peking University. The foreground and background were measured in separate runs. The neutron flux was monitored by a B F3 long counter, and the cross sections of the 238U(n ,f ) reaction were used as the standard. Present results are compared with those of the talys-1.6 code calculations, existing measurements, and evaluations.

  6. Maternal immunocompetence. I. The graft-versus-host reactivity of lymphocytes from pregnant rats and the distribution pattern of 51Cr-labeled lymphocytes in pregnant mice.

    PubMed

    Harrison, M R

    1976-01-01

    Lymphocytes from the peripheral blood, spleen, or para-aortic lymph nodes of prrimigravida L rats carrying (L X BN) F1 (LBN) fetuses are fully capable of mounting graft-versus-host (GVH) reactions in LBN F1 recipients. The reactivity of lymphocytes from interstrain pregnant (L X BN) or intrastrain pregnant (L X L) rats, or from rats postpartum from these pregnancies, is equivalent to that of normal virgin females over a full dose-response curve, ruling out both specific and nonspecific effects of pregnancy on the intrinsic GVH competence of the maternal thymus-derived (T) lymphocyte. Attempts to block GVH reactivity with serum from pregnant rats were unsuccessful. In addition, when the distribution pattern of 51Cr-labeled syngeneic and semiallogeneic lymphocytes was studied in intact primigravida mice, there was no difference between interstrain and intrastrain pregnant mice, and there was no evidence of immunologically specific 'trapping' in the para-aortic lymph nodes draining the interstrain pregnant uterus. PMID:8832

  7. Effects of gamma-ray, neutrino, and particle production on the energetics and dynamics of compact extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Vestrand, W. T.; Scott, J. S.; Marscher, A. P.; Christiansen, W. A.

    1981-01-01

    Consideration is given to particle production and high-energy radiation within apparently superluminal radio components of extragalactic radio sources forming within the apparent region of nuclear activity of a quasar or active galaxy. The physical conditions in compact components observed as radio emitters are derived for the quasars 3C 273 and 3C 345 and extrapolated to those of initial components of sizes on the order of 10 to the 15th cm on the basis of two-dimensional relativistic jet and relativistic three-dimensional models of component expansion. Probabilities that a given particle avoids an inelastic collision in the relativistic plasma are calculated for both cases which show that collisions which produce particles and radiation may be very important during the formation of a compact radio component. The consequences of electron-positron production, bremsstrahlung and proton-proton inelastic collisions ultimately giving rise to neutrinos and gamma rays for the development and energetics of the radio component are then examined, and upper limits to the amount of energy which can be channeled into radio components from an active region without giving rise to a high-energy X-ray source are derived.

  8. Ion source for tests of ion behavior in the Karlsruhe tritium neutrino experiment beam line

    SciTech Connect

    Lukic, S.; Bornschein, B.; Drexlin, G.; Glueck, F.; Kazachenko, O.; Zoll, M. C. R.; Schoeppner, M.; Weinheimer, Ch.

    2011-01-15

    An electron-impact ion source based on photoelectron emission was developed for ionization of gases at pressures below 10{sup -4} mbar in an axial magnetic field in the order of 5 T. The ion source applies only dc fields, which makes it suitable for use in the presence of equipment sensitive to radio-frequency (RF) fields. The ion source was successfully tested under varying conditions regarding pressure, magnetic field, and magnetic-field gradient, and the results were studied with the help of simulations. The processes in the ion source are well understood, and possibilities for further optimization of generated ion currents are clarified.

  9. The COHERENT collaboration: an effort to observe coherent, elastic, neutral-current neutrino-nucleus scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Coherent Collaboration

    2014-09-01

    The phenomenon of coherent, neutral-current scattering of neutrinos from nuclei was first proposed by D.Z. Freedman in 1974, who posited that an effort to observe this effect experimentally ``may be an act of hubris'' owing to extreme experimental difficulties. Taking advantage of technologies which have come to maturity and new experience gained in the intervening 40 years, the newly-formed COHERENT collaboration seeks to measure for the first time coherent, elastic neutrino-nucleus scattering (CE ν NS). Using neutrinos created by stopped pions at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory, several detector systems will be deployed to limit systematic uncertainties and unambiguously observe the N2 -dependence on the cross section. The current status of the efforts of the collaboration will be addressed, focusing on detector technologies and calibration of these detectors for low-energy nuclear recoils. We will also discuss the longer-term physics goals of the collaboration, including astrophysical implications of the measurements and the use CE ν NS as a probe to search for non-standard neutrino interactions and as a way to measure the weak mixing angle.

  10. Research and Development of H Ion Source and LEBT for a Kaon-neutrino Factory

    SciTech Connect

    Ji, Q.; Staples, J.; Schenkel, T.; Li, D.

    2011-11-23

    A baseline H{sup -} ion source and low energy beam transport system (LEBT) have been identified for Project X. The filament-discharge H{sup -} ion source has been fabricated by D-Pace, Inc. and is now in operation at LBNL. The source is capable of delivering over 10mA of H{sup -} beam in cw operation with normalized 4rms emittances less than 0.7 {pi} mm mrad. A two-solenoid magnetic lens LEBT system has been design. The design has been validated with simulations of beam transport for 5 mA 30 keV H- beams using various simulation codes.

  11. THERMODYNAMIC INTERACTION OF THE PRIMARY PROTON BEAM WITH A MERCURY JET TARGET AT A NEUTRINO FACTORY SOURCE.

    SciTech Connect

    SIMOS,N.; LUDEWIG,H.; KIRK,H.; THIEBERGER,P.; MCDONALD,K.

    2001-06-18

    This paper addresses the thermodynamic interaction of an intense proton beam with the proposed mercury jet target at a neutrino factory or muon collider source, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 1.6e13 protons per pulse and a pulse length of 2 nanosec will interact with a 1 cm diameter mercury jet within a 20 Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 microsec, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using an ANSYS code transient analysis, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. The amplitude of the pressure wave reaching the nozzle that ejects the mercury jet into the magnetic field is estimated and the potential for mechanical damage is addressed.

  12. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  13. Sterile Neutrino Search with MINOS

    NASA Astrophysics Data System (ADS)

    Devan, Alena V.

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Amt. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Delta m2s 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  14. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.

    2014-11-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10-2 M⊙c2 at ˜150 Hz with ˜60 ms duration, and high-energy neutrino emission of 1 051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 ×1 0-2 Mpc-3 yr-1 . We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

  15. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  16. Renal Distribution Volumes of Indocyanine Green, [51Cr]EDTA, and 24Na in Man during Acute Renal Failure after Shock. IMPLICATIONS FOR THE PATHOGENESIS OF ANURIA

    PubMed Central

    Reubi, F. C.; Vorburger, C.; Tuckman, J.

    1973-01-01

    The mechanism responsible for the anuria in acute renal failure after shock is still controversial. Suppressed glomerular filtration and/or tubular back-diffusion of the filtrate are major possible causes. In the present investigation, seven patients with acute anuria, three of these seven again in the polyuric phase, six patients with moderate renal impairment, four patients with chronic renal failure, and eight subjects with normal renal function were studied by a multiple indicator-dilution method in which the total renal blood flow and renal distribution volumes of indocyanine green, [51Cr]EDTA, and 24Na were determined. In normal subjects the average values for one kidney were 582 ml/min, 42 ml, 92 ml, and 139 ml, respectively. The measurements in the patients with moderate renal impairment were similar to those in the normal subjects, but were decreased in chronic renal failure. In acute anuria, the average values were 269 ml/min, 40 ml, 101 ml, and 114 ml and the kidney volume, estimated radiographically, was increased by 40%. When expressed as milliliters per milliliters kidney, the average distribution volume of 24Na was decreased from 0.64 to 0.38. This decrease is consistent with the hypothesis that suppressed filtration is largely responsible for the anuria and that back-diffusion is, at most, a contributory factor. The apparent contradiction between the relatively well-preserved total blood flow and the suppressed filtration may be due to a combination of afferent vasoconstriction and efferent vasodilatation. This view is supported by the observation that low filtration fractions were found in clearance measurements performed during the polyuric phase. PMID:4630601

  17. Future of Neutrino Interaction Models

    NASA Astrophysics Data System (ADS)

    Terri, Ryan

    2015-04-01

    Neutrino-nucleus cross sections are one of the dominant sources of systematic errors in long-baseline neutrino oscillation experiments. To achieve the goals of precision measurements of the mixing angles and difference of the mass eigenstates squared, and discover the mass hierarchy and CP-violating phase, the underlying neutrino interactions must be better understood. This poster will mention some recent improvements in models in the interaction generators as well as some possible future improvements for proposed experiments.

  18. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  19. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  20. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  1. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  2. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  3. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  4. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  5. Neutrino Physics in Supernovae

    NASA Astrophysics Data System (ADS)

    Dineva, Tamara Simeonova

    1997-11-01

    scattering cross sections, incorporating them into the source term of the Boltzmann equation for subsequent numerical computation. Inclusion of these scattering rates in transport codes will increase the accuracy of neutrino transport calculations.

  6. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  7. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  8. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  9. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  10. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  11. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  12. Nonstandard neutrino-neutrino refractive effects in dense neutrino gases

    SciTech Connect

    Blennow, Mattias; Mirizzi, Alessandro; Serpico, Pasquale D.; /CERN /Fermilab

    2008-10-01

    We investigate the effects of nonstandard four-fermion neutrino-neutrino interactions on the flavor evolution of dense neutrino gases. We find that in the regions where the neutrino-neutrino refractive index leads to collective flavor oscillations, the presence of new neutrino interactions can produce flavor equilibration in both normal and inverted neutrino mass hierarchy. In realistic supernova environments, these effects are significant if the nonstandard neutrino-neutrino interaction strength is comparable to the one expected in the standard case, dominating the ordinary matter potential. However, very small nonstandard neutrino-neutrino couplings are enough to trigger the usual collective neutrino flavor transformations in the inverted neutrino mass hierarchy, even if the mixing angle vanishes exactly.

  13. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  14. Neutrinos Matter

    NASA Astrophysics Data System (ADS)

    Freedman, Stuart

    2003-04-01

    The excitement about neutrinos is all about mass. Recent experiments have established that neutrino have mass and that the familiar weak interaction states ν_e, ν_μ, and ν_τ are not the states the quantum states with definite mass. These new discoveries require a major reassessment of the role of neutrinos in the universe and the first reformulation of the Standard Model of particle physics since the discovery of the third generation of quarks and leptons. Neutrino experiments are poised to answer many of the new questions raised by the recent discoveries. I will review the current status of the field and discuss what experiment is teaching us about neutrino mass and mixing.

  15. Flavor oscillations with sterile neutrinos and in dense neutrino environments

    NASA Astrophysics Data System (ADS)

    Hollander, David

    Many experiments have provided evidence for neutrino flavor oscillations, and consequently that neutrinos are in fact massive which is not predicted by the Standard Model. Many experiments have been built to constrain the parameters which determine flavor oscillations, and for only three flavors of neutrinos the mixing parameters are well known, aside from the CP violating phase for two mass hierarchies. Most experimental data can be well explained by mixing between three flavors of neutrinos, however oscillation anomalies from several experiments, most notably from LSND (Liquid Scintillator Neutrino Detector) have suggested that there may be additional flavors of neutrinos beyond those in the Standard Model. One of the focuses of this dissertation is the possibility of adding new flavors of right-handed neutrinos to the Standard Model to account for oscillation anomalies, and exploring the consequences of sterile neutrinos for other experiments. Sensitivities to a particular model of sterile neutrinos at the future Long-Baseline Neutrino Experiment will be determined, in which CP effects introduced by the sterile neutrinos play an important role. It will be demonstrated how, by combining data from the Long-Baseline Neutrino Experiment along with data from Daya Bay and T2K, it is possible to provide evidence for or rule out this model of sterile neutrinos. A chi-squared analysis is used to determine the significance of measuring the effects of sterile neutrinos in IceCube; it will be shown that it may be possible to extract evidence for sterile neutrinos from high energy atmospheric neutrinos in IceCube. Furthermore it will be demonstrated how measuring neutrino flavor ratios from astrophysical sources in IceCube can help to distinguish between the three flavor scenario and a beyond the Standard Model (BSM) scenario involving sterile neutrinos. Measuring astrophysical as well as atmospheric neutrinos can evince the existence of sterile neutrinos. Despite the fact

  16. Neutrino Experiments at the SNS

    SciTech Connect

    Scholberg, Kate

    2009-12-17

    This talk describes planned neutrino physics experiments at the Spallation Neutron Source in Oak Ridge, Tennessee, with a focus on the proposed CLEAR (Coherent Low Energy Nuclear(A) Recoils) experiment.

  17. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Martineau-Huynh, Olivier; Kotera, Kumiko; Bustamente, Mauricio; Charrier, Didier; De Jong, Sijbrand; de Vries, Krijn D.; Fang, Ke; Feng, Zhaoyang; Finley, Chad; Gou, Quanbu; Gu, Junhua; Hanson, Jordan C.; Hu, Hongbo; Murase, Kohta; Niess, Valentin; Oikonomou, Foteini; Renault-Tinacci, Nicolas; Schmid, Julia; Timmermans, Charles; Wang, Zhen; Wu, Xiangping; Zhang, Jianli; Zhang, Yi

    2016-04-01

    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ˜ 105 radio antennas deployed over ˜ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10-11E-2 GeV-1 cm-2 s-1 sr-1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  18. KATRIN: Measuring the Mass Scale of Neutrinos

    NASA Astrophysics Data System (ADS)

    Oblath, Noah; Katrin Collaboration

    2011-10-01

    Over the past decade, experiments studying neutrinos from atmospheric, solar, and reactor sources have shown conclusively that neutrinos change flavor and, as a consequence, have a small but finite mass. However, the scale of neutrino masses remains an open question that is of great importance for many areas of physics. The most direct method to measure the neutrino mass scale is still via beta decay. The talk will focus primarily on the status of the KArlsruhe TRItium Neutrino experiment (KATRIN), currently under construction. KATRIN combines an ultra-luminous molecular windowless gaseous tritium source with a high-resolution integrating spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the neutrino mass is 0.2 eV at 90% C.L. In this talk I will discuss the status of the KATRIN experiment.

  19. Recent results of the ANTARES neutrino telescope

    SciTech Connect

    Hernández-Rey, Juan José

    2015-07-15

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles.

  20. ANTARES neutrino detection: A preliminary VLA catalogue of radio source components and their variability levels in the field

    NASA Astrophysics Data System (ADS)

    Tetarenko, A.; Sivakoff, G.; Bahramian, A.; Miller-Jones, C. O. Heinke G. Hallinan J.; Mioduszewski, A.; Mooley, K.

    2015-09-01

    Following the reported ANTARES neutrino detection and Swift detection of a possible X-ray counterpart (ATel #7987), NRAO performed service observations of the field using the Karl G. Jansky Very Large Array (VLA) from 22:19:34-23:19:22 UT on 2015 Sep 3 (MJD 57268.930-57268.972) and from 22:30:46-23:14:26 UT on Sep 4 (MJD 57269.938-57269.968).

  1. A study of atmospheric neutrinos with the IMB detector

    NASA Technical Reports Server (NTRS)

    Losecco, J. M.; Bionta, R. M.; Blewitt, G.; Bratton, C. B.; Casper, D.; Chrysicopoulou, P.; Claus, R.; Cortez, B. G.; Errede, S.; Foster, G. W.

    1985-01-01

    A sample of 401 contained neutrino interactions collected in the 3300 metric ton fiducial mass IMB detector was used to study neutrino oscillations, geomagnetic modulation of the flux and to search for point sources. The majority of these events are attributed to neutrino interactions. For the most part, these neutrinos are believed to originate as tertiary products of cosmic ray interactions in the atmosphere. The neutrinos are a mixture of v sub e and v sub micron.

  2. Measuring Neutrinos with the ANTARES Telescope

    SciTech Connect

    Reed, Corey

    2009-12-17

    The ANTARES underwater neutrino telescope has been taking data since construction began in 2006. The telescope, completed in May of 2008, detects the Cerenkov radiation of charged leptons produced by high energy neutrinos interacting in or around the detector. The lepton trajectory is reconstructed with high precision, revealing the direction of the incoming neutrino. The performance of the detector will be discussed and recent data showing muons, electromagnetic showers and atmospheric neutrinos will be presented. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies will be presented, and the sensitivity of the telescope will be discussed.

  3. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  4. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  5. Constraints and Tests of the OPERA Superluminal Neutrinos

    NASA Astrophysics Data System (ADS)

    Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang

    2011-12-01

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10-5. We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π→μ+νμ kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10-7. Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10-12. The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

  6. Three dimensional calculation of flux of low energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  7. Testing nonunitarity of neutrino mixing matrices at neutrino factories

    SciTech Connect

    Goswami, Srubabati; Ota, Toshihiko

    2008-08-01

    In this paper we explore the effect of nonunitary neutrino mixing on neutrino oscillation probabilities both in vacuum and matter. In particular, we consider the {nu}{sub {mu}}{yields}{nu}{sub {tau}} channel and, using a neutrino factory as the source for {nu}{sub {mu}}'s, discuss the constraints that can be obtained on the moduli and phases of the parameters characterizing the violation of unitarity. We point out how the new CP violation phases present in the case where the nonunitary mixings give rise to spurious ''degenerate'' solutions in the parameter space. We also discuss how the true solutions can be extricated by combining measurements at several baselines.

  8. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  9. Neutrino Physics at J-PARC

    NASA Astrophysics Data System (ADS)

    Friend, Megan

    The physics motivation, status, and prospects of currently running and proposed neutrino experiments at J-PARC are shown. This includes the currently running T2K (Tokai-to-Kamioka) long-baseline neutrino oscillation experiment and a proposed Sterile Neutrino Search. The currently running T2K experiment detects oscillated ν μ to ν e appearance and unoscillated ν μ to ν μ disappearance neutrino events from an off-axis beam of primarily muon neutrinos produced at J-PARC. Propagated neutrinos are detected in a Near Detector complex, which sits 280 m from the neutrino source and is used to constrain the neutrino flux and measure neutrino cross sections, and in the Super-Kamiokande (SK) far detector, a 22.5 kT fiducial volume water Cherenkov detector with excellent performance in sub-GeV ν e/ν μ particle ID that sits 295 km from the neutrino source and is used to monitor neutrino oscillations. T2K has recently released a series of very interesting and important results, including the world's first definitive observation of neutrino appearance (ν e appearance from a ν μ beam), an observation which was made with only 8% of the proposed total data. T2K has continued to accumulate data since releasing these results, and has many exciting prospects, including potentially having sensitivity to show a first hint of CP violation in the lepton sector. These T2K recent results and future prospects will be shown. A brief overview of the prospects of a proposed future Sterile Neutrino Search, which plans to utilize the J-PARC Materials and Life Science Experimental Facility to initially search for sterile neutrinos with a large mass splitting, will also be shown.

  10. Neutrino radiation hazards: A paper tiger

    SciTech Connect

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the `exotic` particles produced, including the neutrinos. Furthermore, the very word neutrino (`little neutral one`, as coined by Enrico Fermi) can lead to public concern due to confusion with `neutron`, a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a `paper tiger`. 14 refs., 1 fig., 1 tab.

  11. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  12. Neutrino Tomography Learning About The Earth's Interior Using The Propagation Of Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2006-12-01

    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth’s interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.

  13. Excretion of radionuclides in human breast milk following administration of /sup 125/I-fibrinogen, /sup 99/Tc/sup m/-MAA and /sup 51/Cr-EDTA

    SciTech Connect

    Mattsson, S.; Johansson, L.; Nosslin, B.; Ahlgren, L.

    1981-06-01

    Very few biokinetic and dosimetric data for estimating the absorbed dose to a breast-feeding child are available in the literature. The few available are usually case reports. We have measured the activity concentration in breast milk from one patient after administration of /sup 125/I-fibrinogen, from two patients after administration of /sup 99/Tc/sup m/-macroaggregated albumin, and from one patient after administration of /sup 51/Cr-EDTA. We have compared our data with earlier published results and estimated the absorbed dose to the breast-feeding child using biokinetic data presented in this work and recently published S-values for new-born children.

  14. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  15. Effect of background region of interest and time-interval selection on glomerular filtration ratio estimation by percentage dose uptake of (99m)Tc-DTPA in comparison with (51)Cr-EDTA clearance in healthy cats.

    PubMed

    Debruyn, Katrien; Vandermeulen, Eva; Saunders, Jimmy H; Dobbeleir, André A; Ham, Hamphrey R; Peremans, Kathelijne

    2013-08-01

    Evaluation of glomerular function is a useful part of the diagnostic approach in animals suspected of having renal disease. Time-interval and background region of interest (bg ROI) selection are determining factors when calculating the glomerular filtration ratio (GFR) based on percentage uptake of (99m)technetium-labelled diethylene triamine penta-acetic acid ((99m)Tc-DTPA). Therefore, three different time intervals (60-120 s, 120-180 s, 60-180 s) and three different bg ROIs (C-shape, caudolateral, cranial + caudal) were investigated. In addition, global GFRs based on percentage dose uptake of (99m)Tc-DTPA for the different time-intervals and bg ROIs were compared with the global GFR based on (51)chromium-ethylene diaminic tetra-acetic acid ((51)Cr-EDTA) plasma clearance in nine healthy European domestic shorthair cats. Paired Student's t-tests and linear regression analysis were used to analyse the data. Different time intervals seemed to cause significant variation (P <0.01) in absolute GFR values, regardless of the choice of bg ROI. Significant differences (P <0.01) between bg ROIs were only observed in the 120-180s time interval between the C-shape and cranial + caudal bg ROI, and between the caudolateral and cranial + caudal bg ROI. The caudolateral bg ROI in the 60-180 s time interval showed the highest correlation coefficient (r = 0.882) between (99m)Tc-DTPA and (51)Cr-EDTA, although a significant difference (P <0.05) was present between both techniques. PMID:23349527

  16. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  17. Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2015-07-01

    Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity χ2-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.

  18. A high sensitivity search for electron anti-neutrinos from the sun and other sources at Kamland

    SciTech Connect

    Eguchi, K.; Enomoto, S.; Furuno, K.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Kawashima, T.; Kishimoto, Y.; Koga, M.; Koseki, Y.; Maeda, T.; Mitsui, T.; Motoki, M.; Nakajima, K.; Nakajima, T.; Ogawa, H.; Owada, K.; Piquemal, F.; Shimizu, I.; Shirai, J.; Suekane, F.; Suzuki, A.; Tada, K.; Tajima, O.; Takayama, T.; Tamae, K.; Watanabe, H.; Busenitz, J.; Djurcic, Z.; McKinny, K.; Mei, D.-M.; Piepke, A.; Yakushev, E.; Berger, B.E.; Chan, Y.D.; Decowski, M.P.; Dwyer, D.A.; Freedman, S.J.; Fu, Y.; Fujikawa, B.K.; Goldman, J.; Heeger, K.M.; Lesko, K.T.; Luk, K.-B.; Murayama, H.; Nygren, D.R.; Okada, C.E.; Poon, A.W.P.; Steiner, H.M.; Winslow, L.A.; Horton-Smith, G.A.; Mauger, C.; McKeown, R.D.; Tipton, B.; Vogel, P.; Lane, C.E.; Miletic, T.; Gorham, P.W.; Guillian, G.; Learned, J.G.; Maricic, J.; Matsuno, S.; Pakvasa, S.; Dazeley, S.; Hatakeyama, S.; Svoboda, R.; Dieterle, B.D.; DiMauro, M.; Detwiler, J.; Gratta, G.; Ishii, K.; Tolich, N.; Uchida, Y.; Batygov, M.; Bugg, W.; Efremenko, Y.; Kanyshkov, Y.; Kozlov, A.; Nakamura, Y.; Gould, C.R.; Karwowski, H.J.; Markoff, D.M.; Messimore, J.A.; Nakamura, K.; Rohm, R.M.; Tornow, W.; Young, A.R.; Chen, M-J.; Wang, Y-F.

    2003-10-21

    Data corresponding to a KamLAND detector exposure of 0.28 kton-year has been used to search for {bar {nu}}{sub e}'s in the energy range 8.3 MeV < E{sup {bar {nu}}{sub e}} < 14.8 MeV. No candidates were found for an expected background of 1.1 {+-} 0.4 events. This result can be used to obtain a limit on {bar {nu}}{sub e} fluxes of any origin. Assuming that all {bar {nu}}{sub e} flux has its origin in the Sun and has the characteristic {sup 8}B solar {nu}{sub e} energy spectrum, we obtain an upper limit of 3.7 x 10{sup 2} cm{sup -2} s{sup -1} (90 percent C.L.) on the {bar {nu}}{sub e} flux. We interpret this limit, corresponding to 2.8 x 10{sup -4} of the Standard Solar Model {sup 8}B {nu}{sub e} flux, in the framework of spin-flavor precession and neutrino decay models.

  19. From super beams to neutrino factories

    SciTech Connect

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  20. Future Reactor Neutrino Experiments (RRNOLD)1

    NASA Astrophysics Data System (ADS)

    Jaffe, David E.

    The prospects for future reactor neutrino experiments that would use tens of kilotons of liquid scintillator with a ∼ 50 km baseline are discussed. These experiments are generically dubbed "RRNOLD" for Radical Reactor Neutrino Oscillation Liquid scintillator Detector experiment. Such experiments are designed to resolve the neutrino mass hierarchy and make sub-percent measurements sin2θ12, Δm232 and Δm122 . RRNOLD would also be sensitive to neutrinos from other sources and have notable sensitivity to proton decay.

  1. Constraining astrophysical neutrino flavor composition from leptonic unitarity

    SciTech Connect

    Xu, Xun-Jie; He, Hong-Jian; Rodejohann, Werner E-mail: hjhe@tsinghua.edu.cn

    2014-12-01

    The recent IceCube observation of ultra-high-energy astrophysical neutrinos has begun the era of neutrino astronomy. In this work, using the unitarity of leptonic mixing matrix, we derive nontrivial unitarity constraints on the flavor composition of astrophysical neutrinos detected by IceCube. Applying leptonic unitarity triangles, we deduce these unitarity bounds from geometrical conditions, such as triangular inequalities. These new bounds generally hold for three flavor neutrinos, and are independent of any experimental input or the pattern of lepton mixing. We apply our unitarity bounds to derive general constraints on the flavor compositions for three types of astrophysical neutrino sources (and their general mixture), and compare them with the IceCube measurements. Furthermore, we prove that for any sources without ν{sub τ} neutrinos, a detected ν{sub μ} flux ratio < 1/4 will require the initial flavor composition with more ν{sub e} neutrinos than ν{sub μ} neutrinos.

  2. Future short baseline neutrino searches with nuclear decays

    SciTech Connect

    Caccianiga, Barbara

    2015-07-15

    Several anomalies coming from neutrino experiments may be pointing towards new physics: these hints suggest the existence of one (or more) sterile neutrinos. We discuss some of the experiments proposed to verify (or disproof) this hypothesis by using an intense radioactive source in proximity of large neutrino detectors.

  3. Neutrino Physics with the IceCube Detector

    SciTech Connect

    IceCube Collaboration; Kiryluk, Joanna; Kiryluk, Joanna

    2008-06-11

    IceCube is a cubic kilometer neutrino telescope under construction at the South Pole.The primary goal is to discover astrophysical sources of high energy neutrinos.We describe the detector and present results on atmospheric muon neutrinos from2006 data collected with nine detector strings.

  4. Recent results from the ANTARES neutrino telescope

    SciTech Connect

    Eberl, Thomas; Collaboration: ANTARES Collaboration

    2014-11-18

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles.

  5. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  6. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  7. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  8. Coherent elastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2015-05-01

    I describe physics potential and experimental prospects for coherent elastic neutrino-nucleus scattering (CEvNS), a process which has not yet been observed. Germanium- based detectors represent a promising technology for CEvNS experiments. I focus primarily on stopped-pion neutrino sources.

  9. Galactic and extragalactic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shapiro, M. M.; Silberberg, R.

    1980-01-01

    Estimates of fluxes from cosmic diffuse sources are made using the generic relationship between secondary gammas and neutrinos and using recent cosmic gamma-ray satellite observations. A quantitative estimate of the observability above the atmospheric background of 1-10 TeV neutrinos from the inner Galaxy for a DUMAND type detector is then given.

  10. Neutrino Spectra and Uncertainties for MINOS

    SciTech Connect

    Kopp, Sacha

    2008-02-21

    The MINOS experiment at Fermilab has released an updated result on muon disappearance. The experiment utilizes the intense source of muon neutrinos provided by the NuMI beam line. This note summarizes the systematic uncertainties in the experiment's knowledge of the flux and energy spectrum of the neutrinos from NuMI.

  11. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  12. ANTARES and Baikal: Recent results from underwater neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Schüssler, Fabian

    2016-07-01

    Two Northern hemisphere neutrino telescopes are currently searching for astrophysical neutrinos in the TeV/PeV range: ANTARES and Baikal. Both observatories utilize various signatures like a high energy excess over the atmospheric neutrino flux, searches for localized neutrino sources of various extensions and multi-messenger analyses based on time and/or space coincidences with other cosmic probes. We here review the status of both experiments and discuss a selection of recent results.

  13. Recent results from the ANTARES deep sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Coyle, Paschal

    2013-02-01

    The ANTARES deep sea neutrino telescope has acquired over four years of high quality data. This data has been used to measure the oscillation parameters of atmospheric neutrinos and also to search for neutrinos of a nonterrestrial origin. Competitive upper limits on the fluxes of neutrinos from dark matter annihilation in the Sun, a variety of Galactic and extra-galactic sources, both steady and transient, are presented.

  14. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  15. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  16. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  17. Astrophysical implications of high energy neutrino limits

    NASA Astrophysics Data System (ADS)

    Becker, Julia K.; Groß, Andreas; Münich, Kirsten; Dreyer, Jens; Rhode, Wolfgang; Biermann, Peter L.

    2007-09-01

    Second generation high energy neutrino telescopes are being built to reach sensitivities of neutrino emission from galactic and extragalactic sources. Current neutrino detectors are already able to set limits which are in the range of some emission models. In particular, the Antarctic Muon and Neutrino Detection Array (AMANDA) has recently presented the so-far most restrictive limit on diffuse neutrino emission [A. Achterberg et al., Phys. Rev. D, submitted for publication, astro-ph/0705.1315.]. Stacking limits which apply to AGN point source classes rather than to single point sources [A. Achterberg, et al., IceCube Collaboration and P.L. Biermann, Astrophys. Phys. 26 (2006) 282] are given as well. In this paper, the two different types of limits will be used to draw conclusions about different emission models. An interpretation of stacking limits as diffuse limits to the emission from considered point source class is presented. The limits can for instance be used to constrain the predicted correlation of EGRET-detected diffuse emission and neutrino emission. Also, the correlation between X-ray and neutrino emission is constrained. Further results for source classes like TeV blazars and FR-II galaxies are presented. Starting from the source catalogs so-far examined for the stacking method, we discuss further potential catalogs and examine the possibilities of the second generation telescopes ICECUBE and KM3NET by comparing catalogs with respect to northern and southern hemisphere total flux.

  18. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  19. Research and development of H- ion source and low energy beam transport for a kaon-neutrino factory.

    PubMed

    Ji, Q; Staples, J; Sy, A; Schenkel, T; Li, D

    2012-02-01

    A baseline H(-) ion source and low energy beam transport (LEBT) system have been identified for Project X. The filament-discharge H(-) ion source has been fabricated by D-Pace, Inc. and is now in operation at LBNL. The source is capable of delivering over 10 mA of H(-) beam in cw operation with normalized 4 rms emittances less than 0.7 π mm mrad. A two-solenoid magnetic lens LEBT system has been design. The design has been validated with simulations of beam transport for 5 mA 30 keV H(-) beams using various simulation codes. PMID:22380227

  20. Recent Results from the ANTARES Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Kouchner, Antoine

    2014-10-01

    The ANTARES detector, located 40 km off the French coast, is the largest deep-sea neutrino telescope in the world. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons produced by neutrino interactions in and around the detector. The primary goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  1. Calculating Neutrino Oscillations with Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Linehan, Bryan

    2014-09-01

    In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application has been written in Mathematica that calculates these probabilities with the neutrino masses, linear relationships between mass and flavor states, values of CP symmetry violating constants, and constant densities of media in which the neutrinos propagate set as parameters. The application was published online for researchers to use as a tool when considering the existence of sterile neutrinos. In the immediate future, the insights this application gives into neutrino oscillations will be studied and reported. In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application

  2. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  3. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  4. Study of Neutrino Interactions in MINOS

    SciTech Connect

    Sharma, Richa

    2014-01-01

    MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters Δm2 32 and θ23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model ( SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.

  5. The Angra Neutrino Project: precise measurement of θ13 and safeguards applications of neutrino detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2009-04-01

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  6. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  7. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  8. Impact of cosmic neutrinos on the gravitational-wave background

    SciTech Connect

    Mangilli, Anna; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2008-10-15

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultrarelativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  9. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ∼ 10{sup −2} eV), thermal effects are important for ultra high energy neutrino sources at z∼>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ∼ 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}−10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ∼ 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10–100.

  10. Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; OPERA Collaboration

    2016-05-01

    The OPERA experiment observed ν μ → ν τ oscillations in the atmospheric sector. To this purpose the hybrid OPERA detector was exposed to the CERN Neutrinos to Gran Sasso beam from 2008 to 2012, at a distance of 730 km from the neutrino source. Charged-current interactions of ν τ were searched for through the identification of τ lepton decay topologies. The five observed ν τ interactions are consistent with the expected number of events in the standard three neutrino framework. Based on this result, new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis performed in the 3+1 neutrino framework are here presented.

  11. Tachyonic neutrinos and the neutrino masses

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert

    2013-01-01

    With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility - albeit with an mν2<0 having a much smaller magnitude than was implied by the original OPERA claim. One recently published non-standard analysis of SN 1987A neutrinos supports a tachyonic mass eigenstate, and here we show how it leads to 3 + 3 mirror neutrino model having an unconventional mass hierarchy. The model incorporates one superluminal active-sterile neutrino pair, and it is testable in numerous ways, including making a surprising prediction about an unpublished aspect of the SN 1987A neutrinos. Additional supporting evidence involving earlier analyses of cosmic rays is summarized to add credence to the tachyonic neutrino hypothesis.

  12. Angular distribution of muons produced by cosmic ray neutrinos in rock

    NASA Technical Reports Server (NTRS)

    Boliev, M. M.; Buckevich, A. V.; Chudakov, A. E.; Leonov-Vendrovsky, A. V.; Mikheyev, S. P.; Zakidyshev, V. N.

    1985-01-01

    Measurement of the upgoing muons flux, produced by cosmic ray neutrinos is aiming at: (1) search for neutrino oscillation; (2); search for extraterrestrial neutrinos from local sources; and (3); search for any hypothetical neutral penetrating radiation different from neutrinos. Experimental data of the Baksan underground telescope on intensity of upward muons for three years of living time, was analyzed having in mind mainly neutrino oscillation.

  13. Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Barrett, J.

    2011-11-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of | Δmsterile | 2 ⩾ 1.5eV2 and mixing strength of sin2 2θsterile = 0.17 ± 0.08 at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  14. Supernova 1987a and the secret interactions of neutrinos

    SciTech Connect

    Kolb, E.W.; Turner, M.S.

    1987-07-01

    By using SN 1987a as a 'source' of neutrinos with energy approx.10 MeV we place limits on the couplings of neutrinos with cosmic background particles. Specifically, we find that the Majoron-electron neutrino coupling must be less than about 10/sup -3/; if neutrinos couple to a massless vector particle, its dimensionless coupling must be less than about 10/sup -3/; and if neutrinos couple with strength g to a massive boson of mass M, then g/M must be less than 12 MeV/sup -1/. 11 refs., 3 tabs.

  15. Near Detectors for a Neutrino Factory

    SciTech Connect

    Morfin, Jorge G.

    2011-11-23

    The baseline design for a Neutrino Factory includes the need for one or more near detectors.The near detectors must be designed to carry out measurements essential to the sensitivity of the oscillation-physics program. In addition, the intense neutrino beam delivered by the Neutrino Factory makes it possible to carry out a unique neutrino-physics program at the near detectors. This program includes fundamental electroweak and QCD physics. The near detector must also be capable of searching for new physics, for example by detecting tau-leptons which are particularly sensitive probes of non-standard interactions at source and at detection. This paper is extracted from the Near Detector chapter of the Neutrino Factory Interim Design Report.

  16. Supernova neutrinos: production, oscillations and detection

    NASA Astrophysics Data System (ADS)

    Mirizzi, A.; Tamborra, I.; Janka, H.-Th.; Saviano, N.; Scholberg, K.; Bollig, R.; Hüdepohl, L.; Chakraborty, S.

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor-dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination of source-generated properties from signal features that originate on the way to the detector. As for the latter, we discuss self-induced flavor conversions associated with neutrino-neutrino interactions that occur in the deepest stellar regions; matter effects that modify the pattern of flavor conversions in the dynamical stellar envelope; neutrino-oscillation signatures that result from structural features associated with the shock-wave propagation as well as turbulent mass motions in post-shock layers. Finally, we highlight our current understanding of the formation of the diffuse supernova neutrino background and we analyse the perspectives for a detection of this relic signal that integrates the contributions from all past core-collapse supernovae in the Universe.

  17. Recent developments in neutrino physics

    SciTech Connect

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of {bar {nu}}{sub e} mass via beta endpoint studies; status of solar neutrino observations; status of 17-keV neutrino'' reports; and the use of {nu}p elastic scattering to determine the strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs.

  18. Muon neutrino disappearance at MINOS

    SciTech Connect

    Armstrong, R

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  19. GRB neutrino search with MAGIC

    SciTech Connect

    Becker, Julia K.; Rhode, Wolfgang; Gaug, Markus

    2008-05-22

    The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope was designed for the detection of photon sources > or approx. 50 GeV. The measurement of highly-inclined air showers renders possible the search for high-energy neutrinos, too. Only neutrinos can traverse the Earth without interaction, and therefore, events close to the horizon can be identified as neutrino-induced rather than photon-induced or hadronic events. In this paper, Swift-XRT-detected GRBs with given spectral information are used in order to calculate the potential neutrino energy spectrum from prompt and afterglow emission for each individual GRB. The event rate in MAGIC is estimated assuming that the GRB happens within the field of view of MAGIC. A sample of 568 long GRBs as detected by BATSE is used to compare the detection rates with 163 Swift-detected bursts. BATSE has properties similar to the Gamma-ray Burst Monitor (GBM) on board of GLAST. Therefore the estimated rates give an estimate for the possibilities of neutrino detection with MAGIC from GLAST-triggered bursts.

  20. ICECUBE Neutrinos and Lorentz Invariance Violation

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi

    2015-06-01

    The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.

  1. MASTER OT J130845.02-323254.9: Variable Stars as Source of the High Energy Neutrino.

    NASA Astrophysics Data System (ADS)

    Lipunov, V.; Tyurina, N.; Gorbovskoy, E.; Buckley, D.

    2016-09-01

    As reported in ATel #9425 Global MASTER Net auto-detection system ( ( Lipunov et al., MASTER Global Robotic Net, Advances in Astronomy, 2010, 30L) discovered OT source at (RA, Dec) = 13h 08m 45.02s -32d 32m 54.9s on 2016-08-24.73811 UT during inspection of HESE IceCube alert (14 August 2016, 58537957 trigger number http://gcn.gsfc.nasa.gov/notices_amon/58537957_128340.amon , Dornic et al. ATEL #9440 ). MASTER-SAAO auto-detection system detected again OT at RA (2000) = 13 08 45.02 -32 32 54.9 on 2016-09-04.7627UT (ATEL #9425).

  2. Neutrino Oscillations with Three Active and Three Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-07-01

    This is an extension of estimates of the probability of μ to e neutrino oscillation with one sterile neutrino to three sterile neutrinos, using a 6x6 matrix. Since the mixing angle for only one sterile neutrino has been experimentally determined, we estimate the μ to e neutrino oscillation probability with different mixing angles for two of the sterile neutrinos.

  3. Characterization of the Astrophysical Neutrino Flux at the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Mohrmann, Lars; IceCube Collaboration

    2016-05-01

    With the discovery of a high-energy astrophysical neutrino flux, the IceCube Neutrino Observatory, located at the geographical South Pole, has opened the field of high-energy neutrino astronomy. While evidence for extraterrestrial neutrinos has been found in multiple searches, it was not yet possible to identify their sources; they appear as an isotropic excess. Nevertheless, it is possible to constrain the properties of the sources by measuring the energy spectrum and the flavor composition of the flux. Here, we present the latest results from a global analysis, combining all available detection channels and energy ranges. We derive the currently most precise constraints on the energy spectrum and flavor composition of the astrophysical neutrino flux. In addition, we show projected constraints on these properties that can be obtained with additional data in the future.

  4. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  5. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  6. Constraining invisible neutrino decays with the cosmic microwave background

    SciTech Connect

    Hannestad, Steen; Raffelt, Georg G.

    2005-11-15

    Precision measurements of the acoustic peaks of the cosmic microwave background indicate that neutrinos must be freely streaming at the photon decoupling epoch when T{approx_equal}0.3 eV. This requirement implies restrictive limits on 'secret neutrino interactions', notably on neutrino Yukawa couplings with hypothetical low-mass (pseudo)scalars {phi}. For diagonal couplings in the neutrino mass basis we find g < or approx. 1x10{sup -7}, comparable to limits from supernova 1987A. For the off-diagonal couplings and assuming hierarchical neutrino masses we find g < or approx. 1x10{sup -11}(0.05 eV/m){sup 2} where m is the heavier mass of a given neutrino pair connected by g. This stringent limit excludes that the flavor content of high-energy neutrinos from cosmic-ray sources is modified by {nu}{yields}{nu}{sup '}+{phi} decays on their way to Earth.

  7. Status and commissioning of the Karlsruhe tritium neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Thuemmler, Thomas; Katrin Collaboration

    2013-10-01

    Neutrino properties, and especially the determination of the neutrino rest mass, play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double β decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. Experiments based on single β decay investigate electrons close to their kinematic endpoint in order to determine the neutrino mass by a modelindependent method. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β spectroscopy close to the tritium endpoint with unprecedented precision and will reach a sensitivity of 200 meV/c2 (90% C.L.) on the neutrino mass.

  8. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  9. The Convolution Method in Neutrino Physics Searches

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.; Chasioti, V. C.; Divari, P. C.; Sinatkas, J.

    2007-12-26

    We concentrate on the convolution method used in nuclear and astro-nuclear physics studies and, in particular, in the investigation of the nuclear response of various neutrino detection targets to the energy-spectra of specific neutrino sources. Since the reaction cross sections of the neutrinos with nuclear detectors employed in experiments are extremely small, very fine and fast convolution techniques are required. Furthermore, sophisticated de-convolution methods are also needed whenever a comparison between calculated unfolded cross sections and existing convoluted results is necessary.

  10. Distribution of neutrino fluxes from pulsar shells

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.; Silberberg, R.

    According to a model considered by Berezinsky and Prilutsky (1976), a young, dense supernova shell can be a powerful source of high-energy neutrinos. In this model, ultra-high energy protons and other nuclei are accelerated at the central pulsar. The protons interact in the supernova shell and generate cascades of mesons, which in turn yield neutrinos upon decay. The pulsar luminosity function based on all the observed Galactic pulsars is considered. It is found that the high-energy neutrinos from supernovae in the Milky Way Galaxy should be readily detectable. The corresponding pulsars would be relatively low-powered pulsars.

  11. Software for neutrino acoustic detection and localization

    NASA Astrophysics Data System (ADS)

    Bouhadef, B.

    2009-06-01

    The evidence of the existing of UHE (E>10eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  12. Collective neutrino oscillations in nonspherical geometry

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg

    2008-08-01

    The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.

  13. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  14. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  15. On the origin of high-energy cosmic neutrinos

    SciTech Connect

    Murase, Kohta

    2015-07-15

    Recently, the IceCube collaboration made a big announcement of the first discovery of high-energy cosmic neutrinos. Their origin is a new interesting mystery in astroparticle physics, but the present data may give us hints of connection to cosmic-ray and/or gamma-ray sources. We will look over possible scenarios for the cosmic neutrino signal, and emphasize the importance of multimessenger approaches in order to identify the PeV neutrino sources and get crucial clues to the cosmic-ray origin. We also discuss some possibilities to study neutrino properties and probe new physics.

  16. Geo-neutrino Observation

    SciTech Connect

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  17. Leptogenesis with many neutrinos

    SciTech Connect

    Eisele, Marc-Thomas

    2008-02-15

    We consider leptogenesis in scenarios with many neutrino singlets. We find that the lower bound for the reheating temperature can be significantly relaxed with respect to the hierarchical three neutrino case. We further argue that the upper bound for the neutrino mass scale from leptogenesis gets significantly lifted in these scenarios. As a specific realization, we then discuss an extradimensional model, where the large number of neutrinos is provided by Kaluza-Klein excitations.

  18. Probing {theta}{sub 23} in neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Niro, Viviana; Rodejohann, Werner

    2008-06-01

    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle {theta}{sub 23} introduces the strongest variation on the flux ratios of ultrahigh-energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain {theta}{sub 23}. We consider astrophysical neutrinos originating from pion, muon-damped, and neutron sources and make a comparative study of their sensitivity reach to {theta}{sub 23}. It is found that neutron sources are most favorable for testing deviations from maximal {theta}{sub 23}. Using a {chi}{sup 2} analysis, we show, in particular, the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis 'impure' sources, i.e., deviations from the usually assumed initial (1 ratio 2 ratio 0), (0 ratio 1 ratio 0), or (1 ratio 0 ratio 0) flux compositions.

  19. Nonstandard interaction effects on astrophysical neutrino fluxes

    SciTech Connect

    Blennow, Mattias; Meloni, Davide

    2009-09-15

    We investigate new physics effects in the production and detection of high-energy neutrinos at neutrino telescopes. Analyzing the flavor ratios {phi}{sub {mu}}/{phi}{sub {tau}} and {phi}{sub {mu}}/({phi}{sub {tau}}+{phi}{sub e}), we find that the standard model predictions for them can be sensibly altered by new physics effects in the case of pion sources. However, the experimental precision required to see the effects would be very difficult to obtain.

  20. Nucleosynthesis in neutrino-driven supernovae

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Hix, W. R.; Martínez-Pinedo, G.; Liebendörfer, M.; Thielemann, F.-K.; Bravo, E.; Langanke, K.; Zinner, N. T.

    2006-10-01

    Core collapse supernovae are the leading actor in the story of the cosmic origin of the chemical elements. Existing models, which generally assume spherical symmetry and parameterize the explosion, have been able to broadly replicate the observed elemental pattern. However, inclusion of neutrino interactions produces noticeable improvements in the iron peak composition of the ejecta when compared to observations. Neutrino interactions may also provide a supernova source for light p-process nuclei.

  1. Nuclear Propelled Vessels and Neutrino Oscillation Experiments

    NASA Astrophysics Data System (ADS)

    Detwiler, J.; Gratta, G.; Tolich, N.; Uchida, Y.

    2002-10-01

    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time, we argue that a nuclear powered surface ship such as a large Russian icebreaker may provide an ideal source for precision experiments.

  2. Neutrino Detectors Review

    SciTech Connect

    D'Ambrosio, Nicola

    2005-10-12

    The neutrino physics is one of the most important research field and there are several experiments made and under construction focused on it. This paper will present a review on some detectors used for Solar Neutrinos detection, Atmospheric Neutrinos detection and in Long Baseline Experiments.

  3. Neutrino Physics with Opera

    NASA Astrophysics Data System (ADS)

    Bertolin, Alessandro

    2011-10-01

    Neutrino physics with the OPERA experiment will be discussed in this paper. First the OPERA physic goal will be presented. A description of the neutrino beam and of the detector will follow. The analysis of the beam induced neutrino interactions will then be presented.

  4. Solar neutrinos, helioseismology and the solar internal dynamics

    NASA Astrophysics Data System (ADS)

    Turck-Chièze, Sylvaine; Couvidat, Sébastien

    2011-08-01

    Neutrinos are fundamental particles ubiquitous in the Universe and whose properties remain elusive despite more than 50 years of intense research activity. This review illustrates the importance of solar neutrinos in astrophysics, nuclear physics and particle physics. After a description of the historical context, we remind the reader of the noticeable properties of these particles and of the stakes of the solar neutrino puzzle. The standard solar model triggered persistent efforts in fundamental physics to predict the solar neutrino fluxes, and its constantly evolving predictions have been regularly compared with the detected neutrino signals. Anticipating that this standard model could not reproduce the internal solar dynamics, a seismic solar model was developed which enriched theoretical neutrino flux predictions with in situ observation of acoustic and gravity waves propagating in the Sun. This seismic model contributed to the stabilization of the neutrino flux predictions. This review recalls the main historical steps, from the pioneering Homestake mine experiment and the GALLEX-SAGE experiments capturing the first proton-proton neutrinos. It emphasizes the importance of the SuperKamiokande and SNO detectors. Both experiments demonstrated that the solar-emitted electron neutrinos are partially transformed into other neutrino flavors before reaching the Earth. This sustained experimental effort opens the door to neutrino astronomy, with long-base lines and underground detectors. The success of BOREXINO in detecting the 7Be neutrino signal alone instills confidence in physicists' ability to detect each neutrino source separately. It justifies the building of a new generation of detectors to measure the entire solar neutrino spectrum in greater detail, as well as supernova neutrinos. A coherent picture has emerged from neutrino physics and helioseismology. Today, new paradigms take shape in these two fields: neutrinos are massive particles, but their masses are

  5. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  6. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  7. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    SciTech Connect

    Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  8. Generalized Boltzmann formalism for oscillating neutrinos

    SciTech Connect

    Strack, P.; Burrows, A.

    2005-05-01

    In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will often start from the classical Boltzmann equation for the neutrino's spatial, temporal, and spectral evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to matter by source and sink terms on the 'right-hand side' of the transport equation and together with the equations of hydrodynamics this set of coupled partial differential equations for classical densities describes, in principle, the evolution of core collapse and explosion. However, with the possibility of neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the formalisms developed have retained the character of quantum operator physics involving complex quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper, we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conversion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between decohering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino oscillations in a quantum-physically consistent fashion.

  9. The status of the solar neutrino problem

    SciTech Connect

    Bowles, T.J.

    1993-12-01

    Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution. The next generation of solar experiments promise to finally resolve the source of the ``solar neutrino problem`` by the end of this decade.

  10. Energy reconstruction of high energy muon and neutrino events in KM3NeT

    NASA Astrophysics Data System (ADS)

    Drakopoulou, Evangelia; Markou, Christos; Tzamariudaki, Ekaterini; Pikounis, Konstantinos

    2016-04-01

    KM3NeT will be a European deep-sea infrastructure of neutrino telescopes covering a volume of several cubic kilometers in the Mediterranean Sea aiming to search for high energy neutrinos from galactic and extragalactic sources. This analysis focuses on muons coming from neutrino charged-current interactions. In large water Cherenkov detectors the reconstructed muon is used to approximate the neutrino direction and energy, thus providing information on the astrophysical neutrino source. Muon energy estimation is also critical for the differentiation of neutrinos originating from astrophysical sources from neutrinos generated in the atmosphere which constitute the detector background. We describe a method to determine the muon and neutrino energy employing a Neural Network. An energy resolution of approximately 0.27 has been achieved for muons at the TeV range.

  11. Probing BSM neutrino physics with flavor and spectral distortions: Prospects for future high-energy neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Shoemaker, Ian M.; Murase, Kohta

    2016-04-01

    The flavor of cosmic neutrinos may help unveil their sources and could reveal the presence of new physics in the neutrino sector. We consider impacts of next-generation neutrino detectors, including the planned upgrade to neutrino detector, IceCube-Gen2, which is well positioned to make dramatic improvements in both flavor and spectral measurements. We show that various models in neutrino physics beyond the Standard Model, such as neutrino decay, pseudo-Dirac states, and neutrino self-scattering, may be found or strongly constrained at IceCube-Gen2 and Cubic Kilometre Neutrino Telescope. We find that the additional flavor discriminants given by Glashow resonance events and so-called "double-bang" topologies improve the ability to access the flavor of the cosmic high-energy neutrinos and probe the beyond the Standard Model physics. In addition, although details depend on source properties, Glashow resonance events have the additional feature of being able to inform us of the relative strengths of neutrino and antineutrino emission, which may help us discriminate astrophysical scenarios.

  12. Deep underwater muon and neutrino detection status and plans

    SciTech Connect

    Talkington, H.R.

    1990-01-01

    DUMAND, the acronym for deep underwater muon and neutrino detection, is a project started by a group of U.S. physicists to produce a detector large enough to detect a significant rate of very high-energy natural neutrinos. This project will permit the study of elementary particle interactions in cosmic rays at energies beyond those available from contemplated future particle accelerators. It may also allow the observation of extraterrestrial and possibly extragalactic sources of neutrinos.

  13. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  14. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  15. Neutrino Project X at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2008-07-01

    In this talk I will give a brief description of Project X and an outline of the Neutrino Physics possibilities it provides at Fermilab. Project X is the generic name given to a new intense proton source at Fermilab. This source would produce more than 2 MW of proton power at 50 to 120 GeV, using the main injector, which could be used for a variety of long baseline neutrino experiments. A new 8 GeV linac would be required with many components aligned with a possible future ILC. In addition to the beam power from the main injector there is an additional 200 kW of 8 GeV protons that could be used for kaon, muon, experiments.

  16. The Life of Raymond Davis, Jr. and the Beginning of Neutrino Astronomy

    NASA Astrophysics Data System (ADS)

    Lande, Kenneth

    2009-11-01

    Neutrino astronomy, the observation of neutrinos from extraterrestrial sources, began in 1966, when Raymond Davis, Jr. turned on his deep-underground chlorine-based neutrino detector. Over the next three decades, the lower-than-predicted solar neutrino flux that Davis observed confused the scientific community. Was our understanding of energy generation in the core of stars flawed? Was there an unforeseen experimental error? Or were neutrinos more mysterious than we had anticipated? The scientific career of the remarkable scientist Raymond Davis played an integral role in unraveling the complex nature of neutrinos and in confirming our nuclear fusion model of energy generation in the core of the Sun.

  17. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  18. The CAPTAIN liquid argon neutrino experiment

    DOE PAGESBeta

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  19. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  20. Coherency in neutrino-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  1. Short distance neutrino oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  2. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  3. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  4. The early universe and clustering of the relic neutrinos

    SciTech Connect

    Sato, H.

    1981-12-29

    The astronomical consequences of a neutrino mass on the order of 10 eV are assessed. According to big bang cosmology, the neutrino blackbody radiation was excited in the early universe and, in the case of a neutrino mass of less than 1 MeV, would remain until now in the form of relic neutrinos without undergoing pair annihilation. These neutrinos may contribute to the average density of the universe, and may also be the main source of gravity in astronomical objects such as galactic clusters. While it is understood that neutrino-bound systems with masses on the order of galactic clusters are formed through a growth of the primordial density fluctuation in the relic neutrino distribution, there is as yet no explanation of how the protocluster fragments form individual galaxies and the massive halos of neutrinos around them. If the neutrino mass is larger than 10 eV, the missing mass in those galactic systems could be explained by the rest mass of the neutrino.

  5. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  6. Implication of the Non-detection of GZK Neutrinos

    NASA Astrophysics Data System (ADS)

    Yacobi, Lee; Guetta, Dafne; Behar, Ehud

    2016-06-01

    The IceCube telescope has detected diffuse neutrino emission up to a deposited energy of 2.6 PeV. Neutrinos with higher energies are expected from the Greisen Ztsepin Kuzmin (GZK) effect, namely the interaction of ultrahigh-energy cosmic rays (UHECRs) with the cosmic microwave background (CMB) and the extragalactic background light (EBL), but have not yet been detected. Models for GZK neutrinos vary greatly due to different assumptions on the UHECR elemental composition, as well as on the cosmological evolution of their sources and of the EBL. We show that the high ratio of EeV to PeV neutrinos in essentially all GZK models excludes the currently detected PeV neutrinos from being due to the GZK effect, because many additional higher-energy neutrinos should have been detected but were not. The non-detection of GZK neutrinos, despite more than essentially 1800 observing days, already rules out at 95% confidence all of the models that predict rates of 0.6 neutrinos yr‑1 or more. The non-detection is further used here to quantify the confidence at which classes of GZK models can be ruled out, and to compute the additional IceCube observing time required in order to rule them out with 95% confidence, if no detection is made. Finally, the number of GZK neutrinos expected from various classes of models in the future neutrino telescopes ARA and KM3NeT is estimated.

  7. On a theory of neutrino oscillations with entanglement

    SciTech Connect

    Kayser, Boris; Kopp, Joachim; Roberston, R.G.Hamish; Vogel, Petr; /Caltech, Kellogg Lab

    2010-06-01

    We show that the standard expression for the neutrino oscillation length can be confirmed even in theoretical approaches that take into account entanglement between the neutrino and its interaction partners. We show this in particular for the formalism developed in arXiv:1004.1847. Finally, we shed some light on the question why plane-wave approaches to the neutrino oscillation problem can yield the correct result for the oscillation length even though they do not explicitly account for the localization of the neutrino source and the detector.

  8. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  9. SalSA: A Teraton UHE Neutrino Detector

    SciTech Connect

    Reil, Kevin; /SLAC

    2006-04-19

    The observed spectrum of ultra-high energy cosmic rays virtually guarantees the presence of ultra-high energy neutrinos due to their interaction with the cosmic microwave background. Unlike cosmic rays, each of these neutrinos will point back directly to its source and will arrive at the Earth unattenuated, from sources perhaps as distant as z = 20. The neutrino telescopes currently under construction, should discover a handful of these events, probably too few for detailed study. This paper describes how an array of VHF and UHF antennas embedded in a large salt dome, SalSA (Salt dome Shower Array) promises to yield a teraton detector (> 500 km{sup 3 sr}) for contained neutrino events with energies above 10{sup 17} eV. Our simulations show that such a detector may observe several hundreds of these neutrinos over its lifetime with excellent angular resolution providing source locations.

  10. Search for neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Galatà, S.

    2012-12-01

    Neutrino telescopes are nowadays exploring a new window of observation on the high energy universe and may shed light on the longstanding problem regarding the origin of cosmic rays. The ANTARES neutrino telescope is located underwater 40 km offshore from the Southern coast of France, on a plateau at 2475 m depth. Since 2007 it observes the high energy (>100 GeV) neutrino sky looking for cosmic neutrino sources. Among the candidate neutrino emitters are microquasars, i.e. galactic X-ray binaries exhibiting relativistic jets, which may accelerate hadrons thus producing neutrinos, under certain conditions. These sources are also variable in time and undergo X-ray or gamma ray outburst that can be related to the acceleration of relativistic particles witnessed by their radio emission. These events can provide a trigger to the neutrino search, with the advantage of drastically reducing the atmospheric neutrino background. A search for neutrino emission from microquasar during outbursts is presented based on the data collected by ANTARES between 2007 and 2010. Upper limits are shown and compared with the predictions.

  11. Extreme blazars as counterparts of IceCube astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Resconi, E.; Giommi, P.; Arsioli, B.; Chang, Y. L.

    2016-04-01

    We explore the correlation of γ-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one γ-ray counterpart, Nν. In all three catalogues we consistently observe a positive fluctuation of Nν with respect to the mean random expectation at a significance level of 0.4-1.3 per cent. This applies only to extreme blazars, namely strong, very high energy γ-ray sources of the high energy peaked type, and implies a model-independent fraction of the current IceCube signal ˜10-20 per cent. An investigation of the hybrid photon - neutrino spectral energy distributions of the most likely candidates reveals a set of ≈5 such sources, which could be linked to the corresponding IceCube neutrinos. Other types of blazars, when testable, give null correlation results. Although we could not perform a similar correlation study for Galactic sources, we have also identified two (further) strong Galactic γ-ray sources as most probable counterparts of IceCube neutrinos through their hybrid spectral energy distributions. We have reasons to believe that our blazar results are not constrained by the γ-ray samples but by the neutrino statistics, which means that the detection of more astrophysical neutrinos could turn this first hint into a discovery.

  12. The generation of gravitational radiation by escaping supernova neutrinos

    NASA Technical Reports Server (NTRS)

    Epstein, R.

    1978-01-01

    Formulae for the gravitational radiation due to the anisotropic axisymmetric emission of neutrinos from a small source are derived. We find that a burst of neutrinos released anisotropically from a supernova will generate a burst of gravitational radiation that may be comparable in amplitude and energy to the gravitational radiation generated by the fluid motion in the collapse of the supernova core.

  13. On gamma and neutrino radiation from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.

    1985-01-01

    The production of high energy gamma and neutrino radiation is studied for Cyg X-3. A heating model is proposed to explain the presence of only one gamma-pulse during 4.8 h period of the source. The acceleration mechanisms are discussed. High energy neutrino flux from Cyg X-3 is calculated.

  14. Low-Energy Neutrino Cross-Section Measurements at SNS

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2006-05-01

    We discuss the proposal to build a neutrino facility at the Spallation Neutron Source (SNS) presently under construction at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  15. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

    SciTech Connect

    Gavrin, V. N.

    2013-10-15

    The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

  16. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  17. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  18. Neutrino Mass Anarchy

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal

    2000-03-01

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  19. Neutrino mass anarchy

    PubMed

    Hall; Murayama; Weiner

    2000-03-20

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries. PMID:11017272

  20. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  1. Neutrinos: Nature's Ghosts?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  2. Neutrinos: Nature's Ghosts?

    SciTech Connect

    Lincoln, Don

    2013-06-18

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  3. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  4. Accelerator neutrino program at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  5. Non-standard neutrino interactions at DUNE

    NASA Astrophysics Data System (ADS)

    de Gouvêa, André; Kelly, Kevin J.

    2016-07-01

    We explore the effects of non-standard neutrino interactions (NSI) and how they modify neutrino propagation in the Deep Underground Neutrino Experiment (DUNE). We find that NSI can significantly modify the data to be collected by the DUNE experiment as long as the new physics parameters are large enough. For example, if the DUNE data are consistent with the standard three-massive-neutrinos paradigm, order 0.1 (in units of the Fermi constant) NSI effects will be ruled out. On the other hand, if large NSI effects are present, DUNE will be able to not only rule out the standard paradigm but also measure the new physics parameters, sometimes with good precision. We find that, in some cases, DUNE is sensitive to new sources of CP-invariance violation. We also explored whether DUNE data can be used to distinguish different types of new physics beyond nonzero neutrino masses. In more detail, we asked whether NSI can be mimicked, as far as the DUNE setup is concerned, by the hypothesis that there is a new light neutrino state.

  6. Nonlinear growing neutrino cosmology

    NASA Astrophysics Data System (ADS)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  7. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  8. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  9. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  10. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  11. Observation of high energy neutrinos with IceCube

    NASA Astrophysics Data System (ADS)

    Karle, Albrecht

    2015-04-01

    High energy cosmic rays have been observed up to extremely high energies of more than 1020 eV. The mechanism of their acceleration and their sources are, however, still largely unknown. Numerous scenarios suggest that neutrinos are produced in collisions of cosmic rays with matter or radiation fields in the source region. Because neutrinos are neither absorbed nor deflected, they will point directly back to their sources making them a unique tool for high energy particle astronomy. The IceCube neutrino detector at the South Pole, in full operation since 2011, uses more than a billion tons of natural ice as a target for neutrino detection. More than 50,000 atmospheric neutrinos at the TeV energy scale are being detected per year. The first several years of data have provided compelling evidence for a flux of neutrinos of astrophysical origin. The data include the detection of tens of neutrinos per year with energies above 1014 eV - the highest energy leptons ever observed. The data are consistent with expectations from an extragalactic neutrino flux, however a galactic contribution cannot be excluded with current data. I will review the recent findings obtained with IceCube and compare data with expectations. New strategies such as multimessenger approaches where data from IceCube are correlated with observations of gamma rays and other telescope data will be discussed.

  12. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  13. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  14. Prospects for a Low Threshold Neutrino Experiment at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane

    2008-10-01

    A low-threshold neutrino scattering experiment at a high-intensity stopped-pion neutrino source has the potential to measure coherent neutral current neutrino-nucleus elastic scattering. Coherent scattering is a vital process for driving stellar explosion mechanisms which are as yet poorly understood in supernova evolution, and may provide a means to detect neutrino bursts from nearby supernova. The coherent scattering interaction rate can be very precisely calculated in the Standard Model, therefore comparison to measurements provides for another means to test the Standard Model and an opportunity to search for non-standard neutrino interactions. A promising prospect for the measurement of this process is a proposed noble-liquid-based experiment, dubbed CLEAR (Coherent Low-Energy A(Nuclear) Recoils), at the Spallation Neutron Source located at ORNL in Tennessee. This talk will describe the CLEAR proposal and its physics reach.

  15. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  16. UHE neutrino and cosmic ray emission from GRBs: Revising the models and clarifying the cosmic ray-neutrino connection

    SciTech Connect

    Bustamante, Mauricio Winter, Walter; Baerwald, Philipp

    2014-11-18

    Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic rays (UHECRs, above 10{sup 8} GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.

  17. Intense muon beams and neutrino factories

    SciTech Connect

    Parsa, Z.

    2000-10-05

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy {mu}{sup +}{mu}{sup {minus}} colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings ({mu}SR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included.

  18. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  19. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-05-01

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, {V}+{A} weak interactions in addition to the standard vector-axial ({V}-{A}) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings.

  20. Detecting Cosmic Neutrinos with IceCube at the Earth's South Pole

    NASA Astrophysics Data System (ADS)

    Kurahashi Neilson, Naoko

    2016-01-01

    The universe has been studied using light since the dawn of astronomy, when starlight captured the human eye. The IceCube Neutrino Observatory views the universe in a different and unique way: in high-energy neutrinos. IceCube's recent discovery of a diffuse flux of astrophysical neutrinos, in other words, the universe glowing in neutrinos from beyond the solar system, started a new era of neutrino astronomy. I will motivate why neutrinos are a necessary messenger in high-energy astronomy. I will discuss the multiple diffuse flux analyses in IceCube that observe the astrophysical flux, and what each can tell us. Spatial analyses that aim to identify the sources of such astrophysical neutrinos will also be discussed, followed by an attempt to reconcile all results, to draw a coherent picture that is the state of neutrino astronomy.

  1. High Energy Neutrinos with a Mediterranean Neutrino Telescope

    SciTech Connect

    Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, Sergio; Pisanti, O.; Serpico, Pasquale Dario; /Fermilab

    2007-09-01

    The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

  2. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  3. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    NASA Astrophysics Data System (ADS)

    Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.

    2015-08-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.

  4. A search for neutrino-antineutrino mass inequality by means of sterile neutrino oscillometry

    NASA Astrophysics Data System (ADS)

    Smirnov, M. V.; Loo, K. K.; Novikov, Yu. N.; Trzaska, W. H.; Wurm, M.

    2015-11-01

    The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5σ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino-antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.

  5. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  6. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  7. A search for a diffuse flux of astrophysical muon neutrinos with the IceCube Neutrino Observatory in the 40-string configuration

    NASA Astrophysics Data System (ADS)

    Grullon, Sean

    Neutrinos have long been important in particle physics and are now practical tools for astronomy. Neutrino Astrophysics is expected to help answer longstanding astrophysical problems such as the origin of cosmic rays and the nature of cosmic accelerators. The IceCube Neutrino Observatory is a 1 km3 detector currently under construction at the South Pole and will help answer some of these fundamental questions. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis techniques used in the search for astrophysical neutrinos with IceCube. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. Since astrophysical neutrinos are expected to have a harder energy spectrum than atmospheric neutrinos, a reliable method of estimating the energy of the neutrino-induced lepton is crucial. This analysis uses data from the IceCube detector collected in its half completed configuration between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos across the entire northern sky.

  8. Neutrino lighthouse at Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Barger, A. J.; Barger, V.; Lu, R.; Peterson, A. D.; Salvado, J.

    2014-09-01

    We investigate whether a subset of high-energy events observed by IceCube may be due to neutrinos from Sagittarius A*. We check both spatial and temporal coincidences of IceCube events with other transient activities of Sagittarius A*. Among the seven IceCube shower events nearest to the Galactic center, we have found that event 25 has a time very close to (around three hours after) the brightest x-ray flare of Sagittarius A* observed by the Chandra X-ray Observatory with a p-value of 0.9%. Furthermore, two of the seven events occurred within one day of each other (there is a 1.6% probability that this would occur for a random distribution in time). Thus, the determination that some IceCube events occur at similar times as x-ray flares and others occur in a burst could be the smoking gun that Sagittarius A* is a point source of very-high-energy neutrinos. We point out that if IceCube Galactic center neutrino events originate from charged pion decays, then TeV gamma rays should come from neutral pion decays at a similar rate. We show that the CTA, HAWC, H.E.S.S. and VERITAS experiments should be sensitive enough to test this.

  9. Democratic Neutrino Paradigm

    NASA Astrophysics Data System (ADS)

    Zhuridov, Dmitry

    2014-03-01

    I will introduce a democratic neutrino theory, which sets the absolute scale of the neutrino masses at about 0.03 eV, and has only one free parameter in contrast to 7 (9) free parameters in the conventional model of Dirac (Majorana) neutrino masses and mixing. Taking into account the incoherence and matter effects, this democratic theory agrees with the atmospheric and solar neutrino data. Moreover the results of the reactor neutrino experiments with the baselines around 100 m can be better explained. I will also discuss the predictions of this theory for low energy beta decays, magnetic moments, and neutrinoless double beta decays. Supported in part by the U.S. Department of Energy under contract DE-FG02-12ER41825.

  10. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  11. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  12. Summary: Neutrinos and nonaccelerator physics

    SciTech Connect

    Hoffman, C.M.

    1991-01-01

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

  13. Solar neutrinos: Probing the sun or neutrinos

    SciTech Connect

    Wilkerson, J.F.

    1991-01-01

    The decade of the 1990's should prove to be a landmark period for the study of solar neutrino physics. Current observations show 2-3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  14. Recent Results in Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard

    2011-10-01

    Solar neutrinos are an invaluable tool for studying neutrino oscillations in matter as well as probing the nuclear reactions that fuel the Sun. In this talk I will give an overview of solar neutrinos and discuss the latest results in the field. I will highlight the recent precision measurement of the ^7Be solar neutrino interaction rate with the Borexino solar neutrino detector and present the status of the analysis of pep and CNO neutrinos. I will also briefly describe future experiments and their potential to detect low energy solar neutrinos.

  15. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  16. Implications of Fermi-LAT observations on the origin of IceCube neutrinos

    SciTech Connect

    Wang, Bin; Li, Zhuo; Zhao, Xiaohong E-mail: zhaoxh@ynao.ac.cn

    2014-11-01

    The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pp and pγ interactions, we use the Fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, ∼> 10{sup 19}eV, CRs and the 1–100 PeV CRs that produce the IC detected TeV-PeV neutrinos.

  17. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  18. A select overview of neutrino experiments

    SciTech Connect

    Stefanski, Raymond J.

    2004-11-01

    The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

  19. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  20. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  1. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penke, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.

    2015-05-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ˜1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  2. Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft

    NASA Astrophysics Data System (ADS)

    Wallraff, Marius; Wiebusch, Christopher

    2015-12-01

    NuCraft (nucraft.hepforge.org) is an open-source Python project that calculates neutrino oscillation probabilities for neutrinos from cosmic-ray interactions in the atmosphere for their propagation through Earth. The solution is obtained by numerically solving the Schrödinger equation. The code supports arbitrary numbers of neutrino flavors including additional sterile neutrinos, CP violation, arbitrary mass hierarchies, matter effects with a configurable continuous Earth model, and takes into account the production height distribution of neutrinos in the Earth's atmosphere.

  3. Explanation for the low flux of high-energy astrophysical muon neutrinos.

    PubMed

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2013-04-26

    There has been some concern about the unexpected paucity of cosmic high-energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider (i) neutrino decay and (ii) neutrinos being pseudo-Dirac-particles. This would provide a mechanism for the reduction of high-energy muon events in the IceCube detector, for example. PMID:23679707

  4. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  5. Neutrino signals from dark matter decay

    SciTech Connect

    Covi, Laura; Grefe, Michael; Ibarra, Alejandro; Tran, David E-mail: michael.grefe@desy.de E-mail: david.tran@ph.tum.de

    2010-04-01

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.

  6. Neutrinos from flat-spectrum radio quasars

    NASA Technical Reports Server (NTRS)

    Mannheim, K.; Stanev, T.; Biermann, P. L.

    1992-01-01

    The GRO observation (Hartman et al., 1992) of a very strong flux of gamma rays with an energy index close to 2 from the distant quasar 3C279 and other extragalactic flat-spectrum radio sources is in very good agreement with models that advocate the important role of very high energy protons and nuclei in the energy transport in AGN. Protons and nuclei cool by interactions on the nonthermal fields in the nuclear jet of the AGN and generate gamma ray and neutrino fluxes. Ultra high energy neutrinos could be observed with sensitive air shower experiments in outbursts as powerful as the one seen by GRO.

  7. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  8. Neutrino fluxes from the Galactic plane and the ANTARES limit

    NASA Astrophysics Data System (ADS)

    Fusco, Luigi Antonio

    2016-04-01

    The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  9. Neutrinos in IceCube from active galactic nuclei

    SciTech Connect

    Kalashev, O.; Semikoz, D.; Tkachev, I.

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  10. Diffuse fluxes of cosmic high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND (deep underwater muon and neutrino detector) type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought.

  11. Measuring Neutrinos with Cosmology

    NASA Astrophysics Data System (ADS)

    Knox, Lloyd

    2016-03-01

    Along with a thermal distribution of photons, we expect a thermal distribution of neutrinos to have been produced in the big bang. Although direct detection of the cosmic neutrino background (CNB) is extremely difficult, if not impossible, there is much we are learning indirectly about the CNB from its gravitational influences. I will review constraints from cosmic microwave background observations on the energy density in the CNB, present a recent detection of supersonic evolution of density perturbations in the CNB, and discuss constraints on neutrino masses from cosmological observables. I will also look toward what we can expect from future cosmological surveys, such as CMB-S4.

  12. Neutrinos: Nature's Identity Thieves?

    SciTech Connect

    Lincoln, Don

    2013-07-11

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  13. Solar neutrinos: Theoretical status

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.

    I review the standard solar model, the disparities between its predictions and the solar neutrino flux measurements of the Homestake and Kamioka 2 collaborations, and possible particle physics resolutions of this puzzle. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained by building analogies with more familiar atomic physics phenomena. These and other mechanisms are considered as possible explanations for time variations in the solar neutrino flux. Finally, I consider possible outcomes and implications of the SAGE/GALLEX gallium experiments.

  14. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  15. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  16. Decay of high-energy astrophysical neutrinos.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Pakvasa, Sandip; Weiler, Thomas J

    2003-05-01

    Existing limits on the nonradiative decay of one neutrino to another plus a massless particle (e.g., a singlet Majoron) are very weak. The best limits on the lifetime to mass ratio come from solar neutrino observations and are tau/m greater, similar 10(-4) s/eV for the relevant mass eigenstate(s). For lifetimes even several orders of magnitude longer, high-energy neutrinos from distant astrophysical sources would decay. This would strongly alter the flavor ratios from the phi(nu(e)):phi(nu(mu)):phi(nu(tau))=1:1:1 expected from oscillations alone and should be readily visible in the near future in detectors such as IceCube. PMID:12785996

  17. Results from the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Spurio, M.

    2016-04-01

    ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane) and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites), and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015), are highlighted in this paper.

  18. Determining the neutrino mass hierarchy with cosmology

    SciTech Connect

    De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

    2009-12-15

    The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1{sigma}, and the sum of masses by 2.3{sigma}. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

  19. Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Celli, Silvia

    2016-02-01

    ANTARES is the first deep under-sea high-energy astrophysical neutrino telescope, in operation since 2008, in the Northern Hemisphere. In the light of a multi-messenger approach, one of the most ever intense (photon fluence Fγ ≃10-3 erg/cm2) and close (redshift z = 0.34) transient γ-source, GRB130427A, is considered in the ANTARES physics program for a co-incident search for photons and high-energy neutrinos. The first time-dependent analysis on GRBs neutrino emissions has been performed for this source: Konus-Wind parameters of the γ time-dependent spectrum are used to predict the expected neutrino flux from each peak of the burst, through the numerical calculation code NeuCosmA. An extended maximum likelihood ratio search is performed in order to maximize the discovery probability of prompt neutrinos from the burst: at the end, ANTARES sensitivity to this source is evaluated to be E2Φv ∼ 1 -10 GeV/cm2 in the energy range from 2 x 105 GeV to 2 x 107 GeV.

  20. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    distinguish the electron neutrino signal from background. The most important part of this measurement is the background estimation, which is done through extrapolation. The number of background events is measured at the Near Detector, then extrapolated to the Far Detector. Since different background sources extrapolate differently, some knowledge about the relative contribution from different background sources is necessary. We developed a method that can be used to obtain relative contributions of various background sources from comparison of background rates in the horn-on and horn-off configurations. We also described our effort to improve two aspects of the Monte Carlo simulation which are very important for the ve appearance analysis: one is the hadronization model in the neutrino-nucleon interactions, the other is the modeling of PMT crosstalk. We performed a blind analysis and examined several sidebands before looking at the signal region. After we opened the box, we observed a 1.4 σ excess of ve-like events in the Far Detector compared with the number of predicted background events. The excess is well within the statistical fluctuation of the background events. If we interpret the excess as a ve signal from vμ → ve oscillation, the best fit sin213 value is consistent with the CHOOZ limit. However we want to emphasize that our result is consistent with θ13 = 0 at 90% C.L..

  1. Neutrino searches with the IceCube telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan A.

    2013-04-01

    The IceCube Neutrino Observatory is an array of 5,160 photomultipliers (PMTs) deployed on 86 strings at 1.5-2.5 km depth within the ice at the South Pole. The main goal of the IceCube experiment is the detection of an astrophysical neutrino signal. In this contribution we present the results of the point source analysis on the data taken from April 2008 to May 2011, when three detector configurations were operated: the 40-string configuration (IC-40), the 59-string configuration (IC-59) and the 79-string configuration (IC-79). No significant excess indicative of point sources of neutrinos has been found, and we present upper limits for an E-2 muon neutrino flux for a list of candidate sources. For the first time these limits start to reach 10-12 TeV cm s in some parts of the sky.

  2. Implications of leptonic unitarity violation at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong; Zhou, Shun

    2008-08-01

    A measurement of the ultrahigh-energy (UHE) cosmic neutrinos at a km3-size neutrino telescope will open a new window to constrain the 3×3 neutrino mixing matrix V and probe possible new physics. We point out that it is in principle possible to examine the non-unitarity of V, which is naturally expected in a class of seesaw models with one or more TeV-scale Majorana neutrinos, by using neutrino telescopes. Considering the UHE neutrinos produced from the decays of charged pions arising from pp and (or) pγ collisions at a distant astrophysical source, we show that their flavor ratios at a terrestrial neutrino telescope may deviate from the democratic flavor distribution ϕeT:ϕμT:ϕτT=1:1:1 due to the seesaw-induced unitarity violation of V. Its effect can be as large as several percent and can serve for an illustration of how sensitive a neutrino telescope should be to this kind of new physics.

  3. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  4. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    NASA Astrophysics Data System (ADS)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  5. The Era of Kilometer-Scale Neutrino Detectors

    DOE PAGESBeta

    Halzen, Francis; Katz, Uli

    2013-01-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore » and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less

  6. Multi-messenger aspects of cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus

    2016-04-01

    The recent observation of TeV-PeV neutrinos by IceCube has opened a new window to the high-energy Universe. I will discuss this signal in the context of multi-messenger astronomy. For extragalactic source scenarios the corresponding gamma-rays are not directly observable due to interactions with the cosmic radiation backgrounds. Nevertheless, the isotropic sub-TeV gamma ray background observed by Fermi-LAT contains indirect information from secondary emission produced in electromagnetic cascades. On the other hand, observation of PeV gamma rays would provide a smoking-gun signal for Galactic emission. Interestingly, the overall energy density of the observed neutrino flux is close to a theoretical limit for neutrino production in ultra-high energy cosmic ray sources and might indicate a common origin of these phenomena. I will highlight various multi-messenger relations and their implications for neutrino source scenarios. This article is an excerpt from an ICRC 2015 proceedings contribution [1].

  7. Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2012-01-01

    We discuss the interplay between spectral shape and detector response beyond a simple E-2 neutrino flux at neutrino telescopes, using the example of time-integrated point source searches using IceCube-40 data. We use a self-consistent model for the neutrino production, in which protons interact with synchrotron photons from coaccelerated electrons, and we fully take into account the relevant pion and kaon production modes, the flavor composition at the source, flavor mixing, and magnetic field effects on the secondaries (pions, muon, and kaons). Since some of the model parameters can be related to the Hillas parameters R (size of the acceleration region) and B (magnetic field), we relate the detector response to the Hillas plane. In order to compare the response to different spectral shapes, we use the energy flux density as a measure for the pion production efficiency times luminosity of the source. We demonstrate that IceCube has a very good reach in this quantity for active galactic nuclei and jets for all source declinations, while the spectra of sources with strong magnetic fields are found outside the optimal reach. We also demonstrate where neutrinos from kaon decays and muon tracks from τ decays can be relevant for the detector response. Finally, we point out the complementarity between IceCube and other experiments sensitive to high-energy neutrinos, using the example of 2004-2008 Earth-skimming neutrino data from Auger. We illustrate that Auger, in principle, is more sensitive to the parameter region in the Hillas plane from which the highest-energetic cosmic rays may be expected in this model.

  8. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  9. Sterile neutrino anarchy

    NASA Astrophysics Data System (ADS)

    Heeck, Julian; Rodejohann, Werner

    2013-02-01

    Lepton mixing, which requires physics beyond the Standard Model, is surprisingly compatible with a minimal, symmetryless and unbiased approach, called anarchy. This contrasts with highly involved flavor symmetry models. On the other hand, hints for light sterile neutrinos have emerged from a variety of independent experiments and observations. If confirmed, their existence would represent a groundbreaking discovery, calling for a theoretical interpretation. We discuss anarchy in the two-neutrino eV-scale seesaw framework. The distributions of mixing angles and masses according to anarchy are in agreement with global fits for the active and sterile neutrino parameters. Our minimal and economical scenario predicts the absence of neutrinoless double beta decay and one vanishing neutrino mass, and can therefore be tested in future experiments.

  10. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  11. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2015-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  12. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  13. Neutrino self-interactions

    NASA Astrophysics Data System (ADS)

    Hasenkamp, Jasper

    2016-03-01

    We propose a theory that equips the active neutrinos with interactions among themselves that are at least 3 orders of magnitude stronger than the weak interaction. We introduce an Abelian gauge group U (1 )X with vacuum expectation value vx≲O (100 MeV ) . An asymmetric mass matrix implements the active neutrinos as massless mass eigenstates carrying "effective" charges. To stabilize vx, supersymmetry breaking is mediated via loops to the additional sector with the only exception of xHiggs terms. No Standard Model interaction eigenstate carries U (1 )X charge. Thus, the dark photon's kinetic mixing is two-loop suppressed. With only simple and generic values of dimensionless parameters, our theory might explain the high-energy neutrino spectrum observed by IceCube including the PeV neutrinos. We comment on the imposing opportunity to incorporate a self-interacting dark matter candidate.

  14. Neutrinos in Cosmology

    SciTech Connect

    Davidson, Sacha

    2008-02-21

    Neutrinos can contribute to various episodes of the evolution of the Universe. For instance, in the seesaw model, they may generate the baryon asymmetry of the Universe via leptogenesis. This conference proceedings briefly reviews lepton flavour effects in thermal leptogenesis.

  15. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  16. GUT, neutrinos, and baryogenesis

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    2002-11-01

    It is an exciting time for flavor physics. In this talk, I discuss recent topics in baryogenesis and leptogenesis in light of new data, and implications in B and neutrino physics. I also discuss current situation of grand unified theories concerning coupling unification, proton decay, and indirect consequences in lepton flavor violation and B physics. I explain attempts to understand the origin of flavor based on flavor symmetry, in particular "anarchy" in neutrinos.

  17. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  18. Neutrinos from GRBs cannonballs

    NASA Astrophysics Data System (ADS)

    Hubbard, J. R.; Ferry, S.

    We present a new estimation of the production of prompt neutrinos in the Cannonball Model of Gamma Ray Bursts proposed by Dar and De Rújula. Interactions between nucleons in the cannonballs and nucleons in the supernova shell are calculated in the rest frame of the shocked matter produced by these interactions. We explore the neutrino yield as a function of the parameters of the model.

  19. Boxing with Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Dj; Weiler, Thomas J.

    1998-03-01

    We have developed a model-independent ``box'' parameterization of neutrino oscillations. Oscillation probabilities are linear in these new parameters, so measurements can straighforwardly determine the box parameters which can then be manipulated to yield magnitudes of mixing matrix elements. We will present these new parameters and examine the effects of unitarity which reduce the number of independent parameters to the minimum set. The framework presented here will facilitate general analyses of neutrino oscillations among n >= 3 flavors.

  20. Neutrino Interactions with Nuclei

    SciTech Connect

    Leitner, T.; Buss, O.; Mosel, U.; Alvarez-Ruso, L.

    2007-12-21

    We investigate neutrino-nucleus collisions at intermediate energies incorporating quasielastic scattering and the excitation of 13 resonances as elementary processes, taking into account medium effects such as Fermi motion, Pauli blocking, mean-field potentials and in-medium spectral functions. A coupled-channel treatment of final state interactions is achieved with the GiBUU transport model. Results for inclusive reactions, neutrino- and electron-induced, as well as for pion production and nucleon knockout are presented.

  1. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  2. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  3. Neutrino experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    2016-07-01

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  4. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  5. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  6. Medium and high-energy neutrino physics from a lunar base

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Neutrino astronomy at high energy levels conducted from the moon is treated by considering 'particle astronomy' as a part of physics and the moon as a neutrino detector. The ability to observe the Galactic center is described by means of a 1-1000 TeV 'window' related to the drop in flux of atmospheric neutrinos from the earth. The long-baseline particle physics which are described in terms of a lunar observatory are found to be possible exclusively from a lunar station. The earth's neutrinos can be eliminated for the observations of astrophysical sources, and other potential areas of investigation include neutrino oscillation and the moon's interior. Neutrino exploration of the earth-moon and antineutrino radionuclide imaging are also considered. The moon is concluded to be a significantly more effective orbital platform for the study of neutrino physics than orbiting satellites developed on earth.

  7. Neutrino Decay as an Explanation of Atmospheric Neutrino Observations

    SciTech Connect

    Barger, V.; Barger, V.; Learned, J.G.; Pakvasa, S.; Weiler, T.J.

    1999-03-01

    We show that the observed zenith angle dependence of the atmospheric neutrinos can be accounted for by neutrino decay. Furthermore, it is possible to account for all neutrino anomalies with just three flavors. A decay model for Majorana neutrinos appears consistent with big-bang nucleosynthesis and supernova constraints. The decay model is testable in the near future. {copyright} {ital 1999} {ital The American Physical Society}

  8. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  9. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  10. Astrophysical tau neutrinos and their detection by large neutrino telescopes

    SciTech Connect

    Bugaev, E.V.; Montaruli, T.

    2004-06-01

    We present results of the detailed Monte Carlo calculation of the rates of double-bang events in a 1-km{sup 3} underwater neutrino telescope taking into account the effects of {tau}-neutrino propagation through the Earth. As an input, the moderately optimistic theoretical predictions for diffuse neutrino spectra of AGN jets are used.

  11. Hadronization processes in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Mandalia, Shivesh

    2015-10-01

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  12. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  13. Invited review article: IceCube: an instrument for neutrino astronomy.

    PubMed

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects. PMID:20815596

  14. Neutrino physics at muon colliders

    SciTech Connect

    King, B.J.

    1998-03-01

    An overview is given of the neutrino physics potential of future muon storage rings that use muon collider technology to produce, accelerate and store large currents of muons. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring.

  15. Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Harada, Tomohiro; Nakao, Ken-ichi; Joshi, Pankaj S.; Kimura, Masashi

    2016-05-01

    The origin of the ultrahigh-energy particles we receive on Earth from outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper, we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultrahigh-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter a =M (1 +ɛ ) , where we take the limit ɛ →0+. We consider two massive particles starting from rest at infinity that collide at r =M with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultrahigh energies exploiting the collisional Penrose process with the divergent efficiency η ˜1 /√{ɛ }→∞ . Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies, while the proportion of particles that reach infinity with finite energy is minuscule. To a distant observer, ultrahigh-energy particles appear to originate from a bright spot which is at the angular location ξ ˜2 M /robs with respect to the singularity on the side which is rotating toward the observer. We compute the spectrum of the high-energy massless particles and show that anisotropy in the emission in the center-of-mass frame leaves a distinct signature on its shape. Since the anisotropy is dictated by the differential cross section of the underlying particle physics process, the observation of the spectrum can constrain the particle physics model and serve as a unique probe into fundamental physics at

  16. A tight SO(10) connection between leptogenesis and neutrino masses

    SciTech Connect

    Frigerio, Michele

    2008-11-23

    We discuss a source of light neutrino masses and leptogenesis in SO(10) unification theories, that was not previously recognized. It is present when the light lepton doublets belong (at least partially) to dimension-10 matter multiplets. At odds with previous leptogenesis scenarios, the CP asymmetry depends only on the low energy flavour parameters of the neutrino sector. We demonstrate that a successful generation of the baryon asymmetry of the Universe is possible.

  17. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  18. Neutrino mass models

    NASA Astrophysics Data System (ADS)

    King, S. F.

    2004-02-01

    This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos that are capable of describing both the atmospheric neutrino oscillation data and the large mixing angle (LMA) MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrize and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-saw mechanism and discuss a natural application of it to current data using the sequential dominance mechanism, which we compare with an early proposal for obtaining LMAs. We show how both the Standard Model and the Minimal Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism and show how the latter case leads to the expectation of lepton flavour violation. The see-saw mechanism motivates models with additional symmetries such as unification and family symmetry models, and we tabulate some possible models before focusing on two particular examples based on SO(10) grand unification and either U(1) or SU(3) family symmetry as specific examples. This review contains extensive appendices that include techniques for analytically diagonalizing different types of mass matrices involving two LMAs and one small mixing angle, to leading order in the small mixing angle.

  19. Neutrino sea scope takes shape

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2016-03-01

    A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

  20. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  1. A search for muon neutrino to electron neutrino oscillations at delta(m^2)>0.1 eV^2

    SciTech Connect

    Patterson, Ryan Benton; /Princeton U.

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8{sigma}-significant {bar {nu}}{sub e} excess reported by the LSND collaboration is consistent with {bar {nu}}{sub {mu}} {yields}{bar {nu}}{sub e} oscillations with a mass-squared splitting of {Delta}m{sup 2} {approx} 1 eV{sup 2}. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.

  2. Neutrino fluctuat nec mercitur: are fossil neutrinos detectable

    SciTech Connect

    De Rujula, A

    1980-04-01

    A brief report is presented on the question whether light (few eV to approx. 100 eV) neutrinos left over from the big bang are detectable. The answer is perhaps. If the weak current of leptons, like those of quarks, are not diagonal in mass eigenstates, a neutrino will decay into a lighter neutrino and a monochromatic photon. The corresponding photon line may be detectable provided: neutrinos are heavy enough to participate in galaxy clustering and neutrino lifetimes are, as in some weak interaction models, short enough.

  3. Optical and X-ray early follow-up of ANTARES neutrino alerts

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

    2016-02-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  4. SOX: search for short baseline neutrino oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D’Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffliot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquàres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino collaboration

    2016-05-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV2 mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the detector. The existence of such an ~ eV2 sterile neutrino would then show up as an unambiguous spatial and energy distortion in the count rate of neutrinos interacting within the active detector volume. This article reports on the latest developments about the first phase of the SOX experiment, namely CeSOX, and gives a realistic projection of CeSOX sensitivity to light sterile neutrinos in a simple (3+1) model.

  5. Using neutrinos as a probe of the strong interaction

    SciTech Connect

    Morfin, J.G.; /Fermilab

    2005-01-01

    Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. While the most recent study of QCD with neutrinos is from the TeVatron neutrino beam (the NuTeV experiment with results presented by Martin Tzanov at this Workshop), near-future studies will shift to the Main Injector based NuMI facility also at Fermilab. The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINERvA experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector to measure absolute exclusive cross-sections and nuclear effects in v - A interactions as well as a systematic study of the resonance-DIS transition region and DIS with an emphasis on the extraction of high-xBj parton distribution functions. Further in the future an intense proton source, the Fermilab Proton Driver, will increase neutrino interaction rates by a further factor of 5-20.

  6. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  7. Theory for Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang

    2016-07-01

    Since the discovery of neutrino oscillations, for which Takaaki Kajita and Arthur B. McDonald were awarded the 2015 Nobel prize in physics, tremendous progresses have been made in measuring the mixing angles which determine the oscillation pattern. A lot of theoretical efforts have been made to understand how neutrinos mix with each other. Present data show that in the standard parameterization of the mixing matrix, θ23 is close to π/4 and the CP violating phase is close to ‑ π/2. In this talk I report results obtained in arXiv:1505.01932 (Phys. Lett. B750(2015)620) and arXive:1404.01560 (Chin. J. Phys.53(2015)100101) and discuss some implications for theoretical model buildings for such mixing pattern. Specific examples for neutrino mixing based on A4 family symmetry are given.

  8. Direct Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Mertens, Susanne

    2016-05-01

    With a mass at least six orders of magnitudes smaller than the mass of an electron – but non-zero – neutrinos are a clear misfit in the Standard Model of Particle Physics. On the one hand, its tiny mass makes the neutrino one of the most interesting particles, one that might hold the key to physics beyond the Standard Model. On the other hand this minute mass leads to great challenges in its experimental determination. Three approaches are currently pursued: An indirect neutrino mass determination via cosmological observables, the search for neutrinoless double β-decay, and a direct measurement based on the kinematics of single β-decay. In this paper the latter will be discussed in detail and the status and scientific reach of the current and near-future experiments will be presented.

  9. Cosmology and neutrino physics

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    1982-05-01

    Constraints on cosmology and on neutrino physics are provided by the abundances of the light elements produced during the early evolution of the universe. The predictions of primordial nucleosynthesis depend on the nucleon to photon ratio ɛ and on the number of types of two component neutrinos Nν. A comparison between the big bang predictions and the observed abundances of D, 3He, 4He and 7Li shows that ɛ is constrained to a narrow range around 4×10-10 and Nν<~4. An important consequence of the derived value of ɛ is that the universal density of nucleon is small, raising the possibility that our Universe may be dominated by massive relic neutrinos. The constraint on Nn suggests that (almost) all lepton species are now known.

  10. Phenomenology of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  11. Probing Late Neutrino Mass Properties With SupernovaNeutrinos

    SciTech Connect

    Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina

    2007-08-08

    Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.

  12. Neutrino tomography - Tevatron mapping versus the neutrino sky. [for X-rays of earth interior

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    1984-01-01

    The feasibility of neutrino tomography of the earth's interior is discussed, taking the 80-GeV W-boson mass determined by Arnison (1983) and Banner (1983) into account. The opacity of earth zones is calculated on the basis of the preliminary reference earth model of Dziewonski and Anderson (1981), and the results are presented in tables and graphs. Proposed tomography schemes are evaluated in terms of the well-posedness of the inverse-Radon-transform problems involved, the neutrino generators and detectors required, and practical and economic factors. The ill-posed schemes are shown to be infeasible; the well-posed schemes (using Tevatrons or the neutrino sky as sources) are considered feasible but impractical.

  13. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-08-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2)L × SU(2)' × U(1)B–L where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2)', play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  14. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  15. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  16. Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremiah; Rafelski, Johann

    2014-03-01

    It is well known that the effective number of cosmic neutrinos, Nν, is larger than the standard model number of neutrino flavors Nνf = 3 due a small flow of entropy into neutrinos from e +/- annihilation. Observational bounds from both BBN and the CMB suggest a value of Nν that is larger than the current theoretical prediction of Nν = 3 . 046 . We show in a model independent way how Nν relates to the neutrino kinetic freeze-out temperature, Tk, which we treat as parameter. We derive the relations that must hold between Nν, the photon to neutrino temperature ratio, the neutrino fugacity, and Tk. Our results imply that measurement of neutrino reheating, as characterized by Nν, amounts to the determination of Tk. We follow the free streaming neutrinos down to a temperature on the order of the neutrino mass and determine how the cosmic neutrino properties i.e. energy density, pressure, particle density, depend in a physically consistent way on both neutrino mass and Nν. We continue down to the present day temperature and characterize the neutrino distribution in this regime as well. See arXiv:1212.6943, PRD in press. This work has been supported by a grant from the U.S. Department of Energy, No. DE-FG02-04ER41318 and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  17. The next-generation liquid-scintillator neutrino observatory LENA

    NASA Astrophysics Data System (ADS)

    Wurm, Michael; Beacom, John F.; Bezrukov, Leonid B.; Bick, Daniel; Blümer, Johannes; Choubey, Sandhya; Ciemniak, Christian; D'Angelo, Davide; Dasgupta, Basudeb; Derbin, Alexander; Dighe, Amol; Domogatsky, Grigorij; Dye, Steve; Eliseev, Sergey; Enqvist, Timo; Erykalov, Alexey; von Feilitzsch, Franz; Fiorentini, Gianni; Fischer, Tobias; Göger-Neff, Marianne; Grabmayr, Peter; Hagner, Caren; Hellgartner, Dominikus; Hissa, Johannes; Horiuchi, Shunsaku; Janka, Hans-Thomas; Jaupart, Claude; Jochum, Josef; Kalliokoski, Tuomo; Kayunov, Alexei; Kuusiniemi, Pasi; Lachenmaier, Tobias; Lazanu, Ionel; Learned, John G.; Lewke, Timo; Lombardi, Paolo; Lorenz, Sebastian; Lubsandorzhiev, Bayarto; Ludhova, Livia; Loo, Kai; Maalampi, Jukka; Mantovani, Fabio; Marafini, Michela; Maricic, Jelena; Marrodán Undagoitia, Teresa; McDonough, William F.; Miramonti, Lino; Mirizzi, Alessandro; Meindl, Quirin; Mena, Olga; Möllenberg, Randolph; Muratova, Valentina; Nahnhauer, Rolf; Nesterenko, Dmitry; Novikov, Yuri N.; Nuijten, Guido; Oberauer, Lothar; Pakvasa, Sandip; Palomares-Ruiz, Sergio; Pallavicini, Marco; Pascoli, Silvia; Patzak, Thomas; Peltoniemi, Juha; Potzel, Walter; Räihä, Tomi; Raffelt, Georg G.; Ranucci, Gioacchino; Razzaque, Soebur; Rummukainen, Kari; Sarkamo, Juho; Sinev, Valerij; Spiering, Christian; Stahl, Achim; Thorne, Felicitas; Tippmann, Marc; Tonazzo, Alessandra; Trzaska, Wladyslaw H.; Vergados, John D.; Wiebusch, Christopher; Winter, Jürgen

    2012-06-01

    As part of the European LAGUNA design study on a next-generation neutrino detector, we propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a multipurpose neutrino observatory. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. Low energy threshold, good energy resolution and efficient background discrimination are inherent to the liquid-scintillator technique. A target mass of 50 kt will offer a substantial increase in detection sensitivity. At low energies, the variety of detection channels available in liquid scintillator will allow for an energy - and flavor-resolved analysis of the neutrino burst emitted by a galactic Supernova. Due to target mass and background conditions, LENA will also be sensitive to the faint signal of the Diffuse Supernova Neutrino Background. Solar metallicity, time-variation in the solar neutrino flux and deviations from MSW-LMA survival probabilities can be investigated based on unprecedented statistics. Low background conditions allow to search for dark matter by observing rare annihilation neutrinos. The large number of events expected for geoneutrinos will give valuable information on the abundances of Uranium and Thorium and their relative ratio in the Earth's crust and mantle. Reactor neutrinos enable a high-precision measurement of solar mixing parameters. A strong radioactive or pion decay-at-rest neutrino source can be placed close to the detector to investigate neutrino oscillations for short distances and sub-MeV to MeV energies. At high energies, LENA will provide a new lifetime limit for the SUSY-favored proton decay mode into kaon and antineutrino, surpassing current experimental limits by about one order of magnitude. Recent studies have demonstrated that a reconstruction of momentum and energy of GeV particles is well feasible in liquid scintillator. Monte Carlo studies on the

  18. Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Cecchini, S.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Mueller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; S{ánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-05-01

    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.

  19. Present theoretical uncertainties on charm hadroproduction in QCD and prompt neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Garzelli, M. V.; Moch, S.; Sigl, G.

    2016-04-01

    Prompt neutrino fluxes are basic backgrounds in the search of high-energy neutrinos of astrophysical origin, performed by means of full-size neutrino telescopes located at Earth, under ice or under water. Predictions for these fluxes are provided on the basis of up-to-date theoretical results for charm hadroproduction in perturbative QCD, together with a comprehensive discussion of the various sources of theoretical uncertainty affecting their computation, and a quantitative estimate of each uncertainty contribution.

  20. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  1. Review of Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    New generation of reactor neutrino experiments, Daya Bay and RENO, have made definitive measurements of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle and reactor neutrino spectra have been made and presented. A rather large value of θ13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO-50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δm312.

  2. Panel Discussion v: Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Obraztsov, Vladimir; Konaka, Akira; Ikeda, Motoyasu; Jediny, Filip; Shirokov, Evgeny; Kalekin, Oleg; Palomares-Ruiz, Sergio

    2015-06-01

    Questions to discuss: * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * How well do we need to know the PMNS matrix elements? * Is the existence of MSW effect proved experimentally? * Are there new species of neutrino (e.g. the sterile one)? * What are other most important problems in neutrino physics (CP-violation)? * Can sidereal time analysis of the long time neutrino observations give information about the galaxy distribution in the Local Universe? * Perspectives of existing and future neutrino experiments (LNBF, LAGUNA, ICARUS, SHIP ...)

  3. Atmospheric neutrinos: Status and prospects

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  4. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  5. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  6. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  7. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  8. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  9. Ultrahigh-energy neutrino scattering

    NASA Astrophysics Data System (ADS)

    Kuroda, Masaaki; Schildknecht, Dieter

    2013-09-01

    We predict the neutrino-nucleon cross section at ultrahigh energies relevant in connection with the search for high-energy cosmic neutrinos. Our investigation, employing the color-dipole picture, among other things, allows us to quantitatively determine which fraction of the ultrahigh-energy neutrino-nucleon cross section stems from the saturation vs the color-transparency region. We disagree with various results in the literature that predict a strong suppression of the neutrino-nucleon cross section at neutrino energies above E≅109GeV. Suppression in the sense of a diminished increase of the neutrino-nucleon cross section with energy only starts to occur at neutrino energies beyond E≅1014GeV.

  10. Geometric Mean Neutrino Mass Relation

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Zee, A.

    Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δ m2ij = m2i - m2j, the absolute values for neutrino masses mi, can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2 = √ {m1m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ errors to be m1 = (1.58 ± 0.18)meV, m2 = (9.04 ± 0.42)meV, and m3 = (51.8 ± 3.5)meV. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.

  11. Multi-wavelength follow-up of ANTARES neutrino alerts

    NASA Astrophysics Data System (ADS)

    Mathieu, Aurore

    2015-10-01

    Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.

  12. DUMAND Summer Workshop, University of California, La Jolla, Calif., July 24-September 2, 1978, Proceedings. Volume 2 - UHE interactions, neutrino astronomy

    NASA Technical Reports Server (NTRS)

    Roberts, A.

    1979-01-01

    The volume covers categories on inelastic neutrino scattering and the W-boson, and other ultra-high-energy processes, on pulsars, quasars and galactic nuclei, as well as other point sources and constants from gamma ray astronomy. Individual subjects include weak intermediate vector bosons and DUMAND, the Monte Carlo simulation of inelastic neutrino scattering in DUMAND, and Higgs boson production by very high-energy neutrinos. The observability of the neutrino flux from the inner region of the galactic disk, the diffuse fluxes of high-energy neutrinos, as well as the significance of gamma ray observations for neutrino astronomy are also among the topics covered.

  13. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  14. IDR Neutrino Factory Front End and Variations

    SciTech Connect

    Neuffer, D.; Alekou, A.; Rogers, C.; Snopok, P.; Yoshikawa, C.; /MUONS Inc., Batavia

    2012-05-01

    The International Design Report (IDR) neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of {mu}'s produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. Optimization and variations are discussed. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport.

  15. Status of the International Design Study of the Neutrino Factory

    SciTech Connect

    Long, Kenneth

    2010-03-30

    The International Design Study for the Neutrino Factory (the IDS-NF) has been established by the Neutrino Factory community to deliver the Reference Design Report (RDR) for the facility by 2012. The baseline design for the facility, developed from that defined in the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS), will provide 10{sup 21} muon decays per year from 25 GeV stored muon beams. The facility will serve two neutrino detectors; one situated at source-detector distance of between 3000-5000 km, the second at 7000-8000 km. The baseline design for the facility will be described and the status of the IDS-NF effort will be summarised.

  16. High energy neutrino detection with KM3NeT

    NASA Astrophysics Data System (ADS)

    Migliozzi, Pasquale; KM3NeT Collaboration

    2016-05-01

    The KM3NeT Collaboration has started the construction of a next generation high-energy neutrino telescope in the Mediterranean Sea: the largest and most sensitive neutrino research infrastructure. The full KM3NeT detector will be a several cubic kilometres distributed, networked infrastructure. In Italy, off the coast of Capo Passero, and in France, off the coast of Toulon. Thanks to its location in the Northern hemisphere and to its large instrumented volume, KM3NeT will be the optimal instrument to search for neutrinos from the Southern sky and in particular from the Galactic plane, thus making it complementary to IceCube. In this work the technologically innovative component of the detector, the status of construction and the first results from prototypes of the KM3NeT detector will be described as well as its capability to discover neutrino sources are reported.

  17. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  18. Crucial role of neutrinos in the electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Smetana, Adam

    2013-12-01

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100-1000).

  19. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  20. Search for neutrino oscillations at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.; Aronson, S.H.; Connolly, P.L.; Gibbard, B.G.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; White, D.H.; Callas, J.L.; Cutts, D.

    1985-02-20

    We report on a search for neutrino oscillations of the type nu/sub ..mu../ ..-->.. nu/sub e/ in a detector located an effective distance of 96m from the neutrino source in the wide band neutrino beam at the Brookhaven AGS. No excess of electron events was observed. The resulting upper limit on the strength of the mixing between nu/sub ..mu../ and nu/sub e/ in the case of large mass difference ..delta..m/sup 2/ = absolute value m/sub 1//sup 2/ - m/sub 2//sup 2/ between the neutrino mass eigenstates m/sub 1/ and m/sub 2/ is sin/sup 2/2..cap alpha.. less than or equal to 3.4 x 10/sup -3/ at 90% CL. The corresponding upper limit for small mass difference is ..delta..m/sup 2/sin2..cap alpha.. < 0.43 eV/sup 2/. 9 refs.

  1. Crucial role of neutrinos in the electroweak symmetry breaking

    SciTech Connect

    Smetana, Adam

    2013-12-30

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  2. Neutrino mass hierarchy determination for theta{sub 13} = 0

    SciTech Connect

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-03-30

    We examine the possibility of determining the neutrino mass hierarchy in the limit theta{sub 13} = 0 using atmospheric neutrinos as the source. In this limit, theta{sub 13} driven matter effects are absent so independent measurements of DELTA{sub 31} and DELTA{sub 32} can, in principle, lead to hierarchy determination. Since their difference is DELTA{sub 21}, one needs an experimental arrangement where DELTA{sub 21}L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the theta{sub 13} = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOnuA. We discuss why, and also reiterate the general conditions for hierarchy determination if theta{sub 13} = 0.

  3. Astronomical constraints on properties of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Chan, M. H.; Chu, M.-C.

    2011-04-01

    We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ˜10-19 s-1 for sterile neutrino rest mass m s =18-19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22 θ˜10-3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.

  4. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  5. Neutron calibration sources in the Daya Bay experiment

    DOE PAGESBeta

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  6. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  7. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  8. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  9. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect

    Ling, Jiajie

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  10. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  11. A simplified view of blazars: the neutrino background

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Petropoulou, M.; Giommi, P.; Resconi, E.

    2015-09-01

    Blazars have been suggested as possible neutrino sources long before the recent IceCube discovery of high-energy neutrinos. We re-examine this possibility within a new framework built upon the blazar simplified view and a self-consistent modelling of neutrino emission from individual sources. The former is a recently proposed paradigm that explains the diverse statistical properties of blazars adopting minimal assumptions on blazars' physical and geometrical properties. This view, tested through detailed Monte Carlo simulations, reproduces the main features of radio, X-ray, and γ-ray blazar surveys and also the extragalactic γ-ray background at energies ≳ 10 GeV. Here, we add a hadronic component for neutrino production and estimate the neutrino emission from BL Lacertae objects as a class, `calibrated' by fitting the spectral energy distributions of a preselected sample of such objects and their (putative) neutrino spectra. Unlike all previous papers on this topic, the neutrino background is then derived by summing up at a given energy the fluxes of each BL Lac in the simulation, all characterized by their own redshift, synchrotron peak energy, γ-ray flux, etc. Our main result is that BL Lacs as a class can explain the neutrino background seen by IceCube above ˜0.5 PeV while they only contribute ˜10 per cent at lower energies, leaving room to some other population(s)/physical mechanism. However, one cannot also exclude the possibility that individual BL Lacs still make a contribution at the ≈20 per cent level to the IceCube low-energy events. Our scenario makes specific predictions, which are testable in the next few years.

  12. Search for a Correlation between ANTARES Neutrinos and Pierre Auger Observatory UHECRs Arrival Directions

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Beemster, L. J.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, N.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2013-09-01

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E -2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 × 10-8 GeV cm-2 s-1 per source is derived.

  13. Neutrino production states in oscillation phenomena—are they pure or mixed?

    NASA Astrophysics Data System (ADS)

    Ochman, Michał; Szafron, Robert; Zrałek, Marek

    2008-06-01

    General quantum mechanical states of neutrinos produced by mechanisms outside the Standard Model are discussed. The neutrino state is described by the Maki-Nakagawa-Sakata-Pontecorvo unitary mixing matrix only in the case of relativistic neutrinos and Standard Model left-handed charge-current interaction. The problem of Wigner spin rotation caused by Lorentz transformation from the rest production frame to the laboratory frame is considered. Moreover, the mixture of the neutrino states as a function of their energy and parameters from the extension of the Standard Model are investigated. Two sources of mixture, the appearance of subdominant helicity states and mass mixing with several different mixing matrices are studied.

  14. Topics in neutrino astroparticle physics

    NASA Astrophysics Data System (ADS)

    Hong, Woopyo

    1993-01-01

    In the first part of the dissertation, two neutrino properties such as neutrino mass measurement and neutrino dipole moment, in the terrestrial experiments, are examined with particular attention to exotic phenomena that may be observed for theories beyond the Standard Model. In the second part, we study a method for measuring the neutrino mass from a galactic supernova neutrino burst using an innovated detector concept. The neutral current based SNBO (Supernova Neutrino Burst Observatory) detector concept is discussed. We show that it is possible to measure a cosmologically significant neutrino mass, i.e., 5-50 eV directly from the flight time difference between the massive and massless neutrino using the SNBO detector concept. In the third part, very heavy unstable particles from the Big Bang decaying into neutrinos at cosmological epochs is discussed. In particular, we focus on a detection of such relic neutrinos from the decays in the neutrino window on earth, in the energy ranges 10-100 MeV, where the neutrino background is expected to be lowest. In the fourth part, neutrino emission from the explosion of Primordial Black Holes in the context of the Hawking radiation is presented. We suggest a new explosion mechanism inspired by new data from gamma ray bursts that might occur when the Primordial Black Hole reaches a certain surface temperature. We propose some observational tests that use a satellite detector and the proposed SNBO detector. In the last chapter, we examine a possible connection between the baryogenesis in the early universe and the lepton number violation processes.

  15. Pseudo-dirac neutrinos: a challenge for neutrino telescopes.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

    2004-01-01

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos. PMID:14753977

  16. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  17. Monte Carlo methods for neutrino transport in type-II supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Neutrinos play an important role in the type-II supernova scenario. Numerous approaches have been made in order to treat the generation and transport of neutrinos and the interactions between neutrinos and matter during stellar collapse and the shock propagation phase. However, all computationally fast methods have in common the fact that they cannot avoid simplifications in describing the interactions and, furthermore, have to use parameterizations in handling the Boltzmann transport equation. In order to provide an instrument for calibrating these treatments and for calculating neutrino spectra emitted from given stellar configurations, a Monte Carlo transport code was designed. Special attention was paid to an accurate computation of scattering kernels and source functions. Neutrino spectra for a hydrostatic stage of a 20 solar mass supernova simulation were generated and conclusions drawn concerning a late time revival of the stalled shock by neutrino heating.

  18. Two-Phase Emission Detector for Measuring Coherent Neutrino-Nucleus Scattering

    SciTech Connect

    Bernstein, A; Hagmann, C A

    2003-11-26

    Coherent scattering is a flavor-blind, high-rate, as yet undetected neutrino interaction predicted by the Standard Model. We propose to use a compact (kg-scale), two-phase (liquid-gas) argon ionization detector to measure coherent neutrino scattering off nuclei. In our approach, neutrino-induced nuclear recoils in the liquid produce a weak ionization signal, which is transported into a gas under the influence of an electric field, amplified via electroluminescence, and detected by phototubes or avalanche diodes. This paper describes the features of the detector, and estimates signal and background rates for a reactor neutrino source. Relatively compact detectors of this type, capable of detecting coherent scattering, offer a new approach to flavor-blind detection of man-made and astronomical neutrinos, and may allow development of compact neutrino detectors capable of nonintrusive real-time monitoring of fissile material in reactors.

  19. Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era

    NASA Astrophysics Data System (ADS)

    Guetta, Dafne

    2016-07-01

    In this review I discuss the ultra-high energy neutrinos (UHEN) originated from Cosmic-Rays propogation (GZK neutrinos) and from Gamma Ray Bursts (GRBs), and discuss their detectability in kilometers scale detectors like ARA and IceCube. While GZK neutrinos are expected from cosmic ray interactions on the CMB, the GRB neutrinos depend on the physics inside the sources. GRBs are predicted to emit UHEN in the prompt and in the later "after-glow" phase. I discuss the constraints on the hadronic component of GRBs derived from the search of four years of IceCube data for a prompt neutrino fux from gamma-ray bursts (GRBs) and more in general I present the results of the search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2013.

  20. A search for oscillation of atmospheric neutrinos with the IMB detector

    NASA Astrophysics Data System (ADS)

    Gajewski, W.

    1992-07-01

    Neutrino oscillations have been studied using a flux of atmospheric neutrinos and the IMB water C¯erenkov detector. The study is based on: 1) a sample of 935 events in the detector volume during 7.7 kton-yrs exposure. About 70% of events have a single track which allows identification of the parent neutrino flavor. 2) a sample of 593 up-going muon tracks from neutrino interactions in rock below the detector. These studies are sensitive to δm2 down to 10-4eV2 and sin2(2θ) > 0.4, a region unexplored in previous experiments. Future plans of long baseline neutrino oscillation studies using the IMB detector and neutrinos from artificial sources are described. They include νe from a power reactor 13 km from the detector and νμ produced by the Main Injector at Fermilab at a distance of 570 km.

  1. High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro

    2006-03-15

    High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.

  2. Neutrino magnetic moment effects in neutrino nucleus reactions

    SciTech Connect

    Singh, S.K.; Athar, M.S.

    1995-10-01

    Some low energy neutrino nucleus reactions induced by neutrinos (antineutrinos) having a magnetic moment of the order of 10{sup {minus}9}{minus}10{sup {minus}10} Bohr magneton are studied. It is found that in the case of {sup 4}He, {sup 12}C, and {sup 16}O, the detection of very low energy scalar and isoscalar elastic and inelastic reactions induced by the isoscalar vector currents can provide a better limit on the neutrino magnetic moment.

  3. Neutrino Analysis of the September 2010 Crab Nebula Flare and Time-integrated Constraints on Neutrino Emission From the Crab Using IceCube

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguliar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. -H.; Benabderrahmane, M. L.; BenZvi, SW.; Berdermann, J.; Berghaus, P.; Berley, D.

    2012-01-01

    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E(sub nu)(sup -2) neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab [35]. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(exp -11) per square centimeter per second TeV (sup -1) for an E(sub nu) (sup -2) neutrino spectrum and 2.50 x 10(exp -10) per square centimeter per second TeV(sup -1) for a softer neutrino spectra of E(sub nu)(sup -2.7), as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.

  4. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  5. Decisive disappearance search at high Δ m2 with monoenergetic muon neutrinos

    NASA Astrophysics Data System (ADS)

    Axani, S.; Collin, G.; Conrad, J. M.; Shaevitz, M. H.; Spitz, J.; Wongjirad, T.

    2015-11-01

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the Δ m2˜1 eV2 anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Experimental Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged-current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 to 152 m from the source. This design allows a sensitive search for νμ disappearance associated with currently favored light sterile neutrino models and features the ability to reconstruct the neutrino oscillation wave within a single, extended detector. The required detector design, technology, and costs are modest. The KPipe measurements will be robust since they depend on a known energy neutrino source with low expected backgrounds. Further, since the measurements rely only on the measured rate of detected events as a function of distance, with no required knowledge of the initial flux and neutrino interaction cross section, the results will be largely free of systematic errors. The experimental sensitivity to oscillations, based on a shape-only analysis of the L /E distribution, will extend an order of magnitude beyond present experimental limits in the relevant high-Δ m2 parameter space.

  6. Neutrinos from the NuMI beamline in the MiniBooNE detector

    SciTech Connect

    Aguilar-Arevalo, Alexis A.

    2006-07-11

    With the startup of the NuMI beamline early in 2005, the MiniBooNE detector has the unique opportunity to be the first user of an off-axis neutrino beam (110 mrad off-axis). MiniBooNE is assembling a rich sample of neutrino interactions from this source.

  7. Ultra-high energy neutrino fluxes as a probe for non-standard physics

    SciTech Connect

    Bhattacharya, Atri; Choubey, Sandhya; Gandhi, Raj; Watanabe, Atsushi E-mail: sandhya@hri.res.in E-mail: watanabe@muse.sc.niigata-u.ac.jp

    2010-09-01

    We examine how light neutrinos coming from distant active galactic nuclei (AGN) and similar high energy sources may be used as tools to probe non-standard physics. In particular we discuss how studying the energy spectra of each neutrino flavour coming from such distant sources and their distortion relative to each other may serve as pointers to exotic physics such as neutrino decay, Lorentz symmetry violation, pseudo-Dirac effects, CP and CPT violation and quantum decoherence. This allows us to probe hitherto unexplored ranges of parameters for the above cases, for example lifetimes in the range 10{sup −3}−10{sup 4} s/eV for the case of neutrino decay. We show that standard neutrino oscillations ensure that the different flavours arrive at the earth with similar shapes even if their flavour spectra at source may differ strongly in both shape and magnitude. As a result, observed differences between the spectra of various flavours at the detector would be signatures of non-standard physics altering neutrino fluxes during propagation rather than those arising during their production at source. Since detection of ultra-high energy (UHE) neutrinos is perhaps imminent, it is possible that such differences in spectral shapes will be tested in neutrino detectors in the near future. To that end, using the IceCube detector as an example, we show how our results translate to observable shower and muon-track event rates.

  8. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  9. Electron-neutrino survival probability from solar-neutrino data

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.; Lissia, M.

    2001-11-01

    With SNO data [SNO Collaboration, nucl-ex/0106015] on electron-neutrino flux from the sun, it is possible to derive the νe survival probability Pee(E) from existing experimental data of Super-Kamiokande, gallium experiments and Homestake. The combined data of SNO and Super-Kamiokande provide boron νe flux and the total flux of all active boron neutrinos, giving thus Pee(E) for boron neutrinos. The Homestake detector, after subtraction of the signal from boron neutrinos, gives the flux of Be/+CNO neutrinos, and Pee for the corresponding energy interval, if the produced flux is taken from the Standard Solar Model (SSM). Gallium detectors, GALLEX, SAGE and GNO, detect additionally /pp-neutrinos. The /pp flux can be calculated subtracting from the gallium signal the rate due to boron, beryllium and CNO neutrinos. The ratio of the measured /pp-neutrino flux to that predicted by the SSM gives the survival probability for /pp-neutrinos. Comparison with theoretical survival probabilities shows that the best (among known models) fit is given by LMA and LOW solutions.

  10. Neutrino oscillations and the seesaw origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Valle, J. W. F.

    2016-07-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  11. Gauge Trimming of Neutrino Masses

    SciTech Connect

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  12. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  13. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  14. Neutrinos in astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.

    2016-06-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  15. An Overview of Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    Altarelli, G.

    2013-08-01

    We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large θ13, possible non maximal θ23, approaching sensitivity on δ) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.

  16. Neutrino Oscillograms of the Earth

    SciTech Connect

    Smirnov, Alexei Yu.

    2008-04-16

    Oscillograms are 'neutrino portraits' of the Earth. They encode unique information about the Earth interior and provide a comprehensive description of neutrino oscillation phenomena. I will explain the physical effects involved and the structure of the oscillograms. Dependence of the oscillograms on neutrino parameters, in particular, on the currently unknown q1-3, mixing and CP-violation phase will be considered. A program of measurements of the oscillograms will be outlined.

  17. Compatibility of high-{delta}m{sup 2} {nu}{sub e} and {nu}{sub e} neutrino oscillation searches

    SciTech Connect

    Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Karagiorgi, G.; Mahn, K. B. M.; Monroe, J.; Nguyen, V. T.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.

    2008-07-01

    This article presents the compatibility of experimental data from neutrino oscillation experiments with a high-{delta}m{sup 2} two-neutrino oscillation hypothesis. Data is provided by the Bugey, Karlsruhe Rutherford Medium Energy Neutrino Experiment 2 (KARMEN2), Los Alamos Liquid Scintillator Neutrino Detector (LSND), and MiniBooNE experiments. The LSND, KARMEN2, and MiniBooNE results are 25.36% compatible within a two-neutrino oscillation hypothesis. However, the point of maximal compatibility is found in a region that is excluded by the Bugey data. A joint analysis of all four experiments, performed in the sin{sup 2}2{theta} vs {delta}m{sup 2} region common to all data, finds a maximal compatibility of 3.94%. This result does not account for additions to the neutrino oscillation model from sources such as CP violation or sterile neutrinos.

  18. Search for Electron Neutrino Appearance in MINOS

    SciTech Connect

    Orchanian, Mhair; /Caltech

    2011-09-01

    The MINOS Collaboration continues its search for {nu}{sub e} appearance in the NuMI (Neutrinos at the Main Injector) beam at Fermilab. Neutrinos in the beam interact in the Near Detector, located 1 km from the beam source, allowing us to characterize the backgrounds present in our analysis. In particular, we can estimate the number of {nu}{sub e} candidate events we expect to see in the Far Detector (735 km away, in the Soudan mine in northern Minnesota) in the presence or absence of {nu}{sub {mu}} {yields} {nu}{sub e} oscillation. Recent efforts to improve the sensitivity of the analysis, including upgrades to the event identification algorithm and fitting procedure, are discussed, and the latest results from the search are presented.

  19. Status of the KATRIN Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Katrin Collaboration

    2015-04-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN), presently under construction in Germany, will probe the absolute mass scale of the neutrino through the kinematics of tritium beta decay, a nearly model-independent approach. To achieve the projected sensitivity of 0.2 eV at the 90% confidence level, KATRIN will use a windowless, gaseous tritium source and a large magnetic adiabatic collimation-electrostatic filter. The collaboration has now completed a second commissioning phase of the spectrometer and detector section, and construction of the tritium sections is proceeding well. We will report on the current status of the experiment and the outlook for data-taking with tritium. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  20. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.