Science.gov

Sample records for 51v hyperfine coupling

  1. Magnetic hyperfine interactions at the 51V nucleus in the pyrochlore Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Petrov, V. P.; Chernyshev, V. A.; Nikiforov, A. E.

    2015-01-01

    This is an ab initio calculation of the parameters of the magnetic hyperfine interactions at the 51V nucleus, in the Lu2V2O7 pyrochlore, in addition to a comparative analysis of the calculated values versus known experimental data. It is shown that the unrestricted Hartree-Fock method is more suitable when it comes to describing the magnetic properties at ion nuclei, in comparison to the density functional theory with hybrid functionals B3LYP and PBE0.

  2. Anomalous hyperfine coupling and nuclear magnetic relaxation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Okvátovity, Zoltán; Simon, Ferenc; Dóra, Balázs

    2016-12-01

    The electron-nuclear hyperfine interaction shows up in a variety of phenomena including, e.g., NMR studies of correlated states and spin decoherence effects in quantum dots. Here we focus on the hyperfine coupling and the NMR spin relaxation time T1 in Weyl semimetals. Since the density of states in Weyl semimetals varies with the square of the energy around the Weyl point, a naive power counting predicts a 1 /T1T ˜E4 scaling, with E the maximum of temperature (T ) and chemical potential. By carefully investigating the hyperfine interaction between nuclear spins and Weyl fermions, we find that while its spin part behaves conventionally, its orbital part diverges unusually, with the inverse of the energy around the Weyl point. Consequently, the nuclear spin relaxation rate scales in a graphenelike manner as 1 /T1T ˜E2ln(E /ω0) , with ω0 the nuclear Larmor frequency. This allows us to identify an effective hyperfine coupling constant, which is tunable by gating or doping. This is relevant for the decoherence effect in spintronics devices and double quantum dots, where hyperfine coupling is the dominant source of spin-blockade lifting.

  3. Hyperfine and nuclear quadrupole coupling in chlorine and fluorine dioxides

    NASA Astrophysics Data System (ADS)

    Fernández, Berta; Christiansen, Ove; Jørgensen, Poul; Byberg, Jørgen; Gauss, Jürgen; Ruud, Kenneth

    1997-02-01

    The hyperfine and nuclear quadrupole coupling tensors have been calculated for the two chlorine dioxide isomers OClO and ClOO and for fluorine dioxide FOO. The coupled-cluster singles and doubles (CCSD) approach with a perturbative treatment of triple excitations [CCSD(T)] has been used and basis saturation has been investigated. For the symmetric isomer OClO close agreement is obtained with the accurate and detailed experimental data. For FOO a geometry optimization as well as a comparison of calculated and experimental hyperfine coupling tensors suggest a shorter F-O bond length than that obtained experimentally. For the isomer ClOO, calculations have been carried out at the theoretical equilibrium geometry determined by Peterson and Werner and at the geometry proposed by Byberg for the matrix isolated molecule. The hyperfine coupling tensors obtained at these two geometries are substantially different, but the estimated accuracy of the calculations is not high enough to allow a determination of the geometry of ClOO from the hyperfine data.

  4. Magnetic hyperfine coupling of a methyl group undergoing internal rotation: a case study of methyl formate.

    PubMed

    Tudorie, M; Coudert, L H; Huet, T R; Jegouso, D; Sedes, G

    2011-02-21

    The hyperfine structure of methyl formate was recorded in the 2-20 GHz range. A molecular beam coupled to a Fourier transform microwave spectrometer having an instrumental resolution of 0.46 kHz and limited by a Doppler width of a few kHz was used. A-type lines were found split by the magnetic hyperfine coupling while no splittings were observed for E-type lines. Symmetry considerations were used to account for the internal rotation of the methyl top and to derive effective hyperfine coupling Hamiltonians. Neglecting the spin-rotation magnetic coupling, the vanishing splittings of the E-type lines could be understood and analyses of the hyperfine patterns of the A-type lines were performed. The results are consistent with a hyperfine structure dominated by the magnetic spin-spin coupling due to the three hydrogen atoms of the methyl group.

  5. Theoretical study of the nitrogen atom hyperfine coupling constant

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Chong, Delano P.

    1988-01-01

    The nitrogen-atom isotropic hyperfine coupling constant A(iso) is studied as a function of improvements in both the one-particle and n-particle basis sets. The study underscores the importance of diffuse basis functions. For example, the (9s 5p) primitive set of Huzinaga (1965) augmented with an even-tempered diffuse s function yields values for A(iso) that are virtually identical to an energy-optimized (23s 12p) even-tempered set. The A(iso) constant is found to converge relatively quickly with increasing l quantum numbers: d, f, and g functions are estimated to contribute 2.5 + or - 0.2, 0.4 + or - 0.1, and 0.05 + or - 0.05 MHz, respectively. Full CI calibration calculations indicate that very high levels of correlation treatment are required for quantitative results. In addition, a strong coupling is observed between the one-particle and n-particle requirements. The best result, 10.4 MHz, is in excellent agreement with the accurate experimental value of 10.4509 MHz.

  6. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals

    NASA Astrophysics Data System (ADS)

    Chen, X.; Rinkevicius, Z.; Ruud, K.; Ågren, H.

    2013-02-01

    By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.

  7. Hyperfine Fields at 51V in Heusler Alloys Co2T1-xVxGa (T{=}Ti, Cr, Mn, Fe) and Estimation of Magnetic Moments of the Constituent Atoms

    NASA Astrophysics Data System (ADS)

    Kawakami, Masayuki; Nagahama, Masatoshi; Satohira, Shin-ichi

    1990-12-01

    The hyperfine fields Hhf in the ferromagnetic alloys Co2T1-xVxGa (T{=}Ti, Cr, Mn, Fe) were measured by NMR spin-echo technique at 4.2 K as a function of x. Hhf(V) on V impurity at b sites (x≃0) was determined to be -41, -40± 2, -15 and -38± 3 kOe for T{=}Ti, Cr, Mn and Fe, respectively. We estimated from these values, assuming V to be non magnetic, the magnetic moments of the atoms in Co2CrGa and Co2FeGa with the use of the measured saturation moments. It was found that for the two alloys the same moments were obtained also from Hhf(Mn) on Mn impurity instead of V by assuming that the magnetic moment of Mn impurity in these alloys is the same as the Mn moment in Co2MnGa. The estimated moments of Cr and Fe were found to be consistent with Hhf(Co).

  8. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    SciTech Connect

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  9. Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Ferré, Nicolas; Masella, Michel; Siri, Didier

    2008-06-01

    We present a combined theoretical approach based on analyzing molecular dynamics trajectories (at the nanosecond scale) generated by use of classical polarizable force fields and on quantum calculations to compute averaged hyperfine coupling constants. That method is used to estimate the constant of a prototypical nitroxide: the dimethylnitroxide. The molecule is embedded during the simulations in a cubic box containing about 500 water molecules and the molecular dynamics is generated using periodic conditions. Once the trajectories are achieved, the nitroxide and its first hydration shell molecules are extracted, and the coupling constants are computed by considering the latter aggregates by means of quantum computations. However, all the water molecules of the bulk are also accounted for during those computations by means of the electrostatic potential fitted method. Our results exhibit that in order to predict accurate and reliable coupling constants, one needs to describe carefully the out-of-plane motion of the nitroxide nitrogen and to sample trajectories with a time interval of 400 fs at least to generate an uncorrelated large set of nitroxide structures. Compared to Car-Parrinello molecular dynamics techniques, our approach can be used readily to compute hyperfine coupling constants of large systems, such as nitroxides of great size interacting with macromolecules such as proteins or polymers.

  10. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  11. Hyperfine coupling of hole and nuclear spins in symmetric (111)-grown GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Vidal, M.; Durnev, M. V.; Bouet, L.; Amand, T.; Glazov, M. M.; Ivchenko, E. L.; Zhou, P.; Wang, G.; Mano, T.; Kuroda, T.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2016-09-01

    In self-assembled III-V semiconductor quantum dots, valence holes have longer spin coherence times than the conduction electrons, due to their weaker coupling to nuclear spin bath fluctuations. Prolonging hole spin stability relies on a better understanding of the hole to nuclear spin hyperfine coupling which we address both in experiment and theory in the symmetric (111) GaAs/AlGaAs droplet dots. In magnetic fields applied along the growth axis, we create a strong nuclear spin polarization detected through the positively charged trion X+ Zeeman and Overhauser splittings. The observation of four clearly resolved photoluminescence lines—a unique property of the (111) nanosystems—allows us to measure separately the electron and hole contribution to the Overhauser shift. The hyperfine interaction for holes is found to be about five times weaker than that for electrons. Our theory shows that this ratio depends not only on intrinsic material properties but also on the dot shape and carrier confinement through the heavy-hole mixing, an opportunity for engineering the hole-nuclear spin interaction by tuning dot size and shape.

  12. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy with the Cs 6S1/2-6P3/2-7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  13. Relativistic extended-coupled-cluster method for the magnetic hyperfine structure constant

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav

    2015-02-01

    The article deals with the general implementation of the four-component spinor relativistic extended-coupled-cluster (ECC) method to calculate first-order property of atoms and molecules in their open-shell ground-state configuration. The implemented relativistic ECC is employed to calculate hyperfine structure constants of alkali metals (Li, Na, K, Rb, and Cs), singly charged alkaline-earth-metal atoms (Be+ ,Mg+,Ca+, and Sr+), and molecules (BeH, MgF, and CaH). We have compared our ECC results with the calculations based on the restricted active space configuration interaction (RAS-CI) method. Our results are in better agreement with the available experimental values than those of the RAS-CI values.

  14. Hybrid density functional approach to the isotropic and anisotropic hyperfine couplings with 14N and 1H nuclei in the blue copper proteins

    NASA Astrophysics Data System (ADS)

    Jaszewski, Adrian R.; Jezierska, Julia

    2001-08-01

    We report UB1LYP hybrid density functional studies on the hyperfine parameters of wild-type azurin from Pseudomonas aeruginosa and M121Q mutant of azurin from Alcaligenes denitrificans. The large models of the copper site used in the calculations give quantitative insight into the spin density distribution and confirm highly delocalized character of the unpaired electron. Theoretically predicted isotropic and anisotropic hyperfine couplings are compared to the available EPR data and the assignment of the hyperfine splittings is verified.

  15. Hyperfine coupling tensors of the benzosemiquinone radical anion from Car-Parrinello molecular dynamics.

    PubMed

    Asher, James R; Kaupp, Martin

    2007-01-08

    Based on Car-Parrinello ab initio molecular dynamics simulations of the benzosemiquinone radical anion in both aqueous solution and the gas phase, density functional calculations provide the currently most refined EPR hyperfine coupling (HFC) tensors of semiquinone nuclei and solvent protons. For snapshots taken at regular intervals from the molecular dynamics trajectories, cluster models with different criteria for inclusion of water molecules and an additional continuum solvent model are used to analyse the HFCs. These models provide a detailed picture of the effects of dynamics and of different intermolecular interactions on the spin-density distribution and HFC tensors. Comparison with static calculations allows an assessment of the importance of dynamical effects, and of error compensation in static DFT calculations. Solvent proton HFCs depend characteristically on the position relative to the semiquinone radical anion. A point-dipolar model works well for in-plane hydrogen-bonded protons but deviates from the quantum chemical values for out-of-plane hydrogen bonding.

  16. The β-phosphorus hyperfine coupling constant in nitroxides: 6. Solvent effects in non-cyclic nitroxides.

    PubMed

    Audran, Gérard; Bosco, Lionel; Nkolo, Paulin; Bikanga, Raphael; Brémond, Paul; Butscher, Teddy; Marque, Sylvain R A

    2016-04-12

    In two recent articles (Org. Biomol. Chem., 2015 and 2016), we showed that changes in the phosphorus hyperfine coupling constant aP at position β in β-phosphorylated nitroxides can be dramatic. Such changes were applied to the titration of water in organic solvents and conversely of organic solvents in water. One of the molecules tested was a non-cyclic nitroxide meaning that a thorough investigation of the solvent effect on the EPR hyperfine coupling constant is timely due. In this article, we show that the aP of persistent non-cyclic β-phosphorylated nitroxides decrease with the normalized polarity Reichardt's constant E(N)T. The Koppel-Palm and Kalmet-Abboud-Taft relationships were applied to gain deeper insight into the effects influencing aN and aP: polarity/polarizability, hydrogen bond donor properties, and the structuredness of the cybotactic region.

  17. A study of magnetoresistance in organic semiconductors with varying strengths of hyperfine and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Sheng, Yugang

    This thesis concerns itself with the scientific study of the recently discovered organic magnetoresistance (OMAR) whose underlying mechanism is currently not known with certainty. As an introduction, we briefly review the major findings from prior work done by my colleagues. They found that OMAR can be as large as ≈10% magnetoresistance at 10 mT magnetic fields at room temperature. Both OMAR and other kinds of magnetic field effect data in organics can be fitted using the empirical laws B2/B2+B20 or B2/(|B| + B0)2, dependent on material. The fitting parameter B0 is a measure of the characteristic magnetic field strength of OMAR. We explore the dependence of B0 on material parameters to clarify the origin of OMAR. Various pi-conjugated semiconductor OMAR devices were studied to explore the possibility that hyperfine interaction causes OMAR. For a quantitative analysis of the experiments, we developed a theoretical fitting formula to relate B0 to the hyperfine coupling strength. In addition, organic materials with different spin-orbit coupling strengths were also measured. Fluorescence and phosphorescence spectroscopies were used to estimate the spin-orbit coupling strength from the measured spectra. For analyzing our measurements, we developed a fitting formula from the time-dependent Schrodinger equation that takes into account the combined effect of hyperfine and spin-orbit coupling on spin-dynamics. We found that in the case of strong spin-orbit coupling, it dominates the behavior, resulting in magnetic field effect traces that are much wider than those in ordinary organics. However, a small cone remains at zero field with a width equal to the hyperfine coupling strength. We find qualitative agreement between the experimental results and the model. We also investigated the question whether OMAR is related to an excitonic effect, or is primarily a transport effect. We measured the magnetic field effects on current, photocurrent and electroluminescence to address

  18. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  19. Quantum beats in the recombination fluorescence of radical ion pairs caused by the hyperfine coupling in radical anions

    NASA Astrophysics Data System (ADS)

    Bagryansky, V. A.; Borovkov, V. I.; Molin, Yu. N.; Egorov, M. P.; Nefedov, O. M.

    1998-10-01

    The ratios of the radiofluorescence decay curves for n-decane solutions of 1,2,3,4-tetraphenylcyclopenta-1,3-diene and its silicon and germanium analogs (siloles and germoles) in high and zero magnetic fields have an oscillating component caused by singlet-triplet evolution of the pair S +/A -, where S + is the solvent hole and A - is the radical anion of the acceptor (a compound added). It is shown that the beats are due to the hyperfine couplings (hfc) with either the protons of CH 2, SiH 2 and GeH 2 moieties or chlorine atoms in the GeCl 2 and GeClMe moieties of radical anions. The hfc constants in the anions and spin relaxation times of radical ion pairs were obtained by fitting the experimental curves.

  20. Investigation of the nitrogen hyperfine coupling of the second stable radical in γ-irradiated L-alanine crystals by 2D-HYSCORE spectroscopy

    NASA Astrophysics Data System (ADS)

    Maltar-Strmečki, Nadica; Rakvin, Boris

    2012-09-01

    The second stable radical, NH3+C(CH3)COO, R2, in the γ-irradiated single crystal of L-alanine and its fully 15N-enriched analogue were studied by an advanced pulsed EPR technique, 2D-HYSCORE (two-dimensional hyperfine sublevel correlation) spectroscopy at 200 K. The nitrogen hyperfine coupling tensor of the R2 radical was determined from the HYSCORE data and provides new experimental data for improved characterization of the R2 radical in the crystal lattice. The results obtained complement the experimental proton data available for the R2 radical and could lead to increased accuracy and reliability of EPR spectrum simulations.

  1. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    SciTech Connect

    Verma, Prakash; Morales, Jorge A.; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  2. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  3. Hyperfine interaction, spin polarization, and spin delocalization as probes of donor-bridge-acceptor interactions in exchange-coupled biradicals.

    PubMed

    Kirk, Martin L; Shultz, David A; Habel-Rodriguez, Diana; Schmidt, Robert D; Sullivan, Ubie

    2010-11-18

    Computations and EPR spectroscopy are used to probe the spin distribution of donor-bridge-acceptor (D-B-A) biradical complexes: Tp(Cum,Me)Zn(SQ-NN) (1), Tp(Cum,Me)Zn(SQ-1,4-Ph-NN) (2), Tp(Cum,Me)Zn(SQ-2,5-TP-NN) (3), and Tp(Cum,Me)Zn(SQ-2,5-Xyl-NN) (4) (SQ = orthosemiquinone and NN = nitronylnitroxide). These complexes are ground-state analogs of the charge-separated excited states formed in photoinduced electron transfer reactions. The intraligand magnetic exchange interaction (J) in these complexes is mediated by the bridges and has been found to stabilize the triplet ground states of 1 and 2. Detailed spectroscopic and bonding calculations have been used to elucidate the role of the bridge fragment (B) and its conformation relative to donor (SQ) and acceptor (NN) on spin density distributions. The computed results correlate well with experimental nitrogen hyperfine coupling constants.

  4. Resolving ligand hyperfine couplings of type 1 and 2 Cu(II) in ascorbate oxidase by high field pulse EPR correlation spectroscopy.

    PubMed

    Potapov, Alexey; Pecht, Israel; Goldfarb, Daniella

    2010-01-07

    Ascorbate oxidase contains two paramagnetic Cu(ii) binding sites, type 1 (T1) and type 2 (T2) and in both sites the Cu(ii) is coordinated to histidine residues. We use several pulse EPR techniques at high field (95 GHz) to determine ligand (1)H and (14)N hyperfine couplings in the two sites and identify the T1 signals by a new triple resonance correlation technique named THYCOS.

  5. Covalency in La2CuO4: A study of 17O hyperfine couplings in the paramagnetic phase

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Cheong, S.-W.

    2001-07-01

    17O nuclear magnetic resonance spectra from single crystals of La2CuO4 are reported for temperatures ranging from 285 to 800 K. Hyperfine tensor data for the planar sites are analyzed using a spin Hamiltonian model that includes spin-orbit coupling effects. The results show a 7.7% hybridization effect of the oxygen 2pσ orbital from a single copper neighbor, in good agreement with recent density-functional (DF) calculations by Hüsser et al. (HSSM). A large, positive isotropic shift component is also reported, presumably originating from the contact interaction with a hybridized 2s orbital component. First-order quadrupolar-splitting data lead to complete characterization of the electric-field gradient (EFG) tensor, which varies only slightly with temperature up to 800 K. EFG tensors for both doped and undoped La2CuO4 are fitted with a two-component model, which incorporates a substantial anisotropy in for the 2pσ wave functions, an effect that originated in the DF calculations of HSSM. This analysis reveals an increased charge density on the planar oxygens for the superconducting phase, in accord with the original Zhang-Rice model. However, the increase is found to correspond to only ~80% of the nominal doped-hole density, corroborating a similar conclusion reached recently by Hammel et al. Regarding the anomalous spin HF interaction reported in a previous paper for the weakly ferromagnetic state, the present results show that its effects extend all the way to and slightly beyond the orthorhombic-tetragonal phase boundary (TO-T~=550 K). Further, the predominant 2s contact HF interaction reported here supports the notion, suggested earlier, that a 2s admixture underlies the anomaly. However, the basic mechanism of the anomaly remains obscure.

  6. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    NASA Astrophysics Data System (ADS)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  7. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    SciTech Connect

    Harack, B.; Leary, A.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero.

  8. Communication: spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and MS = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH2CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  9. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions.

  10. High resolution laser spectroscopy studies of perturbations in sodium: Hyperfine interaction and global analysis of the A(1)sigma(+) and b(3)pi(u) coupled states

    NASA Astrophysics Data System (ADS)

    Qi, Peng

    This thesis mainly consists of two parts. The focus of first part is on the study of the hyperfine interaction in the Na2 23 productg electronic state. Many new Na 2 23productg v = 0-43, O = 0,1, and 2 levels have been observed by continuous wave (CW) sub-Doppler Perturbation Facilitated Optical-Optical Double Resonance (PFOODR) fluorescence excitation spectroscopy and the hyperfine structures of the O = 0 and O = 2 levels have been resolved. New molecular constants for the less perturbed v = 0-43 levels have been obtained with these new and the previously reported data. The hyperfine coupling scheme of the observed 23product g levels is close to Hund's case (abeta ) coupling scheme with a Fermi contact constant b F = 160 +/- 5 MHz, which is smaller than the Fermi contact constants of other Na2 triplet Rydberg states, bF = 200-245 MHz. The second part of this thesis is on the global analysis of the Na 2 lowest excited electronic states, A1S+u and b3productu. These coupled states are of interest as intermediarie in the excitation of higher electronic states and in the development of methods for producing cold molecules. We have compiled previously obtained spectroscopic data on the A1S+u and b3productu states of Na2 from about 20 sources, both published and unpublished, together with the sub-Doppler linewidth measurements of about 15,000 A ← X transitions using the polarization spectroscopic technique. In addition, new ab initio results for the diagonal and off-diagonal spin-orbit functions by Svetlana Kotochigova are also included in the global deperturbation analysis. The discrete variable representation (DVR) method is used together with Hund's case (a) potentials plus spin-orbit effects to model data extending from v = 0 to very close to the 32S + 32 P1/2 dissociation limit. The overall variance of the fit of the present A1S+u and b3productu data to potential and spin-orbit parameters is 2.85. The final rms residual for the polarization spectroscopy data is 0

  11. Enhanced NMR Relaxation of Tomonaga-Luttinger Liquids and the Magnitude of the Carbon Hyperfine Coupling in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kiss, A.; Pályi, A.; Ihara, Y.; Wzietek, P.; Simon, P.; Alloul, H.; Zólyomi, V.; Koltai, J.; Kürti, J.; Dóra, B.; Simon, F.

    2011-10-01

    Recent transport measurements [Churchill et al. Nature Phys.NPAHAX1745-2473 5, 321 (2009)10.1038/nphys1247] found a surprisingly large, 2-3 orders of magnitude larger than usual C13 hyperfine coupling (HFC) in C13 enriched single-wall carbon nanotubes. We formulate the theory of the nuclear relaxation time in the framework of the Tomonaga-Luttinger liquid theory to enable the determination of the HFC from recent data by Ihara et al. [Europhys. Lett. 90, 17 004 (2010)EULEEJ0295-507510.1209/0295-5075/90/17004]. Though we find that 1/T1 is orders of magnitude enhanced with respect to a Fermi-liquid behavior, the HFC has its usual, small value. Then, we reexamine the theoretical description used to extract the HFC from transport experiments and show that similar features could be obtained with HFC-independent system parameters.

  12. Relativistic unitary coupled-cluster study of the electric quadrupole moment and magnetic dipole hyperfine constants of {sup 199}Hg{sup +}

    SciTech Connect

    Sur, Chiranjib; Chaudhuri, Rajat K.

    2007-09-15

    Searching for an accurate optical clock which can serve as a better time standard than the present-day atomic clock is highly demanding from several areas of science and technology. Several attempts have been made to build more accurate clocks with different ion species. In this paper, we discuss the electric quadrupole and hyperfine shifts in the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2}(F=0,m{sub F}=0){r_reversible}5d{sup 10}6s {sup 2}S{sub 1/2}(F=2,m{sub F}=0) clock transition in {sup 199}Hg{sup +}, one of the most promising candidates for next-generation optical clocks. We have applied Fock-space unitary coupled-cluster theory to study the electric quadrupole moment of the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2} state and magnetic dipole hyperfine constants of 5d{sup 9}6s{sup 2} {sup 2}D{sub 3/2,5/2} and 5d{sup 10}6s{sup 1} {sup 2}S{sub 1/2} states, respectively, of {sup 199}Hg{sup +}. We have also compared our results with available data. To the best of our knowledge, this is the first time a variant of coupled-cluster theories has been applied to study these kinds of properties of Hg{sup +} and is the most accurate estimate of these quantities to date.

  13. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  14. Thallium hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G. H.; Forssén, Christian; Mårtensson Pendrill, Ann Marie

    2000-08-01

    Measurements of the hyperfine structure in the highly charged hydrogen like systems 203Tl80+ and 205Tl80+ are underway at the Super EBIT at LLNL. This work considers the effects of the nuclear magnetization distribution on the hyperfine structure. The difference in energy splitting due to hyperfine structure for 203Tl and 205Tl, respectively, is found to be 0.031 04(1) eV, which corresponds to a transition wavelength difference of 3.640(1) nm.

  15. Characterization of divalent metal metavanadates by 51V magic-angle spinning NMR spectroscopy of the central and satellite transitions.

    PubMed

    Nielsen, U G; Jakobsen, H J; Skibsted, J

    2000-05-15

    51V quadrupole coupling and chemical shielding tensors have been determined from 51V magic-angle spinning (MAS) NMR spectra at a magnetic field of 14.1 T for nine divalent metal metavanadates: Mg(VO3)2, Ca(VO3)2, Ca(VO3)(2).4H2O, alpha-Sr(VO3)2, Zn(VO3)2, alpha- and beta-Cd(VO3)2. The manifold of spinning sidebands (ssbs) from the central and satellite transitions, observed in the 15V MAS NMR spectra, have been analyzed using least-squares fitting and numerical error analysis. This has led to a precise determination of the eight NMR parameters characterizing the magnitudes and relative orientations of the quadrupole coupling and chemical shielding tensors. The optimized data show strong similarities between the NMR parameters for the isostructural groups of divalent metal metavanadates. This demonstrates that different types of metavanadates can easily be distinguished by their anisotropic NMR parameters. The brannerite type of divalent metal metavanadates exhibits very strong 51V quadrupole couplings (i.e., CQ = 6.46-7.50 MHz), which reflect the highly distorted octahedral environments for the V5+ ion in these phases. Linear correlations between the principal tensor elements for the 51V quadrupole coupling tensors and electric field gradient tensor elements, estimated from point-monopole calculations, are reported for the divalent metal metavanadates. These correlations are used in the assignment of the NMR parameters for the different crystallographic 51V sites of Ca(VO3)(2).4H2O, Pb(VO3)2, and Ba(VO3)2. For alpha-Sr(VO3)2, with an unknown crystal structure, the 51V NMR data strongly suggest that this metavanadate is isostructural with Ba(VO3)2, for which the crystal structure has been reported. Finally, the chemical shielding parameters for orthovanadates and mono- and divalent metal metavanadates are compared.

  16. Hyperfine interaction and magnetoresistance in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Nguyen, T. D.; Veeraraghavan, G.; Mermer, Ö.; Wohlgenannt, M.; Qiu, S.; Scherf, U.

    2006-07-01

    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. We deduce a simple fitting formula from the hyperfine Hamiltonian that relates the saturation field of the OMAR traces to the hyperfine coupling constant. We compare the fitting results to literature values for this parameter. Furthermore, we apply an excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain various magnetic-field effects in organics, to the OMAR data. Whereas this model can explain a few key aspects of the experimental data, we uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.

  17. Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

    NASA Astrophysics Data System (ADS)

    Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji

    2013-10-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi

  18. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  19. Electron spin resonance spectra and hyperfine coupling constants of the [ 133C]α-tocopheroxyl (the [ 13C]vitamin E radical) and [ 13C]2,2,5,7,8-pentamethylchroman-6-oxyl radicals (Its model radical)

    NASA Astrophysics Data System (ADS)

    Matsuo, Mitsuyoshi; Matsumoto, Shigenobu; Urano, Shiro; Mukai, Kazuo

    The electron spin resonance spectra of the [5a-, 7a-, or 8b- 13C]2- ambo-α-tocopheroxyl and [5a-, 7a-, or 8b- 13C]2,2,5,7,8-pentamethylchroman-6-oxyl radicals were obtained from the oxidation of [ 13C]2- ambo-α-tocopherol ( 13C]vitamin E) and [ 13C]2,2,5,7,8-penta-methylchroman-6-ol (a [ 13C]vitamin E model compound), respectively, with 2,2-diphenyl-1-picrylhydrazyl. The 13C hyperfine coupling constants of the 5a-, 7a-, and 8b-methyl groups in these radicals were determined using spectrum simulation. Their magnitude was compared with that of the 1H hyperfine coupling constants of the methyl groups. It was found to be simply proportional to the π-spin density on aromatic carbon atoms bonded to the methyl groups: i.e., ajc = Qjc· ϱiπ. The Qjc value was empirically determined to be -1.62 ± 0.05 mT.

  20. Spin-torsion effects in the hyperfine structure of methanol

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  1. Spin-torsion effects in the hyperfine structure of methanol

    SciTech Connect

    Coudert, L. H. Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-28

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  2. Rotation of hyperfine fields at the V site in the multiband metal K2V8O6

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasuhiro; Okai, Katsunori; Itoh, Masayuki; Isobe, Masahiro; Yamaura, Jun-ichi; Ueda, Yutaka

    2010-01-01

    51V nuclear magnetic resonance measurements are conducted on a single crystal of the mixed valence compound K2V8016 with 1.25 3d electrons per one V site. We determine the 51V Knight shift tensor, 51K, in the metallic state. 51K has the small anisotropy despite the conduction electrons in the anisotropic 3d orbitals. The principal axis of 51K rotates continuously on cooling temperature in the metallic state without breaking the lattice symmetry, I4/m. Taking into account the isotropic spin susceptibility, the thermal variation is attributed to a change in the hyperfine field tensor reflecting the 3d orbital shape.

  3. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    : All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in

  4. Hyperfine selectivity using multiquantum electron-nuclear-electron triple resonance

    NASA Astrophysics Data System (ADS)

    Christidis, T. C.; Mchaourab, Hassane S.; Hyde, James S.

    1996-06-01

    Hyperfine selectivity is demonstrated in a continuous wave electron-nuclear double resonance (ENDOR) experiment. A multiquantum electron-electron double resonance (ELDOR) signal is monitored as a function of the nuclear radio frequency. The signs and relative intensities of the ENDOR lines permit separating the case where both ELDOR and ENDOR frequencies match hyperfine couplings from the cases where this condition is not satisfied.

  5. Effect of Jahn-Teller ion in zinc sodium sulphate hexahydrate: a case of low hyperfine coupling constant for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Naidu, K. C.; Shiyamala, C.; Mithira, S.; Natarajan, B.; Venkatesan, R.; Rao, P. S.

    2005-06-01

    Single crystal electron paramagnetic resonance (EPR) studies of Cu(II) doped zinc sodium sulphate hexahydrate are carried out from room temperature (RT) to 123 K. The RT spectra show unresolved hyperfine lines and hence angular variation studies are also carried out at 123 K to obtain spin Hamiltonian parameters. The spin Hamiltonian parameters calculated from the 123 K spectra are: g(11)=2.039, g(22)=2.232, g(33)=2.394, A(11)=5.64 mT, A(22)=4.20 mT, and A(33)=7.94 mT. The g-matrix values at RT and 123 K have matched fairly well with each other. The low hyperfine value (A(33)), obtained at 123 K, has been explained by considering considerable admixture of d(x 2-y 2) ground state with d(z 2) excited state and the delocalization of the unpaired spin density onto the ligands. The admixture coefficients of ground state wave function are: a=0.346, b=0.935, c=0.055, d=0.040, e=-0.040, where a and b correspond to admixture coefficients for d(z 2) and d(x 2-y 2), respectively. Angular variation of Cu(II) resonances in the three orthogonal axes shows that the impurity has entered a substitutional site in the host lattice in place of Zn(II). Bonding parameters, kappa=0.295, P=245.4x10(-4), alpha(2)=0.709, alpha=0.8421 and alpha'=0.6034, have also been calculated to fully characterize the EPR.

  6. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  7. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  8. Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects.

    PubMed

    Gohr, Sebastian; Hrobárik, Peter; Repiský, Michal; Komorovský, Stanislav; Ruud, Kenneth; Kaupp, Martin

    2015-12-24

    The four-component matrix Dirac-Kohn-Sham (mDKS) implementation of EPR g- and hyperfine A-tensor calculations within a restricted kinetic balance framework in the ReSpect code has been extended to hybrid functionals. The methodology is validated for an extended set of small 4d(1) and 5d(1) [MEXn](q) systems, and for a series of larger Ir(II) and Pt(III) d(7) complexes (S = 1/2) with particularly large g-tensor anisotropies. Different density functionals (PBE, BP86, B3LYP-xHF, PBE0-xHF) with variable exact-exchange admixture x (ranging from 0% to 50%) have been evaluated, and the influence of structure and basis set has been examined. Notably, hybrid functionals with an exact-exchange admixture of about 40% provide the best agreement with experiment and clearly outperform the generalized-gradient approximation (GGA) functionals, in particular for the hyperfine couplings. Comparison with computations at the one-component second-order perturbational level within the Douglas-Kroll-Hess framework (1c-DKH), and a scaling of the speed of light at the four-component mDKS level, provide insight into the importance of higher-order relativistic effects for both properties. In the more extreme cases of some iridium(II) and platinum(III) complexes, the widely used leading-order perturbational treatment of SO effects in EPR calculations fails to reproduce not only the magnitude but also the sign of certain g-shift components (with the contribution of higher-order SO effects amounting to several hundreds of ppt in 5d complexes). The four-component hybrid mDKS calculations perform very well, giving overall good agreement with the experimental data.

  9. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  10. Hyperfine Structure measurements of 45Sc

    NASA Astrophysics Data System (ADS)

    Jones, K. D.; Rossi, D. M.; Minamisono, K.; Miller, A. J.; Asberry, H.; Mantica, P. F.

    2015-10-01

    A chain of charge radii shows discontinuity at nucleon magic numbers. This signature of the shell closure, however, is missing at the neutron magic number N = 20 for Ar, Ca and K isotopes. A collinear laser spectroscopy experiment on the stable 45Sc isotope, which is one proton added to Ca, was performed as a prerequisite of radioactive beam experiments on Sc across N = 20 to further investigate the abnormal behavior. The experiment was performed at BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL and a hyperfine spectrum was measured for the electronic transition of 3 d 4 s 3D1 --> 3 d 4 p 3F2 at λ = 364 . 3 nm in 45ScII. The magnetic dipole and electric quadrupole hyperfine coupling constants A and B of both the lower and upper states were obtained from the hyperfine structure by fitting a pseudo-Voigt profile. The results obtained from these data are in good agreement with previous values and have smaller statistical errors. The detail of experiment and analysis will be discussed. This work was supported in part by NSF Grant No. PHY-11-02511.

  11. Elastic scattering of 9Be+51V near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Morales-Rivera, J. C.; Martinez-Quiroz, E.; Belyaeva, T. L.; Aguilera, E. F.; Lizcano, D.; Amador-Valenzuela, P.

    2016-05-01

    Elastic scattering angular distributions for the 9Be+51V system were measured at three near Coulomb barrier energies, Elab = 16.35, 17.44 and 18.53 MeV. The data were analyzed by using a Semimicroscopic Optical Model. This combines a microscopic calculation of the mean-field double folding potential and a phenomenological construction of the dynamical polarization potential. The calculations reproduced the data very well and the total reaction cross sections were also calculated.

  12. Fluctuating hyperfine interactions: computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2010-04-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected.

  13. Magnetic Hyperfine Fields in Lu_2V_2O_7: A Model Approach

    NASA Astrophysics Data System (ADS)

    Agzamova, Polina; Nikiforov, Anatoliy; Nazipov, Dmitriy

    2016-12-01

    We report a theoretical approach to the investigation of the magnetic hyperfine interaction on the ^{51}V nucleus in Lu_2V_2O_7 with the view of understanding the orbital ordering pattern in this compound. First, we have evaluated the vanadium 3d^1-level splitting (Δ ) under the crystal field with the D _{3d}-symmetry using the point charges approximation. Second, we have calculated the exchange interaction constant ( J) using the ab initio approach. It is shown that the crystal field energy is much stronger than the exchange interaction one and hence the orbital liquid state cannot occur in Lu_2V_2O_7. Finally we have analyzed the magnetic hyperfine field affecting the vanadium nucleus leaning upon these results.

  14. Hyperfine Interactions for Hole Spins in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Philippoppoulos, Pericles; Chesi, Sefano; Coish, William

    2014-03-01

    Due to the anisotropic nature of the hyperfine coupling for hole spins in semiconductor quantum dots, these systems may show significantly longer coherence times than electron spins given the correct quantum-dot geometry and magnetic field orientation. This advantage of hole spins relies on the hyperfine tensor taking-on an Ising-like form. This form of the hyperfine coupling has been recently called into question with experiments that have been interpreted to indicate a strong hybridization of p-like and d-like components in the valence band of III-V semiconductors. However, this interpretation relies on two assumptions: (1) That spin-orbit coupling is weak in these systems compared to the anisotropic crystal field, and (2) that higher-angular-momentum contributions are negligible. Assumption (1) may break down in light of the fact that the spin-orbit energy is even larger than the principle gap in InAs, and assumption (2) is difficult to justify in any crystal that breaks pure rotational symmetry. Using a generalization of the group-theoretic analysis in, we show here that relaxing either of these assumptions can restore the Ising-like nature of the hyperfine tensor, albeit for a particular choice of coupling constants.

  15. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    NASA Astrophysics Data System (ADS)

    Ali, Sabir; Ahmad, Tauseeef; Kumar, Kamal; Rizvi, I. A.; Agarwal, Avinash; Ghugre, S. S.; Sinha, A. K.; Chaubey, A. K.

    2015-01-01

    Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs) populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  16. Metal-insulator transition in the Hollandite vanadate K2V8O16 investigated by 51V NMR measurements

    NASA Astrophysics Data System (ADS)

    Okai, Katsunori; Itoh, Masayuki; Shimizu, Yasuhiro; Isobe, Masahiko; Yamaura, Jun-Ichi; Ueda, Yutaka

    2009-03-01

    51V NMR measurements have been made on powdered samples to investigate the metal-insulator (MI) transition and the local magnetic properties of the Hollandite vanadate K2V8O16 which undergoes the MI transition at TMI~170 K. An asymmetric 51V NMR spectrum in the metallic phase has the T-dependent negative Knight shift K. The two NMR spectra appears around TMI, showing the coexistence of the metallic and insulating phases in consistent with the two-step first-order transition. The temperature dependence of K and the 51V nuclear spin-lattice relaxation rate indicates the presence of the ferromagnetic spin fluctuations in the metallic phase. A 51V NMR spectrum observed below TMI has the temperature-independent K~0.35%, showing the presence of the nonmagnetic ground state.

  17. Four Decades of Hyperfine Anomalies

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G. H.; Mårtensson-Pendrill, Ann-Marie

    Isotopic differences in the distribution of nuclear charge and magnetization give rise to "hyperfine structure anomalies" which were observed already in the 1950s. More recently, the distribution of nuclear magnetization has been found to complicate the interpretation of the measured hyperfine splittings in highly charged hydrogen-like ions. In this paper, results of numerical calculations for a few hydrogen-like systems (133Cs, 165Ho, 185,187Re and 209Bi) of current experimental interest are presented in terms of moments of the nuclear charge and magnetization distribution, thereby displaying directly the sensitivity and emphasizing the need for a better understanding of nuclear wavefunctions. In addition, we also present results of many-body perturbation theory calculations for Cs hyperfine anomalies, in connection with experiments planned at ISOLDE.

  18. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  19. Internuclear 31P-51V Distance Measurements in Polyoxoanionic Solids Using REAPDOR NMR Spectroscopy

    PubMed Central

    Huang, Wenlin; Vega, Alexander J.; Gullion, Terry; Polenova, Tatyana

    2014-01-01

    We report the first results establishing REAPDOR experiments for distance measurements between a spin-1/2 (31P) and spin-7/2 (51V) pair in a series of vanadium-substituted polyoxoanionic solids from the Keggin and Wells-Dawson families. We have quantitatively measured 31P-51V distances in mono-vanadium substituted K4PVW11O40, 1-K7P2VW17O62, and 4-K7P2VW17O62. Numerical simulations of the experimental data yield very good agreement with the averaged P-W/P-V distances determined from the X-ray diffraction measurements in the same or related compounds. REAPDOR is therefore a very sensitive P-V distance probe anticipated to be especially useful in the absence of long-range order. Our results suggest that REAPDOR spectroscopy could be broadly applicable for interatomic distance measurements in other spin-7/2-spin-1/2 nuclear pairs. PMID:17918932

  20. Hyperfine Structure in Rotational Spectra of Deuterated Molecules: the Hds and ND_3 Case Studies

    NASA Astrophysics Data System (ADS)

    Cazzoli, Gabriele; Puzzarini, Cristina

    2016-06-01

    The determination of hyperfine parameters (quadrupole-coupling, spin-spin coupling, and spin-rotation constants) is one of the aims of high-resolution rotational spectroscopy. These parameters are relevant not only from a spectroscopic point of view, but also from a physical and/or chemical viewpoint, as they might provide detailed information on the chemical bond, structure, etc. In addition, the hyperfine structure of rotational spectra is so characteristic that its analysis may help in assigning the spectra of unknown species. In astronomical observations, hyperfine structures of rotational spectra would allow us to gain information on column densities and kinematics, and the omission of taking them into account can lead to a misinterpretation of the line width of the molecular emission lines. Nevertheless, the experimental determination of hyperfine constants can be a challenge not only for actual problems in resolving hyperfine structures themselves, but also due to the lack of reliable estimates or the complexity of the hyperfine structure itself. It is thus important to be able to rely on good predictions for such parameters, which can nowadays be provided by quantum-chemical calculations. In fact, the fruitful interplay of experiment and theory will be demonstrated by means of two study cases: the hypefine structure of the rotational spectra of HDS and ND_3. From an experimental point of view, the Lamb-dip technique has been employed to improve the resolving power in themillimeter- and submillimeterwave frequency range by at least one order of magnitude, thus making it possible to perform sub-Doppler measurements as well as to resolve narrow hyperfine structures. Concerning theory, it will be demonstrated that high-level calculations can provide quantitative estimates for hyperfine parameters (quadrupole coupling constants, spin-rotation tensors, spin-spin couplings, etc.) and shown how theoretical predictions are often essential for a detailed analysis of

  1. Oxovanadium alkoxides: Structure, reactivity, and sup 51 V NMR characteristics. Crystal and molecular structures of VO(OCH sub 2 CH sub 2 Cl) sub 3 and VOCl sub 2 (THF) sub 2 H sub 2 O

    SciTech Connect

    Priebsch, W.; Rehder, D. )

    1990-08-08

    The vanadyl esters VO(OR){sub 3} (R = Me, Et, Pr, iPr, sBu, tBu, CH{sub 2}CH{sub 2}F, CH{sub 2}CH{sub 2}Cl, CH{sub 2}CCl{sub 3}) have been prepared and their association properties in pentane investigated by {sup 51}V NMR. Limiting (low concentration) {delta}({sup 51}V) values depend on the bulk of R (highest {sup 51}V shielding for tBu). Shielding decreases with increasing concentration (more pronounced for small R groups), owing to the formation of oligomers, probably connected by {mu}-OR groups. The X-ray diffraction study of VO(OCH{sub 2}CH{sub 2}Cl){sub 3} reveals dimer association of molecules belonging to adjacent unit cells via long V-OR bonds (226.1 (2) pm), and a trigonal-bipyramidal geometry for each monomeric unit. From the reaction between VOCl{sub 3} and diols (glycol, 1,3-propanediol, 1,2-, 2,3-, 1,3-, and 1,4-butanediol), complexes are obtained that contain the {l brace}VOCl(OR){sub 2}{r brace} and {l brace}VOCl{sub 2}OR{r brace} moieties and the alcohol coordinated in the monofunctional or bifunctional (chelating and bridging) mode. The {sup 51}V NMR spectrum of VOCl{sub 2}OCH(Me)CH(Me)OH exhibits resolved {sup 51}V-{sup 35,37}Cl coupling: J({sup 51}V-{sup 35}Cl) = 100 Hz; J({sup 51}V-{sup 37}Cl) = 83 Hz. V{sup V}OCl{sub 2}(OCH{sub 2}CH{sub 2}CH{sub 2}OH) reacts with 1,4-butanediol to form V{sup IV}OCl{sub 2}(THF){sub 2}(OH{sub 2}). In the presence of COCL{sub 3}, THF undergoes ether splitting, chlorination, and coordination to vanadium to yield VOCl{sub 2}(OCH{sub 2}CH{sub 2}CH{sub 2}CH{sub 2}Cl). 35 refs., 7 figs., 7 tabs.

  2. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC

    SciTech Connect

    Szász, K.; Gali, A.

    2014-02-21

    Motivated by recent experimental findings on the hyperfine signal of nitrogen donor (N{sub C}) in 4 H and 6 H SiC, we calculate the hyperfine tensors within the framework of density functional theory. We find that there is negligible hyperfine coupling with {sup 29}Si isotopes when N{sub C} resides at h site both in 4 H and 6 H SiC. We observe measurable hyperfine coupling to a single {sup 29}Si at k site in 4 H SiC and k{sub 1} site in 6 H SiC. Our calculations unravel that such {sup 29}Si hyperfine coupling does not occur at k{sub 2} site in 6 H SiC. Our findings are well corroborated by our new electron paramagnetic resonance studies in nitrogen doped 6 H SiC.

  3. Hyperfine magnetic fields in substituted Finemet alloys

    NASA Astrophysics Data System (ADS)

    Brzózka, K.; Sovák, P.; Szumiata, T.; Gawroński, M.; Górka, B.

    2016-12-01

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  4. Deuterium hyperfine structure in interstellar C3HD

    NASA Technical Reports Server (NTRS)

    Bell, M. B.; Watson, J. K.; Feldman, P. A.; Matthews, H. E.; Madden, S. C.; Irvine, W. M.

    1987-01-01

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  5. Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ţifrea, Ionel; Flatté, Michael E.

    2011-10-01

    We investigate the dynamic nuclear polarization (DNP) caused by hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. We derive the time and position dependence of the resulting hyperfine and dipolar magnetic fields. In GaAs quantum wells the induced nuclear spin polarization greatly exceeds the polarization of the electronic system that causes the DNP. The induced magnetic fields vary between tens of tesla for the electronic hyperfine field acting on nuclei, to hundreds of gauss for the nuclear hyperfine field acting on electrons, to a few gauss for the induced nuclear dipolar fields that act on both nuclei and electrons. The field strengths should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for low-dimensional semiconductor nanostructures.

  6. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  7. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics.

    PubMed

    Lee, Sang-Yun; Paik, Seo-Young; McCamey, Dane R; Yu, Justin; Burn, Paul L; Lupton, John M; Boehme, Christoph

    2011-02-23

    An appealing avenue for organic spintronics lies in direct coherent control of the spin population by means of pulsed electron spin resonance techniques. Whereas previous work has focused on the electrical detection of coherent spin dynamics, we demonstrate here the equivalence of an all-optical approach, allowing us to explore the influence of materials chemistry on the spin dynamics. We show that deuteration of the conjugated polymer side groups weakens the local hyperfine fields experienced by electron-hole pairs, thereby lowering the threshold for the resonant radiation intensity at which coherent coupling and spin beating occur. The technique is exquisitively sensitive to previously obscured material properties and offers a route to quantifying and tuning hyperfine fields in organic semiconductors.

  8. HfS, Hyperfine Structure Fitting Tool

    NASA Astrophysics Data System (ADS)

    Estalella, Robert

    2017-02-01

    Hyperfine Structure Fitting (HfS) is a tool to fit the hyperfine structure of spectral lines with multiple velocity components. The HfS_nh3 procedures included in HfS simultaneously fit the hyperfine structure of the NH3 (J, K) = (1, 1) and (2, 2) transitions, and perform a standard analysis to derive {T}{ex}, NH3 column density, {T}{rot}, and {T}{{k}}. HfS uses a Monte Carlo approach for fitting the line parameters. Special attention is paid to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

  9. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  10. Effective Hyperfine-structure Functions of Ammonia

    NASA Astrophysics Data System (ADS)

    Augustovičová, L.; Soldán, P.; Špirko, V.

    2016-06-01

    The hyperfine structure of the rotation-inversion (v 2 = 0+, 0-, 1+, 1-) states of the 14NH3 and 15NH3 ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  11. Hyperfine Splittings in the Near-Infrared Spectrum of 14NH_3

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Sears, Trevor; Hall, Gregory

    2016-06-01

    Sub-Doppler, saturation dip, measurements of transitions in the ν_1 + ν_3 band of 14NH_3 have been made by frequency comb-referenced diode laser absorption spectroscopy. The observed spectra exhibit either resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling in the molecule. Modeling of the line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the upper state level has splittings similar to that of the same rotational level in the ground state. The data provide accurate frequencies for the line positions and the observed hyperfine splittings can be used to make or confirm rotational assignments. Of all the measurements, one transition, pP(5,4)_a at 195 994.73457 GHz, exhibits hyperfine structure which does not conform to that expected based on extrapolation from the known lower state hyperfine splittings. Examination of the known vibration-rotation level structure near the upper state energy shows that there exists a near degeneracy between this level and one in the ν_1 + 2ν_4 manifold which is of the appropriate symmetry to be mixed by magnetic hyperfine terms that couple ortho- and para- modifications of the molecule. It is possible that the unusual hyperfine splittings are a consequence of ortho-paro mixing, which has been predicted, but not previously seen in ammonia and further experimental measurements to investigate this possibility are ongoing. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  12. 19304B GSRS, Missile Numbers 1029, 1050, 1054, 1073, 1074, 1056, Round Numbers V-49, V-50, V-51, V-52, V-53, V-54, 2 July 1979.

    DTIC Science & Technology

    1979-07-01

    Meteorological data gathered for the launching of 19304B GSRS, Missile Nos. 1029, 1050, 1054, 1073 , 1074, 1056, Round, Nos. V-49, V-50, V-51, V-52, V-53, V-54, are presented in tabular form. (Author)

  13. Appraising nuclear-octupole-moment contributions to the hyperfine structures in 211Fr

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2015-11-01

    Hyperfine structures of 211Fr due to the interactions of magnetic dipole (μ ), electric quadrupole (Q ), and magnetic octupole (Ω ) moments with the electrons are investigated using the relativistic coupled-cluster theory with the single, double, and important valence triple excitations approximations. The validity of our calculations is substantiated by comparing these values with the available experimental results. Its Q value has also been elevated by combining the measured hyper-fine-structure constant of the 7 p 2P3 /2 state with our improved calculation. Considering the preliminary value of Ω from the nuclear shell model, its contributions to the hyperfine structures up to the 7 d 2D5 /2 low-lying states in 211Fr are estimated. Hyperfine energy-level splittings of many states have been assessed to find the suitability for carrying out their precise measurements so that Ω of 211Fr can be inferred from them unambiguously.

  14. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    SciTech Connect

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li; Urbano, Ricardo R

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along the [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.

  15. 125Te and 51V static NMR study of V2O5-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Sakida, Shinichi; Hayakawa, Satoshi; Yoko, Toshinobu

    2000-03-01

    The structures of V2 O5 -TeO2 glasses are investigated by means of 125 Te and 51 V static NMR spectroscopies and the local structures around the Te and V atoms are discussed in detail from the respective NMR spectra. The fraction of TeO3 trigonal pyramids increases and that of TeO4 trigonal bipyramids decreases with increasing V2 O5 content. The structures of V2 O5 -TeO2 glasses are quite different from those of tellurite glasses containing network-modifying oxides. The fraction of VO4 tetrahedra increases and that of VO5 trigonal bipyramids decreases with increasing V2 O5 content. Both chains consisting of tellurite structural units and those consisting of vanadate structural units contribute to the formation of the glass network in V2 O5 -TeO2 glasses.

  16. Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8S1/2 state by using of ladder-type EIT

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Junmin; Liu, Huifeng; Yang, Baodong; He, Jun

    2013-05-01

    The narrow electromagnetically-induced transparency (EIT) resonance peaks are observed with two low-power counter-propagating diode lasers in cesium (Cs) 6S1/2 - 6P1/2 - 8S1/2 ladder-type atomic system. To precisely determine the centers of resonance peaks, multiple background-free EIT signals are achieved using a novel scanning scheme in which the coupling laser driving Cs 6P1/2 - 8S1/2 transition is scanned and the probe laser driving Cs 6S1/2 - 6P1/2 is frequency locked. A temperature-stabilized fiber-pigtailed waveguide-type phase electro-optical modulator (EOM) and a stable confocal Fabry-Perot cavity are used as a precise frequency marker to measure the hyperfine splitting of Cs 8S1/2 state. The impact of the external magnetic field on the measurement is also investigated. Furthermore, the hyperfine structure constant (here it is the hyperfine magnetic dipole constant, A) of Cs 8S1/2 state is determined to be A = 219.06 MHz +/- 0.12 MHz based on the measured hyperfine splitting (Δhfs = 876.24 MHz +/- 0.50 MHz).

  17. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  18. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    SciTech Connect

    Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson

    2004-02-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.

  19. 2D TRIPLE in orientationally disordered samples—a means to resolve and determine relative orientation of hyperfine tensors

    NASA Astrophysics Data System (ADS)

    Goldfarb, D.; Epel, B.; Zimmermann, H.; Jeschke, G.

    2004-05-01

    The two-dimensional (2D) TRIPLE experiment provides correlations between electron-nuclear double resonance (ENDOR) frequencies that belong to the same electron-spin manifold, MS, and therefore allows to assign ENDOR lines to their specific paramagnetic centers and MS manifolds. This, in turn, also provides the relative signs of the hyperfine couplings. So far this experiment has been applied only to single crystals, where the cross-peaks in the 2D spectrum are well resolved with regular shapes. Here we introduce the application of the 2D TRIPLE experiment to orientationally disordered systems, where it can resolve overlapping powder patterns. Moreover, analysis of the shape of the cross-peaks shows that it is highly dependent on the relative orientation of the hyperfine tensors of the two nuclei contributing to this particular peak. This is done initially through a series of simulations and then demonstrated experimentally at a high field (W-band, 95 GHz). The first example concerned the 1H hyperfine tensors of the stable radical α,γ-bisdiphenylene-β-phenylallyl (BDPA) immobilized in a polystyrene matrix. Then, the experiment was applied to a more complex system, a frozen solution of Cu(II)-bis(2,2 ':6 ',2″ terpyridine) complex. There, the 2D TRIPLE experiment was combined with the variable mixing time (VMT) ENDOR experiment, which determined the absolute sign of the hyperfine couplings involved, and orientation selective ENDOR experiments. Analysis of the three experiments gave the hyperfine tensors of a few coupled protons.

  20. Hyperfine interactions in magnetoelectric hexaferrite system

    NASA Astrophysics Data System (ADS)

    Kouřil, Karel; Chlan, Vojtěch; Štěpánková, Helena; Novák, Pavel; Knížek, Karel; Hybler, Jiří; Kimura, Tsuyoshi; Hiraoka, Yuji; Buršík, Josef

    2010-05-01

    Nuclear magnetic resonance (NMR) in Y-hexaferrite system (Ba 1-xSr x) 2Zn 2Fe 12O 22 was measured on both monocrystalline and polycrystalline samples at liquid helium temperature. Corresponding ab-initio calculation of the hyperfine parameters was also performed. The signal from 57Fe was detected in the frequency interval 65-76 MHz, while NMR spectrum of 67Zn nuclei occurs between 15 and 30 MHz. Due to the disorder in two tetrahedral sublattices occupied partly by Zn and partly by Fe, the NMR lines are broad and the spectra are poorly resolved. Comparison between the experimentally observed 67Zn spectra and the spectra modelled using the calculated hyperfine parameters was made. It indicates that the spectra of 67Zn can be used to determine the distribution of Zn and Fe between the two tetrahedral sublattices.

  1. Theoretical study of the hyperfine parameters of OH

    NASA Technical Reports Server (NTRS)

    Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1991-01-01

    In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.

  2. The interaction of vanadia with sepiolite. Structural studies by sup 51 V solid-state NMR and Raman spectroscopy

    SciTech Connect

    Occelli, M.L. ); Maxwell, R.S.; Eckert, H. )

    1992-09-01

    The interaction of vanadium with sepiolite, a layered magnesium silicate used to stabilize cracking catalysts against metal contaminants in crude oils, is investigated. To this end, field-dependent {sup 51}V wideline, magic-angle-spinning (MAS), and nutation NMR studies, together with X-ray diffraction (XRD) and laser Raman spectroscopy (LRS) results, are reported on sepiolite samples impregnated with a solution of vanadyl naphthenate in benzene. These results are discussed in connection with benchmark NMR data of crystallographically well-defined model compounds in the MgO-V{sub 2}O{sub 5} system. When heated near 760 C in the presence of steam, sepiolite decomposes into enstatite (MgSiO{sub 3}) and silica. If the hydrothermal treatment is repeated in the presence of vanadium, a disordered microcrystalline phase {alpha}-Mg{sub 2}V{sub 2}O{sub 7}. An MgV{sub 2}O{sub 6}-like, distorted octahedral environment is present only in samples with very high surface coverages and can be suppressed by choosing multiple-step over single-step impregnation.

  3. Influence of the static deformation of /sup 7/Li on the /sup 7/Li-/sup 51/V total reaction cross section

    SciTech Connect

    Moebius, K.; Boettger, R.; Egelhof, P.; Moroz, Z.; Steffens, E.; Tungate, G.; Dreves, W.; Koenig, I.; Fick, D.

    1981-04-20

    The energy dependence of the reaction cross section and the corresponding tensor analyzing power has been measured for the system /sup 7/Li-/sup 51/V by two different methods. The tensor analyzing powers observed can be interpreted in a sharp cutoff model as caused entirely by the static deformation of the /sup 7/Li projectiles.

  4. {sup 87}Rb hyperfine-transition dephasing in mixed buffer-gas systems

    SciTech Connect

    Huang, M.; Coffer, J. G.; Camparo, J. C.

    2007-05-15

    Elucidating the mechanisms of dephasing in the alkali-metal ground state hyperfine transition has remained an unsatisfactorily resolved problem since the mid-1960s, even though its solution has relevance to next-generation atomic clocks. Recently, however, measurements of electronic spin relaxation in strong magnetic fields have resolved a number of outstanding ambiguities, and the situation has greatly improved. Unfortunately, while these studies have illuminated the processes contributing to hyperfine transition dephasing, they only allow one to infer actual dephasing rates, {gamma}. The direct measurement of dephasing rates remains problematic, primarily as a result of temperature gradient inhomogeneous broadening, which makes it nearly impossible to distinguish systematic from physical effects. Here, we demonstrate that by measuring {gamma} as a function of mole fraction in mixed buffer-gas systems we can isolate temperature gradient effects, thereby allowing a direct comparison between theory and experiment. In the present work, we examine the linewidth of the {sup 87}Rb hyperfine transition in Ar-N{sub 2} mixed buffer-gas systems. We obtain good agreement between theory and experiment so long as we include the full dephasing contribution from RbAr van der Waals molecules: the spin-rotation contribution, {gamma}{sub SR}, and the contribution from the change in {sup 87}Rb hyperfine coupling, {gamma}{sub B}, which we refer to as the Bouchiat rate. We have been able to measure {gamma}{sub B}, obtaining {gamma}{sub B}=87{+-}6 s{sup -1} for RbAr.

  5. 1H and 51V NMR studies of the interaction of vanadate and 2-vanadio-3-phosphoglycerate with phosphoglycerate mutase.

    PubMed

    Liu, S; Gresser, M J; Tracey, A S

    1992-03-17

    The formation of complexes of vanadate with 2-phosphoglycerate and 3-phosphoglycerate have been studied using 51V nuclear magnetic resonance spectroscopy. Signals attributed to two 2,3-diphosphoglycerate analogues, 2-vanadio-3-phosphoglycerate and 2-phospho-3-vanadioglycerate, were detected but were not fully resolved from signals of inorganic vanadate and the anhydride formed between vanadate and the phosphate ester moieties of the individual phosphoglycerates. Equilibrium constants for formation of the two 2,3-bisphosphate analogues were estimated as 2.5 M-1 for 2-vanadio-3-phosphoglycerate and 0.2 M-1 for 2-phospho-3-vanadioglycerate. The results of the binding study are fully consistent with non-cooperativity in the binding of vanadiophosphoglycerate to the two active sites of phosphoglycerate mutase (PGM). 2-Vanadio-3-phosphoglycerate was found to bind to the dephospho form of phosphoglycerate mutase with a dissociation constant of about 1 x 10(-11) M at pH 7 and 7 x 10(-11) M at pH 8. Three signals attributed to histidine residues were observed in the 1H NMR spectrum of phosphoglycerate mutase. Two of these signals and also an additional signal, tentatively attributed to a tryptophan, underwent a chemical shift change when the vanadiophosphoglycerate complex was bound to the enzyme. The results obtained here are in accord with these vanadate-phosphoglycerate complexes being much more potent inhibitors of phosphoglycerate mutase than either monomeric or dimeric vanadate. The dissociation constant of 10(-11) M for 2-vanadio-3-phosphoglycerate is about 4 orders of magnitude smaller than the Km for PGM, a result in accordance with the vanadiophosphoglycerates being transition state analogues for the phosphorylation of PGM by 2,3-diphosphoglycerate.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Strain and electric field control of hyperfine interactions for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Usman, M.; Hill, C. D.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L.

    2015-06-01

    Control of hyperfine interactions is a fundamental requirement for quantum computing architecture schemes based on shallow donors in silicon. However, at present, there is lacking an atomistic approach including critical effects of central-cell corrections and nonstatic screening of the donor potential capable of describing the hyperfine interaction in the presence of both strain and electric fields in realistically sized devices. We establish and apply a theoretical framework, based on atomistic tight-binding theory, to quantitatively determine the strain and electric-field-dependent hyperfine couplings of donors. Our method is scalable to millions of atoms, and yet captures the strain effects with an accuracy level of DFT method. Excellent agreement with the available experimental data sets allow reliable investigation of the design space of multiqubit architectures, based on both strain only as well as hybrid (strain + field) control of qubits. The benefits of strain are uncovered by demonstrating that a hybrid control of qubits based on (001) compressive strain and in-plane (100 or 010) fields results in higher gate fidelities and or faster gate operations, for all of the four donor species considered (P, As, Sb, and Bi). The comparison between different donor species in strained environments further highlights the trends of hyperfine shifts, providing predictions where no experimental data exists. While faster gate operations are realizable with in-plane fields for P, As, and Sb donors, only for the Bi donor, our calculations predict faster gate response in the presence of both in-plane and out-of-plane fields, truly benefiting from the proposed planar field control mechanism of the hyperfine interactions.

  7. Spin dynamics of polarons and polaron pairs in a random hyperfine field

    NASA Astrophysics Data System (ADS)

    Roundy, Robert C.

    Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up

  8. Observation of nuclear quadrupole hyperfine structure in the infrared spectrum of hydrogen iodide using a tunable-diode laser

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1980-01-01

    Nuclear quadrupole hyperfine structure has been observed in the 1-0 vibration-rotation band of hydrogen iodide with a tunable-diode laser. The measured splittings agree well with microwave measurements of the HI molecule. Evidence for a slight change in the iodine nuclear quadrupole coupling constant from the ground to first excited vibrational state in hydrogen iodide was found.

  9. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  10. Hyperfine structure of hydrogenlike thallium isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Utter, Steven B.; Wong, Keith L.; Crespo López-Urrutia, José R.; Britten, Jerry A.; Chen, Hui; Harris, Clifford L.; Thoe, Robert S.; Thorn, Daniel B.; Träbert, Elmar; Gustavsson, Martin G. H.; Forssén, Christian; Mårtensson-Pendrill, Ann-Marie

    2001-09-01

    The hyperfine splitting of the 1s ground state of hydrogenlike Tl has been measured for the two stable isotopes using emission spectroscopy in the SuperEBIT electron-beam ion trap, giving 3858.22+/-0.30 Å for 203Tl80+ and 3821.84+/-0.34 Å for 205Tl80+ with a wavelength difference Δλ=36.38+/-0.35 Å. This difference is consistent with estimates based on hyperfine anomaly data for neutral Tl only if finite size effects are included in the calculation. By using previously determined nuclear magnetic moments, and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii 1/2=5.83(14) fm for 203Tl and 1/2=5.89(14) fm for 205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions.

  11. Fine and hyperfine structure in three low-lying 3S+ states of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Minaev, Boris; Loboda, Oleksandr; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans

    The fine structure constant (electron spin-spin coupling) and the hyperfine structure parameters (electron-nuclear spin coupling, including spin-rotation and electron-nuclear quadrupole coupling) in the low-lying triplet states and of molecular hydrogen and deuterium are calculated using a recently developed technique with full configu-ration interaction and multiconfiguration self-consistent field wave functions. The second-order spin-orbit coupling contribution to the 3Σ+ states splitting is negligible, and the calculations therefore provide a good estimate of the zero-field splitting based only on the electron spin-spin coupling values. For the bound state a negligible zero-field splitting is found, in qualitative agreement with the e-a spectrum. The zero-field splitting parameter is considerable for the repulsive state (≃1 cm-1) and of intermediate size for the bound state. The isotropic hyperfine coupling constant is very large not only for the valence state (1580 MHz) but also for the Rydberg a and e triplet states (≃1400 MHz). The quadrupole coupling constants for the deuterium isotopes are negligible (0.04-0.07 MHz) for all studied triplet states. The electric dipole activity of the spin sublevels in the triplet-singlet transitions to the ground state is estimated by means of the quadratic response technique.

  12. 51V-NMR study of low-temperature phase in δ-Ag2/3V2O5

    NASA Astrophysics Data System (ADS)

    Kawasaki, Y.; Morioka, R.; Kishimoto, Y.; Nakamura, K.; Nishiyama, K.; Koyama, T.; Mito, T.; Baba, T.; Yamauchi, T.; Isobe, M.; Ueda, Y.

    2015-03-01

    51V-NMR experiments have been performed to investigate the local magnetic and electronic properties on the phase transition in the mixed-valence oxide δ-Ag2/3V2O5. We have observed the abrupt loss of 51V-NMR signal coming from the non-magnetic V5+-like ions above Tc = 225 K. It indicates that the majority of V ions are magnetic above Tc and that the phase transition is accompanied by the charge separation and charge ordering of 3d electrons on V sites. In the charge ordered state below Tc, the magnetic V4+-like ions are located at both V1 and V2 sites with equal distribution.

  13. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-02

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.

  14. 51V NMR and EPR Study of Reaction Kinetics and Mechanisms in V2O5 Gelation by Ion Exchange of Sodium Metavanadate Solutions

    DTIC Science & Technology

    1993-07-12

    initial reactions involve the consumption of the dioxovanadium cation (VVO 2+). The only other vanadium (V) species in solution, decavanadic acid...vanadium(V) species in solution, decavanadic acid, acts only as a source of dioxovanadium cations for the polymerization. The oxovanadium cation (VIO...further decavanadic acid decomposition to the dioxovanadium cation by furnishing protons. 51V MAS NMR of the resulting colloidal suspensions indicates that

  15. Intermediate mass fragment emission in 32S + 51V, 109Ag, and 238U collisions at E = 31.6 MeV A

    NASA Astrophysics Data System (ADS)

    Machner, H.; Nolte, M.; Palarczyk, M.; Kutsarova, T.

    2015-11-01

    Intermediate mass fragment emission for reactions of 32S + 51V, 109Ag, and 238U has been studied. Double differential cross sections were analysed in terms of the generalised moving source model yielding charge distributions. Isotope ratios show strong fragment mass dependencies. The data were successfully reproduced by the coalescence model as well as by statistical multifragmentation model calculations. Quantum molecular dynamics model calculations were not so successful.

  16. Cross-talk compensation of hyperfine control in donor-qubit architectures

    NASA Astrophysics Data System (ADS)

    Kandasamy, G.; Wellard, C. J.; Hollenberg, L. C. L.

    2006-09-01

    We theoretically investigate cross-talk in hyperfine gate control of donor-qubit quantum computer architectures, in particular the Kane proposal. By solving the Poisson and Schrödinger equations numerically for the gated donor system, we calculate the change in hyperfine coupling and thus the error in spin-rotation for the donor nuclear-electron spin system, as the gate-donor distance is varied. We thus determine the effect of cross-talk—the inadvertent effect on non-target neighbouring qubits—which occurs due to closeness of the control gates (20-30 nm). The use of compensation protocols is investigated, whereby the extent of cross-talk is limited by the application of compensation bias to a series of gates. In the light of these factors, architectural implications are then considered.

  17. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  18. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    NASA Astrophysics Data System (ADS)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  19. Hyperfine structure of S-states of muonic tritium

    NASA Astrophysics Data System (ADS)

    Martynenko, F. A.; Faustov, R. N.; Martynenko, A. P.

    2016-12-01

    On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  20. Structures, hyperfine parameters, and inversion barriers of cyclopropyl and oxiranyl radicals

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Adamo, Carlo; Brunel, Yvon; Subra, Robert

    1996-08-01

    A comparative post-Hartree-Fock study has been performed on cyclopropyl and oxiranyl radicals in order to ascertain the role of the oxygen atom in modifying the hyperfine structure and height of the barrier governing inversion at the radical center. The structural parameters and harmonic force fields obtained for the parent molecules using second-order many-body perturbation theory with a large basis set are in good agreement with experiment. The same approach points out significant distortions upon breaking of a CH bond and a larger pyramidality for the radical center in oxiranyl with respect to cyclopropyl. Also inversion barriers of both radicals are in remarkable agreement with experimental estimates. Isotropic hyperfine parameters in good agreement with those obtained from electron spin resonance spectra can be computed only when using purposely tailored basis sets in the framework of a coupled cluster approach and taking into account vibrational averaging effects induced by the inversion motion. Interpretation of the results in terms of direct and spin polarization effects points out a number of general trends for germinal and vicinal atoms. Furthermore, it is well evidenced that replacement of a methylenic group by an oxygen atom modifies the hyperfine parameters through geometric rather than direct electronic effects.

  1. Isotope shifts and hyperfine structure of the Fe I 372-nm resonance line

    SciTech Connect

    Krins, S.; Huet, N.; Bastin, T.; Oppel, S.; Zanthier, J. von

    2009-12-15

    We report measurements of the isotope shifts of the 3d{sup 6}4s{sup 2} a {sup 5}D{sub 4}-3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o} Fe I resonance line at 372 nm between all four stable isotopes {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, and {sup 58}Fe, as well as the complete hyperfine structure of that line for {sup 57}Fe, the only stable isotope having a nonzero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant A of the excited state of the transition in {sup 57}Fe: A(3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o})=81.69(86) MHz. The measurements were carried out by means of high-resolution Doppler-free laser saturated absorption spectroscopy in a Fe-Ar hollow cathode discharge cell using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.

  2. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  3. Proton-structure corrections to hyperfine splitting in muonic hydrogen

    SciTech Connect

    Carlson, Carl E.; Nazaryan, Vahagn; Griffioen, Keith

    2011-04-15

    We present the derivation of the formulas for the proton structure-dependent terms in the hyperfine splitting of muonic hydrogen. We use compatible conventions throughout the calculations to derive a consistent set of formulas that reconcile differences between our results and some specific terms in earlier work. Convention conversion corrections are explicitly presented, which reduce the calculated hyperfine splitting by about 46 ppm. We also note that using only modern fits to the proton elastic form factors gives a smaller than historical spread of Zemach radii and leads to a reduced uncertainty in the hyperfine splitting. Additionally, hyperfine splittings have an impact on the muonic hydrogen Lamb shift and proton radius measurement, however the correction we advocate has a small effect there.

  4. Polarization operator contributions to the Lamb shift and hyperfine splitting

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2003-10-01

    We calculate radiative corrections to the Lamb shift of order {alpha}{sup 3}(Z{alpha}){sup 5}m and radiative corrections to hyperfine splitting of order {alpha}{sup 3}(Z{alpha})E{sub F} generated by the diagrams with insertions of radiative photons and electron polarization loops in the graphs with two external photons. We also obtain the radiative-recoil correction to hyperfine splitting in muonium generated by the diagrams with the {tau} polarization loop.

  5. Theory of hyperfine anomalies in muonic atoms

    SciTech Connect

    Freeman, A.J.; Mallow, J.V.; Desclaux, J.P.; Weinert, M.

    1983-01-01

    Negative muon spin precession experiments by Yamazaki, et al. have found giant hyperfine anomalies in muonic atoms ranging from a few percent up to 36%. In order to understand their results, we present Breit interaction calculations based on atomic self-consistent unrestricted Dirac-Fock solutions which explicitly include all electrons and the negative muon. The Breit interaction results (including the relativistic correction for the bound muon g-factor), vary from near zero for ..mu../sup -/ O/N to -5% for ..mu../sup -/Pd/Rh; this latter is much larger than the calculated muonic or nuclear Bohr-Weisskopf anomalies and much smaller than the 36% measured value. For ..mu../sup -/Ni/Co we find a calculated range of results (depending on assumed electronic configurations) of -2.3 to -2.7% in excellent agreement with recent measurements of the Yamazaki group. This excellent agreement in ..mu../sup -/Ni/Co provides strong support for the earlier suggestions that the discrepancy in the case of ..mu../sup -/Pd/Rh is due to experimental factors.

  6. Hyperfine Resolved Pure Rotational Spectroscopy of ScN, yn, and BaNH (X1σ+): Insight Into Metal-Nitrogen Bonding

    NASA Astrophysics Data System (ADS)

    Zack, Lindsay N.; Bucchino, Matthew; Young, Justin; Binns, Marshall; Sheridan, Phillip M.; Ziurys, Lucy M.

    2015-06-01

    Fourier transform microwave spectroscopy coupled with a discharge-assisted laser ablation source (DALAS) has been used to record the J = 1 → 0 pure rotational transitions of Sc14N, Sc15N, Y14N, Y15N, and Ba14NH (X1σ+). Each species was synthesized by the reaction of the ablated metal with either NH3 or 15NH3 in the presence of a DC discharge. For each species hyperfine structure was resolved. In the case of ScN and YN hyperfine parameters (quadrupole and nuclear spin-rotation) for the metal and nitrogen were determined and for BaNH the nitrogen quadrupole coupling constant was measured. These hyperfine constants are interpreted to gain insight into the metal-nitrogen bonding in each species. In addition, DFT calculations were performed to assist with the assignment of each spectrum and the characterization of the metal-nitrogen bond.

  7. Mixing of {0}^{+} and {0}^{-} observed in the hyperfine and Zeeman structure of ultracold {{Rb}}_{2} molecules

    NASA Astrophysics Data System (ADS)

    Deiß, Markus; Drews, Björn; Hecker Denschlag, Johannes; Tiemann, Eberhard

    2015-08-01

    We study the combination of the hyperfine and Zeeman structure in the spin-orbit coupled {A}1{Σ }u+-{b}3{\\Pi }u complex of {}87{{Rb}}2. For this purpose, absorption spectroscopy at a magnetic field around B=1000 G is carried out. We drive optical dipole transitions from the lowest rotational state of an ultracold Feshbach molecule to various vibrational levels with {0}+ symmetry of the A-b complex. In contrast to previous measurements with rotationally excited alkali-dimers, we do not observe equal spacings of the hyperfine levels. In addition, the spectra vary substantially for different vibrational quantum numbers, and exhibit large splittings of up to 160 MHz, unexpected for {0}+ states. The level structure is explained to be a result of the repulsion between the states {0}+ and {0}- of {b}3{\\Pi }u, coupled via hyperfine and Zeeman interactions. In general, {0}- and {0}+ have a spin-orbit induced energy spacing Δ, that is different for the individual vibrational states. From each measured spectrum we are able to extract Δ, which otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of Δ in the range of +/- 100 GHz which can be described by coupled channel calculations if a spin-orbit coupling is introduced that is different for {0}- and {0}+ of {b}3{\\Pi }u.

  8. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    SciTech Connect

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  9. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    PubMed

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  10. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons

    NASA Astrophysics Data System (ADS)

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-08-01

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  11. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  12. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  13. Determining the Berezinskii-Kosterlitz-Thouless coherence length in BaNi2V2O8 by 51V NMR

    NASA Astrophysics Data System (ADS)

    Waibel, D.; Fischer, G.; Wolf, Th.; Löhneysen, H. v.; Pilawa, B.

    2015-06-01

    The magnetic properties of BaNi2V2O8 are studied by electron paramagnetic resonance (EPR) and 51V nuclear magnetic resonance (NMR). The divergence of the T511 rate on approaching TN in the paramagnetic phase displays the exponential correlation length expected for the Berezinskii-Kosterlitz-Thouless transition. The critical power-law behavior can be restored by applying a strong magnetic field perpendicular to the hexagonal axis, destroying the X Y anisotropy. The comparison of the EPR and NMR measurements at several magnetic fields yields a consistent description in terms of the Berezinskii-Kosterlitz-Thouless scenario in the temperature range above the antiferromagnetic phase transition of BaNi2V2O8 .

  14. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-12-15

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb{sup +}, Hg{sup +}, and Fr.

  15. All-orders Binding Corrections to Muonium Hyperfine Splitting

    NASA Astrophysics Data System (ADS)

    Sapirstein, Jonathan

    1997-04-01

    The use of exact Dirac-Coulomb propagators allows the evaluation of binding corrections to the Schwinger correction in ground state muonium hyperfine splitting to all orders (S.A. Blundell, K.T. Cheng, and J. Sapirstein, to appear in March issue of Physical Review A). The calculational method is described and used to verify recent perturbative calculations of higher order binding corrections and to estimate the residual terms of even higher order. Implications for the theory of muonium hyperfine splitting will be discussed.

  16. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  17. Magnetic blackbody shift of hyperfine transitions for atomic clocks

    SciTech Connect

    Berengut, J. C.; Flambaum, V. V.; King-Lacroix, J.

    2009-12-15

    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T{sup 2} dependence only in the high-temperature limit. We also calculate the shift of ground-state p{sub 1/2} hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p{sub 3/2} fine-structure multiplet may be the dominant effect.

  18. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions

    NASA Astrophysics Data System (ADS)

    Carr, A. W.; Saffman, M.

    2016-10-01

    We analyze doubly magic trapping of Cs hyperfine transitions including previously neglected contributions from the ground state hyperpolarizability and the interaction of the laser light and a static magnetic field. Extensive numerical searches do not reveal any doubly magic trapping conditions for any pair of hyperfine states. However, including the hyperpolarizability reveals light intensity insensitive traps for a wide range of wavelengths at specific intensities. We then investigate the use of bichromatic trapping light fields. Deploying a bichromatic scheme, we demonstrate doubly magic red and blue detuned traps for pairs of states separated by one or two single photon transitions.

  19. On the hyperfine structures in the m-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, A. A.; Fayek, M. K.

    1980-04-01

    Mössbauer measurements have been made on polycrystalline barium and strontium hexaferrite samples. The subspectra corresponding to the iron ion in the bypyramid lattice site in the temperature range 4.2 to 293 K with and without externally applied magnetic field up to 25 kG have been considered particularly. The quadrupole shift is vanishing, and the five magnetic hyperfine fields related to the magnetic sites are equal at low temperature. Values of the hyperfine fields for the pentahedral site are discussed.

  20. Hyperfine Coherence in the Presence of Spontaneous Photon Scattering

    NASA Astrophysics Data System (ADS)

    Ozeri, R.; Langer, C.; Jost, J. D.; Demarco, B.; Ben-Kish, A.; Blakestad, B. R.; Britton, J.; Chiaverini, J.; Itano, W. M.; Hume, D. B.; Leibfried, D.; Rosenband, T.; Schmidt, P. O.; Wineland, D. J.

    2005-07-01

    The coherence of a hyperfine-state superposition of a trapped 9Be+ ion in the presence of off-resonant light is studied experimentally. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. We observe coherence times that exceed the average scattering time of 19 photons which is determined from measured Stark shifts. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.

  1. Hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2).

    PubMed

    Liu, Yaoming; Li, Li; Lazarov, Guenadiy; Lazoudis, Angelos; Lyyra, A Marjatta; Field, Robert W

    2004-09-22

    The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.

  2. 7P1/2 hyperfine splitting in 206 , 207 , 209 , 213Fr and the hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.

    2013-05-01

    We perform precision measurements on francium, the heaviest alkali with no stable isotopes, at the recently commissioned Francium Trapping Facility at TRIUMF. A combination of RF and optical spectroscopy allows better than 10 ppm (statistical) measurements of the 7P1 / 2 state hyperfine splitting for the isotopes 206 , 207 , 209 , 213Fr, in preparation for weak interaction studies. Together with previous measurements of the ground state hyperfine structure, it is possible to extract the hyperfine anomaly. This is a correction to the point interaction of the nuclear magnetic moment and the electron wavefunction, known as the Bohr Weisskopf effect. Our measurements extend previous measurements to the neutron closed shell isotope (213) as well as further in the neutron deficient isotopes (206, 207). Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  3. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  4. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  5. Metal ion oxidation state assignment based on coordinating ligand hyperfine interaction.

    PubMed

    Oyala, Paul H; Stich, Troy A; Britt, R David

    2015-04-01

    In exchange-coupled mixed-valence spin systems, the magnitude and sign of the effective ligand hyperfine interaction (HFI) can be useful in determining the formal oxidation state of the coordinating metal ion, as well as provide information about the coordination geometry. This is due to the fact that the observed ligand HFI is a function of the projection factor (Clebsch-Gordon coefficient) that maps the site spin value S i of the local paramagnetic center onto the total spin of the exchange-coupled system, S T. Recently, this relationship has been successfully exploited in identifying the oxidation state of the Mn ion coordinated by the sole nitrogenous ligand to the oxygen-evolving complex in certain states of photosystem II. The origin and evolution of these efforts is described.

  6. On the Observability of Optically Thin Coronal Hyperfine Structure Lines

    NASA Astrophysics Data System (ADS)

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the 57Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ~20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  7. On the observability of optically thin coronal hyperfine structure lines

    SciTech Connect

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the {sup 57}Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ∼20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  8. Hyperfine Structure and Predissociation of the Odd TRIPLET-B-PI-PLUS(0) State of Bromine.

    NASA Astrophysics Data System (ADS)

    Booth, James Lawrence

    Investigations have been carried out in bromine of the hyperfine structure of the B ^3 prod_{0_sp{u}{+ }} and X ^1sum_sp {rm g}{+} electronic states and of the predissociation of the B ^3prod _{0_sp{rm u}{+} } state by the ^1prod _{rm 1u} dissociative level. The technique of laser induced fluoresence of a molecular beam was used. ^{79}rm Br^ {81}Br hyperfine spectra were recorded for various B-X vibrational bands (v^{ '}>=ts v^{'' }) with v^' = 11 through 17 and v^{' '} = 0, 1, and 2, and for various rotational transitions (rm J^' >=ts J^{''}) with J^' from 0 and 11 and J^{''} from 0 to 10. As well, the ^ {79}Br_2 and ^ {81}Br_2 hyperfine spectra of the (13^' - 0^{' '}) and (17^' - 2^{''}) bands over the same range of rotational states were measured. The spectra are well described using one X state parameter: the electric quadrupole coupling constant eqQ_ {rm X}; and two B state parameters: the electric quadrupole coupling constant eqQ_ {rm B} and the nuclear spin-rotation constant C_{rm sr}. The results show that eqQ_{rm B}( ^{79}rm Br) = (177.0+/- 0.6) MHz for v^{'} = 11 and increases by approximately 0.5 MHz per vibrational quantum up to (180.6 +/- 1.4) MHz for v^{'} = 17. Similarly the ground state electric quadrupole coupling constant, eqQ_{rm X}(^ {79}Br) = (808.1 +/- 1.4) MHz for v^{'' } = 0 and increases by about 1 MHz per vibrational quantum to (811.4 +/- 1.4) MHz for v^{''} = 2. The hyperfine data also provided a check on the accuracy of some of the published rovibronic constants ^1 for each isotopomer. In order to reproduce the observed relative spacings of the transitions for all three isotopomers, the published term values, T _{00}, have to be modified; this can be done by decreasing the published values of T_{00} for ^ {81}rm Br_2 and ^{79}Br^{81}Br by (177 +/- 8) MHz and (326 +/- 8) MHz, respectively. The phase shift technique was applied to the study of the predissociation of the v^' = 13 B ^3prod_{0 _sp{rm u}{+}} electronic state of bromine. The

  9. Electronic Structure and the Magnetic Hyperfine Interactions in Heme Unit of Metmyoglobin

    NASA Astrophysics Data System (ADS)

    Maharjan, N. B.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Pink, R. H.; Chow, Lee; Schulte, A.; Saha, H. P.; Das, T. P.

    2008-03-01

    The ^14N and ^57mFe hyperfine interactions in the heme unit of metmyoglobin are available experimentally by electron-nuclear double resonance (ENDOR) and Mossbauer spectroscopic techniques. We have carried out electronic structure investigations on the heme system including the H2O and proximal imidazole ligands by the first-principles Hartree-Fock procedure and studied the magnetic hyperfine and nuclear quadrupole coupling constants for the ^57mFe nucleus and all the six ^14N nuclei on the four pyrrole and imidazole ligands as well as the ^17O nucleus on the H2O ligand. Comparison will be made with available experimental data [1, 2] and earlier theoretical investigations [3] by the approximate self-consistent charge Extended Huckel procedure. Results will also be presented for the optical frequencies and intensities from transitions between ligand-like and iron d-like states and the Fe-Nɛ vibrational frequency [1] G. Lang, Q. Rev. Biophys. 3, 1 (1970) [2] C.P. Scholes, R.A. Isaacson and G Feher, Biochim. Biophys. Acta 263,448(1972) [3] S.K. Mun, Jane C. Chang and T.P. Das J. Am. Chem. Soc. 101, 5562(1979)

  10. A theoretical study of the fine and hyperfine interactions in the NCO and CNO radicals

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra

    2004-06-01

    The geometries, the harmonic vibrational frequencies, and the Renner-Teller parameter have been reported for the NCO+(X˜ 3Σ-), NCO(X˜ 2Π,Ã2Σ+,B˜ 2Π,2 2Σ+), NCO-(X˜ 1Σ+), CNO+(X˜), CNO(X˜ 2Π,Ã2Σ+,B˜ 2Π,2 2Σ+), and CNO-(X˜ 1Σ+) systems at the full valence-complete active space self-consistent-field (fv-CASSCF) level of theory. The 2Π electronic states of the NCO and CNO radicals have two distinct real vibrational frequencies for the bending modes and these states are subject to the type A Renner-Teller effect. The total energy of CNO+ without zero point energy correction of the linear geometry is ˜31 cm-1 higher than the bent geometry at the fv-CASSCF level and the inversion barrier vanishes after the zero point energy correction; therefore, the ground state of the CNO+ may possess a quasilinear geometry. The spin-orbit coupling constants estimated using atomic mean field Hamiltonian at the fv-CASSCF level of theory are in better agreement with the experimental values. The excitation energies, the electron affinity, and the ionization potential have been computed at the complete active space second order perturbation theory (CASPT2) and the multireference singles and doubles configuration (MRSD-CI) levels of theory. The computed values of the electric hyperfine coupling constants for the 14N atom in the ground state of the NCO radical agree well with the experimental data. The magnetic hyperfine coupling constants (HFCC's) have been estimated employing the configuration selected MRSD-CI and the multireference singles configuration interaction (MRS-CI) methods using iterative natural orbitals (ino) as one particle basis. Sufficiently accurate value of the isotropic contribution to the HFCC's can be obtained using an MRS-CI-ino procedure.

  11. Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn)

    SciTech Connect

    Gates, Jacklyn M.; Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Dullmann, Christoph E.; Ellison, Paul A.; Folden III, Charles M.; Garcia, Mitch A.; Stavsetra, Liv; Sudowe, Ralf; Hoffman, Darleane C.; Nitsche, Heino

    2008-09-29

    Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070+1100/-760 pb was measured at an excitation energy of 16.0 +- 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660+450/-370 pb was measured at 22.0 +- 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480+1750/-1370 pb at an excitation energy of 16.0 +- 1.6 MeV, in agreement with previous values [F. P. Hebberger, et al., Eur. Phys. J. A 12, 57 (2001)]. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier.

  12. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  13. Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction

    SciTech Connect

    Johnson, W.R.; Safronova, M.S.; Safronova, U.I.

    2003-06-01

    The nuclear spin-dependent parity-nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s{sub 1/2}-7s{sub 1/2} transition in {sup 133}Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to {sup 133}Cs leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s{sub 1/2}-8s{sub 1/2} transition in {sup 211}Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba{sup +}, Au, Tl, Fr, and Ra{sup +}.

  14. Microwave spectra of O2-HF and O2-DF: Hyperfine interactions and global fitting with infrared data

    NASA Astrophysics Data System (ADS)

    Wu, Shenghai; Sedo, Galen; Grumstrup, Erik M.; Leopold, Kenneth R.

    2007-11-01

    Spectra of the open shell complexes O2-HF and O2-DF were recorded using Fourier transform microwave spectroscopy. A complete analysis of the hyperfine structure and a global fit including microwave and infrared frequencies [W. M. Fawzy, C. M. Lovejoy, D. J. Nesbitt, and J. T. Hougen, J. Chem. Phys. 117, 693 (2002)] are reported. The Fermi contact interaction between the electron and nuclear spins, the electron spin-nuclear spin dipolar interaction, the nuclear spin-nuclear spin dipolar interaction, and the nuclear electric quadrupole interaction (for O2-DF) were considered in the analysis. The correspondence between the magnetic hyperfine constants and the two nuclei of the H(D)F is unambiguously established. In both O2-HF and O2-DF, the Fermi contact parameter is larger for the fluorine than for the hydrogen, while for the nuclear spin-electron spin dipolar hyperfine constants, the reverse is true. The effective angle between the HF bond and the a axis of the complex, determined from the nuclear spin-nuclear spin interaction constant, is 38(4)°. The same angle for the DF complex, derived from the deuterium nuclear quadrupole coupling constant, is 31(4)°.

  15. Hadronic light-by-light scattering in muonium hyperfine splitting

    SciTech Connect

    Karshenboim, S. G.; Shelyuto, V. A.; Vainshtein, A. I.

    2008-09-15

    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval {delta}{nu}(Mu){sub HLBL} is calculated with the light-by-light scattering approximated by the exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, {delta}{nu}(Mu){sub HLBL}=-0.0065(10) Hz. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.

  16. Hyperfine-field spectrum of epitaxially grown bcc cobalt

    NASA Astrophysics Data System (ADS)

    Riedi, P. C.; Dumelow, T.; Rubinstein, M.; Prinz, G. A.; Qadri, S. B.

    1987-09-01

    The hyperfine-field spectrum of the bcc phase of a 357-romanÅ-thick metallic cobalt film, epitaxially grown on a GaAs substrate, has been determined by spin-echo nuclear magnetic resonance. The peak of the distribution of hyperfine fields in bcc Co occurs at 167 MHz, much lower than the value found for fcc Co (217 MHz), suggesting that the moment in the bcc phase is lower than that of the fcc phase, in agreement with the measurements of Prinz, but in disagreement with recent theoretical calculations (assuming that no significant structural differences exist between theory and experiment). The full width of the distribution is 75 MHz, seven times greater than that found in thin fcc Co films. X-ray rocking-curve measurements yield a linewidth of 118 arc seconds, implying too low a dislocation density to explain the observed NMR line broadening.

  17. Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    SciTech Connect

    X.-H. Guo; P.C. Tandy; A.W. Thomas

    2006-03-01

    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.

  18. Hadronic deuteron polarizability contribution the hyperfine structure in muonic deuterium

    NASA Astrophysics Data System (ADS)

    Eskin, A. V.; Martynenko, A. P.; Elekina, E. N.

    2016-12-01

    The calculation of the contribution to the polarizability of the nucleus to hyperfine structure of muonic hydrogen is carried out within the unitary isobar model and on the basis of experimental data on the structure functions of deep inelastic lepton-proton and lepton-deuteron scattering. The calculation of virtual absorption cross sections of transversely and longitudinally polarized photons by nucleons in the resonance region is performed in the framework of the program MAID.

  19. Weak-interaction contributions to hyperfine splitting and Lamb shift

    SciTech Connect

    Eides, M.I.

    1996-05-01

    Weak-interaction contributions to hyperfine splitting and the Lamb shift in hydrogen and muonium are discussed. The problem of sign of the weak-interaction contribution to HFS is clarified, and simple physical arguments that make this sign evident are presented. It is shown that weak-interaction contributions to HFS in hydrogen and muonium have opposite signs. A weak-interaction contribution to the Lamb shift is obtained. {copyright} {ital 1996 The American Physical Society.}

  20. Quadrupole Hyperfine Structure in the Rotational Spectra of 1,2- and 1,3-Dichlorobenzene

    NASA Astrophysics Data System (ADS)

    Keussen, Ch.; Dreizler, H.; Merke, I.

    1990-12-01

    The high resolution of microwave Fourier transform spectroscopy was used to investigate the 35chlorine hyperfine structure of 1,2- and 1,3-dichlorobenzene, C6H435Cl2 , very accurately in the rotational spectrum of their ground vibrational state. The careful analysis with a new evaluation program also yielded the off-diagonal element of the coupling tensor. The tensor elements are χaa= -41.1153(35) MHz,χbb = 8.3415(96) MHz, χcc = 32.7738(61) MHz, and χab = ±52.41 (58) MHz for 1,2-dichlorobenzene and χaa= -44.174(12) MHz, χbb= 10.876(12) MHz, χcc = 33.298(12) MHz, and χab= ±48.181(39) MHz for 1,3-dichlorobenzene.

  1. A triple resonance hyperfine sublevel correlation experiment for assignment of electron-nuclear double resonance lines

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Epel, Boris; Goldfarb, Daniella

    2008-02-01

    A new, triple resonance, pulse electron paramagnetic resonance (EPR) sequence is described. It provides spin links between forbidden electron spin transitions (ΔMS=±1, ΔMI≠0) and allowed nuclear spin transitions (ΔMI=±1), thus, facilitating the assignment of nuclear frequencies to their respective electron spin manifolds and paramagnetic centers. It also yields the relative signs of the hyperfine couplings of the different nuclei. The technique is based on the combination of electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected NMR experiments in a way similar to the TRIPLE experiment. The feasibility and the information content of the method are demonstrated first on a single crystal of Cu-doped L-histidine and then on a frozen solution of a Cu-histidine complex.

  2. First Optical Hyperfine Structure Measurement in an Atomic Anion

    SciTech Connect

    Fischer, A.; Canali, C.; Warring, U.; Kellerbauer, A.; Fritzsche, S.

    2010-02-19

    We have investigated the hyperfine structure of the transition between the 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2}{sup e} ground state and the 5d{sup 6}6s{sup 2}6p {sup 6}D{sub J}{sup o} excited state in the negative osmium ion by high-resolution collinear laser spectroscopy. This transition is unique because it is the only known electric-dipole transition in atomic anions and might be amenable to laser cooling. From the observed hyperfine structure in {sup 187}Os{sup -} and {sup 189}Os{sup -} the yet unknown total angular momentum of the bound excited state was found to be J=9/2. The hyperfine structure constants of the {sup 4}F{sub 9/2}{sup e} ground state and the {sup 6}D{sub 9/2}{sup o} excited state were determined experimentally and compared to multiconfiguration Dirac-Fock calculations. Using the knowledge of the ground and excited state angular momenta, the full energy level diagram of {sup 192}Os{sup -} in an external magnetic field was calculated, revealing possible laser cooling transitions.

  3. Mapping the magnetic hyperfine field in GdCo5

    NASA Astrophysics Data System (ADS)

    Krylov, V. I.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Delyagin, N. N.; Carbonari, A. W.

    2016-05-01

    The magnetic hyperfine field (Bhf) in ferrimagnetic GdCo5 compound has been investigated as a function of temperature by Mössbauer effect (ME) spectroscopy and perturbed angular correlation (PAC) spectroscopy using 119Sn and 111Cd probe nuclei, respectively. Results show that the non-magnetic probe atoms 119Sn and 111Cd substitute all three non-equivalent positions in GdCo5: Gd, CoI, and CoII. For 119Sn and 111Cd probes at Gd sites, the saturation magnetic hyperfine fields are very different with values of Bhf1 = 57.0(1) T and Bhf1= 20.7(1) T, respectively. For 119Sn and 111Cd atoms localized at CoI and CoII sites the magnetic hyperfine fields are practically identical and, in saturation, reach the values of Bhf2 = 11.6(1) T and Bhf2 = 11.1(2) T, and Bhf3 = 14.8(1) T and Bhf3 = 14.4(2) T, respectively.

  4. The hyperfine properties of iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Elzain, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya; Al-Barwani, M.

    2016-12-01

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (Bhf) and isomer shift ( δ) at the Fe site versus the number of neighbouring Ga atoms. We found that Bhf decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO3 structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO3 structure). We found that the DO3 structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO3 conventional unit cell have two distinct values for Bhf and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO3D site.

  5. Observation and analysis of the hyperfine structure of near-dissociation levels of the NaCs c +3Σ state below the dissociation limit 3 S1 /2+6 P3 /2

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wu, Jizhou; Ma, Jie; Li, Peng; Sovkov, Vladimir B.; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We report photoassociation (PA) of ultracold Na and Cs atoms in a dual-species magneto-optical trap. Trap loss spectroscopy of the ultracold polar NaCs molecules formed by PA, which carries information about relative PA transition strengths, has been experimentally obtained by using highly sensitive modulation spectroscopy technique. The fine and hyperfine effects at near-dissociation levels of NaCs molecular c +3Σ state are observed and modeled. The interaction Hamiltonian is described in terms of the Hund's case (a ) coupling scheme. The molecular hyperfine structure of near-dissociation levels is simulated within a simplified model of four interacting vibrational levels belonging to different initially unperturbed electronic states. The results of the simulation infer that the interaction parameters of the observed near-dissociation levels are close to the asymptotic parameters of the pair of atoms. The coupling of the electronic states is essential for forming the hyperfine structure.

  6. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen H2

    NASA Astrophysics Data System (ADS)

    Osterwalder, A.; Wüest, A.; Merkt, F.; Jungen, Ch.

    2004-12-01

    used to analyze the observed hyperfine structure of the p and f Rydberg states of H2. The frame transformation between the Born-Oppenheimer channels described by the angular momentum coupling scheme (aβJ) and the asymptotic channels described by the (e[bβS+]) coupling scheme was derived and enables an elegant treatment of all intermediate coupling cases. Purely ab initio quantum defect theory reproduced the experimentally determined positions to within 40 MHz for the p levels and 13 MHz for the f levels. By slight adjustments of the quantum defect functions and their energy dependences and by consideration of the p-f interaction, of the singlet-triplet splittings of the f levels, and of the departure of the ionic levels from pure coupling case (bβS+), the agreement between theory and experiment could be improved to 600 kHz. By comparing the results of MQDT calculations of the hyperfine structure of f Rydberg levels with those of coupled equations calculations, the frame transformation approximation of MQDT was shown to be accurate to within 300 kHz. The extrapolated ionic hyperfine structure of the X 2Σg+(v+=0,N+=1) ionic level corresponds to the ab initio prediciton of Babb and Dalgarno [Phys. Rev. A 46, R5317 (1992)] within the experimental error.

  7. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when

  8. The hyperfine structure in the rotational spectra of D2(17)O and HD(17)O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; Harding, Michael E; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing (17)O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined (17)O spin-rotation constants of D2 (17)O and HD(17)O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H2 (17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  9. A search for the tritium hyperfine line from nearby stars

    NASA Astrophysics Data System (ADS)

    Valdes, F.; Freitas, R. A., Jr.

    1986-01-01

    A search for the tritium hyperfine line at 1516 MHz from 108 assorted astronomical objects, with emphasis on 53 nearby stars, was conducted in June 1983. All stars within 20 light-years visible from the 26-m telescope at Hat Creek Radio Observatory were examined using 256 4883-Hz channels. Twelve stars were also examined using 1024 76-Hz channels. The wideband- and narrow-band-channel observations achieved sensitivities of 5 - 14×10-24W/m2/channel and 0.7 - 2×10-24W/m2/channel, respectively. No detections were made. The tritium frequency is highly attractive for SETI work.

  10. Determination of hyperfine fields orientation in nuclear probe techniques

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Olszewski, W.; Satuła, D.; Gawryluk, D. J.; Krzton-Maziopa, A.; Kalska-Szostko, B.

    2017-02-01

    One of the most popular nuclear probes, 57Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  11. Effect of hyperfine splitting on light-induced drift

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    1986-09-01

    The influence of the hyperfine structure (hfs) of the levels upon the light-induced drift (LID) effect is investigated. It is shown that hfs considerably affects the dependence of the LID velocity upon the radiation frequency. It is concluded that for decreasing separation between the hfs components the LID effect can both increase and decrease depending upon the relationship of the system parameters (collision frequencies in different levels, the pressure of a buffer gas, etc.). A considerable decrease of the effect however is highly unlikely. It is shown that a change in the buffer gas pressure can lead to reversal of the LID velocity direction.

  12. Determination of hyperfine fields orientation in nuclear probe techniques.

    PubMed

    Szymański, K; Olszewski, W; Satuła, D; Gawryluk, D J; Krzton-Maziopa, A; Kalska-Szostko, B

    2017-02-15

    One of the most popular nuclear probes, (57)Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  13. Magnetic fluctuations and possible formation of a spin-singlet cluster under pressure in the heavy-fermion spinel LiV2O4 probed by 7Li and 51V NMR

    NASA Astrophysics Data System (ADS)

    Takeda, Hikaru; Kato, Yusuke; Yoshimura, Masahiro; Shimizu, Yasuhiro; Itoh, Masayuki; Niitaka, Seiji; Takagi, Hidenori

    2015-07-01

    7Li and 51V NMR measurements up to 9.8 GPa have been made to elucidate local magnetic properties of a heavy-fermion spinel oxide LiV2O4 which undergoes a metal-insulator transition above ˜7 GPa. The temperature T and pressure P dependences of the 7Li and 51V Knight shifts and the nuclear spin-lattice relaxation rates 1 /T1 show that in the metallic phase, there is a crossover from a high-T region with weak ferromagnetic fluctuations to a low-T one with antiferromagnetic (AFM) fluctuations. The AFM fluctuations are enhanced below 20 K and 1.5 GPa, where a heavy Fermi-liquid state with the modified Korringa relation is formed. The evolution of the magnetic fluctuations is discussed from the aspect of the competition among several magnetic interactions. Above PMI˜6.7 GPa, we find the coexistence of metallic and insulating phases due to the first-order metal-insulator transition. The 7Li and 51V NMR spectra coming from the insulating phase have T -independent small Knight shifts and 7(1 /T1 ) with the thermally activated T dependence, indicating the formation of a spin-singlet cluster. We propose a model of a spin-singlet tetramer as discussed in geometrically frustrated materials.

  14. Self-interaction correction and contact hyperfine field

    NASA Astrophysics Data System (ADS)

    Novák, P.; Kuneš, J.; Pickett, W. E.; Ku, Wei; Wagner, F. R.

    2003-04-01

    The hyperfine field is a precise and essential probe of the magnetic state of a solid, and of the quality of theoretical core wave functions, but it’s accurate evaluation has proven challenging from first principles. In this work, the self-interaction free potential, suggested recently by Lundin and Eriksson, is applied to the core states in the calculation of the hyperfine field for 3d transition metal ferromagnets Fe, Co, and Ni, and for three Fe compounds. Compared to the local spin density approximation and to its conventional self-interaction corrected form, the new potential functional is found to increase substantially the core contribution to the Fermi contact term, leading to good agreement with measurements for Fe and Co, and significantly better results for iron compounds. Our results strongly suggest that the new functional is more suitable for generating realistic core wave functions to high accuracy for a wide range of materials. The subtle effects resulting from the change of potential functional are also addressed.

  15. Analytical calculation of radiative-recoil corrections to muonium hyperfine splitting: Muon-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    Analytic expression for radiative-recoil corrections to muonium ground-state hyperfine splitting induced by muon-line radiative insertions is obtained. This result completes the program of analytic calculation of all radiative-recoil corrections. The perspectives of further muonium hyperfine splitting investigations are also discussed.

  16. Muon loop light-by-light contribution to hyperfine splitting in muonium.

    PubMed

    Eides, Michael I; Shelyuto, Valery A

    2014-05-02

    Three-loop corrections to hyperfine splitting in muonium, generated by the gauge-invariant sets of diagrams with muon and tauon loop light-by-light scattering blocks, are calculated. These results complete calculations of all light-by-light scattering contributions to hyperfine splitting in muonium.

  17. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  18. Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium: Diagrams with Polarization Loops

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-25

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with electron and muon vacuum polarizations. We calculate single-logarithmic and nonlogarithmic contributions of order alpha{sup 3}(m/M)E{sub F} generated by gauge invariant sets of diagrams with electron and muon polarization insertions in the electron and muon factors. Combining these corrections with the older results, we obtain total contribution to hyperfine splitting generated by all diagrams with electron and muon polarization loops. The calculation of this contribution completes an important stage in the implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below 10 Hz. The new results improve the theory of hyperfine splitting and affect the value of the electron-muon mass ratio extracted from experimental data on muonium hyperfine splitting.

  19. Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan

    2004-01-01

    Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.

  20. Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Liu, T.; Penin, A. A.; Rayyan, A.

    2017-02-01

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na¨ıve" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M Y(1 S) - M ηb (1 S) = 52.9 ± 5.5 MeV [1].

  1. Isotope shift and hyperfine structure measurements in titanium I

    NASA Astrophysics Data System (ADS)

    Luc, P.; Vetter, R.; Bauche-Arnoult, C.; Bauche, J.

    1994-09-01

    High accuracy measurements of hyperfine structure due to47Ti and49Ti in the 3 d 2 4 s 2 a 3 F 2-3 d 2 4 s4 p z 5 D 1 absorption line at σ=18482.772 cm-1 have been performed by use of a Doppler-free experiment, where a beam of titanium atoms is crossed by a CW single mode tunable dye laser. They have allowed for the determination of isotope shifts between46Ti,47Ti,48Ti,49Ti and50Ti. By use of accurate values of mean square nuclear charge radii for the even isotopes, it has been possible to separate mass shifts from field shifts and to determine accurate values for the mean square nuclear charge radii of47Ti and49Ti. The field shift presents a marked odd-even staggering.

  2. Nagaoka’s atomic model and hyperfine interactions

    PubMed Central

    INAMURA, Takashi T.

    2016-01-01

    The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182

  3. Systematics of Mössbauer hyperfine parameters in Np intermetallics

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Gal, J.; Asch, L.; Potzel, W.

    1992-05-01

    Data for intermetallic compounds of neptunium obtained with the 60 keV Mössbauer resonance of237Np are reviewed. Measurements of temperature, pressure and field dependencies are available. The main questions addressed are: (a) the degree of delocalization of 5f-electrons, (b) the formal charge state of Np, and (c) the influence of the ligand on the neptunium electronic structure. For this purpose, we present an evaluation of systematic behavior concerning mainly the hyperfine field and isomer shift in the cubic Laves phase materials NpX2, the NaCl-type monochalcogenides and monopnictides, and intermetallics with AuCu3 and ThCr2Si2 structures. Analogies to corresponding rare-earth compounds will be pointed out.

  4. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d01 =-133.37 MHz and a5p01 =-160.25 MHz for 4d45p; a4d01 =-140.84 MHz, a5p01 =-170.18 MHz and a5s10 =-2898 MHz for 4d35s5p; a5s10 =-2529 (2) MHz and a4d01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  5. HCN hyperfine ratio analysis of massive molecular clumps

    NASA Astrophysics Data System (ADS)

    Schap, W. J.; Barnes, P. J.; Ordoñez, A.; Ginsburg, A.; Yonekura, Y.; Fukui, Y.

    2017-03-01

    We report a new analysis protocol for HCN hyperfine data, based on the PYSPECKIT package, and results of using this new protocol to analyse a sample area of seven massive molecular clumps from the Census of High- and Medium-mass Protostars (CHaMP) survey, in order to derive maps of column density for this species. There is a strong correlation between the HCN integrated intensity, IHCN, and previously reported I_HCO+ in the clumps, but I_N_{2H+} is not well correlated with either of these other two 'dense gas tracers'. The four fitted parameters from PYSPECKIT in this region fall in the range of VLSR = 8-10 km s-1, σV = 1.2-2.2 km s-1, Tex = 4-15 K, and τ = 0.2-2.5. These parameters allow us to derive a column density map of these clouds, without limiting assumptions about the excitation or opacity. A more traditional (linear) method of converting IHCN to total mass column gives much lower clump masses than our results based on the hyperfine analysis. This is primarily due to areas in the sample region of low I, low Tex, and high τ. We conclude that there may be more dense gas in these massive clumps not engaged in massive star formation than previously recognized. If this result holds for other clouds in the CHaMP sample, it would have dramatic consequences for the calibration of the Kennicutt-Schmidt star formation laws, including a large increase in the gas depletion time-scale in such regions.

  6. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  7. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    SciTech Connect

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.

  8. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Xia, Xiaoxiang; Liu, Zhe; Yiwen, E.; Wang, Yujin; Tang, Chengchun; Li, Wuxia; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-11-01

    We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

  9. Hyperfine structure in the configuration 4 f 136 s7 s of Tm I

    NASA Astrophysics Data System (ADS)

    Kronfeldt, H.-D.; Kröger, S.

    1995-12-01

    Doppler-free saturation absorption spectroscopy was applied on an atomic thulium vapour in a see-through hollow cathode for the determination of precise values for the magnetic dipole hyperfine structure constants A of 6 levels of the configuration 4 f 13 6 s7 s. A parametric analysis of the hyperfine structure has been performed, using wave-functions from a fine structure calculation, which leads to one-electron hyperfine structure parameters a {4/f 01}=-500(6) MHz, a {6/s 10}=-5058(47) MHz, and a {7/s 10}=-1012 MHz.

  10. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  11. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: rapid passage, free induction decay, and the ac Stark effect.

    PubMed

    Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  12. Schonland ambiguity in the electron nuclear double resonance analysis of hyperfine interactions: principles and practice.

    PubMed

    Vrielinck, H; De Cooman, H; Tarpan, M A; Sagstuen, E; Waroquier, M; Callens, F

    2008-12-01

    For the analysis of the angular dependence of electron paramagnetic resonance (EPR) spectra of low-symmetry centres with S=1/2 in three independent planes, it is well-established-but often overlooked-that an ambiguity may arise in the best-fit g<--> tensor result. We investigate here whether a corresponding ambiguity also arises when determining the hyperfine coupling (HFC) A<--> tensor for nuclei with I=1/2 from angular dependent electron nuclear double resonance (ENDOR) measurements. It is shown via a perturbation treatment that for each set of M(S) ENDOR branches two best-fit A<--> tensors can be derived, but in general only one unique solution simultaneously fits both. The ambiguity thus only arises when experimental data of only one M(S) multiplet are used in analysis or in certain limiting cases. It is important to realise that the ambiguity occurs in the ENDOR frequencies and therefore the other best-fit result for an ENDOR determined A<--> tensor depends on various details of the ENDOR experiment: the M(S) state of the fitted transitions, the microwave frequency (or static magnetic field) in the ENDOR measurements and the rotation planes in which data have been collected. The results are of particular importance in the identification of radicals based on comparison of theoretical predictions of HFCs with published literature data. A procedure for obtaining the other best-fit result for an ENDOR determined A<--> tensor is outlined.

  13. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions

    SciTech Connect

    Khetselius, O. Yu.

    2008-10-22

    The energies and constants of the hyperfine structure, derivatives of the one-electron characteristics on nuclear radius, nuclear electric quadrupole, magnetic dipole moments for some Li-like multicharged ions are calculated.

  14. Hyperfine contribution to spin-exchange frequency shifts in the hydrogen maser

    SciTech Connect

    Verhaar, B.J.; Koelman, J.M.V.A.; Stoof, H.T.C.; Luiten, O.J.; Crampton, S.B.

    1987-05-01

    We have rigorously included hyperfine interactions during electron-spin-exchange collisions between ground-state hydrogen atoms and find additional frequency shifts which are significant for low-temperature atomic hydrogen maser oscillators.

  15. Polarized 3He− ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, Vasiliy; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He− ion source. This report discusses a polarized 3He− ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He− ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He− ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He− beam polarization of 90% can be achieved. Such a method of polarized 3He− production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He− ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of 3He− ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He− ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge

  16. Magnetic Properties and Hyperfine Interactions in Iron Containing Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Unruh, Karl Marlin

    Amorphous samples of Fe(,x)B(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 90), Fe(,x)Ag(,100-x) (40 (LESSTHEQ) x (LESSTHEQ) 50), and Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93) have been prepared, and their magnetic properties and hyperfine interactions studied by ('57)Fe Mossbauer spectroscopy. Each system is representative of either Fe-metalloid (Fe-B), Fe-noble metal (Fe-Ag), or Fe-early transition metal (Fe -Zr) amorphous alloys. Therefore, by studying these three amorphous solids an overview is obtained, not only of the properties of the individual alloys, but also of the wider class of alloys of which they are representative. The amorphous Fe-B and Fe-Zr systems have been successfully fabricated over very wide ranges in composition, allowing the evolution of the magnetic properties and hyperfine interactions to be systematically studied. As a result it has been possible to determine the critical concentration for magnetic order (x(,c)). It has been shown that the loss of magnetic order below x(,c) is the result of the reduction and eventual disappearance of the Fe moment. The isomer shifts (IS) and quadrupole splittings (QS) have also been determined over wide composition ranges. This has led to the observation of a maximum in IS with decreasing Fe concentration in amorphous alloys of Fe and B. On the other hand, IS in the amorphous Fe-Zr alloys has been found to decrease monotonically over the same concentration range. In the paramagnetic region all the samples display quadrupole split doublets characteristic of site symmetries lower than cubic. It has been found that the observed asymmetry in the quadrupole spectra can be correlated with the relative changes in IS and QS as a function of composition. Amorphous alloys of Fe and Ag have been prepared for the first time and have been found to be stable at room temperature. The somewhat unusual magnetic properties of these alloys suggests that they may be simpler magnetically than previously studied magnetic

  17. Calculation of the hyperfine structure of the superheavy elements Z=119 and Z=120{sup +}

    SciTech Connect

    Dinh, T. H.; Dzuba, V. A.; Flambaum, V. V.

    2009-10-15

    The hyperfine-structure constants of the lowest s and p{sub 1/2} states of superheavy elements Z=119 and Z=120{sup +} are calculated using ab initio approach. Core polarization and dominating correlation effects are included to all orders. Breit and quantum electrodynamic effects are also considered. Similar calculations for Cs, Fr, Ba{sup +}, and Ra{sup +} are used to control the accuracy. The dependence of the hyperfine-structure constants on the nuclear radius is discussed.

  18. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    SciTech Connect

    Agzamova, P. A. Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-15

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions {sup 139}La and {sup 89}Y in LaTiO{sub 3} and YTiO{sub 3}, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  19. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    the indirect coupling is provided by the intra-atomic 4 f -5 d exchange and interatomic 5 d -5 d interaction between the spin-polarized 5 d electrons of neighboring R atoms. The ratio of the hyperfine fields of GdCd and GdCd2 scales with the number of nearest Gd neighbors. In the paramagnetic phases of the R Cd compounds, the PAC spectra indicate the presence of a broad distribution of weak quadrupole interactions suggesting a perturbation of the cubic CsCl symmetry of the Cd site, most probably due to chemical disorder of the R and Cd sublattices. A substantial interchange of R and Cd atoms is also reflected in the temperature dependence of the linewidth of the magnetic hyperfine interaction in the magnetically ordered phase of R Cd and GdCd2. Its critical increase towards the order temperature is evidence for a distribution of the order temperature with a width of about 10 K.

  20. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    SciTech Connect

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  1. Hyperfine anomalies of HCN in cold dark clouds

    SciTech Connect

    Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.

    1982-07-15

    We report observations of the J = 1..-->..0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1..-->..0 line are anomalous in that the F = 0..-->..1 transition is stronger than would be expected if all three components (F = 2..-->..1, F = 1..-->..1, F = 0..-->..1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1..-->..1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1..-->..0 transitions of HCO/sup +/ and HNC in the same objects where /sup 13/C substituted version of these species is found to be stronger than the /sup 12/C species.

  2. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  3. New Precise Measurement of the Hyperfine Splitting of Positronium

    SciTech Connect

    Ishida, A.

    2015-09-15

    Positronium (Ps) is an ideal system for precision test of bound state quantum electrodynamics. The hyperfine splitting (HFS) of the ground state of Ps, which is one of the most precisely tested quantity, has a large discrepancy of 16 ppm (4.5 σ) between previous experiments and theoretical calculation up to O(α{sup 3}lnα{sup −1}) and part of O(α{sup 3}) corrections. A new experiment which reduces possible systematic uncertainties of Ps thermalization effect and nonuniformity of magnetic field was performed. It revealed that the Ps thermalization effect was as large as 10 ± 2 ppm. Treating the thermalization effect correctly, a new result of 203.3942 ± 0.0016(stat., 8.0 ppm) ± 0.0013(sys., 6.4 ppm) GHz was obtained. This result is consistent with theory within 1.1 σ, whereas it disfavors the previous experimental result by 2.6 σ. It shows that the Ps thermalization effect is crucial for precision measurement of HFS. Future prospects for improved precision are briefly discussed.

  4. Detection of Anisotropic Hyperfine Components of Chemically Prepared Carotenoid Radical Cations:1D and 2D ESEEM and Pulsed ENDOR Study

    SciTech Connect

    Konovalova, Tatyana A.; Dikanov, Sergei A.; Bowman, Michael K.; Kispert, Lowell D.

    2001-09-06

    Canthaxanthin and 8'-apo-B-caroten-8'-al radical cations chemically prepared on activated silica-alumina and in CH2CI2 solution containing A1C13 were studied by pulsed EPR and ENDOR spectroscopies. Both the 1D three-pulse ESEEM and the 2D HYSCORE spectra of the carotenoid-A1C13 mixtures exhibited the 27 A1 nuclei peak at 3.75 MHz. This indicates electron-transfer interactions between carotenoids and A1III ions resulting in the formation and stabilization of carotenoid radical cations. Davies ENDOR measurements of the canthaxanthin radical cation on silica-alumina determined the hyperfine couplings of B protons belonging to three different methyl groups with ahI=2.6 MHz, aH2=8.6MHz, and ah3 ca. 13 MHz. The principal components of the proton hyperfine tensors were obtained from HYSCORE spectra in A1C13 solutions and on the solid support. Identification of the protons was made on the basis of isotropic hyperfine couplings determined by RHF-INDO/SP molecular orbital calculations. In frozen A1C13 solution, the C(7, 7')Ha and C(14, 14')-Ha a protons were observed for Canthaxanthin and the C(8 or 14')-Ha, C(15')-Ha were observed for 8'-apo-B-caroten-8'-al. On the silica-alumina support, the C(10, 10')-Ha, C(11, 11')-Ha, and C(15,15')-Ha a protons were measured for Canthaxanthin and the C(12)-Ha and C(15')-Ha were measured for 8' apo-B-caroten-8'-al. Some protons with large isotropic couplings (>10 MHz) determined from HYSCORE analysis could be assigned to B protons, but the principal components of their hyperfine tensors are much more anisotropic than those reported previously for B protons. We suggest that cis/trans isomerization of carotenoids on silica-alumina results in stabilization of di-cis isomers with large isotropic couplings for some a protons which are comparable to those of B protons.

  5. Sub-Doppler millimetre-wave spectroscopy of DBS and HBS: accurate values of nuclear electric and magnetic hyperfine structure constants.

    PubMed

    Bizzocchi, Luca; Esposti, Claudio Degli; Dore, Luca

    2008-02-07

    The unstable thioborine molecule and its deuterated variant have been produced by a high-temperature reaction between hydrogen sulfide and crystalline boron at 1100 degrees C in a flow system. Five rotational transitions from J = 2 <-- 1, to J = 6 <-- 5 have been recorded with sub-Doppler resolution for the vibrational ground state of H10/11BS and D10/11BS using the Lamb-dip technique. The hyperfine structure due to the electric quadrupole interaction of deuterium nucleus has been resolved yielding the first experimental determination of the deuterium quadrupole coupling constant in thioborine, which is 0.1403(75) MHz in D11 BS and 0.1360(38) MHz in D10BS. Fairly accurate values of 10/11B spin-rotation coupling constants and of the hydrogen-boron spin-spin coupling constants have also been determined. Additionally, the hyperfine structure of the rotational lines for the nu2 = 1 excited state has been investigated, thus obtaining information on the asymmetry of the electric field gradient at the B nucleus in the bending state.

  6. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  7. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    NASA Astrophysics Data System (ADS)

    Yang, Song; Bayat, Abolfazl; Bose, Sougato

    2010-08-01

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.

  8. Hyperfine suppression of 2 {sup 3}S{sub 1} - 3 {sup 3}P{sub J} transitions in {sup 3}He.

    SciTech Connect

    Sulai, A.; Wu, Q.; Bishof, M.; Drake, G. W. F.; Lu, Z.-T.; Mueller, P.; Santra, R.; Univ. of Chicago; Univ. of Winsdor

    2008-01-01

    Two anomalously weak transitions within the 2{sup 3}S{sub 1}-3{sup 3}P{sub J} manifolds in {sup 3}He have been identified. Their transition strengths are measured to be 1000 times weaker than that of the strongest transition in the same group. This dramatic suppression of transition strengths is due to the dominance of the hyperfine interaction over the fine-structure interaction. An alternative selection rule based on IS coupling (where the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative understanding of the transition strengths. It is shown that the small deviations from the IS coupling model are fully accounted for by an exact diagonalization of the strongly interacting states.

  9. Hidden sector hydrogen as dark matter: Small-scale structure formation predictions and the importance of hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.

    2016-12-01

    We study the atomic physics and the astrophysical implications of a model in which the dark matter is the analog of hydrogen in a secluded sector. The self-interactions between dark matter particles include both elastic scatterings as well as inelastic processes due to a hyperfine transition. The self-interaction cross sections are computed by numerically solving the coupled Schrödinger equations for this system. We show that these self-interactions exhibit the right velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of clusters of galaxies. For a viable solution, the dark hydrogen mass has to be in the 10-100 GeV range and the dark fine-structure constant has to be larger than 0.01. This range of model parameters requires the existence of a dark matter-antimatter asymmetry in the early universe to set the relic abundance of dark matter. For this range of parameters, we show that significant cooling losses may occur due to inelastic excitations to the hyperfine state and subsequent decays, with implications for the evolution of low-mass halos and the early growth of supermassive black holes. Cooling from excitations to higher n levels of dark hydrogen and subsequent decays is possible at the cluster scale, with a strong dependence on halo mass. Finally, we show that the minimum halo mass is in the range of 1 03.5 to 1 07M⊙ for the viable regions of parameter space, significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in cosmological structure formation is unique to this model, making it possible to rule in or rule out hidden sector hydrogen as a viable dark matter model.

  10. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  11. Hyperfine interaction and its effects on spin dynamics in organic solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.; Ding, Feizhi; Wang, Haobin

    2013-05-01

    Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.

  12. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    SciTech Connect

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D; Ronning, Filip; Thompson, J D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived. It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.

  13. Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2003-02-01

    The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwinger term, {alpha}/2{pi} E{sub F}, where E{sub F} is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and logarithms of Z{alpha}, can be expected to be increasingly important in atoms with higher nuclear charge Z. Methods that include all orders of Z{alpha}, developed first to study highly charged ions, are adapted to the study of the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali metals.0.

  14. 2s Hyperfine splitting in light hydrogen-like atoms: Theory and experiment

    SciTech Connect

    Karshenboim, S. G. Kolachevsky, N. N.; Ivanov, V. G.; Fischer, M.; Fendel, P.; Haensch, T. W.

    2006-03-15

    Since the combination D{sub 21} = 8f{sub HFS}(2s)-f{sub HFS}(1s) of hyperfine intervals in hydrogen and light two-body hydrogen-like atomic systems weakly depends on the nuclear structure, comparison between theory and experiment can be sensitive to high order QED corrections. New theoretical and experimental results are presented. Calculations have been performed for the hydrogen and deuterium atoms and for the helium-3 ion. Experiments on the 2s hyperfine splitting (responsible for the dominant contribution to the error in D{sub 21}) have been conducted for hydrogen and deuterium. The theory and experiment are in good agreement, and their accuracy is comparable to that attained in verifying the QED theory of the hyperfine splitting in leptonic atoms (muonium and positronium)

  15. Observation of molecular hyperfine structure in the extreme ultraviolet: The HF C-X spectrum.

    PubMed

    Philippson, Jeffrey N; Shiell, Ralph C; Reinhold, Elmar; Ubachs, Wim

    2008-11-07

    Clearly resolved hyperfine structure has been observed in the extreme ultraviolet (XUV) spectra of the C (1)Pi, v=0-X (1)Sigma(+), v=0 transition of H(19)F obtained through 1 XUV+1 UV resonance enhanced multiphoton ionization spectroscopy. The hyperfine splitting within the R-branch lines shows significant perturbations, which we attribute to mixing with the rotational levels of the nearby v=29 level of the B (1)Sigma(+) ion-pair state. A deperturbation analysis quantitatively explains the apparent variation of the fluorine magnetic hyperfine parameter a(F), for which a value of 4034(83) MHz was obtained by averaging over the values derived from the R(0)-R(4) lines, after correcting for the effects of the perturbations.

  16. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  17. Hyperfine field of einsteinium in iron and nuclear magnetic moment of {sup 254}Es

    SciTech Connect

    Severijns, N.; Kraev, I. S.; Phalet, T.; Tandecki, M.; Traykov, E.; Gorp, S. Van; Wauters, F.; Belyaev, A. A.; Lukhanin, A. A.; Noga, V. I.; Erzinkyan, A. L.; Parfenova, V. P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V. T.; Toporov, Yu. G.; Zotov, E.; Golovko, V. V.; Gurevich, G. M.

    2009-06-15

    The angular distributions of {gamma} rays and {alpha} particles from oriented {sup 250}Bk, {sup 253,254}Es, and {sup 255}Fm nuclei were investigated to extract hyperfine interaction information for these actinide impurities in an iron host lattice. The hyperfine field of einsteinium in iron was found to be |B{sub hf}(EsFe{sub lowbar|})=396(32) T. With this value the magnetic moment of {sup 254}Es was then determined as |{mu}|=4.35(41) {mu}{sub N}.

  18. Suppression of ultracold ground-state hyperfine-changing collisions with laser light

    SciTech Connect

    Sanchez-Villicana, V.; Gensemer, S.D.; Tan, K.Y.N.; Kumarakrishnan, A.; Dinneen, T.P.; Sueptitz, W.; Gould, P.L.

    1995-06-05

    Using laser light tuned to a repulsive molecular potential, we have been able to suppress inelastic ground-state hyperfine-changing collisions between ultracold {sup 87}Rb atoms. Adiabatic excitation to the repulsive curve alters the atomic trajectories and prevents the atoms from approaching close enough for the hyperfine change to occur. Experimental results show suppressions up to {similar_to}50% and are in reasonable agreement with a simple Landau-Zener model. Our ability to control collisional trap loss processes may have important implications for the achievement of high densities in laser cooled samples.

  19. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-07

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)).

  20. 33S hyperfine interactions in H2S and SO2 and revision of the sulfur nuclear magnetic shielding scale

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele; Puzzarini, Cristina

    2013-12-01

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H233S and 33SO2 has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin-rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The 33S spin-rotation tensor for H2S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin-rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H2S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the 33S spin-rotation constant of OCS.

  1. The Zeeman effect and hyperfine interactions in J = 1-0 transitions of CH+ and its isotopologues.

    PubMed

    Amano, T

    2010-12-28

    The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.

  2. Comparison of reactions for the production of {sup 258,257}Db: {sup 208}Pb({sup 51}V,xn) and {sup 209}Bi({sup 50}Ti,xn)

    SciTech Connect

    Gates, J. M.; Nelson, S. L.; Dragojevic, I.; Duellmann, Ch. E.; Ellison, P. A.; Folden III, C. M.; Garcia, M. A.; Hoffman, D. C.; Nitsche, H.; Gregorich, K. E.; Stavsetra, L.; Sudowe, R.

    2008-09-15

    Excitation functions for the 1n and 2n exit channels of the {sup 208}Pb({sup 51}V,xn){sup 259-x}Db reaction were measured. A maximum cross section of the 1n exit channel of 2070{sub -760}{sup +1100} pb was measured at an excitation energy of 16.0 {+-} 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660{sub -370}{sup +450} pb was measured at 22.0 {+-} 1.8 MeV excitation energy. The 1n excitation function for the {sup 209}Bi({sup 50}Ti,n){sup 258}Db reaction was remeasured, resulting in a cross section of 5480{sub -1370}{sup +1730} pb at an excitation energy of 16.0 {+-} 1.6 MeV, in agreement with previous values [F. P. Hessberger et al., Eur. Phys. J. A 12, 57 (2001)]. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier.

  3. Measurement of rubidium ground-state hyperfine transition frequency using atomic fountains

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yuri B.; Szymaniec, Krzysztof; Edris, Soliman

    2015-08-01

    The results of precision measurements of the 87Rb ground-state hyperfine transition frequency, which were conducted at NPL from 2009 to 2013, are reported. The resulting frequency, measured using NPL’s Cs and Rb atomic frequency standards, demonstrates reasonable agreement with the most recent measurements reported by LNE-SYRTE.

  4. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report

    NASA Astrophysics Data System (ADS)

    Sauerzopf, C.; Capon, A. A.; Diermaier, M.; Dupré, P.; Higashi, Y.; Kaga, C.; Kolbinger, B.; Leali, M.; Lehner, S.; Rizzini, E. Lodi; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Murtagh, D. J.; Nagata, Y.; Radics, B.; Simon, M. C.; Suzuki, K.; Tajima, M.; Ulmer, S.; Vamosi, S.; Gorp, S. van; Zmeskal, J.; Breuker, H.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Venturelli, L.; Widmann, E.; Yamazaki, Y.

    2016-12-01

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  5. Hyperfine Quenching of the 2s2p 3P0 State of Berylliumlike Ions

    SciTech Connect

    Cheng, K T; Chen, M H; Johnson, W R

    2008-03-13

    The hyperfine-induced 2s2p {sup 3}P{sub 0}-2s{sup 2} {sup 1}S{sub 0} transition rate for Be-like {sup 47}Ti{sup 18+} was recently measured in a storage-ring experiment by Schippers et al. [Phys. Rev. Lett. 98, 033001 (2007)]. The measured value of 0.56(3) s{sup -1} is almost 60% larger than the theoretical value of 0.356 s{sup -1} from a multiconfiguration Dirac-Fock calculation by Marques et al. [Phys. Rev. A 47, 929 (1993)]. In this work, we use a large-scale relativistic configuration-interaction method to calculate these hyperfine-induced rates for ions with Z = 6-92. Coherent hyperfine-quenching effects between the 2s2p {sup 1,3}P{sub 1} states are included in a perturbative as well as a radiation damping approach. Contrary to the claims of Marques et al., contributions from the {sup 1}P{sub 1} state are substantial and lead to a hyperfine-induced rate of 0.67 s{sup -1}, in better agreement with, though larger than, the measured value.

  6. Measurement of a hyperfine-induced spin-exchange frequency shift in atomic hydrogen

    SciTech Connect

    Walsworth, R.L.; Silvera, I.F. ); Mattison, E.M.; Vessot, R.F.C. )

    1992-09-01

    We have measured a hyperfine-induced spin-exchange frequency shift in the atomic-hydrogen ground-state hyperfine transition. A recent quantum-mechanical treatment of low-energy hydrogen-hydrogen scattering by Koelman {ital et} {ital al}. (Phys. Rev. A 38, 3535 (1988)) predicts such frequency shifts to become large at low temperature, and to affect the performance of atomic clocks such as the cryogenic hydrogen maser. The experiment reported here was performed with a hydrogen maser operating near room temperature, where the reported hyperfine effects are predicted to be small, but measurable. Using an adiabatic fast passage (AFP) technique to vary the incoming atomic population in the masing states from approximately 100% (AFP on) to 50% (AFP off), we determined the change in the dimensionless hyperfine-induced frequency-shift parameter {Omega} to be {Omega}{sub on}{minus}{Omega}{sub off}=5.38 (1.06){times}10{sup {minus}4}. The theoretical prediction at this temperature is {Omega}{sub on}{minus}{Omega}{sub off}={minus}0.76{times}10{sup {minus}4} to {minus}1.12{times}10{sup {minus}4}, for the range of masing-state populations used in the present experiment. We review the relevant theory, report our experimental method and results, and discuss possible reasons for the discrepancy between experiment and theory.

  7. First-principles study of boron oxygen hole centers in crystals: Electronic structures and nuclear hyperfine and quadrupole parameters

    SciTech Connect

    Li Zucheng; Pan Yuanming

    2011-09-15

    The electronic structures, nuclear hyperfine coupling constants, and nuclear quadrupole parameters of fundamental boron oxygen hole centers (BOHCs) in zircon (ZrSiO{sub 4}, I4{sub 1}/amd) and calcite (CaCO{sub 3}, R3c) have been investigated using ab initio Hartree-Fock (HF) and various density functional theory (DFT) methods based on the supercell models with all-electron localized basis sets. Both exact HF exchange and appropriate correlation functionals are important in describing the BOHCs, and the parameter-free hybrid method based on Perdew, Burke, and Ernzerhof density functionals (PBE0) turns out to be the best DFT method in reproducing the electron paramagnetic resonance (EPR) data. Our results reveal three distinct types of simple-spin (S = 1/2) [BO{sub 3}]{sup 2-} centers in calcite: (i) the classic [BO{sub 3}]{sup 2-} radical with the D{sub 3h} symmetry and the unpaired spin equally distributed on the three oxygen atoms (i.e. the O{sub 3}{sup 5-} type); (ii) the previously reported [BO{sub 2}]{sup 0} center with the unpaired spin equally distributed on two of the three oxygen atoms (O{sub 2}{sup 3-}); and (iii) a new variety with {approx}90% of its unpaired spin localized on one (O{sup -}) of the three oxygen atoms with a long B-O bond (1.44 A). Calculations confirm the unusual [BO{sub 4}]{sup 0} center in zircon and show it to arise from a highly distorted configuration with 90% of the unpaired spin on one oxygen atom that has a considerably longer B-O bond (1.68 A) than its three counterparts (1.45 A). The calculated magnitudes and directions of {sup 11}B and {sup 17}O hyperfine coupling constants and nuclear quadrupole constants for the [BO{sub 4}]{sup 0} center in zircon are in excellent agreement with the 15 K EPR experimental data. These BOHCs are all characterized by a small negative spin density on the central B atom arising from spin polarization. Our calculations also demonstrate that the spin densities on BOHCs are affected substantially by

  8. Sub-Doppler two-photon-excitation Rydberg spectroscopy of atomic xenon: mass-selective studies of isotopic and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kono, Mitsuhiko; He, Yabai; Baldwin, Kenneth G. H.; Orr, Brian J.

    2016-03-01

    Mass-selective sub-Doppler two-photon excitation (TPE) spectroscopy is employed to resolve isotopic contributions for transitions to high-energy Rydberg levels of xenon in an atomic beam, using narrowband pulses of coherent ultraviolet light at 205-213 nm generated by nonlinear-optical conversion processes. Previous research (Kono et al 2013 J. Phys. B: At. Mol. Opt. Phys. 46 35401), has determined isotope energy shifts and hyperfine structure for 33 high-energy Rydberg levels of gas-phase xenon and accessed Rydberg levels at TPE energies in the range of 94 100-97 300 cm-1 with unprecedented spectroscopic resolution. The new isotopic-mass-resolved results were obtained by adding a pulsed free-jet atomic-beam source and a mass-selective time-of-flight detector to the apparatus in order to discern individual xenon isotopes and extract previously unresolved spectroscopic information. Resulting isotope energy shifts and hyperfine-coupling parameters are examined with regard to trends in principal quantum number n and in atomic angular-momentum quantum numbers, together with empirical and theoretical precedents for such trends.

  9. Measurement of hyperfine fields and the Δg-effect in π-conjugated polymer-based OLEDs using multi-frequency electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Joshi, Gajadhar; Malissa, Hans; Miller, Richard; Ogden, Lillie; Baird, Douglas; Jamali, Shirin; Kavand, Marzieh; Ambal, Kapil; van Tol, Johan; Lupton, John; Boehme, Christoph

    Magneto-opto-electronic properties of organic semiconductors, such as organic magnetoresistance or magneto-electroluminescence, are strongly influenced by the interplay of proton induced hyperfine fields to which charge carrier spins are coupled [Nguyen et al., Nat. Mater. 9, 345-352 (2010), McCamey et al. Phys. Rev. Lett. 104, 017601 (2010)]. In addition, the weak but non-negligible and highly inhomogeneously distributed spin-orbit effects caused by the material's structural disorder can affect spin-dependent processes. In order to quantitatively access and discriminate between these mechanisms, we investigate the inhomogeneous broadening of polaron spin-resonances using electrically detected magnetic resonance (EDMR) spectroscopy at various magnetic fields between 3mT and 12T. While random local hyperfine fields cause an external magnetic field-independent line broadening, spin-orbit contributions give rise to a distribution of the charge carrier g-factors. This Δg effect leads to a resonance line-width contribution that is proportional to the external magnetic field. We observe an EDMR line that is largely field-independent in the low-magnetic field, but shows substantial broadening of line shape at higher fields.

  10. Strong hyperfine-induced modulation of an optically driven hole spin in an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Carter, S. G.; Economou, Sophia E.; Greilich, A.; Barnes, Edwin; Sweeney, T.; Bracker, A. S.; Gammon, D.

    2014-02-01

    Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole-spin dynamics compared to electric-field fluctuations. We show that the hole hyperfine interaction can have a strong effect on hole-spin coherence measurements through a nuclear feedback effect. The nuclear polarization is generated through a unique process that is dependent on the anisotropy of the hole hyperfine interaction and the coherent precession of nuclear spins, giving rise to strong modulation at the nuclear precession frequency.

  11. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol.

    PubMed

    Belov, S P; Golubiatnikov, G Yu; Lapinov, A V; Ilyushin, V V; Alekseev, E A; Mescheryakov, A A; Hougen, J T; Xu, Li-Hong

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e(±niα). The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Donor hyperfine Stark shift and the role of central-cell corrections in tight-binding theory

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Rahman, Rajib; Salfi, Joe; Bocquel, Juanita; Voisin, Benoit; Rogge, Sven; Klimeck, Gerhard; Hollenberg, Lloyd L. C.

    2015-04-01

    Atomistic tight-binding (TB) simulations are performed to calculate the Stark shift of the hyperfine coupling for a single arsenic (As) donor in silicon (Si). The role of the central-cell correction is studied by implementing both the static and the non-static dielectric screenings of the donor potential, and by including the effect of the lattice strain close to the donor site. The dielectric screening of the donor potential tunes the value of the quadratic Stark shift parameter (η2) from -1.3 × 10-3 µm2 V-2 for the static dielectric screening to -1.72 × 10-3 µm2 V-2 for the non-static dielectric screening. The effect of lattice strain, implemented by a 3.2% change in the As-Si nearest-neighbour bond length, further shifts the value of η2 to -1.87 × 10-3 µm2 V-2, resulting in an excellent agreement of theory with the experimentally measured value of -1.9 ± 0.2 × 10-3 µm2 V-2. Based on our direct comparison of the calculations with the experiment, we conclude that the previously ignored non-static dielectric screening of the donor potential and the lattice strain significantly influence the donor wave function charge density and thereby leads to a better agreement with the available experimental data sets.

  14. The rotational spectra, potential function, Born-Oppenheimer breakdown, and hyperfine structure of GeSe and GeTe

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Bizzocchi, Luca; Sanchez, Raquel; Villanueva, Pablo; Cortijo, Vanessa; Sanz, M. Eugenia; Grabow, Jens-Uwe

    2011-08-01

    The pure rotational spectra of 18 and 21 isotopic species of GeSe and GeTe have been measured in the frequency range 5-24 GHz using a Fabry-Pérot-type resonator pulsed-jet Fourier-transform microwave spectrometer. Gaseous samples of both chalcogenides were prepared by a combined dc discharge/laser ablation technique and stabilized in supersonic jets of Ne. Global multi-isotopologue analyses of the derived rotational data, together with literature high-resolution infrared data, produced very precise Dunham parameters, as well as rotational constant Born-Oppenheimer breakdown (BOB) coefficients (δ01) for Ge, Se, and Te. A direct fit of the same datasets to an appropriate radial Hamiltonian yielded analytic potential-energy functions and BOB radial functions for the X1Σ+ electronic state of both GeSe and GeTe. Additionally, the electric quadrupole and magnetic hyperfine interactions produced by the nuclei 73Ge, 77Se, and 125Te were observed, yielding much improved quadrupole coupling constants and first determinations of the spin-rotation parameters.

  15. Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.; Karaulanov, Todor; Balabas, Mikhail; Budker, Dmitry

    2013-02-01

    An alkene-based antirelaxation coating for alkali-metal vapor cells exhibiting Zeeman relaxation times up to 77 s was recently identified by Balabas The long relaxation times, two orders of magnitude longer than in paraffin- (alkane-) coated cells, motivate revisiting the question of what the mechanism is underlying wall-collision-induced relaxation and renew interest in applications of alkali-metal vapor cells to secondary frequency standards. We measure the width and frequency shift of the ground-state hyperfine mF=0→mF'=0 transition (clock resonance) in vapor cells with 85Rb and 87Rb atoms, with an alkene antirelaxation coating. We find that the frequency shift is slightly larger than for paraffin-coated cells and that the Zeeman linewidth scales linearly with the hyperfine frequency shift.

  16. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  17. Defect induced magnetism in highly oriented pyrolytic graphite: bulk magnetization and 19F hyperfine interaction studies.

    PubMed

    Mohanta, S K; Mishra, S N; Davane, S M; Srivastava, S K

    2012-02-29

    We have made bulk and local investigations on defect induced magnetism in highly oriented pyrolytic graphite (HOPG) irradiated with a 40 MeV carbon beam. The local magnetic response of irradiated HOPG was studied by measuring the hyperfine field of recoil implanted (19)F using γ-ray time differential perturbed angular distribution (TDPAD) measurements. While the bulk magnetic properties of the irradiated sample show features characteristic of room temperature ferromagnetism, the hyperfine field data reflect enhanced paramagnetism with no indication of long range magnetic ordering. The experimental studies are further supported by ab initio density functional calculations. We believe that the ferromagnetic response in irradiated HOPG arises mostly from defect induced magnetic moments of carbon atoms in the near surface region, while those deep inside the host matrix remain paramagnetic.

  18. Three-loop radiative-recoil corrections to hyperfine splitting generated by one-loop fermion factors

    SciTech Connect

    Eides, Michael I.; Grotch, Howard; Shelyuto, Valery A.

    2004-10-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with one-loop radiative photon insertions both in the electron and muon lines. An analytic result for these nonlogarithmic corrections of order {alpha}(Z{sup 2}{alpha})(Z{alpha})(m/M)E{sub F} is obtained. This result constitutes a next step in the implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below 10 Hz.

  19. Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions.

    PubMed

    Volotka, A V; Glazov, D A; Andreev, O V; Shabaev, V M; Tupitsyn, I I; Plunien, G

    2012-02-17

    A rigorous evaluation of the two-photon exchange corrections to the hyperfine structure in lithiumlike heavy ions is presented. As a result, the theoretical accuracy of the specific difference between the hyperfine splitting values of H- and Li-like Bi ions is significantly improved. This opens a possibility for the stringent test of the many-electron QED effects on a few percent level in the strongest electromagnetic field presently available in experiments.

  20. Isotope shifts and hyperfine structure in polonium isotopes by atomic-beam laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalewska, D.; Bekk, K.; Göring, S.; Hanser, A.; Kälber, W.; Meisel, G.; Rebel, H.

    1991-08-01

    Laser-induced fluorescence spectroscopy in a collimated atomic beam has been applied to determine isotope shifts and the hyperfine structure of an isotopic chain of the radioactive element polonium (200Po, 202Po, 204-210Po). The relative isotope shifts show a striking similarity with results for other elements in the vicinity of Pb, even reproducing details of the odd-even staggering.

  1. Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime.

    PubMed

    Weller, L; Kleinbach, K S; Zentile, M A; Knappe, S; Hughes, I G; Adams, C S

    2012-08-15

    A light, compact optical isolator using an atomic vapor in the hyperfine Paschen-Back regime is presented. Absolute transmission spectra for experiment and theory through an isotopically pure 87Rb vapor cell show excellent agreement for fields of 0.6 T. We show π/4 rotation for a linearly polarized beam in the vicinity of the D2 line and achieve an isolation of 30 dB with a transmission >95%.

  2. Hyperfine specific heats of PrX 2 ( X = Ir, Pt, Rh, Ru) laves phase compounds

    NASA Astrophysics Data System (ADS)

    Greidanus, F. J. A. M.; de Jongh, L. J.; Huiskamp, W. J.; Buschow, K. H. J.

    1980-01-01

    Specific heat data below 1 K for the C-15 compounds PrX 2 (X = Ir, Pt, Rh, Ru) reveal Schottky-type anomalies, ascribed to hyperfine interactions. Apparently the 4f-moments are magnetically ordered. The values deduced for these moments are only ≈ 70% of that for J = 4, indicating that the Pr 3+ moment is partially quenched by the crystal field.

  3. Leading logarithmic corrections to the muonium hyperfine splitting and to the hydrogen Lamb shift

    SciTech Connect

    Karshenboim, S.G.

    1994-12-31

    Main leading corrections with recoil logarithm log(M/m) and low-energy logarithm log(Za) to the Muonium hyperfine splitting axe discussed. Logarithmic corrections have magnitudes of 0.1 {divided_by} 0.3 kHz. Non-leading higher order corrections axe expected to be not larger than 0.1 kHz. Leading logarithmic correction to the Hydrogen Lamb shift is also obtained.

  4. Three-loop reducible radiative photon contributions to Lamb shift and hyperfine splitting

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2004-08-01

    Corrections of order {alpha}{sup 3}(Z{alpha}){sup 5}m to the Lamb shift and corrections of order {alpha}{sup 3}(Z{alpha})E{sub F} to the hyperfine splitting, generated by insertion of the three-loop one-particle reducible diagrams with radiative photons in the electron line, are calculated. The calculations are performed in the Yennie gauge.

  5. Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

  6. Optical nuclear polarization via hyperfine relaxation. Polarization mechanism in anthracene/tetracyanobenzene charge-transfer crystals

    NASA Astrophysics Data System (ADS)

    Allgeier, J.; Macho, V.; Stehlik, D.; Vieth, H. M.; Auch, W.; Von Schütz, J. U.

    1982-03-01

    The large optical nuclear polarization (ONP) found in A/TCNB crystals is due to relaxation caused by the mobility of triplet excitons. The ONP field dependence gives an excitonic hopping rate of 3 × 10 9 s -1 (at 300 K). Exclusion of ONP by static hyperfine interaction (LAC ONP) is based on results of rf ONP experiments which allow an unambiguous distinction between the two processes.

  7. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  8. Frequency tuning of the optical delay in cesium D{sub 2} line including hyperfine structure

    SciTech Connect

    Anderson, Monte D.; Perram, Glen P.

    2010-03-15

    The frequency dependence of optical delays in both the wings and core of the cesium 6 {sup 2}S{sub 1/2}-6 {sup 2}P{sub 3/2} transition have been observed and modeled with a Voigt line shape convolved with the six hyperfine components. Tunable delays of 0-37 ns are achieved by tuning the laser frequency through resonance at various vapor pressures of 0.15-5.28 mTorr.

  9. Vacuum polarization and quadrupole corrections to the hyperfine splitting of P-states in muonic deuterium

    NASA Astrophysics Data System (ADS)

    Martynenko, A. P.; Sorokin, V. V.

    2017-02-01

    On the basis of the quasipotential approach in quantum electrodynamics, we calculate vacuum polarization and quadrupole corrections in the first and second orders of perturbation theory in the hyperfine structure of P-states in muonic deuterium. All corrections are presented in integral form and are evaluated analytically and numerically. The obtained results can be used for the improvement of the transition frequencies between levels 2P and 2S.

  10. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  11. New electron levels and classified lines in Pr II from hyperfine structure measurements

    SciTech Connect

    Furmann, B. . E-mail: furman@phys.put.poznan.pl; Stefanska, D.; Dembczynski, J.; Stachowska, E.

    2007-01-15

    Classification of 75 spectral lines (hitherto not classified) in singly ionized praseodymium (Pr II) with the use of 31 new electron levels belonging to odd configurations 4f{sup 3}5d and 4f{sup 3}6s and 14 new levels belonging to even configurations is presd. Hyperfine structure constant A and B for each new level were determined by using the method of laser-induced fluorescence in a hollow cathode discharge.

  12. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  13. Raman scattering in a four-level atomic system with hyperfine structure

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Yang, Wen-Xing; Peng, Ju-Cun

    2005-04-01

    We propose and analyse an efficient Raman scheme for suppressing the absorption of a weak probe beam in a typical four-level atomic system with a nearly hyperfine doublet structure of two higher-lying excited levels for the two cases of transient regime and steady-state process. For the transient process, using the numerical calculations by a nice MATHEMATICA code, we find that the magnitude of the probe absorption at line centre of the probe transition is small compared to the standard three-level atomic system based on electromagnetically induced transparency (EIT). In particular, our results show that the probe absorption can be completely eliminated under the condition of Raman resonance, i.e. we only require that two-photon detuning is zero within the range of the hyperfine two-level frequency gap for the case of the steady state. In contrast to the standard three-level EIT scheme, one of the key advantages of our four-level Raman scheme is that under the Raman resonance condition we can observe one transparency window without the need of exact vanishing of one- and two-photon detuning. As a consequence, the atomic hyperfine structure cannot be a hindrance for obtaining EIT.

  14. Calculation of Radiative Corrections to Hyperfine Splitting in p1/2 States

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2006-09-20

    Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectronic sequence, and the lowest order result, {alpha}/4{pi} E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkalis are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithium-like bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

  15. Calculation of radiative corrections to hyperfine splitting in p{sub 1/2} states

    SciTech Connect

    Sapirstein, J.; Cheng, K. T.

    2006-10-15

    Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectonic sequence, and the lowest order result ({alpha}/4{pi})E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkali-metal atoms are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithiumlike bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

  16. HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM

    SciTech Connect

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü. E-mail: sophie.kroeger@htw-berlin.de

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm{sup –1}). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d {sup 3}4s4p and 55 to the configuration 3d {sup 4}4p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d {sup 3}4s4p and 44 to 3d {sup 4}4p.

  17. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  18. Energy-Level Related Nuclear-Spin Effects and Super-Hyperfine Spectral Patterns: how Molecules do Self-Nmr

    NASA Astrophysics Data System (ADS)

    Harter, William; Mitchell, Justin

    2009-06-01

    At several points in his defining works on molecular spectroscopy, Herzberg notes that ``because nuclear moments ldots are so very slight ldots transitions between species ldots are very strictly forbiddenldots '' Herzberg's most recent statement of such selection rules pertained to spherical top spin-species. It has since been shown that spherical top species (as well as those of lower symmetry molecules) converge exponentially with momentum quanta J and K to degenerate level clusters wherein even ``very slight'' nuclear fields and moments cause pervasive resonance and total spin species mixing. Ultra-high resolution spectra of Borde, et .al and Pfister et .al shows how SF_6 and SiF_4 Fluorine nuclear spin levels rearrange from total-spin multiplets to NMR-like patterns as their superfine structure converges. Similar super-hyperfine effects are anticipated for lower symmetry molecules exhibiting converging superfine level-clusters. Examples include PH_3 molecules and asymmetric tops. Following this we consider models that treat nuclear spins as coupled rotors undergoing generalized Hund-case transitions from spin-lab-momentum coupling to various spin-rotor correlations. G. A. Herzberg, Electronic Spectra of Polyatomic Molecules, (Von Norstrand Rheinhold 1966) p. 246. W G. Harter and C. W Patterson, Phys. Rev. A 19, 2277 (1979) W. G. Harter, Phys. Rev. A 24, 192 (1981). Ch. J. Borde, J. Borde, Ch. Breant, Ch. Chardonnet, A. Van Lerberghe, and Ch. Salomon, in Laser Spectroscopy VII, T. W Hensch and Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985). O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, J. Opt. Soc. Am. B 10, 1521 (1993). O. Pfister, Ch. Chardonnet, and Ch. J. Bordè, Phys. Rev. Lett. 76, 4516 (1996) S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen, Phys. Chem. Chem. Phys.7, 573 (2005)

  19. Raman transitions between hyperfine clock states in a magnetic trap

    NASA Astrophysics Data System (ADS)

    Naber, J. B.; Torralbo-Campo, L.; Hubert, T.; Spreeuw, R. J. C.

    2016-07-01

    We present our experimental investigation of an optical Raman transition between the magnetic clock states of 87Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multilevel structure of 87Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoherence in our system, and discuss possible improvements.

  20. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  1. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  2. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  3. Impact of silica environment on hyperfine interactions in 𝜖-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kubíčková, Lenka; Kohout, Jaroslav; Brázda, Petr; Veverka, Miroslav; Kmječ, Tomáš; Kubániová, Denisa; Bezdička, Petr; Klementová, Mariana; Šantavá, Eva; Závěta, Karel

    2016-12-01

    Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of 𝜖-Fe2O3 nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ˜20 nm and the thickness of silica coating ˜5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of 𝜖-Fe2O3 with admixtures of ˜1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ˜2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the 𝜖-Fe2O3 nanoparticles spread between ˜85 K and ˜150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

  4. Hyperfine interactions in nanocrystallized NANOPERM-type metallic glass containing Mo

    NASA Astrophysics Data System (ADS)

    Cesnek, M.; Kubániová, D.; Kohout, J.; Křišťan, P.; Štěpánková, H.; Závěta, K.; Lančok, A.; Štefánik, M.; Miglierini, M.

    2016-12-01

    NANOPERM-type alloy with chemical composition Fe76Mo8CuB15 was studied by combination of 57Fe Mössbauer spectroscopy and 57Fe(10B, 11B) nuclear magnetic resonance in order to determine distribution of hyperfine magnetic fields and evolution of relative concentration of Fe-containing crystalline phases within the surface layer and the volume of the nanocrystallized ribbons with annealing temperature. Differential scanning calorimetry revealed two crystallization stages at T x1 ˜ 510 ∘C and T x2 ˜ 640 ∘C, connected to precipitation of α-Fe and Fe(Mo,B) nanocrystals, respectively. The amorphous and partially crystalline state was obtained by annealing at several temperatures in the range 510-650 ∘C. The combination of conversion electron (CEMS) and transmission Mössbauer spectrometry (TMS) showed that annealing induces crystallization starting from both surfaces of the ribbons. For the as-quenched sample, scanning electron microscopy (SEM) and CEMS revealed significant differences in the "air" and "wheel" sides of the ribbons, crystallites were preferentially formed at the latter. While SEM micrographs of annealed samples showed various mean diameters of the crystals at opposite sides of the ribbons, the amounts of crystalline volume derived from the CEMS spectra approximately equaled. Mössbauer spectra of annealed samples contained narrow sextet ascribed to crystalline α-Fe phase, three sextets with distribution of hyperfine field assigned to the interface regions of the nanocrystals and the contribution of the amorphous phases. In-field TMS performed at 4.2 K with magnetic moments aligned by external magnetic field enabled to properly determine in particular the contribution of the amorphous phases in the samples. Resulting distributions of the hyperfine fields were compared with 57Fe(10B, 11B) nuclear magnetic resonance (NMR) spectra.

  5. Investigation of magnetic, thermal and hyperfine properties of Tb 3+ in the single crystal of terbium trifluoromethanesulfonate nonahydrate

    NASA Astrophysics Data System (ADS)

    Neogy, D.; Paul, P.; Chattopadhyay, K. N.

    2004-12-01

    The single crystals of terbium trifluoromethanesulfonate nonahydrates Tb(CF3SO3)3·9H2O (TbTFMS) were grown and the principal magnetic susceptibilities measured from 300 K down to 13 K, for external field orientations both parallel and perpendicular to the c-axis which is the symmetry axis of this hexagonal crystal. The non-Kramers ion Tb3+ occupies a site of C3h symmetry in this uniaxial crystal. The principal magnetic susceptibilities, observed by us and the Friedberg group, over the range of temperature, 300 down to ∼1.0 K, are explained very well by the theoretical expressions of susceptibility obtained from the crystal field perturbed J-mixed eigenvectors with due consideration of the intermediate coupling effects. No noticeable ordering effects were observed down to ∼13 K; this indicates the interionic interactions to be weak, being predominantly of the dipolar type, which is consistent with the detection of a ferromagnetic transition at T ∼ 0.24 K by the Friedberg group. The g-values derived from other sources are also reasonably accounted for. The crystal field energy level structure predicts a Schottky anomaly in the heat capacity at around 0.23 K, which agrees well with that observed by Friedberg et al.; another Schottky peak appears at around 48 K. One interesting aspect of the present analysis is that almost all the principal features of the magnetic, thermal and optical properties of TbTFMS at high temperatures as well as liquid helium temperatures could be explained quite satisfactorily with a single CF alone. Present analysis also suggests that two singlets lie lowest whose separation is 0.37 cm-1; this profoundly influences the magnetic and thermal properties. The interaction of the nuclear spin with the electric field gradient and the hyperfine magnetic field has also been discussed.

  6. New approach to hyperfine structure - Application to the Li ground state

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    1980-01-01

    Global identities for delta functions, given by Hiller, Sucher and Feinberg (HSF) are applied to the calculation of the hyperfine structure (HFS) of the ground state of Li. It is shown that use of the HSF identity together with configuration interaction type wavefunctions can yield values of the HFS constant f which are comparable in accuracy to that obtained by Larsson with a 100-term Hylleraas-type wavefunction. The implications of this result for HFS calculations for atoms with many electrons are discussed.

  7. Isotope shift and hyperfine splitting of the 4s{yields}5p transition in potassium

    SciTech Connect

    Behrle, Alexandra; Koschorreck, Marco; Koehl, Michael

    2011-05-15

    We have investigated the 4s {sup 2}S{sub 1/2}{yields}5p {sup 2}P{sub 1/2} transition (D{sub 1} line) of the potassium isotopes {sup 39}K, {sup 40}K, and {sup 41}K using Doppler-free laser saturation spectroscopy. Our measurements reveal the hyperfine splitting of the 5p {sup 2}P{sub 1/2} state of {sup 40}K, and we have determined the specific mass shift and the nuclear field shift constants for the blue (405 nm) D{sub 1} line.

  8. Radiative recoil corrections to hyperfine splitting: Polarization insertions in the electron factor

    SciTech Connect

    Eides, M. I.; Shelyuto, V. A.

    2010-01-15

    We consider three-loop radiative recoil corrections to hyperfine splitting in muonium due to insertions of the one-loop polarization operator in the electron factor. The contribution generated by electron polarization insertions is a cubic polynomial in the large logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared terms are well known for some time. We calculate all single-logarithmic and nonlogarithmic radiative recoil corrections of the order {alpha}{sup 3}(m/M)E{sub F} generated by diagrams with the electron and muon polarization insertions.

  9. Hyperfine structure measurement of rubidium atom and tunable diode laser stabilization by using Sagnac interferometer.

    PubMed

    Kim, Jin-Tae; Zhen, Liu; Kapitanov, Venedikt; Kim, Hyun Su; Park, Jong Rak; Park, Si-Hyun

    2006-11-01

    The Rubidium saturated absorption spectra for D2 transition lines are used to measure the Fabry-Perot interferometer free spectral range (FSR). The scale linearity of the laser frequency tuning is determined. The Sagnac interferometer has been used for the laser stabilization. The result shows that the laser frequency is stabilized upto sub-mega Herz level. Also the hyperfine structure [5(2)S(1/2) F = 3 --> F' = 2, 3, 4 5(2)P(3/2) 85Rb] of the rubidium atom has been measured by using the tilt locking method, which shows the same result as the conventional saturation spectroscopy.

  10. Spin noise of localized electrons: Interplay of hopping and hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.

    2015-05-01

    The theory of spin fluctuations is developed for an ensemble of localized electrons, taking into account both the hyperfine interaction of electron and nuclear spins and electron hopping between the sites. The analytical expression for the spin noise spectrum is derived for an arbitrary relation between the electron spin precession frequency in a field of nuclear fluctuations and the hopping rate. An increase in the hopping rate results in a drastic change in the spin noise spectrum. The effect of an external magnetic field is briefly addressed.

  11. The 57Fe hyperfine interactions in the iron-bearing phases in some LL ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Maksimova, A. A.; Grokhovsky, V. I.; Petrova, E. V.; Semionkin, V. A.

    2016-12-01

    The study of several LL ordinary chondrites such as NWA 6286 LL6, NWA 7857 LL6 and Chelyabinsk LL5 fragments with different lithology was carried out using scanning electron microscopy with energy dispersion spectroscopy, X-ray diffraction and 57Fe Mössbauer spectroscopy with a high velocity resolution at 295 K. Small variations in the 57Fe hyperfine parameters were revealed for the M1 and M2 sites in olivine, orthopyroxene and clinopyroxene as well as for α-Fe(Ni, Co), α 2-Fe(Ni, Co) and γ-Fe(Ni, Co) phases, and for troilite in different samples of studied LL ordinary chondrites.

  12. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    NASA Astrophysics Data System (ADS)

    Brewer, J. H.; Ghandi, K.; Froese, A. M.; Fryer, B. A.

    2005-05-01

    Both hyperfine states of muonic 23Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2μs-1, is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8μs-1, leaving medium-dependent effects ambiguous.

  13. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  14. Limitation of electron mobility from hyperfine interaction in ultraclean quantum wells and topological insulators

    NASA Astrophysics Data System (ADS)

    Tarasenko, S. A.; Burkard, Guido

    2016-07-01

    The study of electron transport and scattering processes limiting electron mobility in high-quality semiconductor structures is central to solid-state electronics. Here, we uncover an unavoidable source of electron scattering which is caused by fluctuations of nuclear spins. We calculate the momentum relaxation time of electrons in quantum wells governed by the hyperfine interaction between electrons and nuclei and show that this time depends greatly on the spatial correlation of nuclear spins. Moreover, the scattering processes accompanied by a spin flip are a source of the backscattering of Dirac fermions at conducting surfaces of topological insulators.

  15. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    SciTech Connect

    Modi, K. B. Raval, P. Y.; Dulera, S. V.; Kathad, C. R.; Shah, S. J.; Trivedi, U. N.; Chandra, Usha

    2015-06-24

    Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  16. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  17. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  18. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  19. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

  20. Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Varambhia, Hemal N.; Stoecklin, Thierry; Tennyson, Jonathan

    2007-12-01

    Rotational excitation of isotopologues of HCN and HNC by thermal electron-impact is studied using the molecular R-matrix method combined with the adiabatic-nuclei-rotation approximation. Rate coefficients are obtained for electron temperatures in the range 5-6000 K and for transitions among all levels up to J = 8. Hyperfine rates are also derived using the infinite-order-sudden scaling method. It is shown that the dominant rotational transitions are dipole-allowed, that is, those for which ΔJ = 1. The hyperfine propensity rule ΔJ = ΔF is found to be stronger than that in the case of He-HCN collisions. For dipole-allowed transitions, electron-impact rates are shown to exceed those for excitation of HCN by He atoms by six orders of magnitude. As a result, the present rates should be included in any detailed population model of isotopologues of HCN and HNC in sources where the electron fraction is larger than 10-6, for example, in interstellar shocks and comets.

  1. Isotope effects and proton hyperfine interactions in the lowest 3n pi * state of substituted benzaldehydes

    NASA Astrophysics Data System (ADS)

    Neugebauer-Crawford, S. M.; Tinti, D. S.

    1995-12-01

    The zero-field splittings, principal spin axes, kinetic parameters, and nuclear hyperfine interactions of the 3nπ* state of p-chloro- and p-methylbenzaldehyde and several of their deuterated derivatives are investigated by zero- and low-field optically detected magnetic resonance (ODMR) at 1.4 K in a p-dimethoxybenzene host. The zero-field splittings show large isotope effects. These are interpreted in terms of spin-orbit interaction with the nearby but higher lying 3ππ* state, yielding the energy gap between the two states in both benzaldehyde derivatives. The locations of the spin axes are approximately along the local symmetry axes of the carbonyl group and are insensitive to isotope. But, the spin axis most nearly normal to the plane of a host molecule deviates from the normal by an angle of 7°-13°. The kinetic parameters of the 3nπ* state also are relatively insensitive to isotope. The dominant hyperfine interactions are associated with the aldehyde hydrogen and indicate that the 3nπ* state is largely localized on the aldehyde moiety. Various properties of the 3nπ* and 3ππ* states are compared.

  2. Applications of the two-photon doppler-free method: Hyperfine interactions and isotope shift measurements

    NASA Astrophysics Data System (ADS)

    Cagnac, B.

    1985-08-01

    The hyperfine structures are generally of the same order of magnitude as the Doppler broadening of optical transitions and so are the isotopic shifts in the case of heavy elements. When these structures are too small, one must use Doppler-free methods. Among these methods, the two-photon spectroscopy has obtained good results in highly excited levels. In our laboratory in Paris, we did measurements on neon and helium by two-photon excitation from metastable levels. The precision of the measurements is of the order of one MHz, which permits a precise comparison with theory. We compare the measurements on neon with the theory by Liberman and we obtain a good fit in the first approximation, but must introduce mixing of wave functions for an exact explanation. In the case of helium, we obtain a good fit with the theoretical values obtained from the wave functions by Accad, Pekeris and Schiff. We also give an example where another technique by polarization measurements permits us to obtain experimentally a hyperfine structure smaller than the natural width. We also present a short review of the measurements done by the two-photon method in other laboratories on other elements, Pb, Tl, In and alkaline earths Ca, Sr. Ba.

  3. Landauer-Büttiker approach for hyperfine mediated electronic transport in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Singha, Aniket; Fauzi, M. H.; Hirayama, Y.; Muralidharan, Bhaskaran

    2017-03-01

    The interplay of spin-polarized electronic edge states with the dynamics of the host nuclei in quantum Hall systems presents rich and nontrivial transport physics. Here, we develop a Landauer-Büttiker approach to understand various experimental features observed in the integer quantum Hall setups featuring quantum point contacts. The approach developed here entails a phenomenological description of spin-resolved interedge scattering induced via hyperfine assisted electron-nuclear spin flip-flop processes. A self-consistent simulation framework between the nuclear spin dynamics and edge state electronic transport is presented in order to gain crucial insights into the dynamic nuclear polarization effects on electronic transport and in turn the electron-spin polarization effects on the nuclear spin dynamics. In particular, we show that the hysteresis noted experimentally in the conductance-voltage trace as well as in the resistively detected NMR line-shape results from a lack of quasiequilibrium between electronic transport and nuclear polarization evolution. In addition, we present circuit models to emulate such hyperfine mediated transport effects to further facilitate a clear understanding of the electronic transport processes occurring around the quantum point contact. Finally, we extend our model to account for the effects of quadrupolar splitting of nuclear levels and also depict the electronic transport signatures that arise from single and multiphoton processes.

  4. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  5. Measurement of the 1s Hyperfine Transition of Two Tl^80+ Isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Utter, S. B.; Wong, K. L.; Crespo López-Urrutia, J. R.; Britten, J. A.; Chen, H.; Thoe, R. S.; Thorn, D. B.; Träbert, E.; Gustavsson, M. G. H.; Forssén, C.; Mårtenson-Pendrill, A.-M.; Harris, C. L.

    2001-05-01

    The hyperfine splitting of the 1s ground state has been measured for the two stable isotopes of hydrogen-like Tl using emission spectroscopy in the SuperEBIT electron beam ion trap. The results are 3858.22± 0.30 Åfor ^203Tl^80+ and 3821.84± 0.34 Åfor ^205Tl^80+. These differ by about 60 Å from recent and about 19 Å from very recent calculations, illustrating unsolved issues affecting these transitions in hydrogen-like ions. The wavelength difference Δλ = 36.38± 0.35 Å is consistent with estimates based on hyperfine anomaly data for neutral Tl. By using previously determined nuclear magnetic moments and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii < r^2_m>^1/2= 5.83(14) fm for ^203Tl and < r^2_m>^1/2= 5.89(14) fm for ^205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions. *Work performed under the auspices of DOE by UCLLNL under contract W-7405-ENG-48 and supported by the Office of Basic Energy Sciences.

  6. Diamagnetic correction to the {sup 9}Be{sup +} ground-state hyperfine constant

    SciTech Connect

    Shiga, N.; Itano, W. M.; Bollinger, J. J.

    2011-07-15

    We report an experimental determination of the diamagnetic correction to the {sup 9}Be{sup +} ground state hyperfine constant A. We measured A = -625 008 837.371(11) Hz at a magnetic field B of 4.4609 T. Comparison with previous results, obtained at lower values of B (0.68 T and 0.82 T), yields the diamagnetic shift coefficient k = 2.63(18)x10{sup -11} T{sup -2}, where A(B)=A{sub 0}(1+kB{sup 2}). The zero-field hyperfine constant A{sub 0} is determined to be -625 008 837.044(12) Hz. The g-factor ratio g{sub I}{sup '}/g{sub J} is determined to be 2.134 779 852 7(10)x10{sup -4}, which is equal to the value measured at lower B to within experimental error. Upper limits are placed on some other corrections to the Breit-Rabi formula. The measured value of k agrees with theoretical estimates.

  7. Hyperfine structure in the J = 1-0 transitions of DCO^+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    van der Tak, F. F. S.; Müller, H. S. P.; Harding, M. E.; Gauss, J.

    2009-11-01

    Context: Knowledge of the hyperfine structure of molecular lines is useful for estimating reliable column densities from observed emission, and essential for the derivation of kinematic information from line profiles. Aims: Deuterium bearing molecules are especially useful in this regard, because they are good probes of the physical and chemical structure of molecular cloud cores on the verge of star formation. However, the necessary spectroscopic data are often missing, especially for molecules which are too unstable for laboratory study. Methods: We have observed the ground-state (J = 1{-}0) rotational transitions of DCO^+, HN13C and DNC with the IRAM 30 m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. Results: We find eQq = + 151.12 (400) kHz and CI = -1.12 (43) kHz for DCO^+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) =265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates, which amount to eQq = 156.0 kHz and CI = -0.69 kHz for DCO^+, eQq = 279.5 kHz for HN13C, and eQq(D) = 257.6 kHz and eQq(N) = 309.6 kHz for DNC. We also derive updated rotational constants for HN13C: B = 43 545.6000 (47) MHz and D = 93.7 (20) kHz. Conclusions: The hyperfine splittings of the DCO^+, DNC and HN13C J = 1{-}0 lines range over 0.47-1.28 km s-1, which is comparable to typical line widths in pre

  8. Ion-number-density-dependent effects on hyperfine transition of trapped 199Hg+ ions in quadrupole linear ion traps

    NASA Astrophysics Data System (ADS)

    Yang, Zhihui; Chen, Yihe; Yan, Bibo; Wang, Man; Wan, Yongquan; Liu, Hao; She, Lei; Li, Jiaomei

    2017-04-01

    The ion-number-density-dependent frequency offsets and broadening of the ground state hyperfine transition spectra of trapped 199Hg+ ions were measured as a function of the end-cap voltage of the quadrupole linear ion trap. The number density of trapped 199Hg+ ions in the quadrupole linear trap was controlled by the end-cap voltage. The fractional frequency stability of 199Hg+ hyperfine transition to the 1 mV end-cap voltage variation was preliminary estimated to be less than 1 ×10-16. The causes of the ion-number-density-dependent frequency shift and spectrum broadening were analyzed theoretically and explained.

  9. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

    PubMed Central

    2015-01-01

    X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219 Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219 Nδ is established as the stronger of the two H-bond donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available data on nuclear quadrupole tensors for imidazole nitrogens found in semiquinone-binding proteins and copper complexes reveals these systems share similar electron occupancies of the protonated nitrogen orbitals. By applying the Townes–Dailey model, developed previously for copper complexes, to the semiquinones, we find the asymmetry parameter η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by a strong correlation observed between η and the isotropic coupling constant a(14N) and is consistent with previous computational works and our own semiquinone-histidine model calculations. The empirical relationship presented here for a(14N) and η will provide an important structural characterization tool in future studies of semiquinone-binding proteins. PMID:25026433

  10. Paramagnetic Enhancement of Nuclear Spin-Spin Coupling.

    PubMed

    Cherry, Peter John; Rouf, Syed Awais; Vaara, Juha

    2017-03-14

    We present a derivation and computations of the paramagnetic enhancement of the nuclear magnetic resonance (NMR) spin-spin coupling, which may be expressed in terms of the hyperfine coupling (HFC) and (for systems with multiple unpaired electrons) zero-field splitting (ZFS) tensors. This enhancement is formally analogous to the hyperfine contributions to the NMR shielding tensor as formulated by Kurland and McGarvey. The significance of the spin-spin coupling enhancement is demonstrated by using a combination of density-functional theory and correlated ab initio calculations, to determine the HFC and ZFS tensors, respectively, for two paramagnetic 3d metallocenes, a Cr(II)(acac)2 complex, a Co(II) pyrazolylborate complex, and a lanthanide system, Gd-DOTA. Particular attention is paid to relativistic effects in HFC tensors, which are calculated using two methods: a nonrelativistic method supplemented by perturbational spin-orbit coupling corrections, and a fully relativistic, four-component matrix-Dirac-Kohn-Sham approach. The paramagnetic enhancement lacks a direct dependence on the distance between the coupled nuclei, and represents more the strength and orientation of the individual hyperfine couplings of the two nuclei to the spin density distribution. Therefore, the enhancement gains relative importance as compared to conventional coupling as the distance between the nuclei increases, or generally in the cases where the conventional coupling mechanisms result in a small value. With the development of the experimental techniques of paramagnetic NMR, the more significant enhancements, e.g., of the (13)C(13)C couplings in the Gd-DOTA complex (as large as 9.4 Hz), may eventually become important.

  11. Cavity QED with magnetically coupled collective spin states.

    PubMed

    Amsüss, R; Koller, Ch; Nöbauer, T; Putz, S; Rotter, S; Sandner, K; Schneider, S; Schramböck, M; Steinhauser, G; Ritsch, H; Schmiedmayer, J; Majer, J

    2011-08-05

    We report strong coupling between an ensemble of nitrogen-vacancy center electron spins in diamond and a superconducting microwave coplanar waveguide resonator. The characteristic scaling of the collective coupling strength with the square root of the number of emitters is observed directly. Additionally, we measure hyperfine coupling to (13)C nuclear spins, which is a first step towards a nuclear ensemble quantum memory. Using the dispersive shift of the cavity resonance frequency, we measure the relaxation time of the NV center at millikelvin temperatures in a nondestructive way.

  12. {sup 33}S hyperfine interactions in H{sub 2}S and SO{sub 2} and revision of the sulfur nuclear magnetic shielding scale

    SciTech Connect

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele Puzzarini, Cristina

    2013-12-28

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H{sub 2}{sup 33}S and {sup 33}SO{sub 2} has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin–rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The {sup 33}S spin-rotation tensor for H{sub 2}S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin–rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H{sub 2}S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the {sup 33}S spin-rotation constant of OCS.

  13. Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing effects

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-06-01

    We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.

  14. Hyperfine interactions in soybean and lupin oxy-leghemoglobins studied using Mössbauer spectroscopy with a high velocity resolution

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Alenkina, I. V.; Zakharova, A. P.; Oshtrakh, M. I.; Semionkin, V. A.

    2015-04-01

    A comparative study of monomeric soybean and lupin leghemoglobins in the oxy-form was carried out using Mössbauer spectroscopy with a high velocity resolution at 90 K. The 57Fe hyperfine parameters of measured spectra were evaluated and compared with possible structural differences in the heme Fe(II)-O 2 bond.

  15. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  16. Calculation of Radiative Corrections to Hyperfine Splitting in p3/2 States

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2008-07-15

    A recent calculation of the one-loop radiative correction to hyperfine splitting (hfs) of p{sub 1/2} states that includes binding corrections to all orders is extended to p{sub 3/2} states. Nuclear structure plays an essentially negligible role for such states, which is highly advantageous, as difficulties in controlling the Bohr-Weisskopf effect complicate the isolation of QED contributions for both s{sub 1/2} and p{sub 1/2} states. Three cases are studied. We first treat the hydrogen isoelectronic sequence, which is completely nonperturbative in Z{alpha} for high Z. Secondly the lowest lying p{sub 3/2} states of the neutral alkalis are treated, and finally lithium-like bismuth, where extensive theoretical and experimental studies of the hfs of 2s and 2p{sub 1/2} states have been made, is addressed.

  17. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model.

    PubMed

    Zhang, J; Tandecki, M; Collister, R; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R; Sprouse, G D

    2015-07-24

    We have measured the hyperfine splitting of the 7P_{1/2} state at the 100 ppm level in Fr isotopes (^{206g,206m,207,209,213,221}Fr) near the closed neutron shell (N=126 in ^{213}Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7S_{1/2} splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (^{207-213}Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  18. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.; FrPNC Collaboration

    2015-07-01

    We have measured the hyperfine splitting of the 7 P1 /2 state at the 100 ppm level in Fr isotopes (206g,206m,207,209,213,221Fr) near the closed neutron shell (N =126 in 213Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7 S1 /2 splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (207-213Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  19. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  20. (29)Si hyperfine structure of the E(')(alpha) center in amorphous silicon dioxide.

    PubMed

    Buscarino, G; Agnello, S; Gelardi, F M

    2006-09-29

    We report a study by electron paramagnetic resonance on the E'(alpha) point defect in amorphous silicon dioxide (a-SiO(2)). Our experiments were performed on gamma-ray irradiated oxygen-deficient materials and pointed out that the (29)Si hyperfine structure of the E'(alpha) consists of a pair of lines split by approximately 49 mT. On the basis of the experimental results, a microscopic model is proposed for the E'(alpha) center, consisting of a hole trapped in an oxygen vacancy with the unpaired electron sp(3) orbital pointing away from the vacancy in a back-projected configuration and interacting with an extra oxygen atom of the a-SiO(2) matrix.

  1. Maraging-350 steel: Following the aging through diffractometric, magnetic and hyperfine analysis

    NASA Astrophysics Data System (ADS)

    Nunes, G. C. S.; Sarvezuk, P. W. C.; Alves, T. J. B.; Biondo, V.; Ivashita, F. F.; Paesano, A.

    2017-01-01

    Plates of solution annealed Maraging-350 steel were submitted to aging under an inert atmosphere, varying the time and temperature. The aged samples were characterized by X-ray diffraction and Mössbauer spectroscopy. The results revealed that the aging treatments induced the reversion of austenite, in amounts that vary with the time and the temperature of the heat treatment. The lattice parameters of the martensite and austenite phases, as well as their hyperfine parameters, were obtained at all aging conditions. No intermetallic compounds were identified in any of the aged samples, but a poorly crystallized phase fraction, the consequence of an incomplete martensite ⇒ austenite reversion transformation, was observed for some samples. The tetragonal distortion from cubic symmetry presented by the martensite in the solution annealed steel was not eliminated after aging.

  2. A Classical Description of the Hyperfine Structure of the Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Woodyard, James

    2010-10-01

    As stronger dispersion gratings are utilized, the Hydrogen spectrum is broken into small groupings. At first, the fine structure was successfully described by Sommerfeld by utilizing the special theory of relativity. The fine structure groupings are three orders of magnitude smaller than the series separations as described by Balmer and others. With even further powerful instruments, Michelson was the first to split these lines into further groupings which are a further two orders of magnitude smaller. It was almost fifty years before Breit used quantum mechanics to describe this hyperfine structure. It is almost universally believed that classical theory utterly fails to describe this phenomenon. We will show how our classical Hydrogen atom based on Ritz's magnetic model can account for the splitting of the 1s state, which is famous for its use by radio astronomers to map out the distribution of hydrogen in the universe.

  3. Hyperfine frequencies of {sup 87}Rb and {sup 133}Cs atoms in Xe gas

    SciTech Connect

    McGuyer, B. H.; Xia, T.; Jau, Y.-Y.; Happer, W.

    2011-09-15

    The microwave resonant frequencies of ground-state {sup 87}Rb and {sup 133}Cs atoms in Xe buffer gas are shown to have a relatively large nonlinear dependence on the Xe pressure, presumably because of RbXe or CsXe van der Waals molecules. The nonlinear shifts for Xe are opposite in sign to the previously measured shifts for Ar and Kr, even though all three gases have negative linear shifts. The Xe data show striking discrepancies with the previous theory for nonlinear shifts. Most of this discrepancy is eliminated by accounting for the spin-rotation interaction, {gamma}N{center_dot}S, in addition to the hyperfine-shift interaction, {delta} A I{center_dot}S, in the molecules. To the limit of our experimental accuracy, the shifts of {sup 87}Rb and {sup 133}Cs in He, Ne, and N{sub 2} were linear with pressure.

  4. Precise measurements of hyperfine components in the spectrum of molecular iodine

    SciTech Connect

    Sansonetti, C.J.

    1996-05-01

    Absolute wave numbers with a typical uncertainty of 1 MHz (95% confidence) were measured for 102 hyperfine-structure components of {sup 127}I{sub 2}. The data cover the range 560-656 nm, with no gaps over 50 cm{sup -1}. The spectra were observed using Doppler-free frequency modulation spectroscopy with tunable cw laser. The laser was locked to selected iodine components and its wave number measured with a high precision Fabry-Perot wavemeter. Accuracy is confirmed by good agreement of 9 of the lines with previous results from other laboratories. These measurements provide a well-distributed set of precise reference lines for this spectral region.

  5. Self-energy correction to the hyperfine splitting for excited states

    SciTech Connect

    Wundt, B. J.; Jentschura, U. D.

    2011-05-15

    The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Z{alpha}, where Z is the nuclear-charge number and {alpha} is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13{<=}n{<=}16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l{>=}2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.

  6. Hyperfine splitting of B mesons and Bs production at the Υ(5S)

    NASA Astrophysics Data System (ADS)

    Lee-Franzini, J.; Heintz, U.; Lovelock, D. M. J.; Narain, M.; Schamberger, R. D.; Willins, J.; Yanagisawa, C.; Franzini, P.; Tuts, P. M.

    1990-12-01

    Using the Columbia University-Stony Brook (CUSB-II) detector we have studied the inclusive photon spectrum from 2.9×104 Υ(5S) decays. We observe a strong signal due to B*-->Bγ decays. From this we obtain (i) the average B*-B mass difference, 46.7+/-0.4 MeV, (ii) the photon yield per Υ(5S) decay, <γ/Υ(5S)>=1.09+/-0.06, and (iii) the average velocity of the B*'s, <β>=0.156+/-0.010, for a mix of nonstrange (B) and strange (Bs) B* mesons from Υ(5S) decays. From the shape of the photon line, we find that both B and Bs mesons are produced with nearly equal values for the hyperfine splitting of the B and Bs meson systems.

  7. Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.

    2009-06-01

    Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.

  8. Hyperfine splitting and the Zeeman effect in holographic heavy-light mesons

    SciTech Connect

    Herzog, Christopher P.; Stricker, Stefan A.; Vuorinen, Aleksi

    2010-08-15

    We inspect the mass spectrum of heavy-light mesons in deformed N=2 super Yang-Mills theory using the AdS/CFT correspondence. We demonstrate how some of the degeneracies of the supersymmetric meson spectrum can be removed upon breaking the supersymmetry, thus leading to the emergence of a hyperfine structure. The explicit SUSY breaking scenarios we consider involve on the one hand, tilting one of the two fundamental D7-branes inside the internal R{sup 6} space, and on the other hand, applying an external magnetic field on the (untilted) branes. The latter scenario leads to the well-known Zeeman effect, which we inspect for both weak and strong magnetic fields.

  9. Toward the measurement of the hyperfine splitting in the ground state of muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Bakalov, Dimitar; Adamczak, Andrzej; Stoilov, Mihail; Vacchi, Andrea

    2015-08-01

    The recent Lamb shift experiment at PSI and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen and extracting the proton Zemach radius. The efficiency of the experimental method depends on the energy dependence of the muon transfer rate to higher-Z gases in the near epithermal energy range. As long as the available experimental data only give the average transfer rate in the whole epithermal range, and the detailed theoretical calculations have not yet been verified, an experiment has been started for the measurement of the transfer rate in thermalized gas target at different temperatures and extracting from the data an estimate of the transfer rate for arbitrary energies. We outline the underlying mathematical method and estimate its accuracy.

  10. Fine and hyperfine structure of P-wave levels in muonic hydrogen

    SciTech Connect

    Martynenko, A. P.

    2008-01-15

    Corrections of order {alpha}{sup 5} and {alpha}{sup 6} are calculated for muonic hydrogen in the fine-structure interval {delta}E{sup fs} = E(2P{sub 3/2}) - E(2P{sub 1/2}) and in the hyperfine structure of the 2P{sub 1/2}-and 2P{sub 3/2}-wave energy levels. The resulting values of {delta}E{sup fs} = 8352.08 {mu}eV, {delta}E-tilde {sup hfs}(2P{sub 1/2}) = 7819.80 {mu}eV, and {delta}E-tilde {sup hfs}(2P{sub 3/2}) = 3248.03 {mu}eV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P-2S) Lamb shift in the muonic-hydrogen atom.

  11. Self-energy correction to the hyperfine splitting and the electron g factor in hydrogenlike ions

    SciTech Connect

    Yerokhin, Vladimir A.; Jentschura, Ulrich D.

    2010-01-15

    The hyperfine structure (hfs) and the g factor of a bound electron are caused by external magnetic fields. For the hfs, the magnetic field is due to the nuclear spin. A uniform-in-space and constant-in-time magnetic field is used to probe the bound-electron g factor. The self-energy corrections to these effects are more difficult to evaluate than those to the Lamb shift. Here, we describe a numerical approach for both effects in the notoriously problematic regime of hydrogenlike bound systems with low nuclear charge numbers. The calculation is nonperturbative in the binding Coulomb field. Accurate numerical values for the remainder functions are provided for 2P states and for nS states with n=1,2,3.

  12. Optimization of Yb{sup +} fluorescence and hyperfine-qubit detection

    SciTech Connect

    Ejtemaee, S.; Thomas, R.; Haljan, P. C.

    2010-12-15

    Fluorescence of single, trapped {sup 171}Yb{sup +} ions has been experimentally studied as a function of laser polarization, power, and detuning and as a function of magnetic field strength. The suppression of efficient fluorescence by coherent population trapping and the counteracting effect of the magnetic field are found to agree with theoretical predictions. For comparison, a fluorescence study has also been made of the isotope {sup 174}Yb{sup +} for which coherent population trapping is absent on the main fluorescence and laser cooling transition. Finally, state-sensitive fluorescence detection of the {sup 171}Yb{sup +} hyperfine qubit is studied, including the role of coherent population trapping in the optimization of detection parameters. A qubit detection fidelity of greater than 97% is achieved.

  13. Hyperfine structure measurement of 87Rb atoms injected into superfluid helium as highly energetic ion beam

    NASA Astrophysics Data System (ADS)

    Imamura, Kei; Furukawa, Takeshi; Yang, Xiaofei; Fujita, Tomomi; Wakui, Takashi; Mitsuya, Yousuke; Hayasaka, Miki; Ichikawa, Yuichi; Hatakeyama, Atsushi; Kobayashi, Tohru; Odashima, Hitoshi; Ueno, Hideki; Matsuo, Yukari; Orochi Collaboration

    2014-09-01

    We have developed a new nuclear laser spectroscopy technique that is called OROCHI (Optical RI-atoms Observation in Condensed Helium as Ioncatcher). In OROCHI, highly energetic ion beam is injected into superfluid helium (He II) and is trapped as atoms. Hyperfine structure (HFS) and Zeeman splitting of trapped atoms is measured using laser-microwave (MW)/radiofrequency (RF) double resonance method. We deduce nuclear moments and spin values from the measured splittings, respectively So far, we measured Zeeman splitting of 84-87Rb atoms To evaluate the validity of the OROCHI method, it is necessary to investigate the following two points not only for Zeeman but also for HFS splitings. (i) What is the accuracy in frequency in our measurement? (ii) How high beam intensity is necessary to observe resonance spectra? For this purpose we conducted online experiment using 87Rb beam and measured the HFS splitting of injected 87Rb atoms in He II.

  14. Relativistic many-body investigation of hyperfine interactions in excited S states of alkali metals: Francium and potassium

    SciTech Connect

    Owusu, A.; Dougherty, R.W.; Gowri, G.; Das, T.P.; Andriessen, J.

    1997-07-01

    To enhance the current understanding of mechanisms contributing to magnetic hyperfine interactions in excited states of atomic systems, in particular, alkali-metal atom systems, the hyperfine fields in the excited 5{sup 2}S{sub 1/2}{endash}8{sup 2}S{sub 1/2} states of potassium and 8{sup 2}S{sub 1/2}{endash}12{sup 2}S{sub 1/2} states of francium atoms have been studied using the relativistic linked-cluster many-body perturbation procedure. The net theoretical values of the hyperfine fields for the excited states studied are in excellent agreement with available experimental data for both atoms. There is a significant decrease in importance of the correlation contribution in going from the ground state to the excited states, the correlation contributions as ratios of the direct contribution decreasing rapidly as one moves to the higher excited states. However, the contribution from the exchange core polarization (ECP) effect is nearly a constant fraction of the direct effect for all the excited states considered. Physical explanations are offered for the observed trends in the contributions from the different mechanisms. A comparison is made of the different contributing effects to the hyperfine fields in potassium and francium to those in the related system, rubidium, studied earlier. Extrapolating from our results to the highly excited states of alkali-metal atoms, referred to as the Rydberg states, it is concluded that in addition to the direct contribution from the excited valence electron to the hyperfine fields, a significant contribution is expected from the ECP effect arising from the influence of exchange interactions between electrons in the valence and core states. {copyright} {ital 1997} {ital The American Physical Society}

  15. Hyperfine Interactions of Narrow-line Trityl Radical with Solvent Molecules

    PubMed Central

    Trukhan, S.N.; Yudanov, V.F.; Tormyshev, V.M.; Rogozhnikova, O.Yu.; Trukhin, D.V.; Bowman, M.K.; Krzyaniak, M.D.; Chen, H.; Martyanov, O.N.

    2013-01-01

    The electron nuclear dipolar interactions responsible for some dynamic nuclear polarization (DNP) mechanisms also are responsible for the presence formally in CW EPR spectra of forbidden satellite lines in which both the electron spin and a nuclear spin flip. Such lines arising from 1H nuclei are easily resolved in CW EPR measurements of trityl radicals, a popular family of DNP reagents. The satellite lines overlap some of the hyperfine features from 13C in natural abundance in the trityl radical, but their intensity can be easily determined by simple simulations of the EPR spectra using the hyperfine parameters of the trityl radical. Isotopic substitution of 2H for 1H among the hydrogens of the trityl radical and/or the solvent allows the dipolar interactions from the 1H on the trityl radical and from the solvent to be determined. The intensity of the dipolar interactions, integrated over all the 1H in the system, is characterized by the traditional parameter called reff. For the so-called Finland trityl in methanol, the reff values indicate that collectively the 1H in the unlabeled solvent have a stronger integrated dipolar interaction with the unpaired electron spin of the Finland trityl than do the 1H in the radical and consequently will be a more important DNP route. Although reff has the dimensions of distance, it does not correspond to any simple physical dimension in the trityl radical because the details of the unpaired electron spin distribution and the hydrogen distribution are important in the case of trityls. PMID:23722184

  16. Hyperfine rather than spin splittings dominate the fine structure of the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} bands of AlC

    SciTech Connect

    Clouthier, Dennis J. Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming b{sub βS} magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ′ is of the order of ≈0.025–0.030 cm{sup −1}.

  17. Deuterium Quadrupole Coupling in Propiolic Acid and Fluorobenzenes Measured with Ftmw Spectrometer Using Multiple Fids

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Sargus, Bryan M.; Carey, Spencer J.; Kukolich, Stephen G.

    2013-06-01

    Rotational spectra of deuterated propiolic acids (Pro-OD and Pro-CD), 1-fluorobezence (4-D), and 1,2-difluorobezence (4-D) in their ground states have been measured using the newly constructed Fourier transform microwave (FTMW) spectrometer with 12" dia. mirrors and 5 kHz resolution. Multiple Free Induction Decays (FIDs) [up to 15] as well as background subtraction can be achieved with each beam pulse. For 1-fluorobezence (4-D), three hyperfine lines from the lowest J=1-0 transition were measured to check the synthesis method. For 1,2-difluorobezence (4-D), we obtained 35 hyperfine transitions from 3 to 12 GHz, including four different ΔJ transitions. Deuterium quadrupole coupling along three the inertia axes was well resolved. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, both including four different ΔJ transitions, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling along three the inertia axes was well resolved for Pro-OD. For Pro-CD, only the eQq_a_a was determined due to the near-coincidence of the CD bond and the a inertial axis.

  18. Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase.

    PubMed

    Xia, B; Pikus, J D; Xia, W; McClay, K; Steffan, R J; Chae, Y K; Westler, W M; Markley, J L; Fox, B G

    1999-01-12

    T4MOC is a 12.3 kDa soluble Rieske ferredoxin that is obligately required for electron transfer between the oxidoreductase and diiron hydroxylase components of toluene 4-monooxygenase from Pseudomonas mendocina KR1. Our preliminary 1H NMR studies of oxidized and reduced T4MOC [Markley, J. L., Xia, B., Chae, Y. K., Cheng, H., Westler, W. M., Pikus, J. D., and Fox, B. G. (1996) in Protein Structure Function Relationships (Zaidi, Z., and Smith, D., Eds.) pp 135-146, Plenum Press, London] revealed the presence of hyperfine-shifted 1H resonances whose short relaxation times made it impractical to use nuclear Overhauser effect (NOE) measurements for assignment purposes. We report here the use of selective isotopic labeling to analyze the hyperfine-shifted 1H, 2H, and 15N signals from T4MOC. Selective deuteration led to identification of signals from the four Hbeta atoms of cluster ligands C45 and C64 in the oxidized and reduced forms of T4MOC. In the reduced state, the Curie temperature dependence of the Hbeta protons corresponded to that predicted from the simple vector spin-coupling model for nuclei associated with the localized ferric site. The signal at 25.5 ppm in the 1H spectrum of reduced T4MOC was assigned on the basis of selective 2H labeling to the His Hepsilon1 atom of one of the cluster ligands (H47 or H67). This assignment was corroborated by a one bond 1H-13C correlation (at 25.39 ppm 1H and 136.11 ppm 13C) observed in spectra of [U-13C]T4MOC with a 1H-13C coupling constant of approximately 192 Hz. The carbon chemical shift and one bond coupling constant are those expected for 1Hepsilon1-13Cepsilon1 in the imidazolium ring of histidine and are inconsistent with values expected for cysteine 1Halpha-13Calpha. The His Hepsilon1 proton exhibited weak Curie temperature dependence from 283 to 303 K, contrary to the anti-Curie temperature dependence predicted from the spin coupling model for nuclei associated with the localized ferrous site. A 1H peak at -12.3 ppm

  19. Spin dependent recombination; A sup 29 Si hyperfine study of radiation-induced P sub b centers at the Si/SiO sub 2 interface

    SciTech Connect

    Jupina, M.A.; Lenahan, P.M. )

    1990-12-01

    The spin dependent recombination (SDR) technique is used to observe the {sup 29}Si hyperfine spectra of radiation-induced P{sub b} centers at the Si/SiO{sub 2} interface in a MOSFET. The P{sub b} center is a paramagnetic, trivalent silicon defect that is the dominant radiation-induced interface state. The {sup 29}Si hyperfine spectra give detailed atomic scale information about the P{sub b} center. The authors' SDR results show that the {sup 29}Si hyperfine spectra vary with surface potential. This result indicates that differences in the defect's local geometry lead to substantial differences in the defect's energy level. However, the {sup 29}Si hyperfine spectra are found to be relatively independent of the ionizing radiation dosage.

  20. Polarized {sup 3}He{sup −} ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-08

    High beam polarization is essential to the scientific productivity of a collider. Polarized {sup 3}He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized {sup 3}He{sup −} ion source. This report discusses a polarized {sup 3}He{sup −} ion source based on the large difference of extra-electron auto-detachment lifetimes of the different {sup 3}He{sup −} ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing {sup 3}He{sup −} ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, {sup 3}He{sup −} beam polarization of 90% can be achieved. Such a method of polarized {sup 3}He{sup −} production has been considered before; however, due to low intensities of the He{sup +} ion sources existing at that time, it was not possible to produce any interesting intensity of polarized {sup 3}He{sup −} ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness {sup 3}He{sup +} beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of {sup 3}He{sup −} ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of {sup 3}He gas. Some features of such a PIS as well as prototype designs are considered. An integrated {sup 3}He{sup −} ion source design providing high beam polarization could be

  1. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  2. Quantum gates in hyperfine levels of ultracold alkali dimers by revisiting constrained-phase optimal control design

    NASA Astrophysics Data System (ADS)

    Jaouadi, A.; Barrez, E.; Justum, Y.; Desouter-Lecomte, M.

    2013-07-01

    We simulate the implementation of a 3-qubit quantum Fourier transform gate in the hyperfine levels of ultracold polar alkali dimers in their first two lowest rotational levels. The chosen dimer is 41K87Rb supposed to be trapped in an optical lattice. The hyperfine levels are split by a static magnetic field. The pulses operating in the microwave domain are obtained by optimal control theory. We revisit the problem of phase control in information processing. We compare the efficiency of two optimal fields. The first one is obtained from a functional based on the average of the transition probabilities for each computational basis state but constrained by a supplementary transformation to enforce phase alignment. The second is obtained from a functional constructed on the phase sensitive fidelity involving the sum of the transition amplitudes without any supplementary constrain.

  3. Rapid-scan coherence signals in X-band EPR spectra of semiquinones with small hyperfine splittings.

    PubMed

    Elajaili, Hanan; Rinard, George A; Yu, Zhelin; Mitchell, Deborah G; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2015-10-01

    Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH=46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH=59 mG for 18 protons.

  4. Rapid-scan coherence signals in X-band EPR spectra of semiquinones with small hyperfine splittings

    PubMed Central

    Elajaili, Hanan; Rinard, George A.; Yu, Zhelin; Mitchell, Deborah G.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH = 46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH = 59 mG for 18 protons. PMID:26277376

  5. High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain

    NASA Astrophysics Data System (ADS)

    Bize, S.; Sortais, Y.; Santos, M. S.; Mandache, C.; Clairon, A.; Salomon, C.

    1999-03-01

    We describe the operation of a laser-cooled rubidium 87Rb frequency standard. We present a new measurement of the 87Rb hyperfine frequency with a 1.3 × 10-14 relative accuracy, by comparison with a Cs fountain primary standard. The measured 87Rb ground-state hyperfine splitting is ν87 = 6 834 682 610.90429(9) Hz. This value differs from previously published values (see Essen L., Hope E. G. and Sutcliffe D., Nature 189 1961 298; Penselin S., Moran T., Cohen W. and Wscinkler G., Phys. Rev. 127 1962 524; Arditi M. and Cerez P. IEEE Trans. Instrum. Meas. IM-21 1972 391) by about 2 - 3 Hz and is 104 times more accurate. Because of the low collisional shift in 87Rb, future improvements may lead to a stability of 1 × 10-14τ-1/2 and a relative accuracy in the 10-17 range.

  6. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    PubMed

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-03-15

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm(-1) . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from (165) Ho (I=7/2) with a natural abundance of 100 %.

  7. Rotational Spectroscopy of CF_2ClCCl_3 and Analysis of Hyperfine Structure from Four Quadrupolar Nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Bialkowska-Jaworska, Ewa; Uriarte, Iciar; Basterretxea, Francisco J.; Cocinero, Emilio J.

    2016-06-01

    CF_2ClCCl_3 has recently been identified among several new ozone- depleting substances in the atmosphere. There are no literature reports concerning rotational spectroscopy of this molecule, although we were recently able to report its first chirped pulse, supersonic expansion spectrum. CF_2ClCCl_3 has a rather small dipole moment so that the spectrum is weak and each transition displays very complex nuclear quadrupole hyperfine structure resulting from the presence of four chlorine nuclei. We have presently been able to carry out a complete analysis of the hyperfine structure by combining the information from chirped pulse spectra with dedicated higher resolution measurements made with a cavity supersonic expansion instrument. The hyperfine analysis was carried out with Pickett's SPFIT/SPCAT package and the sizes of Hamiltonian matrices are sufficiently large to require the use of 64-bit compilation of these programs (made available for both Windows and Linux systems on the PROSPE website). The resulting fit is to within experimental accuracy and is supported by ab initio calculations. The precise values of off-diagonal hyperfine constants for all nuclei lead to useful angular information that is complementary to direct structural information from moments of inertia. J.C.Laube, M.J.Newland, C.Hogan, et al., Nature Geoscience 7, 266 (2014). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, I.Uriarte, P.Ejica, F.J.Basterretxea, E.J.Cocinero, 70th ISMS, Champaign-Urbana, Illinois, RF-11 (2015). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, J.Chem.Phys. 109, 10263 (1998).

  8. Long-range interactions of hydrogen atoms in excited states. II. Hyperfine-resolved (2 S -2 S ) systems

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.; Debierre, V.; Adhikari, C. M.; Matveev, A.; Kolachevsky, N.

    2017-02-01

    The interaction of two excited hydrogen atoms in metastable states constitutes a theoretically interesting problem because of the quasidegenerate 2 P1 /2 levels that are removed from the 2 S states only by the Lamb shift. The total Hamiltonian of the system is composed of the van der Waals Hamiltonian, the Lamb shift, and the hyperfine effects. The van der Waals shift becomes commensurate with the 2 S -2 P3 /2 fine-structure splitting only for close approach (R <100 a0 , where a0 is the Bohr radius) and one may thus restrict the discussion to the levels with n =2 and J =1 /2 to a good approximation. Because each S or P state splits into an F =1 triplet and an F =0 hyperfine singlet (eight states for each atom), the Hamiltonian matrix a priori is of dimension 64. A careful analysis of the symmetries of the the problem allows one to reduce the dimensionality of the most involved irreducible submatrix to 12. We determine the Hamiltonian matrices and the leading-order van der Waals shifts for states that are degenerate under the action of the unperturbed Hamiltonian (Lamb shift plus hyperfine structure). The leading first- and second-order van der Waals shifts lead to interaction energies proportional to 1 /R3 and 1 /R6 and are evaluated within the hyperfine manifolds. When both atoms are metastable 2 S states, we find an interaction energy of order Ehχ (a0/R ) 6 , where Eh and L are the Hartree and Lamb shift energies, respectively, and χ =Eh/L ≈6.22 ×106 is their ratio.

  9. Hyperfine fields in the BaFe2As2 family and their relation to the magnetic moment

    NASA Astrophysics Data System (ADS)

    Derondeau, Gerald; Minár, Ján; Ebert, Hubert

    2016-12-01

    The hyperfine field Bhf and the magnetic properties of the BaFe2As2 family are studied using the fully relativistic Dirac formalism for different types of substitution. The study covers electron doped Ba (Fe1-xCox) 2As2 and Ba (Fe1-xNix) 2As2 , hole doped (Ba1 -xKx) Fe2As2 , and also isovalently doped Ba (Fe1-xRux) 2As2 and BaFe2(As1-xPx) 2 for a wide range of the concentration x . For the substituted compounds the hyperfine fields show a very strong dependence on the dopant type and its concentration x . Relativistic contributions were found to have a significantly stronger impact for the iron pnictides when compared to bulk Fe. As an important finding, we demonstrate that it is not sensible to relate the hyperfine field Bhf to the average magnetic moment μ of the compound, as it was done in earlier literature.

  10. Hyperfine interaction in InAs/GaAs self-assembled quantum dots: dynamical nuclear polarization versus spin relaxation

    NASA Astrophysics Data System (ADS)

    Krebs, Olivier; Eble, Benoît; Lemaître, Aristide; Voisin, Paul; Urbaszek, Bernhard; Amand, Thierry; Marie, Xavier

    2008-10-01

    We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ˜4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Finally, we emphasize the similarities and differences between X and X trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs et al., C. R. Physique 9 (2008).

  11. Tungsten monocarbide, WC: Pure rotational spectrum and 13C hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Steimle, Timothy C.

    2012-01-01

    The J = 1 → 2 pure rotational transitions in the X3Δ1(v = 0) state of 186W12C and 184W12C were recorded using a pump/probe microwave optical double resonance (PPMODR) technique and analyzed to give fine structure parameters. The field-free [17.6]2← X3Δ1 (1, 0) bands of the W13C isotopologues were recorded using laser induced fluorescence and analyzed to produce the 13C(I = 1/2) magnetic hyperfine parameter. Bonding in the [17.6]2(v = 1) and X3Δ1(v = 0) states is discussed and a comparison of the experimentally determined properties of the X3Δ1(v = 0) state with those predicted as a prelude to the electron electric dipole moment (eEDM) measurements [J. Lee, E. R. Meyer, R. Paudel, J. L. Bohn, and A. E. Leanhardt, J. Mod. Opt. 56, 2005 (2009), 10.1080/09500340903349930] is given.

  12. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  13. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, {delta}E{sub rr} = ({alpha}({Zeta}{alpha})/{pi}{sup 2})(m/M)E{sub F}(6{zeta}(3) + 3{pi}{sup 2} In 2 + {pi}{sup 2}/2 + 17/8), are also presented.

  14. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  15. Critically evaluated theoretical energies, lifetimes, hyperfine constants, and multipole polarizabilities in {sup 87}Rb

    SciTech Connect

    Safronova, M. S.; Safronova, U. I.

    2011-05-15

    Systematic study of Rb atomic properties is carried out using a high-precision relativistic all-order method. Excitation energies of the ns, np, nd, and nf (n{<=}10) states in neutral rubidium are evaluated. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=8. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole (5s-np, n=5-26), electric-quadrupole (5s-nd{sub j}, n=4-26), and electric-octupole (5s-nf{sub j}, n=4-26) matrix elements are calculated to obtain the ground state E1, E2, and E3 static polarizabilities. Scalar polarizabilities of the ns, np, and nd states, and tensor polarizabilities of the np{sub 3/2} and nd excited states of Rb are evaluated. The hyperfine A and B values in {sup 87}Rb are determined for the first low-lying levels up to n=9. These calculations provide recommended values critically evaluated for their accuracy for a number of Rb atomic properties useful for a variety of applications.

  16. Properties of Gd2O3 nanoparticles studied by hyperfine interactions and magnetization measurements

    NASA Astrophysics Data System (ADS)

    Correa, E. L.; Bosch-Santos, B.; Cavalcante, F. H. M.; Correa, B. S.; Freitas, R. S.; Carbonari, A. W.; Potiens, M. P. A.

    2016-05-01

    The magnetic behavior of Gd2O3 nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ - γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at 111In(111Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particles annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.

  17. Structural, optical, hyperfine and magnetization studies of ZnO encapsulated α-Fe nanoparticles

    SciTech Connect

    Rathore, A.K.; Pati, S.P.; Roychowdhury, A.; Das, D.

    2014-12-15

    We report the successful preparation and characterization of magnetic-fluorescent nanoparticles (NPs) by overcoming the difficulty of handling α-Fe nanoparticles that are less stable and have high affinity to get oxidized in air even at room temperature. Nanocrystalline α-Fe particles embedded by ZnO have been synthesized by a two step chemical route. Concentration of α-Fe has been varied as 15, 30 and 50 wt% of the sample. Detailed investigations on structural, hyperfine, optical and magnetic characteristics have been carried out. X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy studies have been used to confirm the coexistence of Fe and ZnO phases in the nanocomposites (NCs). The presence of α-Fe is also confirmed by Mössbauer spectroscopy. However, other forms of iron are also detected in the sample. UV–vis spectrum of nanocomposites shows a red shift with respect to the pristine ZnO which is attributed to the electron transfer between Fe and ZnO that provides support to the formation of the Fe- ZnO NC. The photoluminescence (PL) spectra of Fe-ZnO nanocomposites exhibit blue shift of the UV and weaker visible emission lines compared to the pristine ZnO. Nanocomposites are found to be magnetically soft having high saturation magnetization with very low remanence. Low temperature coercivity enhancement due to freezing of uncompensated surface spins is also found in all samples.

  18. Measurement of the hyperfine splitting of 133Cs atoms in superfluid helium

    NASA Astrophysics Data System (ADS)

    Imamura, K.; Furukawa, T.; Yang, X. F.; Mitsuya, Y.; Fujita, T.; Hayasaka, M.; Kobayashi, T.; Hatakeyama, A.; Ueno, H.; Odashima, H.; Matsuo, Y.

    2015-04-01

    We have been developing a new nuclear laser spectroscopy method named "OROCHI" (Optical RI-atom Observation in Condensed Helium as Ion-catcher). OROCHI utilizes superfluid helium (He II) not only as an efficient stopping medium of highly energetic ions but also as a host matrix of in-situ atomic laser spectroscopy. Using these characteristic of He II, we produce atomic spin polarization and measure Zeeman and hyperfine structure (HFS) splitting using laser-RF (radio frequency) / MW (microwave) double resonance method. From the measured energy splittings, we can deduce nuclear spins and moments. So far, we have conducted a series of experiments using both stable (85,87Rb, 133Cs, 197Au, 107,109Ag) and unstable isotopes (84,86Rb) to confirm the feasibility of OROCHI method, especially observing Zeeman resonance and determining nuclear spins. The measurement of HFS splitting of atoms introduced into He II is indispensable to clarify the nuclear properties by deducing nuclear moments as well as the study of nuclear spins. For this purpose, we perform a precision measurement of HFS of 133Cs atoms immersed in He II using laser ablation technique. In this paper, we describe the result of the experiment.

  19. Composite Sequences for Triple-dot Qubits that Compensate for Miscalibration and Hyperfine Gradients

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus

    2014-03-01

    Exchange-only qubits defined in triple quantum dots form a promising means for all-electrical semiconductor quantum control, but they suffer from both charge noise and random magnetic field gradients. Low-frequency noise sources can be compensated using composite sequences, but the development of such sequences is constrained by the fact that exchange energies are always positive and the control axes are non-orthogonal. Here, we present the results of both analytical approaches and computational searches for composite pulse sequences, which compensate for simultaneous low-frequency miscalibration (due to fixed random electric fields) and hyperfine effects (due to nuclear magnetic fields) in a single triple-dot qubit. We also present compensation sequences for multi-qubit gates. These results can substantially improve the working fidelity of quantum operations in semiconductor quantum dot devices. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government.

  20. LETTER TO THE EDITOR: ? hyperfine structure of the ? interface defect in thermal ?

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Nouwen, B.; Afanas'ev, V. V.

    1998-07-01

    The observation of the electron spin resonance hyperfine (hf) spectra associated with the unpaired electron of the 0953-8984/10/27/004/img4 interface defect in thermal 0953-8984/10/27/004/img5 shows that the dominant interaction arises from a single 0953-8984/10/27/004/img6 isotope. The hf tensor displays weakly monoclinic I (nearly axial) symmetry, with the principal axes of the g and hf tensors coinciding. A molecular orbital analysis indicates that the unpaired electron resides for 0953-8984/10/27/004/img7 in a single unpaired Si hybrid orbital, found to be 14% s-like and 86% p-like, with the p-orbital markedly pointing closely along a 0953-8984/10/27/004/img8 direction at 0953-8984/10/27/004/img9 with the [100] interface normal. With oxygen not constituting an immediate part of the defect, the results firmly establish the key part of the 0953-8984/10/27/004/img4 defect as a tilted (0953-8984/10/27/004/img11 about 0953-8984/10/27/004/img12) 0953-8984/10/27/004/img13 unit.

  1. Fine and hyperfine structure of P-wave levels in muonic hydrogen

    SciTech Connect

    Martynenko, A. P.

    2008-01-15

    Corrections of order {alpha}{sup 5} and {alpha}{sup 6} are calculated for muonic hydrogen in the fine-structure interval {Delta}E{sup fs} = E(2P{sub 3/2}) - E(2P{sub 1/2}) and in the hyperfine structure of the 2P{sub 1/2}-and 2P{sub 3/2}-wave energy levels. The resulting values of {Delta}E{sup fs} = 8352.08 Micro-Sign eV, {Delta}E-tilde {sup hfs}(2P{sub 1/2}) = 7819.80 Micro-Sign eV, and {Delta}E-tilde {sup hfs}(2P{sub 3/2}) = 3248.03 Micro-Sign eV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P-2S) Lamb shift in the muonic-hydrogen atom.

  2. Transmission integral analysis of Mössbauer spectra displaying hyperfine parameter distributions with arbitrary profile

    SciTech Connect

    Klencsár, Zoltán

    2014-10-27

    Accurate quantitative analysis of Mössbauer spectra displaying thickness effects requires the consideration of the so-called transmission integral when modeling the spectral shape. Whereas this is straightforward when the correct model for the decomposition of the absorber's nuclear resonance absorption cross-section into individual components is a priori known, in the absence of such knowledge and notably in the presence of hyperfine parameter distributions with an unknown profile, the so-called model-independent evaluation methods could be used to fit the spectra. However, the methods available for this purpose were developed for the analysis of spectra for which the thin absorber approximation is valid, and thus they do not take the sample thickness and related effects into account. Consequently, in order to use them for spectra displaying thickness effects, their usage needs to be generalized by combining them with transmission integral fitting. A new algorithm realizing such a generalized version of the Hesse-Rübartsch model-independent evaluation method was developed recently as an integral part of the MossWinn program. In the present work, the working principle of the newly developed algorithm is described in details along with examples illustrating the capabilities of the method for the case of {sup 57}Fe Mössbauer spectroscopy.

  3. Transmission integral analysis of Mössbauer spectra displaying hyperfine parameter distributions with arbitrary profile

    NASA Astrophysics Data System (ADS)

    Klencsár, Zoltán

    2014-10-01

    Accurate quantitative analysis of Mössbauer spectra displaying thickness effects requires the consideration of the so-called transmission integral when modeling the spectral shape. Whereas this is straightforward when the correct model for the decomposition of the absorber's nuclear resonance absorption cross-section into individual components is a priori known, in the absence of such knowledge and notably in the presence of hyperfine parameter distributions with an unknown profile, the so-called model-independent evaluation methods could be used to fit the spectra. However, the methods available for this purpose were developed for the analysis of spectra for which the thin absorber approximation is valid, and thus they do not take the sample thickness and related effects into account. Consequently, in order to use them for spectra displaying thickness effects, their usage needs to be generalized by combining them with transmission integral fitting. A new algorithm realizing such a generalized version of the Hesse-Rübartsch model-independent evaluation method was developed recently as an integral part of the MossWinn program. In the present work, the working principle of the newly developed algorithm is described in details along with examples illustrating the capabilities of the method for the case of 57Fe Mössbauer spectroscopy.

  4. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.

    PubMed

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-10-03

    The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.

  5. Hyperfine structure constants of singly ionized manganese obtained from analysis of Fourier Transform spectra

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Imperial College London

    2016-01-01

    There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.

  6. Quantum tomography of the full hyperfine manifold of atomic spins via continuous measurement on an ensemble

    NASA Astrophysics Data System (ADS)

    Riofrío, Carlos A.; Jessen, Poul S.; Deutsch, Ivan H.

    2011-08-01

    Quantum state reconstruction based on weak continuous measurement has the advantage of being fast, accurate and almost non-perturbative. In this work we present a pedagogical review of the protocol proposed by Silberfarb et al (2005 Phys. Rev. Lett. 95 030402), whereby an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner so as to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time through a maximum-likelihood estimate. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sublevels of a large-spin alkali atom, 133Cs. We detail two different protocols for control. Using magnetic interactions and a quadratic ac Stark shift, we can reconstruct a chosen hyperfine manifold F, e.g. the seven-dimensional F = 3 manifold in the electronic ground state of Cs. We review the procedure as implemented in experiments (Smith et al 2006 Phys. Rev. Lett. 97 180403). We extend the protocol to the more ambitious case of reconstruction of states in the full 16-dimensional electronic ground subspace (F = 3⊕F = 4), controlled by microwaves and radio-frequency (RF) magnetic fields. We give detailed derivations of all physical interactions, approximations, numerical methods and fitting procedures, tailored to the realistic experimental setting. For the case of light-shift and magnetic control, reconstruction fidelities of ~0.95 have been achieved, limited primarily by inhomogeneities in the light-shift. For the case of microwave/RF-control we simulate fidelity >0.97, limited primarily by signal-to-noise.

  7. Magnetic and hyperfine properties of Fe2P nanoparticles dispersed in a porous carbon matrix

    NASA Astrophysics Data System (ADS)

    Viali, G. L.; Gonçalves, G. R.; Passamani, E. C.; Freitas, J. C. C.; Schettino, M. A.; Takeuchi, A. Y.; Larica, C.

    2016-03-01

    Structural and magnetic properties of nanocomposite, consisting of Fe2P particles dispersed in a porous carbon matrix, have fully been investigated using X-ray diffraction, Mössbauer and ac and dc magnetization measurements. Besides production of the nanocomposite, using an activated carbon (prepared by chemical activation of a char with H3PO4), impregnation with a Fe3+ salt in aqueous medium and subsequent heat treatments under N2 flow, we found a formation of hexagonal Fe2-xP and orthorhombic FeP in a mass ratio of 4:1, respectively. Low temperature Mössbauer spectra revealed that a large fraction (ca. 28%) of the material is in the paramagnetic state, suggesting that part of the Fe2-xP phase appears in the form of very small particles. A metamagnetic phase transition was also observed for non-stoichiometric Fe2-xP nanoparticles. It is observed at about 150 K, well below the ordering temperature of the Fe2P phase (230 K), and is dependent on the dc-probe fields. Also, the Fe2-xP nanoparticles were found to have a hard-like magnetic character at low temperatures, with coercive field HC of 1.3 KOe. Considering these interesting magnetic and hyperfine properties and also the large specific surface area of the porous carbon matrix, which is not severely reduced after impregnation with the Fe-containing compounds, one may point to promising technological applications of the produced nanocomposite.

  8. Measurement of Isotope Shifts, Hyperfine Splittings and Stark Shift for the Ytterbium (6S)2 SINGLET-S(0) to (6S6P) TRIPLET-P(1) Transition Using AN Acousto-Optically Modulated Laser Beam.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1995-11-01

    Accurate measurements of isotope shifts, hyperfine splittings and Stark shifts are of interest for studying atomic structure. This thesis reports a new method to precisely measure small frequency intervals. This was done using an acousto-optic modulator to frequency shift part of a laser beam. The frequency shifted and unshifted laser beams were then superimposed and excited an atomic beam. The laser frequency was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each transition generated two peaks in the spectrum separated by the acousto-optic modulation frequency, which permitted the frequency to be calibrated. This method was tested by measuring the isotope shifts and hyperfine splittings of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition at 555.6 nm. The shifts (MHz) relative to ^{176} Yb are: ^{173}Yb {it F}=7/2,-1432.1+/-1.2; ^{171}Yb {it F}=1/2, -1176.9+/-1.1; ^{174}Yb, 953.8+/-1.0; ^{172}Yb 1953.9+/-1.6; ^{170}Yb 3240.4+/-2.8; ^{173}Yb {it F}=5/2,3265.8+/-2.8; ^ {168}Yb, 4611.9+/-4.4; ^ {171,173}Yb {it F}=3/2,4760.1 +/-3.7 where the negative sign indicates that the transition occurs at a lower frequency than in ^{176}Yb. The magnetic dipole (a) and electric quadrupole (b) hyperfine coupling constants (MHz) of the (6s6p) ^3P_1 state for ^{171,173}Yb were determined to be a_{171}=3959.1 +/-3.0, a_{173}=-1094.44+/-0.84 and b_{173}=-827.89+/-0.85. These results were in agreement with the most accurate data found in the literature that were obtained by measuring frequency shifts using a Fabry Perot etalon whose length was stabilized with a helium neon laser locked to an iodine line. In contrast, our method uses cheaper and simpler apparatus. Next, the Stark shift of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition was measured by passing the atomic beam through a uniform electric field. The Stark shift rate was found to be -15.419+/-0.048 kHz/(kV/cm)^2. No

  9. Oxoferryl porphyrin cation radicals in model systems: Evidence for variable metal-radical spin coupling

    NASA Astrophysics Data System (ADS)

    Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.

    1990-07-01

    Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.

  10. A comparison of the cesium and hydrogen hyperfine frequencies by means of Loran-C and portable clocks

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Lavanceau, J.

    1974-01-01

    A comparison of the hydrogen and cesium hyperfine frequencies is made using a hydrogen maser calibrated directly against the Flexible Bulb Large Storage Box Hydrogen Maser and a Hewlett-Packard portable high performance cesium clock calibrated indirectly against the USNO Master Clock via a Loran-C link. The portable cesium clock is transported from the USNO to Harvard University in operating condition. This allows the evaluation of the portable clock's performance under transport. Data are presented on the epoch and frequency stability of the portable clock under transport as well as the usefulness of a closure measurement in determining clock drift.

  11. Doppler-Free Spectroscopy Measurements of Isotope Shifts and Hyperfine Components of Near-IR Xenon Lines

    SciTech Connect

    Mazouffre, S.; Pawelec, E.; Tran Bich, N.; Sadeghi, N.

    2006-01-15

    Xenon is currently used as propellant gas in electric thrusters, in which ejection of corresponding ions produces the desired thrust. As such a gas contains 9 stable isotopes, a non-intrusive determination of the velocity distribution function of atoms and ions in the thruster plasma plume, by means of absorption or fluorescence techniques, requires a precise knowledge of the line structure. We used Doppler-free Lamb-dip spectroscopy to determine isotopic shifts and hyperfine components of odd isotopes of several spectral lines of Xe atom and Xe+ ion in the 825 - 835 nm range.

  12. Glancing and Normal Incidence Cems Study of Hyperfine Interactions in IRON-57/GALLIUM ARSENIDE(110) Single-Crystal Films.

    NASA Astrophysics Data System (ADS)

    Wagner, Randall Paul

    CEMS spectra were gathered at room temperature for a series of Al overcoated ^{57 }Fe/GaAs(110) thin films (32-123 A) utilizing both normal and glancing incidence geometries. This research was conducted in order to investigate the effects which impurity diffusion, chemical reaction, and the Fe/substrate interface have on the hyperfine interactions within this system. All of the films were found to contain Fe nuclei with the same hyperfine field and isomer shift as is found in bulk Fe. Approximately 1-3 ML of paramagnetic Fe were also present, along with Fe atoms belonging to a solid mixture. None of the Mossbauer spectra of the bulk compounds FeAs, Fe_2As, or FeAs_2 were observed in the spectra of these films. Both the bulk-like Fe and mixture region were discovered to increase in thickness as the number of deposited Fe layers increased. In addition, the correlation between the average isomer shift and hyperfine field for part of the mixture in the thickest films was in good agreement with that found in dilute Fe-As alloys. This was not the case however, for the thinner films and that part of the mixture made up predominantly of Fe atoms which had lower hyperfine fields. Furthermore, the data revealed that the reduced magnetization previously measured in Fe/GaAs(110) thin films was not due exclusively to a decrease in the magnitude of the moment per Fe atom. Additional spectra were gathered for the 123 A film in applied magnetic fields with two different glancing geometries. The relative line intensities measured with the two geometries were compared at similar fields using a method which also incorporated the normal incidence results. From this comparison, it was discovered that 5.5% of the moment could be modeled oriented normal to the film plane with the rest confined to the film plane. Another model, which allowed for 16% of the moment to be randomly oriented while the remaining fraction was in-plane, also yielded better results than a model which assumed an

  13. Hydrogen maser wall shift experiments and determination of the unperturbed hyperfine frequency of the ground state of the hydrogen atom

    SciTech Connect

    Cheng, Y.M.; Hua, Y.L.; Chen, C.B.; Gao, J.H.; Shen, W.

    1980-12-01

    Experiments on hydrogen maser wall shift are described in detail. Values of K(40 C) -293 + or - 17 mHz.cm and a(40 C) (-17 + or 2) x 10 to the -3rd per deg C were obtained. The unperturbed hyperfine frequency of the ground state of the hydrogen atom was obtained by comparing five hydrogen masers to Loran C signals for one month. The average value with respect to TAI is 1,420,405,751.768 + or - 0.002 Hz.

  14. Effects of the hyperfine interactions on the decay of the collective nuclear excited states in. alpha. -hematite

    SciTech Connect

    Faigel, G.; Berman, L.E.; Grover, J.R.; Hastings, J.B.; Haustein, P.E.; Siddons, D.P. . Central Research Inst. for Physics; Brookhaven National Lab., Upton, NY )

    1989-01-01

    In this paper the time dependence of the coherent decay of nuclear excited state in an {alpha}-{sup 57}Fe{sub 2}O{sub 3} single crystal is presented. The experiment was carried out in diffraction geometry. A highly monocromatized and collimated beam of synchrotron radiation was used for the excitation of nuclear levels. Quantum beat spectra taken below and above the (7,7,7) pure nuclear reflection of hematite show a characteristic pattern corresponding to the magnetic and quadrupole hyperfine interactions. 16 refs., 1 fig.

  15. The 57Fe hyperfine interactions in human liver ferritin and its iron-polymaltose analogues: the heterogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.

    2016-12-01

    Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.

  16. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift, and hyperfine constants in Lu2 +

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, M. S.; Johnson, W. R.

    2016-09-01

    Energy levels of 30 low-lying states of Lu2 + and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double, and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates, and lifetimes of the metastable 5 d3 /2 and 5 d5 /2 states are calculated. Recommended values are given for static polarizabilities of the 6 s , 5 d , and 6 p states and tensor polarizabilities of the 5 d and 6 p3 /2 states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6 s1 /2-5 d5 /2 transition frequency of the Lu2 + ion is calculated with the aid of the recommended scalar polarizabilities of the 6 s1 /2 and 5 d5 /2 states. Finally, A and B hyperfine constants are determined for states of 2+175Lu with n ≤9 . This work provides recommended values of transition matrix elements, polarizabilities, and hyperfine constants of Lu2 +, critically evaluated for accuracy, for benchmark tests of high-precision theoretical methodology and planning of future experiments.

  17. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  18. The effect of oxygen vacancies on the hyperfine properties of metal-doped SnO2

    NASA Astrophysics Data System (ADS)

    Aragón, F. H.; Villegas-Lelovsky, L.; Martins, J. B. L.; Coaquira, J. A. H.; Cohen, R.; Nagamine, L. C. C. M.; Morais, P. C.

    2017-03-01

    We have performed a Mössbauer investigation of oxygen-vacancy formation on a doped substitutional solution of Sn1‑y M y O2 (M  =  Al, Fe, Ce and Er) nanoparticles. Experimental results were assessed from Mössbauer spectroscopy data, which suggest the rise of the oxygen-vacancy population while increasing the content of dopant ions (M). Likewise, we have analyzed the dependence of the structural, electronic and hyperfine properties on the oxygen-vacancy concentration through first-principles calculations of the SnO2‑x (where x varies from 0 to 0.25) system. The results obtained from the isomer shift and quadrupole splitting indicate a significant dependence of the hyperfine properties on the number of oxygen vacancies. Moreover, after structural optimization of the Sn16O32-Vo supercell (where Vo is the number of oxygen vacancies) we found an increase of the unit-cell volume with the increase of Vo, while the bulk modulus showed a linear decrease with Vo. Indeed, our results corroborate the experimental findings for pure and transition-metal-doped SnO2 systems for which the presence of the oxygen vacancy plays a key role.

  19. Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V

    2006-12-21

    We present measurements of high statistical significance of the rate of the magnetic octupole (M3) decay in nickel-like ions of isotopically pure {sup 129}Xe and {sup 132}Xe. On {sup 132}Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06 {+-} 0.24) ms. On {sup 129}Xe, an additional fast (2.7 {+-} 0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2) radiation.

  20. Where Millimeter Wave Spectra are Sensitive to Small Electric Fields: High Rydberg States of Xenon and Their Hyperfine Structures

    NASA Astrophysics Data System (ADS)

    Schäfer, Martin; Raunhardt, Matthias; Merkt, Frédéric

    2009-06-01

    In the range 0-45 cm^{-1} below the ionization limit, the separation between adjacent electronic states (Rydberg states with principal quantum number n>50) of atoms and molecules is smaller than 2 cm^{-1}. In order to resolve the fine or hyperfine structure of these states, it is necessary to combine high-resolution vacuum ultraviolet (VUV) laser radiation, which is required to access the Rydberg states from the ground state, with millimeter wave radiation. Such double-resonance experiments have been used to study the hyperfine structure of high Rydberg states of ^{83}Kr, H_2 or D_2. Millimeter wave transitions (240-350 GHz) between nℓ (52≤ n≤64, ℓ≤3) Rydberg states of different xenon isotopes were detected by pulsed field ionization followed by mass-selective detection of the cations. Because of the high polarizability of high-n Rydberg states (∝ n^7, ˜10^4 MHz cm^{2} V^{-2} for n≈ 50), it is necessary to reduce the electric stray fields to values of the order of mV/cm (or less) in order to minimize the (quadratic) Stark shift of the millimeter wave transitions. Some p and d Rydberg states of Xe are nearly degenerate and efficiently mixed by small stray fields, making it possible to observe transitions forbidden by the Δℓ=±1 selection rule or transitions exhibiting a linear Stark effect, which is typical for the degenerate high-ℓ Rydberg states. Multichannel quantum defect theory (MQDT) was used to analyze the millimeter wave data and to determine the hyperfine structures of the ^2P_{3/2} ground electronic states of ^{129}Xe^+ and ^{131}Xe^+. C. Fabre, P. Goy, S. Haroche, J. Phys. B: Atom. Mol. Phys. 10, L183-189 (1977). F. Merkt, A. Osterwalder, Int. Rev. Phys. Chem. 21, 385-403 (2002). M. Schäfer, M. Andrist, H. Schmutz, F. Lewen, G. Winnewisser, F. Merkt, J. Phys. B: At. Mol. Opt. Phys. 39, 831-845 (2006) M. Schäfer, F. Merkt, Phys. Rev. A, 74, 062506 (2006). A. Osterwalder, A. Wüest, F. Merkt, Ch. Jungen, J. Chem. Phys., 121, 11810

  1. Spin-orbital-angular-momentum coupling in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Zhang, Chuanwei

    2015-06-01

    Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context, the recent experimental realization of the coupling between spin and linear momentum of ultracold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here we propose that another important and fundamental SOC, the coupling between spin and orbital angular momentum (SOAM), can be implemented for ultracold atoms using higher-order Laguerre-Gaussian laser beams to induce Raman coupling between two hyperfine spin states of atoms. We study the ground-state phase diagrams of SOAM-coupled Bose-Einstein condensates on a ring trap and explore their applications in gravitational force detection. Our results may provide the basis for further investigation of intriguing superfluid physics induced by SOAM coupling, such as collective excitations.

  2. Effect of spin-orbit coupling on magnetoresistance in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Nguyen, T. D.; Veeraraghavan, G.; Mermer, Ö.; Wohlgenannt, M.

    2007-01-01

    We study the recently discovered organic magnetoresistance (OMAR) effect in a pair of materials that have similar chemical structures except that one contains a heavy atom to enhance spin-orbit coupling. We use photoluminescence spectroscopy to estimate the spin-orbit coupling strength. In the material with weak spin-orbit coupling the characteristic magnetic field scale is comparable to the hyperfine coupling strength. In the material with strong spin-orbit coupling we find that the OMAR is strongly reduced in size and the OMAR traces clearly exhibit a second, higher field scale which we identify with the spin-orbit coupling strength. We model our results using the standard spin-dynamics Hamiltonian.

  3. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  4. Spectroscopy of {sup 127}I{sub 2} hyperfine structure near 532 mm using frequency - doubled diode - laser - pumped Nd:YAG lasers

    SciTech Connect

    Guellati, S.; Elandaloussi, H.; Fretel, E.

    1994-12-31

    Frequency - doubled diode - laser - pumped Nd : Yag laser can constitute an interesting optical standard around 532 nm. More than ten of {sup 127}I{sub 2} lines can be observed inside the laser spectral range. Two independent systems, stabilized on one {sup 127}I{sub 2} hyperfine component, are used to check the frequency long term stability for metrological purpose.

  5. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    SciTech Connect

    Lanza, Mathieu; Lique, François

    2014-10-28

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the results suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.

  6. Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Yasir, Kashif Ammar; Zhuang, Lin; Liu, Wu-Ming

    2017-01-01

    We report a spin-orbit-coupling-induced backaction cooling in an optomechanical system, composed of a spin-orbit-coupled Bose-Einstein condensate trapped in an optical cavity with one movable end mirror, by suppressing heating effects of quantum noises. The collective density excitations of the spin-orbit-coupling-mediated hyperfine states—serving as atomic oscillators equally coupled to the cavity field—trigger strongly driven atomic backaction. We find that the backaction not only revamps low-temperature dynamics of its own but also provides an opportunity to cool the mechanical mirror to its quantum-mechanical ground state. Further, we demonstrate that the strength of spin-orbit coupling also superintends dynamic structure factor and squeezes nonlinear quantum noises, like thermomechanical and photon shot noise, which enhances optomechanical features of the hybrid cavity beyond previous investigations. Our findings are testable in a realistic setup and enhance the functionality of cavity optomechanics with spin-orbit-coupled hyperfine states in the field of quantum optics and quantum computation.

  7. Measurement of collective excitations in a spin-orbit-coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Khamehchi, M. A.; Zhang, Yongping; Hamner, Chris; Busch, Thomas; Engels, Peter

    2014-12-01

    We measure the collective excitation spectrum of a spin-orbit-coupled Bose-Einstein condensate using Bragg spectroscopy. The spin-orbit coupling is generated by Raman dressing of atomic hyperfine states. When the Raman detuning is reduced, mode softening at a finite momentum is revealed, which provides insight into a supersolid-like phase transition. We find that for the parameters of our system, this softening stops at a finite excitation gap and is symmetric under a sign change of the Raman detuning. Finally, using a moving barrier that is swept through the BEC, we also show the effect of the collective excitation on the fluid dynamics.

  8. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  9. Measurement of the blackbody radiation shift of the {sup 133}Cs hyperfine transition in an atomic fountain

    SciTech Connect

    Levi, Filippo; Calonico, Davide; Lorini, Luca; Micalizio, Salvatore; Godone, Aldo

    2004-09-01

    We used a Cs fountain to measure the Stark shift of the ground-state hyperfine transition frequency in cesium (9.2 GHz) due to the electric field of the blackbody radiation. The relative shift at 300 K deduced from our measurements, including the leading and the second-order term in temperature, is (-1.45{+-}0.09)x10{sup -14} and agrees with our recent theoretical evaluation (-1.51{+-}0.07)x10{sup -14} [Micalizio et al. Phys. Rev. A 69, 053401 (2004)]. These values differ from that currently used (-1.735{+-}0.003)x10{sup -14}, with significant implications on frequency standards accuracy, on clocks comparison and on a variety of high-precision physics tests, such as the time stability of fundamental constants.

  10. Trace analysis of rubidium hyperfine structure in a flame atomizer using sub-Doppler laser wave-mixing spectroscopy.

    PubMed

    Weed, Kenneth M; Tong, William G

    2003-12-01

    Nonlinear laser wave mixing is a versatile spectroscopic method for trace elemental analysis at high spectral resolution. Sub-Doppler spectral resolution allows isotope and hyperfine structure measurements of some of the elements even when using a room-pressure analytical flame (i.e., sub-Doppler but Lorentzian broadened spectra). A non-planar wave-mixing optical setup offers some advantages as compared to the conventional planar wave-mixing setup including better signal collection efficiency and easier optical alignment. Using our absorption-based wave mixing, a detection limit of 0.05 ng/mL (i.e., 50 parts-per-trillion) is reported for Rb in an air/acetylene flame, while still maintaining sub-Doppler spectral resolution for the infrared 780.0-nm Rb transition line.

  11. Re-appraisal of the hyperfine-structure constants in YbF: relativistic configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Naik, Deepali; Sikarwar, Manu; Nayak, Malaya K.; Ghosh, Swapan K.

    2014-11-01

    Ab initio calculation of the spin rotational Hamiltonian parameters A and Ad has been performed using a fully-relativistic restricted active space (RAS) configuration interaction (CI) method for the YbF molecule. These calculations lead to the results for the hyperfine-structure constants as A = 6725 MHz, and Ad = 86 MHz, which agree favorably well with some previous correlated calculations and experimental findings. The convergence behavior of the parameters A and Ad with respect to the size of the active space and basis set has been tested satisfactorily for the reliability of the present results (within an uncertainty of ˜7%). Further, we believe that the theoretical estimates of some symmetry violating interaction constants like Wd can also be predicted with similar accuracy using the RASCI method.

  12. High-Accuracy Measurement of the Blackbody Radiation Frequency Shift of the Ground-State Hyperfine Transition in Cs133

    NASA Astrophysics Data System (ADS)

    Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Shirley, J. H.; Donley, E. A.; Ashby, N.; Levi, F.; Calonico, D.; Costanzo, G. A.

    2014-02-01

    We report a high-accuracy direct measurement of the blackbody radiation shift of the Cs133 ground-state hyperfine transition. This frequency shift is one of the largest systematic frequency biases encountered in realizing the current definition of the International System of Units (SI) second. Uncertainty in the blackbody radiation frequency shift correction has led to its being the focus of intense theoretical effort by a variety of research groups. Our experimental measurement of the shift used three primary frequency standards operating at different temperatures. We achieved an uncertainty a factor of five smaller than the previous best direct measurement. These results tend to validate the claimed accuracy of the recently calculated values.

  13. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    PubMed

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  14. Hyperfine structures, isotope shifts, and transition rates of C II, N III, and O IV from relativistic configuration interaction calculations

    SciTech Connect

    Joensson, Per Li Jiguang; Gaigalas, Gediminas; Dong Chenzhong

    2010-05-15

    Energy levels, specific mass shift parameters, hyperfine interaction constants, Landeg{sub J} factors, and transition probabilities between computed levels are reported for C II, N III, and O IV. Results include levels belonging to 2s{sup 2}2p,2s2p{sup 2},2p{sup 3},2s{sup 2}3s,2s{sup 2}3p,2s{sup 2}3d,2s2p3s and, in the case of C II, the 2s{sup 2}4s and 2s{sup 2}4p configurations. Wavefunctions were determined using the multiconfiguration Dirac-Hartree-Fock method and account for valence, core-valence, and core-core correlation effects.

  15. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, G.; Miller, R.; Ogden, L.; Kavand, M.; Jamali, S.; Ambal, K.; Venkatesh, S.; Schurig, D.; Malissa, H.; Lupton, J. M.; Boehme, C.

    2016-09-01

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

  16. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  17. Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime

    NASA Astrophysics Data System (ADS)

    Whiting, Daniel J.; Keaveney, James; Adams, Charles S.; Hughes, Ifan G.

    2016-04-01

    Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the |<5 P ||e r ||5 D >| matrix element in 87Rb. An analytic model with only three levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi frequencies are used to determine the dipole matrix element. We measure |<5 P3 /2||e r ||5 D5 /2>| =(2.290 ±0 .002stat±0 .04syst) e a0 , which is in excellent agreement with the theoretical calculations of Safronova, Williams, and Clark [Phys. Rev. A 69, 022509 (2004), 10.1103/PhysRevA.69.022509].

  18. Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2004-09-01

    The infinite-order regular approximation (IORA) and IORA with modified metric (IORAmm) is used to develop an algorithm for calculating relativistically corrected isotropic hyperfine structure (HFS) constants. The new method is applied to the calculation of alkali atoms Li-Fr, coinage metal atoms Cu, Ag, and Au, the Hg+ radical ion, and the mercury containing radicals HgH, HgCH3, HgCN, and HgF. By stepwise improvement of the level of theory from Hartree-Fock to second-order Møller-Plesset theory and to quadratic configuration interaction theory with single and double excitations, isotropic HFS constants of high accuracy were obtained for atoms and for molecular radicals. The importance of relativistic corrections is demonstrated.

  19. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.

    PubMed

    Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P

    2016-02-29

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands.

  20. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins

    PubMed Central

    Khamehchi, M. A.; Qu, Chunlei; Mossman, M. E.; Zhang, Chuanwei; Engels, P.

    2016-01-01

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s–p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands. PMID:26924575

  1. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  2. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  3. The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Burda, K.; Strzałka, K.; Stanek, J.

    1993-12-01

    Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.

  4. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    for the hyperfine splitting constant An,j ,0 (HFS ). As an application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  5. Unrestricted Hartree-Fock Investigation of the Electron Distribution on the Heme System in Azidohemoglobin-^57mFe and ^14N Hyperfine Interactions.

    NASA Astrophysics Data System (ADS)

    Dubey, Archana; Saha, H. P.; Chow, Lee; Scheicher, R. H.; Sahoo, N.; Pink, R. H.; Mahato, Dip N.; Huang, M. B.; Das, T. P.

    2006-03-01

    We have a program of investigations in progress on the electronic structure of azidohemoglobin by the first-principles Unrestricted Hartree-Fock procedure to understand the substantial amount of magnetic (g-tensor), magnetic hyperfine, and nuclear quadrupole interaction, data available [1] from electron paramagnetic resonance, Mosbauer and electron-nuclear double resonance measurements. Earlier semi-empirical Self-Consistent Charge Extended Huckel investigations have provided semiquantitative results [2] with different degrees of agreement for the available properties and suggested the need for more accurate and quantitative investigations. Results of our investigations will be presented for the ^57mFe and ^14N nuclear quadrupole and magnetic hyperfine interaction properties and compared with experimental data. *Also UCF Orlando [1] See Refs. 2-4 listed in Ref.[2]. [2] Santosh K. Mishra, J.N. Roy, K.C. Mishra and T.P. Das, Theo. Chim. Acta 75, 195(1989).

  6. Hyperfine polarization and its normal gradient coefficient of (87)Rb atoms in the vicinity (approximately 10(-5) cm) of coated and uncoated Pyrex glass surfaces.

    PubMed

    Zhao, K; Wu, Z

    2003-09-12

    We have made regionally specific measurement of the hyperfine polarization of 87Rb atoms in the vicinity ( approximately 10(-5) cm) of coated and uncoated Pyrex glass surfaces. We find that the polarization near an uncoated surface decreases rapidly with decreasing distance from the surface whereas for a silicone-coated surface the polarization is independent of the distance from the surface. We have also determined the normal gradient coefficient micro (S.I) of the hyperfine polarization in uncoated cells. In a representative uncoated cell, at a Rb density 7.35 x 10(13) cm(-3) and a pump beam intensity 1.3 W/cm(2), we find micro(S.I)=24+/-7 microm(-1).

  7. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  8. Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Zhang, Shanchao; Hajiyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong

    2016-12-01

    We demonstrate all-optical implementation of spin-orbit coupling (SOC) in a two-electron Fermi gas of 173Yb atoms by coupling two hyperfine ground states with a narrow optical transition. Due to the SU (N ) symmetry of the S10 ground-state manifold which is insensitive to external magnetic fields, an optical ac Stark effect is applied to split the ground spin states, which exhibits a high stability compared with experiments on alkali-metal and lanthanide atoms, and separate out an effective spin-1/2 subspace from other hyperfine levels for the realization of SOC. The dephasing spin dynamics when a momentum-dependent spin-orbit gap is suddenly opened and the asymmetric momentum distribution of the spin-orbit-coupled Fermi gas are observed as a hallmark of SOC. The realization of all-optical SOC for ytterbium fermions should offer a route to a long-lived spin-orbit-coupled Fermi gas and greatly expand our capability of studying spin-orbit physics with alkaline-earth-metal-like atoms.

  9. Charge distribution and hyperfine interactions in the vicinity of impurity sites in In2O3 doped with Fe, Co, and Ni

    NASA Astrophysics Data System (ADS)

    Sena, C.; Costa, M. S.; Muñoz, E. L.; Cabrera-Pasca, G. A.; Pereira, L. F. D.; Mestnik-Filho, J.; Carbonari, A. W.; Coaquira, J. A. H.

    2015-08-01

    In this paper, first-principles calculations based on density functional theory (DFT) were used to determine TM (TM=Fe, Ni, Co) and Cd impurity locations in the In2O3 host structure, their charge states, the electronic and structural relaxations induced in the host lattice as well as to interpret previous and supplementary experimental results of hyperfine interactions. Different techniques were carried out to characterize TM-doped In2O3 bulk samples prepared by the sol-gel method starting from very pure metals. Perturbed angular correlation (PAC) spectroscopy, a sensitive nuclear technique capable of measuring interactions from electronic charge and spins within an atomic distance, was used to experimentally determine hyperfine interactions at cation sites of In2O3 doped with Co and Ni using 111In →111Cd as probe nuclei. Room temperature results of magnetization measurements in In2O3 doped with Fe, Co and Ni show ferromagnetic ordering coexisting with a paramagnetic behavior for all samples. Results of PAC spectroscopy and DFT calculations show that TM atoms locate as second nearest neighbors of Cd probes preferentially occupy symmetric sites of the doped In2O3 crystal structure with lattice parameters slightly different from that of pure In2O3. Moreover, while a major population of 111Cd probes observes almost the same hyperfine interactions measured for pure In2O3, a small population detects magnetic dipole interactions with magnetic hyperfine field at Cd probes of 2.6 T, 3.1 T, and 4.6 T, respectively for Ni, Co, and Fe doping presenting an almost linear dependence on the number of unpaired 3d electrons of the transition metal impurity.

  10. Hyperfine splitting of the 2s1/2 and 2p1/2 levels in lithium-like Pr56+

    DOE PAGES

    Trabert, E.; Beiersdorfer, P.; Brown, G. V.; ...

    2015-01-29

    Measurements of hyperfine splittings in highly charged ions are sensitive to details of the nuclear structure and the nuclear magnetic field distribution, but the proper interpretation of the measurements requires that the atomic structure is understood in sufficient detail. Lastly, we discuss the reasoning behind various recent experiments and what advantage is offered by the study of the Li-like ion of a mid-Z element such as praseodymium.

  11. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  12. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  13. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  14. Polarization quantum beat spectroscopy of HCF(A1A"). I. 19F and 1H hyperfine structure and Zeeman effect.

    PubMed

    Fan, Haiyan; Ionescu, Ionela; Xin, Ju; Reid, Scott A

    2004-11-08

    To further investigate the (19)F and (1)H nuclear hyperfine structure and Zeeman effect in the simplest singlet carbene, HCF, we recorded polarization quantum beat spectra (QBS) of the pure bending levels 2(0) (n) with n = 0-7 and combination bands 1(0) (1)2(0) (n) with n = 1-6 and 2(0) (n)3(0) (1) with n = 0-3 in the HCF A(1)A(")<--X(1)A(') system. The spectra were measured under jet-cooled conditions using a pulsed discharge source, both at zero field and under application of a weak magnetic field (<30 G). Analysis yielded the nuclear spin-rotation constants C(aa) and weak field Lande g(aa) factors. Consistent with a two-state model, the majority of observed vibrational levels exhibit a linear correlation of C(aa) and g(aa), and our analysis yielded effective (a) hyperfine constants for the (19)F and (1)H nuclei (in MHz) of 728(23) and 55(2), respectively. The latter was determined here owing to the high resolving power of QBS. The vibrational state selectivity of the (19)F hyperfine constants is discussed, and we suggest that the underlying Renner-Teller interaction may play an important role.

  15. Imaging the Stereodynamics of Cl + CH4(ν3 = 1): Polarization Dependence on the Rotational Branch and the Hyperfine Depolarization.

    PubMed

    Pan, Huilin; Yang, Jiayue; Wang, Fengyan; Liu, Kopin

    2014-11-06

    The transition state in the Cl + CH4 reaction is of Cl-H-C collinear geometry, which serves as the bottleneck to reaction. When the reactant CH4 is antisymmetrically stretch-excited to ν3 = 1 by absorbing a linearly polarized photon, all four C-H bonds are collectively excited, and any one of the H atoms could be attacked by the Cl atom. At first sight, it is not obvious how an excited spherical-top molecule like CH4 is aligned and what consequences will be on chemical reactivity by polarizing the CH4 reagents. As shown here, an enormous steric effect on reactivity is observed, which depends sensitively on the selected rotational states. By exploiting various rotational branches in optical excitation, we quantify the degree of stereospecificity for a few lowest rovibrational states of the aligned CH4(ν3 = 1) reagents, as well as account for the hyperfine depolarization factor. This information lays the foundation for a full stereorequirement study of the Cl + CH4(ν3 = 1) reaction.

  16. Electronic spectroscopy of jet-cooled HCP+: molecular structure, phosphorus hyperfine structure, and Renner-Teller analysis.

    PubMed

    Sunahori, Fumie X; Zhang, Xiaopeng; Clouthier, Dennis J

    2007-09-14

    Laser-induced fluorescence spectra of jet-cooled HCP(+) and DCP(+) have been obtained with the pulsed discharge technique using HCPDCP and argon precursor mixtures. Transitions involving all of the excited state vibrations have been observed and a set of vibrational constants has been obtained. High-resolution spectra of the (2)Pi(32) components of the 0(0) (0) bands of both isotopomers have been recorded, and these spectra show resolved phosphorus hyperfine structure which allowed the determination of the excited state Fermi contact parameter. The B values were used to obtain the ground and excited state effective geometric parameters as r(0) (")(CH)=1.077(2) A, r(0) (")(CP)=1.6013(3) A, r(0) (')(CH)=1.082(2) A, and r(0) (')(CP)=1.5331(3) A. A Renner-Teller analysis of the ground state vibrational energy levels obtained from the literature was attempted. All of the observed levels of DCP(+) and the majority of those of HCP(+) were satisfactorily fitted with a standard Renner-Teller model, but three HCP(+) levels showed large systematic deviations which could not be accommodated by reassignments or improvements in the Fermi resonance Hamiltonian. Further improvements in the theory or in the experimental data will be needed to resolve this discrepancy.

  17. Investigations of the g factors and hyperfine structure parameters for Er3+ ion in zircon-type compounds.

    PubMed

    Shao-Yi, Wu; Wen-Chen, Zheng

    2002-12-01

    The electron paramagnetic resonance (EPR) g factors g(parallel), g(perpendicular) and hyperfine structure parameters A(parallel), A(perpendicular) of the tetragonal Er3+ centers in zircon-type compounds YXO4 (X = As, P, V), ScVO4 and RSiO4 (R = Zr, Hf, Th) are calculated from the perturbation formulas of EPR parameters for 4f11 ion in tetragonal symmetry. In these formulas, the second-order perturbation contributions are included in addition to the first-order perturbation contributions considered in the previous papers. The crystal-field parameters used in the calculations are obtained by analyzing the optical spectral data from the superposition model. Although the superposition model intrinsic parameters An(R0) used in this paper for Er3+ in various zircon-type compounds are not as scattered as those in the previous paper, the calculated results of both the optical spectra and EPR parameters show better agreement than those in the previous paper with the observed values, suggesting that the above calculation method and parameters are more reasonable. The contributions of the second-order perturbation terms to EPR parameters are also discussed.

  18. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Salah, Dina; Kumar, Gagan; Kumar, Arun; Singh, Mahavir; Abd El-sadek, M.; Mir, Feroz Ahmad; Imran, Ahamad; Jameel, Daler Adil

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu2+ substitution effect in CoFe2-xO4 Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu2+ ion substitution. The anisotropy constant, K1, is found strongly dependent on the composition of Cu2+ ions. The variation of saturation magnetization with increasing Cu2+ ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu2+ ion concentration have been discussed.

  19. Annihilation detector for an in-beam spectroscopy apparatus to measure the ground state hyperfine splitting of antihydrogen

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Capon, Aaron A.; Diermaier, Martin; Fleck, Markus; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Simon, Martin C.; Vamosi, Stefan; Zmeskal, Johann; Widmann, Eberhard

    2017-02-01

    The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen-the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector.

  20. Nonadiabatic Coupling

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  1. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  2. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  3. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  4. Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots

    PubMed Central

    Nichol, John M.; Harvey, Shannon P.; Shulman, Michael D.; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I.; Halperin, Bertrand I.; Yacoby, Amir

    2015-01-01

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin–orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron–nuclear system, despite weak spin–orbit coupling in GaAs. Using Landau–Zener sweeps to measure static and dynamic properties of the electron spin–flip probability, we observe that the size of the spin–orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin–orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin–orbit coupling in central-spin systems. PMID:26184854

  5. Automatic fitting to `powder' EPR spectra of coupled paramagnetic species employing Feynman's theorem

    NASA Astrophysics Data System (ADS)

    Lund, Anders; Gustafsson, Håkan; Maruani, Jean; Shiotani, Masaru

    2006-03-01

    A previous automatic fitting procedure of EPR spectra has been extended with the purpose to characterise coupled paramagnetic complexes in powders and frozen solutions. The theoretical EPR spectra were obtained by matrix diagonalization of a general spin Hamiltonian. A least-squares fitting procedure using analytical derivatives of the calculated spectrum with respect to the spectroscopic, fine structure, nuclear quadrupole, electron-electron, and hyperfine coupling tensors was used to refine those parameters. The powder spectra of matrix isolated rad CF 3 and RCF 2CF 2rad radicals, previously measured at low temperature, were reanalysed with this method. A theoretically modeled complex consisting of a Cu 2+ ion, featuring an axially symmetric g-tensor and 63Cu hyperfine structure anisotropy, and a free radical located at different orientations, with respect to the symmetry axis of the Cu 2+ ion, was examined in order to investigate the possibility to recover the magnetic parameters of the separate units and the magnetic couplings between them.

  6. Mössbauer hyperfine parameters of iron species in the course of Geobacter-mediated magnetite mineralization

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Zhu, San-Yuan; Deng, Kun

    2011-10-01

    Amorphous ferric iron species (ferrihydrite or akaganeite of <5 nm in size) is the only known solid ferric iron oxide that can be reductively transformed by dissimilatory iron-reducing bacteria to magnetite completely. The lepidocrocite crystallite can be transformed into magnetite in the presence of abiotic Fe(II) at elevated pH or biogenic Fe(II) with particular growth conditions. The reduction of lepidocrocite by dissimilatory iron-reducing bacteria has been widely investigated showing varying results. Vali et al. (Proc Natl Acad Sci USA 101:16121-16126, 2004) captured a unique biologically mediated mineralization pathway where the amorphous hydrous ferric oxide transformed to lepidocrocite was followed by the complete reduction of lepidocrocite to single-domain magnetite. Here, we report the 57Fe Mössbauer hyperfine parameters of the time-course samples reported in Vali et al. (Proc Natl Acad Sci USA 101:16121-16126, 2004). Both the quadrupole splittings and linewidths of Fe(III) ions decrease consistently with the change of aqueous Fe(II) and transformations of mineral phases, showing the Fe(II)-mediated gradual regulation of the distorted coordination polyhedrons of Fe3+ during the biomineralization process. The aqueous Fe(II) catalyzes the transformations of Fe(III) minerals but does not enter the mineral structures until the mineralization of magnetite. The simulated abiotic reaction between Fe(II) and lepidocrocite in pH-buffered, anaerobic media shows the simultaneous formation of green rust and its gradual transformation to magnetite plus a small fraction of goethite. We suggested that the dynamics of Fe(II) supply is a critical factor for the mineral transformation in the dissimilatory iron-reducing cultures.

  7. Optical Spectroscopic Measurements of Isotope Shift and Hyperfine Structure in BISMUTH-207, BISMUTH-208 and LEAD-205.

    NASA Astrophysics Data System (ADS)

    Barboza Flores, Marcelino

    The isotope shift and hyperfine structure (hfs) of 38-yr ^{207}Bi and 3.7 times 10^5 -yr ^{208}Bi were measured, in the 6p^3 ^4S_ {1/2} - 6p^2 7s ^4P_{1/2} 306.7-nm resonance line, as well as the isotope shift of 1.4 times 10^7-yr ^ {205}Pb in the 6p^2 ^3P_0 - 6p7s ^3P_1 283.3-nm transition. A 9.1-m focal-length Czerny-Turner grating monochromator with a 25-cm wide diffraction grating (resolving power ~10^6) was used to obtain high resolution absorption spectra of an atomic vapor of lead and bismuth. The spectra were recorded photoelectrically using a signal-averaging spectrum scanning technique. The measured isotope shifts are IS(^ {207}Bi-^{209} Bi) = 0.0999(20) cm^{-1} , IS(^{208}Bi- ^{209}Bi) = 0.072(6) cm ^{-1} and IS(^ {205}Pb-^{208} Pb) = -123.9(2.0) times 10^{-3} cm ^{-1}. The derived magnetic dipole (A) and electric quadrupole (B) hfs interaction constants are A(^4P_{1/2})= 0.1630(3) cm^{-1}, B( ^4S_{3/2}) = -0.016(3) cm^{-1} for ^{207}Bi and A( ^4P_{1/2}) = 0.1639(20) cm^{-1} for ^ {208}Bi. The nuclear magnetic dipole (mu) and electric quadrupole moment (Q) were found to be mu(^{207 }Bi) = 4.051(7)mu_{N }, Q(^{207}Bi) = -0.60(11)b and mu(^ {208}Bi) = 4.52(6)mu_ {N}. The magnetic dipole moments agree with theoretical predictions based on the nuclear shell model including configuration mixing and meson exchange contributions.

  8. Inherent interface defects in thermal (211)Si/SiO{sub 2}:{sup 29}Si hyperfine interaction

    SciTech Connect

    Iacovo, Serena E-mail: andre.stesmans@fys.kuleuven.be; Stesmans, Andre E-mail: andre.stesmans@fys.kuleuven.be

    2014-10-21

    Low temperature electron spin resonance (ESR) studies were carried out on ‘higher index’ (211)Si/SiO{sub 2} interfaces thermally grown in the temperature range T{sub ox} = 400–1066°C. The data reveal the presence of two species of a P{sub b}-type interface defect, exhibiting a significant difference in defect density. On the basis of the pertinent ESR parameters and interface symmetry, the basic defect is typified as P{sub b0}{sup (211)}, close to the Pb0 center observed in standard (100)Si/SiO{sub 2}. The dominant type is found to pertain to defected Si atoms at (111)Si-face terraces with the dangling bond along the [111] direction at ∼19.5°C with the interface normal, these sites thus apparently predominantly accounting for interface mismatch adaptation. The total of the P{sub b}-type defect appearance clearly reflects the higher-index nature of the interface. It is found that T{sub ox} = 750°C is required to minimize the P{sub b0}{sup (211)} defect density through relaxation of the oxide (interface). Q-band ESR saturation spectroscopy reveals an anisotropic {sup 29}Si (nuclear spin I=1/2) hyperfine (hf) doublet associated with the central P{sub b0}{sup (211)} Zeeman signal, with hf parameters closest to those of the similar hf structure of the P{sub b0}{sup (110)} defect in thermal (110)Si/SiO{sub 2}, adducing independent support to the P{sub b0}{sup (211)} typification.

  9. Single-Crystal Equations of State and Hyperfine Fields of Magnesiowüstite at High Pressures

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Zhang, D.; Jackson, J. M.

    2015-12-01

    In recent years, seismic observations have provided increasing evidence for significant heterogeneity in Earth's lower mantle at both large (i.e. large low shear velocity provinces, or LLSVPs) and comparatively small (ultra-low velocity zones, or ULVZs) scales. One possible source of heterogeneity is variation in the Fe-content of the (Mg,Fe)O component of the lower mantle due to melting events and/or reactions with Earth's outer core. Most previous studies have focused on compositions containing ~10-20 mol% Fe, but small amounts of compositions with an enhanced Fe concentration may strongly impact the elastic properties of the bulk phase assemblage. Here, we present results from two high-precision single-crystal x-ray diffraction studies on (Fe0.78Mg0.22)O magnesiowüstite to pressures of about 55 GPa at 300 K, one using neon and the other using helium as pressure-transmitting media. We observe a noticeably different compression behavior in the two pressure media at pressures greater than about 20 GPa, and compare to previous work on similar compositions. We also conducted a complementary single-crystal time domain synchrotron Mössbauer spectroscopy (SMS) study on the same composition in a helium medium to about 70 GPa to gain insight into the atom-scale properties of the Fe sublattice. We discuss the resulting hyperfine fields as a function of pressure, including the isomer shift, quadrupole splitting, magnetic, and texturing parameters. The advantages of using single crystals for such investigations will also be discussed. Finally, implications for the elastic properties of magnesiowüstite in the deep mantle will be considered.

  10. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni0.5Zn0.5Fe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Kaustav; Pati, Satya P.; Das, G. C.; Das, D.; Chattopadhyay, K. K.

    2014-12-01

    Ni0.5Zn0.5Fe2O4 nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (⟨ɛ2⟩1/2), oxygen positional parameter (u), metal-oxygen bond lengths ( RO A and RO B ), and the band positions (ν1and ν2) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni0.5Zn0.5Fe2O4 nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  11. Hyperfine and X-ray investigations of amorphous Fe2Er and Fe2Ce alloys and the effect of hydrogenation on short-range order

    NASA Astrophysics Data System (ADS)

    Ghafari, M.; Keune, W.; Matsuura, M.; Schletz, K. P.

    1990-07-01

    The effect of hydrogenation on the short-range order of amorphous Fe2Er and Fe2Ce alloys has been investigated by Mössbauer, X-ray and magnetization measurements. The hydrogenation leads to drastic changes in the short-range order. The results of Mössbauer measurements show two different distributions of magnetic hyperfine fields for amorphous Fe2CeH4 alloys (a-Fe2CeH4). For a-Fe2ErH3 alloys we found drastic changes in magnetic structure, which is different from the well-known magnetic structures.

  12. Lower bound for the variation of the hyperfine populations in the ground state of spin-1 condensates against a magnetic field

    NASA Astrophysics Data System (ADS)

    Xie, W. F.; He, Y. Z.; Bao, C. G.

    2015-10-01

    A simple and analytical expression for the variation of the lower bound and upper bound of the population density ρ0 of hyperfine component μ = 0 particles in the ground state of spin-1 condensates against a magnetic field B has been derived. The lower bound has a distinguished feature, namely, it will tend to the actual ρ0 when B tends to zero and infinite. This feature assures that, in the whole range of B, the lower bound can provide an effective constraint. Numerical examples are given to demonstrate the applicability of the bound.

  13. First corrections to hyperfine splitting and the Lamb shift induced by diagrams with two external photons and second-order radiative insertions in the electron line

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1994-07-01

    Contributions to hyperfine splitting (HFS) and to the Lamb shift on the order of {alpha}{sup 2}(Z{alpha}){sup 5} induced by graphs with two radiative photons inserted into the electron line are considered. It is shown that this gauge-invariant set of diagrams, which give corrections of the considered order, consists of nineteen topologically different diagrams. Contributions to both HFS and the Lamb shift induced by graphs containing the one-loop electron self-energy as a subgraph and by the graph containing two one-loop vertices are obtained. 15 refs., 3 figs.

  14. Corrections to hyperfine splitting and the Lamb shift due to the insertion of the two-loop electron self-energy with overlapping divergences in the electron line

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1994-12-01

    Contributions on the order of {alpha}{sup 2}(Z{alpha}){sup 5} to hyperfine splitting (HFS) and the Lamb shift due to the insertion of the two-loop electron self-energy diagram with overlapping divergences in the electron line are considered. An explicit expression for the two-loop self-energy diagram with overlapping divergences is obtained in the Fried-Yennie gauge. Contributions to HFS and the Lamb shift due to the diagram containing this subgraph are calculated. 5 refs., 1 fig.

  15. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.

    2014-06-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  16. Observation of a very large internal hyperfine field (62.4 T) in the ferromagnetically ordered state of the S = 1 alpha-iron(II) octaethyltetraazaporphyrin.

    PubMed

    Reiff, W M; Frommen, C M; Yee, G T; Sellers, S P

    2000-05-15

    The origins of the extraordinarily large internal hyperfine field (62.4 T) for the three-dimensional (weak) ferromagnetically ordered ground state of alpha-Fe(OETAP) are discussed semiquantitatively in terms of existing physical theory. In particular, the classical Fermi-contact contribution to the internal field is found to be highly enhanced by a very large orbital contribution and a significant dipolar term of the same sign. A rationale for the unexpected ordering of this S = 1 non-Kramers system is also presented.

  17. Spin-orbit coupling and paramagnetic relaxation in micellized triplet radical pairs. Determination of relaxation parameters from magnetic field dependences of the decay kinetics

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1990-01-01

    The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.

  18. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  19. Radical-pair model of magnetoreception with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lambert, Neill; De Liberato, Simone; Emary, Clive; Nori, Franco

    2013-08-01

    The mechanism used by migratory birds to orientate themselves using the geomagnetic field is still a mystery in many species. The radical pair mechanism, in which very weak magnetic fields can influence certain types of spin-dependent chemical reactions, leading to biologically observable signals, has recently imposed itself as one of the most promising candidates for certain species. This is thanks both to its extreme sensitivity and its capacity to reproduce results from behavioral studies. Still, in order to gain a directional sensitivity, an anisotropic mechanism is needed. Recent proposals have explored the possibility that such an anisotropy is due to the electron-nucleus hyperfine interaction. In this work we explore a different possibility, in which the anisotropy is due to spin-orbit coupling between the electron spin and its angular momentum. We will show how a spin-orbit coupling-based magnetic compass can have performances comparable with the usually studied nuclear hyperfine based mechanism. Our results could thus help researchers actively looking for candidate biological molecules which may host magnetoreceptive functions, both to describe magnetoreception in birds as well as to develop artificial chemical compass systems.

  20. A hybrid quantum system of atoms trapped on ultrathin optical fibers coupled to superconductors

    NASA Astrophysics Data System (ADS)

    Rolston, S. L.; Anderson, J. R.; Chukwu, U.; Grover, J.; Hertzberg, J. B.; Hoffman, J. E.; Kordell, P.; Lee, J.; Lobb, C. J.; Orozco, L. A.; Ravets, S.; Solano, P.; Voigt, K. D.; Wellstood, F. C.; Wong-Campos, J. D.; Beadie, G.; Fatemi, F. K.

    2013-09-01

    Hybrid quantum systems can be formed that combine the strengths of multiple platforms while avoiding the weaknesses. Here we report on progress toward a hybrid quantum system of neutral atom spins coupled to superconducting qubits. We trap laser-cooled rubidium atoms in the evanescent field of an ultrathin optical fiber, which will be suspended a few microns above a superconducting circuit that resonates at the hyperfine frequency of the Rb atoms, allowing magnetic coupling between the atoms and superconductor. As this will be done in a dilution refrigerator environment, the technical demands on the optical fiber is severe. We have developed and optimized a tapered fiber fabrication system, achieving optical transmission in excess of 99.95% , and fibers that can sustain 400 mW of optical power in a UHV environment. We have also optimized tapered fibers that can support higher order optical modes with high transmission (> 97%), which may be useful for different optical potential geometries. We have developed an in-situ tunable high-Q superconducting microwave resonator that can be tuned to within the resonator linewidth of the 6.8 GHz frequency of the Rb hyperfine transition.

  1. Lower bound for the hyperfine populations of spin-2 condensates against a magnetic field under the single-spatial-mode approximation

    NASA Astrophysics Data System (ADS)

    Liu, Y. M.; He, Y. Z.; Bao, C. G.

    2015-12-01

    The variation of the hyperfine populations N ρμ of the ground state (g.s.) of spin-2 condensates against a magnetic field B is studied. A N -body theory which is rigorous in dealing with the spin degrees of freedom has been adopted. The conservation of the total magnetization M is assumed. A combined hyperfine population N ρcomb=N (ρ0-3 ρ2-3 ρ-2) , which is an observable, is defined. The lower bound for this population has been derived analytically. It turns out that the lower bound is identical to the actual population when B =0 and ∞ , and the population is monotonically uprising in between. Thus, via the analytical form of the lower bound, the variation of the population against B can be roughly known in advance. Numerical examples are given to demonstrate the applicability of the bound. When M =0 , the g.s. in the polar phase was found to be highly unstable against B because the neighboring level density is extremely high. When M =N , the g.s. in the cyclic phase was also found to be highly unstable. This is because the appearance of B , even if it is very weak, will break the high degeneracy of the g.s. and result in having numerous levels emerging in the neighborhood of the g.s.

  2. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s/sup 2/ configuration of the neutral rare earths

    SciTech Connect

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s/sup 2/ configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence.

  3. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    SciTech Connect

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.; Stenflo, J. O. E-mail: knn@iiap.res.in E-mail: stenflo@astro.phys.ethz.ch

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scattering atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.

  4. Assignment of selected hyperfine proton NMR resonances in the met forms of Glycera dibranchiata monomer hemoglobins and comparisons with sperm whale metmyoglobin

    SciTech Connect

    Constantinidis, I.; Satterlee, J.D.; Pandey, R.K.; Leung, H.K.; Smith, K.M.

    1988-04-19

    This work indicates a high degree of purity for our preparations of all three of the primary Glycera dibranchiata monomer hemoglobins and details assignments of the heme methyl and vinyl protons in the hyperfine shift region of the ferric (aquo.) protein forms. The assignments were carried out by reconstituting the apoproteins of each component with selectively deuteriated hemes. The results indicate that even though the individual component preparations consist of essentially a single protein, the proton NMR spectra indicate spectroscopic heterogeneity. Evidence is presented for identification and classification of major and minor protein forms that are present in solutions of each component. Finally, in contrast to previous results, a detailed analysis of the proton hyperfine shift patterns of the major and minor forms of each component, in comparison to the major and minor forms of metmyoglobin, leads to the conclusions that the corresponding forms of the proteins from each species have strikingly similar heme-globin contacts and display nearly identical heme electronic structures and coordination numbers.

  5. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  6. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  7. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  8. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  9. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  10. Magnetic resonance and magnetic susceptibility study of vanadium oxide—decylamine nanotubes

    NASA Astrophysics Data System (ADS)

    Panich, Alexander M.; Felner, Israel; Shames, Alexander I.; Lee, Cheol Eui

    2016-11-01

    We report on magnetic susceptibility, 51V NMR and EPR study of multiwall vanadium oxide—decylamine nanotubes. Our measurements reveal the presence of a diamagnetic V5+ and two paramagnetic V4+ ions, respectively. NMR spectra and magnetic susceptibility data estimate the V4+ ions as ˜31%-35% of the entire vanadium ions content. EPR evidences that the paramagnetic V4+ subsystem consists of ˜10% of individual ions (hyperfine structured polycrystalline pattern) and ˜90% of exchange coupled entities (Lorentzian line).

  11. I. Effects of Perturbations on Ion Motion in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. I. First Principles Investigation of Hyperfine Properties in Zinc Chalcogenides and Spinels.

    NASA Astrophysics Data System (ADS)

    Mitchell, Dale Wesley

    I. Many FT-ICR systems are approximately described by the so-called quadrupole approximation; the dynamics of a single ion in a constant magnetic field and a quadratic electrostatic potential. The quadrupole approximation is considered the unperturbed problem while all other forces are treated as perturbations to this motion. Averaging methods are employed to study the effects of electrostatic and excitation field inhomogeneities on ion motion in a cubic ICR cell. A theory of ion motion based on averaging methods in a cubic ICR cell is presented for differential sinusoidal excitation that explains the observed stability, orders of magnitude and resonance positions for excitation frequencies away from the cyclotron frequency. FT-ICR double resonance experiments are used to test the theoretical predictions. For excitation frequencies near the cyclotron frequency, a previously unknown and simple expression is derived for the phase synchronization process in ICR which relates how the cyclotron radius and phase depend on the initial conditions. Finally, Lie transform perturbation theory and averaging methods are used to derive frequency shifts and mode amplitudes to all three fundamental ICR modes for the true electrostatic cubic cell potential. These analytical results give good agreement with numerical results. II. All electron Hartree-Fock cluster calculations are carried out to derive electron densities, electric field gradients and electronic structures in zinc chalcogenides, zinc fluoride and oxide spinels in order to theoretically interpret the available hyperfine interactions data. The theoretical densities at the zinc nucleus are combined with experimental isomer shifts to estimate a value for the mean square nuclear charge radius for the Mossbauer transition in ^{67}Zn of Delta< r^2 > = {+(13.9} +/- 1.4)times10 ^{-3} fm^2. For ZnO (wurtzite) and ZnF_2, the electric field gradient tensors are calculated at all nuclei and compared with the available data

  12. Spin-orbit-coupling-induced spin squeezing in three-component Bose gases

    NASA Astrophysics Data System (ADS)

    Huang, X. Y.; Sun, F. X.; Zhang, W.; He, Q. Y.; Sun, C. P.

    2017-01-01

    We observe spin squeezing in three-component Bose gases where all three hyperfine states are coupled by synthetic spin-orbit coupling. This phenomenon is a direct consequence of spin-orbit coupling, as can be seen clearly from an effective spin Hamiltonian. By solving this effective model analytically with the aid of a Holstein-Primakoff transformation for a spin-1 system in the low excitation limit, we conclude that the spin-nematic squeezing, a category of spin squeezing existing exclusively in large spin systems, is enhanced with increasing spin-orbit coupling intensity and effective Zeeman field, which correspond to Rabi frequency ΩR and two-photon detuning δ within the Raman scheme for synthetic spin-orbit coupling, respectively. These trends of dependence are in clear contrast to spin-orbit-coupling-induced spin squeezing in spin-1/2 systems. We also analyze the effects of harmonic trap and interparticle interaction with realistic experimental parameters numerically, and find that a strong harmonic trap favors spin-nematic squeezing. We further show spin-nematic squeezing can be interpreted as two-mode entanglement or two-spin squeezing at low excitation. Our findings can be observed in 87Rb gases with existing techniques of synthetic spin-orbit coupling and spin-selective imaging.

  13. Optical control and coherence of electron or hole spins in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Carter, Samuel

    2013-03-01

    The spin of an electron or hole in an InAs quantum dot is an attractive qubit because it combines the advantages of a semiconductor platform with the power of ultrafast optical coherent control techniques. In the last few years, basic quantum operations such as initialization, rotation, and readout have become possible using single spins, but now improvements in spin coherence and demonstrations of multi-qubit systems are needed. In this work, we combine advances in the design and growth of coupled quantum dots with optical coherent control techniques to demonstrate ultrafast manipulation and coherence improvements for one or two interacting electron or hole spins in a coupled pair of InAs dots. For each of these spin systems, we use a sequence of picosecond and nanosecond pulses to initialize, manipulate, and measure the coherent spin dynamics. These dynamics include precession about a magnetic field and also entangling dynamics from the exchange interaction for coupled spins. For a single electron spin, precession dephases after only a few nanoseconds due to the hyperfine interaction with nuclear spins. For hole spins, we measure a dephasing time an order of magnitude longer due to a weaker hyperfine interaction. Coupled electron and hole spins are essential for multi-qubit systems, and they can also be used to decrease sensitivity to the environment. In these systems, we typically measure the coherent dynamics of the singlet-triplet states (ms = 0), which are much less sensitive to the nuclear environment. At present, dephasing is due to fluctuations in the electrical environment. With careful sample design, we can make these systems much less sensitive to electrical fluctuations, giving a powerful combination of long coherence times and ultrafast gates. Finally, we demonstrate that these spin qubits can be incorporated into a photonic crystal cavity and manipulated with optical pulses, a major step toward a quantum interface between photons and these spin

  14. Magnetic properties of PrX 2 compounds (X = Pt, Rh, Ru, Ir) studied by hyperfine specific heat, magnetization and neutron-diffraction measurements

    NASA Astrophysics Data System (ADS)

    Greidanus, F. J. A. M.; de Jongh, L. J.; Huiskamp, W. J.; Fischer, P.; Furrer, A.; Buschow, K. H. J.

    1983-04-01

    Magnetic ordering phenomena in rare-earth intermetallic compounds can be unravelled most advantageously in the case of simple crystallographic structure and when a combination of microscopic techniques is applied. Here we shall present the temperature and magnetic field dependence of the magnetic moment of the cubic PrX 2 compounds (X = Pt, Rh, Ru, Ir), as inferred from hyperfine specific-heat, magnetization and neutron-diffraction measurements. The results are compared with a mean-field calculation, taking crystalline electric field and bilinear (dipolar) exchange interactions into account. Adopting experimental values of the Lea, Leask and Wolf parameters x and W from inelastic neutron scattering results, we find satisfactory agreement between our magnetic data and the mean-field theory. An observed discrepancy of about 15% between the calculated and measured saturation values of the spontaneous magnetization can be explained by the presence of quadrupolar interactions.

  15. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    SciTech Connect

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina; Alonso, José Luis; Gauss, Jürgen

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  16. Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs

    NASA Astrophysics Data System (ADS)

    Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.

    2013-03-01

    The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.

  17. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  18. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ–γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N} ∼ 425 K and a well defined ferromagnetic transition at T{sub C} ∼ 320 K. Moreover, at ∼210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ∼25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  19. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics

    NASA Astrophysics Data System (ADS)

    Laiou, Petroula; Andrzejak, Ralph G.

    2017-01-01

    The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.

  20. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  1. Determination of the deuteron quadrupole coupling tensor in the photo-excited triplet state of dibromobenzophenone by electron spin echo envelope modulation

    NASA Astrophysics Data System (ADS)

    Prisner, T.; Dinse, K. P.

    1990-04-01

    Highly resolved EPR transitions displaying deuteron hyperfine effects in di- p-bromobenzophenone in a single crystal host have been recorded with the technique of electron spin echo envelope modulation (ESEEM). Orientation dependence of the observed line positions under variation of the external magnetic field in the crystallographic a, c-plane yielded the magnetic dipolar and deuteron quadrupole coupling matrices for deuterons at two positions in the molecule. The strong orientational dependence of the line intensities in the Fourier-transformed ESEEM decay could be fully accounted for by calculating the echo modulation amplitudes numerically, using these matrices.

  2. Integrated Paramagnetic Resonance of High-Spin Co(II) in Axial Symmetry: Chemical Separation of Dipolar and Contact Electron-Nuclear Couplings

    PubMed Central

    Myers, William K.; Duesler, Eileen N.; Tierney, David L.

    2015-01-01

    Integrated paramagnetic resonance, utilizing EPR, NMR and ENDOR, of a series of cobalt bis-trispyrazolylborates, Co(Tpx)2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (δH − δMe) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, Aiso, for each proton in the molecule. The Co··H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at gζ. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex (14N, coordinating and non-coordinating, 11B and 13C) are also reported. PMID:18605690

  3. The magnetic transition in ε-Fe{sub 2}O{sub 3} nanoparticles: Magnetic properties and hyperfine interactions from Mössbauer spectroscopy

    SciTech Connect

    Kohout, J. Závěta, K.; Kubániová, D.; Kmječ, T.; Kubíčková, L.; Brázda, P.; Klementová, M.; Šantavá, E.; Lančok, A.

    2015-05-07

    The nanoparticles of ε-Fe{sub 2}O{sub 3} enriched with {sup 57}Fe isotope in amorphous silica matrix were prepared by sol-gel technique starting from a single molecular precursor for both Fe{sub 2}O{sub 3} and silica. From the X-ray powder diffraction pattern ε-Fe{sub 2}O{sub 3} was identified as the major phase and α-Fe{sub 2}O{sub 3} and β-Fe{sub 2}O{sub 3} were observed as minor iron oxide phases. Using the log-normal distribution for fitting the experimental data from the TEM micrographs, the characteristic size of particles d{sub 0} ∼ 25 nm was derived. The rather high coercivity of ∼2.1 T at room temperature was confirmed for our nanoparticle system. From the dependences of magnetization on temperature a two-step magnetic transition spread between 100 K and 153 K was indicated. From the {sup 57}Fe Mössbauer spectra measured in the temperature range of 4.2–300 K, the hyperfine parameters for one tetrahedral and three octahedral sites of ε-Fe{sub 2}O{sub 3} structure were identified. The in-field spectra in the external magnetic fields up to 6 T were taken both above and below the indicated two-step magnetic transition. Their dependence on temperature and external magnetic field suggests that the first step in the temperature range of 153 K–130 K is related to the spin reorientation of the local magnetic moments in the magnetic sublattices and the second step in temperatures 130 K–100 K may be associated with the intermediate spin–high spin state transition of Fe{sup 3+} cation in the tetrahedral sublattice expressed in the change of the hyperfine magnetic field.

  4. Hyperfine splitting of the 2s1/2 and 2p1/2 levels in lithium-like Pr56+

    SciTech Connect

    Trabert, E.; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Thorn, D. B.; Chen, M. H.; Cheng, K. T.; Sapirstein, J.

    2015-01-29

    Measurements of hyperfine splittings in highly charged ions are sensitive to details of the nuclear structure and the nuclear magnetic field distribution, but the proper interpretation of the measurements requires that the atomic structure is understood in sufficient detail. Lastly, we discuss the reasoning behind various recent experiments and what advantage is offered by the study of the Li-like ion of a mid-Z element such as praseodymium.

  5. Experimental Observation of a Topological Band Gap Opening in Ultracold Fermi Gases with Two-Dimensional Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Meng, Zengming; Huang, Lianghui; Peng, Peng; Li, Donghao; Chen, Liangchao; Xu, Yong; Zhang, Chuanwei; Wang, Pengjun; Zhang, Jing

    2016-12-01

    The recent experimental realization of synthetic spin-orbit coupling (SOC) opens a new avenue for exploring novel quantum states with ultracold atoms. However, in experiments for generating two-dimensional SOC (e.g., Rashba type), a perpendicular Zeeman field, which opens a band gap at the Dirac point and induces many topological phenomena, is still lacking. Here, we theoretically propose and experimentally realize a simple scheme for generating two-dimensional SOC and a perpendicular Zeeman field simultaneously in ultracold Fermi gases by tuning the polarization of three Raman lasers that couple three hyperfine ground states of atoms. The resulting band gap opening at the Dirac point is probed using spin injection radio-frequency spectroscopy. Our observation may pave the way for exploring topological transport and topological superfluids with exotic Majorana and Weyl fermion excitations in ultracold atoms.

  6. Rotational and Hyperfine Structure in the [17.6]2.5 - X2.5 and [23.3]2.5 - X2.5 Transitions of Iridium Monoxide

    NASA Astrophysics Data System (ADS)

    Linton, C.; Tokaryk, D. W.; Adam, A. G.; Daigle, J. A.; Esson, L. M.; Granger, A. D.; Smith, A. M.; Steimle, T. C.

    2013-06-01

    Laser induced fluorescence spectra of two electronic transitions, [17.6]2.5 - X2.5 and [23.3]2.5 - X2.5, of IrO have been obtained at high resolution by using a single mode ring dye laser to excite IrO molecules in a laser-ablation molecular beam source. From spectra taken at the University of New Brunswick at a linewidth of 180 MHz, the ^{193}IrO - ^{191}IrO isotope shifts in the rotational lines established the vibrational assignment of the [23.3]2.5 - X2.5 band as 1 - 0 and confirmed previous 0 - 0 assignments of the [17.6]2.5 - X2.5 band. The higher J rotational lines of both transitions are observed to split into closely spaced doublets resulting from quadrupole hyperfine structure caused by the I = 3/2 nuclear spin on both Ir isotopes. Higher resolution [17.6]2.5 - X2.5 spectra with an approximate linewidth of 30 MHz, were taken at Arizona State University and showed clearly resolved hyperfine structure in the low J lines. The results of the hyperfine structure analysis will be discussed as well as (hopefully) Stark and Zeeman effect experiments to determine the permanent electric and the magnetic dipole moments of IrO.

  7. Full Controllability of a Singlet-Triplet Qubit Coupled to a Nuclear Spin Qubit

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew D.; Gamble, John King; Jacobson, N. Tobias; Muller, Richard P.; Nielsen, Erik; Carr, Stephen M.; Carroll, Malcolm S.; Curry, Matthew; Harvey-Collard, Patrick; Jock, Ryan M.; Rudolph, Martin

    Recent experimental developments indicate that it is possible to drive coherent singlet-triplet rotations in a MOS quantum dot coupled to a single nearby phosphorus donor through the electron-nucleus hyperfine interaction. With the addition of NMR, we propose that it is possible to achieve universal 2-qubit control spanning i.) an electronic singlet-triplet subspace of the dot, ii.) the spin-1/2 donor nucleus, and iii.) entangling operations between them. We will assess the practicality of such an approach given realistic experimental conditions and constraints, including a comparison of pulsed and RF control of the detuning between the donor and dot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under Contract DE-AC04-94AL85000.

  8. Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Huang, Lianghui; Meng, Zengming; Wang, Pengjun; Peng, Peng; Zhang, Shao-Liang; Chen, Liangchao; Li, Donghao; Zhou, Qi; Zhang, Jing

    2016-06-01

    Spin-orbit coupling (SOC) is central to many physical phenomena, including fine structures of atomic spectra and topological phases in ultracold atoms. Whereas, in general, SOC is fixed in a system, laser-atom interaction provides a means to create and control synthetic SOC in ultracold atoms. Despite significant experimental progress in this area, two-dimensional (2D) synthetic SOC, which is crucial for exploring two- and three-dimensional topological phases, is lacking. Here, we report the experimental realization of 2D SOC in ultracold 40K Fermi gases using three lasers, each of which dresses one atomic hyperfine spin state. Through spin-injection radiofrequency (rf) spectroscopy, we probe the spin-resolved energy dispersions of the dressed atoms, and observe a highly controllable Dirac point created by the 2D SOC. These results constitute a step towards the realization of new topological states of matter.

  9. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-03

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  10. Hyperfine structure and magnetic properties of Zn doped Co{sub 2}Z hexaferrite investigated by high-field Mössbauer spectroscopy

    SciTech Connect

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-07

    The polycrystalline samples of Ba{sub 3}Co{sub 2−x}Zn{sub x}Fe{sub 24}O{sub 41} (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P6{sub 3}/mmc. With increasing Zn ion concentration, the unit cell volume (V{sub u}) of samples was increased, as the sites of Fe{sup 3+} ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below T{sub C} were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (H{sub hf}) and electric quadrupole shift (E{sub Q}) have shown abrupt changes around spin transition temperature (T{sub S}). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and H{sub hf} of samples with increasing Zn concentration.

  11. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  12. Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones.

    PubMed

    Weyers, Amanda M; Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2009-11-19

    Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or "smart" matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups on the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix.

  13. Hyperfine and magnetic properties of a Y{sub x}La{sub 1−x}FeO{sub 3} series (0 ≤ x ≤ 1)

    SciTech Connect

    Cristóbal, A.A.; Botta, P.M.; Bercoff, P.G.

    2015-04-15

    Highlights: • Y{sub x}La{sub 1−x}FeO{sub 3} (0 ≤ x ≤ 1) was synthesized by mechanochemistry. • Two magnetic contributions were identified in the series. • A paramagnetic state is associated with a fraction of the smallest particles. • A ferromagnetic state is attributed to the larger particles. • Annealing of samples favored the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities. - Abstract: A series of orthoferrites Y{sub x}La{sub 1−x}FeO{sub 3} in the entire range of composition was synthesized at room temperature by mechanochemical activation of oxide mixtures. Phase composition, structure and microstructure of the obtained powder materials were characterized by X-ray diffraction and field-emission scanning electron microscopy. Hyperfine interactions and magnetic properties were determined by Mössbauer spectroscopy, SQUID and vibrating sample magnetometry. Two magnetic contributions could be identified in the series of materials: a paramagnetic state, associated with a fraction of the smallest particles and a ferromagnetic state, attributed to the larger particles. The results showed that the relative proportion of both contributions is very dependent on x, the Y content of samples. From M vs T measurements, it was possible to estimate the blocking temperature distribution for the end members of the series. Annealing of samples produced the elimination of the superparamagnetic behavior and the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities.

  14. Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.; Beiersdorfer, P.; Widmann, K.; Birkett, B. B.; Mårtensson-Pendrill, A.-M.; Gustavsson, M. G. H.

    1998-02-01

    The F=3 to F=2 hyperfine transitions in the 1s ground state of the two isotopes 185Re74+ and 187Re74+ were measured to be (4560.5+/-3) Å and (4516.9+/-3) Å, respectively, using emission spectroscopy in an electron beam ion trap. After applying appropriate corrections for the nuclear charge distribution and QED effects, a Bohr-Weisskopf effect of ɛ=2.23(9)% and 2.30(9)% are found for 185Re and 187Re, respectively. This value is almost twice that of a previous theoretical estimate, and indicates a distribution of the nuclear magnetization far more extended than that of the nuclear charge. A radius of the magnetization distribution of 1/2=7.57(32) fm and 1/2=7.69(32) fm for 185Re and 187Re, respectively, is inferred from the data. These radii are larger than the nuclear charge distribution radius [1/2=5.39(1) fm] for both isotopes by factors 1.40(6) and 1.43(6), respectively. We find that the Bohr-Weisskopf effect in H-like ions is a sensitive probe of nuclear magnetization distribution, especially for cases where the charge distribution and magnetic moments are accurately known.

  15. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary Anderson

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  16. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  17. RCCPAC: A parallel relativistic coupled-cluster program for closed-shell and one-valence atoms and ions in FORTRAN

    NASA Astrophysics Data System (ADS)

    Mani, B. K.; Chattopadhyay, S.; Angom, D.

    2017-04-01

    We report the development of a parallel FORTRAN code, RCCPAC, to solve the relativistic coupled-cluster equations for closed-shell and one-valence atoms and ions. The parallelization is implemented through the use of message passing interface, which is suitable for distributed memory computers. The coupled-cluster equations are defined in terms of the reduced matrix elements, and solved iteratively using Jacobi method. The ground and excited states of coupled-cluster wave functions obtained from the code could be used to compute different properties of closed-shell and one-valence atom or ion. As an example we compute the ground state correlation energy, attachment energies, E1 reduced matrix elements and hyperfine structure constants.

  18. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  19. Anisotropic Fermi couplings due to large unquenched orbital angular momentum: Q-band (1)H, (14)N, and (11)B ENDOR of bis(trispyrazolylborate) cobalt(II).

    PubMed

    Myers, William K; Scholes, Charles P; Tierney, David L

    2009-08-05

    We report Q-band ENDOR of (1)H, (14)N, and (11)B at the g( parallel) extreme of the EPR spectrum of bis(trispyrazolylborate) cobalt(II) [Co(Tp)(2)] and two structural analogs. This trigonally symmetric, high-spin (hs) S = 3/2 Co(II) complex shows large unquenched ground-state orbital angular momentum, which leads to highly anisotropic electronic g-values (g( parallel) = 8.48, g( perpendicular) = 1.02). The large g-anisotropy is shown to result in large dipolar couplings near g( parallel) and uniquely anisotropic (14)N Fermi couplings, which arise from spin transferred to the nitrogen 2s orbital (2.2%) via antibonding interactions with singly occupied metal d(x(2)-y(2)) and d(z(2)) orbitals. Large, well-resolved (1)H and (11)B dipolar couplings were also observed. Taken in concert with our previous X-band ENDOR measurements at g( perpendicular) ( Myers, W. K.; et al. Inorg. Chem. 2008, 47, 6701-6710 ), the present data allow a detailed analysis of the dipolar hyperfine tensors of two of the four symmetry distinct protons in the parent molecule. In the substituted analogs, changes in hyperfine coupling due to altered metal-proton distances give further evidence of an anisotropic Fermi contact interaction. For the pyrazolyl 3H proton, the data indicate a 0.2 MHz anisotropic contact interaction and approximately 4% transfer of spin away from Co(II). Dipolar coupling also dominates for the axial boron atoms, consistent with their distance from the Co(II) ion, and resolved (11)B quadrupolar coupling showed approximately 30% electronic inequivalence between the B-H and B-C sp(3) bonds. This is the first comprehensive ENDOR study of any hs Co(II) species and lays the foundation for future development.

  20. Couple communication in stepfamilies.

    PubMed

    Halford, Kim; Nicholson, Jan; Sanders, Matthew

    2007-12-01

    Effective communication is assumed to help sustain couple relationships and is a key focus of most relationship education programs. We assessed couple problem-solving communication in 65 stepfamily and 52 first-time-marrying couples, with each group stratified into high risk and low risk for relationship problems based on family-of-origin experiences. Relative to partners in first-time couples, partners in stepfamily couples were less positive, less negative, and more likely to withdraw from discussion. Risk was associated with communication in first-time but not stepfamily couples. Stepfamily couples do not exhibit the negative communication evident in high-risk first-time-marrying couples, and available relationship education programs that focus on reducing negative communication are unlikely to meet the needs of stepfamilies.

  1. Entangled states decoherence in coupled molecular spin clusters

    NASA Astrophysics Data System (ADS)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  2. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  3. Nonlinear magneto-optical resonances at D{sub 1} excitation of {sup 85}Rb and {sup 87}Rb for partially resolved hyperfine F levels

    SciTech Connect

    Auzinsh, M.; Ferber, R.; Gahbauer, F.; Jarmola, A.; Kalvans, L.

    2009-05-15

    Experimental signals of nonlinear magneto-optical resonances at D{sub 1} excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D{sub 1} transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F{sub g}=1{yields}F{sub e}=2 transition of {sup 87}Rb has been observed. A bright resonance was observed at the F{sub g}=2{yields}F{sub e}=3 transition of {sup 85}Rb, but displaced from the exact position of the transition due to the influence of the nearby F{sub g}=2{yields}F{sub e}=2 transition, which is a dark resonance whose contrast is almost 2 orders of magnitude larger than the contrast of the bright resonance at the F{sub g}=2{yields}F{sub e}=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.

  4. Element fingerprinting of marine organisms by dynamic reaction cell inductively coupled plasma mass spectrometry.

    PubMed

    Cubadda, Francesco; Raggi, Andrea; Coni, Ettore

    2006-02-01

    A method for the determination of sixteen elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, Zn) in seafood by dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS) is presented. A preliminary study of polyatomic interferences was carried out in relation to the chemical composition of marine organisms belonging to different taxa. Acid effects and other matrix effects in marine organisms submitted to closed-vessel microwave digestion were investigated as well. Ammonia was the reactive gas used in the DRC to remove polyatomic ions interfering with 27Al, 52Cr, 56Fe and 51V. Optimal conditions for the simultaneous determination of analytes were identified in order to develop a fast multielement method. A suite of real samples (mussels and various fish species) were used during method development along with three certified reference materials: BCR CRM 278R (mussel tissue), BCR CRM 422 (cod muscle) and DORM-2 (dogfish muscle). The proposed analytical approach can be used in conjunction with suitable chemometric procedures to address quality and safety issues in aquaculture and fisheries. As an example, a case study is described in which mussels from three farming sites in the Venice Lagoon were distinguished by multivariate analysis of element fingerprints.

  5. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  6. Three tooth kinematic coupling

    DOEpatents

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  7. The ν 2 and 2ν 2 - ν 2 bands of 14N 16O 2: Electron Spin-Rotation and Hyperfine Contact Resonances in the (010) Vibrational State

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J. M.; Camypeyret, C.; Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Rinsland, C. P.

    1993-08-01

    High-resolution Fourier transform spectra covering the 720-920 cm -1 spectral region have been used to perform a reanalysis of the ν 2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν 2 - ν 2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν 2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν 2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν 2 - ν 2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν 1, 2ν 2, and ν 3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O 2.

  8. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanopowders

    SciTech Connect

    Bhattacharjee, Kaustav; Das, G. C.; Pati, Satya P.; Das, D.

    2014-12-21

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (〈ε{sup 2}〉{sup 1/2}), oxygen positional parameter (u), metal-oxygen bond lengths (R{sub OA} and R{sub OB}), and the band positions (ν{sub 1}and ν{sub 2}) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  9. [Sexuality among infertile couples].

    PubMed

    Alvarez-Díaz, Jorge Alberto

    2007-01-01

    A monographic type, bibliographic and hemerographic study on the sexuality in couples with fertility problems is presented. The study is based on the Rubio Aurioles' model of human sexuality, and the four holones (reproductivity, eroticism, affective bonds, gender) in couples with fertility problems are described. A review of clinical studies on the prevailing sexuality in this kind of couples and some theoretical reflections are also presented.

  10. The 57Fe hyperfine interactions in iron storage proteins in liver and spleen tissues from normal human and two patients with mantle cell lymphoma and acute myeloid leukemia: a Mössbauer effect study

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2015-04-01

    Study of human spleen and liver tissues from healthy persons and two patients with mantle cell lymphoma and acute myeloid leukemia was carried out using Mössbauer spectroscopy with a high velocity resolution. Small variations in the 57Fe hyperfine parameters for normal and patient's tissues were detected and related to small variations in the 57Fe local microenvironment in ferrihydrite cores. The differences in the relative parts of more crystalline and more amorphous core regions were also supposed for iron storage proteins in normal and patients' spleen and liver tissues.

  11. Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates of He-like ions

    NASA Astrophysics Data System (ADS)

    Laima, Radžiūtė; Erikas, Gaidamauskas; Gediminas, Gaigalas; Li, Ji-Guang; Dong, Chen-Zhong; Jönsson, Per

    2015-04-01

    Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates for the isoelectronic sequence of He-like ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, 11147108, 10979007, U1331122, and U1332206) and in part by the National Basic Research Program of China (Grant No. 2013CB922200).

  12. Josephson physics of spin-orbit-coupled elongated Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Garcia-March, M. A.; Mazzarella, G.; Dell'Anna, L.; Juliá-Díaz, B.; Salasnich, L.; Polls, A.

    2014-06-01

    We consider an ultracold bosonic binary mixture confined in a quasi-one-dimensional double-well trap. The two bosonic components are assumed to be two hyperfine internal states of the same atom. We suppose that these two components are spin-orbit coupled to each other. We employ the two-mode approximation starting from two coupled Gross-Pitaevskii equations and derive a system of ordinary differential equations governing the temporal evolution of the interwell population imbalance of each component and of the polarization, which is the imbalance of the total populations of the two species. From this set of equations we disentangle the different macroscopic quantum tunneling and self-trapping scenarios occurring for both population imbalances and the polarization in terms of the interplay between the interatomic interactions and the other relevant energies in the problem, like the spin-orbit coupling or the conventional tunneling term. We find a rich dynamics in all three variables and discuss the experimental feasibility of such a system.

  13. Vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2017-01-01

    We study the vortex-bright solitons in a quasi-two-dimensional spin-orbit-coupled (SO-coupled) hyperfine spin-1 three-component Bose-Einstein condensate using variational method and numerical solution of a mean-field model. The ground state of these vortex-bright solitons is radially symmetric for weak ferromagnetic and polar interactions. For a sufficiently strong ferromagnetic interaction, we observe the emergence of an asymmetric vortex-bright soliton as the ground state. We also numerically investigate stable moving solitons and binary collision between them. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed model for generating the moving solitons. At low velocities, the head-on collision between two in-phase solitons results either in collapse or fusion of the soliton pair. On the other hand, in head-on collision, the two out-of-phase solitons strongly repel each other and trace back their trajectories before the actual collision. At low velocities, in a collision with an impact parameter, the out-of-phase solitons get deflected from their original trajectory like two rigid classical disks. These out-of-phase solitons behave like classical disks, and their collision dynamics is governed by classical laws of motion. However, at large velocities two SO-coupled spinor solitons, irrespective of phase difference, can pass through each other in a head-on collision like two quantum solitons.

  14. A study of pyridyl nitrosyl iron(II) tetraphenyl 15N4-porphyrin. NO geometry and spin coupling to the pyrrole nitrogens

    NASA Astrophysics Data System (ADS)

    Gilbert, D. C.; Dikanov, S. A.; Doetschman, D. C.; Smeija, J. A.

    1999-12-01

    Spin coupling with pyrrole nitrogens and NO geometry in pyridyl-NO-Fe(II) tetraphenyl- 15N4-porphyrin, examined with hyperfine sublevel correlation spectroscopy (HYSCORE), was studied because of renewed interest in diatomic molecule bound ferrous hemes, e.g. the physiologically important NO synthase. Dipolar coupling locates the effective electron spin position (0.109±0.008 nm from the ring center, 0.106±0.006 nm above the ring plane and projecting 37±2° from the nearest pyrrole nitrogen). The NO projection in an X-ray study of the 4-methyl piperidine complex is 38.6°. The negative pyrrole nitrogen spin densities induced by the NO obey a sinusoidal angular relationship.

  15. Hyperfine fields at the Ba site in the antiferromagnet YBa{sub 2}Cu{sub 3}O{sub 6.05}

    SciTech Connect

    Lombardi, A.; Mali, M.; Roos, J.; Brinkmann, D.

    1996-06-01

    We report a Ba nuclear quadrupole resonance (NQR) study of the antiferromagnetic state of YBa{sub 2}Cu{sub 3}O{sub 6.05} (N{acute e}el temperature {ital T}{sub {ital N}} = 415 K) performed between 16 and 402 K. The Zeeman perturbed {sup 137}Ba NQR spectrum yields information on two hyperfine fields present at the Ba site: the electric field gradient (EFG) and the internal magnetic field arising from the Cu(2) sublattice magnetization. The absolute value of the EFG is in remarkable agreement with cluster and band structure calculations thus demonstrating again that both methods provide a satisfying electronic bond picture for the Y-Ba-Cu-O compounds [except for the planar Cu(2) site]. The temperature dependence of the EFG arises from thermal expansion only. The internal field, {ital B}({ital T}), has been deduced from the modulation of the Ba spin-echo intensity. A calculation of the dipolar field at the Ba site produced by Cu(2) {ital d} electrons yields a value that is about three times larger than the experimental result. The discrepancy could be explained by assuming that part of the magnetic moment is located at oxygen ions. The temperature variation of {ital B}({ital T}) follows, up to 402 K, a power law [{ital B}(0){minus}{ital B}({ital T})]/{ital B}(0)={ital AT}{sup {alpha}} with {alpha} = 1.82(22) which agrees quite well with the result of a Cu(2) in-plane determination of the sublattice magnetization. Furthermore, this result is in accord with a spin-wave model for a quasi-two-dimensional (2D) antiferromagnet. The {open_quote}{open_quote}critical exponent{close_quote}{close_quote} {beta} is estimated to be {le} 0.18 which is in accord with values proposed by models for 2D ordered magnetic systems. Thus YBa{sub 2}Cu{sub 3}O{sub 6.05} behaves, in terms of its spin dynamics, as a quasi-2D antiferromagnet and this character can be studied either at out-of-plane Ba or at in-plane Cu(2) sites. {copyright} {ital 1996 The American Physical Society.}

  16. Pressure response of iron’s hyperfine parameters and solid state amorphism in (Mg0.87Fe0.13)SiO3 orthopyroxene

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Sturhahn, W.

    2009-12-01

    Iron-bearing orthopyroxene (opx) is an abundant mineral in the Earth’s crust and upper mantle. Understanding its structural response to relevant mantle conditions will provide important information for seismological and dynamical modeling of this region. Even though X-ray diffraction studies have been carried out at high pressure on iron-bearing opx, the specific site behavior of iron in the complex opx crystal structure at relevant mantle conditions are less understood. Mössbauer spectroscopy allows one to uniquely probe the site-specific behavior of iron in solid materials by direct determination of iron’s hyperfine fields, namely its quadrupole splitting (QS) and isomer shift (IS). Therefore, it is especially suitable for the exploration of iron’s site-specific behaviors in opx. We loaded a synthetic 57Fe-enriched (Mg0.87Fe0.13)SiO3 powdered opx sample into a diamond anvil cell using NaCl as a pressure-transmitting medium. Synchrotron Mössbauer Spectroscopy (SMS) was carried out at Sector 3-ID of the Advanced Photon Source at Argonne National Laboratory. The data were collected up to 36 GPa at room temperature using stainless steel as a reference absorber to accurately constrain the isomer shifts of the M1 and M2 sites in opx. In addition, X-ray powder diffraction spectra were collected in Advanced Light Source at Lawrence Berkeley National Laboratory. The SMS spectra were analyzed with the CONUSS software package. We used a two-site model below 9 GPa and a one-site model at higher pressures to analyze the spectra. In the two-site model, very good agreement was obtained when compared with conventional Mössbauer spectroscopic measurements at ambient pressure. We observed a smooth increase of the QS of the M1 and M2 sites below 9 GPa. Above 9 GPa, the QS remained nearly constant, but the distribution of field gradients overlapped. At low pressures, the IS of the M1 and M2 are distinct but begin to merge at P > 9 GPa. Our observations are suggestive of one

  17. Entanglement like properties in Spin-Orbit Coupled Ultra Cold Atom and violation of Bell like Inequality

    NASA Astrophysics Data System (ADS)

    Ghosh, Sankalpa; Kumar, Rahul

    We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently (Y.J. Lin et al., Nature, 471, 83, (2011)), shows entanglement between motional degrees of freedom (momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influneces quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bell's Inequality vioaltion by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.

  18. Bibliographic Coupling: A Review

    ERIC Educational Resources Information Center

    Weinberg, Bella Hass

    1974-01-01

    The theory and practical applications of bibliographic coupling are reviewed. The reviewer takes issue with the use of bibliographic coupling for information retrieval and automatic classification on logical grounds, and for reasons relating to uncontrolled citation practices. The usefulness of the procedure for the study of the science of science…

  19. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  20. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  1. Coupled trivial maps.

    PubMed

    Bunimovich, L. A.; Livi, R.; Martinez-Mekler, G.; Ruffo, S.

    1992-07-01

    The first nontrivial example of coupled map lattices that admits a rigorous analysis in the whole range of the strength of space interactions is considered. This class is generated by one-dimensional maps with a globally attracting superstable periodic trajectory that are coupled by a diffusive nearest-neighbor interaction.

  2. Gear Spline Coupling Program

    SciTech Connect

    Guo, Yi; Errichello, Robert

    2013-08-29

    An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.

  3. Observation of the hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} transition in {sup 87}Sr{sup +}

    SciTech Connect

    Barwood, G.P.; Gao, K.; Gill, P.; Huang, G.; Klein, H.A.

    2003-01-01

    The hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} quadrupole transition at 674 nm in {sup 87}Sr{sup +} has been observed. The ion was confined in a Paul trap and cooled using laser radiation at 422 and 1092 nm. The quadrupole transition was observed by monitoring quantum jumps in the 422-nm fluorescence. The odd isotope of strontium has 'clock' transitions independent of the first-order Zeeman shift and the {sup 2}D{sub 5/2} state hyperfine structure constants have been determined as A{sub D{sub 5/2}}=2.1743(14) MHz and B{sub D{sub 5/2}}=49.11(6) MHz. Standard uncertainties have been added in parentheses. These values allow the second-order Zeeman shifts to be calculated. The {sup 88}Sr{sup +}-{sup 87}Sr{sup +} isotope shift for the 674-nm quadrupole transition has been measured to be 247.99(4) MHz.

  4. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  5. Contactless Rotary Electrical Couplings

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki

    2003-01-01

    Rotary electrical couplings based on induction (transformer action) rather than conduction between rotating and stationary circuitry have been invented. These couplings provide an alternative to slip rings and contact brushes. Mechanical imperfections of slip-ring and brush contact surfaces and/or dust particles trapped between these surfaces tend to cause momentary interruptions in electrical contact and thereby give rise to electrical noise. This source of noise can be eliminated in the inductive rotary couplings because no direct contact is necessary for transformer action.

  6. The coupling of engines

    NASA Technical Reports Server (NTRS)

    Boccaccio, Paul

    1921-01-01

    This report examines the idea of coupling numerous engines together to turn a single propeller, which the author feels would free aircraft design from the problems of multi-engine and propeller design.

  7. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  8. Disformally coupled inflation

    SciTech Connect

    De Bruck, Carsten van; Longden, Chris; Koivisto, Tomi E-mail: timoko@kth.se

    2016-03-01

    A disformal coupling between two scalar fields is considered in the context of cosmological inflation. The coupling introduces novel derivative interactions mixing the kinetic terms of the fields but without introducing superluminal or unstable propagation of the two scalar fluctuation modes. Though the typical effect of the disformal coupling is to inhibit one of the fields from inflating the universe, the energy density of the other field can drive viable near Sitter -inflation in the presence of nontrivial disformal dynamics, in particular when one assumes exponential instead of power-law form for the couplings. The linear perturbation equations are written for the two-field system, its canonical degrees of freedom are quantised, their spectra are derived and the inflationary predictions are reported for numerically solved exponential models. A generic prediction is low tensor-to-scalar ratio.

  9. Effect of heterovalent substitutions in yttrium chromite on the hyperfine interactions of {sup 119}Sn{sup 4+} studied by Mössbauer spectroscopy

    SciTech Connect

    Fabritchnyi, Pavel B.; Afanasov, Mikhail I.; Mezhuev, Evgeny M.; Wattiaux, Alain; Duttine, Mathieu; Labrugère, Christine

    2016-03-15

    In order to develop the {sup 119}Sn Mössbauer spectroscopic probe technique to study magnetically ordered materials, three Ca-substituted yttrium chromites, i.e. Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3}, doped with 0.3 atom-% Sn{sup 4+}, were for the first time investigated. {sup 119}Sn Mössbauer spectra, recorded at 4.2 K, have allowed, through analysis of the magnetic hyperfine field values, probed by {sup 119}Sn nuclei, to gain insight into the local magnetically active surrounding of different Sn{sup 4+} ions. In all of these compounds, partial segregation of Sn{sup 4+} ions is revealed. In the case of Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, neither highly oxidized Cr{sup 4+} nor Cr{sup 6+} species, expected to compensate for the Ca{sup 2+} positive charge deficit, is found in the vicinity of the {sup 119}Sn{sup 4+} probe. In the case of both studied Ti-containing chromites, {sup 119}Sn Mössbauer spectra have provided the original indirect evidence for the statistical distribution of Cr{sup 3+} and Ti{sup 4+} ions over the octahedral sites and permitted characterization of the occurring associates of Sn{sup 4+}. - Graphical abstract: Two kinds of Sn{sup 4+} associates allowing {sup 119}Sn Mössbauer spectra of tin-doped Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3} to be accounted for. - Highlights: • {sup 119}Sn probe is tested as a source of information on the B-sublattice of AF perovskites. • Neither Cr{sup 3+} nor Cr{sup 6+} is detected nearby {sup 119}Sn{sup 4+} ions in Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}. • Cr{sup 3+} and Ti{sup 4+} are found to be randomly distributed in Y{sub 1−x}Ca{sub x}Cr{sub 1−x}Ti{sub x}O{sub 3} (x=0.1 or 0.2). • Sn{sup 4+} dopant segregations are revealed in all of the studied materials.

  10. Non-Equilibrium Dynamics of an Atomic Gas Coupled to a Synthetic Thermal Body

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Zhao, Jianshi; Gemelke, Nathan

    2016-05-01

    One takes for Granted that thermal equilibrium can be established between two bodies by bringing them into physical contact with one another - viewed externally however, any statistical reservoir must therefore interact in ways such that the exchange of conserved quantities satisfy basic constraints which define the equilibrium it and any attached bodies reach. We describe the experimental construction of a ``synthetic thermal body,'' engineered by controlling the spatio-temporal modulation of nominally conservative optical, radio-frequency, and microwave couplings of a 87 Rb neutral atomic gas carrying hyperfine-spin to a spin-dependent spatially and temporally disordered bath. We measure the out-of-equilibrium response through its resultant diffusive motion, extracting drift and diffusion parameters, and making comparison to the Einstein-Smoluchowski and generalized fluctuation-dissipation relations. We discuss new limits on temperature and density for direct cooling by suitably engineered baths, by simultaneously avoiding the constraints of photon-recoil and density-dependent losses from light-assisted collisional processes in traditional laser cooling, and discuss new avenues in quantum simulation by coupling atomic gasses to statistically-generated and open environments.

  11. Domain walls and vortices in linearly coupled systems

    SciTech Connect

    Dror, Nir; Malomed, Boris A.; Zeng Jianhua

    2011-10-15

    We investigate one- and two-dimensional radial domain-wall (DW) states in the system of two nonlinear-Schroedinger (NLS) or Gross-Pitaevskii (GP) equations, which are couple by linear mixing and by nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to bimodal light propagation in nonlinear optics. In the former case the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM (self-phase modulation) coefficients. The DWs between flat asymmetric states, which are mirror images of each other, are completely stable, and all other species of the DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are considered too, and an effective potential accounting for the attraction between them is derived analytically. Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges s=1,2,3. Radial oscillations of annular DW-shaped pulsons, with s=0,1,2, are studied too. A linear relation between the period of the oscillations and the mean radius of the DW ring is derived analytically.

  12. Domain walls and vortices in linearly coupled systems.

    PubMed

    Dror, Nir; Malomed, Boris A; Zeng, Jianhua

    2011-10-01

    We investigate one- and two-dimensional radial domain-wall (DW) states in the system of two nonlinear-Schrödinger (NLS) or Gross-Pitaevskii (GP) equations, which are couple by linear mixing and by nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to bimodal light propagation in nonlinear optics. In the former case the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM (self-phase modulation) coefficients. The DWs between flat asymmetric states, which are mirror images of each other, are completely stable, and all other species of the DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are considered too, and an effective potential accounting for the attraction between them is derived analytically. Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges s=1,2,3. Radial oscillations of annular DW-shaped pulsons, with s=0,1,2, are studied too. A linear relation between the period of the oscillations and the mean radius of the DW ring is derived analytically.

  13. Current induced interlayer coupling

    NASA Astrophysics Data System (ADS)

    Levy, Peter M.; Heide, Carsten; Zhang, Shufeng; Fert, Albert

    2001-03-01

    It has recently been shown that a perpendicular current in a magnetically multilayered structures induces an unusual bilinear coupling between the magnetizations of the layers [1]. While this was demonstrated in the ballistic regime, transport is likely to be diffusive in the structures where this may be relevant to the role of currents in switching the magnetization of the layers. We have derived the current induced coupling by using the Boltzmann equation in terms of the parameters used to describe the giant magnetoresistance of magnetically layered structures, and thereby estimate the strength of this coupling. Work supported in part by DARPA and ONR. [1] C.Heide and R.J.Elliott, Europhys. Lett. 50, 271 (2000).

  14. Tube coupling device

    NASA Technical Reports Server (NTRS)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  15. Coupled nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan

    In this dissertation, we study coupled nonlinear dynamical systems that exhibit new types of complex behavior. We numerically and analytically examine a variety of dynamical models, ranging from systems of ordinary differential equations (ODE) with novel elements of feedback to systems of partial differential equations (PDE) that model chemical pattern formation. Chaos, dynamical uncertainty, synchronization, and spatiotemporal pattern formation constitute the primary topics of the dissertation. Following the introduction in Chapter 1, we study chaos and dynamical uncertainty in Chapter 2 with coupled Lorenz systems and demonstrate the existence of extreme complexity in high-dimensional ODE systems. In Chapter 3, we demonstrate that chaos synchronization can be achieved by mutual and multiplicative coupling of dynamical systems. Chapter 4 and 5 focus on pattern formation in reaction-diffusion systems, and we investigate segregation and integration behavior of populations in competitive and cooperative environments, respectively.

  16. Saturation in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Hanna, James

    2015-03-01

    We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.

  17. Actively coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2014-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or integrate-and-fire comparator sensitive to tiny differences in their input powers.

  18. Hyperfine magnetic fields at the nuclei of probe 119Sn atoms and exchange interactions in the CaCu3Mn3.96Sn0.04O12 manganite

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Presnyakov, I. A.; Sobolev, A. V.; Demazeau, G.; Gubaidulina, T. V.; Matsnev, M. E.; Gapochka, A. M.; Volkova, O. S.; Vasil'ev, A. N.

    2011-04-01

    We have investigated the hyperfine magnetic interactions between the nuclei of probe 119Sn atoms in the CaCu3Mn3.96Sn0.04O12 double manganite by Mössbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu2+-O-Mn4+ ( J CuMn ≈ -51 ± 1 K) and Mn4+-O-Mn4+ ( J MnMn ≈ -0.6 ± 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J MnMn correspond to both the electronic configuration of the Mn4+ cations and the geometry of their local crystallographic environment in the compound under study.

  19. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  20. Experimental investigation of the hyperfine spectra of Pr I-lines: discovery of new fine structure energy levels of Pr I using LIF spectroscopy with medium angular momentum quantum number between 7/2 and 13/2

    NASA Astrophysics Data System (ADS)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2016-03-01

    We present 39 even and 60 odd parity newly discovered fine structure levels of Pr I with angular momentum quantum numbers J = 7 / 2, 9/2, 11/2 and 13/2. Spectral lines in the wavelength range of 4200 Å to 7500 Å were investigated experimentally using laser-induced fluorescence spectroscopy or optogalvanic spectroscopy. Free Pr atoms were produced in a hollow cathode discharge. A high resolution Fourier transform spectrum of Pr was used to extract excitation wavelengths. From an analysis of the recorded hyperfine patterns, together with excitation and fluorescence wavelengths, we were able to find the unknown levels involved in the formation of the investigated lines. More than 500 spectral lines could be classified by the new levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60485-2

  1. Hyperfine structure and Zeeman tuning of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride {sup 87}SrF

    SciTech Connect

    Le, Anh T.; Wang Hailing; Steimle, Timothy C.

    2009-12-15

    The low-rotational lines of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride, {sup 87}SrF, were recorded and analyzed. The {sup 87}Sr(I=9/2) magnetic hyperfine interaction is significant only in the |OMEGA|=1/2 spin-orbit component of the A {sup 2}PI state. Optical transitions appropriate for monitoring ultracold samples of {sup 87}SrF are identified. The determined fine-structure parameters were used to predict the anisotropic magnetic g factor, g{sub l}, for the X {sup 2}SIGMA{sup +}(v=0) state. The g factors were used to predict the magnetic tuning of the N=0 (+parity) and N=1 (-parity) levels of the X {sup 2}SIGMA{sup +}(v=0) state. A comparison to spectroscopic parameters for the {sup 88}SrF isotopologue is given.

  2. Hyperfine-structure study of the 3d10 5p 2P3/2 level of neutral copper using pulsed level-crossing spectroscopy at short laser wavelengths

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Larsson, J.; Svanberg, S.; Wahlstrom, C.-G.

    1990-01-01

    A hyperfine-structure study of the strongly perturbed 3d10 5p 2P3/2 state of neutral copper was performed using pulsed level-crossing spectroscopy. Excitation was accomplished at the short wavelength of 202 nm, where intense laser pulses were obtained using frequency tripling of dye laser radiation. For Cu-63, a = 61.7(9) MHz, b = 4.9(7) MHz, and tau = 25,5(10) ns were obtained for the magnetic dipole and the electric quadrupoles interaction constants and the lifetime, respectively. A comparison with theoretical calculations based on the multiconfiguration Hartree-Fock method is made. A discussion of the usefulness of level-crossing, quantum-beat, and radio-frequency techniques for high-resolution spectroscopy at wavelengths in the UV and vacuum-UV region is presented.

  3. Targeted ferromagnetic coupling in a trinuclear copperII complex: analysis of the St = 3/2 spin ground state.

    PubMed

    Glaser, Thorsten; Heidemeier, Maik; Grimme, Stefan; Bill, Eckhard

    2004-08-23

    The trinuclear Cu(II) complex [(talen)Cu(II)(3)] (1) using the new triplesalen ligand H(6)talen has been synthesized and structurally characterized. The three Cu(II) ions are bridged in a m-phenylene linkage by the phloroglucinol backbone of the ligand. This m-phenylene bridging mode results in ferromagnetic couplings with an S(t) = (3)/(2) spin ground state, which has been analyzed by means of EPR spectroscopy and DFT calculations. The EPR spectrum exhibits an unprecedented pattern of 10 hyperfine lines due to the coupling of three Cu(II) ions (I = (3)/(2)). Resonances around g = 4 in both perpendicular and parallel mode EPR spectra demonstrate a zero-field splitting of D approximately 74 x 10(-4) cm(-1) arising from anisotropic/antisymmetric exchange interactions. The DFT calculations show an alteration in the sign of the spin densities of the central benzene ring corroborating the spin-polarization mechanism as origin for the ferromagnetic coupling.

  4. IBEX magnetic coupling experiments

    SciTech Connect

    Frost, C.A.; Kiekel, P.D.; Miller, R.B.; Ekdahl, C.A.; Wagner, J.; Ramirez, J.J.

    1985-01-01

    The magnetic coupling of one pulse to another is a key issue for some modes of high-current beam propagation. Experiments are in progress on Sandia's IBEX accelerator to address issues relevant to magnetic coupling. The IBEX experiments differ from previous experiments in that the B/sub theta/ field acting on the second pulse is the result of residual plasma current from the first pulse rather than current applied by an external means. This new feature makes the propagation sensitive to beam and plasma current profiles that are key to the physics of the magnetic coupling problem. These experiments do not attempt to study the air chemistry issues, as this would require much higher current densities than are available from IBEX. We are using the IBEX accelerator with a mismatched magnetized diode to produce two high-current pulses separated by approx.130 nsec. A pulse pair has been propagated over a 1.5-m path in low pressure air. Extraction of two pulses, each having different parameters, complicates the experiment but also provides new insight into the magnetic coupling proplem. 7 figs.

  5. Coupling Gammasphere and ORRUBA

    SciTech Connect

    Ratkiewicz, A.; Cizewski, J. A.; Manning, B.; Pain, S. D.; Bardayan, D. W.; Blackmon, J. C.; Matos, M.; Chipps, K. A.; Hardy, S.; Shand, C.; Jones, K. L.; Kozub, R. L.; Lister, C. J.; Peters, W. A.; Seweryniak, D.

    2013-04-19

    The coincident detection of particles and gamma rays allows the study of the structure of exotic nuclei via inverse kinematics reactions using radioactive ion beams and thick targets. We report on the status of the project to couple the highresolution charged-particle detector ORRUBA to Gammasphere, a high-efficiency, high-resolution gamma ray detector.

  6. Too Many Couples

    ERIC Educational Resources Information Center

    Kay, Joseph

    2007-01-01

    In this article, the author offers his ad hoc reflections on the question of just how many academic couples a department could comfortably accommodate from the point of view of good governance, in the hope of getting an honest dialogue started and seeing some reasonable guidelines eventually created by one organization or another as a result. He…

  7. Gravitationally coupled electroweak monopole

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Kimm, Kyoungtae; Yoon, J. H.

    2016-10-01

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  8. Coupled resonator vertical cavity laser

    SciTech Connect

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  9. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  10. Calculation of P,T-odd interaction constant of PbF using Z-vector method in the relativistic coupled-cluster framework.

    PubMed

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2015-08-28

    The effective electric field experienced by the unpaired electron in the ground state of PbF, which is a potential candidate in the search of electron electric dipole moment due to some special characteristics, is calculated using Z-vector method in the coupled cluster single- and double- excitation approximation with four component Dirac spinor. This is an important quantity to set the upper bound limit of the electron electric dipole moment. Further, we have calculated molecular dipole moment and parallel magnetic hyperfine structure constant (A‖) of (207)Pb in PbF to test the accuracy of the wavefunction obtained in the Z-vector method. The outcome of our calculations clearly suggests that the core electrons have significant contribution to the "atom in compound" properties.

  11. Magnetic coupling device

    DOEpatents

    Nance, Thomas A.

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  12. Thermal coupling measurement method

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1974-01-01

    Heat flow from an embedded heated wire responds to a change in the ambient environment. The wire is part of a self-balancing bridge system, and heat flow is measured directly in watts. Steady-state and transient thermal coupling can be measured directly and is an indication of the thermal resistance and diffusivity for the system under study. The method is applied to an aerospace electroexplosive component.

  13. Quick connect coupling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)

    1995-01-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  14. Gain Coupling VECSELs (POSTPRINT)

    DTIC Science & Technology

    2013-01-01

    NUMBER 2002 5e. TASK NUMBER IH 5f. WORK UNIT NUMBER Y053 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION ...platform in order to explore curious laser designs and systems as their high-power, high-brightness make them attractive for many applications , and their...Moreover, their high-brightness operation makes them attractive for many applications . In considering the methods of coupling VECSELs as well as their

  15. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  16. Quick torque coupling

    DOEpatents

    Luft, Peter A.

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  17. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  18. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  19. ESPC Coupled Global Prediction System

    DTIC Science & Technology

    2014-09-30

    coupled air-sea momentum flux on the ocean circulation has been investigated in a series of near twin experiments, where aspects of the coupled wind stress...Award Number: N0001414WX20051 http://www.nrlmry.navy.mil LONG-TERM GOALS Develop and implement a fully coupled global atmosphere/wave/ ocean ...arise in the coupled system. Implement the tripolar grid for WaveWatch-III and wave forcing in the ocean . Incorporate time-dependent, radiatively

  20. Controllable optomechanical coupling in serially-coupled triple resonators

    SciTech Connect

    Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin

    2014-12-15

    Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.