Science.gov

Sample records for 51v hyperfine coupling

  1. V(IV)O versus V(IV) complex formation by tridentate (O, N(arom), O) ligands: prediction of geometry, EPR 51V hyperfine coupling constants, and UV-Vis spectra.

    PubMed

    Pisano, Luisa; Várnagy, Katalin; Timári, Sarolta; Hegetschweiler, Kaspar; Micera, Giovanni; Garribba, Eugenio

    2013-05-01

    Systems formed using the V(IV)O(2+) ion with tridentate ligands containing a (O, N(arom), O) donor set were described. Examined ligands were 3,5-bis(2-hydroxyphenyl)-1-phenyl-1H-1,2,4-triazole (H2hyph(Ph)), 4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid (H3hyph(C)), 4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzenesulfonic acid (H3hyph(S)), and 2,6-bis(2-hydroxyphenyl)pyridine (H2bhpp), with H3hyph(C) being an orally active iron chelator that is commercially available under the name Exjade (Novartis) for treatment of chronic iron overload arising from blood transfusions. The systems were studied using EPR, UV-Vis, and IR spectroscopies, pH potentiometry, and DFT methods. The ligands bind vanadium with the two terminal deprotonated phenol groups and the central aromatic nitrogen to give six-membered chelate rings. In aqueous solution the main species were the mono- and bis-chelated V(IV)O complexes, whereas in the solid state neutral non-oxido V(IV) compounds were formed. [V(hyph(Ph))2] and [V(bhpp)2] are hexacoordinated, with a geometry close to the octahedral and a meridional arrangement of the ligands. DFT calculations allow distinguishing V(IV)O and V(IV) species and predicting their structure, the (51)V hyperfine coupling constant tensor A, and the electronic absorption spectra. Finally, EPR spectra of several non-oxido V(IV) species were compared using relevant geometrical parameters to demonstrate that in the case of tridentate ligands the (51)V hyperfine coupling constant is related to the geometric isomerism (meridional or facial) rather than the twist angle Φ, which measures the distortion of the hexacoordinated structure toward a trigonal prism. PMID:23581472

  2. The first organic-templated vanadyl(IV) gallophosphates with ambient (51)V hyperfine structure, {V(2)Ga(2)O(14)} cluster or heterometal 12-ring channels.

    PubMed

    Huang, Li-Hsun; Lai, Yi-Chun; Lai, Hui-Chun; Chiang, Yun-Wei; Huang, Jin-Hua; Wang, Sue-Lein

    2009-12-21

    Three new vanadyl gallium phosphates, (H(2)dap)(3)[(VO)(2)(GaO)(2)(PO(4))(4)].H(2)O (1), (H(2)dap)(1.5)[(VO)(2)(GaO)(2)(PO(4))(3)].3H(2)O (2), and (H(2)dap)[(VO)(2)Ga(4)(PO(4))(6)(H(2)O)(4)].2H(2)O (3) (dap = 1,3-diaminopropane), have been prepared under mild solvothermal conditions and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and EPR spectroscopy. They are the first examples of an organic/V(4+)/Ga/P/O system that displays three different dimensional structures with a common template. The 1D chain structure of 1 and the 2D layered 2 are both built up with a PO(4) and {V(2)Ga(2)O(14)} cluster which contains a syn-square pyramidal {V(2)O(8)} dimer and two GaO(4) tetrahedra. The tetrameric cluster and V-O-Ga therein are observed in a metal phosphate system. Compound 3 is composed of VO(5)(H(2)O) octahedra, GaO(4)(H(2)O) trigonal bipyramids, and GaO(4) and PO(4) tetrahedra from which a unique 3D structure containing one-dimensional 12-ring channels is constructed. The channel aperture uncommonly comprises heterometal (V, Ga) polyhedra. Magnetic susceptibility data for 1-3 are consistent with V(4+) and show a T(N) of 12 K for 3. The unusual syn-{V(2)O(8)} dimers in 1 and 2 induce superexchange interactions, while isolated VO(5)(H(2)O) octahedra in 3 display super-super-exchange interaction. Electron paramagnetic resonance spectra with (51)V hyperfine structures were distinctly observed at 300 K for 1, while they started emerging at 30 K for 2 and 7 K for 3. The average hyperfine constant, 85.56 Gauss, was obtained via spectral simulations and nonlinear least-squares fittings for 1 and 2. Crystal data for 1 are triclinic, P1, a = 9.1754(4) A, b = 10.7853(5) A, c = 15.6519(7) A, alpha = 93.251(1) degrees , beta = 92.530(1) degrees , gamma = 95.106(1) degrees , V = 1538.4(1) A(3), and Z = 2; for 2, monoclinic, P2(1)/n, a = 8.9195(3) A, b = 14.6374(5) A, c = 17.8608(6) A, beta = 97.272(1) degrees , V = 2313

  3. Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory.

    PubMed

    Shiozaki, Toru; Yanai, Takeshi

    2016-09-13

    We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed by the coupled-cluster and density matrix renormalization group methods. The HFCCs for the hexaaqua complexes with V(II), Cr(III), and Mn(II) are also presented to demonstrate the accuracy and efficiency of our code. PMID:27479148

  4. Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory.

    PubMed

    Shiozaki, Toru; Yanai, Takeshi

    2016-09-13

    We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed by the coupled-cluster and density matrix renormalization group methods. The HFCCs for the hexaaqua complexes with V(II), Cr(III), and Mn(II) are also presented to demonstrate the accuracy and efficiency of our code.

  5. Density functional theory predictions of isotropic hyperfine coupling constants.

    PubMed

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  6. Theoretical calculations of hyperfine coupling constants for muoniated butyl radicals.

    PubMed

    Chen, Ya Kun; Fleming, Donald G; Wang, Yan Alexander

    2011-04-01

    The hyperfine coupling constants (HFCCs) of all the butyl radicals that can be produced by muonium (Mu) addition to butene isomers (1- and 2-butene and isobutene) have been calculated, to compare with the experimental results for the muon and proton HFFCs for these radicals reported in paper II (Fleming, D. G.; et al. J. Phys. Chem. A 2011, 10.1021/jp109676b) that follows. The equilibrium geometries and HFCCs of these muoniated butyl radicals as well as their unsubstituted isotopomers were treated at both the spin-unrestricted MP2/EPR-III and B3LYP/EPR-III levels of theory. Comparisons with calculations carried out for the EPR-II basis set have also been made. All calculations were carried out in vacuo at 0 K only. A C-Mu bond elongation scheme that lengthens the equilibrium C-H bond by a factor of 1.076, on the basis of recent quantum calculations of the muon HFCCs of the ethyl radical, has been exploited to determine the vibrationally corrected muon HFCCs. The sensitivity of the results to small variations around this scale factor was also investigated. The computational methodology employed was "benchmarked" in comparisons with the ethyl radical, both with higher level calculations and with experiment. For the β-HFCCs of interest, compared to B3LYP, the MP2 calculations agree better with higher level theories and with experiment in the case of the eclipsed C-Mu bond and are generally deemed to be more reliable in predicting the equilibrium conformations and muon HFCCs near 0 K, in the absence of environmental effects. In some cases though, the experimental results in paper II demonstrate that environmental effects enhance the muon HFCC in the solid phase, where much better agreement with the experimental muon HFCCs near 0 K is found from B3LYP than from MP2. This seemingly better level of agreement is probably fortuitous, due to error cancellations in the DFT calculations, which appear to mimic these environmental effects. For the staggered proton HFCCs of the

  7. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical.

    PubMed

    Adam, Ahmad Y; Yachmenev, Andrey; Yurchenko, Sergei N; Jensen, Per

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role. PMID:26723670

  8. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    SciTech Connect

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  9. Calculation of hyperfine coupling constant by symmetry adapted cluster expansion configuration interaction theory. II. Anisotropic constants

    NASA Astrophysics Data System (ADS)

    Momose, Takamasa; Yamaguchi, Makoto; Shida, Tadamasa

    1990-11-01

    Following the previous work on the isotropic hyperfine coupling constants (HFCCs) of polyatomic radicals the symmetry adapted cluster expansion-configuration interaction (SAC-CI) theory is applied to calculate anisotropic HFCCs also. The results are compared with available experimental data from diatomic to polyatomic radicals such as the vinoxy. For radicals consisting of only the first row atoms Dunning's double zeta (DZ) basis set is shown to be adequate, but for those containing the second row atoms inclusion of polarization functions is required. Compared with the isotropic HFCC the calculation of the anisotropic HFCC is less formidable. However, ignorance of electron correlation causes serious disagreements with experimental data.

  10. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  11. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical–optical double-resonance spectroscopy with the Cs 6S1/2–6P3/2–7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry–Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  12. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy with the Cs 6S1/2-6P3/2-7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  13. Estimating the hyperfine coupling parameters of the avian compass by comprehensively considering the available experimental results

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Ming; Zou, Jian; Li, Jun-Gang; Shao, Bin

    2013-09-01

    Migratory birds can utilize the geomagnetic field for orientation and navigation through a widely accepted radical-pair mechanism. Although many theoretical works have been done, the available experimental results have not been fully considered, especially the temporary disorientation induced by the field which is increased by 30% of the geomagnetic field and the disorientation of the very weak resonant field of 15 nT. In this paper, we consider the monotonicity of the singlet yield angular profile as the prerequisite of direction sensitivity, and find that for some optimal values of the hyperfine coupling parameters (that is, the order of 10-7˜10-6 meV) the experimental results available so far can be satisfied. We also investigate the effects of two decoherence environments and demonstrate that, in order to satisfy the available experimental results, the decoherence rate should be lower than the recombination rate. Finally, we investigate the effects of the fluctuating magnetic noises and find that the vertical noise destroys the monotonicity of the profile completely, but the parallel noise preserves the monotonicity perfectly and even can enhance the direction sensitivity.

  14. Estimating the hyperfine coupling parameters of the avian compass by comprehensively considering the available experimental results.

    PubMed

    Xu, Bao-Ming; Zou, Jian; Li, Jun-Gang; Shao, Bin

    2013-09-01

    Migratory birds can utilize the geomagnetic field for orientation and navigation through a widely accepted radical-pair mechanism. Although many theoretical works have been done, the available experimental results have not been fully considered, especially the temporary disorientation induced by the field which is increased by 30% of the geomagnetic field and the disorientation of the very weak resonant field of 15 nT. In this paper, we consider the monotonicity of the singlet yield angular profile as the prerequisite of direction sensitivity, and find that for some optimal values of the hyperfine coupling parameters (that is, the order of 10^{-7}∼10^{-6} meV) the experimental results available so far can be satisfied. We also investigate the effects of two decoherence environments and demonstrate that, in order to satisfy the available experimental results, the decoherence rate should be lower than the recombination rate. Finally, we investigate the effects of the fluctuating magnetic noises and find that the vertical noise destroys the monotonicity of the profile completely, but the parallel noise preserves the monotonicity perfectly and even can enhance the direction sensitivity.

  15. Estimating the hyperfine coupling parameters of the avian compass by comprehensively considering the available experimental results.

    PubMed

    Xu, Bao-Ming; Zou, Jian; Li, Jun-Gang; Shao, Bin

    2013-09-01

    Migratory birds can utilize the geomagnetic field for orientation and navigation through a widely accepted radical-pair mechanism. Although many theoretical works have been done, the available experimental results have not been fully considered, especially the temporary disorientation induced by the field which is increased by 30% of the geomagnetic field and the disorientation of the very weak resonant field of 15 nT. In this paper, we consider the monotonicity of the singlet yield angular profile as the prerequisite of direction sensitivity, and find that for some optimal values of the hyperfine coupling parameters (that is, the order of 10^{-7}∼10^{-6} meV) the experimental results available so far can be satisfied. We also investigate the effects of two decoherence environments and demonstrate that, in order to satisfy the available experimental results, the decoherence rate should be lower than the recombination rate. Finally, we investigate the effects of the fluctuating magnetic noises and find that the vertical noise destroys the monotonicity of the profile completely, but the parallel noise preserves the monotonicity perfectly and even can enhance the direction sensitivity. PMID:24125290

  16. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ¹⁹⁹Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF₃ and NpF₆. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  17. Relativistic Density Functional Calculations of Hyperfine Coupling with Variational versus Perturbational Treatment of Spin-Orbit Coupling.

    PubMed

    Verma, Prakash; Autschbach, Jochen

    2013-04-01

    Different approaches are compared for relativistic density functional theory (DFT) and Hartree-Fock (HF) calculations of electron-nucleus hyperfine coupling (HFC) in molecules with light atoms, in transition metal complexes, and in selected actinide halide complexes with a formal metal 5f(1) configuration. The comparison includes hybrid density functionals with range-separated exchange. Within the variationally stable zeroth-order regular approximation (ZORA) relativistic framework, the HFC is obtained (i) with a linear response (LR) method where spin-orbit (SO) coupling is treated as a linear perturbation, (ii) with a spin-polarized approach closely related to a DFT method for calculating magnetic anisotropy (MA) previously devised by van Wüllen et al. where SO coupling is included variationally, (iii) with a quasi-restricted variational SO method previously devised by van Lenthe, van der Avoird, and Wormer (LWA). The MA and LWA approaches for HFC calculations were implemented in the open-source NWChem quantum chemistry package as part of this study. The methodology extends recent implementations for calculations of electronic g-factors (J. Chem. Theor. Comput.2013, 9, 1052). The impact of electron correlation (DFT vs HF) and DFT delocalization errors, the effects of spin-polarization, the importance of treating spin-orbit coupling beyond first-order, and the magnitude of finite-nucleus effects, are investigated. Similar to calculations of g-factors, the MA approach in conjunction with hybrid functionals performs reasonably well for theoretical predictions of HFC in a wide range of scenarios. PMID:26583544

  18. A study of magnetoresistance in organic semiconductors with varying strengths of hyperfine and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Sheng, Yugang

    This thesis concerns itself with the scientific study of the recently discovered organic magnetoresistance (OMAR) whose underlying mechanism is currently not known with certainty. As an introduction, we briefly review the major findings from prior work done by my colleagues. They found that OMAR can be as large as ≈10% magnetoresistance at 10 mT magnetic fields at room temperature. Both OMAR and other kinds of magnetic field effect data in organics can be fitted using the empirical laws B2/B2+B20 or B2/(|B| + B0)2, dependent on material. The fitting parameter B0 is a measure of the characteristic magnetic field strength of OMAR. We explore the dependence of B0 on material parameters to clarify the origin of OMAR. Various pi-conjugated semiconductor OMAR devices were studied to explore the possibility that hyperfine interaction causes OMAR. For a quantitative analysis of the experiments, we developed a theoretical fitting formula to relate B0 to the hyperfine coupling strength. In addition, organic materials with different spin-orbit coupling strengths were also measured. Fluorescence and phosphorescence spectroscopies were used to estimate the spin-orbit coupling strength from the measured spectra. For analyzing our measurements, we developed a fitting formula from the time-dependent Schrodinger equation that takes into account the combined effect of hyperfine and spin-orbit coupling on spin-dynamics. We found that in the case of strong spin-orbit coupling, it dominates the behavior, resulting in magnetic field effect traces that are much wider than those in ordinary organics. However, a small cone remains at zero field with a width equal to the hyperfine coupling strength. We find qualitative agreement between the experimental results and the model. We also investigated the question whether OMAR is related to an excitonic effect, or is primarily a transport effect. We measured the magnetic field effects on current, photocurrent and electroluminescence to address

  19. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  20. Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects.

    PubMed

    Malček, Michal; Bučinský, Lukáš; Valko, Marián; Biskupič, Stanislav

    2015-09-01

    The presented paper is focused on the calculation of hyperfine coupling constants (HFCC) of Cu (2+) ion in water environment. To simulate the conditions of the electron paramagnetic resonance (EPR) experiment in aqueous phase, molecular dynamics using the density functional theory (DFT) was employed. In total three different functionals (BLYP, B3LYP, M06) were employed for studying their suitability in describing coordination of Cu (2+) by water molecules. The system of our interest was composed of one Cu (2+) cation surrounded by a selected number (between thirty and fifty) of water molecules. Besides the non-relativistic HFCCs (Fermi contact terms) of Cu (2+) also the four-component relativistic HFCC calculations are presented. The importance of the proper evaluation of HFCCs, the inclusion of spin-orbit term, for Cu (2+) containing systems (Neese, J. Chem. Phys. 118, 3939 2003; Almeida et al., Chem. Phys. 332, 176 2007) is confirmed at the relativistic four-component level of theory.

  1. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  2. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    SciTech Connect

    Verma, Prakash; Morales, Jorge A.; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  3. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals.

    PubMed

    Verma, Prakash; Perera, Ajith; Morales, Jorge A

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED∕ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the (11)B, (17)O, (9)Be, (19)F, (1)H, (13)C, (35)Cl, (33)S,(14)N, (31)P, and (67)Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N(7)-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin

  4. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  5. Temperature-scanned magnetic resonance and the evidence of two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N pairs in diamond

    NASA Astrophysics Data System (ADS)

    Babunts, R. A.; Soltamova, A. A.; Tolmachev, D. O.; Soltamov, V. A.; Gurin, A. S.; Anisimov, A. N.; Preobrazhenskii, V. L.; Baranovi, P. G.

    2012-06-01

    New method for the detection of magnetic resonance signals versus temperature is developed on the basis of the temperature dependence of the spin Hamiltonian parameters of the paramagnetic system under investigation. The implementation of this technique is demonstrated on the nitrogen-vacancy (NV) centers in diamonds. Single NV defects and their ensembles are suggested to be almost inertialess temperature sensors. The hyperfine structure of the 14N nitrogen nuclei of the nitrogen-vacancy center appears to be resolved in the hyperfine structure characteristic of the hyperfine interaction between NV and an N s center (substitutional nitrogen impurity) in the optically detected magnetic resonance spectra of the molecular NV-N s complex. Thus, we show that a direct evidence of the two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N s pairs was observed. It is shown that more than 3-fold enhancement of the NV optically detected magnetic resonance signal can be achieved by using water as a collection optics medium.

  6. Fourier transform numerical analysis of the long-range proton hyperfine coupling in nitroxide radicals

    SciTech Connect

    Trousson, P.; Lion, Y.

    1985-05-09

    A study of long-range proton coupling in nitroxide radicals has been performed with a numerical analysis program using the Fourier transform technique. The present method provides a means for further identification of radicals which is particularly useful for species that are otherwise indistinguishable. The superhyperfine structure of piperidine and pyrrolidine-1-oxyl derivatives, showing ..gamma..-nuclei coupling constants as small as 0.2 G, has been brought out. The results are in good agreement with those obtained by other resolution-enhancement methods. 17 references, 7 figures, 3 tables.

  7. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    NASA Astrophysics Data System (ADS)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  8. Isotope effects and the temperature dependences of the hyperfine coupling constants of muoniated sec-butyl radicals in condensed phases.

    PubMed

    Fleming, Donald G; Bridges, Michael D; Arseneau, Donald J; Chen, Ya Kun; Wang, Yan Alexander

    2011-04-01

    Reported here is the first μSR study of the muon (A(μ)) and proton (A(p)) β-hyperfine coupling constants (Hfcc) of muoniated sec-butyl radicals, formed by muonium (Mu) addition to 1-butene and to cis- and trans-2-butene. The data are compared with in vacuo spin-unrestricted MP2 and hybrid DFT/B3YLP calculations reported in the previous paper (I), which played an important part in the interpretation of the data. The T-dependences of both the (reduced) muon, A(μ)′(T), and proton, A(p)(T), Hfcc are surprisingly well explained by a simple model, in which the calculated Hfcc from paper I at energy minima of 0 and near ±120° are thermally averaged, assuming an energy dependence given by a basic 2-fold torsional potential. Fitted torsional barriers to A(μ)′(T) from this model are similar (~3 kJ/mol) for all muoniated butyl radicals, suggesting that these are dominated by ZPE effects arising from the C−Mu bond, but for A(p)(T) exhibit wide variations depending on environment. For the cis- and trans-2-butyl radicals formed from 2-butene, A(μ)′(T) exhibits clear discontinuities at bulk butene melting points, evidence for molecular interactions enhancing these muon Hfcc in the environment of the solid state, similar to that found in earlier reports for muoniated tert-butyl. In contrast, for Mu−sec-butyl formed from 1-butene, there is no such discontinuity. The muon hfcc for the trans-2-butyl radical are seemingly very well predicted by B3LYP calculations in the solid phase, but for sec-butyl from 1-butene, showing the absence of further interactions, much better agreement is found with the MP2 calculations across the whole temperature range. Examples of large proton Hfcc near 0 K are also reported, due to eclipsed C−H bonds, in like manner to C−Mu, which then also exhibit clear discontinuities in A(p)(T) at bulk melting points. The data suggest that the good agreement found between theory and experiment from the B3LYP calculations for eclipsed bonds in

  9. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    SciTech Connect

    Harack, B.; Leary, A.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero.

  10. Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(1 0 0)-water interface: Implications for MRI probes

    NASA Astrophysics Data System (ADS)

    Gonçalves, Mateus A.; Peixoto, Fernando C.; da Cunha, Elaine F. F.; Ramalho, Teodorico C.

    2014-08-01

    Magnetite is an iron oxide widely used as contrast agent in MRI, receiving considerable interest from nanoscience and nanotechnology. In this work, the face 1 0 0 of the magnetite structure was studied with water in order to obtain 1H hyperfine coupling constants (HFCCs). Molecular dynamics (MD) calculations were performed using the ReaxFF program and for statistical inefficiency, structures were selected for HFCC and NMR calculations. From our theoretical findings, the magnetite in solution considerably increases the 1H HFCC of water molecules. From our results, it is essential to incorporate the dynamics and solvent effects into NMR calculations of relaxation parameters.

  11. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions. PMID:8395204

  12. Fock-space multireference coupled-cluster calculations of the hyperfine structure of isoelectronic {sup 33}S{sup -} and {sup 35,37}Cl

    SciTech Connect

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2011-10-15

    Due to its flexibility and possible systematic improvement, the Fock-space (FS) multireference coupled-cluster (MRCC) method remains a very important tool for the computation of energy differences of spectroscopic interest. In the present work, the FS MRCC method for the electron detachment process has been applied to determine the magnetic hyperfine constant A{sub J} and nuclear quadrupole moments Q (related to electric hyperfine constant B{sub J}) for the lowest multiplets of {sup 33}S{sup -}, {sup 35}Cl, and {sup 37}Cl with Dirac-Fock orbitals. In addition, we also report {sup 2}P{sub 3/2}([Ne]3s{sup 2}3p{sup 5}) {yields} {sup 2}P{sub 1/2}([Ne]3s{sup 2}3p{sup 5}) magnetic dipole transition matrix element and electron affinity of {sup 35}Cl (i.e., ionization energy of Cl{sup -}). Calculated properties are in very good agreement with the available new standard or reference values.

  13. Enhanced NMR Relaxation of Tomonaga-Luttinger Liquids and the Magnitude of the Carbon Hyperfine Coupling in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kiss, A.; Pályi, A.; Ihara, Y.; Wzietek, P.; Simon, P.; Alloul, H.; Zólyomi, V.; Koltai, J.; Kürti, J.; Dóra, B.; Simon, F.

    2011-10-01

    Recent transport measurements [Churchill et al. Nature Phys.NPAHAX1745-2473 5, 321 (2009)10.1038/nphys1247] found a surprisingly large, 2-3 orders of magnitude larger than usual C13 hyperfine coupling (HFC) in C13 enriched single-wall carbon nanotubes. We formulate the theory of the nuclear relaxation time in the framework of the Tomonaga-Luttinger liquid theory to enable the determination of the HFC from recent data by Ihara et al. [Europhys. Lett. 90, 17 004 (2010)EULEEJ0295-507510.1209/0295-5075/90/17004]. Though we find that 1/T1 is orders of magnitude enhanced with respect to a Fermi-liquid behavior, the HFC has its usual, small value. Then, we reexamine the theoretical description used to extract the HFC from transport experiments and show that similar features could be obtained with HFC-independent system parameters.

  14. Relativistic unitary coupled-cluster study of the electric quadrupole moment and magnetic dipole hyperfine constants of {sup 199}Hg{sup +}

    SciTech Connect

    Sur, Chiranjib; Chaudhuri, Rajat K.

    2007-09-15

    Searching for an accurate optical clock which can serve as a better time standard than the present-day atomic clock is highly demanding from several areas of science and technology. Several attempts have been made to build more accurate clocks with different ion species. In this paper, we discuss the electric quadrupole and hyperfine shifts in the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2}(F=0,m{sub F}=0){r_reversible}5d{sup 10}6s {sup 2}S{sub 1/2}(F=2,m{sub F}=0) clock transition in {sup 199}Hg{sup +}, one of the most promising candidates for next-generation optical clocks. We have applied Fock-space unitary coupled-cluster theory to study the electric quadrupole moment of the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2} state and magnetic dipole hyperfine constants of 5d{sup 9}6s{sup 2} {sup 2}D{sub 3/2,5/2} and 5d{sup 10}6s{sup 1} {sup 2}S{sub 1/2} states, respectively, of {sup 199}Hg{sup +}. We have also compared our results with available data. To the best of our knowledge, this is the first time a variant of coupled-cluster theories has been applied to study these kinds of properties of Hg{sup +} and is the most accurate estimate of these quantities to date.

  15. The calculation of accurate 17O hyperfine coupling constants in the hydroxyl radical: A difficult problem for current quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Wetmore, Stacey D.; Eriksson, Leif A.; Boyd, Russell J.

    1998-12-01

    The hyperfine coupling constants (HFCCs) in the hydroxyl radical are investigated through comparison of results obtained from a variety of quantum chemical methods. The couplings obtained from the multi-reference configuration interaction (MRCI) wave function, built upon the restricted open-shell Hartree-Fock (ROHF) reference determinant, are investigated in terms of the basis set, the configuration selection energy threshold, and the size of the reference space. Overall results which converge to the experimental couplings are obtained for hydrogen, but not for oxygen. In particular, the MRCI method shows no improvement over density functional theory (the B3LYP functional), for the calculation of Aiso(17O). On the other hand, results in excellent agreement with experiment are obtained through the use of the quadratic configuration interaction (QCISD) method based on the unrestricted HF (UHF) reference determinant with the identical basis sets. Examination of UHF and ROHF based coupled-cluster methods, CCSD and CCSD(T), indicates that once a high enough level of electron correlation is included, the oxygen HFCC is independent of the form of the reference determinant. Unlike the ROHF-CCSD method, which yields reliable results once the effects of triple excitations have been taken into account, the MRCI wave function cannot easily be adjusted to account for the inadequacies of the ROHF reference determinant in order to accurately predict 17O HFCCs.

  16. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  17. (51)V NMR parameters of VOCl(3): static and dynamic density functional study from the gas phase to the bulk.

    PubMed

    Bjornsson, Ragnar; Früchtl, Herbert; Bühl, Michael

    2011-01-14

    (51)V NMR parameters have been calculated for VOCl(3), the reference compound in (51)V NMR spectroscopy, in order to capture environmental effects in both the neat liquid and the solid state. Using a combination of periodic geometry optimizations and Car-Parrinello molecular dynamics simulations with embedded cluster NMR calculations, we are able to test the ability of current computational approaches to reproduce (51)V NMR properties (isotropic shifts, anisotropic shifts and quadrupole coupling constants) in the gas, liquid and solid states, for direct comparison with liquid and solid-state experimental data. The results suggest that environmental effects in the condensed phases can be well captured by an embedded cluster approach and that the remaining discrepancy with experiment may be due to the approximate density functionals in current use. The predicted gas-to-liquid shift on the isotropic shielding constant is small, validating the common practice to use a single VOCl(3), molecule as reference in (51)V NMR computations.

  18. Toward Reliable Prediction of Hyperfine Coupling Constants Using Ab Initio Density Matrix Renormalization Group Method: Diatomic (2)Σ and Vinyl Radicals as Test Cases.

    PubMed

    Lan, Tran Nguyen; Kurashige, Yuki; Yanai, Takeshi

    2014-05-13

    The density matrix renormalization group (DMRG) method is used in conjunction with the complete active space (CAS) procedure, the CAS configuration interaction (CASCI), and the CAS self-consistent field (CASSCF) to evaluate hyperfine coupling constants (HFCCs) for a series of diatomic (2)Σ radicals (BO, CO(+), CN, and AlO) and vinyl (C2H3) radical. The electron correlation effects on the computed HFCC values were systematically investigated using various levels of active space, which were increasingly extended from single valence space to large-size model space entailing double valence and at least single polarization shells. In addition, the core correlation was treated by including the core orbitals in active space. Reasonably accurate results were obtained by the DMRG-CASSCF method involving orbital optimization, while DMRG-CASCI calculations with Hartree-Fock orbitals provided poor agreement of the HFCCs with the experimental values. To achieve further insights into the accuracy of HFCC calculations, the orbital contributions to the total spin density were analyzed at a given nucleus, which is directly related to the FC term and is numerically sensitive to the level of correlation treatment and basis sets. The convergence of calculated HFCCs with an increasing number of renormalized states was also assessed. This work serves as the first study on the performance of the ab initio DMRG method for HFCC prediction.

  19. Effects of restricted rotations and dynamic averaging on the calculated isotropic hyperfine coupling constants of the bis-dimethyl and bis-Di(trifluoromethyl) nitroxide radicals.

    PubMed

    Mattar, Saba M; Sanford, Jacob

    2009-10-22

    The rotational effects of the CH(3) and CF(3) groups on the electronic structure and nuclear hyperfine coupling constants (HFCCs) in dimethylnitroxide (DMNO*) and ditrifluoro-methynitroxide (TFMNO*) are investigated using the UB1LYP hybrid density functional method. The CH(3) and CF(3) HFCCs of both radicals are found to obey the McConnell relation during rotation. The two CH(3) groups of the DMNO* do not gear with each other, but the rotation of the first CH(3) group induces only a small rocking effect ( approximately 7 degrees ) in the second group. However, in TFMNO*, the fluorine atoms from different CF(3) groups are close enough so that the steric repulsion between them causes them to act as two interlocked gears, where one drives the other. Therefore, both CF(3) groups undergo full rotation. To the best of our knowledge, this is only the second example of "gearing" to be studied. Stabilization due to hyperconjugation is also a major factor that affects the magnitudes of the HFCCs of the CF(3) groups during rotational averaging. Stable configurations at specific CF(3) group orientations have a large overlap with the NO pi-electron cloud because the lobes of the hybridized p(sigma)(F(2)), p(sigma)(F(3)), p(sigma)(F(5)), and p(sigma)(F(6)) orbitals along the F-C bonds have cylindrical symmetry and are of the correct phases for hyperconjugation to occur. The calculated TFMNO* C(1)-N and C(2)-N bond orders range from 0.91 to 0.95 as the CF(3) groups are rotated. Therefore, the C-N bonds are essentially single bonds. This, in conjunction with the low rotational energy barrier of approximately 50 cm(-1), explains why the EPR intensities of the (19)F hyperfine splittings, in the range of 163-297 K, are characteristic of six equivalent rapidly rotating fluorine atoms. The TFMNO* out-of-plane NO vibrations induce additional s character at the (14)N nucleus. This increases the magnitude of the (14)N HFCC and decreases the (19)F HFCCs. As the temperature increases and

  20. Effects of Restricted Rotations and Dynamic Averaging on the Calculated Isotropic Hyperfine Coupling Constants of the bis-Dimethyl and bis-Di(trifluoromethyl) Nitroxide Radicals

    NASA Astrophysics Data System (ADS)

    Mattar, Saba M.; Sanford, Jacob

    2009-09-01

    The rotational effects of the CH3 and CF3 groups on the electronic structure and nuclear hyperfine coupling constants (HFCCs) in dimethylnitroxide (DMNO·) and ditrifluoro-methynitroxide (TFMNO·) are investigated using the UB1LYP hybrid density functional method. The CH3 and CF3 HFCCs of both radicals are found to obey the McConnell relation during rotation. The two CH3 groups of the DMNO· do not gear with each other, but the rotation of the first CH3 group induces only a small rocking effect (˜7°) in the second group. However, in TFMNO·, the fluorine atoms from different CF3 groups are close enough so that the steric repulsion between them causes them to act as two interlocked gears, where one drives the other. Therefore, both CF3 groups undergo full rotation. To the best of our knowledge, this is only the second example of "gearing" to be studied. Stabilization due to hyperconjugation is also a major factor that affects the magnitudes of the HFCCs of the CF3 groups during rotational averaging. Stable configurations at specific CF3 group orientations have a large overlap with the NO π-electron cloud because the lobes of the hybridized pσ(F2), pσ(F3), pσ(F5), and pσ(F6) orbitals along the F-C bonds have cylindrical symmetry and are of the correct phases for hyperconjugation to occur. The calculated TFMNO· C1-N and C2-N bond orders range from 0.91 to 0.95 as the CF3 groups are rotated. Therefore, the C-N bonds are essentially single bonds. This, in conjunction with the low rotational energy barrier of approximately 50 cm-1, explains why the EPR intensities of the 19F hyperfine splittings, in the range of 163-297 K, are characteristic of six equivalent rapidly rotating fluorine atoms. The TFMNO· out-of-plane NO vibrations induce additional s character at the 14N nucleus. This increases the magnitude of the 14N HFCC and decreases the 19F HFCCs. As the temperature increases and because of mixing of the first excited out-of-plane vibrational state, the NO

  1. Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

    NASA Astrophysics Data System (ADS)

    Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji

    2013-10-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi

  2. Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method.

    PubMed

    Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori

    2014-05-13

    We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in

  3. Theoretical study of hyperfine coupling constants and electron spin g factors for X2Σ diatomics from Groups 1 and 2

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.

  4. Alkoxy radicals: Delta proton hyperfine couplingsa)

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Box, Harold C.

    1985-04-01

    Single crystals of rhamnose were x irradiated at 4.2 K and the ESR and ENDOR spectra taken at 1.6 K. A component of the ESR absorption arises from an alkoxy radical exhibiting an unusual delta proton hyperfine coupling. Parallels between the radiation-induced oxidation of certain carbohydrates and that of amino acids are pointed out.

  5. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  6. Scalar relativistic calculations of hyperfine coupling constants using ab initio density matrix renormalization group method in combination with third-order Douglas-Kroll-Hess transformation: case studies on 4d transition metals.

    PubMed

    Nguyen Lan, Tran; Kurashige, Yuki; Yanai, Takeshi

    2015-01-13

    We have developed a new computational scheme for high-accuracy prediction of the isotropic hyperfine coupling constant (HFCC) of heavy molecules, accounting for the high-level electron correlation effects, as well as the scalar-relativistic effects. For electron correlation, we employed the ab initio density matrix renormalization group (DMRG) method in conjunction with a complete active space model. The orbital-optimization procedure was employed to obtain the optimized orbitals required for accurately determining the isotropic HFCC. For the scalar-relativistic effects, we initially derived and implemented the Douglas-Kroll-Hess (DKH) hyperfine coupling operators up to the third order (DKH3) by using the direct transformation scheme. A set of 4d transition-metal radicals consisting of Ag atom, PdH, and RhH2 were chosen as test cases. Good agreement between the isotropic HFCC values obtained from DMRG/DKH3 and experiment was archived. Because there are no available gas-phase values for PdH and RhH2 radicals in the literature, the results from the present high-level theory may serve as benchmark data.

  7. Spin-torsion effects in the hyperfine structure of methanol

    SciTech Connect

    Coudert, L. H. Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-28

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  8. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  9. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  10. 51V-NMR study of the Kagome staircase compound Co3V2O8

    NASA Astrophysics Data System (ADS)

    Ogloblichev, V.; Kumagai, K.; Yakubovsky, A.; Mikhalev, K.; Furukawa, Y.; Verkhovskii, S.; Gerashenko, A.; Barilo, S.; Bychkov, G.; Shiryaev, S.; Korolev, A.

    2009-03-01

    Kagome staircase compound Co3V2O8 (S = 3/2) has a structure very similar to multiferroic compound Ni3V2Og (S = 1), but their magnetic phase diagrams differ noticeably. We present the results of the first NMR study in Co3V2O8 single crystal. From 51V-NMR spectra, the components of electric field gradient (EFG) tensor and of magnetic shifts tensor, Ki, are obtained. The temperature dependences of NMR shifts 51Ki for each main crystal axis direction are well described by a spin contributions in the paramagnetic phase. In ferromagnetic phase the zero field 51V-NMR spectrum is observed in the temperature range of 1.5-6.3 K.

  11. Elastic scattering of 9Be+51V near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Morales-Rivera, J. C.; Martinez-Quiroz, E.; Belyaeva, T. L.; Aguilera, E. F.; Lizcano, D.; Amador-Valenzuela, P.

    2016-05-01

    Elastic scattering angular distributions for the 9Be+51V system were measured at three near Coulomb barrier energies, Elab = 16.35, 17.44 and 18.53 MeV. The data were analyzed by using a Semimicroscopic Optical Model. This combines a microscopic calculation of the mean-field double folding potential and a phenomenological construction of the dynamical polarization potential. The calculations reproduced the data very well and the total reaction cross sections were also calculated.

  12. Computational and ESR studies of electron attachment to decafluorocyclopentane, octafluorocyclobutane, and hexafluorocyclopropane: electron affinities of the molecules and the structures of their stable negative ions as determined from 13C and 19F hyperfine coupling constants.

    PubMed

    ElSohly, Adel M; Tschumper, Gregory S; Crocombe, Richard A; Wang, Jih Tzong; Williams, Ffrancon

    2005-08-01

    High-resolution ESR spectra of the ground-state negative ions of hexafluorocyclopropane (c-C3F6*-), octafluorocyclobutane (c-C4F8*-), and decafluorocyclopentane (c-C5F10*-) are reported and their isotropic 19F hyperfine coupling constants (hfcc) of 198.6 +/- 0.4 G, 147.6 +/- 0.4 G, and 117.9 +/- 0.4 G, respectively, are in inverse ratio to the total number of fluorine atoms per anion. Together with the small value of 5.2 +/- 0.4 G determined for the isotropic 13C hfcc of c-C4F8*-, these results indicate that in each case the singly occupied molecular orbital (SOMO) is delocalized over the equivalent fluorines and possesses a nodal plane through the carbon atoms of a time-averaged D(nh) structure. A series of quantum chemical computations were carried out to further characterize these anions and their neutral counterparts. Both the B3LYP density functional and second-order Møller-Plesset perturbation theory (MP2) indicate that c-C3F6*- adopts a D(3h) geometry and a (2)A2'' ground electronic state, that c-C4F8*- adopts a D(4h) geometry and a (2)A2u ground electronic state, and that c-C5F10*- adopts a C(s) structure and a (2)A' electronic state. Moreover, the 19F hyperfine coupling constants computed with the MP2 method and a high quality triple-zeta basis set are within 1% of the experimental values. Also, the values computed for the 13C hfcc of c-C4F8*- are consistent with the experimental value of 5.2 G. Therefore, in keeping with the ESR results, these negative ions derived from first-row elements can be characterized as pi* species. In addition, the hypervalency of these perfluorocycloalkane radical anions has been clarified.

  13. Magnetic Hyperfine Fields in Lu_2 V_2 O_7 : A Model Approach

    NASA Astrophysics Data System (ADS)

    Agzamova, Polina; Nikiforov, Anatoliy; Nazipov, Dmitriy

    2016-02-01

    We report a theoretical approach to the investigation of the magnetic hyperfine interaction on the ^{51} V nucleus in Lu_2 V_2 O_7 with the view of understanding the orbital ordering pattern in this compound. First, we have evaluated the vanadium 3d^1 -level splitting (Δ ) under the crystal field with the D _{3d} -symmetry using the point charges approximation. Second, we have calculated the exchange interaction constant (J) using the ab initio approach. It is shown that the crystal field energy is much stronger than the exchange interaction one and hence the orbital liquid state cannot occur in Lu_2 V_2 O_7 . Finally we have analyzed the magnetic hyperfine field affecting the vanadium nucleus leaning upon these results.

  14. (51)V NMR investigation of cell-associated vanadate species in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Miladinović, Zoran; Stanić, Marina; Hadžibrahimović, Mirzeta; Živić, Miroslav; Zakrzewska, Joanna

    2016-01-01

    (51)V NMR spectroscopy was used for detection and identification of cell-associated vanadate (V(5+)) species after exposure of Phycomyces blakesleeanus mycelium, in exponential phase of growth, to sodium orthovanadate. Complete disappearance of monomer and dimer signals and decreased intensity of the tetramer signal were observed about 40 min after treatment. Simultaneously, a signal at -532 ppm, with increasing intensity, was detected in spectra. The time-dependent rise in this signal was connected to a decrease in the extracellular monomer signal, indicating its transport into the cell. The signal at -532 ppm did not belong to any known simple oxido-vanadate species, nor to a complex with any of the components of experimental medium. This signal was the only one present in spectrum of the mycelium washed 35 min after treatment, and the only one observed in mycelium cultivated on vanadate-contained medium. Therefore, its appearance can be attributed to intracellular complexation, and may represent an important detoxification mechanism of the cell exposed to a physiologically relevant concentration of vanadate. Experiments ((51)V NMR and polarography) performed with Cd-pretreated mycelium (inhibitor of an enzyme responsible for V(5+) reduction) and ferricyanide-preincubated mycelium excluded the possibility of V(5+) tetramer's entry into the cell.

  15. Detection of the quadrupole hyperfine structure in HCNH(+)

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Yoder, J. T.

    1992-01-01

    We report the first measurement of the electric quadrupole hyperfine structure of HCNH(+). The J = 1-0 transition of this interstellar molecular ion was observed toward the cold, dark cloud TMC-1, using the NRAO 12 m telescope at 74 GHz. The three hyperfine components of this transition were clearly detected and resolved, enabling the first experimental determination of the quadrupole coupling constant eqQ of HCNH(+). The value of this constant is calculated to be eqQ = -0.49 +/- 0.07 MHz. The column density of HCNH(+) toward TMC-1 was found to be N(tot) about 2.8 x 10 exp 13/sq cm, corresponding to a fractional abundance relative to H2 of f about 3 x 10 exp -9. This abundance is at least one order of magnitude higher than the predictions of ion-molecule chemistry. Detection of the hyperfine structure clearly establishes the presence of HCNH(+) in interstellar space.

  16. Analysis of hyperfine structure in photoassociation spectra

    NASA Astrophysics Data System (ADS)

    Bergeman, T.

    2008-05-01

    The low Doppler width in photoassociation spectra from cold atoms makes hyperfine structure clearly visible, especially with heavier alkali atoms. Recently the focus has been on photoassociation to weakly bound dimers [1,2]. However there are also useful data on somewhat more deeply bound levels [2] for which a different coupling scheme is appropriate. Following [3], we use a F = J + I representation, and develop a transformation between this and the usual case e representation which applies at asymptotically large internuclear distance. We hope to model and assign hyperfine structure in φ = 1 states, using appropriate ground and excited state wavefunctions. To obtain eigenvalues from very large DVR matrices, we use a ``stepwise diagonalization'' procedure, which appears to be more efficient than standard sparse matrix methods. [1] E. Tiesinga et al. PRA 71, 052703 (2005); K. M. Jones et al, RMP 78, 483 (2006). [2] Data on Rb2 from J. Qi, D. Wang, Y. Huang, H. Pechkis, E. Eyler, P. Gould, W. C. Stwalley, C. C. Tsai and D.J. Heinzen; Data on RbCs from A. J. Kerman, J. M. Sage, S. Sainis and D. DeMille. [3] B. Gao, PRA 54, 2022 (1996).

  17. Hyperfine Structure in Rotational Spectra of Deuterated Molecules: the Hds and ND_3 Case Studies

    NASA Astrophysics Data System (ADS)

    Cazzoli, Gabriele; Puzzarini, Cristina

    2016-06-01

    The determination of hyperfine parameters (quadrupole-coupling, spin-spin coupling, and spin-rotation constants) is one of the aims of high-resolution rotational spectroscopy. These parameters are relevant not only from a spectroscopic point of view, but also from a physical and/or chemical viewpoint, as they might provide detailed information on the chemical bond, structure, etc. In addition, the hyperfine structure of rotational spectra is so characteristic that its analysis may help in assigning the spectra of unknown species. In astronomical observations, hyperfine structures of rotational spectra would allow us to gain information on column densities and kinematics, and the omission of taking them into account can lead to a misinterpretation of the line width of the molecular emission lines. Nevertheless, the experimental determination of hyperfine constants can be a challenge not only for actual problems in resolving hyperfine structures themselves, but also due to the lack of reliable estimates or the complexity of the hyperfine structure itself. It is thus important to be able to rely on good predictions for such parameters, which can nowadays be provided by quantum-chemical calculations. In fact, the fruitful interplay of experiment and theory will be demonstrated by means of two study cases: the hypefine structure of the rotational spectra of HDS and ND_3. From an experimental point of view, the Lamb-dip technique has been employed to improve the resolving power in themillimeter- and submillimeterwave frequency range by at least one order of magnitude, thus making it possible to perform sub-Doppler measurements as well as to resolve narrow hyperfine structures. Concerning theory, it will be demonstrated that high-level calculations can provide quantitative estimates for hyperfine parameters (quadrupole coupling constants, spin-rotation tensors, spin-spin couplings, etc.) and shown how theoretical predictions are often essential for a detailed analysis of

  18. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC

    SciTech Connect

    Szász, K.; Gali, A.

    2014-02-21

    Motivated by recent experimental findings on the hyperfine signal of nitrogen donor (N{sub C}) in 4 H and 6 H SiC, we calculate the hyperfine tensors within the framework of density functional theory. We find that there is negligible hyperfine coupling with {sup 29}Si isotopes when N{sub C} resides at h site both in 4 H and 6 H SiC. We observe measurable hyperfine coupling to a single {sup 29}Si at k site in 4 H SiC and k{sub 1} site in 6 H SiC. Our calculations unravel that such {sup 29}Si hyperfine coupling does not occur at k{sub 2} site in 6 H SiC. Our findings are well corroborated by our new electron paramagnetic resonance studies in nitrogen doped 6 H SiC.

  19. Deuterium hyperfine structure in interstellar C3HD.

    PubMed

    Bell, M B; Watson, J K; Feldman, P A; Matthews, H E; Madden, S C; Irvine, W M

    1987-05-22

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  20. Table of hyperfine anomaly in atomic systems

    SciTech Connect

    Persson, J.R.

    2013-01-15

    This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Büttgenbach [S. Büttgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.

  1. Suppression of hyperfine dephasing by spatial exchange of double quantum dots

    NASA Astrophysics Data System (ADS)

    Drummond, David; Pryadko, Leonid P.; Shtengel, Kirill

    2012-12-01

    We examine the logical qubit system of a pair of electron spins in double quantum dots. Each electron experiences a different hyperfine interaction with the local nuclei of the lattice, leading to a relative phase difference, and thus decoherence. Methods such as nuclei polarization, state narrowing, and spin-echo pulses have been proposed to delay decoherence. Instead we propose to suppress hyperfine dephasing by the adiabatic rotation of the dots in real space, leading to the same average hyperfine interaction. We show that the additional effects due to the motion in the presence of spin-orbit coupling are still smaller than the hyperfine interaction, and result in an infidelity below 10-4 after ten decoupling cycles. We discuss a possible experimental setup and physical constraints for this proposal.

  2. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics.

    PubMed

    Lee, Sang-Yun; Paik, Seo-Young; McCamey, Dane R; Yu, Justin; Burn, Paul L; Lupton, John M; Boehme, Christoph

    2011-02-23

    An appealing avenue for organic spintronics lies in direct coherent control of the spin population by means of pulsed electron spin resonance techniques. Whereas previous work has focused on the electrical detection of coherent spin dynamics, we demonstrate here the equivalence of an all-optical approach, allowing us to explore the influence of materials chemistry on the spin dynamics. We show that deuteration of the conjugated polymer side groups weakens the local hyperfine fields experienced by electron-hole pairs, thereby lowering the threshold for the resonant radiation intensity at which coherent coupling and spin beating occur. The technique is exquisitively sensitive to previously obscured material properties and offers a route to quantifying and tuning hyperfine fields in organic semiconductors.

  3. Hyperfine Splittings in the Near-Infrared Spectrum of 14NH_3

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Sears, Trevor; Hall, Gregory

    2016-06-01

    Sub-Doppler, saturation dip, measurements of transitions in the ν_1 + ν_3 band of 14NH_3 have been made by frequency comb-referenced diode laser absorption spectroscopy. The observed spectra exhibit either resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling in the molecule. Modeling of the line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the upper state level has splittings similar to that of the same rotational level in the ground state. The data provide accurate frequencies for the line positions and the observed hyperfine splittings can be used to make or confirm rotational assignments. Of all the measurements, one transition, pP(5,4)_a at 195 994.73457 GHz, exhibits hyperfine structure which does not conform to that expected based on extrapolation from the known lower state hyperfine splittings. Examination of the known vibration-rotation level structure near the upper state energy shows that there exists a near degeneracy between this level and one in the ν_1 + 2ν_4 manifold which is of the appropriate symmetry to be mixed by magnetic hyperfine terms that couple ortho- and para- modifications of the molecule. It is possible that the unusual hyperfine splittings are a consequence of ortho-paro mixing, which has been predicted, but not previously seen in ammonia and further experimental measurements to investigate this possibility are ongoing. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  4. Temperature-dependent hyperfine interactions at 111Cd-C complex in germanium

    NASA Astrophysics Data System (ADS)

    Mola, Genene Tessema

    2013-09-01

    The temperature dependent nuclear hyperfine interaction of 111Cd-carbon complex in germanium has been studied using the perturbed γ- γ angular correlation (PAC) method. The parameters of the hyperfine interaction representing substitutional carbon-cadmium complex in germanium ( ν Q1=207(1) MHz ( η=0.16)) shows dependence on temperature. The formation and thermal stability of the complex has been reported by the same author earlier. It was found in this study that the quadrupole coupling constant of the interaction increases at sample temperature below 293 K. The results are encouraging toward better understanding of the complex in the host matrix.

  5. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  6. Dynamic polarizabilities and hyperfine-structure constants for Sc2 +

    NASA Astrophysics Data System (ADS)

    Dutta, Narendra Nath; Roy, Sourav; Deshmukh, P. C.

    2015-11-01

    In this work, we calculate dynamic polarizabilities and hyperfine-structure A and B constants of a few low-lying states for Sc2 +. The sum-over-states technique is applied to calculate the polarizabilities of the 3 d 2D3 /2 ,3 d 2D5 /2 , and 4 s 2S1 /2 states. The most important and correlation sensitive part of the sum is calculated using a highly correlated relativistic coupled-cluster theory. The remaining part of the sum is calculated using a lower-order many-body perturbation theory and the Dirac-Fock theory. Present dynamic polarizabilities are important to investigate the Stark shifts in the 4 s 2S1 /2 - 3 d 2D5 /2 and 4 s 2S1 /2 - 3 d 2D3 /2 clock transitions of Sc2 +. Magic wavelengths for zero Stark shifts corresponding to these transitions are found in the vacuum-ultraviolet region. The coupled-cluster theory is used to estimate the hyperfine A and B constants with a very high accuracy.

  7. Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb

    NASA Astrophysics Data System (ADS)

    Bruni, C.; Görlitz, A.

    2016-08-01

    We report on the creation of ultracold heteronuclear and electronically excited Rb*Yb molecules in a hybrid conservative trap by photoassociation of ultracold 87Rb and 176Yb. The molecules are formed below the Rb5 p 1(1/2 2P)+Yb6 s 2(S10) dissociation limit and the resonances are detected using trap-loss spectroscopy. By addressing vibrational levels with binding energies down to EB=-h ×2.2 THz , we study the change in hyperfine coupling of the diatomic molecule as a function of internuclear separation. We observe a decreasing hyperfine splitting for more tightly bound excited molecular states where the hyperfine splitting is reduced by more than 30 % compared to the atomic value for 87Rb.

  8. 51V Solid-state NMR and Density-Functional Theory Studies of Eight-Coordinate Non-Oxo Vanadium Complexes: Oxidized Amavadin

    PubMed Central

    Ooms, Kristopher J.; Bolte, Stephanie E.; Baruah, Bharat; Choudhary, Muhammad Aziz; Crans, Debbie C.; Polenova, Tatyana

    2014-01-01

    SUMMARY Using 51V magic angle spinning solid-state NMR spectroscopy and Density Functional Theory calculations we have characterized the chemical shift and quadrupolar coupling parameters for two eight-coordinate vanadium complexes, [PPh4][V(V)(HIDPA)2] and [PPh4][V(V)(HIDA)2]; HIDPA = 2,2′-(hydroxyimino)dipropionate and HIDA = 2,2′-(hydroxyimino)diacetate. The coordination geometry under examination is the less common non-oxo eight coordinate distorted dodecahedral geometry that has not been previously investigated by solid-state NMR spectroscopy. Both complexes were isolated by oxidizing their reduced forms: [V(IV)(HIDPA)2]2- and [V(IV)(HIDA)2]2-. V(IV)(HIDPA)22- is also known as amavadin, a vanadium-containing natural product present in the Amanita muscaria mushroom and responsible for vanadium accumulation in nature. The quadrupolar coupling constants, CQ, are found to be moderate, 5.0 to 6.4 MHz while the chemical shift anisotropies are relatively small for vanadium complexes, −420 and 360 ppm. The isotropic chemical shifts in the solid state are −220 and −228 ppm for the two compounds, and near the chemical shifts observed in solution. Presumably this is a consequence of the combined effects of the increased coordination number and the absence of oxo groups. Density Functional Theory calculations of the electric field gradient parameters are in good agreement with the NMR results while the chemical shift parameters show some deviation from the experimental values. Future work on this unusual coordination geometry and a combined analysis by solid-state NMR and Density Functional Theory should provide a better understanding of the correlations between experimental NMR parameters and the local structure of the vanadium centers. PMID:19421628

  9. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    SciTech Connect

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li; Urbano, Ricardo R

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along the [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.

  10. Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study.

    PubMed

    Tucker, Michael C; Doeff, Marca M; Richardson, Thomas J; Fiñones, Rita; Cairns, Elton J; Reimer, Jeffrey A

    2002-04-17

    The (7)Li NMR isotropic shift for olivine LiMPO(4) (M = Fe, Mn, Co, Ni) is assigned to hyperfine coupling between the (7)Li nucleus and the transition metal unpaired electrons on the basis of the Curie-Weiss temperature dependence of the shift. The hyperfine shift arises from a linear combination of Li-O-M through-bond interactions wherein the unpaired A' electrons contribute a negative shift and the unpaired A' ' electrons contribute a positive shift. The hyperfine coupling constant is determined for each composition.

  11. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  12. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    SciTech Connect

    Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson

    2004-02-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.

  13. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  14. The interaction of vanadia with sepiolite. Structural studies by sup 51 V solid-state NMR and Raman spectroscopy

    SciTech Connect

    Occelli, M.L. ); Maxwell, R.S.; Eckert, H. )

    1992-09-01

    The interaction of vanadium with sepiolite, a layered magnesium silicate used to stabilize cracking catalysts against metal contaminants in crude oils, is investigated. To this end, field-dependent {sup 51}V wideline, magic-angle-spinning (MAS), and nutation NMR studies, together with X-ray diffraction (XRD) and laser Raman spectroscopy (LRS) results, are reported on sepiolite samples impregnated with a solution of vanadyl naphthenate in benzene. These results are discussed in connection with benchmark NMR data of crystallographically well-defined model compounds in the MgO-V{sub 2}O{sub 5} system. When heated near 760 C in the presence of steam, sepiolite decomposes into enstatite (MgSiO{sub 3}) and silica. If the hydrothermal treatment is repeated in the presence of vanadium, a disordered microcrystalline phase {alpha}-Mg{sub 2}V{sub 2}O{sub 7}. An MgV{sub 2}O{sub 6}-like, distorted octahedral environment is present only in samples with very high surface coverages and can be suppressed by choosing multiple-step over single-step impregnation.

  15. The hyperfine Paschen-Back Faraday effect

    NASA Astrophysics Data System (ADS)

    Zentile, Mark A.; Andrews, Rebecca; Weller, Lee; Knappe, Svenja; Adams, Charles S.; Hughes, Ifan G.

    2014-04-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen-Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10-4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87Rb is found to be ˜40 kHz °C-1.

  16. Temperature dependence of the hyperfine interaction at

    SciTech Connect

    Lopez-Garcia, Alberto; de la Presa, Patricia; Ayala, Alejandro

    2001-06-01

    The temperature dependence of the quadrupole hyperfine parameters covering the temperature range from 293 to 1173 K was measured at {sup 181}Ta probes in SrHfO{sub 3} by perturbed angular correlation spectroscopy. A fluctuating distribution of quadrupole interactions model was applied to interpret the data. At low temperatures above {approximately}300 K a static, asymmetric, and distributed electric quadrupole interaction was detected. At intermediate temperatures ({approx}600 K) a different quadrupole interaction appears, characterized by a fluctuating distribution of axially symmetric electric field gradient tensors. Above 873 K, the unique presence of a nuclear spin relaxation mechanism shows a second change in the perturbation acting on probes. These changes in the hyperfine interaction are consistent with the structural phase transitions detected by diffraction techniques. The probe effects were also analyzed, comparing {sup 181}Ta with {sup 111}Cd experiments.

  17. Hyperfine excitation of OH+ by H

    NASA Astrophysics Data System (ADS)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  18. Hyperfine-enhanced gyromagnetic ratio of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; McLellan, C. A.; Myers, B. A.; Bleszynski Jayich, A. C.; Awschalom, D. D.; Petta, J. R.

    2016-08-01

    The nuclear spin gyromagnetic ratio can be enhanced by hyperfine coupling to the electronic spin. Here we show wide tunability of this enhancement on a 15N nuclear spin intrinsic to a single nitrogen-vacancy center in diamond. We perform control of the nuclear spin near the ground state level anti-crossing (GSLAC), where the enhancement of the gyromagnetic ratio from the ground state hyperfine coupling is maximized. We demonstrate a two order of magnitude enhancement of the effective nuclear gyromagnetic ratio compared to the value obtained at 500 G, a typical operating field that is suitable for nuclear spin polarization. Finally, we show that with strong enhancements, the nuclear spin ultimately suffers dephasing from the inhomogeneous broadening of the NMR transition frequency at the GSLAC.

  19. 2D-hyperfine sublevel correlation spectroscopy of tyrosyl radicals.

    PubMed

    Deligiannakis, Y; Ivancich, A; Rutherord, A W

    2002-04-01

    Hyperfine sublevel correlation (HYSCORE) spectroscopy has been used to study the tyrosyl radicals in Photosystem II and bovine liver catalase. The HYSCORE data allow a complete resolution of all the 1H hyperfine tensors of these radicals. The present work shows that the proper analysis of the HYSCORE data allows the complete assignment of the 1H-hyperfine tensors in tyrosine radicals and this offers an alternative experimental tool relative to ENDOR. PMID:11993467

  20. Spin dynamics of polarons and polaron pairs in a random hyperfine field

    NASA Astrophysics Data System (ADS)

    Roundy, Robert C.

    Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up

  1. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  2. Hyperfine transitions in ultracold hydrogen-antihydrogen collisions

    SciTech Connect

    Voronin, A. Yu.; Froelich, P.

    2009-07-15

    We consider the hyperfine transitions in ultracold collisions of hydrogen (H) and antihydrogen (H) atoms. The cross sections for transitions between various spin states are calculated. We show that hyperfine transitions in H-H collisions are basically driven by the strong force between proton and antiproton.

  3. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-01

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.

  4. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-01

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes. PMID:26488236

  5. Proceedings of the 2nd KUR symposium on hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Mekata, M.; Minamisono, T.; Kawase, Y.

    1991-10-01

    Hyperfine interactions between a nuclear spin and an electronic spin discovered from hyperfine splitting in atomic optical spectra have been utilized not only for the determination of nuclear parameters in nuclear physics but also for novel experimental techniques in many fields such as solid state physics, chemistry, biology, mineralogy, and for diagnostic methods in medical science. Experimental techniques based on hyperfine interactions yield information about microscopic states of matter so that they are important in material science. Probes for material research using hyperfine interactions have been nuclei in the ground state and radioactive isotopes prepared with nuclear reactors or particle accelerators. But the use of muons generated from accelerators is growing. Such wide spread application of hyperfine interaction techniques gives rise to some difficulty in collaboration among various research fields. This report summarizes the KUR symposium in the hope that this information will help to alleviate the problem.

  6. Spin-dependent recombination and hyperfine interaction at deep defects

    NASA Astrophysics Data System (ADS)

    Ivchenko, E. L.; Bakaleinikov, L. A.; Kalevich, V. K.

    2015-05-01

    We present a theoretical study of optical electron-spin orientation and spin-dependent Shockley-Read-Hall recombination in the longitudinal magnetic field, taking into account the hyperfine coupling between the bound-electron spin and the nuclear spin of a deep paramagnetic center. The master rate equations for the coupled system are extended to describe the nuclear spin relaxation by using two distinct relaxation times, τn 1 and τn 2, respectively, for defect states with one and two (singlet) bound electrons. The general theory is developed for an arbitrary value of the nuclear spin I . The magnetic-field and excitation-power dependencies of the electron and nuclear spin polarizations are calculated for the value of I =1 /2 . In this particular case the nuclear effects can be taken into account by a simple replacement of the bound-electron spin relaxation time by an effective time dependent on free-electron and hole densities and free-electron spin polarization. The role of nuclear spin relaxation is visualized by isolines of the electron spin polarization on a two-dimensional graph with the axes log2(τn 1) and log2(τn 2) .

  7. Ligand field and hyperfine interaction of the [Fe(H2O)6]2+ complex in different compounds

    NASA Astrophysics Data System (ADS)

    Doerfler, R.; Leupold, O.; Nagy, D. L.; Ritter, G.; Spiering, H.; Zimmermann, R.

    1983-12-01

    A series of compounds all containing the ferrous hexaquo complex were investigated by Mössbauer spectroscopy at 4.2K and in magnetic fields up to 5T and far infrared techniques. The results are interpreted in terms of a T2g ligand field model for which normal distortions of the water octahedron are used as parameters. The ferrous hexaquo complex can be described in all compounds by the same covalency, spin-orbit coupling and hyperfine coupling constants.

  8. Hyperfine resolved spectrum of the bromomethyl radical, CH2Br, by Fourier transform microwave spectroscopy.

    PubMed

    Ozeki, H; Okabayashi, T; Tanimoto, M; Saito, S; Bailleux, S

    2007-12-14

    Pure rotational spectra of the bromomethyl radical, CH(2)Br, were measured by using a Fourier transform microwave (FT-MW) spectrometer in order to fully resolve hyperfine structures arising from both the bromine and hydrogen nuclei. We detected a total of 124 lines for the (79)Br and (81)Br isotopomers, including K(a)=0 (ortho species) and K(a)=1 (para species). No hyperfine splitting due to the hydrogen nuclei was observed for the para species, directly confirming the planarity of the radical. We conducted a global analysis of our present FT-MW results and previous measurements in the millimeter-wave region and obtained an exhaustive list of molecular constants. The sign of the Fermi constant of the bromine nucleus was unambiguously determined to be positive, which is opposite to that found in previous work in the millimeter-wave region and in electron spin resonance experiment on this radical. The present study permitted a systematic comparison to be made of the hyperfine coupling constants of both the halogen and hydrogen nuclei for CH(2)X-type compounds, where X=F, Cl, and Br.

  9. Effect of nuclear hyperfine structure on microwave spectral pressure broadening

    NASA Astrophysics Data System (ADS)

    Green, Sheldon

    1988-06-01

    The spectral pressure broadening formalism of Ben-Reuven [Phys. Rev. 145, 7 (1966)] is applied to rotational transitions of a closed-shell linear molecule with nuclear quadrupole hyperfine structure (hfs) due to a nucleus of spin I. If, as expected, nuclear spin does not affect molecular collision dynamics, generalized pressure broadening cross sections can be expressed in terms of the spin-free collisional S matrices. For the three hfs components of the lowest j=0-1 rotational transition, the line shape is a simple sum of three noninterfering Lorentzians each of which has the same width and shift as would be expected in the absence of nuclear spin. For higher rotational transitions, however, the line shape is no longer so simple; in general, each hfs component is described by a different width and shift, and collisions transfer intensity among them. Numerical results for HCN broadened by He atoms are presented using both the accurate close coupling (CC) collision formalism and also the infinite order sudden (IOS) approximation. For the case that broadening is very large compared with the hfs splittings it is shown (numerically, within the IOS approximation) that the line shape is nearly (but not exactly, except for j=0-1 as noted above) a Lorentzian with the same width as would be expected in the absence of nuclear spin.

  10. Rotational spectrum and carbon-13 hyperfine structure of the C3H, C5H, C6H, and C7H radicals.

    PubMed

    McCarthy, M C; Thaddeus, P

    2005-05-01

    By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, we have detected the singly substituted carbon-13 isotopic species of C(5)H, C(6)H, and C(7)H. Hyperfine structure in the rotational transitions of the lowest-energy fine structure component ((2)Pi(12) for C(5)H and C(7)H, and (2)Pi(32) for C(6)H) of each species was measured between 6 and 22 GHz, and precise rotational, centrifugal distortion, Lambda-doubling, and (13)C hyperfine coupling constants were determined. In addition, resolved hyperfine structure in the lowest rotational transition (J = 32-->12) of the three (13)C isotopic species of C(3)H was measured by the same technique. By combining the centimeter-wave measurements here with previous millimeter-wave data, a complete set of (13)C hyperfine coupling constants were derived to high precision for each isotopic species. Experimental structures (r(0)) have been determined for C(5)H and the two longer carbon-chain radicals, and these are found to be in good agreement with the predictions of high-level coupled-cluster calculations. C(3)H, C(5)H, and C(7)H exhibit a clear alternation in the magnitude and sign of the (13)C hyperfine coupling constants along the carbon-chain backbone. Because the electron spin density is nominally zero at the central carbon atom of C(3)H, C(5)H, and C(7)H, and at alternating sets of carbon atoms of C(5)H and C(7)H, owing to spin polarization, almost all of the (13)C coupling constants at these atoms are small in magnitude and negative in sign. Spin-polarization effects are known to be important for the Fermi-contact (b(F)) term, but prior to the work here they have generally been neglected for the hyperfine terms a, c, and d.

  11. The hyperfine excitation of OH radicals by He

    NASA Astrophysics Data System (ADS)

    Marinakis, Sarantos; Kalugina, Yulia; Lique, François

    2016-04-01

    Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  12. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  13. Polarization operator contributions to the Lamb shift and hyperfine splitting

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2003-10-01

    We calculate radiative corrections to the Lamb shift of order {alpha}{sup 3}(Z{alpha}){sup 5}m and radiative corrections to hyperfine splitting of order {alpha}{sup 3}(Z{alpha})E{sub F} generated by the diagrams with insertions of radiative photons and electron polarization loops in the graphs with two external photons. We also obtain the radiative-recoil correction to hyperfine splitting in muonium generated by the diagrams with the {tau} polarization loop.

  14. Thermal and nuclear hyperfine properties of Ho(OH)3

    NASA Astrophysics Data System (ADS)

    Karmakar, S.

    1985-05-01

    A reasonable explanation for the findings of Catanese and Meissner [Phys. Rev. B 8, 2071 (1973)] regarding the (hyperfine) heat capacity in the low-temperature region of Ho(OH)3 is given. The Schottky specific heat in the high-temperature region observed calorimetrically by Chirico et al. [J. Chem. Thermodyn. 13, 1092 (1981)] explained satisfactorily. Nuclear hyperfine constants for Ho3+ ions in Ho(OH)3 are determined.

  15. New experimental constraints on polarizability corrections to hydrogen hyperfine structure

    SciTech Connect

    Vahagn Nazaryan; Carl Carlson; Keith Griffioen

    2006-04-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value {Delta}{sub pol} = 1.3 {+-} 0.3 ppm. This is 1-2 ppm smaller than the value of {Delta}{sub pol} deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits.

  16. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    SciTech Connect

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  17. Correlations between (51)V solid-state NMR parameters and chemical structure of vanadium (V) complexes as models for related metalloproteins and catalysts.

    PubMed

    Fenn, Annika; Wächtler, Maria; Gutmann, Torsten; Breitzke, Hergen; Buchholz, Axel; Lippold, Ines; Plass, Winfried; Buntkowsky, Gerd

    2009-12-01

    The parameters describing the quadrupolar and CSA interactions of 51V solid-state MAS NMR investigations of model complexes mimicking vanadoenzymes as well as vanadium containing catalysts and enzyme complexes are interpreted with respect to the chemical structure. The interpretation is based on the data of 15 vanadium complexes including two new complexes with previously unpublished data and 13 complexes with data previously published by us. Correlations between the chemical structure and the 51V solid-state NMR data of this class of compounds have been established. Especially for the isotropic chemical shift delta(iso) and the chemical shift anisotropy delta(sigma), correlations with specific structural features like the coordination number of the vanadium atom, the number of coordinating nitrogens, the number of oxygen atoms and the chemical surrounding of the complex could be established for these compounds. Moreover, quantitative correlations between the solid-state NMR parameters and specific bond angles and bond lengths have been obtained. Our results can be of particular interest for future investigations concerning the structure and the mode of action of related vanadoenzymes and vanadate protein assemblies, including the use of vanadate adducts as transition state analogs for phosphate metabolizing systems.

  18. Theory of hyperfine anomalies in muonic atoms

    SciTech Connect

    Freeman, A.J.; Mallow, J.V.; Desclaux, J.P.; Weinert, M.

    1983-01-01

    Negative muon spin precession experiments by Yamazaki, et al. have found giant hyperfine anomalies in muonic atoms ranging from a few percent up to 36%. In order to understand their results, we present Breit interaction calculations based on atomic self-consistent unrestricted Dirac-Fock solutions which explicitly include all electrons and the negative muon. The Breit interaction results (including the relativistic correction for the bound muon g-factor), vary from near zero for ..mu../sup -/ O/N to -5% for ..mu../sup -/Pd/Rh; this latter is much larger than the calculated muonic or nuclear Bohr-Weisskopf anomalies and much smaller than the 36% measured value. For ..mu../sup -/Ni/Co we find a calculated range of results (depending on assumed electronic configurations) of -2.3 to -2.7% in excellent agreement with recent measurements of the Yamazaki group. This excellent agreement in ..mu../sup -/Ni/Co provides strong support for the earlier suggestions that the discrepancy in the case of ..mu../sup -/Pd/Rh is due to experimental factors.

  19. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    PubMed

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-01

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed. PMID:27541455

  20. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    PubMed

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-01

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  1. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons

    NASA Astrophysics Data System (ADS)

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-08-01

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  2. Nuclear hyperfine interaction of rotating hydrogen: a spectroscopic investigation of hydrogen-OCS van der Waals complexes.

    PubMed

    Yu, Zhenhong; Higgins, Kelly J; Klemperer, William; McCarthy, Michael C; Thaddeus, Patrick

    2005-12-01

    The rotational spectra of five weakly bonded hydrogen-OCS complexes (paraH(2), orthoH(2), HD, orthoD(2), and paraD(2)) are measured. Hyperfine structure is resolved and analyzed in all except the complex with paraH(2), where I=0. For the two j=1 species, orthoH(2)-OCS and paraD(2)-OCS, nuclear hyperfine coupling constants are found to be d(a)=21.2(2) and 8.4(2) kHz, respectively, indicative of nearly free uniaxial rotation of the hydrogen around the b-inertial axis. Similar analyses for HD-OCS and orthoD(2)-OCS yield the quadrupole coupling constants eqQ(a)=16(2) and 30(2) kHz, respectively, showing that the internal rotational motions of HD and orthoD(2) in the complex are slightly hindered producing a small nonspherical distribution. For orthoD(2)-OCS, the observed hyperfine structure indicates that the nuclear spin states I=0 and 2 are strongly coupled in the rotation of the complex.

  3. Computation of hyperfine energies of hydrogen, deuterium and tritium quantum dots

    NASA Astrophysics Data System (ADS)

    Çakır, Bekir; Özmen, Ayhan; Yakar, Yusuf

    2016-01-01

    The hyperfine energies and hyperfine constants of the ground and excited states of hydrogen, deuterium and tritium quantum dots(QDs) are calculated. Quantum genetic algorithm (QGA) and Hartree-Fock-Roothaan (HFR) methods are employed to calculate the unperturbed wave functions and energy eigenvalues. The results show that in the medium and strong confinement regions the hyperfine energy and hyperfine constant are strongly affected by dot radius, impurity charge, electron spin orientation, impurity spin and impurity magnetic moment. Besides, in all dot radii, the hyperfine splitting and hyperfine constant of the confined hydrogen and tritium atoms are approximately equivalent to each other and they are greater than the confined deuterium atom.

  4. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  5. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  6. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  7. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-12-15

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb{sup +}, Hg{sup +}, and Fr.

  8. First observation of muonic hyperfine effects in pure deuterium

    SciTech Connect

    Kammel, P.; Breunlich, W.H.; Cargnelli, M.; Mahler, H.G.; Zmeskal, J.; Bertl, W.H.; Petitjean, C.

    1983-11-01

    We discovered a strong hyperfine dependence of the resonant formation process of d..mu..d mesomolecules, while detecting neutrons from muon-catalyzed fusion in pure deuterium gas at 34 K. This new effect enabled us to observe directly transitions between hyperfine states of the ..mu..d atom for the first time and to determine an accurate experimental value for this transition rate. Our analysis demonstrates the importance of hyperfine effects for the quantitative understanding of the mechanism of resonant d..mu..d formation. Moreover, this experiment indicates that the resonant formation process is a powerful tool for a refined spectroscopy of d..mu..d bound states. Finally, the detailed knowledge about mesoatomic and mesomolecular processes obtained in this work provides valuable information for the analysis of experiments on the elementary muon-capture process in deuterium.

  9. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions

    NASA Astrophysics Data System (ADS)

    Carr, A. W.; Saffman, M.

    2016-10-01

    We analyze doubly magic trapping of Cs hyperfine transitions including previously neglected contributions from the ground state hyperpolarizability and the interaction of the laser light and a static magnetic field. Extensive numerical searches do not reveal any doubly magic trapping conditions for any pair of hyperfine states. However, including the hyperpolarizability reveals light intensity insensitive traps for a wide range of wavelengths at specific intensities. We then investigate the use of bichromatic trapping light fields. Deploying a bichromatic scheme, we demonstrate doubly magic red and blue detuned traps for pairs of states separated by one or two single photon transitions.

  10. Magnetic blackbody shift of hyperfine transitions for atomic clocks

    SciTech Connect

    Berengut, J. C.; Flambaum, V. V.; King-Lacroix, J.

    2009-12-15

    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T{sup 2} dependence only in the high-temperature limit. We also calculate the shift of ground-state p{sub 1/2} hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p{sub 3/2} fine-structure multiplet may be the dominant effect.

  11. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM

  12. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  13. The Relativistic Study of Hyperfine Interactions in Ionic Systems.

    NASA Astrophysics Data System (ADS)

    Panigrahy, Surya Narayan

    1991-02-01

    The Brueckner-Goldstone perturbation theory as formulated relativistically has been applied to the study of hyperfine interactions in the lithium-like ions Li ^0, Be^{+1}, B^{+2}, C^ {+3}, N^{+4} , O^{+5}, F ^{+6}, Ne^{+7 } and Bi^{+80}; in the alkaline earth ions Ra^+ and Sr^+; and in the Group 12 ions Zn^+, Cd^+, and Hg^+, isoelectronic with the Group II atoms Cu, Ag, and Au. We have employed the graphical representation of the theory, where Feynman diagrams are associated with physical effects such as the valence, exchange core polarization, the consistency, and correlation. Contributions from radiative effects are estimated for these systems using a hydrogenic model. The contributions of both exchange core polarization and correlation as ratios of the valence contribution decrease as the degree of ionization and nuclear charge increase; the decrease in much more rapid for the correlation effect. Radiative effects, on the other hand, increase very rapidly with increasing charge, becoming of the same order of magnitude as correlation effects in O^{+5}. For Bi ^{+80} the radiative effect is 0.3% of the valence electron's contribution to the hyperfine field and is larger than the correlation. Our purpose in calculating the hyperfine field for the ^ {213}Ra^+ ion is to evaluate magnetic moments of other Ra isotopes from experimentally determined ratios of magnetic moments. The total hyperfine field obtained for ^{213 }Ra^+ is 1232 tesla (T); when combined with the experimental hyperfine constant from Zeeman measurements, this yields a nuclear magnetic moment of 0.610 +/- 0.006 mu_{rm N}, where mu_{rm N} is the nuclear magneton. Calculations for Zn^+, Cd^+, and Hg^+ have been performed in order to compare the trends of various contributions to the hyperfine fields for these systems from different mechanisms with those of alkali atoms and alkaline-earth ions. Our calculated hyperfine fields of Zn^+, Cd^+, and Hg^+ are 451 +/- 9 T, 795 +/- 15 T, and 2642 +/- 63 T

  14. 7P1/2 hyperfine splitting in 206 , 207 , 209 , 213Fr and the hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.

    2013-05-01

    We perform precision measurements on francium, the heaviest alkali with no stable isotopes, at the recently commissioned Francium Trapping Facility at TRIUMF. A combination of RF and optical spectroscopy allows better than 10 ppm (statistical) measurements of the 7P1 / 2 state hyperfine splitting for the isotopes 206 , 207 , 209 , 213Fr, in preparation for weak interaction studies. Together with previous measurements of the ground state hyperfine structure, it is possible to extract the hyperfine anomaly. This is a correction to the point interaction of the nuclear magnetic moment and the electron wavefunction, known as the Bohr Weisskopf effect. Our measurements extend previous measurements to the neutron closed shell isotope (213) as well as further in the neutron deficient isotopes (206, 207). Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  15. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  16. On the observability of optically thin coronal hyperfine structure lines

    SciTech Connect

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the {sup 57}Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ∼20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  17. The molecular frame electric dipole moment and hyperfine interactions in hafnium fluoride, HfF.

    PubMed

    Le, Anh; Steimle, Timothy C; Skripnikov, Leonid; Titov, Anatoly V

    2013-03-28

    The (1,0) [17.9]2.5-X(2)Δ(3∕2) band of hafnium monofluoride (HfF) has been recorded using high-resolution laser-induced fluorescence spectroscopy both field-free and in the presence of a static electric field. The field-free spectra of (177)HfF, (179)HfF, and (180)HfF were modeled to generate a set of fine and hyperfine parameter for the X(2)Δ(3∕2)(v = 0) and [17.9]2.5 (v = 1) states. The observed optical Stark shifts for the (180)HfF isotopologue were analyzed to produce the molecular frame electric dipole moments of 1.66(1) D and 0.419(7) D for the X(2)Δ(3∕2) and [17.9]2.5 state, respectively. Both the generalized effective core potential and all-electron four component approaches were used in ab initio calculations to predict the properties of ground state HfF including equilibrium distance, dipole moments, quadrupole coupling, and magnetic hyperfine constants.

  18. The (biological) speciation of vanadate(V) as revealed by (51)V NMR: A tribute on Lage Pettersson and his work.

    PubMed

    Rehder, Dieter

    2015-06-01

    Four decades of research carried out by Lage Pettersson, his group and his coworkers are reviewed, research that has been directed predominantly towards the speciation of vanadate and systems containing, along with vanadate and co-reactants such as phosphate and peroxide, biologically relevant organics. In particular, those organics have been addressed that either are (potential) ligands for vanadate-derived coordination compounds generated at physiological conditions and/or function as constituents in medicinally interesting oxidovanadium compounds. Examples for molecules introduced in the context of the physiological vanadate-ligand interaction include the dipeptides Pro-Ala, Ala-Gly, Ala-His and Ala-Ser, the serum constituents lactate and citrate, and the nucleobases adenosine and uridine. The speciation in the vanadate-picolinate and vanadate-maltol systems is geared towards insulin-enhancing vanadium drugs. The speciation as a function of pH, ionic strength and the concentration of vanadate and the ligand(s) is based on potentiometric and (51)V NMR investigations, a methodical combination that allows reliable access to composition, formation constants and, to some extent, also structural details for the manifold of species present in aqueous media at physiological pH and beyond. The time frame 1971 to 2014 is reviewed, emphasizing the interval 1985 to 2006, and thus focusing on biologically interesting vanadium systems. Figurative representations from the original literature have been included. PMID:25592749

  19. A theoretical study of the fine and hyperfine interactions in the NCO and CNO radicals

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra

    2004-06-01

    The geometries, the harmonic vibrational frequencies, and the Renner-Teller parameter have been reported for the NCO+(X˜ 3Σ-), NCO(X˜ 2Π,Ã2Σ+,B˜ 2Π,2 2Σ+), NCO-(X˜ 1Σ+), CNO+(X˜), CNO(X˜ 2Π,Ã2Σ+,B˜ 2Π,2 2Σ+), and CNO-(X˜ 1Σ+) systems at the full valence-complete active space self-consistent-field (fv-CASSCF) level of theory. The 2Π electronic states of the NCO and CNO radicals have two distinct real vibrational frequencies for the bending modes and these states are subject to the type A Renner-Teller effect. The total energy of CNO+ without zero point energy correction of the linear geometry is ˜31 cm-1 higher than the bent geometry at the fv-CASSCF level and the inversion barrier vanishes after the zero point energy correction; therefore, the ground state of the CNO+ may possess a quasilinear geometry. The spin-orbit coupling constants estimated using atomic mean field Hamiltonian at the fv-CASSCF level of theory are in better agreement with the experimental values. The excitation energies, the electron affinity, and the ionization potential have been computed at the complete active space second order perturbation theory (CASPT2) and the multireference singles and doubles configuration (MRSD-CI) levels of theory. The computed values of the electric hyperfine coupling constants for the 14N atom in the ground state of the NCO radical agree well with the experimental data. The magnetic hyperfine coupling constants (HFCC's) have been estimated employing the configuration selected MRSD-CI and the multireference singles configuration interaction (MRS-CI) methods using iterative natural orbitals (ino) as one particle basis. Sufficiently accurate value of the isotropic contribution to the HFCC's can be obtained using an MRS-CI-ino procedure.

  20. Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction

    SciTech Connect

    Johnson, W.R.; Safronova, M.S.; Safronova, U.I.

    2003-06-01

    The nuclear spin-dependent parity-nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s{sub 1/2}-7s{sub 1/2} transition in {sup 133}Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to {sup 133}Cs leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s{sub 1/2}-8s{sub 1/2} transition in {sup 211}Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba{sup +}, Au, Tl, Fr, and Ra{sup +}.

  1. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Srivastava, S. K.

    2014-04-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti-Co), 4d (Nb-Ru) and 5d (Ta-Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446-e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc-V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d-d hybridization strength between the impurity and host atoms.

  2. Beam maser measurements of HDO hyperfine structure

    NASA Astrophysics Data System (ADS)

    Fry, H. A.; Kukolich, S. G.

    1982-05-01

    The 431←432, 532←533, and 321←414 transition in HDO were measured in a beam maser spectrometer. Accurate values for rotational transiton frequencies, the deuterium quadrupole coupling tensor, and hydrogen spin-rotation tensor were obtained from the present data combined with previous results on other transitions. Resonance line widths of 2 kHz were obtained for most of the data. Measured quadrupole coupling tensor elements eqQ(D)gg and spin-rotation tensor elements C(X)gg in kHz are as follows: eqQ(D)aa = 276.45±0.88, eqQ(D)bb = -110.97±1.46, eqQ(D)cc = -165.77±1.10, C(D)aa = -1.33±0.20, C(D)bb = -4.38±0.36, C(D)cc = -2.99±0.24, C(H)aa = -58.42±0.47, C(H)bb = -5.46±0.83, C(H)cc = -24.11±0.55.

  3. Hadronic light-by-light scattering in muonium hyperfine splitting

    SciTech Connect

    Karshenboim, S. G.; Shelyuto, V. A.; Vainshtein, A. I.

    2008-09-15

    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval {delta}{nu}(Mu){sub HLBL} is calculated with the light-by-light scattering approximated by the exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, {delta}{nu}(Mu){sub HLBL}=-0.0065(10) Hz. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.

  4. Theory of knight shift due to indirect nuclear hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Tripathi, G. S.; Mishra, B.; Misra, P. K.

    1987-06-01

    We derive a theory of Knight shift ( K) in solids including the effects of periodic potential, spin-orbit interaction, magnetic hyperfine interactions and indirect nuclear hyperfine interaction. We use a temperature dependent Green's function technique to evaluate the thermodynamic potential which is then used to obtain a general expresion for the Knight shift. Our formula for K is expressed as a sum of contributions due to conduction electrons and localized electrons of either d- or f-type: Kcond and Kloc. While Kcond is the same as our previous expression for K derived in the absence of localized magnetic moments, Kloc is a new contribution and is due to the hybridization of conduction and localized electron magnetic moments. We also briefly discuss the many-body effects on the different contributions to K. Finally, the importance of the present theory in possible applications to metals, alloys and compounds containing transition and rare-earth elements, and magnetic semiconductors is discussed.

  5. Hyperfine relaxation of an optically pumped cesium vapor

    SciTech Connect

    Tornos, J.; Amare, J.C.

    1986-07-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  6. Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    SciTech Connect

    X.-H. Guo; P.C. Tandy; A.W. Thomas

    2006-03-01

    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.

  7. Theoretical study of hyperfine structure constants of Ga isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Q. M.; Li, J. G.; Fritzsche, S.; Godefroid, M.; Chang, Z. W.; Dong, C. Z.

    2012-11-01

    The hyperfine structure constants for the ground 4s24p 2P°3/2 and lowest excited states 4s25s 2S1/2 of 71Ga are calculated using the GRASP2K package based on the multi-configuration Dirac-Hartree-Fock method. Furthermore, the magnetic dipole (μ) and the electric quadrupole (Q) moments of the Ga isotopes from 67Ga to 81Ga are derived.

  8. Mapping the magnetic hyperfine field in GdCo5

    NASA Astrophysics Data System (ADS)

    Krylov, V. I.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Delyagin, N. N.; Carbonari, A. W.

    2016-05-01

    The magnetic hyperfine field (Bhf) in ferrimagnetic GdCo5 compound has been investigated as a function of temperature by Mössbauer effect (ME) spectroscopy and perturbed angular correlation (PAC) spectroscopy using 119Sn and 111Cd probe nuclei, respectively. Results show that the non-magnetic probe atoms 119Sn and 111Cd substitute all three non-equivalent positions in GdCo5: Gd, CoI, and CoII. For 119Sn and 111Cd probes at Gd sites, the saturation magnetic hyperfine fields are very different with values of Bhf1 = 57.0(1) T and Bhf1= 20.7(1) T, respectively. For 119Sn and 111Cd atoms localized at CoI and CoII sites the magnetic hyperfine fields are practically identical and, in saturation, reach the values of Bhf2 = 11.6(1) T and Bhf2 = 11.1(2) T, and Bhf3 = 14.8(1) T and Bhf3 = 14.4(2) T, respectively.

  9. First observation of two hyperfine transitions in antiprotonic 3He

    PubMed Central

    Friedreich, S.; Barna, D.; Caspers, F.; Dax, A.; Hayano, R.S.; Hori, M.; Horváth, D.; Juhász, B.; Kobayashi, T.; Massiczek, O.; Sótér, A.; Todoroki, K.; Widmann, E.; Zmeskal, J.

    2011-01-01

    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of p¯3He+. Due to the helium nuclear spin, p¯3He+ has a more complex hyperfine structure than p¯4He+, which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton. PMID:21822351

  10. First Optical Hyperfine Structure Measurement in an Atomic Anion

    SciTech Connect

    Fischer, A.; Canali, C.; Warring, U.; Kellerbauer, A.; Fritzsche, S.

    2010-02-19

    We have investigated the hyperfine structure of the transition between the 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2}{sup e} ground state and the 5d{sup 6}6s{sup 2}6p {sup 6}D{sub J}{sup o} excited state in the negative osmium ion by high-resolution collinear laser spectroscopy. This transition is unique because it is the only known electric-dipole transition in atomic anions and might be amenable to laser cooling. From the observed hyperfine structure in {sup 187}Os{sup -} and {sup 189}Os{sup -} the yet unknown total angular momentum of the bound excited state was found to be J=9/2. The hyperfine structure constants of the {sup 4}F{sub 9/2}{sup e} ground state and the {sup 6}D{sub 9/2}{sup o} excited state were determined experimentally and compared to multiconfiguration Dirac-Fock calculations. Using the knowledge of the ground and excited state angular momenta, the full energy level diagram of {sup 192}Os{sup -} in an external magnetic field was calculated, revealing possible laser cooling transitions.

  11. Hyperfine structure and isotope shift study in singly ionized lead

    NASA Astrophysics Data System (ADS)

    Wąsowicz, T. J.; Drozdowski, R.; Kwela, J.

    2005-12-01

    Hyperfine structure and isotope shifts in five optical transitions: 424.5 nm (6s^25f ^2textrm{F}_{7/2} 6s^26d^2 textrm{D}_{5/2}), 537.2 nm (6s^25f ^2textrm{F}_{7/2} 6s6p^2 ^4textrm{P}_{5/2}), 554.5 nm (6s^27d ^2textrm{D}_{5/2} 6s^27p ^2textrm{P}_{3/2}), 560.9 nm (6s^27p^2 textrm{P}_{3/2} 6s^27s ^2textrm{S}_{1/2}) and 666.0 nm (6s^27p ^2textrm{P}_{1/2} 6s^27s ^2textrm{S}_{1/2}) of Pb II have been measured. As a light source the discharge tube was used. The hyperfine structure measurements were performed using metallic isotope 207Pb. For isotope shifts measurements natural lead was used. The high resolution spectral apparatus consisted of a silver coated Fabry-Perot etalon and a grating spectrograph combined with a CCD camera used as a detector. In the analysis of the spectra a computer simulation technique was used. The hyperfine structure observations yielded the splitting constants A for seven levels of Pb II. The isotope shift studies enabled to separate the mass and the field shifts and to determine values of changes of the mean square nuclear charge radii.

  12. Observation and analysis of the hyperfine structure of near-dissociation levels of the NaCs c +3Σ state below the dissociation limit 3 S1 /2+6 P3 /2

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wu, Jizhou; Ma, Jie; Li, Peng; Sovkov, Vladimir B.; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We report photoassociation (PA) of ultracold Na and Cs atoms in a dual-species magneto-optical trap. Trap loss spectroscopy of the ultracold polar NaCs molecules formed by PA, which carries information about relative PA transition strengths, has been experimentally obtained by using highly sensitive modulation spectroscopy technique. The fine and hyperfine effects at near-dissociation levels of NaCs molecular c +3Σ state are observed and modeled. The interaction Hamiltonian is described in terms of the Hund's case (a ) coupling scheme. The molecular hyperfine structure of near-dissociation levels is simulated within a simplified model of four interacting vibrational levels belonging to different initially unperturbed electronic states. The results of the simulation infer that the interaction parameters of the observed near-dissociation levels are close to the asymptotic parameters of the pair of atoms. The coupling of the electronic states is essential for forming the hyperfine structure.

  13. The hyperfine structure in the rotational spectra of D2(17)O and HD(17)O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; Harding, Michael E; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing (17)O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined (17)O spin-rotation constants of D2 (17)O and HD(17)O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H2 (17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  14. Neutral atoms are entangled in hyperfine states via Rydberg blockade

    SciTech Connect

    Miller, Johanna

    2010-02-15

    Ions and neutral atoms held in electromagnetic traps are two of many candidates that may one day become the qubits in a quantum computer: Their hyperfine states could serve as the computer's ones and zeroes. Ions interact via long-range Coulomb forces, which can facilitate creation of the entangled states that are the prerequisite for quantum computation. But that same Coulomb interaction gives rise to collective motions that can disrupt a qubit array. Atoms aren't susceptible to such disruptions. But they're also more difficult to entangle.

  15. Single pion contribution to the hyperfine splitting in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Huong, Nguyen Thu; Kou, Emi; Moussallam, Bachir

    2016-06-01

    A detailed discussion of the long-range one-pion exchange (Yukawa potential) contribution to the 2 S hyperfine splitting in muonic hydrogen, which had, until recently, been disregarded, is presented. We evaluate the relevant vertex amplitudes, in particular π0μ+μ-, combining low energy chiral expansions together with experimental data on π0 and η decays into two leptons. A value of Δ EHFSπ=-(0.09 ±0.06 ) μ eV is obtained for this contribution.

  16. Chiral Symmetry and Hyperfine Quark-Antiquark Splittings

    SciTech Connect

    Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson

    2003-12-01

    We briefly review theoretical calculations for the pseudoscalar-vector meson hyperfine splitting with no open flavor and also report a many body field theoretical effort to assess the impact of chiral symmetry in the choice of effective potentials for relativistic quark models. Our calculations predict the missing eta{sub b} meson to have mass near 9400 MeV. The radial excitation {eta}{sub c}(2S) is in agreement with the measurements of the BELLE and most recently BABAR collaborations.

  17. Measurement of isotope shifts and hyperfine structure in Zr II

    NASA Astrophysics Data System (ADS)

    Rosner, S. D.; Holt, R. A.

    2016-06-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts (IS) of 51 optical transitions in the wavelength range 420.6-461.4 nm and the hyperfine structures (hfs) of 11 even parity and 30 odd parity levels in Zr II. The IS and many of the hfs measurements are the first for these transitions and levels. These atomic data are very important for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. They also provide important constraints on stellar diffusion modeling and provide a benchmark for theoretical atomic structure calculations.

  18. Modeling flux noise in SQUIDs due to hyperfine interactions.

    PubMed

    Wu, Jiansheng; Yu, Clare C

    2012-06-15

    Recent experiments implicate spins on the surface of metals as the source of flux noise in superconducting quantum interference devices and indicate that these spins are able to relax without conserving total magnetization. We present a model of 1/f flux noise in which electron spins on the surface of metals can relax via hyperfine interactions. Our results indicate that flux noise would be significantly reduced in superconducting materials where the most abundant isotopes do not have nuclear moments, such as zinc and lead.

  19. Analytical calculation of radiative-recoil corrections to muonium hyperfine splitting: Muon-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    Analytic expression for radiative-recoil corrections to muonium ground-state hyperfine splitting induced by muon-line radiative insertions is obtained. This result completes the program of analytic calculation of all radiative-recoil corrections. The perspectives of further muonium hyperfine splitting investigations are also discussed.

  20. Optical hyperfine pumping as nonlinear mechanism in degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Cruse, E.; Lange, W.

    1994-10-01

    Pressure induced optical pumping between the F = 1 and F = 2 hyperfine substates of the sodium ground state contributes significantly to the generation of a phase-conjugate output. Even in situations where the pressure broadening exceeds the hyperfine splitting, a signal due to this process can be observed. A theoretical treatment including thermal diffusion shows good agreement with the experiment.

  1. Muon loop light-by-light contribution to hyperfine splitting in muonium.

    PubMed

    Eides, Michael I; Shelyuto, Valery A

    2014-05-01

    Three-loop corrections to hyperfine splitting in muonium, generated by the gauge-invariant sets of diagrams with muon and tauon loop light-by-light scattering blocks, are calculated. These results complete calculations of all light-by-light scattering contributions to hyperfine splitting in muonium.

  2. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  3. Bottomonium spectrum at order v{sup 6} from domain-wall lattice QCD: Precise results for hyperfine splittings

    SciTech Connect

    Meinel, Stefan

    2010-12-01

    The bottomonium spectrum is computed in dynamical 2+1 flavor lattice QCD, using nonrelativistic QCD for the b quarks. The main calculations in this work are based on gauge field ensembles generated by the RBC and UKQCD Collaborations with the Iwasaki action for the gluons and a domain-wall action for the sea quarks. Lattice spacing values of approximately 0.08 fm and 0.11 fm are used, and simultaneous chiral extrapolations to the physical pion mass are performed. As a test for gluon-discretization errors, the calculations are repeated on two ensembles generated by the MILC Collaboration with the Luescher-Weisz gauge action. Gluon-discretization errors are also studied in a lattice potential model using perturbation theory for four different gauge actions. The nonperturbative lattice QCD results for the radial and orbital bottomonium energy splittings obtained from the RBC/UKQCD ensembles are found to be in excellent agreement with experiment. To get accurate results for spin splittings, the spin-dependent order-v{sup 6} terms are included in the nonrelativistic QCD action, and suitable ratios are calculated such that most of the unknown radiative corrections cancel. The cancellation of radiative corrections is verified explicitly by repeating the calculations with different values of the couplings in the nonrelativistic QCD action. Using the lattice ratios of the S-wave hyperfine and the 1P tensor splitting, and the experimental result for the 1P tensor splitting, the 1S hyperfine splitting is found to be 60.3{+-}5.5{sub stat{+-}}5.0{sub syst{+-}}2.1{sub exp} MeV, and the 2S hyperfine splitting is predicted to be 23.5{+-}4.1{sub stat{+-}}2.1{sub syst{+-}}0.8{sub exp} MeV.

  4. Resolution of hyperfine transitions in metastable 83Kr using electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Mishra, S. R.; Tiwari, V. B.; Singh, S.; Rawat, H. S.

    2015-05-01

    Narrow linewidth signals of electromagnetically induced transparency (EIT) in the metastable 83Kr have been observed. Various hyperfine transitions in the 4 p55 s [3/2 ] 2 to 4 p55 p [5/2 ] 3 manifolds of 83Kr have been identified through the experimentally observed EIT signals. Some unresolved or poorly resolved hyperfine transitions in saturated absorption spectroscopy (SAS) are clearly resolved in the present work. Using the spectral separation of these EIT identified hyperfine transitions, the magnetic hyperfine constant (A ) and the electric quadrupole hyperfine constant (B ) are determined with improved accuracy for 4 p55 s [3/2 ] 2 and 4 p55 p [5/2 ] 3 manifolds.

  5. Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium: Diagrams with Polarization Loops

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-25

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with electron and muon vacuum polarizations. We calculate single-logarithmic and nonlogarithmic contributions of order alpha{sup 3}(m/M)E{sub F} generated by gauge invariant sets of diagrams with electron and muon polarization insertions in the electron and muon factors. Combining these corrections with the older results, we obtain total contribution to hyperfine splitting generated by all diagrams with electron and muon polarization loops. The calculation of this contribution completes an important stage in the implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below 10 Hz. The new results improve the theory of hyperfine splitting and affect the value of the electron-muon mass ratio extracted from experimental data on muonium hyperfine splitting.

  6. Singlet-triplet electron scattering admixture due to fine- and hyper-fine interactions in Cs Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Markson, Samuel; Rittenhouse, Seth; Sadeghpour, Hossein

    2016-05-01

    We will present the admixture of singlet electron scattering into the more dominant triplet scattering in the formation of ultracold Cs Rydberg molecules excited into non-zero electronic angular momentum states. This admixture comes about due to both spin-orbit (SO) coupling in the Rydberg atom as well as the hyperfine (HF) coupling in the ground state atom. In Cs, the Rydberg SO and ground HF interactions are on par. The interaction between the Rydberg electron and the ground state atom includes both s-wave and p-wave scattering components which can cause additional mixing of electronic Rydberg states in the bound molecules. We intend to apply the formalism to Rydberg excitation in Cs in p and d states and will give a progress report at the meeting.

  7. Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan

    2004-01-01

    Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.

  8. Muon hyperfine fields in iron and its dilute alloys

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.; Squire, K. R.; Arrott, A. S.; Patterson, B. D.; Heinrich, B.; Lankford, W. F.; Fiory, A. T.; Kossler, W. J.; Singh, J. J.

    1981-01-01

    The temperature dependence of the interstitial magnetic field, B, as determined by the rotation of the spin of the muon, has been measured for dilute polycrystalline iron alloys with Mo, Ti, and Nb additions over a temperature range of 240 to 633 K. In all cases the behaviors differ from one another and from the Fe(Al) alloys previously studied. B, which is negative with respect to the magnetization, is increased in magnitude by Al and Mo, and decreased greatly by Ti. The addition of Nb creates a two-phase alloy from which the role of heterogeneity and/or strain on B in iron can be assessed. If the temperature dependence of the hyperfine field extracted from B for Fe(Mo) alloys is interpreted on the model previously used to discuss the Fe(Al) data, then the muon must be attracted to the Mo atom while repelled by the Al atoms as the temperature decreases.

  9. A source of antihydrogen for in-flight hyperfine spectroscopy

    PubMed Central

    Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273

  10. A source of antihydrogen for in-flight hyperfine spectroscopy.

    PubMed

    Kuroda, N; Ulmer, S; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart-hydrogen--is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

  11. Hyperfine fields at the (001) Fe/Ag interface.

    NASA Astrophysics Data System (ADS)

    Rodriguez, C. O.; Peltzer Y Blanca, E. L.; Ganduglia-Pirovano, M. V.; Petersen, M.

    2000-03-01

    First principles studies within local spin density functional theory have been performed to calculate and investigate the microscopic origin of Hyperfine Fields (HFF's) of a Cd impurity in bulk Fe and at the (001) interface of Fe/Ag. Monolayer resolved HFF's at this interface have recently been studied using ^111In/^111Cd probe atoms in PAC ( B.U.Runge, M.Dippel, G.Fillebock, K. Jacobs, U. Kohl and G. Schatz, Phys. Rev. Lett. 79), 3054 (1997) determinations. The reduction of the symmetry and the changes in the chemical environment of Cd at each side of the interface as compared to Cd in Fe bulk can be linked to the interpretation of the HFF's.

  12. The Hyperfine Structure of Aluminum Monoxide, AlO

    NASA Astrophysics Data System (ADS)

    Breier, A.; Büchling, Thomas; Giesen, Thomas; Gauss, Jürgen

    2014-06-01

    Small metal-containing molecules were produced in a laser ablation supersonic jet apparatus. The products were investigated by means of millimeter/submillimeter wave spectroscopy and optical spectra were recorded with a high-resolution grating spectrometer (HR2000+, OceanOptics). This method has been applied to study AlO produced from laser ablation of solid aluminum seeded in helium-buffer gas enriched with 2% of nitrogenous oxide. The adiabatically expanding dilute gas mixture is probed by monochromatic radiation of frequencies up to 400 GHz (WR2.8x3,Virginia Diodes Inc.). The measurements reveal the hyperfine structure of a linear molecule in Hund's case bβ S due to the nuclear spin of aluminum. With the present measurements, new high accurate line positions for future astronomical observations and more accurate molecular parameters are available. The new data were compared to high level ab initio calculations performed by the group of J. Gauss.

  13. Nagaoka’s atomic model and hyperfine interactions

    PubMed Central

    INAMURA, Takashi T.

    2016-01-01

    The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182

  14. Hyperfine interactions and nuclear probes in chemistry: The active interface

    NASA Astrophysics Data System (ADS)

    Herber, R. H.

    1990-08-01

    A symposium entitled “Hyperfine Interaction and Nuclear Probes in Chemistry” was held in conjunction with the 198 th. National Meeting of the American Chemical Society in Miami Beach, Florida, 12 and 13 September 1989. The four half-day sessions consisted of 15 invited and 4 contributed papers, and allowed numerous opportunities for spirited discussion and information exchange, especially at the informal luncheons and pre-dinner periods, and Miami Beach proved to be a most effective venue for these activities. In the pages to follow are collected a number of the scientific reports presented at this symposium; other contributions will be published elsewhere at the discretion of the author(s).

  15. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  16. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    SciTech Connect

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.

  17. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-01

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d -dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d =1 and 2, the time dependence of the space-integrated spin polarization P (t ) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P (t ) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d =1 versus d =3 ). Furthermore, we investigate in detail the coordinate dependence of the time-integrated spin polarization σ (r ) , which can be probed in the spin-transport experiments with spin-polarized electrodes. We demonstrate that, while σ (r ) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.

  18. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules.

    PubMed

    Yang, Shengyan; Xia, Xiaoxiang; Liu, Zhe; Yiwen, E; Wang, Yujin; Tang, Chengchun; Li, Wuxia; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-11-01

    We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

  19. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Xia, Xiaoxiang; Liu, Zhe; Yiwen, E.; Wang, Yujin; Tang, Chengchun; Li, Wuxia; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-11-01

    We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

  20. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules.

    PubMed

    Yang, Shengyan; Xia, Xiaoxiang; Liu, Zhe; Yiwen, E; Wang, Yujin; Tang, Chengchun; Li, Wuxia; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-11-01

    We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices. PMID:27604845

  1. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization. PMID:27475368

  2. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  3. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  4. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  5. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  6. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: rapid passage, free induction decay, and the ac Stark effect.

    PubMed

    Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel

    2012-05-01

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  7. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions

    SciTech Connect

    Khetselius, O. Yu.

    2008-10-22

    The energies and constants of the hyperfine structure, derivatives of the one-electron characteristics on nuclear radius, nuclear electric quadrupole, magnetic dipole moments for some Li-like multicharged ions are calculated.

  8. Laser cooling of {sup 173}Yb for isotope separation and precision hyperfine spectroscopy

    SciTech Connect

    Das, Dipankar; Natarajan, Vasant

    2007-12-15

    The hyperfine transitions in the 399 nm {sup 1}S{sub 0}{r_reversible}{sup 1}P{sub 1} line in {sup 173}Yb overlap with the transition in {sup 172}Yb. We use transverse laser cooling on this line to selectively deflect {sup 173}Yb atoms from a thermal beam containing both isotopes. We then use an acousto-optic modulator to span the frequency difference between the hyperfine transitions, and hence measure hyperfine structure in the {sup 1}P{sub 1} state. Our precise values for the hyperfine constants, A{sub 173}=57.693{+-}0.006 MHz and B{sub 173}=609.028{+-}0.056 MHz, improve previous values significantly.

  9. Polarized 3He− ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, Vasiliy; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He− ion source. This report discusses a polarized 3He− ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He− ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He− ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He− beam polarization of 90% can be achieved. Such a method of polarized 3He− production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He− ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of 3He− ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He− ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge

  10. Polarized 3He- ion source with hyperfine state selection

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He- ion source. This report discusses a polarized 3He- ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He- ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ˜ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He- ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He- beam polarization of 90% can be achieved. Such a method of polarized 3He- production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He- ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ˜1-4 mA of 3He- ions with ˜90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He- ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge exchange jet, and 4

  11. Calculation of the hyperfine structure of the superheavy elements Z=119 and Z=120{sup +}

    SciTech Connect

    Dinh, T. H.; Dzuba, V. A.; Flambaum, V. V.

    2009-10-15

    The hyperfine-structure constants of the lowest s and p{sub 1/2} states of superheavy elements Z=119 and Z=120{sup +} are calculated using ab initio approach. Core polarization and dominating correlation effects are included to all orders. Breit and quantum electrodynamic effects are also considered. Similar calculations for Cs, Fr, Ba{sup +}, and Ra{sup +} are used to control the accuracy. The dependence of the hyperfine-structure constants on the nuclear radius is discussed.

  12. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    SciTech Connect

    Agzamova, P. A. Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-15

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions {sup 139}La and {sup 89}Y in LaTiO{sub 3} and YTiO{sub 3}, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  13. Hyperfine field of einsteinium in iron and nuclear magnetic moment of Es254

    NASA Astrophysics Data System (ADS)

    Severijns, N.; Belyaev, A. A.; Erzinkyan, A. L.; Eversheim, P.-D.; Filimonov, V. T.; Golovko, V. V.; Gurevich, G. M.; Herzog, P.; Kraev, I. S.; Lukhanin, A. A.; Noga, V. I.; Parfenova, V. P.; Phalet, T.; Rusakov, A. V.; Tandecki, M.; Toporov, Yu. G.; Tramm, C.; Traykov, E.; Gorp, S. Van; Vyachin, V. N.; Wauters, F.; Zákoucký, D.; Zotov, E.

    2009-06-01

    The angular distributions of γ rays and α particles from oriented Bk250, Es253,254, and Fm255 nuclei were investigated to extract hyperfine interaction information for these actinide impurities in an iron host lattice. The hyperfine field of einsteinium in iron was found to be |Bhf(EsFe̲|)=396(32) T. With this value the magnetic moment of Es254 was then determined as |μ|=4.35(41)μN.

  14. Theory of copper hyperfine interactions in the La sub 2 CuO sub 4 system (US)

    SciTech Connect

    Sulaiman, S.B.; Sahoo, N.; Das, T.P. ); Donzelli, O. ); Torikai, E. ); Nagamine, K. )

    1991-10-01

    The unrestricted Hartree-Fock cluster procedure is used to study the electronic structure of La{sub 2}CuO{sub 4} and obtain the {sup 63}Cu quadrupole coupling constant and asymmetry parameter of 88.4 MHz and 0.04, respectively, in satisfactory agreement with experiment. A magnetic hyperfine field of 105.2 kG is obtained at the {sup 63}Cu nucleus, as compared to 78.78 kG from experiment. The effective charges on copper and oxygen ions and the mixing of copper and planar oxygen orbitals in the wave functions suggest significant covalent bonding between them. The magnetic moment on the copper ion is reduced by the influence of the covalency effect and will be compared with experiment.

  15. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    the indirect coupling is provided by the intra-atomic 4 f -5 d exchange and interatomic 5 d -5 d interaction between the spin-polarized 5 d electrons of neighboring R atoms. The ratio of the hyperfine fields of GdCd and GdCd2 scales with the number of nearest Gd neighbors. In the paramagnetic phases of the R Cd compounds, the PAC spectra indicate the presence of a broad distribution of weak quadrupole interactions suggesting a perturbation of the cubic CsCl symmetry of the Cd site, most probably due to chemical disorder of the R and Cd sublattices. A substantial interchange of R and Cd atoms is also reflected in the temperature dependence of the linewidth of the magnetic hyperfine interaction in the magnetically ordered phase of R Cd and GdCd2. Its critical increase towards the order temperature is evidence for a distribution of the order temperature with a width of about 10 K.

  16. Precision measurement of muonium hyperfine splitting at J-PARC

    NASA Astrophysics Data System (ADS)

    Kanda, Sohtaro; J-PARC MuHFS Collaboration

    2014-09-01

    Muonium is the bound state of a positive muon and an electron. Because neither muon nor electron has internal structure, muonium's ground state hyperfine splitting (MuHFS) can be the most precise probe for the test of the bound state QED and for the determination of the ratio of magnetic moments of muon and proton. At J-PARC, we plan to perform a precision measurement of the MuHFS via microwave spectroscopy of muonium. Muonium is formed in Kr gas target and state transition between energy levels is induced by microwave resonance. Spectroscopy of the muonium states can be performed by measurement of positron asymmetry from muonium decay. Precision of the most recent experimental result (LAMPF1999) was mostly statistically limited. Hence, improved statistics is essential for higher precision of the measurement. Our goal is to improve accuracy by an order of magnitude compared to the most recent experiment. In order to achieve the goal, we utilize J-PARC's highest-intensity pulsed muon beam (expected intensity is 1 ×108μ+ / s), highly segmented positron detector with SiPM (Silicon PhotoMultiplier), and an online/offline muon beam profile monitor. In this presentation, we discuss the experimental overview and development status of each components.

  17. Hyperfine anomalies of HCN in cold dark clouds

    SciTech Connect

    Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.

    1982-07-15

    We report observations of the J = 1..-->..0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1..-->..0 line are anomalous in that the F = 0..-->..1 transition is stronger than would be expected if all three components (F = 2..-->..1, F = 1..-->..1, F = 0..-->..1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1..-->..1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1..-->..0 transitions of HCO/sup +/ and HNC in the same objects where /sup 13/C substituted version of these species is found to be stronger than the /sup 12/C species.

  18. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    SciTech Connect

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  19. Hyperfine Structure Study of Several Lines of 207Pb I

    NASA Astrophysics Data System (ADS)

    Wasowicz, T. J.; Drozdowski, R.; Kwela, J.

    2005-01-01

    The hfs splitting of four lines from the array 6p7s → 6p2 as well as two lines from the array 6p8s → 6p2 of Pb I have been analyzed. A discharge tube containing metallic isotope 207Pb was used as a light source. Our experiment yields hyperfine splitting constants A for some levels of the configurations 6p2 and 6p7s: A(6p2 1D2) = (20.99 ± 0.43) mK, A(6p2 3P2) = (91.37 ± 0.34) mK, A(6p7s 3P1) = (294.16 ± 0.93) mK, A(6p7s 1P1) = (16.45 ± 0.95) mK and A = (202.04 ± 0.48) mK for the level 6p8s 3P1. Our results are compared with recent theory and other experiments.

  20. New Precise Measurement of the Hyperfine Splitting of Positronium

    SciTech Connect

    Ishida, A.

    2015-09-15

    Positronium (Ps) is an ideal system for precision test of bound state quantum electrodynamics. The hyperfine splitting (HFS) of the ground state of Ps, which is one of the most precisely tested quantity, has a large discrepancy of 16 ppm (4.5 σ) between previous experiments and theoretical calculation up to O(α{sup 3}lnα{sup −1}) and part of O(α{sup 3}) corrections. A new experiment which reduces possible systematic uncertainties of Ps thermalization effect and nonuniformity of magnetic field was performed. It revealed that the Ps thermalization effect was as large as 10 ± 2 ppm. Treating the thermalization effect correctly, a new result of 203.3942 ± 0.0016(stat., 8.0 ppm) ± 0.0013(sys., 6.4 ppm) GHz was obtained. This result is consistent with theory within 1.1 σ, whereas it disfavors the previous experimental result by 2.6 σ. It shows that the Ps thermalization effect is crucial for precision measurement of HFS. Future prospects for improved precision are briefly discussed.

  1. 51V solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes

    NASA Astrophysics Data System (ADS)

    Bolte, Stephanie E.; Ooms, Kristopher J.; Polenova, Tatyana; Baruah, Bharat; Crans, Debbie C.; Smee, Jason J.

    2008-02-01

    V51 solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V )O2-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V )O2-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8to8.3MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V )O2- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the V51 NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5Å of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V )O2 series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.

  2. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  3. Hyperfine structure of the 4f85d6s2 configuration of the Tb atom

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Stefanska, D.; Krzykowski, A.

    2015-09-01

    In this work, A and B hyperfine structure constants of electronic levels belonging to the configuration 4f85d6s2 of the terbium atom are presented, obtained via investigation of the hyperfine structure of 42 spectral lines, performed with the method of laser-induced fluorescence (LIF) in a hollow cathode discharge. Results for 14 of the investigated levels belonging to the configuration 4f85d6s2 were obtained for the first time. Also results concerning the hyperfine structure of 29 levels, involved in the transitions as upper levels, are presented. For these levels, almost all the results were obtained for the first time. On the basis of the results obtained within this work and those known from the literature, parametrization of the hyperfine structure was performed. The determined values of one-electron parameters for configuration 4f85d6s2 were compared to the values known from literature, determined so far on the basis of a much lower number of electronic levels. Values of relativistic radial integrals of the hyperfine structure for electrons 4f and 5d of the configuration 4f85d6s2 were calculated with the use of the MCDF code. The comparison of radial integrals calculated semi-empirically with those determined with MCDF method yielded an estimate of the values of configuration interaction parameters in the case of both magnetic dipole and electric quadrupole interactions of the terbium atom.

  4. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2016-05-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g., transitions between s and f electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing, and the search for dark matter. They are very sensitive to new physics beyond the standard model, such as temporal variation of the fine-structure constant, the Lorentz invariance, and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates and perform calculations of the hyperfine structure and E3, M2 and the hyperfine-induced E1 transition rates for a large number of atoms and ions of experimental interest. Due to the hyperfine quenching the electric octupole clock transition in +173Yb is 2 orders of magnitude stronger than that in currently used +171Yb. Some enhancement is found in 13+143Nd, 14+149Pm, 14+147Sm, and 15+147Sm ions.

  5. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  6. DFT-NMR Investigation and (51)V 3QMAS experiments for probing surface oh ligands and the hydrogen-bond network in a polyoxovanadate cluster: the case of Cs(4)[H(2)V(10)O(28)].4H(2)O.

    PubMed

    Truflandier, Lionel A; Boucher, Florent; Payen, Christophe; Hajjar, Redouane; Millot, Yannick; Bonhomme, Christian; Steunou, Nathalie

    2010-04-01

    This work shows that the combination of first-principles calculations and (51)V NMR experiments is a powerful tool to elucidate the location of surface hydroxyl groups and to precisely describe the hydrogen bond network in the complex decavanadate cluster Cs(4)[H(2)V(10)O(28)].4H(2)O, enhancing the strength of NMR crystallography. The detailed characterization of H-bond networks for these kinds of inorganic compounds is of primary importance and should benefit from the DFT-NMR predictions by considering explicitly the periodic boundary conditions. The determination of the Cs(4)[H(2)V(10)O(28)].4H(2)O structure by single-crystal X-ray diffraction was not sufficiently accurate to provide the location of protons. From available diffraction data, five different protonated model structures have been built and optimized using DFT-based methods. The possible interconversion of two decavanadate isomers through a proton exchange is evaluated by calculating the energy barrier and recording variable-temperature (1)H MAS NMR spectra. First-principles calculations of (51)V NMR parameters clearly indicate that these parameters are very sensitive to the local intermolecular hydrogen-bonding interactions. Considering the DFT error limits, the fairly good agreement between calculated and experimental NMR parameters arising from the statistical modeling of the data allows the unambiguous assignment of the five (51)V NMR signals and, thus, the location of OH surface ligands in the decavanadate cluster. In particular, first-principles calculations accurately reproduce the (51)V quadrupolar parameters. These results are fully consistent with (51)V 3QMAS NMR spectra recorded with and without (1)H decoupling. Finally, correlations are established between local octahedral VO(6) deformations and (51)V NMR parameters (C(q) and Deltadelta), which will be useful for the characterization of a wide range of chemical species containing vanadium(V).

  7. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    SciTech Connect

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D; Ronning, Filip; Thompson, J D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived. It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.

  8. Periodic trends in parity-violating hyperfine coupling constants of open-shell diatomic molecules

    NASA Astrophysics Data System (ADS)

    Isaev, T. A.; Berger, R.

    2014-06-01

    Nuclear spin-dependent parity violation effects are predicted with the help of a quasi-relativistic two-component zeroth order regular approximation (ZORA) approach for a series of open-shell diatomic molecules that feature a 2Σ electronic ground state. The particular focus is on scaling behaviour of the parity violating parameter Wa in the effective spin-rotational Hamiltonion with increasing nuclear charge Z of the heavier atom in the diatomic molecule. Previously (Isaev and Berger, 2012) an approximate R(A,Z)Z2 scaling law, with R(A,Z) denoting a relativistic enhancement factor, was confirmed for Wa in the series of valence isoelectronic group II monofluorides and valence isoelectronic group XII monohydrides, that is along columns of the periodic table of the elements. In this work, a pronounced R(A,Z)Zk scaling is predicted for isolobal 2Σ diatomic molecules along rows of the periodic table, with k being approximately 4 and 6 for the fourth and fifth row, respectively, and even larger for the sixth and seventh row. This observation opens up a another dimension in the systematic search of candidate systems for measuring nuclear spin-dependent parity violating interactions in molecules.

  9. Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2003-02-01

    The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwinger term, {alpha}/2{pi} E{sub F}, where E{sub F} is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and logarithms of Z{alpha}, can be expected to be increasingly important in atoms with higher nuclear charge Z. Methods that include all orders of Z{alpha}, developed first to study highly charged ions, are adapted to the study of the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali metals.0.

  10. Observation of molecular hyperfine structure in the extreme ultraviolet: The HF C-X spectrum.

    PubMed

    Philippson, Jeffrey N; Shiell, Ralph C; Reinhold, Elmar; Ubachs, Wim

    2008-11-01

    Clearly resolved hyperfine structure has been observed in the extreme ultraviolet (XUV) spectra of the C (1)Pi, v=0-X (1)Sigma(+), v=0 transition of H(19)F obtained through 1 XUV+1 UV resonance enhanced multiphoton ionization spectroscopy. The hyperfine splitting within the R-branch lines shows significant perturbations, which we attribute to mixing with the rotational levels of the nearby v=29 level of the B (1)Sigma(+) ion-pair state. A deperturbation analysis quantitatively explains the apparent variation of the fluorine magnetic hyperfine parameter a(F), for which a value of 4034(83) MHz was obtained by averaging over the values derived from the R(0)-R(4) lines, after correcting for the effects of the perturbations.

  11. Hyperfine-structure studies of Nb ii: Experimental and relativistic configuration-interaction results

    NASA Astrophysics Data System (ADS)

    Young, L.; Hasegawa, S.; Kurtz, C.; Datta, Debasis; Beck, Donald R.

    1995-05-01

    We report an experimental and theoretical study of the hyperfine structure (hfs) in various metastable states in 93Nb ii. Hyperfine structures of five levels in Nb ii have been measured using a combination of the laser-rf double resonance and laser-induced fluorescence methods in a collinear laser-ion-beam geometry. Theoretically, for J=2, a multireference calculation of energies and hfs based on a relativistic configuration-interaction methodology of the lowest ten levels in the (4d+5s)4 manifold is reported. The average energy error is 450 cm-1. Many of the hyperfine constants show large changes from the Dirac-Fock values and the magnetic dipole constant has a 4% accuracy for the one J=2 level measured. We have also identified all the core-valence and core-core effects that dominate the energy differences and hfs.

  12. 2s Hyperfine splitting in light hydrogen-like atoms: Theory and experiment

    SciTech Connect

    Karshenboim, S. G. Kolachevsky, N. N.; Ivanov, V. G.; Fischer, M.; Fendel, P.; Haensch, T. W.

    2006-03-15

    Since the combination D{sub 21} = 8f{sub HFS}(2s)-f{sub HFS}(1s) of hyperfine intervals in hydrogen and light two-body hydrogen-like atomic systems weakly depends on the nuclear structure, comparison between theory and experiment can be sensitive to high order QED corrections. New theoretical and experimental results are presented. Calculations have been performed for the hydrogen and deuterium atoms and for the helium-3 ion. Experiments on the 2s hyperfine splitting (responsible for the dominant contribution to the error in D{sub 21}) have been conducted for hydrogen and deuterium. The theory and experiment are in good agreement, and their accuracy is comparable to that attained in verifying the QED theory of the hyperfine splitting in leptonic atoms (muonium and positronium)

  13. Calculation of radiative corrections to hyperfine splitting in p1/2 states

    NASA Astrophysics Data System (ADS)

    Sapirstein, J.; Cheng, K. T.

    2006-10-01

    Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p1/2 states for three cases. In the first case, the point-Coulomb 2p1/2 hyperfine splitting is treated for the hydrogen isoelectonic sequence, and the lowest order result, (α)/(4π)EF , is shown to have large binding corrections at high Z . In the second case, neutral alkali-metal atoms are considered. In the third case, hyperfine splitting of the 2p1/2 state of lithiumlike bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

  14. Hyperfine-resolved 3.4-{mu}m spectroscopy of CH{sub 3}I with a widely tunable difference frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states

    SciTech Connect

    Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki

    2011-01-15

    Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure in the vibrational excited states.

  15. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    SciTech Connect

    Coffey, D.; DeMarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Moessbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, B{sub hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of B{sub hyperfine} at {sup 99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu{sub 2} and HoRu{sub 2}. Specific heat, magnetization, magnetic susceptibility, Moessbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large B{sub hyperfine} in the Moessbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, B{sub hyperfine} is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  16. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-01

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)). PMID:24024833

  17. Hyperfine field of einsteinium in iron and nuclear magnetic moment of {sup 254}Es

    SciTech Connect

    Severijns, N.; Kraev, I. S.; Phalet, T.; Tandecki, M.; Traykov, E.; Gorp, S. Van; Wauters, F.; Belyaev, A. A.; Lukhanin, A. A.; Noga, V. I.; Erzinkyan, A. L.; Parfenova, V. P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V. T.; Toporov, Yu. G.; Zotov, E.; Golovko, V. V.; Gurevich, G. M.

    2009-06-15

    The angular distributions of {gamma} rays and {alpha} particles from oriented {sup 250}Bk, {sup 253,254}Es, and {sup 255}Fm nuclei were investigated to extract hyperfine interaction information for these actinide impurities in an iron host lattice. The hyperfine field of einsteinium in iron was found to be |B{sub hf}(EsFe{sub lowbar|})=396(32) T. With this value the magnetic moment of {sup 254}Es was then determined as |{mu}|=4.35(41) {mu}{sub N}.

  18. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  19. Impact of observed hyperfine splitting on X-ray laser gain

    SciTech Connect

    Nilsen, J.; Koch, J.A.; Scofield, J.H.; MacGowan, B.J.; Moreno, J.C.; Da Silva, L.B.

    1993-11-01

    Line broadening mechanisms play an important role in determining the gain of X-ray laser transitions. Typically Doppler broadening is the primary mechanism which determines the linewidth of these transitions. However, the authors present cases where the hyperfine effect is the dominant line broadening mechanism. Studying laser lines, which tend to have gain narrowed linewidths, enables one to observe these dramatic hyperfine effects which would be difficult to observe in opacity or Stark broadened lines. In this work the authors report the observation of hyperfine splitting on an X-ray laser transition and discuss how hyperfine splitting has a major impact on the laser gain. In the experiments they measure the lineshape of the 3p {yields} 3s, J = 0 {yields} 1 transition in neon-like niobium and zirconium and observe a 28 m{angstrom} splitting between the two largest hyperfine components in the niobium(Z=41) line at 145.9{angstrom}, in good agreement with theory. In zirconium(Z=40), no splitting is observed since the hyperfine effect is proportional to the nuclear moment, and zirconium has zero nuclear moment, as is typical for even-Z elements. The hyperfine effect is shown to effect transitions which have a 2p{sub 1/2} vacancy in the closed neon-like core much more than those with a 2p{sub 3/2} vacancy. A comparison of the neon-like niobium laser spectrum with that of zirconium shows a dramatic reduction in the relative intensity of the niobium laser lines with the 2p{sub 1/2} vacancy. The authors also report the unusual behavior noticed recently in low-Z neon-like X-ray lasers in which ions with odd Z lase poorly, if at all, relative to ions with even Z. The hyperfine effect is shown to have a substantial impact on the gain of the low-Z and helps explain their poor performance.

  20. Hyperfine magnetic field on Cd-111 in Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn)

    NASA Technical Reports Server (NTRS)

    Jha, S.; Mitros, C.; Lahamer, Amer; Yehia, Sherif; Julian, Glenn M.

    1989-01-01

    The time differential perturbed angular correlation method has been used to measure, as a function of temperature, the hyperfine magnetic field at Cd sites in the Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn). The hyperfine fields, normalized to the total magnetic moment per formula unit, show an approximately linear trend toward more positive values with increasing lattice parameter.

  1. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  2. The Zeeman effect and hyperfine interactions in J = 1-0 transitions of CH+ and its isotopologues.

    PubMed

    Amano, T

    2010-12-28

    The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.

  3. 33S hyperfine interactions in H2S and SO2 and revision of the sulfur nuclear magnetic shielding scale

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele; Puzzarini, Cristina

    2013-12-01

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H233S and 33SO2 has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin-rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The 33S spin-rotation tensor for H2S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin-rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H2S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the 33S spin-rotation constant of OCS.

  4. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report

    NASA Astrophysics Data System (ADS)

    Sauerzopf, C.; Capon, A. A.; Diermaier, M.; Dupré, P.; Higashi, Y.; Kaga, C.; Kolbinger, B.; Leali, M.; Lehner, S.; Rizzini, E. Lodi; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Murtagh, D. J.; Nagata, Y.; Radics, B.; Simon, M. C.; Suzuki, K.; Tajima, M.; Ulmer, S.; Vamosi, S.; Gorp, S. van; Zmeskal, J.; Breuker, H.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Venturelli, L.; Widmann, E.; Yamazaki, Y.

    2016-12-01

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  5. Narrow 87Rb and 133Cs hyperfine transitions in evacuated wall-coated cells

    NASA Technical Reports Server (NTRS)

    Robinson, H. G.; Johnson, C. E.

    1983-01-01

    An extension of work on wall-coated cells was made to include observation by a triple resonance technique of the 0-0 hyperfine transitions in 87Rb and 133Cs. Conventional RF excited lamps were used. Interest in such cells is for possible application in atomic clocks. The Rb cell would appear to remain especially promising in this respect.

  6. Investigations of hyperfine and isotope structures in optical spectra of crystals with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2015-10-01

    This is a review of works on hyperfine and isotope structures in the spectra of rare-earth ions in crystals that have been performed at the Laboratory of Fourier Spectroscopy of the Institute for Spectroscopy, Russian Academy of Sciences. The applicability of these studies to the development of optical quantum memory is discussed.

  7. Vacancy in silicon: Hyperfine interactions from electron-nuclear double resonance measurements

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Muller, S. H.; Sieverts, E. G.; Ammerlaan, C. A. J.

    1987-02-01

    The isolated vacancy in silicon has been studied with magnetic resonance spectroscopy. The EPR spectrum labeled Si-G2, identified as arising from the negative charge state of the vacancy, has been investigated by electron-nuclear double resonance. Hyperfine interactions between the unpaired defect electron and 29Si nuclei were determined for 51 shells of surrounding atoms. These shells contain 152 lattice sites. They can be divided into four different symmetry classes. From a linear combination of atomic orbitals (LCAO) analysis of the hyperfine interactions together with the division in classes, we found that the defect wave function is primarily localized in one mirror plane of the vacancy. In this plane it could especially be assigned to lattice sites on a particular <011> lattice chain. This one-dimensional character of the defect confirms the preference for charge transfer along <011> chains which was found in theoretical calculations. This picture leads to the identification of hyperfine interactions with atoms in the chain and tentatively even in a side chain. The very small localization on the other mirror plane of the vacancy is in agreement with a one-electron defect-molecule description which predicts it to be a nodal plane of the wave function. The remaining small localization allows an estimate of the importance of many-electron effects. Because of this small localization, small discrepancies of the LCAO description become prominent in this plane. In a number of cases dipole-dipole interaction with spin density on nearby lattice sites can explain the observed hyperfine interactions. Also exchange polarization effects have to be considered there. The positive charge state of the vacancy has been studied with EPR only. Incomplete hyperfine data for three shells of lattice sites are reported.

  8. Hyperfine-induced spin relaxation of a hopping carrier: implications for spin transport in 1-D vs 3-D organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh; Dobrovitski, Viatcheslav; 0 Team

    2015-03-01

    The hyperfine coupling of a carrier spin to a nuclear spin bath is a predominant channel for the carrier spin relaxation in organic semiconductors. We investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice theoretically, in a transport regime typical for organic semiconductors. We show that in d = 1 and d = 2 the time dependence of spin polarization, P (t) , is dominated by a superexponential decay, crossing over to an exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P (t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d = 1 vs. d = 3). Furthermore, we consider the coordinate dependence of spin polarization, σ (r) , in a hypothetic lateral or vertical organic spin-valve device. We demonstrate that, while σ (r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the specific field-dependence of spin relaxation length. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  9. Hyperfine rather than spin splittings dominate the fine structure of the B 4Σ--X 4Σ- bands of AlC

    NASA Astrophysics Data System (ADS)

    Clouthier, Dennis J.; Kalume, Aimable

    2016-01-01

    Laser-induced fluorescence and wavelength resolved emission spectra of the B 4Σ--X 4Σ- band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈0.025-0.030 cm-1.

  10. Strong hyperfine-induced modulation of an optically driven hole spin in an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Carter, S. G.; Economou, Sophia E.; Greilich, A.; Barnes, Edwin; Sweeney, T.; Bracker, A. S.; Gammon, D.

    2014-02-01

    Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole-spin dynamics compared to electric-field fluctuations. We show that the hole hyperfine interaction can have a strong effect on hole-spin coherence measurements through a nuclear feedback effect. The nuclear polarization is generated through a unique process that is dependent on the anisotropy of the hole hyperfine interaction and the coherent precession of nuclear spins, giving rise to strong modulation at the nuclear precession frequency.

  11. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol.

    PubMed

    Belov, S P; Golubiatnikov, G Yu; Lapinov, A V; Ilyushin, V V; Alekseev, E A; Mescheryakov, A A; Hougen, J T; Xu, Li-Hong

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e(±niα). The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    NASA Astrophysics Data System (ADS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  14. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol.

    PubMed

    Belov, S P; Golubiatnikov, G Yu; Lapinov, A V; Ilyushin, V V; Alekseev, E A; Mescheryakov, A A; Hougen, J T; Xu, Li-Hong

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e(±niα). The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected. PMID:27421405

  15. Temperature dependence of the magnetic hyperfine field at cerium impurity in Co

    NASA Astrophysics Data System (ADS)

    Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Mestnik-Filho, J.

    2007-04-01

    Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the magnetic hyperfine field (B hf ) at Ce impurity in Co using 140La→ 140Ce probe. The radioactive 140La produced by neutron irradiation of lanthanum metal with thermal neutrons was introduced in Co by arc melting in argon atmosphere. The present measurements cover the temperature range from 4.2 1300 K. Two pure magnetic interactions were observed at impurity sites, corresponding to a ferromagnetic ordering of Co moments in hcp and fcc phases. The temperature dependence of B hf for both phases, however, shows a sharp deviation from an expected standard Brillouin-like behavior for the host magnetization. The results are discussed in terms of a simple molecular-field model where the localized moment at impurity ions as well as the conduction electron contributions to the hyperfine field are taken into account.

  16. Temperature dependence of the magnetic hyperfine field at cerium impurity in Co

    NASA Astrophysics Data System (ADS)

    Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Mestnik-Filho, J.

    Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the magnetic hyperfine field (B hf ) at Ce impurity in Co using 140La→140Ce probe. The radioactive 140La produced by neutron irradiation of lanthanum metal with thermal neutrons was introduced in Co by arc melting in argon atmosphere. The present measurements cover the temperature range from 4.2-1300 K. Two pure magnetic interactions were observed at impurity sites, corresponding to a ferromagnetic ordering of Co moments in hcp and fcc phases. The temperature dependence of B hf for both phases, however, shows a sharp deviation from an expected standard Brillouin-like behavior for the host magnetization. The results are discussed in terms of a simple molecular-field model where the localized moment at impurity ions as well as the conduction electron contributions to the hyperfine field are taken into account.

  17. Hyperfine structure and isotope shifts in 733.2 nm mixed forbidden line of Pb I

    NASA Astrophysics Data System (ADS)

    Wąsowicz, T. J.; Drozdowski, R.; Kwela, J.

    2007-05-01

    Studies of the hyperfine structure and isotope shifts in 733.2 nm mixed (M1+E2) multipole line of Pb I are presented. As a light source the electrodeless discharge tube was used. The high resolution spectral apparatus consisted of a silver coated Fabry-Perot etalon and a grating spectrograph combined with a CCD camera used as a detector. In the analysis of the spectra a computer simulation technique was used. The experiments with the isotope 207Pb yielded the hyperfine structure splitting constant A for the 3P1 and 1D2 levels of the 6s26p2 ground configuration. In the experiment with natural lead the isotope shifts between four stable isotopes (204, 206, 207, 208) were measured.

  18. Corrections of order α2(Zα)5 to the hyperfine splitting and the Lamb shift

    NASA Astrophysics Data System (ADS)

    Eides, Michael I.; Shelyuto, Valery A.

    1995-08-01

    Corrections to the hyperfine splitting and the Lamb shift of order α2(Zα)5 induced by diagrams with radiative photon insertions in the electron line are calculated in the Fried-Yennie gauge. These contributions are as large as -7.724(1)α2(Zα)5/(πn3)(mr/m)3m and -0.6726(4)α2(Zα)/(πn3)EF for the Lamb shift and the hyperfine splitting, respectively. Phenomenological implications of these results are discussed with special emphasis on the accuracy of the theoretical predictions for the Lamb shift and the experimental determination of the Rydberg constant. A precise value of the Rydberg constant is obtained on the basis of the improved theory and experimental data.

  19. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios. PMID:12513129

  20. Precision Hyperfine Structure of 2;^3P State of ^3He with External Magnetic

    NASA Astrophysics Data System (ADS)

    Wu, Qixue; Drake, G. W. F.

    2007-06-01

    The theory of the Zeeman effect can be used to extrapolate precise measurements for the fine structure or the hyperfine structure to zero-field strength. In the present work, the hyperfine structure of 2;^3P state of ^3He with external magnetic fields is precisely calculated. The values of the fields for 32 crossings and five anticrossings of the magnetic sublevels are theoretically predicted for magnetic field strengths up to 1 Tesla. The results are compared with experimental work. We include the linear terms, diamagnetic terms, and the 2̂ relativistic correction terms in the Zeeman Hamiltonian. All related matrix elements are calculated with high accuracy by the use of double basis set Hylleraas type variational wave functions[1,2].[1] Z. -C. Yan and G.W.F. Drake, Phys. Rev. A 50, R1980 (1994).[2] Q. Wu and G.W.F. Drake, J. Phys. B 40, 393 (2007).

  1. Three-loop radiative-recoil corrections to hyperfine splitting generated by one-loop fermion factors

    SciTech Connect

    Eides, Michael I.; Grotch, Howard; Shelyuto, Valery A.

    2004-10-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with one-loop radiative photon insertions both in the electron and muon lines. An analytic result for these nonlogarithmic corrections of order {alpha}(Z{sup 2}{alpha})(Z{alpha})(m/M)E{sub F} is obtained. This result constitutes a next step in the implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below 10 Hz.

  2. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  3. Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

  4. Leading logarithmic corrections to the muonium hyperfine splitting and to the hydrogen Lamb shift

    SciTech Connect

    Karshenboim, S.G.

    1994-12-31

    Main leading corrections with recoil logarithm log(M/m) and low-energy logarithm log(Za) to the Muonium hyperfine splitting axe discussed. Logarithmic corrections have magnitudes of 0.1 {divided_by} 0.3 kHz. Non-leading higher order corrections axe expected to be not larger than 0.1 kHz. Leading logarithmic correction to the Hydrogen Lamb shift is also obtained.

  5. Three-loop reducible radiative photon contributions to Lamb shift and hyperfine splitting

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2004-08-01

    Corrections of order {alpha}{sup 3}(Z{alpha}){sup 5}m to the Lamb shift and corrections of order {alpha}{sup 3}(Z{alpha})E{sub F} to the hyperfine splitting, generated by insertion of the three-loop one-particle reducible diagrams with radiative photons in the electron line, are calculated. The calculations are performed in the Yennie gauge.

  6. A new global operator for two-particle delta functions. [hyperfine structure of muonic helium

    NASA Technical Reports Server (NTRS)

    Drachman, R. J.

    1981-01-01

    A new type of global operator to be used in evaluating matrix elements of two-particle delta functions is introduced. It is based, like the Trivedi one-particle operator, on the Poisson equation and is easier to apply than the method of Hiller, Sucher and Feinberg. After a test in the helium isoelectronic sequence, the new method is applied successfully to the interesting problem of hyperfine structure in muonic helium.

  7. Frequency tuning of the optical delay in cesium D{sub 2} line including hyperfine structure

    SciTech Connect

    Anderson, Monte D.; Perram, Glen P.

    2010-03-15

    The frequency dependence of optical delays in both the wings and core of the cesium 6 {sup 2}S{sub 1/2}-6 {sup 2}P{sub 3/2} transition have been observed and modeled with a Voigt line shape convolved with the six hyperfine components. Tunable delays of 0-37 ns are achieved by tuning the laser frequency through resonance at various vapor pressures of 0.15-5.28 mTorr.

  8. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  9. Calculation of radiative corrections to hyperfine splitting in p{sub 1/2} states

    SciTech Connect

    Sapirstein, J.; Cheng, K. T.

    2006-10-15

    Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectonic sequence, and the lowest order result ({alpha}/4{pi})E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkali-metal atoms are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithiumlike bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

  10. Calculation of Radiative Corrections to Hyperfine Splitting in p1/2 States

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2006-09-20

    Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectronic sequence, and the lowest order result, {alpha}/4{pi} E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkalis are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithium-like bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

  11. Observing the Hyperfine 3.06mm Line Of Iron-57 With ALMA

    NASA Astrophysics Data System (ADS)

    Chatzikos, Marios; Ferland, G. J.; Williams, R.; Fabian, A.

    2013-01-01

    The central regions of galaxy clusters are known to harbor a large reservoir of near-solar metallicity gas. In this work, we investigate the predictions of Sunyaev & Churazov (1984) and D'Cruz, Sarazin & Dubau (1998; DSD98) that the 3.06mm hyperfine structure line of iron-57 may be observable in the gaseous atmospheres of galaxy clusters. Because iron-57 is produced through different nuclear reaction channels in supernovae type Ia and II, the relative abundance of this isotope with respect to iron-56 is expected to shed some light into the different supernova rates that occur in galaxy clusters. To this end, we have expanded the work of DSD98 to include indirect excitations of the more energetic hyperfine state through cascades from higher atomic levels than 2p, "optical pumping" by X-rays from the central AGN, and the effects of the radio synchrotron continuum. We implement these calculations by adapting the spectral simulation code CLOUDY (Ferland et al. 1998). We discuss the observability of the hyperfine line with ALMA for the Perseus cluster.

  12. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  13. Analysis of the competition between forbidden and hyperfine-induced transitions in Ne-like ions

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Grumer, Jon; Brage, Tomas; Zou, Yaming; Hutton, Roger

    2016-03-01

    In this work we investigate the decay of the |2 p53 s P30> state in neon-like ions along the isoelectronic sequence ranging from Z =10 to Z =35 . In the absence of a nuclear spin, the magnetic dipole transition to |2 p53 s P31> is the dominating decay channel. However, for isotopes with a nuclear spin, the interaction between the nuclear magnetic dipole moment and the electronic field introduces a mixing of |2 p53 s P31> and |P11> into the |P30> state, which in turn opens up a competing hyperfine-induced electric dipole decay channel to the ground state. This hyperfine-induced transition channel clearly dominates over the magnetic dipole channel for the neutral end of the isoelectronic sequence, when present. We give values for the rates of both these competing channels and discuss how the introduction of the hyperfine-induced transition channel could have a dramatic influence on the spectrum, not only because it introduces a new line, but also since it can substantially decrease the intensity of the magnetic dipole 2 p53 s P30→2 p53 s P31 line and affect the predicted ionization balance in different plasmas.

  14. HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM

    SciTech Connect

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü. E-mail: sophie.kroeger@htw-berlin.de

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm{sup –1}). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d {sup 3}4s4p and 55 to the configuration 3d {sup 4}4p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d {sup 3}4s4p and 44 to 3d {sup 4}4p.

  15. Hyperfine interactions in the ground states of titanium monoxide and mononitride

    SciTech Connect

    Fletcher, D.A.; Scurlock, C.T.; Jung, K.Y.; Steimle, T.C. )

    1993-09-15

    A comparative study of the hyperfine interactions in the [ital X] [sup 2][Sigma][sup +] state of TiN and the [ital X] [sup 3][Delta] state of TiO has been performed. The [sup 48]Ti[sup 14]N([ital I]=1) hyperfine structure was determined from the analysis of 19 components of the [ital N]=1--0 and [ital N]=2--1 pure rotational transitions recorded using the pump/probe microwave-optical double resonance technique. The [sup 47]Ti([ital I]=5/2) hyperfine structure of [ital X] [sup 2][Sigma][sup +] TiN was determined from an analysis of the high resolution optical spectrum of the (0,0) [ital A] [sup 2][Pi][sub 3/2]--[ital X] [sup 2][Sigma][sup +] band system. The resulting parameters are (in MHz) [ital B]([sup 48]Ti[sup 14]N)=18 589.3513(13), [ital D]([sup 48]Ti[sup 14]N)=0.026 31(18), [gamma]([sup 48]Ti[sup 14]N)=[minus]52.2070(13), [ital b][sub [ital F

  16. Raman transitions between hyperfine clock states in a magnetic trap

    NASA Astrophysics Data System (ADS)

    Naber, J. B.; Torralbo-Campo, L.; Hubert, T.; Spreeuw, R. J. C.

    2016-07-01

    We present our experimental investigation of an optical Raman transition between the magnetic clock states of 87Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multilevel structure of 87Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoherence in our system, and discuss possible improvements.

  17. Lifetimes of the hyperfine levels of 3d94s 3D3 in high-Z Ni-like ions

    NASA Astrophysics Data System (ADS)

    Du, Weijie; Andersson, Martin; Yao, Ke; Brage, Tomas; Hutton, Roger; Zou, Yaming

    2013-07-01

    Based on the multi-configuration Dirac-Hartree-Fock method and using the GRASPVU package, a theoretical investigation was performed to study the lifetimes of hyperfine levels of the first excited level 3d94s 3D3 in Ni-like ions (Z = 72-79) for all stable isotopes with nuclear spin. Comparisons between hyperfine-induced electric quadrupole transition rates and the pure magnetic octupole transition rates show that the extra electric quadrupole transition channel caused by the nuclear magnetic dipole and electric quadrupole hyperfine interaction is important for most hyperfine levels in each individual ion. Lifetimes of most hyperfine levels are sensitive to this extra decay channel. Extreme cases are found in 181Ta, 185Re and 187Re, where lifetimes of some hyperfine levels are shortened by more than an order of magnitude.

  18. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  19. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2014-02-13

    The secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.5 GHz). By performing measurements at S-band, we found a dominating contribution of Nδ in the form of a zero-field nqi triplet at 0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e(2)qQ/4h = 0.4 MHz and associated asymmetry parameter η = 0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of 1D and 2D (14,15)N X-band and three-pulse (14)N S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the contribution of Np to the S-band spectrum is suppressed by its strong nqi and weak isotropic hfi comparable to the level of hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to full tensor characterizations.

  20. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2014-02-13

    The secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.5 GHz). By performing measurements at S-band, we found a dominating contribution of Nδ in the form of a zero-field nqi triplet at 0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e(2)qQ/4h = 0.4 MHz and associated asymmetry parameter η = 0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of 1D and 2D (14,15)N X-band and three-pulse (14)N S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the contribution of Np to the S-band spectrum is suppressed by its strong nqi and weak isotropic hfi comparable to the level of hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to full tensor characterizations. PMID:24437652

  1. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case. PMID:26574272

  2. On the hyperfine structures of the ground state(s) in the 6Li and 7Li atoms

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.

    2016-06-01

    The hyperfine structure of the ground 22 S-states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus, we determine the hyperfine structure of the ground (doublet) 22 S-state(s) in the 6Li and 7Li atoms. Our predicted values (228.2058 and 803.5581 MHz, respectively) agree well with the experimental values 228.20528(8) MHz (6Li) and 803.50404(48) MHz (7Li [R.G. Schlecht and D.W. McColm, Phys. Rev. 142, 11 (1966)]). The hyperfine structures of a number of lithium isotopes with short lifetimes, including 8Li, 9Li, and 11Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron 7Be+ and 9Be+ ions in their ground 22 S-states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n 3 S-states of the four-electron atoms and ions.

  3. Donor hyperfine Stark shift and the role of central-cell corrections in tight-binding theory.

    PubMed

    Usman, Muhammad; Rahman, Rajib; Salfi, Joe; Bocquel, Juanita; Voisin, Benoit; Rogge, Sven; Klimeck, Gerhard; Hollenberg, Lloyd L C

    2015-04-22

    Atomistic tight-binding (TB) simulations are performed to calculate the Stark shift of the hyperfine coupling for a single arsenic (As) donor in silicon (Si). The role of the central-cell correction is studied by implementing both the static and the non-static dielectric screenings of the donor potential, and by including the effect of the lattice strain close to the donor site. The dielectric screening of the donor potential tunes the value of the quadratic Stark shift parameter (η2) from -1.3 × 10(-3) µm(2) V(-2) for the static dielectric screening to -1.72 × 10(-3) µm(2) V(-2) for the non-static dielectric screening. The effect of lattice strain, implemented by a 3.2% change in the As-Si nearest-neighbour bond length, further shifts the value of η2 to -1.87 × 10(-3) µm(2) V(-2), resulting in an excellent agreement of theory with the experimentally measured value of -1.9 ± 0.2 × 10(-3) µm(2) V(-2). Based on our direct comparison of the calculations with the experiment, we conclude that the previously ignored non-static dielectric screening of the donor potential and the lattice strain significantly influence the donor wave function charge density and thereby leads to a better agreement with the available experimental data sets. PMID:25783758

  4. First principles investigation of electronic structures and hyperfine properties of semiconductors and high-[Tc] superconductors

    SciTech Connect

    Sulaiman, S.B.

    1992-01-01

    The first principles Unrestricted Hartree-Fock Cluster procedure has been applied to investigate the electronic structures and associated hyperfine properties of several categories for solid systems. The first category is concerned with the location and nuclear quadrupole interactions (NQI) of fluorine impurity centers in crystalline silicon (c-Si). The Time Differential Perturbed Angular Distribution experiments show that when excited nuclear static fluorine ([sup 19]F*) is implanted into c-Si, two [sup 19]F* centers are formed characterized by two unique axially symmetric electric field gradients (efg). Models have been examined to determine the stable [sup 19]F* sites in the bulk c-Si. The two models, IB and AB, are also able to explain the experimental [sup 19]F* NQI data in crystalline germanium where two centers with axially symmetric efg are observed. The experimental trends of [sup 19]F* NQI are well reproduced by the investigation using the IB and AB models. The second category of the systems investigated deals with the NQI and magnetic hyperfine interaction of [sup 63]Cu in La[sub 2]CuO[sub 4] and YBa[sub 2]Cu[sub 3]O[sub 6] as well as the NQI of [sup 139]La and [sup 135]Ba in the former and the latter compounds respectively. In the third category, the author investigates the possible stable sites of the Muon Spin Rotation ([mu]SR) probe atom, positive muon ([mu][sup +]) in La[sub 2]CuO[sub 4], and the hyperfine field (H[sub hyp]) at [mu][sup +] site in the antiferromagnetic phase of the system. The most stable [mu][sup +] site is at (0.121a, 0.0, 0.110c) of the tetragonal La[sub 2]CuO[sub 4] unit cell. The value of H[sub hyp] at this site is in reasonable order of magnitude with the observed one.

  5. Hyperfine and crystal field interactions in multiferroic HoCrO3

    NASA Astrophysics Data System (ADS)

    Kumar, C. M. N.; Xiao, Y.; Nair, H. S.; Voigt, J.; Schmitz, B.; Chatterji, T.; Jalarvo, N. H.; Brückel, Th

    2016-11-01

    We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term γ =6.3(8) mJ mol-1  K-2 in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ˜17.2 Jmol-1 K-1 and  ˜34 Jmol-1 K-1, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho3+ and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R  =  rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.

  6. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  7. Hyperfine and crystal field interactions in multiferroic HoCrO3.

    PubMed

    Kumar, C M N; Xiao, Y; Nair, H S; Voigt, J; Schmitz, B; Chatterji, T; Jalarvo, N H; Brückel, Th

    2016-11-30

    We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term [Formula: see text] mJ mol(-1)  K(-2) in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ∼17.2 Jmol(-1) K(-1) and  ∼34 Jmol(-1) K(-1), respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho(3+) and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R  =  rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity. PMID:27633731

  8. Isotope shift and hyperfine splitting of the 4s{yields}5p transition in potassium

    SciTech Connect

    Behrle, Alexandra; Koschorreck, Marco; Koehl, Michael

    2011-05-15

    We have investigated the 4s {sup 2}S{sub 1/2}{yields}5p {sup 2}P{sub 1/2} transition (D{sub 1} line) of the potassium isotopes {sup 39}K, {sup 40}K, and {sup 41}K using Doppler-free laser saturation spectroscopy. Our measurements reveal the hyperfine splitting of the 5p {sup 2}P{sub 1/2} state of {sup 40}K, and we have determined the specific mass shift and the nuclear field shift constants for the blue (405 nm) D{sub 1} line.

  9. Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure.

    PubMed

    Puchalski, Mariusz; Pachucki, Krzysztof

    2013-12-13

    Relativistic and QED corrections are calculated for a hyperfine splitting of the 2S1/2 ground state in 6,7Li atoms with a numerically exact account for electronic correlations. The resulting theoretical predictions achieve such a precision level that, by comparison with experimental values, they enable determination of the nuclear properties. In particular, the obtained results show that the 7Li nucleus, having a charge radius smaller than 6Li, has about a 40% larger Zemach radius. Together with known differences in the electric quadrupole and magnetic dipole moments, this calls for a deeper understanding of the Li nuclear structure.

  10. Radiative recoil corrections to hyperfine splitting: Polarization insertions in the electron factor

    SciTech Connect

    Eides, M. I.; Shelyuto, V. A.

    2010-01-15

    We consider three-loop radiative recoil corrections to hyperfine splitting in muonium due to insertions of the one-loop polarization operator in the electron factor. The contribution generated by electron polarization insertions is a cubic polynomial in the large logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared terms are well known for some time. We calculate all single-logarithmic and nonlogarithmic radiative recoil corrections of the order {alpha}{sup 3}(m/M)E{sub F} generated by diagrams with the electron and muon polarization insertions.

  11. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ballance, C. J.; Harty, T. P.; Linke, N. M.; Sepiol, M. A.; Lucas, D. M.

    2016-08-01

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99 % minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μ s and 520 μ s , and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  12. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    SciTech Connect

    Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.

    2005-05-01

    Both hyperfine states of muonic {sup 23}Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7{+-}2.2 {mu}s{sup -1}, is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5{+-}8 {mu}s{sup -1}, leaving medium-dependent effects ambiguous.

  13. Velocity Selective Optical Pumping of Rb Hyperfine Lines Induced by a Train of Femtosecond Pulses

    SciTech Connect

    Aumiler, D.; Ban, T.; Skenderovic, H.; Pichler, G.

    2005-12-02

    We present direct observation of the velocity-selective optical pumping of the Rb ground state hyperfine levels induced by 5S{sub 1/2}{yields}5P{sub 1/2} femtosecond pulse-train excitation. A modified direct frequency comb spectroscopy based on the fixed frequency comb and a weak cw scanning probe laser was developed. The femtosecond pulse-train excitation of a Doppler-broadened Rb four-level atomic vapor is investigated theoretically in the context of the density matrix formalism and the results are compared with the experiment.

  14. Narrowing of Doppler and hyperfine line shapes of Rb - D2 transition using a Vortex beam

    NASA Astrophysics Data System (ADS)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; De, Sankar

    2016-01-01

    We performed an experimental and theoretical study on saturation absorption spectroscopy on 87Rb and 85Rb atoms in D2 transition using a Laguerre-Gaussian (LG) beam with higher orders. We observed narrow line shapes of the Doppler and hyperfine absorption profiles due to the introduction of the LG beam in comparison to the fundamental Gaussian beam. Narrowing of the line shape is dependent on the azimuthal mode index of the LG field. It is observed that the spatially dependent Rabi frequency plays a significant role behind these narrowing phenomenon.

  15. Limitation of electron mobility from hyperfine interaction in ultraclean quantum wells and topological insulators

    NASA Astrophysics Data System (ADS)

    Tarasenko, S. A.; Burkard, Guido

    2016-07-01

    The study of electron transport and scattering processes limiting electron mobility in high-quality semiconductor structures is central to solid-state electronics. Here, we uncover an unavoidable source of electron scattering which is caused by fluctuations of nuclear spins. We calculate the momentum relaxation time of electrons in quantum wells governed by the hyperfine interaction between electrons and nuclei and show that this time depends greatly on the spatial correlation of nuclear spins. Moreover, the scattering processes accompanied by a spin flip are a source of the backscattering of Dirac fermions at conducting surfaces of topological insulators.

  16. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    SciTech Connect

    Modi, K. B. Raval, P. Y.; Dulera, S. V.; Kathad, C. R.; Shah, S. J.; Trivedi, U. N.; Chandra, Usha

    2015-06-24

    Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  17. Analytical calculation of the electron-line radiative-recoil corrections to muonium hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Eides, M. I.; Karshenboim, S. G.; Shelyuto, V. A.

    1986-09-01

    An analytical calculation of electron-line radiative corrections to muonium hyperfine splitting is presented. The classic non-recoil and leading logarithmic radiative-recoil contribution is re-evaluated and a new term is obtained, which was not known previously in analytical form. This new term is found to be [ {α(Zα)}/{π 2}]( {m e}/{m μ})E F[6ζ(3)+3π 2 ln 2+ {1}/{2}π 2+ {17}/{18}], where EF is the Fermi energy.

  18. Sensitivity of hyperfine structure to nuclear radius and quark mass variation

    SciTech Connect

    Dinh, T. H.; Dunning, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-05-15

    To search for the temporal variation in the fundamental constants, one needs to know dependence of atomic transition frequencies on these constants. We study the dependence of the hyperfine structure of atomic s levels on nuclear radius and, via radius, on quark masses. An analytical formula has been derived and tested by the numerical relativistic Hartree-Fock calculations for Rb, Cd{sup +}, Cs, Yb{sup +}, and Hg{sup +}. The results of this work allow the use of the results of past and future atomic clock experiments and quasar spectra measurements to put constraints on time variation in the quark masses.

  19. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    NASA Astrophysics Data System (ADS)

    Modi, K. B.; Raval, P. Y.; Dulera, S. V.; Kathad, C. R.; Shah, S. J.; Trivedi, U. N.; Chandra, Usha

    2015-06-01

    Two specimens of copper ferrite, CuFe2O4, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO2) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  20. Measurement of positronium thermalization in isobutane gas for precision measurement of ground-state hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Ishida, A.; Namba, T.; Asai, S.

    2016-03-01

    The thermalization parameter of positronium in pure isobutane gas was measured in order to take into account the thermalization effect on precision measurements of the ground-state hyperfine splitting (HFS) of positronium. The momentum-transfer cross section was measured to be {σ }{{m}}=47.2+/- 6.7 {\\mathringA }2 for positroniums with kinetic energy below 0.17 eV. Using this value, our new HFS experiment revealed that the positronium thermalization effect on HFS was as large as 10+/- 2 {ppm}. In this article, we show the details of Ps thermalization measurement, which have not been published before, and also its effect on HFS.

  1. Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Guenzburger, Diana; Terra, Joice

    Electronic structure spin-polarized calculations were performed for 79-atoms embedded clusters representing the ordered intermetallic compound FeNi, the fcc Fe-rich disordered alloy Fe85Ni15 in an antiferromagnetic (AFM) configuration, and the ferromagnetic (FM) disordered alloy Fe50Ni50. The spin-polarized discrete variational method (DVM) in Density Functional theory was employed. Spin magnetic moments, as well as the 57Fe Mössbauer hyperfine parameters isomer shift and magnetic hyperfine fields, were obtained from the calculations. For FM Fe50Ni50, the effect of pressure on the hyperfine field and on the isomer shift was investigated, for three different local atomic configurations surrounding the 57Fe probe atom. In the case of the isomer shift, the calculated values were compared to reported experimental data.

  2. Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe Ni alloys

    NASA Astrophysics Data System (ADS)

    Guenzburger, Diana; Terra, Joice

    2006-02-01

    Electronic structure spin-polarized calculations were performed for 79-atoms embedded clusters representing the ordered intermetallic compound FeNi, the fcc Fe-rich disordered alloy Fe85Ni15 in an antiferromagnetic (AFM) configuration, and the ferromagnetic (FM) disordered alloy Fe50Ni50. The spin-polarized discrete variational method (DVM) in Density Functional theory was employed. Spin magnetic moments, as well as the 57Fe Mössbauer hyperfine parameters isomer shift and magnetic hyperfine fields, were obtained from the calculations. For FM Fe50Ni50, the effect of pressure on the hyperfine field and on the isomer shift was investigated, for three different local atomic configurations surrounding the 57Fe probe atom. In the case of the isomer shift, the calculated values were compared to reported experimental data.

  3. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

  4. Hyperfine and spin-orbit dynamics in GaAs double quantum dots

    NASA Astrophysics Data System (ADS)

    Shulman, Michael; Nichol, John; Harvey, Shannon; Pal, Arijeet; Halperin, Bertrand; Umansky, Vladimir; Yacoby, Amir

    2015-03-01

    Semiconductor quantum dots provide a unique platform for single-particle physics and many-body quantum mechanics. In particular, understanding the dynamics of a single electron interacting with a nuclear spin bath is key to improving spin-based quantum information processing, since the hyperfine interaction limits the performance of many spin qubits. We probe the electron-nuclear interaction by measuring the splitting at the anti-crossing between the electron singlet (S) and m =1 triplet (T +) states in a GaAs double quantum dot. Using Landau-Zener sweeps, we find that the size of this splitting varies by more than an order of magnitude depending on the magnitude and direction of the external magnetic field. These results are consistent with a competition between the spin orbit interaction and the hyperfine interaction, even though the extracted spin orbit length is much larger than the size of the double quantum dot. We confirm these results by using Landau-Zener sweeps to measure the high-frequency correlations in the S-T + splitting that arise from the Larmor precession of the nuclei. These unexpected results have implications for improving the performance of spin-based quantum information processing, as well as improving our understanding of the central spin problem.

  5. Theory of structure and hyperfine properties of anomalous muonium in elemental semiconductors: Diamond, silicon, and germanium

    SciTech Connect

    Sahoo, N.; Sulaiman, S. B.; Mishra, K. C.; Das, T. P.

    1989-06-15

    A number of possible models for the anomalous muonium (Mu/sup */)center in the elemental semiconductors diamond, silicon, and germanium areinvestigated in detail, both with respect to their stabilities and abilities toexplain the extensive available experimental hyperfine-interaction data, thelatter being the major focus of the present work. Using the unrestrictedHartree-Fock cluster procedure, the electronic structures and potential-energycurves associated with muon positions are obtained for the different models.The results are utilized to obtain hyperfine properties associated with themuon and its neighboring nuclei, including vibrational effects associated withthe muon. Our results show that stability considerations favor both thevacancy-associated (VA) and bond-centered (BC) models for Mu/sup */.The VA model explains all the experimentally observed features of the muonhyperfine properties and provides reasonably good quantitative agreement withexperiment. However, questions remain regarding its formation and ability toexplain level-crossing resonance (LCR) data. On the other hand, although the BCmodel appears to explain the experimental features from LCR measurements, inits present form, it seriously overestimates the strengths of the muonhyperfine interactions as compared to experiment, by more than an order ofmagnitude in some cases. Additionally, it does not explain the trend fromdiamond through germanium. On the basis of the results in this paper for the VAand BC models, the direction for future investigations for understanding thenature of the Mu/sup */ center is commented on.

  6. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence

    NASA Astrophysics Data System (ADS)

    Dodin, Dmitry V.; Ivanov, Anatoly I.; Burshtein, Anatoly I.

    2013-03-01

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, 1A*, and the exciplex, 1[D+δA-δ] formed at contact of 1A* with an electron donor 1D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, 1, 3[D+…A-] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  7. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  8. The theory of the Bohr-Weisskopf effect in the hyperfine structure

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-01

    Description of the Bohr-Wesskopf effect in the hyperfine structure of few-electron heavy ions is a challenging problem, which can be used as a test of both QED and atomic calculations. However, for twenty years the research has actually been going in a wrong direction, aimed at fighting the Bohr-Weisskopf effect through its cancellation in specific differences. Alternatively, we propose the constructive model-independent way, which enables the nuclear radii and their momenta to be retrieved from the hyper-fine splitting (HFS). The way is based on analogy of HFS to internal conversion coefficients, and the Bohr-Weisskopf effect - to the anomalies in the internal conversion coefficients. It is shown that the parameters which can be extracted from the data are the even nuclear momenta of the magnetization distribution. The radii R2 and - for the first time - R4 are obtained in this way by analysis of the experimental HFS values for the H- and Li-like ions of 209Bi. The critical prediction concerning the HFS for the 2p1/2 state is made. The present analysis shows high sensitivity of the method to the QED effects, which offers a way of precision test of QED. Experimental recommendations are given, which are aimed at retrieving data on the HFS values for a set of a few-electron configurations of each atom.

  9. Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen

    SciTech Connect

    Friesen, T.; Thompson, R. I.; Amole, C.; Capra, A.; Menary, S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Fajans, J.; Little, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O.; Butler, E.; Cesar, C. L.; Silveira, D. M.; Charlton, M.; and others

    2013-03-19

    Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 10{sup 12}. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 10{sup 4}. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.

  10. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  11. Blackbody radiation shift of the {sup 133}Cs hyperfine transition frequency

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Calonico, Davide; Levi, Filippo; Lorini, Luca

    2004-05-01

    We report the theoretical evaluations of the static scalar polarizability of the {sup 133}Cs ground state and of the blackbody radiation shift induced on the transition frequency between the two hyperfine levels with m{sub F}=0. This shift is of fundamental importance in the evaluation of the accuracy of the primary frequency standards based on atomic fountains and is employed in the realization of the SI second in the International Atomic Time scale at the level of 1x10{sup -15}. Our computed value for the polarizability is {alpha}{sub 0}=(6.600{+-}0.016)x10{sup -39}C m{sup 2}/V in agreement at the level of 1x10{sup -3} with recent theoretical and experimental values. As regards the blackbody radiation shift we find for the relative hyperfine transition frequency {beta}=(-1.49{+-}0.07)x10{sup -14} at T=300 K in agreement with frequency measurements reported by our group and by Bauch and Schroeder [Phys. Rev. Lett. 78, 622 (1997)]. This value is lower by 2x10{sup -15} than that obtained with measurements based on the dc Stark shift and than the value commonly accepted up to now.

  12. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  13. Self-consistent calculation of hyperfine fields and adiabatic potential of impurities in iron

    NASA Astrophysics Data System (ADS)

    Kanamori, Junjiro; Akai, Hisazumi; Akai, Masako

    1984-01-01

    Hyperfine fields of impurities of the atomic number Z=1 56 at the substitutional site and those of light impurities of Z=1 9 at the interstitial sites in ferromagnetic iron are calculated by the KKR method adapted to the system containing a single impurity atom. The potential of the impurity atom is determined self-consistently by use of the local spin density functional formalism. The results for nonmagnetic sp valence impurities agree with those of the previous nonself-consistent calculation by Katayama-Yoshida, Terakura and Kanamori except for a few cases, confirming their theory of the systematic variation of hyperfine fields. The calculation for magnetic impurities of transition elements is presented for the first time in this paper. The calculations mentioned so far assume that impurities are situated at the center of each site. For the purpose of discussing the stability of the impurity positions, the change of the adiabatic potential due to displacements from the center is calculated by carrying out similar self-consistent calculations for off-center impurity positions. It is concluded that positive muon and some light impurities including boron will be displaced from the center when trapped in a vacancy.

  14. Hyperfine structure in the J = 1-0 transitions of DCO^+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    van der Tak, F. F. S.; Müller, H. S. P.; Harding, M. E.; Gauss, J.

    2009-11-01

    Context: Knowledge of the hyperfine structure of molecular lines is useful for estimating reliable column densities from observed emission, and essential for the derivation of kinematic information from line profiles. Aims: Deuterium bearing molecules are especially useful in this regard, because they are good probes of the physical and chemical structure of molecular cloud cores on the verge of star formation. However, the necessary spectroscopic data are often missing, especially for molecules which are too unstable for laboratory study. Methods: We have observed the ground-state (J = 1{-}0) rotational transitions of DCO^+, HN13C and DNC with the IRAM 30 m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. Results: We find eQq = + 151.12 (400) kHz and CI = -1.12 (43) kHz for DCO^+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) =265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates, which amount to eQq = 156.0 kHz and CI = -0.69 kHz for DCO^+, eQq = 279.5 kHz for HN13C, and eQq(D) = 257.6 kHz and eQq(N) = 309.6 kHz for DNC. We also derive updated rotational constants for HN13C: B = 43 545.6000 (47) MHz and D = 93.7 (20) kHz. Conclusions: The hyperfine splittings of the DCO^+, DNC and HN13C J = 1{-}0 lines range over 0.47-1.28 km s-1, which is comparable to typical line widths in pre

  15. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

    PubMed Central

    2015-01-01

    X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219 Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219 Nδ is established as the stronger of the two H-bond donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available data on nuclear quadrupole tensors for imidazole nitrogens found in semiquinone-binding proteins and copper complexes reveals these systems share similar electron occupancies of the protonated nitrogen orbitals. By applying the Townes–Dailey model, developed previously for copper complexes, to the semiquinones, we find the asymmetry parameter η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by a strong correlation observed between η and the isotropic coupling constant a(14N) and is consistent with previous computational works and our own semiquinone-histidine model calculations. The empirical relationship presented here for a(14N) and η will provide an important structural characterization tool in future studies of semiquinone-binding proteins. PMID:25026433

  16. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  17. High-precision hyperfine structure measurement in slow atomic ion beams by collinear laser-rf double resonance

    SciTech Connect

    Amarjit Sen, Childs, W.J.; Goodman, L.S.

    1987-01-01

    A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of approx.60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f/sup 7/(/sup 8/S/sup 0/)5d /sup 9/D/sub J//sup 0/ metastable levels of /sup 151,153/Eu/sup +/ has been measured with high precision. 10 refs., 8 figs.

  18. {sup 33}S hyperfine interactions in H{sub 2}S and SO{sub 2} and revision of the sulfur nuclear magnetic shielding scale

    SciTech Connect

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele Puzzarini, Cristina

    2013-12-28

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H{sub 2}{sup 33}S and {sup 33}SO{sub 2} has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin–rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The {sup 33}S spin-rotation tensor for H{sub 2}S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin–rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H{sub 2}S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the {sup 33}S spin-rotation constant of OCS.

  19. Spin transport in coupled spinor Bose gases

    SciTech Connect

    McGuirk, J. M.

    2010-07-15

    We report direct measurements of spin transport in a trapped, partially condensed spinor Bose gas. Detailed analyses of spin flux in this out-of-equilibrium quantum gas are performed by monitoring the flow of atoms in different hyperfine spin states. The main mechanisms for motion in this system are exchange scattering and potential energy inhomogeneity, which lead to spin waves in the normal component and domain formation in the condensate. We find a large discrepancy in domain formation time scales with those predicted by potential-driven formation, indicating strong coupling of the condensate to the normal component spin wave.

  20. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.

    PubMed

    Khudaverdyan, M; Alt, W; Kampschulte, T; Reick, S; Thobe, A; Widera, A; Meschede, D

    2009-09-18

    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.

  1. Hyperfine excitation of linear molecules by para- and ortho-H2: application to the HCl-H2 system.

    PubMed

    Lanza, Mathieu; Lique, François

    2014-10-28

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H2 collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl-H2 collisional system in order to evaluate their respective accuracy. HCl-H2 hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the results suggest that these approaches work better for para-H2 than for ortho-H2 colliding partner. For the first time, we present HCl-H2 hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj1 = ΔF1 propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.

  2. Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing effects

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-06-01

    We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.

  3. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  4. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model.

    PubMed

    Zhang, J; Tandecki, M; Collister, R; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R; Sprouse, G D

    2015-07-24

    We have measured the hyperfine splitting of the 7P_{1/2} state at the 100 ppm level in Fr isotopes (^{206g,206m,207,209,213,221}Fr) near the closed neutron shell (N=126 in ^{213}Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7S_{1/2} splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (^{207-213}Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies. PMID:26252677

  5. Hyperfine structure measurement of 87Rb atoms injected into superfluid helium as highly energetic ion beam

    NASA Astrophysics Data System (ADS)

    Imamura, Kei; Furukawa, Takeshi; Yang, Xiaofei; Fujita, Tomomi; Wakui, Takashi; Mitsuya, Yousuke; Hayasaka, Miki; Ichikawa, Yuichi; Hatakeyama, Atsushi; Kobayashi, Tohru; Odashima, Hitoshi; Ueno, Hideki; Matsuo, Yukari; Orochi Collaboration

    2014-09-01

    We have developed a new nuclear laser spectroscopy technique that is called OROCHI (Optical RI-atoms Observation in Condensed Helium as Ioncatcher). In OROCHI, highly energetic ion beam is injected into superfluid helium (He II) and is trapped as atoms. Hyperfine structure (HFS) and Zeeman splitting of trapped atoms is measured using laser-microwave (MW)/radiofrequency (RF) double resonance method. We deduce nuclear moments and spin values from the measured splittings, respectively So far, we measured Zeeman splitting of 84-87Rb atoms To evaluate the validity of the OROCHI method, it is necessary to investigate the following two points not only for Zeeman but also for HFS splitings. (i) What is the accuracy in frequency in our measurement? (ii) How high beam intensity is necessary to observe resonance spectra? For this purpose we conducted online experiment using 87Rb beam and measured the HFS splitting of injected 87Rb atoms in He II.

  6. Calculation of Radiative Corrections to Hyperfine Splitting in p3/2 States

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2008-07-15

    A recent calculation of the one-loop radiative correction to hyperfine splitting (hfs) of p{sub 1/2} states that includes binding corrections to all orders is extended to p{sub 3/2} states. Nuclear structure plays an essentially negligible role for such states, which is highly advantageous, as difficulties in controlling the Bohr-Weisskopf effect complicate the isolation of QED contributions for both s{sub 1/2} and p{sub 1/2} states. Three cases are studied. We first treat the hydrogen isoelectronic sequence, which is completely nonperturbative in Z{alpha} for high Z. Secondly the lowest lying p{sub 3/2} states of the neutral alkalis are treated, and finally lithium-like bismuth, where extensive theoretical and experimental studies of the hfs of 2s and 2p{sub 1/2} states have been made, is addressed.

  7. The permanent electric dipole moment and hyperfine interactions in platinum monofluoride, PtF

    NASA Astrophysics Data System (ADS)

    Qin, Chengbing; Zhang, Ruohan; Wang, Fang; Steimle, Timothy C.

    2012-08-01

    The [11.9]Ω = 3/2 ← X 2Π3/2(0,0) and (1,0) bands of platinum monofluoride, PtF, have been recorded field-free and in the presence of a static electric field. The 19F(I = 1/2) and 195Pt(I = 1/2) magnetic hyperfine interactions have been analyzed and compared with predicted values obtained using atomic information and a proposed molecular orbital correlation diagram. The optical Stark shifts were analyzed to produce the permanent electric dipole moments, ěc μ _{el}, of 2.47(11)D and 3.42(6)D for the [11.9]Ω = 3/2 and X 2Π3/2states, respectively. The observed trend in ěc μ _{el} for the PtX (X = C,N,O,S and F) series is discussed and a comparison with IrF made.

  8. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    PubMed

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-01

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity. PMID:27541450

  9. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model.

    PubMed

    Zhang, J; Tandecki, M; Collister, R; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R; Sprouse, G D

    2015-07-24

    We have measured the hyperfine splitting of the 7P_{1/2} state at the 100 ppm level in Fr isotopes (^{206g,206m,207,209,213,221}Fr) near the closed neutron shell (N=126 in ^{213}Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7S_{1/2} splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (^{207-213}Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  10. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.; FrPNC Collaboration

    2015-07-01

    We have measured the hyperfine splitting of the 7 P1 /2 state at the 100 ppm level in Fr isotopes (206g,206m,207,209,213,221Fr) near the closed neutron shell (N =126 in 213Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7 S1 /2 splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (207-213Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  11. Spin relaxation of a diffusively moving carrier in a random hyperfine field

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Raikh, M. E.

    2014-11-01

    Relaxation, , of the average spin of a carrier in a course of hops over sites hosting random hyperfine fields is studied theoretically. In low dimensions, d =1 ,2 , the decay of average spin with time is nonexponential at all times. The origin of the effect is that for d =1 ,2 a typical random-walk trajectory exhibits numerous self-intersections. Multiple visits of the carrier to the same site accelerates the relaxation since the corresponding partial rotations of spin during these visits add up. Another consequence of self-intersections of the random-walk trajectories is that, in all dimensions, the average, , becomes sensitive to a weak magnetic field directed along z . Our analytical predictions are complemented by the numerical simulations of . The scenario of acceleration of spin relaxation due to returns applies also to the non-Markovian decoherence of a qubit surrounded by multiple fluctuators.

  12. Precision hyperfine structure spectroscopy of Be isotopes at SLOWRI prototype and prospects of SLOWRI at RIKEN

    SciTech Connect

    Wada, M.; Takamine, A.; Okada, K.; Sonoda, T.; Schury, P.; Kanai, Y.; Kojima, T. M.; Yamazaki, Y.; Yoshida, A.; Kubo, T.; Iimura, H.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.

    2009-05-04

    Precision atomic spectroscopy experiments for Be isotopes have been carried out at the prototype universal slow RI-beam (SLOWRI) setup at RIKEN. Radioactive Be ions produced at 1 GeV were decelerated and thermlized in an RF-carpet ion guide. The thermalized ions were transferred to an ion trap where laser cooling was used to reduce the ion energy to the order of 1 {mu}eV. Laser microwave double resonance spectroscopy was performed for the hyperfine structure measurements of trapped and laser cooled {sup 7}Be{sup +} and {sup 11}Be{sup +} ions. Measurements of the S{sub 1/2}{yields}P{sub 1/2},P{sub 3/2} transition frequencies of {sup 7,9,10,11}Be{sup +} ions are also in progress. These results are briefly discussed. Future prospects for expanding the capability of SLOWRI is also discussed.

  13. Hyperfine splitting and the Zeeman effect in holographic heavy-light mesons

    SciTech Connect

    Herzog, Christopher P.; Stricker, Stefan A.; Vuorinen, Aleksi

    2010-08-15

    We inspect the mass spectrum of heavy-light mesons in deformed N=2 super Yang-Mills theory using the AdS/CFT correspondence. We demonstrate how some of the degeneracies of the supersymmetric meson spectrum can be removed upon breaking the supersymmetry, thus leading to the emergence of a hyperfine structure. The explicit SUSY breaking scenarios we consider involve on the one hand, tilting one of the two fundamental D7-branes inside the internal R{sup 6} space, and on the other hand, applying an external magnetic field on the (untilted) branes. The latter scenario leads to the well-known Zeeman effect, which we inspect for both weak and strong magnetic fields.

  14. Measurement of isotope shifts and hyperfine splittings of ytterbium by means of acousto-optic modulation

    SciTech Connect

    van Wijngaarden, W.A.; Li, J.

    1994-11-01

    The isotope and hyperfine shifts for the Yb {sup 1}{ital S}{sub 0}(6{ital s}{sup 2}){r_arrow}{sup 3}{ital P}{sub 1}(6{ital s}6{ital p}) transition were determined with an acousto-optic modulator used to frequency shift part of a laser beam. The frequency-shifted and -unshifted laser beams were superimposed and excited an atomic beam. The laser was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each isotope generated two peaks in the spectrum separated by the acousto-optic shift, which permitted the frequency to be calibrated. This relatively simple method yields results that agree well with the most accurate existing data, which were obtained by measurement of frequency shifts with a Fabry--Perot etalon whose length was stabilized with a helium--neon laser locked to an iodine line.

  15. Hyperfine structure in stellar spectral lines: a little nothing, a help, or a troublemaker?

    NASA Astrophysics Data System (ADS)

    Huehnermann, H.

    Hyperfine structure is common in spectral lines. Hfs splits lines due to nuclear moments and shifts lines of different isotopes (IS). Both effects, even if they are small compared with the line- and instrumental-width, broaden and shift the lines and alter their shape and may lead to erroneous interpretations of spectra of astrophysical interest. The IS permits in principle the observation of isotope abundances (e.g. for H-D) but - if unresolved - shifts lines particularly if intensities are strongly affected by absorption (a fake Doppler shift, especially of interstellar lines). The hfs-splitting and its influence on spectral-lines is investigated with a momentum analysis of the hfs and the line-profile, and of the convolved curve. It is found that the hfs can be misinterpretated as Doppler broadening. In optically dense media (e.g. in stellar interior) hfs and IS may decrease the average transparency.

  16. Optimization of Yb{sup +} fluorescence and hyperfine-qubit detection

    SciTech Connect

    Ejtemaee, S.; Thomas, R.; Haljan, P. C.

    2010-12-15

    Fluorescence of single, trapped {sup 171}Yb{sup +} ions has been experimentally studied as a function of laser polarization, power, and detuning and as a function of magnetic field strength. The suppression of efficient fluorescence by coherent population trapping and the counteracting effect of the magnetic field are found to agree with theoretical predictions. For comparison, a fluorescence study has also been made of the isotope {sup 174}Yb{sup +} for which coherent population trapping is absent on the main fluorescence and laser cooling transition. Finally, state-sensitive fluorescence detection of the {sup 171}Yb{sup +} hyperfine qubit is studied, including the role of coherent population trapping in the optimization of detection parameters. A qubit detection fidelity of greater than 97% is achieved.

  17. Precise measurements of hyperfine components in the spectrum of molecular iodine

    SciTech Connect

    Sansonetti, C.J.

    1996-05-01

    Absolute wave numbers with a typical uncertainty of 1 MHz (95% confidence) were measured for 102 hyperfine-structure components of {sup 127}I{sub 2}. The data cover the range 560-656 nm, with no gaps over 50 cm{sup -1}. The spectra were observed using Doppler-free frequency modulation spectroscopy with tunable cw laser. The laser was locked to selected iodine components and its wave number measured with a high precision Fabry-Perot wavemeter. Accuracy is confirmed by good agreement of 9 of the lines with previous results from other laboratories. These measurements provide a well-distributed set of precise reference lines for this spectral region.

  18. New Heavy-Baryons and Hyperfine Mass-Splittings: Analysis from QCD Rum Rules

    SciTech Connect

    Albuquerque, R. M.; Nielsen, M.; Narison, S.

    2010-11-12

    We extract directly the charmed and bottom heavy-baryons (spin 1/2 and 3/2) masssplittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD. We deduce M{sub {Omega}{sub b}} = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4{sigma} with the one from D0. Predictions of the {Xi}{sub Q}' and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 1. Predictions of the hyperfine splittings {Omega}{sub Q}*-{Omega}{sub Q} and {Xi}{sub Q}*-{Xi}{sub Q} are also given in Table 2.

  19. Relativistic many-body investigation of hyperfine interactions in excited S states of alkali metals: Francium and potassium

    SciTech Connect

    Owusu, A.; Dougherty, R.W.; Gowri, G.; Das, T.P.; Andriessen, J.

    1997-07-01

    To enhance the current understanding of mechanisms contributing to magnetic hyperfine interactions in excited states of atomic systems, in particular, alkali-metal atom systems, the hyperfine fields in the excited 5{sup 2}S{sub 1/2}{endash}8{sup 2}S{sub 1/2} states of potassium and 8{sup 2}S{sub 1/2}{endash}12{sup 2}S{sub 1/2} states of francium atoms have been studied using the relativistic linked-cluster many-body perturbation procedure. The net theoretical values of the hyperfine fields for the excited states studied are in excellent agreement with available experimental data for both atoms. There is a significant decrease in importance of the correlation contribution in going from the ground state to the excited states, the correlation contributions as ratios of the direct contribution decreasing rapidly as one moves to the higher excited states. However, the contribution from the exchange core polarization (ECP) effect is nearly a constant fraction of the direct effect for all the excited states considered. Physical explanations are offered for the observed trends in the contributions from the different mechanisms. A comparison is made of the different contributing effects to the hyperfine fields in potassium and francium to those in the related system, rubidium, studied earlier. Extrapolating from our results to the highly excited states of alkali-metal atoms, referred to as the Rydberg states, it is concluded that in addition to the direct contribution from the excited valence electron to the hyperfine fields, a significant contribution is expected from the ECP effect arising from the influence of exchange interactions between electrons in the valence and core states. {copyright} {ital 1997} {ital The American Physical Society}

  20. Investigation of hyperfine structure of several major lines in PbI and PbII

    NASA Astrophysics Data System (ADS)

    Wasowicz, T. J.; Drozdowski, R.; Kwela, J.

    2005-06-01

    Hyperfine structure of several lines in neutral and singly ionized lead have been measured. The discharge tube containing metallic isotope 207Pb was used as a light source. The high resolution spectral apparatus consisted of a silver coated Fabry-Perot etalon and a grating spectrograph combined with CCD camera used as a detector. In the analysis of the spectra we used a computer simulation technique. Our experiment yields the following hyperfine splitting constants A: A(6p2 1D2)=(20.69 +/-0.21) mK, A(6p2 3P2)=(91.37+/-0.34) mK A(6p7s 1P1)=(16.45+/-0.95) mK, A(6p7s 3P1)=(293.93+/-0.56) mK, A(6p6d 3F2)=(103.22+/-0.31) mK, A(6p6d 3F3)=(69.12+/-0.28) mK, A(6p8s 3P1)=(202.04+/-0.48) mK, A(6p8p 3P1)=(224.26+/-1.37) mK, A(6p8p 3D2)=(108.02+/-1.14) mK, A(6p7d 3D1)=(-100.86+/-0.53) mK for the levels of PbI and A(6s2 7s 2S1/2)=(352.1+/-1.7) mK, A(6s2 7p 2P3/2)=(13.6+/-1.3) mK, A(6s2 7p 2P1/2)=(70.8+/-1.1) mK for the levels of Pb II. Our results are compared with recent theory and other experiments.

  1. Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Amir, Md; Ünal, B.; Geleri, M.; Güngüneş, H.; Shirsath, Sagar E.; Baykal, A.

    2015-12-01

    The single spinel phase nano-structured particles of FeBxFe2-xO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized by the glycothermal method and the effect of B3+ substitution on structural and dielectric properties of Fe3O4 were studied. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on B3+ substitution have been determined. The hyperfine field values at B- and A-sites gradually decrease with increasing B3+ ion concentration (x). The cation distributions obtained from Bertaut method are in line with Mössbauer results. Complex impedance analysis of boron-substituted spinel ferrites have been made extensively in order to investigate the significant changes in ac and dc conductivity as well as complex permittivity when the boron composition ratio varies from 0.1 to 0.5. It is found that both ac and dc conductivity are also dependent on the boron content in addition to both temperature and applied frequency. The dc conductivity tendency does not purely obey the Arrhenius plots. The dielectric constant and loss of complex permittivity, in general, show similar attitudes as seen in some nanocomposites containing spinel ferrites except for some fluctuations and shifts along the characteristics of the curves. Furthermore, their imaginary components of both permittivity and modulus are almost found to obey the power law with any exponent values varying between 0.5 and 2 in accordance with the level of boron concentrations.

  2. Spectroscopic study of the cycling transition 4s[3/2]{sub 2}-4p[5/2]{sub 3} at 811.8 nm in {sup 39}Ar: Hyperfine structure and isotope shift

    SciTech Connect

    Williams, W.; Mueller, P.; Lu, Z.-T.; Rudinger, K.; Xu, C.-Y.; Yokochi, R.

    2011-01-15

    Doppler-free saturated absorption spectroscopy is performed on an enriched radioactive {sup 39}Ar sample. The spectrum of the 3s{sup 2}3p{sup 5}4s[3/2]{sub 2}-3s{sup 2}3p{sup 5}4p[5/2]{sub 3} cycling transition at 811.8 nm is recorded, and its isotope shift between {sup 39}Ar and {sup 40}Ar is derived. The hyperfine coupling constants A and B for both the 4s[3/2]{sub 2} and 4p[5/2]{sub 3} energy levels in {sup 39}Ar are also determined. The results partially disagree with a recently published measurement of the same transition. Based on earlier measurements as well as the current work, the isotope shift and hyperfine structure of the corresponding transition in {sup 37}Ar are also calculated. These spectroscopic data are essential for the realization of laser trapping and cooling of {sup 37,39}Ar.

  3. Raman-induced Spin-Orbit Coupling in Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Li, Junru; Huang, Wujie; Shteynas, Boris; Burchesky, Sean; Top, Furkan; Jamison, Alan; Ketterle, Wolfgang

    2016-05-01

    We demonstrate a new scheme for spin-orbit coupling (SOC) of ultracold atoms. Instead of internal (hyperfine) states, two lowest bands in an optical superlattice were used as pseudospins. A Raman process was implemented to provide coupling between pseudospin and momentum. With single internal state and far-detuned beams used, our new scheme will allow convenient generalisation to a wide range of atoms. Pseudospin interaction is tuneable by controlling the superlattice, allowing us to study many-body phenomena in SOC systems such as the stripe phase.

  4. Hyperfine structure interval of the 2s state of hydrogenlike atoms and a constraint on a pseudovector boson with mass below 1 keV/c{sup 2}

    SciTech Connect

    Karshenboim, S. G.

    2011-06-15

    A constraint on a spin-dependent interaction, induced by a pseudovector light boson, is presented. The interaction includes a Yukawa-type contribution {alpha}{sup ''}(s{sub 1}{center_dot}s{sub 2})e{sup -{lambda}r}/r and a contact spin-spin term. To disentangle the long-range and contact terms we utilize experimental data on the 1s and 2s hyperfine intervals for light two-body atoms and construct a specific difference 8xE{sub hfs}(2s)-E{sub hfs}(1s). That allows one to constrain the spin-dependent coupling constant {alpha}{sup ''} of an electron-nucleus Yukawa-type interaction in hydrogen, deuterium, and the helium-3 ion at the level below a part in 10{sup 16}. The derived constraint is related to the range of masses below 4 keV/c{sup 2}. The combined constraint including the contact terms is also presented.

  5. Heterogeneous and hyperfine interactions between valence states of molecular iodine correlating with the I(2P1/2) + I(2P1/2) dissociation limit

    NASA Astrophysics Data System (ADS)

    Baturo, Vera V.; Cherepanov, Igor N.; Lukashov, Sergey S.; Poretsky, Sergey A.; Pravilov, Anatoly M.; Zhironkin, Anatoly I.

    2016-05-01

    Detailed analysis of interactions between all 0g + , 1u, and 0u - weakly bound states of iodine molecule correlating with the I(2P1/2) + I(2P1/2) (bb) dissociation limit has been performed. For this purpose, the 0u - (bb) state has been described using analysis of rotationally resolved excitation spectra of luminescence from the g 0g - state populated in a three-step three-color perturbation facilitated excitation scheme via the 0u - state. Energies of 41 rovibrational levels, molecular constants, and potential energy curve have been determined. Energy gaps between closest rovibrational levels of the 0u - and 0g + , 1u (bb) states are found to be large, ˜6 cm-1. However, interaction of all three 0g + , 1u, and 0u - (bb) states has been observed. It has been found that the 0u - and 1u electronic states are mixed by heterogeneous interactions, while their mixing with the 0g + one is due to hyperfine interactions predominantly. Admixture coefficients and electronic matrix elements of the coupling between the 0g + ˜1u, 0g + ˜ 0u - , and 0u - ˜1u states have been estimated.

  6. The hyperfine structure of the lowest doublet states of the LiO2 isomers: a density-functional-theory assessment

    NASA Astrophysics Data System (ADS)

    Oliveira, João P. C.; Rivelino, Roberto

    2010-05-01

    Density-functional-theory (DFT) calculations of the hyperfine coupling constants (HFCCs) are systematically reported for the lithium superoxide (LiO2) structural isomers in the doublet ground states, \\tilde X 2A2 and 2Π. Also, structure, harmonic frequencies, rotational constants and dipole moments have been computed at different levels of theory. Our results calculated for the 2A2 state are compared with the available data of matrix-isolated LiO2. Geometric parameters and vibrational modes compare well with available experimental data. However, the present density-functional results show a strong dependence of the isotropic HFCCs on the level of approximation as well as the molecular geometry. Our results confirm that the anisotropic contributions are less sensitive to the exchange-correlation potentials and basis sets. We have obtained the best estimate of the isotropic HFCC (in comparison with the experimental trends) by using the hybrid scheme that combines the Perdew-Wang's 1991 correlation functional with the adiabatic connection. This study allows us to gauge DFT methods for future applications in the alkali superoxide series, as well as open-shell metal centres interacting with dioxygen in biological systems.

  7. EPR spectrum of the Y@C82 metallofullerene isolated in solid argon matrix: hyperfine structure from EPR spectroscopy and relativistic DFT calculations.

    PubMed

    Misochko, Eugenii Ya; Akimov, Alexander V; Belov, Vasilii A; Tyurin, Daniil A; Bubnov, Vyacheslav P; Kareev, Ivan E; Yagubskii, Eduard B

    2010-08-21

    The EPR spectrum of the Y@C(82) molecules isolated in solid argon matrix was recorded for the first time at a temperature of 5 K. The isotropic hyperfine coupling constant (hfcc) A(iso) = 0.12 +/- 0.02 mT on the nucleus (89)Y as derived from the EPR spectrum is found in more than two times greater than that obtained in previous EPR measurements in liquid solutions. Comparison of the measured hfcc on a metal atom with that predicted by density-functional theory calculations (PBE/L22) indicate that relativistic method provides good agreement between experiment in solid argon and theory. Analysis of the DFT calculated dipole-dipole hf-interaction tensor and electron spin distribution in the endometallofullerenes with encaged group 3 metal atoms Sc, Y and La has been performed. It shows that spin density on the scandium atom represents the Sc d(yz) orbital lying in the symmetry plane of the C(2v) fullerene isomer and interacting with two carbon atoms located in the para-position on the fullerene hexagon. In contrast, the configuration of electron spin density on the heavier atoms, Y and La, is associated with the hybridized orbital formed by interaction of the metal d(yz) and p(y) electronic orbitals.

  8. Spin dependent recombination; A sup 29 Si hyperfine study of radiation-induced P sub b centers at the Si/SiO sub 2 interface

    SciTech Connect

    Jupina, M.A.; Lenahan, P.M. )

    1990-12-01

    The spin dependent recombination (SDR) technique is used to observe the {sup 29}Si hyperfine spectra of radiation-induced P{sub b} centers at the Si/SiO{sub 2} interface in a MOSFET. The P{sub b} center is a paramagnetic, trivalent silicon defect that is the dominant radiation-induced interface state. The {sup 29}Si hyperfine spectra give detailed atomic scale information about the P{sub b} center. The authors' SDR results show that the {sup 29}Si hyperfine spectra vary with surface potential. This result indicates that differences in the defect's local geometry lead to substantial differences in the defect's energy level. However, the {sup 29}Si hyperfine spectra are found to be relatively independent of the ionizing radiation dosage.

  9. Hyperfine structure of the ground state of para- D2+ by high-resolution Rydberg-state spectroscopy and multichannel quantum defect theory

    NASA Astrophysics Data System (ADS)

    Cruse, H. A.; Jungen, Ch.; Merkt, F.

    2008-04-01

    The hyperfine structure of transitions between n=51-53d and n=54-57f Rydberg states belonging to series converging on the XΣ2g+ (v+=0,N+=1) , ground state of para- D2+ has been measured at an experimental resolution of about 1 MHz by millimeter-wave spectroscopy and assigned on the basis of combination differences. A map of the hyperfine structure of these Rydberg states has been determined. The analysis of the hyperfine structure of the nf series by multichannel quantum defect theory has confirmed the experimental assignments and enabled the derivation of the hyperfine structure of the ground state of para- D2+ with a precision of better than 1 MHz.

  10. Polarized {sup 3}He{sup −} ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-08

    High beam polarization is essential to the scientific productivity of a collider. Polarized {sup 3}He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized {sup 3}He{sup −} ion source. This report discusses a polarized {sup 3}He{sup −} ion source based on the large difference of extra-electron auto-detachment lifetimes of the different {sup 3}He{sup −} ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing {sup 3}He{sup −} ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, {sup 3}He{sup −} beam polarization of 90% can be achieved. Such a method of polarized {sup 3}He{sup −} production has been considered before; however, due to low intensities of the He{sup +} ion sources existing at that time, it was not possible to produce any interesting intensity of polarized {sup 3}He{sup −} ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness {sup 3}He{sup +} beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of {sup 3}He{sup −} ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of {sup 3}He gas. Some features of such a PIS as well as prototype designs are considered. An integrated {sup 3}He{sup −} ion source design providing high beam polarization could be

  11. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  12. Rapid-scan coherence signals in X-band EPR spectra of semiquinones with small hyperfine splittings

    NASA Astrophysics Data System (ADS)

    Elajaili, Hanan; Rinard, George A.; Yu, Zhelin; Mitchell, Deborah G.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2015-10-01

    Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH = 46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH = 59 mG for 18 protons.

  13. Hyperfine quenching of the 3s3p 3P0 level in Mg-like ions

    NASA Astrophysics Data System (ADS)

    Kang, Huihui; Li, Jiguang; Dong, Chenzhong; Jönsson, Per; Gaigalas, Gediminas

    2009-10-01

    Hyperfine quenching rates of the 3s3p3P0 level in Mg-like ions were calculated using the GRASP2K package based on the multi-configuration Dirac-Hartree-Fock method. Valence and core-valence correlation effects were accounted for in a systematic way. Breit interactions and QED effects were included in the subsequent relativistic CI calculations. Calculated rates were compared with other theoretical values and with experiment, and a good agreement with the latest experimental value for the ^{27Al^+} ion (Rosenband et al 2007 Phys. Rev. Lett. 98 220801) was found. Furthermore, we showed in detail the contributions from Breit interaction and QED effects to concerned physical properties. Finally, electronic data were presented in terms of a general scaling law in Z that, given isotopic nuclear spin and magnetic moment, allows hyperfine-induced decay rates to be estimated for any isotope along the isoelectronic sequence.

  14. Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm

    NASA Astrophysics Data System (ADS)

    Domenica De Vizia, Maria; Odintsova, Tatyana; Gianfrani, Livio

    2016-04-01

    This article builds upon a previous work dealing with the budget of uncertainties associated to our recent determination of the Boltzmann constant by means of Doppler broadening thermometry. We report on the outcomes of theoretical calculations and numerical simulations aimed to precisely quantify the influence of the unresolved hyperfine structure of a given ortho component of the \\text{H}218 O spectrum at 1.4 μm on the measurement of the Doppler width of the line itself. We have found that, if the hyperfine structure of the {{4}4,1}\\to {{4}4,0} line of the {ν1}+{ν3} band was ignored, the spectroscopic measurement of the Boltzmann constant would be affected by a relative systematical deviation of 4\\cdot {{10}-8} .

  15. Rapid-scan coherence signals in X-band EPR spectra of semiquinones with small hyperfine splittings

    PubMed Central

    Elajaili, Hanan; Rinard, George A.; Yu, Zhelin; Mitchell, Deborah G.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH = 46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH = 59 mG for 18 protons. PMID:26277376

  16. DFT study of the hyperfine parameters and magnetic properties of ZnO doped with 57Fe

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Cruz, C. M.; Piñera, I.; Leyva, A.; Cabal, A. E.; Van Espen, P.

    2014-05-01

    Magnetic state of 57Fe implanted and doped ZnO samples have been reported and studied by Mössbauer spectroscopy at different temperatures. The Mössbauer spectra mainly showed four doublets and three sextets, but some ambiguous identification remains regarding the probe site location and influence of defects in the hyperfine and magnetic parameters. In the present work some possible implantation configurations are suggested and evaluated using Monte Carlo simulation and electronic structure calculations within the density functional theory. Various implantation environments were proposed and studied considering the presence of defects. The obtained 57Fe hyperfine parameters show a good agreement with the reported experimental values for some of these configurations. The possibility of Fe pair formation, as well as a Zn site vacancy stabilization between the second and third neighborhood of the implantation site, is supported.

  17. Does the temperature dependence at constant volume of the hyperfine field of heavy impurities in ferromagnetic metals depend explicitly upon the amplitude of lattice vibrations?

    NASA Astrophysics Data System (ADS)

    Riedi, P. C.; Webber, G. D.

    1983-12-01

    Lattice dynamics seem to have little effect on the temperature dependence of the hyperfine field of pure iron and nickel and of most impurities in these metals but it is shown that Au in iron may be an exception to this rule. The hyperfine fields of other heavy impurities ( FeRu, FeIr, NiPt) were found to have a normal temperature dependence.

  18. Rotational Spectroscopy of CF_2ClCCl_3 and Analysis of Hyperfine Structure from Four Quadrupolar Nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Bialkowska-Jaworska, Ewa; Uriarte, Iciar; Basterretxea, Francisco J.; Cocinero, Emilio J.

    2016-06-01

    CF_2ClCCl_3 has recently been identified among several new ozone- depleting substances in the atmosphere. There are no literature reports concerning rotational spectroscopy of this molecule, although we were recently able to report its first chirped pulse, supersonic expansion spectrum. CF_2ClCCl_3 has a rather small dipole moment so that the spectrum is weak and each transition displays very complex nuclear quadrupole hyperfine structure resulting from the presence of four chlorine nuclei. We have presently been able to carry out a complete analysis of the hyperfine structure by combining the information from chirped pulse spectra with dedicated higher resolution measurements made with a cavity supersonic expansion instrument. The hyperfine analysis was carried out with Pickett's SPFIT/SPCAT package and the sizes of Hamiltonian matrices are sufficiently large to require the use of 64-bit compilation of these programs (made available for both Windows and Linux systems on the PROSPE website). The resulting fit is to within experimental accuracy and is supported by ab initio calculations. The precise values of off-diagonal hyperfine constants for all nuclei lead to useful angular information that is complementary to direct structural information from moments of inertia. J.C.Laube, M.J.Newland, C.Hogan, et al., Nature Geoscience 7, 266 (2014). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, I.Uriarte, P.Ejica, F.J.Basterretxea, E.J.Cocinero, 70th ISMS, Champaign-Urbana, Illinois, RF-11 (2015). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, J.Chem.Phys. 109, 10263 (1998).

  19. Constituent quark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions

    SciTech Connect

    Borka Jovanovic, V.; Borka, D.; Ignjatovic, S. R.; Jovanovic, P.

    2010-12-01

    We use the color-spin and flavor-spin interaction Hamiltonians with SU(3) flavor symmetry breaking to obtain meson and baryon mass formulas. Adjusting these masses with experimental masses we determine the constituent quark masses. We discuss the constituent quark masses obtained from meson and baryon mass fits. The results for constituent quark masses are very similar in the case of two different phenomenological models: Fermi-Breit and Glozman-Riska hyperfine interactions.

  20. Determination of the hyperfine constants for HCCO by pulsed-discharge-nozzle Fourier-transform microwave spectroscopy

    SciTech Connect

    Ohshima, Yasuhiro; Endo, Yasuki )

    1993-06-01

    The rotational spectrum of a short-lived free radical, HCCO, has been observed by using a Fabry-Perot-type Fourier-transform microwave spectrometer combined with a pulsed-discharge nozzle. HCCO has been produced by a discharge of a mixture of C[sub 2]H[sub 2] and O[sub 2] diluted in Ar and subsequently cooled to a few Kelvin in a supersonic expansion. All the fine and hyperfine components have been observed for the N = 1-0 rotational transition at 21 GHz. The lines have been analyzed with previously reported data in the submillimeter wave region, leading to a set of the effective constants for the K[sub a] = 0 state. The precisely determined magnetic hyperfine constants for the hydrogen nucleus have been discussed in connection with the electronic and geometrical structures of the radical. Transition frequencies for the hyperfine components of several low-N lines have been tabulated with calculated line strengths, as an aid for future astronomical searches of the radical.

  1. Single chirped pulse control of hyperfine states population in Rb atom in the framework of the four-level system

    NASA Astrophysics Data System (ADS)

    Zakharov, Vladislav; Malinovskaya, Svetlana

    2012-06-01

    Electron population dynamics within the hyperfine structure in the Rb atom induced by a single ns pulse is theoretically investigated. The aim is to develop a methodology of the implementation of linearly chirped laser pulses for the desired excitations in the Rb atoms resulting in the creation of predetermined non-equilibrium states. A semi-classical model of laser pulse interaction with a four-level system representing the hyperfine energy levels of the Rb atom involved into dynamics has been developed. The equations for the probability amplitudes were obtained from the Schrodinger equation with the Hamiltonian that described the time evolution of the population of the four states in the field interaction representation. A code was written in Fortran for a numerical analysis of the time evolution of probability amplitudes as a function of the field parameters. The dependence of the quantum yield on the pulse duration, the linear chirp parameter and the Rabi frequency was studied to reveal the conditions for the entire population transfer to the upper hyperfine state of the 5S1/2 electronic level. The results may provide a robust tool for quantum operations in the alkali atoms.

  2. Construction of the energy matrix for complex atoms. Part V: Electrostatically correlated spin-orbit and electrostatically correlated hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Dembczyński, Jerzy

    2016-02-01

    The continuation of the previous series of papers related to the construction of the energy matrix for complex atoms is presented. The contributions from the second-order perturbation theory concerning electrostatically correlated spin-orbit interactions (CSO), as well as electrostatically correlated hyperfine interactions (CHFS) to the atomic structure of nlN, nlNn1l1^{N_1} and nlNn1l1^{N_1}n2l2^{N_2} configurations, are considered. This theory assumes that the electron excitation n0l0→ nl affects spin-orbit splitting and magnetic dipole and electric quadrupole hyperfine structure in the same way which will be discussed below. Part I of the series presented, in general terms, a method allowing the analysis of complex electronic systems. Parts II, III and IV provided a description of an electrostatic interaction up to second-order perturbation theory; they constitute the basis for the design of an efficient computer program package for large-scale calculations of accurate wave functions. Analyses presented in the entire series of our papers clearly demonstrate that obtaining the precise wave functions is impossible without considering the contribution from the second-order effects into fine and hyperfine atomic structure.

  3. Theory of hyperfine interactions in potassium and Sc2+sion:Trends in systems isoelectronic with potassium

    NASA Astrophysics Data System (ADS)

    Owusu, Alfred; Yuan, Xing; Panigrahy, S. N.; Dougherty, R. W.; Das, T. P.; Andriessen, J.

    1997-04-01

    A first-principles relativistic many-body investigation of magnetic hyperfine fields has been carried out for the ground states 4 2 S1/2 of the alkali atom K and doubly charged ion Sc2+ completing the investigation over the three members of the isoelectronic series K, Ca+ , and Sc2+ with a single valence electron in the 4s state, since Ca+ had been investigated by us previously. This allows one to study both the nature of agreement with experiment over this series as the charge increases and the trends in the contributions from the major mechanisms responsible for the hyperfine fields in these systems. The calculated magnetic hyperfine fields in tesla for K, Ca+ , and Sc2+ are 56.81, 135.90, and 239.29, respectively. These agree very well with the measured values of 58.02 T for K and 140.30 T for Ca+ . No experimental data are available for the Sc2+ system. The exchange core polarization (ECP) and correlation contributions, as fractions of the valence contribution, are found to decrease rapidly as one goes to systems with higher ionic charges, the decrease being more drastic for correlation effects. The trend of the ratios of ECP and correlation contributions to the valence contribution for both K and Sc2+ were compared with those calculated for the neighboring alkali-metal systems, sodium and rubidium. The physical explanations for the results and the observed trends in the contributions from the different mechanisms are discussed.

  4. Hyperfine interactions of Ho3+ ions in KY3F10: Electron paramagnetic resonance and optical spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Pytalev, D. S.; Chukalina, E. P.; Popova, M. N.; Shakurov, G. S.; Malkin, B. Z.; Korableva, S. L.

    2012-09-01

    We use high-frequency electron paramagnetic resonance (EPR) and high-resolution optical Fourier spectroscopies to characterize hyperfine interactions of the impurity Ho3+ ions in KY3F10 crystals. Well-resolved hyperfine structure is observed in the EPR spectra for several transitions within the ground 5I8 multiplet of the Ho3+ ion and in the optical spectra for many lines in the infrared and visible ranges. The observed hyperfine patterns and field dependences of the resonance frequencies in the EPR spectra are well reproduced by calculations based on the crystal field (CF) theory. This favors reliability of calculated energies and wave functions of the electron-nuclear states within the ground and excited levels of Ho3+ in KY3F10. Finally, the dc magnetic susceptibility of the concentrated KHo3F10 crystal taken from literature is successfully modeled in the temperature range 0.01-20 K, using CF parameters of the impurity Ho3+ ions in KY3F10.

  5. Low temperature behavior of hyperfine fields in amorphous and nanocrystalline FeMoCuB

    SciTech Connect

    Kohout, Jaroslav; Křišt'an, Petr; Kubániová, Denisa; Kmječ, Tomáš; Závěta, Karel; Štepánková, Helena; Lančok, Adriana; Sklenka, L'ubomír; Matúš, Peter; and others

    2015-05-07

    Low temperature (4.2 K) magnetic behavior of Fe{sub 76}Mo{sub 8}Cu{sub 1}B{sub 15} metallic glass was studied by {sup 57}Fe Mössbauer spectrometry (MS) and {sup 57}Fe NMR. Distributions of hyperfine magnetic fields P(B) were determined for as-quenched and annealed (nanocrystalline) samples with relative fraction of the grains about 43%. P(B) distributions were derived for both the amorphous matrix and nanocrystalline grains. NMR of alloys with natural and {sup 57}Fe enriched Fe enabled to assess the contribution of {sup 11}B to the total NMR signal. P(B) distribution of the as-quenched alloy derived from MS matches reasonably well the one from NMR of the enriched sample. NMR signal from the sample with natural Fe exhibits contributions from {sup 11}B nuclei. The principal NMR lines of the annealed alloys at 47 MHz correspond to bcc Fe nanocrystals. Small asymmetry of the lines towards higher frequencies might be an indication of possible impurity atoms in the bcc structure. The observed differences between natural and enriched samples are attributed to higher sensitivity in the latter. Positions of the lines attributed to bcc Fe nanocrystals obtained from MS and NMR are in perfect agreement.

  6. Tungsten monocarbide, WC: pure rotational spectrum and 13C hyperfine interaction.

    PubMed

    Wang, Fang; Steimle, Timothy C

    2012-01-28

    The J = 1→2 pure rotational transitions in the X(3)Δ(1)(ν = 0) state of (186)W(12)C and (184)W(12)C were recorded using a pump/probe microwave optical double resonance (PPMODR) technique and analyzed to give fine structure parameters. The field-free [17.6]2←X(3)Δ(1) (1, 0) bands of the W(13)C isotopologues were recorded using laser induced fluorescence and analyzed to produce the (13)C(I = 1/2) magnetic hyperfine parameter. Bonding in the [17.6]2(ν = 1) and X(3)Δ(1)(ν = 0) states is discussed and a comparison of the experimentally determined properties of the X(3)Δ(1)(ν = 0) state with those predicted as a prelude to the electron electric dipole moment (eEDM) measurements [J. Lee, E. R. Meyer, R. Paudel, J. L. Bohn, and A. E. Leanhardt, J. Mod. Opt. 56, 2005 (2009)] is given.

  7. Tungsten monocarbide, WC: Pure rotational spectrum and 13C hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Steimle, Timothy C.

    2012-01-01

    The J = 1 → 2 pure rotational transitions in the X3Δ1(v = 0) state of 186W12C and 184W12C were recorded using a pump/probe microwave optical double resonance (PPMODR) technique and analyzed to give fine structure parameters. The field-free [17.6]2← X3Δ1 (1, 0) bands of the W13C isotopologues were recorded using laser induced fluorescence and analyzed to produce the 13C(I = 1/2) magnetic hyperfine parameter. Bonding in the [17.6]2(v = 1) and X3Δ1(v = 0) states is discussed and a comparison of the experimentally determined properties of the X3Δ1(v = 0) state with those predicted as a prelude to the electron electric dipole moment (eEDM) measurements [J. Lee, E. R. Meyer, R. Paudel, J. L. Bohn, and A. E. Leanhardt, J. Mod. Opt. 56, 2005 (2009), 10.1080/09500340903349930] is given.

  8. Anomalous magnetic hyperfine structure of the 229Th ground-state doublet in muonic atoms

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.

    2016-07-01

    The magnetic hyperfine (MHF) splitting of the ground and low-energy 3 /2+(7.8 ±0.5 eV) levels in the 229Th nucleus in the muonic atom (μ1S1 /2 -229Th) * is calculated considering the distribution of the nuclear magnetization in the framework of the collective nuclear model with wave functions of the Nilsson model for the unpaired neutron. It is shown that (a) deviation of the MHF structure of the isomeric state exceeds 100% from its value for a pointlike nuclear magnetic dipole (the order of sublevels is reversed); (b) partial inversion of levels of the 229Th ground-state doublet and spontaneous decay of the ground state to the isomeric state occur; (c) the E 0 transition, which is sensitive to differences in the mean-square charge radii of the doublet states, is possible between mixed sublevels with F =2 ; and (d) MHF splitting of the 3 /2+ isomeric state may be in the optical range for certain values of the intrinsic gK factor and a reduced probability of a nuclear transition between the isomeric and the ground states.

  9. Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields.

    PubMed

    Wohlgenannt, M; Flatté, M E; Harmon, N J; Wang, F; Kent, A D; Macià, F

    2015-06-28

    Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence. PMID:25987575

  10. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  11. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, {delta}E{sub rr} = ({alpha}({Zeta}{alpha})/{pi}{sup 2})(m/M)E{sub F}(6{zeta}(3) + 3{pi}{sup 2} In 2 + {pi}{sup 2}/2 + 17/8), are also presented.

  12. Properties of Gd2O3 nanoparticles studied by hyperfine interactions and magnetization measurements

    NASA Astrophysics Data System (ADS)

    Correa, E. L.; Bosch-Santos, B.; Cavalcante, F. H. M.; Correa, B. S.; Freitas, R. S.; Carbonari, A. W.; Potiens, M. P. A.

    2016-05-01

    The magnetic behavior of Gd2O3 nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ - γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at 111In(111Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particles annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.

  13. Isotope Effect in Organic Magneto-Transport; the Role of Hyperfine Interaction

    NASA Astrophysics Data System (ADS)

    Nguyen, Tho

    2010-03-01

    Organic semiconductors have been used as active layer in devices such as organic light-emitting diodes, photovoltaic cells, and field-effect transistors. Recently there has been a growing interest in spin and magnetic field effects (MFE) in these materials. This include optically detected magnetic resonance (ODMR), where long spin coherence time was demonstrated; organic light emitting diodes (OLED), where substantive magneto-electroluminescence and magneto-conductance were obtained; and organic spin valves (OSV), where spin injection from ferromagnetic electrodes was verified. The interest in organic semiconductors has been motivated by the weak spin-orbit interaction that is caused by the light building block elements such as carbon and hydrogen. However, the role of the hyperfine interaction (HFI) between the injected spin-.5ex1 -.1em/ -.15em.25ex2 carriers and various nuclear spins in organic magneto-transport has not been experimentally tested. Using the chemical versatility advantage of the organics, we studied and compare the magnetic-field effects in films, OLED and OSV devices based on polymers made of protonated, H-, and deuterated, D-hydrogen having a weaker HFI strength. We demonstrate that the HFI indeed plays a crucial role in all three magnetic-field effects. OLEDs [films] based on the D-polymers show substantial narrower MFE [ODMR] response; whereas due to the longer measured spin diffusion, OSV devices based on D-polymers show substantially larger magnetoresistance response.

  14. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c

    SciTech Connect

    Feng, Yiquing; Roder, H.; Englander, S.W. )

    1990-04-10

    Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable. The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.

  15. Critically evaluated theoretical energies, lifetimes, hyperfine constants, and multipole polarizabilities in {sup 87}Rb

    SciTech Connect

    Safronova, M. S.; Safronova, U. I.

    2011-05-15

    Systematic study of Rb atomic properties is carried out using a high-precision relativistic all-order method. Excitation energies of the ns, np, nd, and nf (n{<=}10) states in neutral rubidium are evaluated. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=8. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole (5s-np, n=5-26), electric-quadrupole (5s-nd{sub j}, n=4-26), and electric-octupole (5s-nf{sub j}, n=4-26) matrix elements are calculated to obtain the ground state E1, E2, and E3 static polarizabilities. Scalar polarizabilities of the ns, np, and nd states, and tensor polarizabilities of the np{sub 3/2} and nd excited states of Rb are evaluated. The hyperfine A and B values in {sup 87}Rb are determined for the first low-lying levels up to n=9. These calculations provide recommended values critically evaluated for their accuracy for a number of Rb atomic properties useful for a variety of applications.

  16. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Csiszár, Gábor; Pályi, András

    2014-12-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic HF mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type; (ii) is essentially local, in the sense that a radius- and dot-length-independent atomic interaction strength can be defined; and (iii) has an atomic interaction strength that is comparable to the combined strength of the Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multivalley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit.

  17. Transmission integral analysis of Mössbauer spectra displaying hyperfine parameter distributions with arbitrary profile

    SciTech Connect

    Klencsár, Zoltán

    2014-10-27

    Accurate quantitative analysis of Mössbauer spectra displaying thickness effects requires the consideration of the so-called transmission integral when modeling the spectral shape. Whereas this is straightforward when the correct model for the decomposition of the absorber's nuclear resonance absorption cross-section into individual components is a priori known, in the absence of such knowledge and notably in the presence of hyperfine parameter distributions with an unknown profile, the so-called model-independent evaluation methods could be used to fit the spectra. However, the methods available for this purpose were developed for the analysis of spectra for which the thin absorber approximation is valid, and thus they do not take the sample thickness and related effects into account. Consequently, in order to use them for spectra displaying thickness effects, their usage needs to be generalized by combining them with transmission integral fitting. A new algorithm realizing such a generalized version of the Hesse-Rübartsch model-independent evaluation method was developed recently as an integral part of the MossWinn program. In the present work, the working principle of the newly developed algorithm is described in details along with examples illustrating the capabilities of the method for the case of {sup 57}Fe Mössbauer spectroscopy.

  18. Structural, optical, hyperfine and magnetization studies of ZnO encapsulated α-Fe nanoparticles

    SciTech Connect

    Rathore, A.K.; Pati, S.P.; Roychowdhury, A.; Das, D.

    2014-12-15

    We report the successful preparation and characterization of magnetic-fluorescent nanoparticles (NPs) by overcoming the difficulty of handling α-Fe nanoparticles that are less stable and have high affinity to get oxidized in air even at room temperature. Nanocrystalline α-Fe particles embedded by ZnO have been synthesized by a two step chemical route. Concentration of α-Fe has been varied as 15, 30 and 50 wt% of the sample. Detailed investigations on structural, hyperfine, optical and magnetic characteristics have been carried out. X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy studies have been used to confirm the coexistence of Fe and ZnO phases in the nanocomposites (NCs). The presence of α-Fe is also confirmed by Mössbauer spectroscopy. However, other forms of iron are also detected in the sample. UV–vis spectrum of nanocomposites shows a red shift with respect to the pristine ZnO which is attributed to the electron transfer between Fe and ZnO that provides support to the formation of the Fe- ZnO NC. The photoluminescence (PL) spectra of Fe-ZnO nanocomposites exhibit blue shift of the UV and weaker visible emission lines compared to the pristine ZnO. Nanocomposites are found to be magnetically soft having high saturation magnetization with very low remanence. Low temperature coercivity enhancement due to freezing of uncompensated surface spins is also found in all samples.

  19. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  20. Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields

    PubMed Central

    Wohlgenannt, M.; Flatté, M. E.; Harmon, N. J.; Wang, F.; Kent, A. D.; Macià, F.

    2015-01-01

    Until recently the important role that spin-physics (‘spintronics’) plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence. PMID:25987575

  1. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers.

    PubMed

    Sun, Ming; Sargus, Bryan A; Carey, Spencer J; Kukolich, Stephen G

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d1), and 1,2-difluorobenzene (4-d1) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d1), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d1), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = - 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq(aa) was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d1) and 1,2-difluorobenzene (4-d1), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  2. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-01

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d1), and 1,2-difluorobenzene (4-d1) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d1), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d1), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = - 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQqaa was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d1) and 1,2-difluorobenzene (4-d1), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  3. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  4. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  5. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.

    PubMed

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-10-01

    The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.

  6. Hyperfine structure constants of singly ionized manganese obtained from analysis of Fourier Transform spectra

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Imperial College London

    2016-01-01

    There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.

  7. Magnetic and hyperfine properties of Fe2P nanoparticles dispersed in a porous carbon matrix

    NASA Astrophysics Data System (ADS)

    Viali, G. L.; Gonçalves, G. R.; Passamani, E. C.; Freitas, J. C. C.; Schettino, M. A.; Takeuchi, A. Y.; Larica, C.

    2016-03-01

    Structural and magnetic properties of nanocomposite, consisting of Fe2P particles dispersed in a porous carbon matrix, have fully been investigated using X-ray diffraction, Mössbauer and ac and dc magnetization measurements. Besides production of the nanocomposite, using an activated carbon (prepared by chemical activation of a char with H3PO4), impregnation with a Fe3+ salt in aqueous medium and subsequent heat treatments under N2 flow, we found a formation of hexagonal Fe2-xP and orthorhombic FeP in a mass ratio of 4:1, respectively. Low temperature Mössbauer spectra revealed that a large fraction (ca. 28%) of the material is in the paramagnetic state, suggesting that part of the Fe2-xP phase appears in the form of very small particles. A metamagnetic phase transition was also observed for non-stoichiometric Fe2-xP nanoparticles. It is observed at about 150 K, well below the ordering temperature of the Fe2P phase (230 K), and is dependent on the dc-probe fields. Also, the Fe2-xP nanoparticles were found to have a hard-like magnetic character at low temperatures, with coercive field HC of 1.3 KOe. Considering these interesting magnetic and hyperfine properties and also the large specific surface area of the porous carbon matrix, which is not severely reduced after impregnation with the Fe-containing compounds, one may point to promising technological applications of the produced nanocomposite.

  8. Oxoferryl porphyrin cation radicals in model systems: Evidence for variable metal-radical spin coupling

    NASA Astrophysics Data System (ADS)

    Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.

    1990-07-01

    Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.

  9. Measurement of Isotope Shifts, Hyperfine Splittings and Stark Shift for the Ytterbium (6S)2 SINGLET-S(0) to (6S6P) TRIPLET-P(1) Transition Using AN Acousto-Optically Modulated Laser Beam.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1995-11-01

    Accurate measurements of isotope shifts, hyperfine splittings and Stark shifts are of interest for studying atomic structure. This thesis reports a new method to precisely measure small frequency intervals. This was done using an acousto-optic modulator to frequency shift part of a laser beam. The frequency shifted and unshifted laser beams were then superimposed and excited an atomic beam. The laser frequency was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each transition generated two peaks in the spectrum separated by the acousto-optic modulation frequency, which permitted the frequency to be calibrated. This method was tested by measuring the isotope shifts and hyperfine splittings of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition at 555.6 nm. The shifts (MHz) relative to ^{176} Yb are: ^{173}Yb {it F}=7/2,-1432.1+/-1.2; ^{171}Yb {it F}=1/2, -1176.9+/-1.1; ^{174}Yb, 953.8+/-1.0; ^{172}Yb 1953.9+/-1.6; ^{170}Yb 3240.4+/-2.8; ^{173}Yb {it F}=5/2,3265.8+/-2.8; ^ {168}Yb, 4611.9+/-4.4; ^ {171,173}Yb {it F}=3/2,4760.1 +/-3.7 where the negative sign indicates that the transition occurs at a lower frequency than in ^{176}Yb. The magnetic dipole (a) and electric quadrupole (b) hyperfine coupling constants (MHz) of the (6s6p) ^3P_1 state for ^{171,173}Yb were determined to be a_{171}=3959.1 +/-3.0, a_{173}=-1094.44+/-0.84 and b_{173}=-827.89+/-0.85. These results were in agreement with the most accurate data found in the literature that were obtained by measuring frequency shifts using a Fabry Perot etalon whose length was stabilized with a helium neon laser locked to an iodine line. In contrast, our method uses cheaper and simpler apparatus. Next, the Stark shift of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition was measured by passing the atomic beam through a uniform electric field. The Stark shift rate was found to be -15.419+/-0.048 kHz/(kV/cm)^2. No

  10. Huge positive hyperfine fields for Sn impurity atoms on R sites of R T intermetallic compounds (R=rare-earth, T=Fe, Co)

    NASA Astrophysics Data System (ADS)

    Krylov, V. I.; Delyagin, N. N.

    2006-10-01

    The magnetic hyperfine field Bhf of the 119Sn impurity atom on the R site of the RFe 2 (R=Sm, Tb, Tm), TbCo 2, RCo 5 (R=Dy, Ho, Er), GdCo 3 and Gd 2Co 7 intermetallic compounds has been investigated by Mössbauer spectroscopy technique. At 5 K, very large hyperfine fields equal to 46-56 T were observed. The B values are several times larger than commonly observed for Sn in 3d-based magnetic hosts. The hyperfine fields are positive (that is parallel to the 3d magnetic moments direction). The results can be interpreted qualitatively in terms of the theory proposed for the impurity atoms in homogeneous ferromagnetic hosts [J. Kanamori, H. Katayama-Yoshida, K. Terakura, Hyperfine Interact. 8 (1981) 573; J. Kanamori, H. Katayama-Yoshida, K. Terakura, Hyperfine Interact. 9 (1981) 363; M. Akai, H. Akai, J. Kanamori, J. Phys. Soc. Jpn. 54 (1985) 4246; S. Blügel, H. Akai, R. Zeller, P.H. Dederichs, Phys. Rev. B 35 (1987) 3271], when it is considered that the splitting between bonding and antibonding hybrid states is strongly dependent on the interatomic distance. As the distance between the probe atom and neighboring magnetic atoms increases, the population of the antibonding states grows and, as a consequence, the corresponding positive contribution to the B increases sharply. For Sn atom the positive contribution to the B dominates when the interatomic distance exceeds 0.28-0.29 nm.

  11. A comparison of the cesium and hydrogen hyperfine frequencies by means of Loran-C and portable clocks

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Lavanceau, J.

    1974-01-01

    A comparison of the hydrogen and cesium hyperfine frequencies is made using a hydrogen maser calibrated directly against the Flexible Bulb Large Storage Box Hydrogen Maser and a Hewlett-Packard portable high performance cesium clock calibrated indirectly against the USNO Master Clock via a Loran-C link. The portable cesium clock is transported from the USNO to Harvard University in operating condition. This allows the evaluation of the portable clock's performance under transport. Data are presented on the epoch and frequency stability of the portable clock under transport as well as the usefulness of a closure measurement in determining clock drift.

  12. The Molecular Frame Electric Dipole Moment and Hyperfine Interactions in Hafnium Fluoride, HfF

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Skripnikov, Leonid; Titov, Anatoly V.

    2013-06-01

    The identification of HfF^{+} as a possible candidate for a d_{e}} measurement has stimulated new interest in the spectroscopy of both HfF^{+} and neutral HfF. Studies of the neutral are relevant because photoionization schemes can be used to produce the cations. More importantly, computational methodologies used to predict the electronic wavefunction of HfF^{+} can be effectively assessed by making a comparison of predicted and experimental properties of the neutral, which are more readily determinable. The (1,0)[17.9]2.5 -X^{2}Δ_{3/2} band of hafnium monofluoride (HfF) has been recorded using high-resolution laser-induced fluorescence spectroscopy both field-free and in the presence of a static electric field. The field-free spectra of ^{177}HfF, ^{179}HfF, and ^{180}HfF were model to generate a set of fine and hyperfine parameters for the X^{2}Δ_{3/2} (v=0) and [17.9]2.5 (v=1) states. The observed optical Stark shifts for the ^{180}HfF isotopologue were analyzed to produce the molecular frame electric dipole moments of 1.66(1)D and 0.419(7)D for the X^{2}Δ_{3/2} and [17.9]2.5 states, respectively. A two-step ab initio calculation consisting of a two-component generalized relativistic effective core potential calculation (GRECP) followed by a restoration of the proper four-component wavefunction was performed to predict the properties of ground state HfF. B. J. Barker, I. O. Antonov, V. E. Bondybey, and M. C. Heaven, J. Chem. Phys., 134, 201102 (2011). K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell and J. Ye, Chem. Phys. Lett., 546, 1 (2012). M. Grau, A. E. Leanhardt, H. Loh, L. C. Sinclair, R. P. Stutz, T. S. Yahn, and E. A. Cornell, J. Mol. Spectroc., 272, 32 (2012). H. Loh, R. P. Stutz, T. S. Yahn, H. Looser, R. W. Field, and E. A. Cornell, J. Mol. Spectroc.,276-277, 49 (2012).

  13. Local probing of multiferroics: First-principles study of hyperfine parameters in YMnO3 and YMn2O5

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. N.; Amaral, V. S.; Correia, J. G.; Stroppa, A.; Fenta, A. S.; Baghizadeh, A.; Picozzi, S.

    2014-07-01

    We model the ferroelectric and paraelectric phases in the YMnO3 and YMn2O5, compounds with discussion of the hyperfine parameters at the atomic nuclei: electric field gradient and magnetic hyperfine field, using first-principles density functional theory FP-L/APW+lo method (WIEN2K code). The differences of the changes in hyperfine properties and their correlation due to the onset of polarization in both cases reveal their sensitivity to the different electronic densities changes due to ferroelectricity. In the case of YMnO3 the greater changes appear in the Y and O atoms, while in YMn2O5, where the polarization is induced by a magnetic transition, the parameters at Mn and its bonded O atoms are changed the most. The sensitivity of the parameters to different degrees of approximation in calculations is also discussed.

  14. Three-component Fulde-Ferrell superfluids in a two-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Wu, Fan; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2015-08-01

    We investigate the pairing physics of a three-component spin-orbit coupled Fermi gas in two spatial dimensions. The three atomic hyperfine states of the system are coupled by the recently realized synthetic spin-orbit coupling (SOC), which mixes different hyperfine states into helicity branches in a momentum-dependent manner. As a consequence, the interplay of spin-orbit coupling and the hyperfine-state-dependent interactions leads to the emergence of Fulde-Ferrell (FF) pairing states with finite center-of-mass momenta even in the absence of the Fermi-surface asymmetry that is usually mandatory to stabilize an SOC-induced FF state. We show that, for different combinations of spin-dependent interactions, the ground state of the system can either be the conventional Bardeen-Cooper-Schrieffer pairing state with zero center-of-mass momentum or be the FF pairing states. Of particular interest here is the existence of a three-component FF pairing state in which every two out of the three components form FF pairing. We map out the phase diagram of the system and characterize the properties of the three-component FF state, such as the order parameters, the gapless contours, and the momentum distributions. Based on these results, we discuss possible experimental detection schemes for the interesting pairing states in the system.

  15. Using hyperfine structure to investigate perturbations between highly-excited states: the HF C-X spectrum

    NASA Astrophysics Data System (ADS)

    Philippson, Jeffrey; Shiell, Ralph; Reinhold, Elmar; Ubachs, Wim

    2009-05-01

    It has long been known that the B ^1&+circ; ion-pair state in HF is strongly perturbed by electronic Rydberg states [1]. We present a quantitative analysis of these perturbations through their effects on the fluorine orbital magnetic hyperfine parameter obtained from XUV spectra of the C ^1π, v=0-X ^1&+circ;, v=0 transition [2]. A λ-doubling interaction between the ground vibrational level of the C-state and the nearby v=29 level of the B-state produces an apparent rotational state dependence in the values of this parameter derived from the R-branch lines. This work demonstrates how insight into the extent of inter-state perturbations can be obtained from the variation of hyperfine parameters.[4pt] [1] A. E. Douglas and F. R. Greening, Can. J. Phys. 57, 1650 (1979).[0pt] [2] J. N. Philippson, R. C. Shiell, E. Reinhold and W. Ubachs, J. Chem. Phys. 129, 174310 (2008).

  16. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  17. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift, and hyperfine constants in Lu2 +

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, M. S.; Johnson, W. R.

    2016-09-01

    Energy levels of 30 low-lying states of Lu2 + and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double, and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates, and lifetimes of the metastable 5 d3 /2 and 5 d5 /2 states are calculated. Recommended values are given for static polarizabilities of the 6 s , 5 d , and 6 p states and tensor polarizabilities of the 5 d and 6 p3 /2 states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6 s1 /2-5 d5 /2 transition frequency of the Lu2 + ion is calculated with the aid of the recommended scalar polarizabilities of the 6 s1 /2 and 5 d5 /2 states. Finally, A and B hyperfine constants are determined for states of 2+175Lu with n ≤9 . This work provides recommended values of transition matrix elements, polarizabilities, and hyperfine constants of Lu2 +, critically evaluated for accuracy, for benchmark tests of high-precision theoretical methodology and planning of future experiments.

  18. High resolution spectroscopy of the Cs2 D 1Sigma u + -X 1Sigma g + transition and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Usui, Takashi; Kumauchi, Takahiro; Baba, Masaaki; Ishikawa, Kiyoshi; Katô, Hajime

    1993-02-01

    The Doppler-free high resolution laser spectroscopy of Cs2 D 1Σu+-X 1Σg+ transition is extended up to v'=65. By comparing the spectral linewidth and the time-resolved fluorescence intensity, the line broadening observed for transitions to the D 1Σu+(v'=63,J'≤70) levels is identified as the lifetime broadening originating from the predissociation. Line splittings are observed for the D 1Σu+(v'=46,J'≥95)-X 1Σg+(v`= 1,J`) transitions and are identified as the hyperfine splitting due to a magnetic dipole interaction between nuclear spin and electron. The hyperfine splitting is attributed to mixing of the (2) 3Πu state, whose wave function changes from Hund's case (a) to case (b) at large J. The dependence of the electric dipole transition moment on the internuclear distance for the D 1Σu+-X 1Σg+ transition is determined by comparing the observed and calculated line intensities of the dispersed fluorescence.

  19. Combining Steady-State and Dynamic Methods for Determining Absolute Signs of Hyperfine Interactions: Pulsed ENDOR Saturation and Recovery (PESTRE)

    PubMed Central

    Doan, Peter E.

    2010-01-01

    The underlying causes of asymmetric intensities in Davies pulsed ENDOR spectra that are associated with the signs of the hyperfine interaction are reinvestigated. The intensity variations in these asymmetric ENDOR patterns are best described as shifts in an apparent baseline intensity that occurs dynamically following on-resonance ENDOR transitions. We have developed an extremely straightforward multi-sequence protocol that is capable of giving the sign of the hyperfine interaction by probing a single ENDOR transition, without reference to its partner transition. This technique, Pulsed ENDOR Saturatation and Recovery (PESTRE) monitors dynamic shifts in the ‘baseline’ following measurements at a single RF frequency (single ENDOR peak), rather than observing anomalous ENDOR intensity differences between the two branches of an ENDOR response. These baseline shifts, referred to as dynamic reference levels (DRLs), can be directly tied to the electron spin manifold from which that ENDOR transition arises. The application of this protocol is demonstrated on 57Fe ENDOR of a 2Fe-2S ferredoxin. We use the 14N ENDOR transitions of the S = 3/2 [Fe(II)NO]2+ center of the non-heme iron enzyme, anthranilate dioxygenase (AntDO) to examine the details of the relaxation model using PESTRE. PMID:21075026

  20. Hyperfine splitting in a true muonium to O (mμα6) : Two-photon-annihilation contribution from other flavors

    NASA Astrophysics Data System (ADS)

    Ji, Yao; Lamm, Henry

    2016-09-01

    The two-photon-annihilation contribution to the true muonium hyperfine splitting arising from e and τ loops is obtained analytically at order mμα6 . The contribution to the hyperfine splitting is -2.031092873 mμα6/n3π2=-793.926988 /n3 MHz. The contribution to the triplet true muonium decay rate has also been obtained and was found to be 9.825708266 mμα6/n3π2=3840.737698 /n3 MHz. Additional results have been computed for other purely leptonic bound states.

  1. Multiconfiguration Dirac-Hartree-Fock calculations of excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm I

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Qu, Yizhi; Li, Jiguang; Wang, Jianguo

    2015-11-01

    The multiconfiguration Dirac-Hartree-Fock method was employed to calculate the total and excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm i. In the first-order perturbation approximation, we systematically analyzed correlation effects from individual electrons and electron pairs. It was found that the core correlations are of importance for the physical quantities concerned. Based on the analysis, the important configuration state wave functions were selected to constitute atomic state wave functions. By using this computational model, our excitation energies, oscillator strengths, and hyperfine structure constants are in better agreement with experimental values than earlier theoretical works.

  2. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  3. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Longdell, Jevon J.

    2016-08-01

    We experimentally demonstrate the coupling at zero magnetic field of an isotopically pure erbium-doped yttrium orthosilicate crystal (167Er:YSO ) to a three-dimensional superconducting cavity with a Q factor of 105. A tunable loop-gap resonator is used and its resonance frequency is tuned to observe the hyperfine transitions of the erbium sample. The observed spectrum differs from what is predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observation of asymmetric line shapes for these hyperfine transitions. Such a broadly tunable superconducting cavity (from 1.6 to 4.0 GHz in the current design) is a promising device for building hybrid quantum systems.

  4. Spin-orbital-angular-momentum coupling in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Zhang, Chuanwei

    2015-06-01

    Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context, the recent experimental realization of the coupling between spin and linear momentum of ultracold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here we propose that another important and fundamental SOC, the coupling between spin and orbital angular momentum (SOAM), can be implemented for ultracold atoms using higher-order Laguerre-Gaussian laser beams to induce Raman coupling between two hyperfine spin states of atoms. We study the ground-state phase diagrams of SOAM-coupled Bose-Einstein condensates on a ring trap and explore their applications in gravitational force detection. Our results may provide the basis for further investigation of intriguing superfluid physics induced by SOAM coupling, such as collective excitations.

  5. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system. PMID:26382492

  6. Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Hg{sup +}

    SciTech Connect

    Simmons, M.; Safronova, M. S.; Safronova, U. I.

    2011-11-15

    Excitation energies of the [Xe]4f{sup 14}5d{sup 10}ns, [Xe]4f{sup 14}5d{sup 10}np{sub j}, [Xe]4f{sup 14}5d{sup 10}nd{sub j}, [Xe]4f{sup 14}5d{sup 10}n{sup '}f{sub j}, and [Xe]4f{sup 14}5d{sup 10}n{sup '}g{sub j} states in Hg{sup +} are evaluated (n{<=}10, n{sup '}{<=}9, and [Xe]=1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}4p{sup 6}4d{sup 10}5s{sup 2}5p{sup 6}). First-, second-, third-, and all-order Coulomb energies and first- and second-order Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator strengths, and transition rates are determined for electric-dipole transitions, including the ns (n=6-11), np (n=6-10), nd (n=6-10), nf (n=5-9), and ng (n=5-9) states. Lifetime values are determined for all above-mentioned states. The ground state E1, E2, and E3 polarizabilities are evaluated. The hyperfine structure in {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ions is investigated. The hyperfine A and B values are determined for the first low-lying levels up to n = 7. The quadratic Stark effect on hyperfine structure levels of {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ground states is investigated. The calculated shift for the {sup 199}Hg{sup +} (F = 1, M = 0) {r_reversible} (F = 0, M = 0) transition is -0.0597(2) Hz/(kV/cm){sup 2}, in agreement with previous theoretical result -0.060(3) Hz/(kV/cm){sup 2}. These calculations provide a theoretical benchmark for comparison with experiment and theory and provide values of blackbody radiation shifts for microwave frequency standards with {sup 199}Hg{sup +} and {sup 201}Hg{sup +} ions.

  7. Where Millimeter Wave Spectra are Sensitive to Small Electric Fields: High Rydberg States of Xenon and Their Hyperfine Structures

    NASA Astrophysics Data System (ADS)

    Schäfer, Martin; Raunhardt, Matthias; Merkt, Frédéric

    2009-06-01

    In the range 0-45 cm^{-1} below the ionization limit, the separation between adjacent electronic states (Rydberg states with principal quantum number n>50) of atoms and molecules is smaller than 2 cm^{-1}. In order to resolve the fine or hyperfine structure of these states, it is necessary to combine high-resolution vacuum ultraviolet (VUV) laser radiation, which is required to access the Rydberg states from the ground state, with millimeter wave radiation. Such double-resonance experiments have been used to study the hyperfine structure of high Rydberg states of ^{83}Kr, H_2 or D_2. Millimeter wave transitions (240-350 GHz) between nℓ (52≤ n≤64, ℓ≤3) Rydberg states of different xenon isotopes were detected by pulsed field ionization followed by mass-selective detection of the cations. Because of the high polarizability of high-n Rydberg states (∝ n^7, ˜10^4 MHz cm^{2} V^{-2} for n≈ 50), it is necessary to reduce the electric stray fields to values of the order of mV/cm (or less) in order to minimize the (quadratic) Stark shift of the millimeter wave transitions. Some p and d Rydberg states of Xe are nearly degenerate and efficiently mixed by small stray fields, making it possible to observe transitions forbidden by the Δℓ=±1 selection rule or transitions exhibiting a linear Stark effect, which is typical for the degenerate high-ℓ Rydberg states. Multichannel quantum defect theory (MQDT) was used to analyze the millimeter wave data and to determine the hyperfine structures of the ^2P_{3/2} ground electronic states of ^{129}Xe^+ and ^{131}Xe^+. C. Fabre, P. Goy, S. Haroche, J. Phys. B: Atom. Mol. Phys. 10, L183-189 (1977). F. Merkt, A. Osterwalder, Int. Rev. Phys. Chem. 21, 385-403 (2002). M. Schäfer, M. Andrist, H. Schmutz, F. Lewen, G. Winnewisser, F. Merkt, J. Phys. B: At. Mol. Opt. Phys. 39, 831-845 (2006) M. Schäfer, F. Merkt, Phys. Rev. A, 74, 062506 (2006). A. Osterwalder, A. Wüest, F. Merkt, Ch. Jungen, J. Chem. Phys., 121, 11810

  8. Frequency-switching inversion-recovery for severely hyperfine-shifted NMR: evidence of asymmetric electron relaxation in high-spin Co(II).

    PubMed

    Riley, Erin A; Petros, Amy K; Smith, Karen Ann; Gibney, Brian R; Tierney, David L

    2006-12-11

    A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.

  9. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    SciTech Connect

    Lanza, Mathieu; Lique, François

    2014-10-28

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the results suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.

  10. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, G.; Miller, R.; Ogden, L.; Kavand, M.; Jamali, S.; Ambal, K.; Venkatesh, S.; Schurig, D.; Malissa, H.; Lupton, J. M.; Boehme, C.

    2016-09-01

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

  11. Using bound exciton transitions to optically resolve neutral donor hyperfine states of various donor species in Silicon-28

    NASA Astrophysics Data System (ADS)

    Salvail, Jeff; Dluhy, Phillip; Saeedi, Kamyar; Szech, Michael; Riemann, Helge; Abromisov, Nikolai; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael

    2014-03-01

    Phosphorus in silicon is established as a promising resource for use in quantum information processing tasks. The neutral donor hyperfine states have been shown to have record long coherence times, high fidelity gates via RF pulses, and projective readout via optical bound exciton transitions. As Shannon's theory of information tells us, we can process more information in an alphabet of more symbols, so there is motivation to look at donors with higher nuclear spin than the I = 1 / 2 of 31P, which provide access to Hilbert spaces of dimension greater than two. In this talk I will describe optical studies of the donors 75As (I = 3 / 2), 121Sb (I = 5 / 2), and 209Bi (I = 9 / 2) in 28Si.

  12. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  13. Measurement of the blackbody radiation shift of the {sup 133}Cs hyperfine transition in an atomic fountain

    SciTech Connect

    Levi, Filippo; Calonico, Davide; Lorini, Luca; Micalizio, Salvatore; Godone, Aldo

    2004-09-01

    We used a Cs fountain to measure the Stark shift of the ground-state hyperfine transition frequency in cesium (9.2 GHz) due to the electric field of the blackbody radiation. The relative shift at 300 K deduced from our measurements, including the leading and the second-order term in temperature, is (-1.45{+-}0.09)x10{sup -14} and agrees with our recent theoretical evaluation (-1.51{+-}0.07)x10{sup -14} [Micalizio et al. Phys. Rev. A 69, 053401 (2004)]. These values differ from that currently used (-1.735{+-}0.003)x10{sup -14}, with significant implications on frequency standards accuracy, on clocks comparison and on a variety of high-precision physics tests, such as the time stability of fundamental constants.

  14. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    PubMed

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD. PMID:22267883

  15. Hyperfine transitions in He-like ions as a tool for nuclear-spin-dependent parity-nonconservation studies

    SciTech Connect

    Ferro, Fabrizio; Surzhykov, Andrey; Stoehlker, Thomas

    2011-05-15

    In this paper a scheme is proposed for measuring nuclear-spin-dependent parity-nonconservation effects in highly charged ions. The idea is to employ circularly polarized laser light for inducing the transition between the level (1s2s){sup 1}S{sub 0} and the hyperfine sublevels of (1s2s){sup 3}S{sub 1} in He-like ions with nonzero nuclear spin. We argue that an interference between the allowed magnetic dipole M1 and the parity-violating electric dipole E1 decay channel leads to an observable asymmetry of order 10{sup -7} in the transition cross section, in the atomic range 28{<=}Z{<=}35. Experimental requirements for asymmetry measurements are discussed in the case of He-like {sub 34}{sup 77}Se.

  16. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    PubMed

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  17. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium

    PubMed Central

    Massiczek, O.; Friedreich, S.; Juhász, B.; Widmann, E.; Zmeskal, J.

    2011-01-01

    The design and properties of a new cryogenic set-up for laser–microwave–laser hyperfine structure spectroscopy of antiprotonic helium – an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland – are described. Similar experiments for 4He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised 3He gas volume and different dimensions of the microwave resonator for measuring the 3He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD. PMID:22267883

  18. Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime

    NASA Astrophysics Data System (ADS)

    Whiting, Daniel J.; Keaveney, James; Adams, Charles S.; Hughes, Ifan G.

    2016-04-01

    Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the |<5 P ||e r ||5 D >| matrix element in 87Rb. An analytic model with only three levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi frequencies are used to determine the dipole matrix element. We measure |<5 P3 /2||e r ||5 D5 /2>| =(2.290 ±0 .002stat±0 .04syst) e a0 , which is in excellent agreement with the theoretical calculations of Safronova, Williams, and Clark [Phys. Rev. A 69, 022509 (2004), 10.1103/PhysRevA.69.022509].

  19. Anisotropic hyperfine interactions limit the efficiency of spin-exchange optical pumping of ³He nuclei.

    PubMed

    Tscherbul, T V; Zhang, P; Sadeghpour, H R; Dalgarno, A

    2011-07-01

    We use accurate ab initio and quantum scattering calculations to demonstrate that the maximum ³He spin polarization that can be achieved in spin-exchange collisions with potassium (³⁹K) and silver (¹⁰⁷Ag) atoms is limited by the anisotropic hyperfine interaction. We find that spin exchange in Ag-He collisions occurs much faster than in K-He collisions over a wide range of temperatures (10-600 K). Our analysis indicates that measurements of trap loss rates of ²S atoms in the presence of cold ³He gas may be used to probe anisotropic spin-dependent interactions in atom-He collisions.

  20. CEMS investigation of surface hyperfine interactions in Fe81B13.5Si3.5C2 glass

    NASA Astrophysics Data System (ADS)

    Rogalski, M. S.; Bibicu, I.; Sorescu, M.

    1994-12-01

    Ferromagnetic amorphous samples of Fe81B13.5Si3.5C2 were exposed isochronally to pulsed radio frequency (rf) annealing (vrf=54.8 MHz, τpulse=0.1 s) by employing field strengths H rfwhich ranged from 3 12 Oe. Conversion electron Mössbauer spectra (CEMS) were analyzed in terms of the rf energy dependence of magnetic hyperfine field ( HF) distribution. For field strengths H rf>6 Oe, CEMS spectra of the rf annealed samples showed an additional quadrupole splitting (QS) distribution, which was assigned to FeSi clusters. The relative areal intensity of the QS distribution, linearly dependent on the rf field energy, is proposed as an appropriate order parameter for the onset of compositional short-range order (CSRO). An activation energy of 1.7 eV is estimated for the onset of surface CSRO in the rf annealed FeBSiC system.

  1. Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    NASA Astrophysics Data System (ADS)

    Adamczak, A.; Baccolo, G.; Bakalov, D.; Baldazzi, G.; Bertoni, R.; Bonesini, M.; Bonvicini, V.; Campana, R.; Carbone, R.; Cervi, T.; Chignoli, F.; Clemenza, M.; Colace, L.; Curioni, A.; Danailov, M.; Danev, P.; D'Antone, I.; De Bari, A.; De Vecchi, C.; De Vincenzi, M.; Furini, M.; Fuschino, F.; Gadedjisso-Tossou, K. S.; Guffanti, D.; Iaciofano, A.; Ishida, K.; Iugovaz, D.; Labanti, C.; Maggi, V.; Margotti, A.; Marisaldi, M.; Mazza, R.; Meneghini, S.; Menegolli, A.; Mocchiutti, E.; Moretti, M.; Morgante, G.; Nardò, R.; Nastasi, M.; Niemela, J.; Previtali, E.; Ramponi, R.; Rachevski, A.; Rignanese, L. P.; Rossella, M.; Rossi, P. L.; Somma, F.; Stoilov, M.; Stoychev, L.; Tomaselli, A.; Tortora, L.; Vacchi, A.; Vallazza, E.; Zampa, G.; Zuffa, M.

    2016-05-01

    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.

  2. Helix coupling

    DOEpatents

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  3. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  4. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins

    PubMed Central

    Khamehchi, M. A.; Qu, Chunlei; Mossman, M. E.; Zhang, Chuanwei; Engels, P.

    2016-01-01

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s–p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands. PMID:26924575

  5. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.

    PubMed

    Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P

    2016-02-29

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands.

  6. The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Burda, K.; Strzałka, K.; Stanek, J.

    1993-12-01

    Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.

  7. Three-component Fulde-Ferrell super uids in a two- dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Wu, Fan; Zhang, Wei; Yi, Wei; Guo, Guang-Can; WeiYi's Team Team; Wei Zhang's Team Collaboration

    2016-05-01

    We investigate the pairing physics of a three-component spin-orbit coupled (SOC) Fermi gas in two spatial dimensions. The three atomic hyperfine states of the system are coupled by the recently realized synthetic SOC, which mixes different hyperfine states into helicity branches in a momentum-dependent manner. As a consequence, the interplay of SOC and the hyperfine-state dependent interactions leads to the emergence of Fulde-Ferrell (FF) pairing states with finite center-of-mass (COM) momenta even in the absence of the Fermi-surface asymmetry that is usually mandatory to stabilize an SOC-induced FF state. We show that, for different combinations of spin-dependent interactions, the ground state of the system can either be the conventional BCS pairing state with zero COM momentum or be the FF pairing states. Of particular interest here is the existence of a three-component FF pairing state in which every two out of the three components form FF pairing. We map out the phase diagram of the system and characterize the properties of the three-component FF state, such as the order parameters, the gapless contours and the momentum distributions. Based on these results, we discuss possible experimental detection schemes for the interesting pairing states in the system.

  8. Three-component Fulde-Ferrell superfluids in a two-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Wu, Fan; Zhang, Wei; Yi, Wei; Guo, Guang-Can; Wei Yi's Team Team; Wei Zhang's Team Collaboration

    2016-05-01

    We investigate the pairing physics of a three-component spin-orbit coupled (SOC) Fermi gas in two spatial dimensions. The three atomic hyperfine states of the system are coupled by the recently realized synthetic SOC, which mixes different hyperfine states into helicity branches in a momentum-dependent manner. As a consequence, the interplay of SOC and the hyperfine-state dependent interactions leads to the emergence of Fulde-Ferrell (FF) pairing states with finite center-of-mass (COM) momenta even in the absence of the Fermi-surface asymmetry that is usually mandatory to stabilize an SOC-induced FF state. We show that, for different combinations of spin-dependent interactions, the ground state of the system can either be the conventional BCS pairing state with zero COM momentum or be the FF pairing states. Of particular interest here is the existence of a three-component FF pairing state in which every two out of the three components form FF pairing. We map out the phase diagram of the system and characterize the properties of the three-component FF state, such as the order parameters, the gapless contours and the momentum distributions. Based on these results, we discuss possible experimental detection schemes for the interesting pairing states in the system.

  9. Nonadiabatic Coupling

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  10. Rotational Spectrum of Dichloromethane-Ne: Internal Dynamics and Cl Quadrupolar Hyperfine Effects.

    PubMed

    Favero, Laura B; Maris, Assimo; Paltrinieri, Laura; Caminati, Walther

    2015-12-10

    The rotational spectra of three isotopologues, CH2(35)Cl2···(20)Ne, CH2(35)Cl(37)Cl···(20)Ne, and CH2(35)Cl2···(22)Ne, of the complex dichloromethane-neon have been assigned and measured by molecular beam Fourier transform microwave spectroscopy. The corresponding tunnelling splittings-due to the motion of Ne from above to below the ClCCl plane-have been determined as ΔE0+0- = 6.8900(5), 6.6630(4), and 6.3724(7) MHz, respectively. From these data the barrier to planarity has been obtained, B2 = 68.7 cm(-1). In addition, the structure and the (35)Cl (or (37)Cl) quadrupole coupling constants have been determined.

  11. Rotational Spectrum of Dichloromethane-Ne: Internal Dynamics and Cl Quadrupolar Hyperfine Effects.

    PubMed

    Favero, Laura B; Maris, Assimo; Paltrinieri, Laura; Caminati, Walther

    2015-12-10

    The rotational spectra of three isotopologues, CH2(35)Cl2···(20)Ne, CH2(35)Cl(37)Cl···(20)Ne, and CH2(35)Cl2···(22)Ne, of the complex dichloromethane-neon have been assigned and measured by molecular beam Fourier transform microwave spectroscopy. The corresponding tunnelling splittings-due to the motion of Ne from above to below the ClCCl plane-have been determined as ΔE0+0- = 6.8900(5), 6.6630(4), and 6.3724(7) MHz, respectively. From these data the barrier to planarity has been obtained, B2 = 68.7 cm(-1). In addition, the structure and the (35)Cl (or (37)Cl) quadrupole coupling constants have been determined. PMID:26566085

  12. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  13. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    for the hyperfine splitting constant An,j ,0 (HFS ). As an application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  14. Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca{sup +}

    SciTech Connect

    Safronova, M. S.; Safronova, U. I.

    2011-01-15

    A systematic study of Ca{sup +} atomic properties is carried out using a high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=7. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the 5s, 6s, 7s, 8s, 4p{sub j}, 5p{sub j}, 3d{sub j}, and 4d{sub j} states and tensor polarizabilities for the 4p{sub 3/2}, 5p{sub 3/2}, 3d{sub j}, and 4d{sub j} states in Ca{sup +} are calculated. Methods are developed to accurately treat the contributions from highly excited states, resulting in significant (factor of 3) improvement in the accuracy of the 3d{sub 5/2} static polarizability value, 31.8(3)a{sub 0}{sup 3}, in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007).]. The blackbody radiation shift of the 4s-3d{sub 5/2} clock transition in Ca{sup +} is calculated to be 0.381(4) Hz at room temperature, T=300 K. Electric-quadrupole 4s-nd and electric-octupole 4s-nf matrix elements are calculated to obtain the ground-state multipole E2 and E3 static polarizabilities. Excitation energies of the ns, np, nd, nf, and ng states with n{<=} 7 in are evaluated and compared with experiment. Recommended values are provided for the 7p{sub 1/2}, 7p{sub 3/2}, 8p{sub 1/2}, and 8p{sub 3/2} removal energies for which experimental measurements are not available. The hyperfine constants A are determined for the low-lying levels up to n=7. The quadratic Stark effect on hyperfine structure levels of {sup 43}Ca{sup +} ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca{sup +} atomic properties for use in planning and analysis of

  15. Spin--rotation and hyperfine structure in the X sup 2. Sigma. sup + state of yttrium monosulfide by molecular-beam laser-radio-frequency double resonance

    SciTech Connect

    Azuma, Y.; Childs, W.J. )

    1990-12-15

    The molecular-beam laser-radio-frequency double-resonance method has been used to measure the spin--rotation and magnetic hyperfine structure of yttrium monosulfide (YS) in its {ital X} {sup 2}{Sigma}{sup +} electronic ground state. The spin--rotation constant {gamma} is found to be positive, unlike that of YO. The Fermi contact and dipolar hyperfine interactions (due to the spin {ital I}=1/2 of {sup 89}Y) are found to be rather close to the corresponding quantities in YO. The contact hfs constant {ital b} in the excited {ital B} {sup 2}{Sigma}{sup +} state of YS was determined by combining the directly measured {ital X} {sup 2}{Sigma}{sup +} splitting information with {ital B}--{ital X} optical hfs observations.

  16. Anisotropic contributions to the Sn119 transferred hyperfine fields in RMn6Sn6-xXx ( R=Y,Tb,Er ; X=In,Ga )

    NASA Astrophysics Data System (ADS)

    Perry, Laura K.; Ryan, D. H.; Venturini, G.

    2007-04-01

    The anisotropic contribution to the transferred hyperfine fields in YMn6Sn5.42In0.58 has been isolated using a field-driven moment rotation from the ab plane to the c axis in a single crystal. We find that at 12K , the anisotropic contribution is between 3% and 4% of the total field for the Sn2c and Sn2d sites, while it accounts for nearly one-third of the observed field at the Sn2e site. Comparison with data from RMn6Sn6-xXx ( R=Tb,Er ; X=Ga,In ) compounds containing magnetic rare earths shows that the Mn and R contributions to the anisotropic component of the transferred hyperfine fields are similar in magnitude.

  17. Precise measurement of hyperfine structure in the 2P{sub 1/2} state of {sup 7}Li using saturated-absorption spectroscopy

    SciTech Connect

    Singh, Alok K.; Muanzuala, Lal; Natarajan, Vasant

    2010-10-15

    We report a precise measurement of the hyperfine interval in the 2P{sub 1/2} state of {sup 7}Li. The transition from the ground state (D{sub 1} line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer [Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P{sub 1/2} state as A=46.047(3), which is discrepant from theoretical calculations by >80 kHz.

  18. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  19. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    SciTech Connect

    Bordonali, L; Garlatti, E; Casadei, C M; Furukawa, Y; Lascialfari, A; Carretta, S; Troiani, F; Timco, G; Winpenny, R E; Borsa, F

    2014-04-14

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr₈ antiferromagnetic molecular ring and heterometallic Cr₇Cd and Cr₇ Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and ¹⁹F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S T = 0, the ¹⁹F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the ¹⁹F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S T = 1. In the heterometallic rings, Cr₇Cd and Cr₇ Ni, whose ground state is magnetic with S T = 3/2 and S T = 1/2, respectively, the ¹⁹F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F⁻-Ni2⁺ and the F⁻-Cd2⁺ bonds. The values of the hyperfine constants compare well to the ones known for F⁻-Ni2⁺ in KNiF₃ and NiF₂ and for F⁻-Cr³⁺ in K₂NaCrF₆. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F⁻ ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  20. Hyperfine splitting of the 2s1/2 and 2p1/2 levels in lithium-like Pr56+

    DOE PAGES

    Trabert, E.; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Thorn, D. B.; Chen, M. H.; Cheng, K. T.; Sapirstein, J.

    2015-01-29

    Measurements of hyperfine splittings in highly charged ions are sensitive to details of the nuclear structure and the nuclear magnetic field distribution, but the proper interpretation of the measurements requires that the atomic structure is understood in sufficient detail. Lastly, we discuss the reasoning behind various recent experiments and what advantage is offered by the study of the Li-like ion of a mid-Z element such as praseodymium.

  1. Investigation of the magnetic hyperfine field of 111Cd in the rare-earth Laves phases RCo2 and RNi2

    NASA Astrophysics Data System (ADS)

    de la Presa, P.; Müller, S.; Pasquevich, A. F.; Forker, M.

    2000-04-01

    The magnetic hyperfine field Bh f of the closed-shell probe nucleus 111 Cd on the cubic R site of the C15 Laves phase RCo2 (R = Gd, Tb, Dy, Ho, Er, Sm, Nd and Pr) and RNi2 (R = Gd, Sm) has been investigated at 9 K by perturbed angular correlation (PAC) spectroscopy. In RCo2 the hyperfine field increases with increasing R spin, both for the heavy and the light R. The experimental trend suggests that the total hyperfine field has two contributions of opposite sign: Bh f = B 3d - B 4 f , where B 3d is induced by the 3d Co moment and B 4 f is due to indirect 4f - 4f exchange. The 4f contribution can be estimated from the measurement of Bh f in RNi2 where the 3d moment vanishes. The 111 Cd hyperfine fields in GdNi2 and SmNi2 at 9 K are Bh f = 7.5(5) and 2.0(2) T, respectively. Assuming a linear dependence of B 4 f on the projection ( g - 1)J of the R spin on the total angular momentum J , as expected from the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory of indirect 4f - 4f exchange, the variation of B 3d across the R series can be determined from the experimental values of Bhf . In heavy RCo2 (R = Gd, ... ,Er) B 3d follows very closely the variation of the Co moment µCo across the R series with B 3d /µCo = 28.7(2) T µ-1 B . With the same ratio for the light RCo2 (R = Pr, Nd, Sm) the experimental Bh f values indicate an increase of the 3d moment from µCo = 0.45 to 0.7 µB between PrCo2 and SmCo2 .

  2. Charge distribution and hyperfine interactions in the vicinity of impurity sites in In2O3 doped with Fe, Co, and Ni

    NASA Astrophysics Data System (ADS)

    Sena, C.; Costa, M. S.; Muñoz, E. L.; Cabrera-Pasca, G. A.; Pereira, L. F. D.; Mestnik-Filho, J.; Carbonari, A. W.; Coaquira, J. A. H.

    2015-08-01

    In this paper, first-principles calculations based on density functional theory (DFT) were used to determine TM (TM=Fe, Ni, Co) and Cd impurity locations in the In2O3 host structure, their charge states, the electronic and structural relaxations induced in the host lattice as well as to interpret previous and supplementary experimental results of hyperfine interactions. Different techniques were carried out to characterize TM-doped In2O3 bulk samples prepared by the sol-gel method starting from very pure metals. Perturbed angular correlation (PAC) spectroscopy, a sensitive nuclear technique capable of measuring interactions from electronic charge and spins within an atomic distance, was used to experimentally determine hyperfine interactions at cation sites of In2O3 doped with Co and Ni using 111In →111Cd as probe nuclei. Room temperature results of magnetization measurements in In2O3 doped with Fe, Co and Ni show ferromagnetic ordering coexisting with a paramagnetic behavior for all samples. Results of PAC spectroscopy and DFT calculations show that TM atoms locate as second nearest neighbors of Cd probes preferentially occupy symmetric sites of the doped In2O3 crystal structure with lattice parameters slightly different from that of pure In2O3. Moreover, while a major population of 111Cd probes observes almost the same hyperfine interactions measured for pure In2O3, a small population detects magnetic dipole interactions with magnetic hyperfine field at Cd probes of 2.6 T, 3.1 T, and 4.6 T, respectively for Ni, Co, and Fe doping presenting an almost linear dependence on the number of unpaired 3d electrons of the transition metal impurity.

  3. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  4. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  5. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  6. Magnetic hyperfine field in antiferromagnetic RGa2 (R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) studied by perturbed angular correlation spectroscopy using 111Cd

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Pereira, L. F. D.; Cavalcante, J. T.; Saitovitch, H.; Carbonari, A. W.; Saxena, R. N.; Forker, M.

    2013-05-01

    The magnetic and electric hyperfine interactions of the nuclear probe Cd111 in the hexagonal antiferromagnetic rare earth-gallium RGa2 (R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er) intermetallic compounds have been investigated by perturbed angular correlation (PAC) spectroscopy as a function of temperature. With the exception of R = Nd and Ho, the magnetic hyperfine field Bhf is roughly proportional to the spin projection (g - 1)J of the R constituent. However, in the group of the light rare earths, the variation of Bhf with (g - 1)J is much weaker than that for the heavy R constituents, in contrast to the trend reported for all rare earth intermetallics investigated up to now as well as to the trend of the magnetic ordering temperatures of RGa2. The orientation of the 4f spins relative to the c axis of RGa2 deduced from the angle between Bhf and the symmetry axis of the electric field gradient was found to be temperature independent and in agreement with the results of previous magnetization measurements. Except for SmGa2 where the hyperfine field shows an abrupt decrease near TN, the temperature dependence of Bhf(T) is consistent with second order phase transitions. The magnetic ordering temperatures deduced from Bhf(T) agree with magnetization and neutron diffraction results.

  7. Precise measurements of 203 Tl and 205 Tl excited state hyperfine splittings and isotope shifts using two-step vapor cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Cheng, Sau Man; Rupasinghe, P. M.

    2016-05-01

    We have undertaken a series of high-precision atomic structure measurement in thallium to test ongoing ab initio atomic structure calculations of relevance to symmetry violation tests in this element. We are currently completing two-step spectroscopy measurements of the 8P1 / 2 and 8P3 / 2 hyperfine structure and isotope shift using a heated thallium vapor cell and two external cavity semiconductor diode lasers. One laser, locked to the thallium 6P1 / 2 --> 7S1 / 2 378 nm transition excites one or both naturally-occurring isotopes to an intermediate state. A second red laser overlaps the UV beam within the thallium vapor cell in both a co-propagating and counter-propagating configuration. Analysis of subsequent Doppler-free absorption spectra of the 7S1 / 2 --> 8P1 / 2 , 3 / 2 visible transitions allows us to extract both hyperfine and isotope shift information for these excited states with uncertainties below 1 MHz. Frequency modulation of the red laser provides convenient in situ frequency calibration. Recent measurements in our group have shown significant discrepancies from older hyperfine structure measurements in thallium excited states. Current results will be presented. Work supported by NSF Grant # 1404206.

  8. Effective hyperfine temperature in frustrated Gd 2Sn 2O 7: two level model and 155Gd Mössbauer measurements

    NASA Astrophysics Data System (ADS)

    Bertin, E.; Bonville, P.; Bouchaud, J.-P.; Hodges, J. A.; Sanchez, J. P.; Vulliet, P.

    2002-06-01

    Using 155Gd Mössbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T|--> 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed.

  9. Polarization quantum beat spectroscopy of HCF(A1A"). I. 19F and 1H hyperfine structure and Zeeman effect.

    PubMed

    Fan, Haiyan; Ionescu, Ionela; Xin, Ju; Reid, Scott A

    2004-11-01

    To further investigate the (19)F and (1)H nuclear hyperfine structure and Zeeman effect in the simplest singlet carbene, HCF, we recorded polarization quantum beat spectra (QBS) of the pure bending levels 2(0) (n) with n = 0-7 and combination bands 1(0) (1)2(0) (n) with n = 1-6 and 2(0) (n)3(0) (1) with n = 0-3 in the HCF A(1)A(")<--X(1)A(') system. The spectra were measured under jet-cooled conditions using a pulsed discharge source, both at zero field and under application of a weak magnetic field (<30 G). Analysis yielded the nuclear spin-rotation constants C(aa) and weak field Lande g(aa) factors. Consistent with a two-state model, the majority of observed vibrational levels exhibit a linear correlation of C(aa) and g(aa), and our analysis yielded effective (a) hyperfine constants for the (19)F and (1)H nuclei (in MHz) of 728(23) and 55(2), respectively. The latter was determined here owing to the high resolving power of QBS. The vibrational state selectivity of the (19)F hyperfine constants is discussed, and we suggest that the underlying Renner-Teller interaction may play an important role.

  10. Imaging the Stereodynamics of Cl + CH4(ν3 = 1): Polarization Dependence on the Rotational Branch and the Hyperfine Depolarization.

    PubMed

    Pan, Huilin; Yang, Jiayue; Wang, Fengyan; Liu, Kopin

    2014-11-01

    The transition state in the Cl + CH4 reaction is of Cl-H-C collinear geometry, which serves as the bottleneck to reaction. When the reactant CH4 is antisymmetrically stretch-excited to ν3 = 1 by absorbing a linearly polarized photon, all four C-H bonds are collectively excited, and any one of the H atoms could be attacked by the Cl atom. At first sight, it is not obvious how an excited spherical-top molecule like CH4 is aligned and what consequences will be on chemical reactivity by polarizing the CH4 reagents. As shown here, an enormous steric effect on reactivity is observed, which depends sensitively on the selected rotational states. By exploiting various rotational branches in optical excitation, we quantify the degree of stereospecificity for a few lowest rovibrational states of the aligned CH4(ν3 = 1) reagents, as well as account for the hyperfine depolarization factor. This information lays the foundation for a full stereorequirement study of the Cl + CH4(ν3 = 1) reaction. PMID:26278763

  11. Hyperfine structure of the 4{f}^{8}5{d}^{2}6s configuration in the Tb atom

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Stefanska, D.; Krzykowski, A.

    2016-01-01

    Within this work new experimental results concerning the hyperfine structure (hfs) in the terbium atom are presented. Hfs constants A and B for eight levels belonging to the even-parity configuration 4{f}85{d}26s were determined, based on the results of measurements performed using the laser-induced fluorescence method in a hollow cathode discharge at 18 spectral lines. The configuration 4{f}85{d}26s in the terbium atom was hitherto very scarcely investigated; for seven of the levels examined within this work results concerning the hfs were obtained for the first time. As a by-product, hfs constants for 12 odd-parity levels, involved as upper levels in the transitions investigated, were also determined. A preliminary attempt at a semi-empirical analysis of Tb I hfs on a multi-configuration basis, based on the results of this work, yielded a value of the one-electron {a}6s10 parameter as well as the respective radial integral {< {r}-3> }6s10, which can be compared with the values along the lanthanide elements series reported in the literature. More conclusive results can certainly be obtained once the experimental database for Tb I becomes more extensive.

  12. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Salah, Dina; Kumar, Gagan; Kumar, Arun; Singh, Mahavir; Abd El-sadek, M.; Mir, Feroz Ahmad; Imran, Ahamad; Jameel, Daler Adil

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu2+ substitution effect in CoFe2-xO4 Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu2+ ion substitution. The anisotropy constant, K1, is found strongly dependent on the composition of Cu2+ ions. The variation of saturation magnetization with increasing Cu2+ ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu2+ ion concentration have been discussed.

  13. NiFe2O4 nanorod: porosity effect on spin canting, quadrupole splitting and hyperfine magnetic properties

    NASA Astrophysics Data System (ADS)

    Mondal, Tuhin S.; Bhattacharjee, Swarupananda; Roychowdhury, Anirban; Majumder, Santanab; Das, Dipankar; Mitra, Manoj K.; Ghosh, Chandan K.

    2015-04-01

    Porous nickel ferrite nanorods having diameter ˜200 nm and length ˜2.5 to 3.0 μm were synthesized by microemulsion method followed by calcination at 450 °C. The morphology and structure of the final as well as intermediate materials, formed during this method, were characterized by x-ray diffraction, field emission scanning electron microscope, high resolution transmission electron microscope and Fourier transform infrared spectroscopy. Positron annihilation spectroscopy was used to identify the structural defects such as vacancies and surface disorder, and to find out the porosity of the synthesized nanorods. Mössbauer spectroscopy was used to determine the cation distribution and magnetic hyperfine property of the nanorods. Detailed magnetic characterization by measuring magnetization as a function of magnetic field and temperature were examined by physical property measurement system and SQUID magnetometer, respectively. The reduced saturation magnetization (Ms = 20.3 emu gm-1) and enhanced coercive (Hc = 37 Oe) field of our synthesized samples was explained on the basis of surface electron effect. Moreover, formation mechanism and effect of precursor materials were also discussed.

  14. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  15. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  16. A Initio Mr-Rci Calculations of ((n - 1)D + Ns)(n) Atomic Bound States: Application to Hyperfine Structure and Electron Affinity Studies.

    NASA Astrophysics Data System (ADS)

    Datta, Debasis

    Systematic inclusion of many-body effects in open d and f subshell atoms has long been known as a formidable challenge in atomic structure theory. Due to the presence of competing relativistic effects in such systems, an appropriate theoretical approach needs to incorporate electron correlation within the framework of the Special Theory of Relativity. To this aim, the Relativistic Configuration Interaction methodology as developed by Beck and others has been extended and applied to multi-reference situations in ((n - 1)d + ns) ^{rm N} type valence configurations. Specific focus has been on the hyperfine structure and electron affinity studies of the transition metal ions and the rare earths respectively. Energies and magnetic dipole and electric quadrupole hyperfine structure constants of all the fifteen Zr II (4d + 5s)^3 J = 0.5, 1.5 levels and the twenty one Nb II (4d + 5s)^4 J = 2 levels have been determined with unprecedented accuracies. The average errors in energy are 0.087 eV and 0.050 eV for Zr II J = 3/2 & 1/2 respectively while that for the ten bottom levels of Nb II J = 2 is 0.055 eV. For the levels known experimentally, the corresponding errors in magnetic dipole hyperfine structure constants are 9.2%, 31.8% and 3.8%. Quite a few of the many-body hyperfine constant values exhibit striking improvements over the Multi-Configurational Dirac Fock values. A new value of nuclear quadrupole moment has also been predicted for Zr II. In all cases certain previous level assignments have been corrected and five previously unknown levels have been identified in Nb II. The rigorous systematics of the many-body effects important for the energy level and hyperfine structure of these systems has been presented including core-valence and core-core effects. Contrary to the conventional wisdom and theoretical predictions of the last decade, the attachment of an f electron has been discarded as the most likely mechanism for the formation of Lanthanide and Actinide negative

  17. Quantum Control of Nuclear Spins Coupled to Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, Sorawis

    This dissertation presents experiments on nitrogen-vacancy (NV) defect centers in diamond. The NV center is an optically active color center formed by one substitutional nitrogen atom and an adjacent vacancy in the diamond lattice. Its ground state spin triplet transitions are accessible in the microwave regime and their corresponding excited state transitions exhibit spin-dependent fluorescence that allows for optical spin state readout. We present methods for the deterministic placement and the fine tuning of the NV center population in bulk diamond via ion implantation. We demonstrate quantum control of the nuclear spin in diamond through manipulation of the NV center electronic spin. By utilizing the hyperfine coupling between the electronic and nuclear spins, fast phase gates on the intrinsic nitrogen nuclear spin can be achieved within half a microsecond, a speed that far exceeds that of the gates performed with conventional nuclear magnetic resonance pulses. The hyperfine coupling also results in an enhancement of the effective nuclear gyromagnetic ratio. We demonstrate the tunability of this enhancement by changing the magnetic field. Finally, we discuss preliminary experiments aimed towards coupling a single NV center to higher nuclear spin systems.

  18. Mössbauer hyperfine parameters of iron species in the course of Geobacter-mediated magnetite mineralization

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Zhu, San-Yuan; Deng, Kun

    2011-10-01

    Amorphous ferric iron species (ferrihydrite or akaganeite of <5 nm in size) is the only known solid ferric iron oxide that can be reductively transformed by dissimilatory iron-reducing bacteria to magnetite completely. The lepidocrocite crystallite can be transformed into magnetite in the presence of abiotic Fe(II) at elevated pH or biogenic Fe(II) with particular growth conditions. The reduction of lepidocrocite by dissimilatory iron-reducing bacteria has been widely investigated showing varying results. Vali et al. (Proc Natl Acad Sci USA 101:16121-16126, 2004) captured a unique biologically mediated mineralization pathway where the amorphous hydrous ferric oxide transformed to lepidocrocite was followed by the complete reduction of lepidocrocite to single-domain magnetite. Here, we report the 57Fe Mössbauer hyperfine parameters of the time-course samples reported in Vali et al. (Proc Natl Acad Sci USA 101:16121-16126, 2004). Both the quadrupole splittings and linewidths of Fe(III) ions decrease consistently with the change of aqueous Fe(II) and transformations of mineral phases, showing the Fe(II)-mediated gradual regulation of the distorted coordination polyhedrons of Fe3+ during the biomineralization process. The aqueous Fe(II) catalyzes the transformations of Fe(III) minerals but does not enter the mineral structures until the mineralization of magnetite. The simulated abiotic reaction between Fe(II) and lepidocrocite in pH-buffered, anaerobic media shows the simultaneous formation of green rust and its gradual transformation to magnetite plus a small fraction of goethite. We suggested that the dynamics of Fe(II) supply is a critical factor for the mineral transformation in the dissimilatory iron-reducing cultures.

  19. Inherent interface defects in thermal (211)Si/SiO{sub 2}:{sup 29}Si hyperfine interaction

    SciTech Connect

    Iacovo, Serena E-mail: andre.stesmans@fys.kuleuven.be; Stesmans, Andre E-mail: andre.stesmans@fys.kuleuven.be

    2014-10-21

    Low temperature electron spin resonance (ESR) studies were carried out on ‘higher index’ (211)Si/SiO{sub 2} interfaces thermally grown in the temperature range T{sub ox} = 400–1066°C. The data reveal the presence of two species of a P{sub b}-type interface defect, exhibiting a significant difference in defect density. On the basis of the pertinent ESR parameters and interface symmetry, the basic defect is typified as P{sub b0}{sup (211)}, close to the Pb0 center observed in standard (100)Si/SiO{sub 2}. The dominant type is found to pertain to defected Si atoms at (111)Si-face terraces with the dangling bond along the [111] direction at ∼19.5°C with the interface normal, these sites thus apparently predominantly accounting for interface mismatch adaptation. The total of the P{sub b}-type defect appearance clearly reflects the higher-index nature of the interface. It is found that T{sub ox} = 750°C is required to minimize the P{sub b0}{sup (211)} defect density through relaxation of the oxide (interface). Q-band ESR saturation spectroscopy reveals an anisotropic {sup 29}Si (nuclear spin I=1/2) hyperfine (hf) doublet associated with the central P{sub b0}{sup (211)} Zeeman signal, with hf parameters closest to those of the similar hf structure of the P{sub b0}{sup (110)} defect in thermal (110)Si/SiO{sub 2}, adducing independent support to the P{sub b0}{sup (211)} typification.

  20. Improved measurement of the hyperfine structure of the laser cooling level 4f^{12}(^3H_6)5d_{5/2}6s^2 (J=9/2) in {}^{169}_{ 69}{{Tm}}

    NASA Astrophysics Data System (ADS)

    Fedorov, S. A.; Vishnyakova, G. A.; Kalganova, E. S.; Sukachev, D. D.; Golovizin, A. A.; Tregubov, D. O.; Khabarova, K. Yu.; Akimov, A. V.; Kolachevsky, N. N.; Sorokin, V. N.

    2015-12-01

    We report on an improved measurement of the hyperfine constant of the 4f^{12}(^3 H_6)5d_{5/2}6s^2 (J=9/2) excited state of {}^{169}_{ 69}{{Tm}} which is involved in the second-stage laser cooling of Tm. To measure the absolute value of the hyperfine splitting interval, we used Doppler-free frequency modulation saturated absorption spectroscopy of Tm atoms in a vapor cell. The sign of the hyperfine constant was determined independently by spectroscopy of laser-cooled Tm atoms. The hyperfine constant of the level was determined to be A_J=-422.112(32) {MHz} from the energy difference between the two hyperfine sublevels, -2110.56(16) {MHz}. In relation to the saturated absorption measurement, we quantitatively treat contributions of various mechanisms to the line broadening and shift. We consider power broadening in the case when Zeeman sublevels of atomic levels are taken into account. We also discuss the line broadening due to frequency modulation and relative intensities of transitions in saturated absorption experiments.

  1. Dynamic hyperfine interactions in 111In(111Cd)-doped ZnO semiconductor: PAC results supported by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Muñoz, Emiliano L.; Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F. D.; Carbonari, Artur W.; Rentería, Mario

    2012-08-01

    In this work, we present results of Time-Differential γ-γ Perturbed-Angular-Correlations (PAC) experiments performed in 111Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at (111In (EC)→) 111Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Bäverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd2+) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.

  2. First corrections to hyperfine splitting and the Lamb shift induced by diagrams with two external photons and second-order radiative insertions in the electron line

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1994-07-01

    Contributions to hyperfine splitting (HFS) and to the Lamb shift on the order of {alpha}{sup 2}(Z{alpha}){sup 5} induced by graphs with two radiative photons inserted into the electron line are considered. It is shown that this gauge-invariant set of diagrams, which give corrections of the considered order, consists of nineteen topologically different diagrams. Contributions to both HFS and the Lamb shift induced by graphs containing the one-loop electron self-energy as a subgraph and by the graph containing two one-loop vertices are obtained. 15 refs., 3 figs.

  3. Corrections to hyperfine splitting and the Lamb shift due to the insertion of the two-loop electron self-energy with overlapping divergences in the electron line

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1994-12-01

    Contributions on the order of {alpha}{sup 2}(Z{alpha}){sup 5} to hyperfine splitting (HFS) and the Lamb shift due to the insertion of the two-loop electron self-energy diagram with overlapping divergences in the electron line are considered. An explicit expression for the two-loop self-energy diagram with overlapping divergences is obtained in the Fried-Yennie gauge. Contributions to HFS and the Lamb shift due to the diagram containing this subgraph are calculated. 5 refs., 1 fig.

  4. Hyperfine structure of {sup 87,89}Sr 5s4d{sup 3}D-5snf transitions in collinear fast beam RIMS

    SciTech Connect

    Bushaw, B. A.; Kluge, H.-J.; Lantzsch, J.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1995-04-01

    The title transition, with n=20, 23, and 32 were measured for stable {sup 87}Sr and the observed hfs was interpreted and strong hyperfine mixing of all four terms {sup 1}F3 and {sup 3}F2,3,4 in the upper configuration. The results of the analysis were used to predict the hfs for the radioactive isotope {sup 89}Sr. Measurement were then performed on samples containing 10{sup 9} atoms {sup 89}Sr. The positions and intensities of the hfs components selected for study were found to agree well with the predicted values.

  5. Stark-shift measurement of the {sup 2}S{sub 1/2}, F=3{yields}F=4 hyperfine transition of {sup 133}Cs

    SciTech Connect

    Godone, Aldo; Calonico, Davide; Levi, Filippo; Micalizio, Salvatore; Calosso, Claudio

    2005-06-15

    In this paper we report the measurement of the frequency Stark shift of the ground-state hyperfine transition of {sup 133}Cs observed in a vapor cell through a {lambda} excitation scheme. The measured value of the quadratic Stark coefficient is k=(-2.05{+-}0.04)x10{sup -10} Hz/(V/m){sup 2} when the electric field is perpendicular to the quantization axis. A comparison with the values previously reported in literature is given in view of its interest for the evaluation of the blackbody radiation shift in the primary frequency standards.

  6. Role of spin-orbit coupling in the kinetics of geminal recombination of triplet radical pairs in micelles. Effect of an internal heavy atom

    SciTech Connect

    Levin, P.P.; Kuz'min, V.A.

    1987-07-01

    The authors use radicals from the laser photolysis of benzophenone, bromobenzophenone, 4-phenylphenol, and 4-phenylaniline to study the effect of a heavy atom introduced as a substituent on the recombination kinetics of triplet radical pairs in micelles as a function of the external magnetic field strength. They found that intercombination conversion, which takes place due to the spin-orbit coupling between radicals, makes a significant contribution to the process of singlet-triplet transitions in radical pairs together with the hyperfine interaction. The role of spin-orbit coupling increases significantly when heavy atoms are present in the radicals.

  7. Radical-pair model of magnetoreception with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lambert, Neill; De Liberato, Simone; Emary, Clive; Nori, Franco

    2013-08-01

    The mechanism used by migratory birds to orientate themselves using the geomagnetic field is still a mystery in many species. The radical pair mechanism, in which very weak magnetic fields can influence certain types of spin-dependent chemical reactions, leading to biologically observable signals, has recently imposed itself as one of the most promising candidates for certain species. This is thanks both to its extreme sensitivity and its capacity to reproduce results from behavioral studies. Still, in order to gain a directional sensitivity, an anisotropic mechanism is needed. Recent proposals have explored the possibility that such an anisotropy is due to the electron-nucleus hyperfine interaction. In this work we explore a different possibility, in which the anisotropy is due to spin-orbit coupling between the electron spin and its angular momentum. We will show how a spin-orbit coupling-based magnetic compass can have performances comparable with the usually studied nuclear hyperfine based mechanism. Our results could thus help researchers actively looking for candidate biological molecules which may host magnetoreceptive functions, both to describe magnetoreception in birds as well as to develop artificial chemical compass systems.

  8. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  9. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  10. Millimeter-wave spectroscopy and multichannel quantum-defect-theory analysis of high Rydberg states of xenon: The hyperfine structure of {sup 129}Xe{sup +} and {sup 131}Xe{sup +}

    SciTech Connect

    Schaefer, Martin; Raunhardt, Matthias; Merkt, Frederic

    2010-03-15

    Millimeter-wave transitions between high-n Rydberg states of several isotopes of xenon have been recorded at sub-megahertz resolution. The fine and, for {sup 129}Xe and {sup 131}Xe, hyperfine structures of s, p, d, and f Rydberg states with principal quantum number in the range 52{<=}n{<=}64 have been determined from combination differences and analyzed using multichannel quantum defect theory. Improved eigenquantum defects and channel interaction parameters for the odd- and even-parity Rydberg states of xenon and the hyperfine structure of the {sup 2}P{sub 3/2} ground state of {sup 129}Xe{sup +} and {sup 131}Xe{sup +} have been obtained. Nearly degenerate p and d fine or hyperfine levels are very easily mixed by even weak stray electric fields.

  11. High-resolution magneto-optical spectroscopy of LiYF74:3+167Er, 3+166Er and analysis of hyperfine structure of ultranarrow optical transitions

    NASA Astrophysics Data System (ADS)

    Gerasimov, K. I.; Minnegaliev, M. M.; Malkin, B. Z.; Baibekov, E. I.; Moiseev, S. A.

    2016-08-01

    We performed high-resolution magneto-optical spectroscopy of the hyperfine transitions from 15/2 4I to the 13/2 4I and 9/2 4I multiplets of 3+167Er and 3+166Er in an isotopically purified LiYF74 crystal in various external magnetic fields up to 0.7 T. The obtained experimental results are interpreted in the framework of the generalized theoretical approach. The derived model successfully explains all the experimentally observed optical hyperfine transitions by using a single set of basic parameters found for the crystal-field interaction, magnetic dipole and electric quadrupole hyperfine interactions, together with Zeeman interactions at different orientations of the external magnetic field. A number of the studied quantum transitions appears to be promising for use in Raman quantum storage at optical telecommunication wavelengths.

  12. Multinuclear magnetic resonance studies of the 2Fe-2S sup * ferredoxin from Anabaena species strain PCC 7120. 3. Detection and characterization of hyperfine-shifted nitrogen-15 and hydrogen-1 resonances of the oxidized form

    SciTech Connect

    Oh, Byung-Ha; Markley, J.L. )

    1990-04-24

    All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe{center dot}2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments. Two additional nitrogen signals were observed in the one-dimensional {sup 15}N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional {sup 15}N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of the related ferredoxin, the resolved hyperfine-shifted {sup 15}N peaks were attributed to backbone amide nitrogens of two other amino acids that share electrons with the 2Fe{center dot}2S* center to backbone amide nitrogens of two other amino acids that are close to the 2Fe{center dot}2S* center. The seven {sup 15}N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. {sup 1}H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra. From their dependence on the magnetogyric ratio, a {sup 1}H resonance should be up to 100 times broader than a {sup 15}N resonance that experiences a similar hyperfine interaction. This appears to be the reason why more well-resolved hyperfine-shifted {sup 15}N resonances were observed than corresponding {sup 1}H resonances. The result suggest that hyperfine-shifted {sup 15}N peaks can provide a unique window on the electronic structure and environment of this and other paramagnetic centers.

  13. The Iodine Hvperfine Structure in the Microwave Spectrum of Ethyl Iodide: Nuclear Quadrupole and Spin Rotation Coupling

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Scherr, Lawrence M.; Barsh, Max K.

    1988-11-01

    Some rotational transitions of ethyl iodide, CH3CH2I, have been reinvestigated by microwave Fourier transform (MWFT) spectroscopy. The iodine hyperfine structure splittings were first ana lyzed using a direct diagonalization procedure of the complete quadrupole Hamiltonian matrix. The results of this analysis showed deviations from our measurements up to 60 kHz. A new analysis using additional spin rotation coupling matrix elements reproduces our measurements within the experi­mental error limit and decreases the standard deviation of the least squares fit from 28 kHz to only 4 kHz.

  14. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  15. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  16. Assignment of selected hyperfine proton NMR resonances in the met forms of Glycera dibranchiata monomer hemoglobins and comparisons with sperm whale metmyoglobin

    SciTech Connect

    Constantinidis, I.; Satterlee, J.D.; Pandey, R.K.; Leung, H.K.; Smith, K.M.

    1988-04-19

    This work indicates a high degree of purity for our preparations of all three of the primary Glycera dibranchiata monomer hemoglobins and details assignments of the heme methyl and vinyl protons in the hyperfine shift region of the ferric (aquo.) protein forms. The assignments were carried out by reconstituting the apoproteins of each component with selectively deuteriated hemes. The results indicate that even though the individual component preparations consist of essentially a single protein, the proton NMR spectra indicate spectroscopic heterogeneity. Evidence is presented for identification and classification of major and minor protein forms that are present in solutions of each component. Finally, in contrast to previous results, a detailed analysis of the proton hyperfine shift patterns of the major and minor forms of each component, in comparison to the major and minor forms of metmyoglobin, leads to the conclusions that the corresponding forms of the proteins from each species have strikingly similar heme-globin contacts and display nearly identical heme electronic structures and coordination numbers.

  17. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  18. Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol-gel route

    NASA Astrophysics Data System (ADS)

    Das, A.; Roychowdhury, A.; Pati, S. P.; Bandyopadhyay, S.; Das, D.

    2015-02-01

    Single-phase nanocrystalline strontium hexaferrite (SrFe12O19) powders have been synthesized by a sol-gel method and their structural, magnetic and hyperfine properties are discussed. The optimum annealing temperature of the as-prepared gel for formation of the single-phase SrFe12O19 structure has been found to be 800 °C. X-ray diffraction and Fourier transform infrared studies confirmed formation of the hexaferrite phase. The cation distribution at crystallographic inequivalent sites of the hexaferrite structure has been examined by 57Fe Mössbauer spectroscopy and found to be identical to that reported earlier. Single-phase SrFe12O19 nanoparticles (NPs) showed a magnetic hysteresis loop with high coercivity and saturation magnetization denoting an irreversible magnetization character. The temperature dependent magnetization measurements reveal a difference between the zero-field-cooled and field-cooled curves throughout the measurement range 5-300 K that is attributed to superparamagnetic relaxation of finer hexaferrite particles and disordered spins at the surface of the NPs. Both hyperfine and magnetic studies confirm that magnetic anisotropy plays a crucial role in hexaferrite NPs.

  19. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    SciTech Connect

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.; Stenflo, J. O. E-mail: knn@iiap.res.in E-mail: stenflo@astro.phys.ethz.ch

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scattering atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.

  20. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  1. Retrofitting gear couplings with diaphragm couplings

    SciTech Connect

    Mancuso, J.R. )

    1988-10-01

    Retrofitting a coupling should not be an afterthought when upgrading a system. Couplings are an integral part of a drive train and should be a major consideration. This article discusses guidelines that should be used when replacing gear couplings with diaphragm couplings. Reviewed are the coupling selection process: how and to what extent the desired diaphragm couplings should be matched to the gear coupling. Also discussed are the details of coupling modification that can be made to accommodate system performance. Included are how changes in materials, configuration and design can help tune a diaphragm coupling to meet the characteristics of the previous gear couplings. The article also discusses the retrofit process for a specific syngas train at International Minerals and Chemical Corp., Sterlington, La.

  2. Rabi-coupled countersuperflow in binary Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Usui, Ayaka; Takeuchi, Hiromitsu

    2015-06-01

    We show theoretically that periodic density patterns are stabilized in two counterpropagating Bose-Einstein condensates of atoms in different hyperfine states under Rabi coupling. In the presence of coupling, the relative velocity between the two components is localized around density depressions in quasi-one-dimensional systems. When the relative velocity is sufficiently small, the periodic pattern reduces to a periodic array of topological solitons as kinks of the relative phase. According to our variational and numerical analyses, the soliton solution is well characterized by the soliton width and density depression. We demonstrate the dependence of the depression and width on the Rabi frequency and the coupling constant of the intercomponent density-density interactions. The periodic pattern of the relative phase transforms continuously from a soliton array to a sinusoidal pattern as the period becomes smaller than the soliton width. These patterns become unstable when the localized relative velocity exceeds a critical value. The stability-phase diagram of this system is evaluated with a stability analysis of countersuperflow, by taking into account the finite-size effect owing to the density depression.

  3. All-order perturbation calculation of energies, hyperfine constants, multipole polarizabilities, and blackbody radiation shift in {sup 87}Sr{sup +}

    SciTech Connect

    Safronova, U. I.

    2010-08-15

    Excitation energies of the [Kr]ns{sub 1/2}, [Kr]np{sub j}, [Kr]nd{sub j}, and [Kr]nf{sub j} (n{<=}9 and [Kr]=(1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}4p{sup 6}) in Sr ii are evaluated. First-order, second-order, third-order, and all-order Coulomb energies and first-order and second-order Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=7. Electric-dipole (5s{sub 1/2}-np{sub j}, n=5-26), electric-quadrupole (5s{sub 1/2}-nd{sub j}, n=4-26), and electric-octupole (5s{sub 1/2}-nf{sub j}, n=4-26) matrix elements are calculated to obtain the ground-state E1, E2, and E3 static polarizabilities. Scalar and tensor polarizabilities for the 5p{sub j}-9p{sub j} and 4d{sub j}-8d{sub j} excited states in Sr ii are also calculated. All the above-mentioned matrix elements are determined using the all-order method. We also investigate the hyperfine structure in {sup 87}Sr{sup +}. The hyperfine A values and B values are determined for the first low-lying levels up to n=7. The quadratic Stark effect on hyperfine-structure levels of the {sup 87}Sr{sup +} ground state is investigated. The calculated shift for the (F=5,M=0){r_reversible}(F=4,M=0) transition is found to be 0.120(1) Hz/(kV/cm){sup 2}. These calculations provide a theoretical benchmark for comparison with the experiment and theory. A careful study of uncertainty of our calculations is carried out for the transition-matrix elements, line strengths, transition rates, lifetimes, polarizabilities, and the Stark shift coefficient.

  4. Spectroscopic and Thermal Characterization of the Host-Guest Interactions between α-, β-, and γ-cyclodextrins and vanadocene dichloride

    PubMed Central

    Morales, Alexis; Weber, Ralph T.; Melendez, Enrique

    2009-01-01

    Host-guest interactions between α-, β-, and γ-cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimeters, PXRD and solid state and solution EPR spectroscopy. The solid state results demonstrated that only β- and γ-cyclodextrins form 1:1 inclusion complexes, while α-cyclodextrin does not form an inclusion complex with Cp2VCl2. The β- and γ-CD-Cp2VCl2 inclusion complexes exhibited anisotropic electron-51V (I = 7/2) hyperfine coupling constants whereas the α-CD- Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α-CD may be involved in weak host-guest interactions in equilibrium with free vanadocene species. PMID:19881887

  5. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  6. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    NASA Astrophysics Data System (ADS)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  7. Hyperfine, rotational, and Zeeman structure of the lowest vibrational levels of the {sup 87}Rb{sub 2} (1) {sup 3{Sigma}}{sub g}{sup +} state

    SciTech Connect

    Takekoshi, T.; Lang, F.; Strauss, C.; Denschlag, J. Hecker; Lysebo, Marius; Veseth, Leif

    2011-06-15

    We present the results of an experimental and theoretical study of the electronically excited (1){sup 3{Sigma}}{sub g}{sup +} state of {sup 87}Rb{sub 2} molecules. The vibrational energies are measured for deeply bound states from the bottom up to v{sup '}=15 using laser spectroscopy of ultracold Rb{sub 2} Feshbach molecules. The spectrum of each vibrational state is dominated by a 47-GHz splitting into 0{sub g}{sup -} and 1{sub g} components caused mainly by a strong second-order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe this structure to the first order using a simplified effective Hamiltonian.

  8. Precision Measurement of the Hyperfine Structure of Laser-Cooled Radioactive {sup 7}Be{sup +} Ions Produced by Projectile Fragmentation

    SciTech Connect

    Okada, K.; Wada, M.; Nakamura, T.; Takamine, A.; Schury, P.; Ishida, Y.; Sonoda, T.; Kanai, Y.; Kojima, T. M.; Lioubimov, V.; Ogawa, M.; Yamazaki, Y.; Yoshida, A.; Kubo, T.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.

    2008-11-21

    The ground state hyperfine splitting of {sup 7}Be{sup +} has been measured by laser-microwave double-resonance spectroscopy in the online rf trap of RIKEN's slow RI-beam facility. Be ions produced by projectile fragmentation of {sup 13}C at {approx_equal}1 GeV were thermalized in a rf ion guide gas cell and subsequently laser cooled in the ion trap to {approx_equal}1 {mu}eV. This 10{sup 15}-fold reduction of the kinetic energy allows precision spectroscopy of these ions. A magnetic hfs constant of A=-742.772 28(43) MHz was measured for {sup 7}Be{sup +}, from which a nuclear magnetic moment of {mu}{sub I}=-1.399 28(2){mu}{sub N} was deduced.

  9. Magnetic hyperfine structure of the ground-state doublet in highly charged ions 89+,87+229Th and the Bohr-Weisskopf effect

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Nikolaev, A. V.

    2016-07-01

    Background: The search for new opportunities to investigate the low-energy level in the 229Th nucleus, which is nowadays intensively studied experimentally, has motivated us to theoretical studies of the magnetic hyperfine (MHF) structure of the 5 /2+ (0.0 eV) ground state and the low-lying 3 /2+ (7.8 eV) isomeric state in highly charged 89+229Th and 87+229Th ions. Purpose: The aim is to calculate, with the maximal precision presently achievable, the energy of levels of the hyperfine structure of the 229Th ground-state doublet in highly charged ions and the probability of radiative transitions between these levels. Methods: The distribution of the nuclear magnetization (the Bohr-Weisskopf effect) is accounted for in the framework of the collective nuclear model with Nilsson model wave functions for the unpaired neutron. Numerical calculations using precise atomic density functional theory methods, with full account of the electron self-consistent field, have been performed for the electron structure inside and outside the nuclear region. Results: The deviations of the MHF structure for the ground and isomeric states from their values in a model of a pointlike nuclear magnetic dipole are calculated. The influence of the mixing of the states with the same quantum number F on the energy of sublevels is studied. Taking into account the mixing of states, the probabilities of the transitions between the components of the MHF structure are calculated. Conclusions: Our findings are relevant for experiments with highly ionized 229Th ions in a storage ring at an accelerator facility.

  10. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ–γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N} ∼ 425 K and a well defined ferromagnetic transition at T{sub C} ∼ 320 K. Moreover, at ∼210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ∼25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  11. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  12. The magnetic transition in ε-Fe{sub 2}O{sub 3} nanoparticles: Magnetic properties and hyperfine interactions from Mössbauer spectroscopy

    SciTech Connect

    Kohout, J. Závěta, K.; Kubániová, D.; Kmječ, T.; Kubíčková, L.; Brázda, P.; Klementová, M.; Šantavá, E.; Lančok, A.

    2015-05-07

    The nanoparticles of ε-Fe{sub 2}O{sub 3} enriched with {sup 57}Fe isotope in amorphous silica matrix were prepared by sol-gel technique starting from a single molecular precursor for both Fe{sub 2}O{sub 3} and silica. From the X-ray powder diffraction pattern ε-Fe{sub 2}O{sub 3} was identified as the major phase and α-Fe{sub 2}O{sub 3} and β-Fe{sub 2}O{sub 3} were observed as minor iron oxide phases. Using the log-normal distribution for fitting the experimental data from the TEM micrographs, the characteristic size of particles d{sub 0} ∼ 25 nm was derived. The rather high coercivity of ∼2.1 T at room temperature was confirmed for our nanoparticle system. From the dependences of magnetization on temperature a two-step magnetic transition spread between 100 K and 153 K was indicated. From the {sup 57}Fe Mössbauer spectra measured in the temperature range of 4.2–300 K, the hyperfine parameters for one tetrahedral and three octahedral sites of ε-Fe{sub 2}O{sub 3} structure were identified. The in-field spectra in the external magnetic fields up to 6 T were taken both above and below the indicated two-step magnetic transition. Their dependence on temperature and external magnetic field suggests that the first step in the temperature range of 153 K–130 K is related to the spin reorientation of the local magnetic moments in the magnetic sublattices and the second step in temperatures 130 K–100 K may be associated with the intermediate spin–high spin state transition of Fe{sup 3+} cation in the tetrahedral sublattice expressed in the change of the hyperfine magnetic field.

  13. Dynamics of two-component Bose-Einstein condensates coupled with the environment

    SciTech Connect

    Hao Yajiang; Gu Qiang

    2011-04-15

    We investigate the dynamics of an open Bose-Einstein condensate system consisting of two hyperfine states of the same atomic species which are coupled by a tunable Raman laser. It has already been suggested that the detuning between the laser frequency and transition frequency affect significantly the dynamics of the pure condensate. Here we show that the detuning effect is suppressed by noise and dissipation caused by the environment. The increase of coherence and purity are also displayed for specific parameters. As a verification of the lowest order approximation we derive the hierarchy of motion equations in the second-order approximation. It turns out that the former one can describe the dynamical evolution qualitatively for weak noise and dissipation and quantitatively for strong noise and dissipation.

  14. Mobile vector soliton in a spin-orbit coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2015-04-01

    We study the formation of bound states and three-component bright vector solitons in a quasi-one-dimensional spin-orbit-coupled hyperfine spin f = 1 Bose-Einstein condensate using numerical solution and variational approximation of a mean-field model. In the antiferromagnetic domain, the solutions are time-reversal symmetric, and the component densities have multi-peak structure. In the ferromagnetic domain, the solutions violate time-reversal symmetry, and the component densities have single-peak structure. The dynamics of the system are not Galelian invariant. From an analysis of Galelian invariance, we establish that the single-peak ferromagnetic vector solitons are true solitons and can move maintaining constant component densities, whereas the antiferromagnetic solitons cannot move with constant component densities.

  15. Vector solitons in a spin-orbit-coupled spin-2 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2015-06-01

    Five-component minimum-energy bound states and mobile vector solitons of a spin-orbit-coupled quasi-one-dimensional hyperfine-spin-2 Bose-Einstein condensate are studied using the numerical solution and variational approximation of a mean-field model. Two distinct types of solutions with single-peak and multipeak density distribution of the components are identified in different domains of interaction parameters. From an analysis of Galilean invariance and time-reversal symmetry of the Hamiltonian, we establish that vector solitons with multipeak density distribution preserve time-reversal symmetry, but they cannot propagate while maintaining the shape of individual components. However, those with single-peak density distribution violate time-reversal symmetry of the Hamiltonian, but they can propagate with a constant velocity and maintain the shape of individual components.

  16. Nuclear Quadrupole Coupling Constants of Two Chemically Distinct Nitrogen Atoms in 4-Aminobenzonitrile

    PubMed Central

    2014-01-01

    The rotational spectrum of 4-aminobenzonitrile in the gas phase between 2 and 8.5 GHz is reported. Due to the two chemically distinct nitrogen atoms, the observed transitions showed a rich hyperfine structure. From the determination of the nuclear quadrupole coupling constants, information about the electronic environment of these atoms could be inferred. The results are compared to data for related molecules, especially with respect to the absence of dual fluorescence in 4-aminobenzonitrile. In addition, the two-photon ionization spectrum of this molecule was recorded using a time-of-flight mass spectrometer integrated into the setup. This new experimental apparatus is presented here for the first time. PMID:24911139

  17. Full Controllability of a Singlet-Triplet Qubit Coupled to a Nuclear Spin Qubit

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew D.; Gamble, John King; Jacobson, N. Tobias; Muller, Richard P.; Nielsen, Erik; Carr, Stephen M.; Carroll, Malcolm S.; Curry, Matthew; Harvey-Collard, Patrick; Jock, Ryan M.; Rudolph, Martin

    Recent experimental developments indicate that it is possible to drive coherent singlet-triplet rotations in a MOS quantum dot coupled to a single nearby phosphorus donor through the electron-nucleus hyperfine interaction. With the addition of NMR, we propose that it is possible to achieve universal 2-qubit control spanning i.) an electronic singlet-triplet subspace of the dot, ii.) the spin-1/2 donor nucleus, and iii.) entangling operations between them. We will assess the practicality of such an approach given realistic experimental conditions and constraints, including a comparison of pulsed and RF control of the detuning between the donor and dot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under Contract DE-AC04-94AL85000.

  18. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.

    PubMed

    Verdú, J; Zoubi, H; Koller, Ch; Majer, J; Ritsch, H; Schmiedmayer, J

    2009-07-24

    Placing an ensemble of 10;{6} ultracold atoms in the near field of a superconducting coplanar waveguide resonator with a quality factor Q approximately 10;{6}, one can achieve strong coupling between a single microwave photon in the coplanar waveguide resonator and a collective hyperfine qubit state in the ensemble with g_{eff}/2pi approximately 40 kHz larger than the cavity linewidth of kappa/2pi approximately 7 kHz. Integrated on an atomchip, such a system constitutes a hybrid quantum device, which also can be used to interconnect solid-state and atomic qubits, study and control atomic motion via the microwave field, observe microwave superradiance, build an integrated micromaser, or even cool the resonator field via the atoms.

  19. The Work-Centered Couple.

    ERIC Educational Resources Information Center

    Sperry, Len; Carlson, Jon

    1991-01-01

    Sketches taxonomy of work-centered couple. Briefly describes five couple types: the dual-career couple, the commuting couple, the military couple, the executive couple, and the family business couple. Notes that issues of work and career can greatly impact the lives of these couples. Encourages family psychology to further explore this area of…

  20. Hyperfine splitting of the 2s1/2 and 2p1/2 levels in lithium-like Pr56+

    SciTech Connect

    Trabert, E.; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Thorn, D. B.; Chen, M. H.; Cheng, K. T.; Sapirstein, J.

    2015-01-29

    Measurements of hyperfine splittings in highly charged ions are sensitive to details of the nuclear structure and the nuclear magnetic field distribution, but the proper interpretation of the measurements requires that the atomic structure is understood in sufficient detail. Lastly, we discuss the reasoning behind various recent experiments and what advantage is offered by the study of the Li-like ion of a mid-Z element such as praseodymium.

  1. High-resolution electron spin resonance spectroscopy of XeF* in solid argon. The hyperfine structure constants as a probe of relativistic effects in the chemical bonding properties of a heavy noble gas atom.

    PubMed

    Misochko, Eugenii Ya; Akimov, Alexander V; Goldschleger, Ilya U; Tyurin, Danil A; Laikov, Dimitri N

    2005-01-15

    Xenon fluoride radicals were generated by solid-state chemical reactions of mobile fluorine atoms with xenon atoms trapped in Ar matrix. Highly resolved electron spin resonance spectra of XeF* were obtained in the temperature range of 5-25 K and the anisotropic hyperfine parameters were determined for magnetic nuclei 19F, 129Xe, and 131Xe using naturally occurring and isotopically enriched xenon. Signs of parallel and perpendicular hyperfine components were established from analysis of temperature changes in the spectra and from numerical solutions of the spin Hamiltonian for two nonequivalent magnetic nuclei. Thus, the complete set of components of hyperfine- and g-factor tensors of XeF* were obtained: 19F (Aiso=435, Adip=1249 MHz) and 129Xe (Aiso=-1340, Adip=-485 MHz); g(parallel)=1.9822 and g(perpendicular)=2.0570. Comparison of the measured hyperfine parameters with those predicted by density-functional theory (DFT) calculations indicates, that relativistic DFT gives true electron spin distribution in the 2Sigma+ ground-state, whereas nonrelativistic theory underestimates dramatically the electron-nuclear contact Fermi interaction (Aiso) on the Xe atom. Analysis of the obtained magnetic-dipole interaction constants (Adip) shows that fluorine 2p and xenon 5p atomic orbitals make a major contribution to the spin density distribution in XeF*. Both relativistic and nonrelativistic calculations give close magnetic-dipole interaction constants, which are in agreement with the measured values. The other relativistic feature is considerable anisotropy of g-tensor, which results from spin-orbit interaction. The orbital contribution appears due to mixing of the ionic 2Pi states with the 2Sigma+ ground state, and the spin-orbit interaction plays a significant role in the chemical bonding of XeF*.

  2. Biorhythm in Couple Counseling

    ERIC Educational Resources Information Center

    Araoz, Daniel L.

    1977-01-01

    Twelve couples in marital counseling were studied during 12 months on the basis of their biorhythms. For each couple a compatibility percentage was obtained. It was found that difficulties in their interaction correlated highly with dissonance in their biorhythms. (Author)

  3. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-01

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  4. Pulsed EPR investigations of systems modeling molybdenum enzymes: hyperfine and quadrupole parameters of oxo-17O in [Mo 17O(SPh)4]-.

    PubMed

    Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H

    2005-11-30

    Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.

  5. Hyperfine and magnetic properties of a Y{sub x}La{sub 1−x}FeO{sub 3} series (0 ≤ x ≤ 1)

    SciTech Connect

    Cristóbal, A.A.; Botta, P.M.; Bercoff, P.G.

    2015-04-15

    Highlights: • Y{sub x}La{sub 1−x}FeO{sub 3} (0 ≤ x ≤ 1) was synthesized by mechanochemistry. • Two magnetic contributions were identified in the series. • A paramagnetic state is associated with a fraction of the smallest particles. • A ferromagnetic state is attributed to the larger particles. • Annealing of samples favored the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities. - Abstract: A series of orthoferrites Y{sub x}La{sub 1−x}FeO{sub 3} in the entire range of composition was synthesized at room temperature by mechanochemical activation of oxide mixtures. Phase composition, structure and microstructure of the obtained powder materials were characterized by X-ray diffraction and field-emission scanning electron microscopy. Hyperfine interactions and magnetic properties were determined by Mössbauer spectroscopy, SQUID and vibrating sample magnetometry. Two magnetic contributions could be identified in the series of materials: a paramagnetic state, associated with a fraction of the smallest particles and a ferromagnetic state, attributed to the larger particles. The results showed that the relative proportion of both contributions is very dependent on x, the Y content of samples. From M vs T measurements, it was possible to estimate the blocking temperature distribution for the end members of the series. Annealing of samples produced the elimination of the superparamagnetic behavior and the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities.

  6. The influence of hyperfine structure and isotope shift on the detection of Rb by 2 f-wavelength modulation diode laser absorption spectrometry—experimental verification of simulations

    NASA Astrophysics Data System (ADS)

    Gustafsson, Jörgen; Axner, Ove

    1998-12-01

    This work presents an experimental verification of a previously developed methodology for simulation of the 2 f-wavelength modulation diode laser absorption spectrometry technique (2 f-WM-DLAS) when the influence of hyperfine structure, isotope shift and collisional broadening and shift of an atomic transition is taken into account [J. Gustafsson, D. Rojas and O. Axner, Spectrochim. Acta, 52B, 1937-1953 (1997)]. The pilot element in the simulations was Rb, detected at the 780 nm 5s 2S 1/2-5p 2P 3/2 transition, in low-pressure cells and atmospheric-pressure reservoirs (e.g. graphite furnaces). This experimental investigation verifies that the simulations are able to predict, with good accuracy, experimental 2 f-WM signals from Rb atoms under both low-pressure, room-temperature conditions and atmospheric-pressure, high-temperature conditions. This implies that the previously published simulation methodology can be used for predicting and optimizing 2 f-WM signal strengths and shapes from Rb atoms (and thereby presumably also from other atoms) under a variety of pressure and temperature conditions.

  7. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  8. Preparation and Eh--pH diagrams of Fe(II)--Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and -carbonate

    NASA Astrophysics Data System (ADS)

    Génin, J.-M. R.; Refait, Ph.; Simon, L.; Drissi, S. H.

    1998-12-01

    Fe(II)--Fe(III) hydroxy-chloride, -sulphate and -carbonate were prepared by oxidation of a ferrous hydroxide precipitate in anion-containing aqueous solutions. The compounds are characterized by monitoring the redox potential Eh and the pH of stochiometric suspension vs time with the appropriate concentration ratios. X-ray diffraction allows us to characterize the crystal structure by distinguishing “green rust one” (GR1) from “green rust two” (GR2). Since green rusts (GRs) are of a pyroaurite-sjögrenite-like structure, i.e., consisting of intercalated foreign anions and water molecules in the interlayers between the brucite-like layers of Fe(OH)2, their chemical formulae can be determined from the Mössbauer spectra. Three quadrupole doublets are observed: D1 and D2 correspond to a ferrous state with isomershift IS of about 1.27 mm s-1 and quadrupole splittings QS of about 2.85 and 2.60 mm s-1, respectively, whereas D3 corresponds to a ferric state with IS and QS of about 0.4 mm s-1. The hyperfine parameters of these doublets are similar from one green rust to another but their intensity ratios vary considerably. Finally, Eh and pH equilibrium diagrams of the Fe species in the presence of chloride, sulphate and carbonate anions contained within the water solution are drawn and the thermodynamic conditions of existence and degrees of oxidation of green rusts are discussed.

  9. Hyperfine structure and magnetic properties of Zn doped Co2Z hexaferrite investigated by high-field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-01

    The polycrystalline samples of Ba3Co2-xZnxFe24O41 (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P63/mmc. With increasing Zn ion concentration, the unit cell volume (Vu) of samples was increased, as the sites of Fe3+ ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below TC were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (Hhf) and electric quadrupole shift (EQ) have shown abrupt changes around spin transition temperature (TS). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and Hhf of samples with increasing Zn concentration.

  10. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  11. Hyperfine structure and magnetic properties of Zn doped Co{sub 2}Z hexaferrite investigated by high-field Mössbauer spectroscopy

    SciTech Connect

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-07

    The polycrystalline samples of Ba{sub 3}Co{sub 2−x}Zn{sub x}Fe{sub 24}O{sub 41} (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P6{sub 3}/mmc. With increasing Zn ion concentration, the unit cell volume (V{sub u}) of samples was increased, as the sites of Fe{sup 3+} ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below T{sub C} were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (H{sub hf}) and electric quadrupole shift (E{sub Q}) have shown abrupt changes around spin transition temperature (T{sub S}). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and H{sub hf} of samples with increasing Zn concentration.

  12. Size dependence of the magnetic and hyperfine properties of nanostructured hematite ( α-Fe 2 O 3 ) powders prepared by the ball milling technique

    NASA Astrophysics Data System (ADS)

    André-Filho, J.; León-Félix, L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C.

    2014-01-01

    In this work we present the study of hematite ( α-Fe2O3) nanostructures synthesized by the ball milling technique. The structural characterization and the crystallite size estimation have been carried out using the X-ray diffraction (XRD) technique. Data analyses indicate that the hematite phase (space group, R-3C) is preserved after the milling process. As the milling time is increased, a second phase ( α-Fe) appears. The mean crystallite size shows a decreasing tendency as the milling time is increased. High-resolution transmission electron microscopy (HRTEM) images show the formation of grains composed of crystallites with irregular shapes. Mössbauer spectra of milled powders carried out at 297 and 77 K are well modeled with a histogram distribution of hyperfine fields. The presence of one additional sextet which corresponds to the ∝-Fe phase is also determined in agreement with XRD data analysis. Magnetic measurements suggest the suppression of the Morin transition in the milled samples and the absence of thermal relaxation effects in agreement with the Mössbauer spectroscopy results.

  13. Magnetic behavior of LaMn{sub 2}(Si{sub (1−x)}Ge{sub x}){sub 2} compounds characterized by magnetic hyperfine field measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.

    2014-05-07

    The temperature dependence of the magnetic hyperfine field (B{sub hf}) at Mn atom sites was measured in LaMn{sub 2}(Si{sub (1−x)}Ge{sub x}){sub 2}, with 0 ≤ x ≤ 1, compounds with perturbed γ−γ angular correlation spectroscopy using {sup 111}In({sup 111}Cd) as probe nuclei in the temperature range from 20 K to 480 K. The results show a transition from antiferromagnetic to ferromagnetic ordering for all studied compounds when Ge gradually replaces Si and allowed an accurate determination of the Néel temperature (T{sub N}) for each compound. It was observed that T{sub N} decreases when Ge concentration increases. Conversely, the Curie temperature increases with increase of Ge concentration. This remarkable change in the behavior of the transition temperatures is discussed in terms of the Mn-Mn distance and ascribed to a change in the exchange constant J{sub ex}.

  14. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  15. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  16. Hyperfine Magnetic Field Measurements in the Heusler Alloys COBALT(2)-TITANIUM-Z, COBALT(2)-MAGNESIUM-Z (z = Silicon, Germanium, and Tin) and COBALT(2)-MAGNESIUM- Gallium Using the Moessbauer Effect (me) and the Time Differential Perturbed Angular Correlation (tdpac) Techniques

    NASA Astrophysics Data System (ADS)

    Lahamer, Amer Said

    1990-01-01

    Measurements of the hyperfine magnetic field in a series of Heusler alloys were performed. The probes were in (^{119}Sn) and cadmium (^{111}Cd). These measurements were performed at the University of Cincinnati in Cincinnati, Ohio. Two techniques were used. The first technique was the Mossbauer effect, which was used to measure the hyperfine magnetic field on ^{119 }Sn in Co_2TiZ (Z = Si, Ge, and Sn), and the second technique was the Time Differential Perturbed Angular Correlation which was used to measure the hyperfine magnetic field on ^ {111}Cd in the Co_2MnZ (Z = Si, Ge, Sn, and Ga). The probes are expected to go to the Z sites of the alloys. The hyperfine magnetic field measurements on ^{119}Sn in Co _2TiZ (Z = Si, Ge, and Sn) alloys were done at room, dry ice and liquid nitrogen temperatures by using the Mossbauer effect technique. The data were fitted by using a least squares fit from which three parameters were extracted. These parameters are the isomer shift, the quadrupole splitting and the hyperfine magnetic field. Temperature variation measurements of the hyperfine magnetic field were performed on ^{111 }Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. The data were fitted again by using a least squares fit from which the Larmor frequency which is related to the hyperfine magnetic field was extracted. Also the Fourier Transforms were taken of the data, on the one hand to confirm the results of the least squares fit and on the other hand to look for more frequencies. Results of the Fourier Transforms show that some of the probe, ^{111}In, did go to the Co site in the Co_2MnZ (Z = Ga, Si, and Ge) alloys. The hmf on ^{111 }Cd in the Co site of these alloys is found to be 68 kOe which is consistent with the value found in the literature. Two theoretical models were examined for the trends of hyperfine magnetic field on ^{119 }Sn and ^{111}Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. These are the Campbell and Blandin model and the Stearns' overlap model

  17. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  18. Three tooth kinematic coupling

    SciTech Connect

    Hale, L.C.

    2000-05-23

    A three tooth kinematic coupling is disclosed based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  19. Three tooth kinematic coupling

    SciTech Connect

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  20. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  1. Measurement of the Hyperfine Splitting in the 2s_1/2-2p_3/2 X-Ray Transition in Bi^80+

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Osterheld, A.; Scofield, J.; Crespo López-Urrutia, J.; Decaux, V.; Widmann, K.

    1997-04-01

    Recently, the first measurements were reported of the hyperfine transition in the 1s ground level of high-Z hydrogenic ions [1,2], i.e., Ho^66+ and Bi^82+. These measurements have verified the importance of including the Breit-Schawlow, Bohr-Weisskopf, and QED corrections in determining the transition energy. We have made a high-resolution measurement of the 2s_1/2-2p_3/2 x-ray transition in Li-like Bi^80+ ions that resolved the F=4 and F=5 splitting of the 1s^22s ground configuration, providing the first measurement of the splitting in a multi-electron highly charged ion. The measured value of 0.803 ± 0.031 eV is in good agreement with recent predictions of 0.800 ± 0.006 eV [3] and provides a first test of the contribution from the electron-electron correlation correction. The absolute transition energy of the two observed x-ray lines was measured with an accuracy of 9 ppm, providing a test of the 2s QED contribution with an accuracy exceeding that of past QED measurements in high-Z ions. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] Klaft et al., PRL 73, 2425 (1994) [2] Crespo López-Urrutia et al., PRL 77, 826 (1996). [3] Shabaeva and Shabaev, PRA 52, 2811 (1995).

  2. Nonlinear magneto-optical resonances at D{sub 1} excitation of {sup 85}Rb and {sup 87}Rb for partially resolved hyperfine F levels

    SciTech Connect

    Auzinsh, M.; Ferber, R.; Gahbauer, F.; Jarmola, A.; Kalvans, L.

    2009-05-15

    Experimental signals of nonlinear magneto-optical resonances at D{sub 1} excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D{sub 1} transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F{sub g}=1{yields}F{sub e}=2 transition of {sup 87}Rb has been observed. A bright resonance was observed at the F{sub g}=2{yields}F{sub e}=3 transition of {sup 85}Rb, but displaced from the exact position of the transition due to the influence of the nearby F{sub g}=2{yields}F{sub e}=2 transition, which is a dark resonance whose contrast is almost 2 orders of magnitude larger than the contrast of the bright resonance at the F{sub g}=2{yields}F{sub e}=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.

  3. Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide. 4. Conformational effects on the EPR hyperfine splitting constants.

    PubMed

    Villamena, Frederick A; Liu, Yangping; Zweier, Jay L

    2008-12-11

    Spin trapping has been commonly employed in the detection of superoxide radical anion in chemical and biological systems; hence, accurate interpretation of the hyperfine splitting constants (hfsc's) arising from the O(2)(*-) adducts (also referred to as hydroperoxyl (HO(2)(*)) radical adducts) of various nitrones is important. In this work, the nature of the relevant hfsc's was investigated by examining the effect of conformational changes in the hydroperoxyl moiety of the O(2)(*-) adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO), and 7-oxa-1-azaspiro[4.4]non-1-en-6-one N-oxide, (CPCOMPO) on the magnitude of a(N), a(beta-H), and a(gamma-H). Conformational change around the substituents and their effect on the hfsc's were also explored. Results indicate that a(beta-H) is most sensitive to conformational changes of the hydroperoxyl and substituent groups relative to hfsc's of other nuclei. The orbital overlap between the C-H sigma-orbital and the SOMO of the nitroxyl nitrogen plays a crucial factor in determining the magnitude of the a(beta-H). The hfsc values for the O(2)(*-) adducts were predicted with high accuracy by using a low-cost computational method at the PCM(water)/BHandHLYP/EPR-III//B3LYP/6-31G* level of theory without taking into account the explicit water interaction. PMID:19012384

  4. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  5. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  6. Gear Spline Coupling Program

    SciTech Connect

    Guo, Yi; Errichello, Robert

    2013-08-29

    An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.

  7. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanopowders

    SciTech Connect

    Bhattacharjee, Kaustav; Das, G. C.; Pati, Satya P.; Das, D.

    2014-12-21

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (〈ε{sup 2}〉{sup 1/2}), oxygen positional parameter (u), metal-oxygen bond lengths (R{sub OA} and R{sub OB}), and the band positions (ν{sub 1}and ν{sub 2}) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  8. Entanglement like properties in Spin-Orbit Coupled Ultra Cold Atom and violation of Bell like Inequality

    NASA Astrophysics Data System (ADS)

    Ghosh, Sankalpa; Kumar, Rahul

    We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently (Y.J. Lin et al., Nature, 471, 83, (2011)), shows entanglement between motional degrees of freedom (momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influneces quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bell's Inequality vioaltion by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.

  9. The 57Fe hyperfine interactions in iron storage proteins in liver and spleen tissues from normal human and two patients with mantle cell lymphoma and acute myeloid leukemia: a Mössbauer effect study

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2015-04-01

    Study of human spleen and liver tissues from healthy persons and two patients with mantle cell lymphoma and acute myeloid leukemia was carried out using Mössbauer spectroscopy with a high velocity resolution. Small variations in the 57Fe hyperfine parameters for normal and patient's tissues were detected and related to small variations in the 57Fe local microenvironment in ferrihydrite cores. The differences in the relative parts of more crystalline and more amorphous core regions were also supposed for iron storage proteins in normal and patients' spleen and liver tissues.

  10. Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates of He-like ions

    NASA Astrophysics Data System (ADS)

    Laima, Radžiūtė; Erikas, Gaidamauskas; Gediminas, Gaigalas; Li, Ji-Guang; Dong, Chen-Zhong; Jönsson, Per

    2015-04-01

    Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates for the isoelectronic sequence of He-like ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, 11147108, 10979007, U1331122, and U1332206) and in part by the National Basic Research Program of China (Grant No. 2013CB922200).

  11. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    SciTech Connect

    Bordonali, L.; Borsa, F.; Garlatti, E.; Furukawa, Y.; Lascialfari, A.; Carretta, S.; Timco, G.; Winpenny, R. E. P.

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  12. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  13. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance.

    PubMed

    Albracht, Simon P J; Roseboom, Winfried; Hatchikian, E Claude

    2006-01-01

    The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.

  14. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    -O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  15. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  16. Disformally coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Koivisto, Tomi; Longden, Chris

    2016-03-01

    A disformal coupling between two scalar fields is considered in the context of cosmological inflation. The coupling introduces novel derivative interactions mixing the kinetic terms of the fields but without introducing superluminal or unstable propagation of the two scalar fluctuation modes. Though the typical effect of the disformal coupling is to inhibit one of the fields from inflating the universe, the energy density of the other field can drive viable near Sitter -inflation in the presence of nontrivial disformal dynamics, in particular when one assumes exponential instead of power-law form for the couplings. The linear perturbation equations are written for the two-field system, its canonical degrees of freedom are quantised, their spectra are derived and the inflationary predictions are reported for numerically solved exponential models. A generic prediction is low tensor-to-scalar ratio.

  17. [Main Cellular Redox Couples].

    PubMed

    Bilan, D S; Shokhina, A G; Lukyanov, S A; Belousov, V V

    2015-01-01

    Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.

  18. Neptunium Monochalcogenides: Magnetic Hyperfine Fields

    NASA Astrophysics Data System (ADS)

    Troć, R.

    This document is part of subvolume B6bβ`Actinide Monochalcogenides' of Volume 27 `Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III `Condensed Matter'. The volume presents magnetic and related properties of monochalcogenides based on actinides and their solid solutions.

  19. Observation of the hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} transition in {sup 87}Sr{sup +}

    SciTech Connect

    Barwood, G.P.; Gao, K.; Gill, P.; Huang, G.; Klein, H.A.

    2003-01-01

    The hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} quadrupole transition at 674 nm in {sup 87}Sr{sup +} has been observed. The ion was confined in a Paul trap and cooled using laser radiation at 422 and 1092 nm. The quadrupole transition was observed by monitoring quantum jumps in the 422-nm fluorescence. The odd isotope of strontium has 'clock' transitions independent of the first-order Zeeman shift and the {sup 2}D{sub 5/2} state hyperfine structure constants have been determined as A{sub D{sub 5/2}}=2.1743(14) MHz and B{sub D{sub 5/2}}=49.11(6) MHz. Standard uncertainties have been added in parentheses. These values allow the second-order Zeeman shifts to be calculated. The {sup 88}Sr{sup +}-{sup 87}Sr{sup +} isotope shift for the 674-nm quadrupole transition has been measured to be 247.99(4) MHz.

  20. Electronic Structure of the Aqueous Vanadyl Ion Probed by 9 and 94 GHz EPR and Pulsed ENDOR Spectroscopies and Density Functional Theory Calculations

    PubMed Central

    Grant, Christopher V.; Cope, William; Ball, James A.; Maresch, Guenter G.; Gaffney, Betty J.; Fink, William

    2005-01-01

    The aqueous vanadyl ion ([VO(H2O)5]2+) has been investigated by X-band EPR, 94 GHz W-band EPR, and ESE-ENDOR. These experiments reveal information about the hyperfine (|Axx| = 208.5 MHz, |Ayy| = 208.5 MHz, |Azz| = 547.0 MHz), and nuclear quadrupole coupling (|e2qQ| = 5.6 MHz) of the 51V nucleus. The measured nuclear quadrupole coupling parameters are compared to values determined by density functional theory calculations (|e2qQ| = 5.2 MHz). These theoretical calculations illustrate that axial ligands and molecular distortions can alter the magnitude of the nuclear quadrupole interaction. PMID:16467924