Science.gov

Sample records for 520-600 nm red

  1. Mosaic of Jupiter's Great Red Spot (727 nm)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Great Red Spot of Jupiter as seen through a 'Methane' filter (727 nm) of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 76 second interval beginning at universal time 14 hours, 31 minutes, 52 seconds on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.46 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  2. Characterization of red-near infrared transition for wheat and chickpea using 3 nm bandwidth data

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    2001-01-01

    Enhancement of space based capabilities to discriminate different crops and different varieties of a particular crop needs measurement of (i) the shift in red edge and (ii) the slope of the sudden rise of reflectance in 680 - 760 nm spectral region as a function of Days After Sowing (DAS). To develop the knowledge base for catering to the analysis of future space-based hyperspectral measurements, ground based measurements in 3 nm bandwidth in visible - near Infrared region together with corresponding Leaf Area Index (LAI) observations were taken over the Crop Growth Cycle (CGC) of Wheat and Chickpea. The red edge for wheat crop was at 679 nm for 25 DAS and reached the upper limit i.e., 693.7 nm at 84 DAS and thereafter shifted backward to 679 nm at 108 DAS. There was no change in red edge value of 684.9 nm during 40 to 49 DAS and of 687.8 nm during 55 to 71 DAS. The slope of Red to NIR transition for wheat varied from 0.457 to peak value of 0.784 during 25 to 71 DAS and thereafter decreased to 0.073 at 108 DAS. The peak of Red to Near Infrared (NIR) transition slope and Ratio Vegetation Index (RVI) occurred at the same time i.e., 71 DAS. However, the upper most value of red edge shift occurred at 84 DAS. Paper discusses the above aspects including role of mid point of Red to NIR transition, interrelationships among the Red-NIR transition Slope, Red Edge, LAI and RVI for wheat and chickpea.

  3. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  4. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  5. Red-Line (630nm) Pulsating Auroras And Their Possible Magnetospheric Driver

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Zhang, X.; Spanswick, E.; Gillies, M.; Jackel, B. J.

    2015-12-01

    Pulsating auroras are usually known to be led by the precipitation of energetic electrons from the central plasma sheet, and are thus often displayed in blue-line and/or green-line auroral emission lines. In this study we report the observations of 630nm oxygen red-line auroras by REGO imager, and explore their possible underlying mechanisms. Upon inspecting the temporal/spatial pattern of the red-line pulsating auroras and comparing with concurrent/collocated observations from THEMIS and RAINBOW imagers, we distinguish two types of red-line pulsating auroras. In one type of red-line pulsating aurora, the emission is weak in intensity, but its pulsation is synchronous with that of the collocated green-line pulsating aurora. The other type of red-line pulsating aurora is fairly strong in intensity, but its temporal pattern contains much longer-period components as compared to the green-line pulsating aurora. In both types of pulsating auroras, the spatial dimension and motion speed of the red- and green-line auroral patches are rather comparable. We suggest that the first type of red-line pulsating aurora is caused by secondary electrons and/or a cascading excitation of O(1D) as the byproduct of the primary electron precipitation (and the resulting green-line emission), while the second type of red-line pulsating aurora is directly led by the low-energy part (hundreds of eV) of the electron precipitation in the lower F-region ionosphere. In the latter regard, we present in-situ RBSP observations conjugate to the pulsating auroral patches in a few events, and explore a potential relationship between the red-line pulsating aurora and the electron cyclotron harmonic (ECH) wave, which is capable of scattering the low-energy electrons into the loss-cone in the inner magnetosphere.

  6. Wavelength tunable red AlGaInP-VECSEL emitting at around 660 nm

    NASA Astrophysics Data System (ADS)

    Schwarzbäck, Thomas; Kahle, Hermann; Eichfelder, Marcus; Schulz, Wolfgang-Michael; Roßbach, Robert; Jetter, Michael; Michler, Peter

    2011-03-01

    We present a non-resonantly pumped red-emitting vertical external cavity surface-emitting laser system based on a multi-quantum-well structure with 20 compressively-strained GaInP quantum wells for an operation wavelength between 645-675 nm. Five quantum well packages with four quantum wells are placed in a separate confinement heterostructure in a resonant periodic gain design in quaternary AlGaInP barriers and cladding layers, respectively. The 3 λ cavity is fabricated on a 55 λ/4 pairs Al0.50Ga0.50As/AlAs distributed Bragg reflector. By bonding an intra-cavity diamond heatspreader to the chip, continuous-wave operation exceeding 700mW output power at a wavelength of 662 nm with a low threshold power of 0.8W was achieved. A thermal resistance value of R1 = 5K/W and R2 = 7K/W could be determined for our setup at operation heatsink temperatures of Ths = -28°C and Ths = 16°C, respectively. Measurements of the slope efficiency within a v-type cavity with different outcoupling mirror reflectivities lead to a cavity round-trip transmission factor of Tloss = 98.6% and an absorption efficiency of ηabs = 17.6%. Using a birefringent filter in a folded cavity, a maximum tuning range of 22 nm at a center wavelength of 667 nm could be shown. With this method wavelengths below 650 nm were observed. Utilizing a non-linear crystal for intra-cavity frequency doubling in this cavity geometry, coherent emission down to 322 nm could be detected. In the UV spectral range, a maximum tuning range of 10 nm could be measured at a center wavelength of 330 nm, so we could match the HeCd laser line at 325 nm.

  7. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm

    PubMed Central

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681–685 nm, which exhibit the largest Stocks shifts (77–80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties. PMID:27119418

  8. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm.

    PubMed

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681-685 nm, which exhibit the largest Stocks shifts (77-80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties. PMID:27119418

  9. The red edge in arid region vegetation: 340-1060 nm spectra

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni

    1993-01-01

    The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno

  10. Highly efficient intracavity frequency-doubled Nd:GdVO4-LBO red laser at 670 nm under direct 880 nm pumping

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Yin, X. D.; Zhang, A. F.; Bao, L.; Wang, D.; Quan, H.

    2009-12-01

    We report the efficient compact red laser at 670 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:GdVO4 laser on the 4 F 3/2 → 4 I 13/2 transition at 1340 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 5.1 W of continuous wave output power at 670 nm is achieved with 15-mm-long LBO. The optical-to-optical conversion efficiency is up to 0.31, and the fluctuation of the red output power was better than 3.0% in the given 30 min. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.

  11. Diode pumped Nd:Lu0.5Y0.5VO4-LBO red laser at 671 nm

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Liu, J. Y.; Zhang, Y. C.

    2012-03-01

    We report a efficient compact red laser at 671 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode pumped Nd:Lu0.5Y0.5VO4 laser on the 4 F 3/2-4 I 13/2 transition at 1342 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 17.8 W, as high as 2.25 W of continuous wave output power at 671 nm is achieved with 10-mm-long LBO. The optical-to-optical conversion efficiency is up to 12.6%, and the fluctuation of the red output power was better than 3.6% in the given 30 min.

  12. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  13. 660 nm Red LED Induces Secretory Leukocyte Protease Inhibitor (SLPI) in Lipopolysaccharide-Stimulated RAW264.7 Cell.

    PubMed

    Jeong, Soon-Jeong; Choi, Baik-Dong; Lee, Hye-Yon; Hwang, Young-Hyoun; Kim, Byung-Hoon; Cho, Yong-Ick; Yun, Je-Jung; Lee, Byung-Ho; Jeong, Moon-Jin

    2015-08-01

    SLPI acts as a modulator of the innate immune responses of macrophages, neutrophils and odontoblasts, and LPS-inducible anti-inflammatory cytokine to suppress the production of pro-inflammatory products by macrophages. Many studies have revealed the effects of light emitting diodes (LEDs) on the tissue repair and inflammatory responses. Although the anti-inflammatory mechanisms of irradiation with LEDs in gingival fibroblasts are known, the effects of 660 nm red LEDs on the inflammation remain unclear. Moreover, there is no report regarding the molecular mechanism for the relationship between SLPI and biological effects of LEDs. The effects of 660 nm red LEDs on inflammation with SLPI were investigated by examining the effects of 660 nm LED on the SLPI expression of RAW264.7 cells after LPS stimulation. This paper reports that the 660 nm red LED induced SLPI expression or reduced the LPS response, and inhibited NF-κB activation directly, leading to the suppression of pro-inflammatory cytokines, such as TNF-α and IL-1β, suggesting that it might be a useful wavelength LED for inflammation therapy. PMID:26369126

  14. Coupling between meridional wind nightly behavior and mid-latitude oxygen red 630.0 nm line intensity predawn enhancement

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Gudadze, Nikoloz; Lomidze, Levan; Todua, Maya

    The coupling between meridional wind nightly behavior and winter time predawn enhancement (PE) in the mid-latitude oxygen red 630.0 nm line intensity at Abastumani (41.75 N, 42.82 E) is investigated. It is shown that red line intensity PE, which was considered as a result of increase in the photoelectron flux from magnetically conjugate regions, also can be caused by increase in the mid-latitude northward wind (or decrease in the southward one). In this case the observed mean monthly/seasonal nightly behavior of the red line intensity can be verified by the ionosphere F2 layer parameters observed at Tbilisi ionosphere station (41.65 N, 44.75 E -neighboring Abastumani) and the meridional component of the thermosphere wind given by Horizontal Wind Model 93 (HWM93). The estimation shows that the mean monthly/seasonal northward wind for 1957-1993 and the observed F2 layer peak density NmF2 and height hmF2 can be responsible for the PE in the red line intensity (LT 03 h-05 h), which is also noticeable in early spring and later fall. The observed seasonal midnight negative trend in the red line intensity is accompanied by its wintertime positive trend before morning twilight, which includes the PE and can be explained by long-term increase in the northward wind velocity. In these cases, the increase in the mid-latitude northward wind or decrease in the southward one following to the equatorial midnight temperature maximum (MTM) or similar phenomena could be important in the observed mid-latitude PE of the red line intensity.

  15. High-power 660.5 nm red laser from diode-side-pumped intracavity frequency-doubled Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhichao; Wang, Baoshan; Chen, Ming; Yang, Feng; Zhang, Shenjin; Zhang, Xiaowen; Bo, Yong; Xu, Yiting; Zong, Nan; Xu, Jialin; Peng, Qinjun; Cui, Dafu; Xu, Zuyan

    2015-12-01

    We demonstrate a high-power red laser at 660.5 nm from intracavity frequency doubling of a diode-side-pumped 1321 nm Nd:LiYF4 (Nd:YLF) ring laser in a LiB3O5 (LBO) crystal. The maximum average output power of the red laser is obtained to be 23 W with beam quality factor M 2  =  1.3.

  16. Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ=670nm).

    PubMed

    Winkler, Katrin; Simon, Carole; Finke, Melanie; Bleses, Katharina; Birke, Martina; Szentmáry, Nora; Hüttenberger, Dirk; Eppig, Timo; Stachon, Tanja; Langenbucher, Achim; Foth, Hans-Jochen; Herrmann, Mathias; Seitz, Berthold; Bischoff, Markus

    2016-09-01

    Multidrug-resistant Staphylococcus aureus (MDR-SA) are a frequent cause of antibiotic treatment refractory bacterial corneal infections. Photodynamic therapy (PDT) is being discussed as a putative treatment option to cure this type of bacterial infection. Here we tested the in vitro susceptibility of a set of 12 clinically derived MDR-SA isolates with differing genetic backgrounds and antibiotic resistance profiles against photodynamic inactivation (PDI) by the porphyrin chlorin e6 (Ce6) and red light (λ=670nm). All tested clinical isolates displayed a 5-log10 reduction in viable cells by Ce6 and red light, when cells were preincubated with the photosensitizer at concentrations ≥128μM for 30min in the dark, and a subsequent irradiation with light at λ=670nm (power density: 31mW/cm(2), absorbed dose: 18,6J/cm(2)) was applied. Similarly, cells of the laboratory strain Newman required the same Ce6 pre-incubation and light dose for a 5-log10 reduction in cell viability. Inactivation of crtM in strain Newman, which interferes with pigment production in S. aureus, rendered the mutant more susceptible to this PDT procedure, indicating that the level of resistance of S. aureus to this therapy form is affected by ability of the pathogen to produce the carotenoid pigment staphyloxanthin. Incubation of freshly explanted porcine corneas with a 0.5% Ce6 gel demonstrated that the photosensitizer can diffuse into and accumulate within the stroma of the cornea in concentrations found to be sufficient to yield a 5-log10 reduction of the S. aureus cell pool in vitro. These data suggest that PDI with Ce6 and red light might be a promising new option for the treatment of MDR-SA induced corneal infections. PMID:27419618

  17. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a negative stool is not obtained in 10 to 14 days following re-treatment, alternate means of therapy... related respiratory conditions. The product is a cholinesterase inhibitor and should not be used... respiratory conditions. (5) Do not use in horses intended for food purposes. (6) Federal law restricts...

  18. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a negative stool is not obtained in 10 to 14 days following re-treatment, alternate means of therapy... related respiratory conditions. The product is a cholinesterase inhibitor and should not be used... respiratory conditions. (5) Do not use in horses intended for food purposes. (6) Federal law restricts...

  19. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a negative stool is not obtained in 10 to 14 days following re-treatment, alternate means of therapy... related respiratory conditions. The product is a cholinesterase inhibitor and should not be used... respiratory conditions. (5) Do not use in horses intended for food purposes. (6) Federal law restricts...

  20. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a negative stool is not obtained in 10 to 14 days following re-treatment, alternate means of therapy... related respiratory conditions. The product is a cholinesterase inhibitor and should not be used... respiratory conditions. (5) Do not use in horses intended for food purposes. (6) Federal law restricts...

  1. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a negative stool is not obtained in 10 to 14 days following re-treatment, alternate means of therapy... related respiratory conditions. The product is a cholinesterase inhibitor and should not be used... respiratory conditions. (5) Do not use in horses intended for food purposes. (6) Federal law restricts...

  2. 28W red light output at 659.5nm by intracavity frequency doubling of a Nd:YAG laser using LBO.

    PubMed

    Peng, Haibo; Hou, Wei; Chen, Yahui; Cui, Dafu; Xu, Zuyan; Chen, Chuantian; Fan, Feidie; Zhu, Yong

    2006-05-01

    High-power, acoustooptic Q-switched red laser output is obtained by intracavity frequency-doubling a Nd:YAG laser operating at wavelength of 1.319 microm with a LiB(3)O(5) (LBO) crystal. 28 W average power at 659.5 nm was demonstrated at 5 kHz and a pulse width of 250+/-10 ns (FWHM). The beam quality of M2 value is 22+/-3 in both horizontal and vertical directions. The conversion efficiency and the stability of the red laser output power at 659.5 nm were both improved through the suppression of 1.338 mum operation by means of a thin YAG etalon. The long-term stability of the red light is better than 1% at an output of 23 W during 200 hours. PMID:19516543

  3. All solid-state continuous-wave intracavity frequency-doubled Nd:LuVO4-LBO red laser at 671.5 nm

    NASA Astrophysics Data System (ADS)

    Jiang, Z. M.; Liang, W.; Chen, D. R.; Zhang, X. H.

    2011-01-01

    We report for the first time a efficient compact red laser at 671.5 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:LuVO4 laser on the 4 F 3/2 → 4 I 13/2 transition at 1343 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 4.3 W of continuous wave output power at 671.5 nm is achieved with 10-mm-long LBO. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.

  4. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    PubMed

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time. PMID:23482128

  5. Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging

    PubMed Central

    Wang, Yalun; Hu, Rongrong; Xi, Wang; Cai, Fuhong; Wang, Shaowei; Zhu, Zhenfeng; Bai, Rongpan; Qian, Jun

    2015-01-01

    Deep-tissue penetration is highly required in in vivo optical bioimaging. We synthesized a type of red emissive fluorophore BT with aggregation-induced emission (AIE) property. BT molecules were then encapsulated with amphiphilic polymers to form nanodots, and a large two-photon absorption (2PA) cross-section of 2.9 × 106 GM at 1040 nm was observed from each BT nanodot, which was much larger than those at the wavelengths of 770 to 860 nm. In addition, 1040 nm light was found to have better penetration and focusing capability than 800 nm light in biological tissue, according to the Monte Carlo simulation. The toxicity and tissue distribution of BT nanodots were studied, and they were found to have good biocompatibility. BT nanodots were then utilized for in vivo imaging of mouse ear and brain, and an imaging depth of 700 μm was obtained with the femtosecond (fs) excitation of 1040 nm. The red emissive AIE nanodots with high 2PA efficiency at 1040 nm would be useful for deep-tissue functional bioimaging in the future. PMID:26504629

  6. A diode-end-pumped continuous-wave single-longitudinal-mode Nd:GdV O4-LBO red laser at 670 nm

    NASA Astrophysics Data System (ADS)

    Wang, Y. T.; Zhang, R. H.; Li, J. H.; Li, W. J.; Tan, C.; Zhang, B. L.

    2014-03-01

    A diode-end-pumped continuous-wave single-longitudinal-mode intracavity frequency-doubling Nd:GdV O4-LBO (lithium triborate) red laser at 670 nm is reported. A ring cavity was designed to enable single-longitudinal-mode operation of the laser. By optimizing the mode-to-pump ratio taking account of the influence of the laser beam radius inside the frequency-doubling crystal LBO on the frequency-doubling efficiency for the special cavity, a maximum output power of 1.3 W for a continuous-wave single-longitudinal-mode red laser at 670 nm was obtained, and the measured power stability was better than ±1.2% in 2 h. The experimental results are in good agreement with the theoretical calculation.

  7. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm.

    PubMed

    Friebel, Moritz; Helfmann, Jürgen; Netz, Uwe; Meinke, Martina

    2009-01-01

    The intrinsic optical parameters absorption coefficient mu(a), scattering coefficient micros, anisotropy factor g, and effective scattering coefficient micros were determined for human red blood cell (RBC) suspensions of hematocrit 33.2% dependent on the oxygen saturation (SAT O(2)) in the wavelength range 250 to 2,000 nm, including the range above 1,100 nm, about which there are no data available in the literature. Integrating sphere measurements of light transmittance and reflectance in combination with inverse Monte Carlo simulation were carried out for SAT O(2) levels of 100 and 0%. In the wavelength range up to 1,200 nm, the absorption behavior is determined by the hemoglobin absorption. The spectral range above the cells' absorption shows no dependence on SAT O(2) and approximates the absorption of water with values 20 to 30% below the respective values for water. Parameters micros and g are significantly influenced by the SAT O(2)-induced absorption changes. Above 600 nm, micros decreases continuously from values of 85 mm(-1) to values of 30 mm(-1) at 2,000 nm. The anisotropy factor shows a slight decrease with wavelengths above 600 nm. In the spectral regions of 1,450 and 1,900 nm where water has local absorption maxima, g shows a significant decrease down to 0.85, whereas micros increases. PMID:19566295

  8. Differential Effects of 670 and 830 nm Red near Infrared Irradiation Therapy: A Comparative Study of Optic Nerve Injury, Retinal Degeneration, Traumatic Brain and Spinal Cord Injury

    PubMed Central

    Giacci, Marcus K.; Wheeler, Lachlan; Lovett, Sarah; Dishington, Emma; Majda, Bernadette; Bartlett, Carole A.; Thornton, Emma; Harford-Wright, Elizabeth; Leonard, Anna; Vink, Robert; Harvey, Alan R.; Provis, Jan; Dunlop, Sarah A.; Fitzgerald, Melinda

    2014-01-01

    Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P≤0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P≤0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P≤0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R

  9. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation.

    PubMed

    Simpson, D A; Gibbs, W E; Collins, S F; Blanc, W; Dussardier, B; Monnom, G; Peterka, P; Baxter, G W

    2008-09-01

    The spectroscopic properties of Tm(3+)/Yb(3+) co-doped silica fibers under excitation at 980 nm are reported. Three distinct up-conversion fluorescence bands were observed in the visible to near infra-red regions. The blue and red fluorescence bands at 475 and 650 nm, respectively, were found to originate from the (1)G(4) level of Tm(3+). A three step up-conversion process was established as the populating mechanism for these fluorescence bands. The fluorescence band at 800 nm was found to originate from two possible transitions in Tm(3+); one being the transition from the (3)H(4) to (3)H(6) manifold which was found to dominate at low pump powers; the other being the transition from the (1)G(4) to (3)H(6) level which dominates at higher pump powers. The fluorescence lifetime of the (3)H(4) and (3)F(4) levels of Tm(3+) and (2)F(5/2) level of Yb(3+) were studied as a function of Yb(3+) concentration, with no significant energy back transfer from Tm(3+) to Yb(3+) observed. PMID:18772989

  10. 6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm.

    PubMed

    Du, Chenlin; Ruan, Shuangchen; Yu, Yongqin; Zeng, Feng

    2005-03-21

    We report a high-power diode-end-pumped Q-switched Nd:GdVO4 red laser through intracavity frequency-doubling with a type-I critical phase-matched LBO crystal. The maximum average output power at 671 nm was obtained to be 6 W at the repetition frequency of 47 kHz, with the corresponding optical conversion efficiency of 12.8% and the pulse width of about 97 ns. At the average output power around 5 W, the power stability was better than 5.8% for one hour. PMID:19495084

  11. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm.

    PubMed

    Rurack, Knut; Spieles, Monika

    2011-02-15

    The determination of the fluorescence quantum yields (QY, Φ(f)) of a series of fluorescent dyes that span the absorption/excitation and emission ranges of 520-900 and 600-1000 nm is reported. The dyes encompass commercially available rhodamine 101 (Rh-101, Φ(f) = 0.913), cresyl violet (0.578), oxazine 170 (0.579), oxazine 1 (0.141), cryptocyanine (0.012), HITCI (0.283), IR-125 (0.132), IR-140 (0.167), and four noncommercial cyanine dyes with specific spectroscopic features, all of them in dilute ethanol solution. The QYs have been measured relative to the National Institute of Standards and Technology's standard reference material (SRM) 936a (quinine sulfate, QS) on a traceably characterized fluorometer, employing a chain of transfer standard dyes that include coumarin 102 (Φ(f) = 0.764), coumarin 153 (0.544), and DCM (0.435) as links between QS and Rh-101. The QY of Rh-101 has also been verified in direct measurements against QS using two approaches that rely only on instrument correction. In addition, the effects of temperature and the presence of oxygen on the fluorescence quantum yield of Rh-101 have been assessed. PMID:21250654

  12. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    SciTech Connect

    Drakakis, E.; Karabourniotis, D.

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  13. Green and red upconversion luminescence in CeO{sub 2}:Er{sup 3+} powders produced by 785 nm laser

    SciTech Connect

    Guo Hai

    2007-01-15

    CeO{sub 2}:Er{sup 3+} powders were prepared by Pechini type sol-gel method. The structural properties of CeO{sub 2}:Er{sup 3+} were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. The results show that CeO{sub 2}:Er{sup 3+} has low phonon cutoff energy, which indicate that CeO{sub 2}:Er{sup 3+} may have high luminescent efficiency. The green and red upconverted luminescence spectra of Er{sup 3+} were investigated under excitation into the {sup 4} I {sub 9/2} level by 785 nm laser. The upconversion mechanisms were studied in detail through laser power dependence and Er{sup 3+} ions concentration dependence of upconverted emissions, and results show that excited state absorption and energy transfer process are the possible mechanisms for the upconversion. The upconversion properties indicate that CeO{sub 2}:Er{sup 3+} may be used in upconversion phosphors. - Graphical abstract: Upconversion spectra of Er{sup 3+} doped CeO{sub 2} powders with different Er{sup 3+} concentration:(a) 0.5% (b) 1% (c) 3% (d) 6%, ({lambda} {sub ex}=785 nm)

  14. In Vitro Mean Red Blood Cell Volume Change Induced by Diode Pump Solid State Low-Level Laser of 405 nm

    PubMed Central

    Jafar, Mohamad Suhaimi; Al-Gailani, Bassam T.; Ahmed, Naser Mahmoud; Suhaimi, Fatanah Mohamad; Suardi, Nursakinah

    2016-01-01

    Abstract Objective: This study was conducted to investigate the effects of low-level laser (LLL) doses on human red blood cell volume. The effects of exposure to a diode pump solid state (DPSS) (λ = 405 nm) laser were observed. Background data: The response of human blood to LLL irradiation gives important information about the mechanism of interaction of laser light with living organisms. Materials and methods Blood samples were collected into ethylenediaminetetraacetic acid (EDTA)-containing tubes, and each sample was divided into two equal aliquots, one to serve as control and the other for irradiation. The aliquot was subjected to laser irradiation for 20, 30, 40, or 50 min at a fixed power density of 0.03 W/cm2. Mean cell volume (MCV) and red blood cell (RBC) counts were measured immediately after irradiation using a computerized hemtoanalyzer. Results: Significant decrease in RBC volume (p < 0.05, p < 0.0001, p < 0.0001, and p < 0.05, respectively) was induced with variation in laser doses.The highest response was observed with an exposure time of 40 min. This result was reproduced in RBCs suspended in a buffered NaCl solution. In contrast to this finding, laser-induced RBC volume change was completely abolished by suspending RBCs in a solution containing a higher concentration of EDTA. Conclusions: It was suggested that LLL can reduce RBC volume possibly because of the increased free intracellular Ca+2 concentrations, which activate Ca+2-dependent K+ channels with consequent K+ ion efflux and cell shrinkage. PMID:26966989

  15. Small-signal modulation and differential gain of red-emitting (λ = 630 nm) InGaN/GaN quantum dot lasers

    SciTech Connect

    Frost, Thomas; Banerjee, Animesh; Bhattacharya, Pallab

    2013-11-18

    We report small-signal modulation bandwidth and differential gain measurements of a ridge waveguide In{sub 0.4}Ga{sub 0.6}N/GaN quantum dot laser grown by molecular beam epitaxy. The laser peak emission is at λ = 630 nm. The −3 dB bandwidth of an 800 μm long device was measured to be 2.4 GHz at 250 mA under pulsed biasing, demonstrating the possibility of high-speed operation of these devices. The differential gain was measured to be 5.3 × 10{sup −17} cm{sup 2}, and a gain compression factor of 2.87 × 10{sup −17} cm{sup 3} is also derived from the small-signal modulation response.

  16. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  17. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  18. Red Clover

    MedlinePlus

    ... 17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 22, 2009. Red clover ( Trifolium pratense ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on July ...

  19. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  20. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  1. The structure of the chromophore within DsRed, a red fluorescent protein from coral.

    PubMed

    Gross, L A; Baird, G S; Hoffman, R C; Baldridge, K K; Tsien, R Y

    2000-10-24

    DsRed, a brilliantly red fluorescent protein, was recently cloned from Discosoma coral by homology to the green fluorescent protein (GFP) from the jellyfish Aequorea. A core question in the biochemistry of DsRed is the mechanism by which the GFP-like 475-nm excitation and 500-nm emission maxima of immature DsRed are red-shifted to the 558-nm excitation and 583-nm emission maxima of mature DsRed. After digestion of mature DsRed with lysyl endopeptidase, high-resolution mass spectra of the purified chromophore-bearing peptide reveal that some of the molecules have lost 2 Da relative to the peptide analogously prepared from a mutant, K83R, that stays green. Tandem mass spectrometry indicates that the bond between the alpha-carbon and nitrogen of Gln-66 has been dehydrogenated in DsRed, extending the GFP chromophore by forming C==N==C==O at the 2-position of the imidazolidinone. This acylimine substituent quantitatively accounts for the red shift according to quantum mechanical calculations. Reversible hydration of the C==N bond in the acylimine would explain why denaturation shifts mature DsRed back to a GFP-like absorbance. The C==N bond hydrolyses upon boiling, explaining why DsRed shows two fragment bands on SDS/PAGE. This assay suggests that conversion from green to red chromophores remains incomplete even after prolonged aging. PMID:11050230

  2. The structure of the chromophore within DsRed, a red fluorescent protein from coral

    PubMed Central

    Gross, Larry A.; Baird, Geoffrey S.; Hoffman, Ross C.; Baldridge, Kim K.; Tsien, Roger Y.

    2000-01-01

    DsRed, a brilliantly red fluorescent protein, was recently cloned from Discosoma coral by homology to the green fluorescent protein (GFP) from the jellyfish Aequorea. A core question in the biochemistry of DsRed is the mechanism by which the GFP-like 475-nm excitation and 500-nm emission maxima of immature DsRed are red-shifted to the 558-nm excitation and 583-nm emission maxima of mature DsRed. After digestion of mature DsRed with lysyl endopeptidase, high-resolution mass spectra of the purified chromophore-bearing peptide reveal that some of the molecules have lost 2 Da relative to the peptide analogously prepared from a mutant, K83R, that stays green. Tandem mass spectrometry indicates that the bond between the alpha-carbon and nitrogen of Gln-66 has been dehydrogenated in DsRed, extending the GFP chromophore by forming —C⩵N—C⩵O at the 2-position of the imidazolidinone. This acylimine substituent quantitatively accounts for the red shift according to quantum mechanical calculations. Reversible hydration of the C⩵N bond in the acylimine would explain why denaturation shifts mature DsRed back to a GFP-like absorbance. The C⩵N bond hydrolyses upon boiling, explaining why DsRed shows two fragment bands on SDS/PAGE. This assay suggests that conversion from green to red chromophores remains incomplete even after prolonged aging. PMID:11050230

  3. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  4. Red Sky with Red Mesa

    ScienceCinema

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  5. Red Capes, Red Herrings, and Red Flags.

    ERIC Educational Resources Information Center

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  6. UV - ALBUQUERQUE NM

    EPA Science Inventory

    Brewer 109 is located in Albuquerque NM, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc....

  7. Growth of the green algae Chlamydomonas reinhardtii under red and blue lasers

    NASA Astrophysics Data System (ADS)

    Kuwahara, Sara S.; Cuello, Joel L.; Myhre, Graham; Pau, Stanley

    2011-03-01

    Red and blue lasers, holding promise as an electric light source for photosynthetic systems on account of being true monochromatic, high-power, and having high electrical-conversion efficiency, were employed in growing a green alga, Chlamydomonas reinhardtii. The laser treatments tested included: 655-nm Red; 680-nm Red; 655-nm Red+474-nm Blue and 680-nm Red+474-nm Blue. A white cold cathode lamp with spectral output similar to that of white fluorescent lamp served as control. C. reinhardtii successfully grew and divided under the 655 and 680-nm red lasers as well as under the white-light control. Supplementing either red with blue laser, however, resulted in increased algae cell count that significantly exceeded those under both red lasers and the white-light control on average by 241%.

  8. Red Emitting VCSEL

    NASA Astrophysics Data System (ADS)

    Jetter, Michael; Roßbach, Robert; Michler, Peter

    This chapter describes the progress in development of vertical-cavity surface-emitting lasers (VCSEL) emitting in the red spectral region around 650 nm for data transmission over polymer optical fibers (POF). First, growth issues of red VCSEL using two different material systems, namely AlGaAs and AlGaInP, are introduced. In particular, the optical and electrical state-of-the-art characteristics as low threshold currents ({≤} 1 mA) and high output powers (several mW) are presented with a special focus on emission wavelength. Also the thermal budget and heat removal in the devices are pointed out with regard to the geometry of the VCSEL. Small-signal modulation response in terms of maximum resonance frequency in dependance on temperature behavior are discussed. Applications of these devices in optical interconnects are described and digital data transmission at data rates up to 2.1 Gbit/s over step-index POF is reported. These properties make red emitting VCSEL perfectly suited for high-speed low power consuming light sources for optical data communication via POF. By introducing InP quantum dots as gain material in red emitting VCSEL nearly temperature independent record low threshold current densities of around 10 A/cm2 could be observed.

  9. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  10. Red microchip VECSEL array

    NASA Astrophysics Data System (ADS)

    Hastie, Jennifer E.; Morton, Lynne G.; Calvez, Stephane; Dawson, Martin D.; Leinonen, Tomi; Pessa, Markus; Gibson, Graham; Padgett, Miles J.

    2005-09-01

    We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3x1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array.

  11. Red microchip VECSEL array.

    PubMed

    Hastie, Jennifer; Morton, Lynne; Calvez, Stephane; Dawson, Martin; Leinonen, Tomi; Pessa, Markus; Gibson, Graham; Padgett, Miles

    2005-09-01

    We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3x1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array. PMID:19498743

  12. induced by 1,540-nm laser excitation

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Wang, X. F.; He, W. Y.; Bu, Y. Y.; Yan, X. H.

    2014-06-01

    The multi-photon ultraviolet upconversion emission properties and synergistic effect are investigated in BaSr2Y6O12:Er3+ phosphor. The deep-ultraviolet emissions centered at 274, 297 and 324-nm are observed under the 1,540-nm excitation, which results from a seven-, six- and six-photon upconversion process, respectively. A synergistic effect is found, which shows that the red emission intensity under 351- and 1,540-nm dual excitation is 4.7 % time stronger than the sum of red emission intensities under the 351 and 1,540-nm single excitation. This phenomenon is attributed to the 4I13/2 and 4I11/2 levels of Er3+ from non-radiative transition process under the 351-nm excitation are excited again to 4F9/2 level by absorbing 1,540-nm photon in the 351- and 1,540-nm dual-excitation process.

  13. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting

    NASA Technical Reports Server (NTRS)

    Brown, C. S.; Schuerger, A. C.; Sager, J. C.

    1995-01-01

    Light-emitting diodes (LEDs) are a potential irradiation source for intensive plant culture systems and photobiological research. They have small size, low mass, a long functional life, and narrow spectral output. In this study, we measured the growth and dry matter partitioning of 'Hungarian Wax' pepper (Capsicum annuum L.) plants grown under red LEDs compared with similar plants grown under red LEDs with supplemental blue or far-red radiation or under broad spectrum metal halide (MH) lamps. Additionally, we describe the thermal and spectral characteristics of these sources. The LEDs used in this study had a narrow bandwidth at half peak height (25 nm) and a focused maximum spectral output at 660 nm for the red and 735 nm for the far-red. Near infrared radiation (800 to 3000 nm) was below detection and thermal infrared radiation (3000 to 50,000 nm) was lower in the LEDs compared to the MH source. Although the red to far-red ratio varied considerably, the calculated phytochrome photostationary state (phi) was only slightly different between the radiation sources. Plant biomass was reduced when peppers were grown under red LEDs in the absence of blue wavelengths compared to plants grown under supplemental blue fluorescent lamps or MH lamps. The addition of far-red radiation resulted in taller plants with greater stem mass than red LEDs alone. There were fewer leaves under red or red plus far-red radiation than with lamps producing blue wavelengths. These results indicate that red LEDs may be suitable, in proper combination with other wavelengths of light, for the culture of plants in tightly controlled environments such as space-based plant culture systems.

  14. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  15. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models. PMID:20203781

  16. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  17. Identification of Cyanobacteriochromes Detecting Far-Red Light.

    PubMed

    Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark

    2016-07-19

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λmax = 725-755 nm)/orange (λmax = 590-600 nm) and far-red/red (λmax = 615-685 nm) photoswitches that are small (<200 amino acids) and can be genetically reconstituted in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. This work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum. PMID:27295035

  18. Certification procedures for sirius red F3B (CI 35780, Direct red 80).

    PubMed

    Dapson, R W; Fagan, C; Kiernan, J A; Wickersham, T W

    2011-06-01

    Sirius red F3B (CI 35780, Direct red 80) is a polyazo dye used principally in staining methods for collagen and amyloid. For certification by the Biological Stain Commission, a sample of the dye must exhibit an absorption spectrum of characteristic shape with a maximum at 528-529 nm, a small shoulder near 500 nm and narrow peaks at 372, 281-282 and 230-235 nm. Spot tests (color changes with addition of concentrated H(2)SO(4) or HCl and subsequent dilution or neutralization) also are applied. The dye must perform satisfactorily in the picro-sirius red method for collagen by providing red staining of all types of collagen with yellow and green birefringence of fibers. Llewellyn's alkaline sirius red method applied to tissue known to contain amyloid must show red coloration of the products with green birefringence. Dye content, which does not influence significantly the staining properties of sirius red F3B, is not assayed. PMID:21417582

  19. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  20. Spectral Tuning of Deep Red Cone Pigments†

    PubMed Central

    Amora, Tabitha L.; Ramos, Lavoisier S.; Galan, Jhenny F.; Birge, Robert R.

    2008-01-01

    Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11-cis-retinal) or A2 (11-cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6-s-trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6-s-cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6-s-trans geometry red shifts M/LWS A1 pigments by ~1500 cm−1 (~50 nm) and A2 pigments by ~2700 cm−1 (~100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6-s-trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6-s-trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites. PMID:18370404

  1. Sunspot temperatures from red and blue photometry

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Cookson, A. M.; Preminger, D. G.

    2011-08-01

    Photometric images are used to measure the temperature of sunspots at different wavelengths. Images at 672.3 nm and 472.3 nm are obtained at the San Fernando Observatory using the CFDT2 (2.5'' x 2.5'' pixels). Images at 607.1 nm and 409.4 nm are obtained by the PSPT at Mauna Loa Observatory. Monochromatic intensities are converted to temperatures as in Steinegger et al (1990). The pixel by pixel temperature for a sunspot is converted into a bolometric contrast for that sunspot according to Chapman et al (1994). Sunspot temperatures, i.e., their bolometric contrasts, are calculated from both red (672.3 nm) and blue wavelengths (472.3 nm) and compared.

  2. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  3. Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338 nm

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Lee, Y. D.; Zao, Y. D.; Xu, L. J.; Wang, J. B.; Chen, G. B.; Lu, J.

    2013-04-01

    We report an efficient continuous-wave (CW) dual-wavelength operation of an Nd:YAG (YAG: yttrium aluminum garnet) laser at 1319 and 1338 nm. An output power of 2.47 W for the dual-wavelength operation was achieved at the incident pump power of 16.7 W. Intracavity sum-frequency mixing at 1319 and 1338 nm was then realized in an LBO (lithium triborate) crystal to reach the red range. A maximum output power of 879 mW in the red spectral range at 664 nm has been achieved. The red output stability is better than 3.4%. The red beam quality M2 values are about 1.21 and 1.35 in the horizontal and vertical directions respectively.

  4. Red long-lasting phosphorescence based on color conversion process

    NASA Astrophysics Data System (ADS)

    Li, Zhanjun; Zhang, Hongwu; Fu, Haixia

    2013-01-01

    The principle of color conversion process was used to generate red long-lasting phosphorescence (LLP) using SrAl2O4:Eu, Dy (SAO) as primary light source and rhodamine B encapsulated mesoporous silica nanoparticles (MCM-R) as effective color conversion agent. The phosphorescence spectra of MCM-R/SAO hybrid samples show green peaks from 425 nm to 550 nm and red peaks from 550 nm to 700 nm, which can be attributed to the phosphorescence of SAO and the fluorescence of MCM-R, respectively. The phosphorescence color can be adjusted from green to red by changing the mass ratio of MCM-R/SAO. When the mass ratio of MCM-R/SAO increases from 0.05 to 1.5, a blue shift for the green peak and a red shift for the red peak of the phosphorescence spectra can be observed and the intensity of the red emission peak increase relatively towards the green one. The phosphorescence decay curves show that MCM-R and SAO have similar decay dynamics and the MCM-R can inherit the LLP properties of SAO. The phosphorescence decay spectra indicate that the MCM-R/SAO hybrid can retain constant and steady visual phosphorescence color. The red phosphorescence can be seen in the dark with naked eyes for more than 5 h. So, the red LLP can be successfully achieved based on the principle of color conversion process.

  5. Human perception on pulsed red and green lights

    NASA Astrophysics Data System (ADS)

    Fan, Shenglong; Gu, Xin; Zhang, Xiaolin; Liu, Muqing

    2014-06-01

    A vision experiment comparing the brightness of direct current light and pulsed light of red (640 nm) and green (550 nm) colors was conducted. The frequency of the pulsed current is 100 Hz and the duty ratio varies between 10% and 90% with an interval of 10%. The Talbot-Plateau law holds for green light but fails for red color when the duty ratio is smaller than 70%. For red light, the maximum enhancement factor is 1.17, which appears at the condition of 20% duty ratio. The results show that the sensitivity of the human eye on pulsed light changes when the spectrum and duty cycle are different.

  6. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  7. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  8. Red-shifted fluorescence of sound dental hard tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2011-07-01

    Autofluorescence spectra were recorded in vitro from dentin, enamel, and whole teeth. The spectra exhibited a broad peak shifted by about 50 to 75 nm from the excitation wavelength and the shape of the spectra remained similar regardless of the excitation wavelength. The maximum of the autofluorescence spectra also exhibited a red-shift that depended upon the laser excitation wavelength. The amplitude of the red-shifted fluorescence spectra produced by 444 and 532 nm excitation lasers were compared to that produced by a 405 nm excitation laser. It was determined that the autofluorescence amplitude was not proportional to the inverse fourth power of the excitation laser wavelength. Therefore, the red-shifted fluorescence is not compatible with the previously proposed mechanism of Raman scattering. Instead, the mechanism giving rise to the laser-induced dental autofluorescence is explained by the red-edge-excitation effect.

  9. Red blood cell production

    MedlinePlus

    ... cells are an important element of blood. Their job is to transport oxygen to the body’s tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts ...

  10. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  11. International Federation of Red Cross and Red Crescent Societies

    MedlinePlus

    ... dignity and resilience Geneva, 14 September 2016 – The International Federation of Red Cross and Red Crescent Societies... ... News Contact us Sitemap Go to top The International Federation of Red Cross and Red Crescent Societies ( ...

  12. OISL transmitter at 985 nm

    NASA Astrophysics Data System (ADS)

    Larose, Robert; Lauzon, Jocelyn; Mohrdiek, Stefan; Harder, Christoph S.; Changkakoti, Rupak; Park, Peter

    1999-04-01

    For high data rate (greater than 1 Gbps) Optical Inter- Satellite Link (OISL), a compact laser transmitter with high power and good efficiency is required. A trade-off analysis between the technologies such as the mature 840 nm laser diodes, 1064 nm diode-pumped solid state laser and the more recent 1550 nm Erbium Doped Fiber Amplifier (EDFA) is used to find the optical solution. The Si-APDs are preferred for their large detector areas and good noise figures which reduce the tracking requirements and simplify optical design of the receiver. Because of significant amount of power needed to close the link distance up to 7000 km (LEO-LEO), use of 840 nm diodes is limited. In this paper, we present an alternative system based on a system concept denoted as the SLYB (Semiconductor Laser Ytterbium Booster). The SLYB uses a polarization maintaining double-clad ytterbium fiber as a power amplifier. The device houses two semiconductor diodes that are designed to meet telecom reliability: a broad-area 917 nm pump diode and a directly modulated FP laser for signal generation. The output signal is in a linearly polarized state with an extinction ratio of 20 dB. The complete module (15 X 12 X 4.3 cm3) weighs less than 0.9 kg and delivers up to 27 dBm average output power at 985 nm. Designed primarily for direct detection using Si APDs, the transmitter offers a modulation data rate of at least 1.5 Gb/s with a modulation extinction ratio better than 13 dB. Total power consumption is expected to be lower than 8 W by using an uncooled pump laser. Preliminary radiation testing of the fiber indicates output power penalty of 1.5 dB at the end of 10 years in operation. We are presently investigating the fabrication of an improved radiation-hardened Yb-fiber for the final prototype to reduce this penalty. For higher data rate the design can be extended to a Wavelength Division Multiplexing (WDM) scheme adding multiple channels.

  13. Spectral characteristics analysis of red tide water in mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Cui, Tingwei; Zhang, Jie; Zhang, Hongliang; Ma, Yi; Gao, Xuemin

    2003-05-01

    Mesocosm ecosystem experiment with seawater enclosed of the red tide was carried out from July to September 2001. We got four species of biology whose quantities of bion are dominant in the red tide. During the whole process from the beginning to their dying out for every specie, in situ spectral measurements were carried out. After data processing, characteristic spectra of red tide of different dominant species are got. Via comparison and analysis of characteristics of different spectra, we find that in the band region between 685 and 735 nanometers, spectral characteristics of red tide is apparently different from that of normal water. Compared to spectra of normal water, spectra of red tide have a strong reflectance peak in the above band region. As to spectra of red tide dominated by different species, the situations of reflectance peaks are also different: the second peak of Mesodinium rubrum spectrum lies between 726~732 nm, which is more than 21nm away from the other dominant species spectra"s Leptocylindrus danicus"s second spectral peak covers 686~694nm; that of Skeletonema costatum lies between 691~693 nm. Chattonella marina"s second spectral peak lies about 703~705 nm. Thus we can try to determine whether red tide has occurred according to its spectral data. In order to monitor the event of red tide and identify the dominant species by the application of the technology of hyperspectral remote sensing, acquiring spectral data of different dominant species of red tide as much as possible becomes a basic work to be achieved for spectral matching, information extraction and so on based on hyperspectral data.

  14. High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm.

    PubMed

    Härkönen, Antti; Rautiainen, Jussi; Guina, Mircea; Konttinen, Janne; Tuomisto, Pietari; Orsila, Lasse; Pessa, Markus; Okhotnikov, Oleg G

    2007-03-19

    We report on an optically-pumped intracavity frequency doubled GaInNAs/GaAs -based semiconductor disk laser emitting around 615 nm. The laser operates at fundamental wavelength of 1230 nm and incorporates a BBO crystal for light conversion to the red wavelength. Maximum output power of 172 mW at 615 nm was achieved from a single output. Combined power from two outputs was 320 mW. The wavelength of visible emission could be tuned by 4.5 nm using a thin glass etalon inside the cavity. PMID:19532562

  15. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-07-01

    We report the preparation of narrow-linewidth 637.2 nm laser device by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding optical-optical conversion efficiency is 38.0%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  16. Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm

    NASA Astrophysics Data System (ADS)

    Shi, Yuxian; Li, Qinan; Zhang, Dongxiang; Feng, Baohua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang

    2010-07-01

    A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.

  17. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  18. Construction and characterization of a red-emitting luciferase

    NASA Astrophysics Data System (ADS)

    Eames, Brian F.; Benaron, David A.; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    Red light is transmitted through live tissue more efficiently than other wavelengths of visible light, thus by red-shifting the emission of bioluminescent reporters, we may enhance their utility for in vivo monitoring of biological processes. Codon changes at positions that may shift the yellow-green emission to red, based on studies of a related luciferase, were introduced into a variant of the North American firefly luciferase. Clones containing the desired mutation were selected based on the introduction of unique restriction enzyme sites and transfected into NIH 3T3 cells. Expression levels were evaluated using an intensified charge coupled device camera. Upon spectral analysis, all mutant luciferases demonstrated red-orange emission. Two emission peaks were detected in each spectrum, each clone with different peak heights at 560 nm and 610 nm. Sequence analyses of the compete coding region of several clones confirmed the presence of the target mutations, although sequence variation was observed at several secondary sites, likely resulting from the infidelity of Taq polymerase used in the mutagenesis protocol. A clone that demonstrated a strong 610 nm peak with a minimum shoulder at 560 nm was selected for use in animals. In summary, a red-shifted mutant of a well-characterized luciferase reporter gene was generated. Red light from this enzyme may both penetrate mammalian tissues to a greater extent and provide a tool for multicolor biological assays.

  19. Synthesis and photoluminescence of inorganic borate host red emitting VUV phosphor YCaBO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Ingle, J. T.; Gawande, A. B.; Sonekar, R. P.; Nagpure, P. A.; Omanwar, S. K.

    2013-06-01

    The red emitting borate host phosphor YCaBO4:Eu3+ has been prepared by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The photoluminescence properties of the powder samples of YCaBO4:Eu3+ has been investigated under UV and VUV excitation. The phosphor shows strong absorption in UV and VUV region and exhibits intense red emission upon excited by 254 nm UV and 173 nm VUV radiation. Under UV 254 nm excitation, YCaBO4:Eu3+ exhibits intense red emission around 610 nm. Under VUV excitation of 173 nm, the phosphor emits intense red emission around 610 nm and few weak emissions. These weak emissions could be suppressed by annealing the sample repeatedly at proper temperature and the borate phosphor YCaBO4:Eu3+ could be a good red emitting phosphor for PDP display and mercury free lamps.

  20. Stimulated emission in the red, green, and blue in a nanostructured glass ceramics

    SciTech Connect

    Lahoz, F.; Haro-Gonzalez, P.; Martin, I. R.; Perez-Rodriguez, C.; Capuj, N.; Caceres, J. M.

    2011-02-15

    Red, green, and blue stimulated emissions have been achieved in Ho{sup 3+} doped oxyfluoride glass ceramic at room temperature. The material shows three emission bands at the red (650 nm), green (545 nm), and blue (488 nm) regions under infrared excitation at 750 nm. These emission bands are caused by a photon avalanche upconversion process previously reported. A pump and probe experimental setup has been designed to show stimulated emissions at the three bands. The pump power threshold for positive gain in the 490 nm band has been estimated around 2.7 kW/cm{sup 2}. Higher thresholds are expected for the other bands.

  1. Optical Data Storage in Acid Red Dyes

    NASA Astrophysics Data System (ADS)

    Sankar, Deepa; Palanisamy, P. K.

    High-density optical data storage is a current field gaining importance where research work is done in abundance to bring about holographic CDs to light. Dye-doped gelatin films are promising candidates as recording materials for holographic data storage because of the ease of preparation and low cost. In this report we suggest some acid red dyes as useful recording materials for optical data storage. Acid red dyes namely Acid Red 73 and Acid Red 114 that are completely water-soluble are used to sensitize gelatin thin films for data storage. These dyes have their absorption peak around 514 nm. Two coherent beams of Argon ion laser (514.5 nm) are used to form the grating in the dye-sensitized gelatin films. The grating formed is found to be permanent. The diffraction efficiency of each material as a function of different parameters like dye concentration, writing beam intensities and their ratios and spatial frequency has been studied and presented. An attempt to store data in the sample has been made.

  2. Red Clover Breeding Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. It has a long and varied history in agriculture. Active breeding efforts began at the end of the 19th century. Since this time significant improvement in red clover cultivar for a...

  3. Cobb's Red Cabbage Indicator.

    ERIC Educational Resources Information Center

    Cobb, Vicki

    1998-01-01

    Describes the use of an indicator made from the pigment in red cabbage. Cabbage is grated then soaked in water. When the water is a strong red, the cabbage is strained out. The cabbage-juice indicator is then used to test for acids and bases. Includes a list of good foods to test for acidity and alkalinity. (PVD)

  4. Jupiter's Great Red spot

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This color composite made from Voyager 2 narrow-angle camera frames shows the Great Red Spot during the late Jovian afternoon. North of the Red Spot lies a curious darker section of the South Equatorial Belt (SEB), the belt in which the Red Spot is located. A bright eruption of material passing from the SEB northward into the diffuse equatorial clouds has been observed on all occasions when this feature passes north of the Red Spot. The remnants of one such eruption are apparent in this photograph. To the lower left of the Red Spot lies one of the three long-lived White Ovals. This photograph was taken on June 29, 1979, when Voyager 2 was over 9 million kilometers (nearly 6 million miles) from Jupiter. The smallest features visible are over 170 kilometers (106 miles) across.

  5. Sub-180 nm generation with borate crystal

    NASA Astrophysics Data System (ADS)

    Qu, Chen; Yoshimura, Masashi; Tsunoda, Jun; Kaneda, Yushi; Imade, Mamoru; Sasaki, Takatomo; Mori, Yusuke

    2014-10-01

    We demonstrated a new scheme for the generation of 179 nm vacuum-ultraviolet (VUV) light with an all-solid-state laser system. It was achieved by mixing the deep-ultraviolet (DUV) of 198.8 nm and the infrared (IR) of 1799.9 nm. While CsB3O5 (CBO) did not satisfy the phase-matching at around 180 nm, 179 nm output was generated with LiB3O5 (LBO) for the first time. The phase-matching property of LBO at around 180 nm was also investigated. There was small deviation from theoretical curve in the measurement, which is still considered reasonable.

  6. 650 nm Laser stimulated dating from Side Antique Theatre, Turkey

    NASA Astrophysics Data System (ADS)

    Doğan, M.; Meriç, N.

    2014-03-01

    Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre's expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results.

  7. Pressure Broadening of the Cadmium 326.1 nm Line

    NASA Astrophysics Data System (ADS)

    Roston, G. D.; Helmi, M. S.

    2014-11-01

    The temperature dependence of the Cd line absorption profile at 326.1nm perturbed by inert gases (Xe, Kr, Ar, Ne and He) has been carefully studied over a wide spectral range in both blue and red wings using a high-resolution double-beam spectrometer. The atomic densities of inert gases (Ngas) and cadmium (NCd) was sufficient to study the wing of the Cd line at 326.1nm. The temperature dependence of the studied line profile was analyzed in the framework of the quasi-static theory. The van der Waals coefficient differences (ΔC60 and ΔC61) between the ground X0+ state and the two excited states A30+ and B31 were obtained from the near red wing profile using Kuhn's law. All the results of the well depths with their positions for the ground (X0+), and the excited (31, 30+) were determined. The obtained results are compared with the corresponding theoretical and experimental molecular beam experiments results.

  8. 147-nm photolysis of disilane

    SciTech Connect

    Perkins, G.G.A.; Lampe, F.W.

    1980-05-21

    The photodecomposition of Si/sub 2/H/sub 6/ at 147 nm results in the formation of H/sub 2/, SiH/sub 4/, Si/sub 3/H/sub 8/, Si/sub 4/H/sub 10/, Si/sub 5/H/sub 12/, and a solid film of amorphous silicon hydride (a-Si:H). Three primary processes are proposed to account for the results, namely, (a) Si/sub 2/H/sub 6/ + h..nu.. ..-->.. SiH/sub 2/ + SiH/sub 3/ + H (phi/sub a/ = 0.61); (b) Si/sub 2/H/sub 6/ + h..nu.. ..-->.. SiH/sub 3/SiH + 2H (phi/sub b/ = 0.18); (c) Si/sub 2/H/sub 6/ + h..nu.. ..-->.. Si/sub 2/H/sub 5/ + H (phi/sub c/ = 0.21). The overall quantum yields depend on the pressure but at 1 Torr partial pressure of Si/sub 2/H/sub 6/ are PHI(-Si/sub 2/H/sub 6/) = 4.3 +- 0.2, PHI(SiH/sub 4/) = 1.2 +- 0.4, PHI(Si/sub 3/H/sub 8/) = 0.91 +- 0.08, PHI(Si/sub 4/H/sub 10/) = 0.62 +- 0.03, PHI(Si,wall) = 2.2. Quantum yields for H/sub 2/ formation were not measured. A mechanism is proposed which is shown to be in accord with the experimental facts.

  9. Photoacoustic response of suspended and hemolyzed red blood cells

    NASA Astrophysics Data System (ADS)

    Saha, Ratan K.; Karmakar, Subhajit; Roy, Madhusudan

    2013-07-01

    The effect of confinement of hemoglobin molecules on photoacoustic (PA) signal is studied experimentally. The PA amplitudes for samples with suspended red blood cells (SRBCs) and hemolyzed red blood cells (HRBCs) were found to be comparable at each hematocrit for 532 nm illumination. The difference between the corresponding amplitudes increased with increasing hematocrit for 1064 nm irradiation. For example, the PA amplitude for the SRBCs was about 260% higher than that of the HRBCs at 40% hematocrit. This observation may help to develop a PA method detecting hemolysis noninvasively.

  10. Neutral red assay in minimum fungicidal concentrations of antifungal agents.

    PubMed

    Fukuda, T; Naka, W; Tajima, S; Nishikawa, T

    1996-01-01

    We assayed the fungicidal effects of antifungal agents using neutral red staining. Fungal elements of Trichophyton mentagrophytes and T. rubrum were treated with various concentrations of antifungal agents in 96-well filtration plates and then stained with neutral red. The amount of neutral red incorporated by the surviving viable cells was determined from the automated spectrophotometric readings at 550 nm. The minimum fungicidal concentrations (MFCs) of antifungal agents determined by this assay correlated well with those determined by conventional assay. This newly developed procedure should provide a rapid, reproducible, quantitative, qualitative and semi-automated susceptibility test for determination of the MFCs of the fungicidal agents. PMID:8912170

  11. Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Volpato, Luiz Evaristo Ricci; de Oliveira, Rodrigo Cardoso; Espinosa, Mariano Martinez; Bagnato, Vanderley Salvador; Machado, Maria A. A. M.

    2011-07-01

    Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm2), infrared laser (780 nm, 40 mW, 1 W/cm2), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm2). All applications were punctual and performed with a spot with 0.4 mm2 of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced.

  12. Red Bull Stratos Presentation

    NASA Video Gallery

    Red Bull Stratos High Performance Director Andy Walshe & Technical Project Director Art Thompson share the Stratos story with JSC. Supported by a team of experts, Felix Baumgartner reached 128,100 ...

  13. Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This view of Jupiter's Great Red Spot is a mosaic of two images taken by the Galileo spacecraft. The image was created using two filters, violet and near-infrared, at each of two camera positions. The Great Red Spot is a storm in Jupiter's atmosphere and is at least 300 years-old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The size of the storm is more than one Earth diameter (13,000 kilometers or 8,000 miles) in the north-south direction and more than two Earth diameters in the east-west direction. In this oblique view, where the Great Red Spot is shown on the planet's limb, it appears longer in the north-south direction. The image was taken on June 26, 1996.

    The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  14. Red blood cell production

    MedlinePlus Videos and Cool Tools

    ... or another. Red blood cells are an important element of blood. Their job is to transport oxygen ... hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming ...

  15. Whence the red panda?

    PubMed

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous

  16. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  17. Defining the Far-red Limit of Photosystem I

    PubMed Central

    Mokvist, Fredrik; Mamedov, Fikret; Styring, Stenbjörn

    2014-01-01

    The far-red limit of photosystem I (PS I) photochemistry was studied by EPR spectroscopy using laser flashes between 730 and 850 nm. In manganese-depleted spinach thylakoid membranes, the primary donor in PS I, P700, was oxidized simultaneously with tyrosine Z, the secondary donor in PS II. It was found that at 295 K PS I photochemistry, observed as P700+ formation, was functional up to 840 nm. This is 30 nm further to the red region than was reported for PS II photochemistry (Thapper, A., Mamedov, F., Mokvist, F., Hammarström, L., and Styring, S. (2009) Plant Cell 21, 2391–2401). The same far-red limit for the P700+ formation was observed in a PS I reaction center core preparation from Nostoc punctiforme. The reduction of the acceptor side of PS I, observed as reduction of the iron-sulfur centers FA and FB by low temperature EPR measurements, was also functional at 15 K with light up to >830 nm. Taken together, these results, obtained from both plants and cyanobacteria, most likely rule out involvement of the red-absorbing antenna chlorophylls in this reaction. Instead we propose the existence of weak charge transfer bands absorbing in the far-red region in the ensemble of excitonically coupled chlorophyll a molecules around P700 similar to what has been found in the reaction center of PS II. These charge transfer bands could be responsible for the far-red light absorption leading to PS I photochemistry at wavelengths up to 840 nm. PMID:25023284

  18. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  19. Red Light Stimulates Feeding Motivation in Fish but Does Not Improve Growth

    PubMed Central

    Bovi, Thais S.; de Freitas, Renato H. A.; da Silva, Danielle F.; Delicio, Helton C.; Barreto, Rodrigo Egydio

    2013-01-01

    Nile tilapia fish were individually reared under similar light levels for 8 weeks under five colored light spectra (maximum wavelength absorbance): white (full light spectrum), blue (∼452 nm), green (∼516 nm), yellow (∼520 nm) or red (∼628 nm). The effects of light on feeding, latency to begin feeding, growth and feed conversion were measured during the last 4 weeks of the study (i.e., after acclimation). We found that red light stimulates feeding, as in humans, most likely by affecting central control centers, but the extra feeding is not converted into growth. PMID:23516606

  20. The effect of 630-nm light stimulation on the sEMG signal of forearm muscle

    NASA Astrophysics Data System (ADS)

    Yang, Dan D.; Hou, W. Sheng; Wu, Xiao Y.; Zheng, Xiao L.; Zheng, Jun; Jiang, Ying T.

    2010-11-01

    This study aimed to explore if the red light irradiation can affect the electrophysiology performance of flexor digitorum superficialis (FDS) and fatigue recovery. Four healthy volunteers were randomly divided into two groups. In the designed force-tracking tasks, all subjects performed the four fingertip isometric force production except thumb with a load of 30% of the maximum voluntary contraction (MVC) force until exhaustion. Subsequently, for the red light group, red light irradiation (640 nm wavelength, 0.23J/cm2, 20 min) was used on the right forearm; for the control group, the subjects relaxed without red light irradiation. Then subjects were required to perform fatigue trail again, and sEMG signal was collected simultaneously from FDS during finger force production. Average rectified value (ARV) and median frequency (MF) of sEMG were calculated. Compared to the control group, the red light irradiation induced more smoother value of ARV between 30% and 40%, and the value of MF was obviously large and smooth. The above electrophysiological markers indicated that recovery from muscle fatigue may be positively affected by the red light irradiation, suggesting that sEMG would become a power tool for exploring the effect of red light irradiation on local muscle fatigue.

  1. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    PubMed

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera. PMID:26565863

  2. Red, Green, and Blue Astro-combs

    NASA Astrophysics Data System (ADS)

    Phillips, David; Glenday, Alex; Li, Chih-Hao; Korzennik, Sylvain; Noah Chang, Guoqing; Chen, Li-Jin; Benedick, Andrew; Kaertner, Franz; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald

    2011-06-01

    Searches for extrasolar planets using the periodic Doppler shift of stellar lines are approaching Earth-like planet sensitivity. Astro-combs, a combination of an octave spanning femtosecond laser and a mode-filtering cavity provide a likely route to increased calibration precision and accuracy. We present results from three astro-combs operating in the red/near-IR, green and blue spectral ranges. Light from a 1-GHz, octave-spanning Ti:Sapphire laser is filtered by a Fabry-Perot Cavity (FPC) constructed from Doubly-Chirped Mirrors to produce a red astro-comb with 100 nm of optical bandwidth. This astro-comb has calibrated an astrophysical spectrograph at the 1 m/s level. In the blue astro-comb, Ti:Sapphire comb light, doubled in a BBO crystal is filtered to 50 GHz mode spacing with an FPC. The blue astro-comb has performed 50 cm/s calibrations. In the ``green'' astro-comb, light from the 1 GHz Ti:Sapphire comb laser is broadened in a photonic crystal fiber optimized to produce light in the green. This 1-GHz spaced green light is then filtered to roughly 40 GHz via an FPC with zero group delay dispersion mirrors, providing approximately 50 nm of astro-comb light centered near 550 nm.

  3. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760

  4. Photoacoustic and optothermal studies of tomato ketchup adulterated by the red beet (Beta vulgaris)

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Westra, E.; Seters, J.; van Houten, S.; Huberts, D.; Colić-Barić, I.; Cozijnsen, J.; Boshoven, H.

    2005-06-01

    Photoacoustic (PA) spectroscopy and optothermal window (OW) technique were used to explore their potential to detect red beet added as a colorant to tomato ketchup. The associated changes of colour resulting in the changes of absorbance (and hence of PA and OT signals) were monitored in the 500 nm region corresponding to the absorption maximum of lycopene. Both methods were shown capable of quantifying about 1% of red beet (by mass) in the mixture of ketchup and red beet.

  5. Red light affects flowering under long days in a short-day strawberry cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect on flower bud induction of red light (600-700 nm) directed at the crowns of short-day 'Strawberry Festival' strawberry transplants was investigated. July-plugged transplants were maintained under a long-day photoperiod in August. Illuminating the crown for 16 h-day-1 with small red ligh...

  6. All solid-state continuous-wave Nd:YAG laser at 1319 and 659.5 nm under direct 885 nm pumping

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Yin, X. D.; Bao, L.; Quan, H.

    2010-01-01

    The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/2 → 4 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/2 → 4 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.

  7. Reviving red snapper.

    PubMed

    Estabrook, Barry

    2010-01-01

    Red snappers in the Gulf of Mexico once hovered on the brink of extinction, their population having dropped to 2 percent of what had historically swum in the Gulf. But thanks to a recently introduced plan that turns the conventional wisdom of fisheries management on its head, the picture has begun to change. Called Individual Fishing Quotas (IFQs), the new regulations, which give a guaranteed allotment of fish to each participant instead of applying industry-wide quotas, went into effect for Gulf of Mexico Red Snapper (Lutjanus campechanus) in early 2007. The results were immediate and so profound that the Gulf Fishery Management Council voted earlier this year to increase the annual limit on red snapper to nearly 7 million pounds from 5 million. PMID:21542214

  8. Red-based cumulus.

    PubMed

    Gedzelman, Stanley David

    2015-02-01

    Observations and model simulations of cumulus clouds whose bases are tinted red when the Sun is well above the horizon are presented. Conditions for seeing red bases include (1) a red underlying surface (which may consist of dust clouds, as from haboobs) with high albedo, (2) small fractional cloud cover when the Sun is far enough below the zenith for direct sunlight to illuminate much of the surface directly below and around cloud base, (3) optically thick clouds so that the bases are dark, and (4) clouds with bases that are near enough to the observer to appear high in the sky so that the admixture of scattered light from the intervening atmosphere is minimized. PMID:25967822

  9. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  10. Spectroscopy of Pluto at six longitudes, 380-930 nm

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Pinilla-Alonso, Noemi; Lorenzi, Vania; Grundy, Will M.; Licandro, Javier; Binzel, Richard P.

    2014-11-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution ~450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical pathlength through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 µm) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical pathlength through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 µm. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto’s spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto’s surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  11. Lustre on Red Sky.

    SciTech Connect

    Monk, Stephen Todd; Mervini, Joe

    2010-04-01

    The goals of Lustre on Red Sky are: (1) provide home/projects/scratch Lustre file systems; (2) adhere to the Sun HPC stack; (3) implement software RAID on Sun provided JBODs; and (4) design for easy administration. Conclusions are: (1) software RAID includes additional risks and administration vs. hardware RAID solutions; (2) limited testing of hardware in these configurations make it ill-suited for rapid deployment in a production environment; and (3) Lustre has been a shining star on this machine, Red Sky users are pleased with its performance.

  12. False Color Mosaic Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    False color representation of Jupiter's Great Red Spot (GRS) taken through three different near-infrared filters of the Galileo imaging system and processed to reveal cloud top height. Images taken through Galileo's near-infrared filters record sunlight beyond the visible range that penetrates to different depths in Jupiter's atmosphere before being reflected by clouds. The Great Red Spot appears pink and the surrounding region blue because of the particular color coding used in this representation. Light reflected by Jupiter at a wavelength (886 nm) where methane strongly absorbs is shown in red. Due to this absorption, only high clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (732 nm) where methane absorbs less strongly is shown in green. Lower clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere is shown in blue: This light is reflected from the deepest clouds. Thus, the color of a cloud in this image indicates its height. Blue or black areas are deep clouds; pink areas are high, thin hazes; white areas are high, thick clouds. This image shows the Great Red Spot to be relatively high, as are some smaller clouds to the northeast and northwest that are surprisingly like towering thunderstorms found on Earth. The deepest clouds are in the collar surrounding the Great Red Spot, and also just to the northwest of the high (bright) cloud in the northwest corner of the image. Preliminary modeling shows these cloud heights vary over 30 km in altitude. This mosaic, of eighteen images (6 in each filter) taken over a 6 minute interval during the second GRS observing sequence on June 26, 1996, has been map-projected to a uniform grid of latitude and longitude. North is at the top.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet

  13. Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa

    NASA Astrophysics Data System (ADS)

    Cotlet, Mircea; Habuchi, Satoshi; Whitier, Jennifer E.; Werner, James H.; De Schryver, Frans C.; Hofkens, Johan; Goodwin, Peter M.

    2006-02-01

    We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all

  14. Long-Lived Bright Red Emitting Azaoxa-Triangulenium Fluorophores

    PubMed Central

    Maliwal, Badri P.; Fudala, Rafal; Raut, Sangram; Kokate, Rutika; Sørensen, Thomas J.; Laursen, Bo W.; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-01-01

    The fluorescence lifetimes of most red emitting organic probes are under 4 nanoseconds, which is a limiting factor in studying interactions and conformational dynamics of macromolecules. In addition, the nanosecond background autofluorescence is a significant interference during fluorescence measurements in cellular environment. Therefore, red fluorophores with longer lifetimes will be immensely helpful. Azaoxa-triangulenium fluorophores ADOTA and DAOTA are red emitting small organic molecules with high quantum yield, long fluorescence lifetime and high limiting anisotropy. In aqueous environment, ADOTA and DAOTA absorption and emission maxima are respectively 540 nm and 556 nm, and 556 nm and 589 nm. Their emission extends beyond 700 nm. Both probes have the limiting anisotropy between 0.36–0.38 at their absorption peak. In both protic and aprotic solvents, their lifetimes are around 20 ns, making them among the longest-lived red emitting organic fluorophores. Upon labeling of avidin, streptavidin and immunoglobulin their absorption and fluorescence are red-shifted. Unlike in free form, the protein-conjugated probes have heterogeneous fluorescence decays, with the presence of both significantly quenched and unquenched populations. Despite the presence of significant local motions due to a flexible trimethylene linker, we successfully measured both intermediate nanosecond intra-protein motions and slower rotational correlation times approaching 100 ns. Their long lifetimes are unaffected by the cell membrane (hexadecyl-ADOTA) and the intra-cellular (DAOTA-Arginine) localization. Their long lifetimes also enabled successful time-gating of the cellular autofluorescence resulting in background-free fluorescence lifetime based images. ADOTA and DAOTA retain a long fluorescence lifetime when free, as protein conjugate, in membranes and inside the cell. Our successful measurements of intermediate nanosecond internal motions and long correlations times of large proteins

  15. Detection of Silver Nanoparticles in Cells by Flow Cytometry Using Light Scattering and Far-red Fluorescence

    EPA Science Inventory

    The cellular uptake of different sized silver nanoparticles (l0 nm, 50 nm, and 75nm) coated with polyvinylpyrrolidone (PVP) or citrate in ARPE-19 cells following 24 hour incubation was detected by side scatter through the use of a flow cytometer. A large far red fluorescence sign...

  16. Clover, Red (Trifolium pretense)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  17. 'Valley Red' Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Valley Red' is a new June-bearing (short-day) strawberry (Fragaria ×ananassa Duchesne ex Rozier) cultivar from the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) breeding program in Corvallis, Ore., released in cooperation with the Oregon Agricultural Experiment Station, Th...

  18. 'Vintage' Red Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Vintage' is a new primocane-fruiting red raspberry (Rubus idaeus L.) from the U.S. Dept. of Agriculture–Agricultural Research Service (USDA–ARS) breeding program in Corvallis, OR released in cooperation with the Oregon State Agricultural Experiment Station and the Washington State University Agricu...

  19. Red Cross Swimming Update.

    ERIC Educational Resources Information Center

    Vlasich, Cynthia

    1989-01-01

    Six new aquatic courses, developed by the Red Cross, are described. They are: Infant and Preschool Aquatics, Longfellow's Whale Tales (classroom water safety lessons for K-Six), Basic Water Safety, Emergency Water Safety, Lifeguard Training, and Safety Training for Swim Coaches. (IAH)

  20. 'Saanich' Red Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Saanich' is a new floricane-fruiting red raspberry (Rubus idaeus) cultivar from the breeding program at the Pacific Agri-Food Research Centre (PARC) of Agriculture and Agri-Food Canada, Agassiz, British Columbia. 'Saanich', tested as BC 89-34-41, was selected from a 1989 cross of BC 82-5-161 and BC...

  1. Canadian Red Cross.

    PubMed

    Lavender, Colleen

    2008-01-01

    The Canadian Red Cross is guided by its Fundamental Principles--humanity, impartiality, neutrality, independence, voluntary service, unity, and universality--and organized in a traditional geographic hierarchical structure. Among the characteristics that have contributed to its success are a budgeting process that starts at the local level, measurement of program outcomes, and coordinated fundraising activities at the regional level. PMID:18551842

  2. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  3. Microvessel reactivity changes in light-diode irradiation of blood (470 to 980 nm)

    NASA Astrophysics Data System (ADS)

    Petrishchev, Nikolai N.; Yantareva, Ludmila I.

    1998-01-01

    The effects of distant light diode irradiation with various spectrums of the trunk vessels on reactivity of microvessels in the small intestine mesentery treated with threshold doses of norepinephrine (NoE) are compared. The character of changes in reactivity of microvessels to NoE was found to depend on the wave length and irradiation dose. Ultraviolet irradiation (470 nm, 0.03 J/sm2) was noticed to increase reactivity of the vessels to NoE (vasoconstriction increase). In green light irradiation (540 nm, 0.3 J/sm2 sm2) no changes in reactivity were observed. Red light irradiation (670 nm, 2.0 J/sm2), infrared particular (980 nm, 1.0 J/sm2), lowered reactivity to NoE. Thus, noninvasive light-diode irradiation of the blood results in different systemic changes of endothelial dependent reactivity of microcirculation due to specify of photochemical processes involved.

  4. 157 nm F2-laser writing of silica optical waveguides in silicone rubber

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Li, Jianzhao; Herman, Peter R.

    2005-10-01

    Silica (SiO2) optical waveguides have been fabricated on the surface of silicone [(SiO(CH3)2)n] rubber by photochemical modification of silicone rubber into silica with 157 nmF2-laser radiation. The 2 mm thick silicone was exposed through a thin (˜0.2 mm) air layer to generate oxygen radicals that chemically assisted in the silica transformation. Silica waveguides were defined in 8-16 µm wide exposure strips by a proximity Cr-on-CaF2 photomask. Optimum laser processing conditions are presented for generating crack-free waveguides with good optical transparency at red (635 nm) and infrared (1550 nm) wavelengths. A propagation loss of ˜6 dB/cm is reported at the 1550 nm wavelength.

  5. 157 nm F2-laser writing of silica optical waveguides in silicone rubber.

    PubMed

    Okoshi, Masayuki; Li, Jianzhao; Herman, Peter R

    2005-10-15

    Silica (SiO2) optical waveguides have been fabricated on the surface of silicone [(SiO(CH3)2)n] rubber by photochemical modification of silicone rubber into silica with 157 nm F2-laser radiation. The 2 mm thick silicone was exposed through a thin (approximately 0.2 mm) air layer to generate oxygen radicals that chemically assisted in the silica transformation. Silica waveguides were defined in 8-16 microm wide exposure strips by a proximity Cr-on-CaF2 photomask. Optimum laser processing conditions are presented for generating crack-free waveguides with good optical transparency at red (635 nm) and infrared (1550 nm) wavelengths. A propagation loss of approximately 6 dB/cm is reported at the 1550 nm wavelength. PMID:16252756

  6. Red fluorescence in reef fish: A novel signalling mechanism?

    PubMed Central

    Michiels, Nico K; Anthes, Nils; Hart, Nathan S; Herler, Jürgen; Meixner, Alfred J; Schleifenbaum, Frank; Schulte, Gregor; Siebeck, Ulrike E; Sprenger, Dennis; Wucherer, Matthias F

    2008-01-01

    Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter-specific variation in red

  7. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  8. CMOS downsizing toward sub-10 nm

    NASA Astrophysics Data System (ADS)

    Iwai, Hiroshi

    2004-04-01

    Recently, CMOS downsizing has been accelerated very aggressively in both production and research level, and even transistor operation of a 6 nm gate length p-channel MOSFET was reported in a conference. However, many serious problems are expected for implementing such small-geometry MOSFETs into large scale integrated circuits, and it is still questionable whether we can successfully introduce sub-10 nm CMOS LSIs into the market or not. In this paper, limitation and its possible causes for the downscaling of CMOS towards sub-10 nm are discussed with consideration of past CMOS predictions for the limitation.

  9. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  10. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  11. Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles

    DOE PAGESBeta

    Lai, Chih Wei; Schwab, Mark; Hill, Steven C.; Santarpia, Joshua; Pan, Yong -Le

    2016-05-19

    Tryptophan is a fluorescent amino acid common in proteins. Its absorption is largest for wavelengths λ ≲ 290 nm and its fluorescence emissions peak around 300–350 nm, depending upon the local environment. Here we report the observation of red fluorescence near 600 nm emerging from 488-nm continuous-wave (CW) laser photoexcitation of dry tryptophan (Trp) particles. With an excitation intensity below 0.5 kW/cm2, dry Trp particles yield distinctive Raman scattering peaks in the presence of relatively weak and spectrally broad emissions with λ ~500–700 nm, allowing estimation of particle temperature at low excitation intensities. When the photoexcitation intensity is increased tomore » 1 kW/cm2 or more for a few minutes, fluorescence intensity dramatically increases by more than two orders of magnitude. The fluorescence continues to increase in intensity and gradually shift to the red when photoexcitation intensity and the duration of exposure are increased. The resulting products absorb at visible wavelengths and generate red fluorescence with λ ~ 650–800 nm with 633-nm CW laser excitation. In conclusion, we attribute the emergence of orange and red fluorescence in the Trp products to a photochemical transformation that is instigated by weak optical transitions to triplet states in Trp with 488-nm excitation and which may be expedited by a photothermal effect.« less

  12. Comparison of lunar red spots including the crater copernicus

    NASA Astrophysics Data System (ADS)

    Shkuratov, Y.; Kaydash, V.; Rohacheva, L.; Korokhin, V.; Ivanov, M.; Velikodsky, Y.; Videen, G.

    2016-07-01

    The lunar red spots, Helmet, Hansteen Alpha, and the NW quadrant of the crater Copernicus, were selected for a complex comparative investigation of their characteristics measured by the spacecraft Clementine, LRO, and Chandrayaan-1. For the analysis we used the following parameters: the reflectance A(750 nm), color-ratio A(750 nm)/A(415 nm), parameter of optical micro-roughness (LRO WAC), parameters deduced from LRO Diviner data, optical maturity OMAT, abundance of FeO and TiO2 (Clementine UVVIS and LRO WAC data), oxygen content determined using Lunar Prospector data, and parameters characterizing the 0.95-μm and 2.2-μm bands of Fe2+ ions (crystal field bands), and 2.8-μm band of H2O/OH and/or Fe2+ ions. The red spots Helmet and Hansteen Alpha are considered to be extrusions of rhyolite composition, which can be attributed to the Nectarian period; we did not find contradictions of this assumption. As for the Copernicus red spot, this, perhaps, is a similar formation that has been destroyed by the impact. We demonstrate that the material of the Copernicus red spot probably has the same composition as the classical red spots Helmet and Hansteen Alpha. The distributions of the parameter of optical micro-roughness and optical maturity OMAT show that the Copernicus red anomaly was not formed during the long evolution of the lunar surface, but results from crater formation. We find several confirmations of the hypothesis that the Copernicus red spot can be a residual of a red material (possibly rhyolite) extrusion that was involved in the impact process. The red material could have been partially melted, crushed, and ejected to the crater's north-western vicinity. The described red asymmetry of the Copernicus ejecta can be related to the eccentricity, relative to the extrusion, of the impact and/or to the inclination of the impactor trajectory. The latter also is confirmed by an analysis of the region, which is based on the geological map shown in this paper.

  13. Registration of 'Red Ruby' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red Ruby’ soft red winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released in 2007 via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Red Ruby was selected from the cross Pioneer ‘2552’/Pioneer ‘2737W’ ma...

  14. 308nm excimer laser in dermatology.

    PubMed

    Mehraban, Shadi; Feily, Amir

    2014-01-01

    308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333

  15. 635nm diode laser biostimulation on cutaneous wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2014-05-01

    Biostimulation is still a controversial subject in wound healing studies. The effect of laser depends of not only laser parameters applied but also the physiological state of the target tissue. The aim of this project is to investigate the biostimulation effects of 635nm laser irradiation on the healing processes of cutaneous wounds by means of morphological and histological examinations. 3-4 months old male Wistar Albino rats weighing 330 to 350 gr were used throughout this study. Low-level laser therapy was applied through local irradiation of red light on open skin excision wounds of 5mm in diameter prepared via punch biopsy. Each animal had three identical wounds on their right dorsal part, at which two of them were irradiated with continuous diode laser of 635nm in wavelength, 30mW of power output and two different energy densities of 1 J/cm2 and 3 J/cm2. The third wound was kept as control group and had no irradiation. In order to find out the biostimulation consequences during each step of wound healing, which are inflammation, proliferation and remodeling, wound tissues removed at days 3, 7, 10 and 14 following the laser irradiation are morphologically examined and than prepared for histological examination. Fragments of skin including the margin and neighboring healthy tissue were embedded in paraffin and 6 to 9 um thick sections cut are stained with hematoxylin and eosin. Histological examinations show that 635nm laser irradiation accelerated the healing process of cutaneous wounds while considering the changes of tissue morphology, inflammatory reaction, proliferation of newly formed fibroblasts and formation and deposition of collagen fibers. The data obtained gives rise to examine the effects of two distinct power densities of low-level laser irradiation and compare both with the non-treatment groups at different stages of healing process.

  16. Nonlinear optical properties of methyl red under CW irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2015-12-01

    Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.

  17. Optical extension at the 193-nm wavelength

    NASA Astrophysics Data System (ADS)

    Zandbergen, Peter; McCallum, Martin; Amblard, Gilles R.; Domke, Wolf-Dieter; Smith, Bruce W.; Zavyalova, Lena; Petersen, John S.

    1999-07-01

    Lithography at 193nm is the first optical lithography technique that will be introduced for manufacturing of technology levels. where the required dimensions are smaller than the actual wavelength. This paper explores several techniques to extend 193nm to low k1 lithography. Most attention is given to binary mask solution in at 130nm dimensions, where k1 is 0.4. Various strong and Gaussian quadrupole illuminators were designed, manufactured and tested for this application. Strong quadrupoles show that largest DOF improvements. The drawback however, is that these strong quadrupoles are very duty cycle and dimensions specific, resulting in large proximity biases between different duty cycles. Due to their design, Gaussian quadrupoles sample much wider frequency ranges, resulting in less duty cycles specific DOF improvements and less proximity basis. At sub-130nm dimensions, strong phase shift masks provide significant latitude improvements, when compared to binary masks with quadrupole illumination. However, differences in dose to size for different duty cycles were up to 25 percent. For definition of contact holes, linewidth biasing through silylation, a key feature of the CARL bi-layer resist approach, demonstrated significant DOF latitude improvements compared to SLR at 140nm and 160nm contact holes.

  18. The great red flashlight

    NASA Astrophysics Data System (ADS)

    Halbach, Edward A.

    After fifty years of fighting with flashlights which persisted in rolling to the ground, being mislaid, or stashed in a pocket, the author designed a unit which was always on hand and needed no search for the switch. A normally closed switch, internal to the bottom of the flashlight case, is opened by the weight of the unit suspended on a cord about the neck. Lifting the unit with two fingers turns on the red light, while releasing the unit automatically turns it off. A felt covering around the flashlight provides comfort on cold nights. Because this red light would be a welcome tool for other variable star observers, more units were assembled and brought to the AAVSO meeting in Houston for distribution to observers who agreed to give each unit a workout and report on its performance. The author is waiting to hear from these observers.

  19. True Color of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Roughly true color image of the Great Red Spot of Jupiter as taken by the Galileo imaging system on June 26, 1996. Because the Galileo imaging system's wavelength sensitivities go beyond those of the human eye, this is only an approximation of what a human observer would have seen in place of the Galileo spacecraft. To simulate red as our eyes see it, the near-infrared filter (756 nm) image was used. To simulate blue as our eyes see it, the violet filter (410 nm) image was used. Finally, to simulate green as our eyes see it, a combination of 2/3 violet and 1/3 near-infrared was used. The result is an image that is similar in color to that seen when looking through a telescope at Jupiter with your eye, but allowing detail about 100 times finer to be visible! The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  1. Great Red Spot (GRS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A huge permanent anticyclone in Jupiter's southern hemisphere, visible as a reddish oval at just over 20 °S. The earliest unequivocal observation was by Heinrich Schwabe in 1831 (the often-quoted sighting by Robert Hooke in 1664 now seems to have been of a similar but different spot). The GRS became a striking feature around 1880, when it developed a deep red coloration. It was also prominent in ...

  2. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  3. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging

    PubMed Central

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Ulrich Nienhaus, G.

    2015-01-01

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M−1cm−1, mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths. PMID:26648024

  4. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.

    PubMed

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Nienhaus, G Ulrich

    2015-01-01

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M(-1)cm(-1), mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths. PMID:26648024

  5. The Double-ended 750 nm and 532 nm Laser Output from PPLN-FWM

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Yu-Xiang; Yao, Jian-Quan; Guo, Ling; Wang, Zhuo; Han, Sha-Sha; Zhang, Cui-Ying; Zhong, Kai

    2013-06-01

    We investigate 750 nm and 532 nm dual-wavelength laser for applications in the internet of things. A kind of optical maser is developed, in which the semiconductor module outputs the 808 nm pump light and then it goes into a double-clad Nd3+ :YAG monocrystal optical fiber through the intermediate coupler and forms a 1064 nm laser. The laser outputs come from both left and right terminals. In the right branch, the laser goes into the right cycle polarization LinNbO3 (PPLN) crystal through the right coupler, produces the optical parametric oscillation and forms the signal light λ1 (1500 nm), the idle frequency light λ2 (3660.55 nm), and the second-harmonic of the signal light λ3 (750 nm). These three kinds of light and the pump light λ4 together form the frequency matching and the quasi-phase matching, then the four-wave mixing occurs to create the high-gain light at wavelength 750 nm. Meanwhile, in the left branch, the laser goes into the left PPLN crystal through the left coupler, engenders frequency doubling and forms the light at wavelength 532 nm. That is to say, the optical maser provides 750 nm and 532 nm dual-wavelength laser outputting from two terminals, which is workable.

  6. White luminescence from silica glass containing red/green/blue luminescent nanocrystalline silicon particles

    SciTech Connect

    Sato, Keisuke; Kishimoto, Naoki; Hirakuri, Kenji

    2007-11-15

    Silica glasses containing blue/green/red luminescent nanocrystalline silicon (nc-Si) particles that consist of monolayer and/or three-layer structures were fabricated by a radio-frequency sputtering technique and postannealing treatment. These silica glasses showed very broad luminescence spectra with a peak at 460 nm (blue light), 550 nm (green light), and 800 nm (red light). When these samples were irradiated by using a xenon lamp with an optical bandpass filter of 313 nm, the luminescence colors from these silica glasses were a white light. The white luminescence of the sample with the three-layer structure exhibited the high luminance value of 1.5 cd/m{sup 2}. This value was ascribed to the adjustment of sizes and densities of blue/green/red luminescent nc-Si particles, and the lowering of densities of P{sub b} centers (nonradiative recombination centers) at the nc-Si particle/silica glass interface layer.

  7. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  8. Deep-red Emissive BODIPY-Chlorin Arrays Excitable with Green and Red Wavelengths

    PubMed Central

    Meares, Adam; Satraitis, Andrius; Santhanam, Nithya; Yu, Zhanqian

    2015-01-01

    We report here synthesis and characterization of BODIPY-chlorin arrays containing a chlorin subunit, with tunable deep-red (641–685 nm) emission, and one or two BODIPY moieties, absorbing at 504 nm. Two types of arrays were examined: one where BODIPY moieties are attached through phenylacetylene linker at the 13- or 3,13-positions of chlorin, and a second type where BODIPY is attached at the 10-position of chlorin through an amide linker. Each of the examined arrays exhibits an efficient (≥ 0.80) energy transfer from BODIPY to chlorin moiety in both toluene and DMF and exhibits intense fluorescence of chlorin upon excitation of BODIPY at ~ 500 nm. Therefore, the effective Stokes shift in such arrays is in the range of 140–180 nm. Dyads with BODIPY attached at the 10-position of chlorin exhibit a bright fluorescence in a range of solvents with different polarities (i.e. toluene, MeOH, DMF, and DMSO). In contrast to this, some of the arrays in which BODIPY is attached at the 3- or at both 3,13-positons of chlorin exhibit significant reduction of fluorescence in polar solvents. Overall, dyads where BODIPY is attached at the 10-position of chlorin exhibit ~5-fold brighter fluorescence than corresponding chlorin monomers, upon excitation at 500 nm. PMID:25803423

  9. High charged red pigment nanoparticles for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Hou, Xin-Yan; Bian, Shu-Guang; Chen, Jian-Feng; Le, Yuan

    2012-12-01

    Organic pigment permanent red F2R nanoparticles were prepared via surface modification to improve the surface charge and dispersion ability in organic medium. Their large surface chargeability is confirmed by ζ-potential value of -49.8 mV. The prepared particles exhibited average size of 105 nm and showed very narrow distribution with polydispersity index of 0.068. The sedimentation ratio of the prepared particles in tetrachloroethylene was less than 5% within 12 days. The electrophoretic inks consisting of the prepared red particles with white particles as contrast showed good electrophoretic display, its refresh time was 200 ms.

  10. Chromosomes without a 30-nm chromatin fiber

    PubMed Central

    Joti, Yasumasa; Hikima, Takaaki; Nishino, Yoshinori; Kamada, Fukumi; Hihara, Saera; Takata, Hideaki; Ishikawa, Tetsuya; Maeshima, Kazuhiro

    2012-01-01

    How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure. PMID:22825571

  11. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  12. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  13. Why Leaves Turn Red in Autumn. The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood1

    PubMed Central

    Feild, Taylor S.; Lee, David W.; Holbrook, N. Michele

    2001-01-01

    Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495–644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves. PMID:11598230

  14. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  15. Effect of metalloporphyrins on red autofluorescence from oral bacteria.

    PubMed

    Volgenant, Catherine M C; van der Veen, Monique H; de Soet, Johannes J; ten Cate, Jacob M

    2013-06-01

    The aim of this study was to assess the red autofluorescence from bacterial species related to dental caries and periodontitis in the presence of different nutrients in the growth medium. Bacteria were grown anaerobically on tryptic soy agar (TSA) supplemented with nutrients, including magnesium-porphyrins from spinach and iron-porphyrins from heme. The autofluorescence was then assessed at 405 nm excitation. On the TSA without additives, no autofluorescence was observed from any of the species tested. On the TSA containing sheep blood, red autofluorescence was observed only from Parvimonas micra. When the TSA was supplemented with blood, hemin, and vitamin K, red autofluorescence was observed from Actinomyces naeslundii, Bifidobacterium dentium, and Streptococcus mutans. Finally, on the TSA supplemented with spinach extract, red autofluorescence was observed from Aggregatibacter actinomycetemcomitans, A. naeslundii, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus salivarius, S. mutans, and Veillonella parvula. We conclude that the bacteria related to dental caries and periodontal disease exhibit red autofluorescence. The autofluorescence characteristics of the tested strains depended on the nutrients present, such as metalloporphyrins, suggesting that the metabolic products of the oral biofilm could be responsible for red autofluorescence. PMID:23659237

  16. Non-coherent visible and infrared radiation increase survival to UV (254 nm) in Escherichia coli K12.

    PubMed

    Lage, C; Teixeira, P C; Leitão, A C

    2000-02-01

    Interactions between visible or infrared (IR) and ultraviolet (UV, 254 nm) radiation have been studied in E. coli. Pre-illumination with non-coherent monochromatic 446, 466, 570 and 685 nm radiation, as well as with polychromatic red and IR radiation at room temperature, leads to increased cell survival after a subsequent irradiation with UV light. In the thermic range of the spectrum (red and IR), IR but not red light pre-treatment is able to increase cell survival to a subsequent lethal heat (51 degrees C) challenge, suggesting that increased UV survival may be due to IR-induced heat-shock response. On the other hand, visible-light-induced resistance may be due to a different mechanism, possibly involved with unknown bacterial light receptors. PMID:10836546

  17. Super ACO FEL oscillation at 300 nm

    NASA Astrophysics Data System (ADS)

    Nutarelli, D.; Garzella, D.; Renault, E.; Nahon, L.; Couprie, M. E.

    2000-05-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  18. 1550-nm wavelength-tunable HCG VCSELs

    NASA Astrophysics Data System (ADS)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  19. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  20. Red Spot Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie shows counterclockwise atmospheric motion around Jupiter's Great Red Spot. The clip was made from blue-filter images taken with the narrow-angle camera on NASA's Cassini spacecraft during seven separate rotations of Jupiter between Oct. 1 and Oct. 5, 2000.

    The clip also shows the eastward and westward motion of the zonal jets, seen as the horizontal stripes flowing in opposite directions. The zonal jets circle the planet. As far as can be determined from both Earth-based and spacecraft measurements, the positions and speeds of the jets have not changed for 100 years. Since Jupiter is a fluid planet without a solid boundary, the jet speeds are measured relative to Jupiter's magnetic field, which rotates, wobbling like a top because of its tilt, every 9 hours 55.5 minutes. The movie shows motions in the magnetic reference frame, so winds to the west correspond to features that are rotating a little slower than the magnetic field, and eastward winds correspond to features rotating a little faster.

    Because the Red Spot is in the southern hemisphere, the direction of motion indicates it is a high-pressure center. Small bright clouds appear suddenly to the west of the Great Red Spot. Scientists suspect these small white features are lightning storms. The storms eventually merge with the Red Spot and surrounding jets, and may be the main energy source for the large-scale features.

    The smallest features in the movie are about 500 kilometers (about 300 miles) across. The spacing of the movie frames in time is not uniform; some consecutive images are separated by two Jupiter rotations, and some by one. The images have been re-projected using a simple cylindrical map projection. They show an area from 50 degrees north of Jupiter's equator to 50 degrees south, extending 100 degrees east-west, about one quarter of Jupiter's circumference.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet

  1. The molecular genetics of red and green color vision in mammals.

    PubMed

    Yokoyama, S; Radlwimmer, F B

    1999-10-01

    To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the "true" red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia). PMID:10511567

  2. Defining the Far-Red Limit of Photosystem II in Spinach[C][W

    PubMed Central

    Thapper, Anders; Mamedov, Fikret; Mokvist, Fredrik; Hammarström, Leif; Styring, Stenbjörn

    2009-01-01

    The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn4 cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S2-, S3-, and S0-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results. PMID:19700631

  3. Sizing Up Red Giants Using Bayes’ Rule

    NASA Astrophysics Data System (ADS)

    Aufdenberg, Jason P.; Parsotan, Tyler

    2014-06-01

    Using the general-purpose stellar atmosphere code PHOENIX, we have constructed a grid of spherical stellar atmosphere models for comparison to cool giant star spectral energy distributions(SEDs). The models are not only parametrized by effective temperature (3500 Kto 3700 K) and surface gravity (log(g) = -0.5 to 1.0), but also by mass (7 Msun to 21 Msun), a required parameter for spherical model atmospheres. The shapes of the synthetic spectral energy distributions are sensitive to a change in mass at fixed values for the effective temperature and surface gravity. At our lowest surface gravity, differences in mass of a factor of two can yield up to 20% flux differences in the shape of the SED between 400 nm and 900 nm.Also, for a fixed mass, differences in the surface gravity of a factor of 10 can yield up to 100% flux differences in the shape of the SED below 450 nm. We are investigating whether the mass-dependence of the model SED shape may be used to constrain single star masses. One of our target stars is the supergiant Betelgeuse which has a poorly constrained mass: published estimates differ by a factor of two. To aid in our analysis, we have developed a method to extract Bayesian posterior distributions for four model parameters (effective temperature, surface gravity, mass, and angular size) from thecomparison of the synthetic SED grid to individual observed SEDs of red giants.

  4. Study on the detection of red-tide outbreaks using big satellite database

    NASA Astrophysics Data System (ADS)

    Son, Young Baek; Eun, Yoon Joo; Park, Kyongseok; Lee, Sanghwan; Lee, Ryong; Kim, Sang-Hyun; Yoo, Sinjae

    2014-11-01

    Satellite remote sensing has been successfully employed to monitor and detect the increasing incidence of harmful algal blooms (HABs) under various water conditions. In this study, to establish a comprehensive monitoring system of HAB outbreaks (particularly Cochlodinium polykrikoides blooms) in the southern coast of Korea (SCK), we tested the several proposed red-tide detection methods using SeaWiFS and MODIS ocean color data. Temporal and spatial information of red tide events from 2002 to 2013 were obtained from the National Fisheries Research and Development of Korea (NFRDI), which were matched with synchronously obtained satellite-derived ocean color data. The spectral characteristics of C. polykrikoides red tides were that increased phytoplankton absorption at 443 nm and pigment backscattering 555 nm resulted in a steeper slope between 488 and 555 nm with a hinge point at 488 (or 490) nm. On the other hand, non-red tide water, typically were presented by broader radiance spectra between the blue and green bands were associated with reduced pigment absorption and backscattering. The analysis of ocean color imageries that captured C. polykrikoides red tide blooms showed discolored waters with enhanced pigment concentrations, high chlorophyll, fluorescence, absorption at 443 nm. However, most red tide detection algorithms found a large number of false positive but only a small number of true positive areas. These proposed algorithms are not useful to distinguish true red tide water from complex non-red tide water. Our proposed method substantially reduces the false signal rate (false positive) from strong absorption at short wavelengths and provide a more reliable and robust detection of C. polykrikoides blooms in the SCK from the space.

  5. Adaptive and acclimative responses of cyanobacteria to far-red light.

    PubMed

    Gan, Fei; Bryant, Donald A

    2015-10-01

    Cyanobacteria use three major photosynthetic complexes, photosystem (PS) I, PS II and phycobilisomes, to harvest and convert sunlight into chemical energy. Until recently, it was generally thought that cyanobacteria only used light between 400 nm and 700 nm to perform photosynthesis. However, the discovery of chlorophyll (Chl) d in Acaryochloris marina and Chl f in Halomicronema hongdechloris showed that some cyanobacteria could utilize far-red light. The synthesis of Chl f (and Chl d) is part of an extensive acclimation process, far-red light photoacclimation (FaRLiP), which occurs in many cyanobacteria. Organisms performing FaRLiP contain a conserved set of 17 genes encoding paralogous subunits of the three major photosynthetic complexes. Far-red light photoacclimation leads to substantial remodelling of the photosynthetic apparatus and other changes in cellular metabolism through extensive changes in transcription. Far-red light photoacclimation appears to be controlled by a red/far-red photoreceptor, RfpA, as well as two response regulators (RfpB and RfpC), one of which is a DNA-binding protein. The remodelled photosynthetic complexes, including novel phycobiliproteins, absorb light above 700 nm and enable cells to grow in far-red light. A much simpler acclimation response, low-light photoacclimation (LoLiP), occurs in some cyanobacteria that contain the apcD4-apcB3-isiX cluster, which allows cells to grow under low light conditions. PMID:26234306

  6. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGESBeta

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  7. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  8. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  9. Red - Take a Closer Look

    PubMed Central

    Buechner, Vanessa L.; Maier, Markus A.; Lichtenfeld, Stephanie; Schwarz, Sascha

    2014-01-01

    Color research has shown that red is associated with avoidance of threat (e.g., failure) or approach of reward (e.g., mating) depending on the context in which it is perceived. In the present study we explored one central cognitive process that might be involved in the context dependency of red associations. According to our theory, red is supposed to highlight the relevance (importance) of a goal-related stimulus and correspondingly intensifies the perceivers’ attentional reaction to it. Angry and happy human compared to non-human facial expressions were used as goal-relevant stimuli. The data indicate that the color red leads to enhanced attentional engagement to angry and happy human facial expressions (compared to neutral ones) - the use of non-human facial expressions does not bias attention. The results are discussed with regard to the idea that red induced attentional biases might explain the red-context effects on motivation. PMID:25254380

  10. Characterisation of red mud by UV-vis-NIR spectroscopy.

    PubMed

    Palmer, Sara J; Reddy, B Jagannadha; Frost, Ray L

    2009-01-01

    The characterisation of red mud has been studied by diffuse reflectance spectroscopy in the UV-vis-NIR region (DRS). For the first time the ferric ion responsible for the bands has been identified from electronic spectroscopy. It contains valuable amounts of oxidised iron (Fe(3+)) and aluminium hydroxide. The NIR peak at around 11,630 cm(-1) (860 nm) with a split of two components and a pair of sharp bands near 500 nm (20000 cm(-1)) in the visible spectrum are attributed to Fe(3+) ion in distorted sixfold coordinations. The observation of identical spectral patterns (both electronic and vibrational spectra) of red mud before and after seawater neutralisation (SWN) confirmed that there is no effect of seawater neutralisation on structural cation substitutions such as Al(3+), Fe(3+), Fe(2+), Ti(3+), etc. PMID:18693065

  11. Characterisation of red mud by UV-vis-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Palmer, Sara J.; Reddy, B. Jagannadha; Frost, Ray L.

    2009-01-01

    The characterisation of red mud has been studied by diffuse reflectance spectroscopy in the UV-vis-NIR region (DRS). For the first time the ferric ion responsible for the bands has been identified from electronic spectroscopy. It contains valuable amounts of oxidised iron (Fe 3+) and aluminium hydroxide. The NIR peak at around 11,630 cm -1 (860 nm) with a split of two components and a pair of sharp bands near 500 nm (20000 cm -1) in the visible spectrum are attributed to Fe 3+ ion in distorted sixfold coordinations. The observation of identical spectral patterns (both electronic and vibrational spectra) of red mud before and after seawater neutralisation (SWN) confirmed that there is no effect of seawater neutralisation on structural cation substitutions such as Al 3+, Fe 3+, Fe 2+, Ti 3+, etc.

  12. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.

    PubMed

    Narikawa, Rei; Fushimi, Keiji; Ni-Ni-Win; Ikeuchi, Masahiko

    2015-05-29

    Cyanobacteriochromes (CBCRs) are diverse photoreceptors that are found only from cyanobacteria and cover wide range of light qualities. CBCRs are divided into two types regarding the chromophore species they contain: phycocyanobilin (PCB) and phycoviolobilin. Red/green-type CBCRs are widely distributed subfamily among the PCB-binding CBCRs and photoconvert between a red-absorbing thermostable form and a green-absorbing metastable form. Our recent study discovered that a red/green-type CBCR, AM1_1557g2, from a cyanobacterium Acaryochloris marina covalently binds not only PCB but also biliverdin (BV). BV-binding AM1_1557g2 photoconverts between a far-red absorbing form and an orange-absorbing form. We report, herein, that another red/green-type CBCR, AM1_1870g3, from the cyanobacterium A. marina also bound both PCB and BV. PCB- and BV-binding ones showed red/green and far-red/orange reversible photoconversions, respectively. Unexpectedly, absorbing wavelengths are 10-20 nm red-shifted compared with those of AM1_1557g2. These red-shifted characteristics may be useful for optogenetic light switches that work in various organisms. PMID:25892514

  13. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse.

    PubMed

    Ohgami, Robert S; Campagna, Dean R; Antiochos, Brendan; Wood, Emily B; Sharp, John J; Barker, Jane E; Fleming, Mark D

    2005-11-15

    Hypochromic, microcytic anemias are typically the result of inadequate hemoglobin production because of globin defects or iron deficiency. Here, we describe the phenotypic characteristics and pathogenesis of a new recessive, hypochromic, microcytic anemia mouse mutant, nm1054. Although the mutation nm1054 is pleiotropic, also resulting in sparse hair, male infertility, failure to thrive, and hydrocephaly, the anemia is the focus of this study. Hematologic analysis reveals a moderately severe, congenital, hypochromic, microcytic anemia, with an elevated red cell zinc protoporphyrin, consistent with functional erythroid iron deficiency. However, serum and tissue iron analyses show that nm1054 animals are not systemically iron deficient. From hematopoietic stem cell transplantation and iron uptake studies in nm1054 reticulocytes, we provide evidence that the nm1054 anemia is due to an intrinsic hematopoietic defect resulting in inefficient transferrin-dependent iron uptake by erythroid precursors. Linkage studies demonstrate that nm1054 maps to a genetic locus not previously implicated in microcytic anemia or iron phenotypes. PMID:15994289

  14. Red-emitting silicon quantum dot phosphors in warm white LEDs with excellent color rendering.

    PubMed

    Tu, Chang-Ching; Hoo, Ji H; Böhringer, Karl F; Lin, Lih Y; Cao, Guozhong

    2014-03-10

    We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved. PMID:24922236

  15. Red-emitting silicon quantum dot phosphors in warm white LEDs with excellent color rendering.

    PubMed

    Tu, Chang-Ching; Hoo, Ji H; Böhringer, Karl F; Lin, Lih Y; Cao, Guozhong

    2014-03-10

    We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved. PMID:24800283

  16. Seeing red on the road.

    PubMed

    Díaz-Romnán, Amparo; Megías, Alberto; Díaz-Piedra, Carolina; Catena, Andrés; Di Stasi, Leandro L

    2015-01-01

    Human and animal research has found that red perception is associated with specific behavioral reactions, generally characterized by intense responses. Here, we explored whether red cars are perceived as more dangerous than other colored cars. One hundred Spanish drivers examined several road scenarios which involved hazardous cars with different colors: red, green, yellow, black, gray, and white. Driver's behavior (response time and probability of braking) and the perceived level of risk for each scenario were analyzed. Although car color affected participants' response times, contrary to expectations, red cars did not elicit faster responses or higher perceived levels of risk. PMID:26489219

  17. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  18. International red meat trade.

    PubMed

    Brester, Gary W; Marsh, John M; Plain, Ronald L

    2003-07-01

    The maturation of the US beef and pork markets and increasing consumer demands for convenience, safety, and nutrition suggests that the beef and pork industries must focus on product development and promotion. New marketing arrangements are developing that help coordinate production with consumer demands. The relative high levels of incomes in the United States are likely to increase the demands for branded products rather than increase total per capita consumption. Foreign markets represent the greatest opportunity for increased demand for commodity beef and pork products. Increasing incomes in developing countries will likely allow consumers to increase consumption of animal-source proteins. Real prices of beef and pork have declined substantially because of sagging domestic demand and increasing farm-level production technologies. Increasing US beef and pork exports have obviated some of the price declines. Pork attained a net export position from a quantity perspective in 1995. The United States continues to be a net importer of beef on a quantity basis but is close to becoming a net exporter in terms of value. By-products continue to play a critical role in determining the red meat trade balance and producer prices. The United States, however, must continue to become cost, price, and quality competitive with other suppliers and must secure additional market access if it is to sustain recent trade trends. Several trade tensions remain in the red meat industry. For example, mandated COOL will undoubtedly have domestic and international effects on the beef and pork sectors. Domestically, uncertainty regarding consumer demand responses or quality perceptions regarding product origin, as well as added processor-retailer costs will be nontrivial. How these factors balance out in terms of benefits versus costs to the industry is uncertain. From an international perspective, some beef and pork export suppliers to the United States could view required labeling as a

  19. Fade to Red

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Andromeda Galaxy (M31) Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Stars Dust

    This animation shows the Andromeda galaxy, first as seen in visible light by the National Optical Astronomy Observatory, then as seen in infrared by NASA's Spitzer Space Telescope.

    The visible-light image highlights the galaxy's population of about one trillion stars. The stars are so crammed into its core that this region blazes with bright starlight.

    In contrast, the false-colored Spitzer view reveals red waves of dust against a more tranquil sea of blue stars. The dust lanes can be seen twirling all the way into the galaxy's center. This dust is warmed by young stars and shines at infrared wavelengths , which are represented in red. The blue color signifies shorter-wavelength infrared light primarily from older stars.

    The Andromeda galaxy, also known affectionately by astronomers as Messier 31, is located 2.5 million light-years away in the constellation Andromeda. It is the closest major galaxy to the Milky Way, making it the ideal specimen for carefully examining the nature of galaxies. On a clear, dark night, the galaxy can be spotted with the naked eye as a fuzzy blob.

    Andromeda's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, the Milky Way is about 100,000 light-years across. When viewed from Earth, Andromeda occupies a portion of the sky equivalent to seven full moons.

    Because this galaxy is so large, the infrared images had to be stitched together out of about 3,000 separate Spitzer exposures. The light detected by Spitzer's infrared array camera at 3.6 and 4.5 microns is sensitive mostly to starlight and is shown in blue and green, respectively. The 8-micron light shows warm dust and is shown in red. The

  20. Spectral comparison and stability of red regions on Jupiter

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Sanchez-Lavega, Agustin; Legarreta, Jon; Francisco Sanz-Requena, Jose; Perez-Hoyos, Santiago; Garcia-Melendo, Enrique; Carlson, Robert W.

    2015-03-01

    A rare red cyclone visible on Jupiter in 1994 and 1995 falls in a class of vortices that are intensely colored, yet low altitude, unlike the Great Red Spot (GRS). Dynamical modeling indicates that the presence of nearby anticyclones both aids in formation and lead to the destruction of the cyclone. A study of absolute spectral reflectance from Hubble Space Telescope imaging data shows that GRS is not typically the "reddest" region of the planet. Rather, transient red cyclones and the reddest parts of the North Equatorial Belt show less reflectance than the GRS at all wavelengths, with enhanced absorption at wavelengths near 500 nm. Temporal analysis shows that the darkest regions of the North Equatorial Belt and transient red cyclones are relatively constant in color from 1995 to 2014, while the spectral slope and absolute brightness of the GRS core vary over time. Laboratory data of colored materials that yield a good qualitative fit to the GRS spectrum do not match the spectra of other regions, and wavelengths from 400 to 700 nm may be most diagnostic of chromophore identification.

  1. Red edge spectral measurements from sugar maple leaves

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.; Moss, D. M.

    1993-01-01

    Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.

  2. Ambiguous red shifts

    NASA Astrophysics Data System (ADS)

    Wulfman, Carl E.

    2010-12-01

    A one-parameter conformal invariance of Maxwell's equations allows the wavelengths of electromagnetic waves to change as they propagate, and do so even in otherwise field-free space. This produces an ambiguity in interpretations of stellar red shifts. Experiments that will determine the value of the group parameter, and thereby remove the ambiguity, are proposed. They are based on an analysis of the anomalous frequency shifts uncovered in the Pioneer 10 and 11 spacecraft studies, and physical interpretation of an isomorphism discovered by E.L. Hill. If the group parameter is found to be non-zero, Hubble's relations will have to be reinterpreted and space-time metrics will have to be altered. The cosmological consequences of the transformations are even more extensive because, though they change frequencies they do not alter the energy and momentum conservation laws of classical and quantum-electrodynamical fields established by Cunningham and by Białynicki-Birula.

  3. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  4. Sunlight induced 685 nm fluorescence imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Van Der Piepen, Heinz

    1986-01-01

    The capability of a new fluorescence method is evaluated using data from an aircraft fluorescence experiment conducted on the Elbe River on August 10-14, 1981. The technique measures chlorophyll concentrations by monitoring sunlight-induced fluorescence at 685 nm. Upwelling radiance spectra and vertical profiles of upwelling radiances are presented and analyzed. The image-processing algorithm used to retrieve fluorescence signals from raw data is described.

  5. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  6. Binary 193nm photomasks aging phenomenon study

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sartelli, Luca; Pogliani, Carlo; Gough, Stuart; Sundermann, Frank; Miyashita, Hiroyuki; Hidenori, Yoshioka; Charras, Nathalie; Brochard, Christophe; Thivolle, Nicolas

    2011-05-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration [2] [3] . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects [4] [6] under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.

  7. Spatio-temporal analysis of multi-year Landsat 7 data for regional scale soil salinity assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite decades of research in soil mapping, characterizing the spatial variability of soil salinity across broad regions remains a crucial challenge. This work explores the potential benefits of employing reflectance data from the six spectral bands (blue, 450-520 nrn; green, 520-600 nrn; red, 630-...

  8. AIMS mask qualification for 32nm node

    NASA Astrophysics Data System (ADS)

    Richter, Rigo; Thaler, Thomas; Seitz, Holger; Stroessner, Ulrich; Scheruebl, Thomas

    2009-10-01

    Moving forward to 32nm node and below optical lithography using 193nm is faced with complex requirements to be solved. Mask makers are forced to address both Double Patterning Techniques and Computational Lithography approaches such as Source Mask Optimizations and Inverse Lithography. Additionally, lithography at low k1 values increases the challenges for mask repair as well as for repair verification and review by AIMSTM. Higher CD repeatability, more flexibility in the illumination settings as well as significantly improved image performance must be added when developing the next generation mask qualification equipment. This paper reports latest measurement results verifying the appropriateness of the latest member of AIMSTM measurement tools - the AIMSTM 32-193i. We analyze CD repeatability measurements on lines and spaces pattern. The influence of the improved optical performance and newly introduced interferometer stage will be verified. This paper highlights both the new Double Patterning functionality emulating double patterning processes and the influence of its critical parameters such as overlay errors and resist impact. Beneficial advanced illumination schemes emulating scanner illumination document the AIMSTM 32-193i to meet mask maker community's requirements for the 32nm node.

  9. Photoacoustic assessment of oxygen saturation: effect of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Kolios, Michael C.

    2013-03-01

    The simultaneous photoacoustic assessment of oxygen saturation and red blood cell aggregation is presented. Aggregation was induced on porcine red blood cells using Dextran-70 at multiple hematocrit levels. Samples were exposed to 750 nm and 1064 nm for each hematocrit and aggregate size in order to compute the oxygen saturation. As the size of the aggregate increased, the photoacoustic signal amplitude increased monotonically. The same trend was observed for increasing hematocrit at each aggregation level. The oxygen saturation of aggregated samples was 30% higher than non-aggregated samples at each hematocrit level. This suggests that the presence of red blood cell aggregates impairs the release of oxygen to the surrounding environment. Such a result has important implications for detecting red blood cell aggregation non-invasively and making clinical decisions based on the simulatenous assessment of oxygen saturation.

  10. Spectral correlates of a quasi-stable depolarization in barnacle photoreceptor following red light.

    PubMed

    Brown, H M; Cornwall, M C

    1975-07-01

    1. Illumination of B. eburneus photoreceptors with intense red light produces a membrane depolarization that persists in darkness. This quasistable depolarization (latch-up) can be terminated with green light. The phenomenon was investigated with electrophysiological, spectrochemical, and microspectrophotometric techniques. 2. Latch-up was associated with a stable inward current in cells with the membrane potential voltage-clamped at the resting potential in darkness. The stable current could only be elicited at wave-lengths greater than 580 nm. 3. Light-induced current (LIC) was measured at various wave-lengths in dark-adapted photoreceptors with the membrane voltage-clamped to the resting potential. The minimum number of photons required to elicit a fixed amount of LIC occurred at 540 nm, indicating that the photoreceptor is maximally sensitive to this wave-length of light. The photoreceptor was also sensitive to wave-lengths in the near-U.V. region of the spectrum (380-420 nm). 4. Steady red adapting light reduced the magnitude of the LIC uniformly at all wave-lengths except in the near-U.V. region of the spectrum; sensitivity was reduced less in this region. 5. The spectrum for termination of the stable inward current following or during red light was shifted to the blue (peak about 510 nm) compared to the peak for LIC (peak about 540 nm). 6. Absorbance of single cells prepared under bright, red light decreased maximally at 480 nm following exposure to wave-lengths of light longer than 540 nm. 7. A pigment extract of 1000 barnacle ocelli prepared under dim, red light had a maximum absorbance change at 480 nm when bleached with blue-gree light. 8. There was no evidence in the latter two experiments of photointerconversion of pigments with absorbance maxima at 480 and 540 nm. Rather, the maximum absorption of the bleaching products seemed to occur at wave-lengths shorter than 420 nm. 9. Since latch-up induction occurs at wave-lengths longer than 580 nm, it may

  11. The Compton Effect Red Shift

    NASA Astrophysics Data System (ADS)

    Kierein, John

    2004-05-01

    In 1923 (Phil Mag. 46, 897.) A. H. Compton noted that the Compton effect produces a red shift for all wavelengths when the scattered electron is free and not bound to an atom or molecule. He suggested that the red shift in the visible spectrum at the limb of the sun is larger than that at the center due to the Compton effect from the greater number of free electrons in the sun's atmosphere along the line of sight. Kierein and Sharp (1968, Solar Physics 3, 450) quantified this and showed a good correlation of red shift observations with the variation in the number of these electrons along the line of sight from center to limb and suggested that the quasar red shift and cosmological red shift could be similarly explained. Grote Reber mapped and measured the background hectometric radiation and found it to be unexpectedly bright. In 1968 (J. Franklin Inst. 285,1), while describing these measurements and maps he explained this brightness as being due to the Compton effect causing the cosmological red shift and accelerating intergalactic electrons. The resulting universe is static. The predicted red shift from the Compton effect deviates from Hubble's law only at large red shifts.

  12. Sub-50nm extreme ultraviolet holographic imaging

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Marconi, M. C.; Bartels, R. A.; Menoni, C. S.; Rocca, J. J.

    2009-05-01

    Imaging tools for nanoscicence involving sub-100-nm scale objects have been dominated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), and electron microscopy (SEM, TEM). These imaging techniques have contributed substantially to the development of nanoscience, providing a very powerful diagnostic tool capable of obtaining images with atomic resolution or as a subsidiary mechanism to arrange or modify surfaces also at the atomic scale [1,2]. However, some important problems have persisted traditional nanoscale imaging techniques. For example when scanning a nanometer size object that is not attached rigidly to a surface the interaction with the tip significantly perturbs the specimen degrading or eventually precluding the image acquisition. Electron microscopy often requires surface preparation, consisting of metallization of the sample to avoid surface charging. Additionally the metallization of the sample may alter its characteristics and also limits the resolution. In both cases, if the sample is large (millimeters in size) due to the limited field of view, the image obtained with these conventional methods is only representative of a very small portion of the object. Wavelength-limited holographic imaging using carbon nanotubes as the test object with a table-top extreme ultraviolet (EUV) laser operating at 46.9 nm will be discussed. The resolution achieved in this imaging is evaluated with a rigorous correlation image analysis and confirmed with the conventional knife-edge test. The nano-holography presented requires no optics or critical beam alignment; thus the hologram recording scheme is very simple and does not need special sample preparation. In holography, image contrast requires absorption to provide scattering by the illuminating beam. The EUV laser wavelength employed in this experiment (46.9nm) is advantageous because carbon based materials typically exhibit very small attenuation lengths, around 25 nm. The high absorption of

  13. Ultrafast Nonlinear Spectroscopy of Red Fluorescent Proteins

    NASA Astrophysics Data System (ADS)

    Konold, Patrick Eugene

    Red-emitting homologues (RFPs) of the native Green Fluorescent Protein (GFP) with emission wavelengths beyond 650 nm are desirable probes for in vivo imaging experiments. They offer the potential for deeper tissue penetration and lower background scatter given a cleaner spectral window. However, bioimaging applications are hindered by poor photophysics ( e.g. low fluorescence quantum yield, high photobleaching), which limits experimental resolution and represents a significant obstacle towards utilization for low copy-number, long-duration imaging applications. In this thesis, a variety of femtosecond nonlinear electronic spectroscopies were employed jointly with site-directed mutagenesis to investigate the photophysical properties of RFPs. In one study, the molecular mechanism of red emission was pursued in two notable RFPs, mPlum and TagRFP675. Solvation dynamics observed with time-resolved transient grating spectroscopy were interpreted with the aid of molecular dynamics simulations to indicate that their red-emission is correlated with the ability of specific chromophore-sidechain hydrogen-bonding interactions to interconvert between direct and water-mediated states. In a second set of studies, two-dimensional double quantum coherence spectroscopy was used to probe the electronic transitions of mPlum. It was discovered that it displayed a response distinctly different from an organic dye in bulk solvent. Modeling indicate of these spectra indicate the spectral features may be attributed to the existence of multiple high-lying (n>1) excited states. The results provide new insight into the electronic structure of these widely used fluorescent probes.

  14. High-power red VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Khalfin, Viktor; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Zhou, Delai; Sundaresh, Mukta; Zou, Wei-Xiong; Lu, Chien-Yao; Wynn, James D.; Ghosh, Chuni

    2013-03-01

    High-power red laser sources are used in many applications such as cosmetics, cancer photodynamic therapy, and DNA sequencing in the medical field, laser-based RGB projection display, and bar-code scanning to name a few. Verticalcavity surface-emitting lasers (VCSELs) can be used as high-power laser sources, as efficient single devices can be configured into high-power two-dimensional arrays and scaled into modules of arrays. VCSELs emit in a circular, uniform beam which can greatly reduce the complexity and cost of optics. Other advantages include a narrow and stable emission spectrum, low speckle of the far-field emission, and good reliability. However, developing efficient red VCSEL sources presents some challenges because of the reduced quantum-well carrier confinement and the increased Aluminum content (to avoid absorption) which increases thermal impedance, and also decreases the DBR index contrast resulting in increased penetration length and cavity losses. We have recently developed VCSEL devices lasing in the visible 6xx nm wavelength band, and reaching 30% power conversion efficiency. We fabricated high-power 2D arrays by removing the GaAs substrate entirely and soldered the chips on high thermal conductivity submounts. Such arrays have demonstrated several Watts of output power at room temperature, in continuous-wave (CW) operation. Several tens of Watts are obtained in QCW operation. Results and challenges of these high-power visible VCSEL arrays will be discussed.

  15. Scaling of laser-induced contamination growth at 266nm and 355nm

    NASA Astrophysics Data System (ADS)

    Ließmann, M.; Jensen, L.; Balasa, I.; Hunnekuhl, M.; Büttner, A.; Weßels, P.; Neumann, J.; Ristau, D.

    2015-11-01

    The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.

  16. An 885-nm Direct Pumped Nd:CNGG 1061 nm Q-Switched Laser

    NASA Astrophysics Data System (ADS)

    Li, Qi-Nan; Zhang, Tao; Feng, Bao-Hua; Zhang, Zhi-Guo; Zhang, Huai-Jin; Wang, Ji-Yang

    2014-07-01

    The 885 nm direct pumping method, directly into the 4F3/2 emitting level of Nd3+ ion, is used to a Nd:CNGG crystal to product passive Q-switched 1061 nm laser pulses, for the first time to the best of our knowledge. A maximum average output power of 1.16 W for 1061 nm Q-switched pulses and a repetition rate of 12.54 kHz are obtained. The pulse width is measured to be 24 ns and the peak power is 3.843 kW. A high-quality fundamental transverse mode can be observed owing to the reduction of the thermal effect for Nd:CNGG crystal by 885 nm direct pumping.

  17. Red Marks the Spot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hematite abundance index map helps geologists choose hematite-rich locations to visit around Opportunity's landing site. Blue dots equal areas low in hematite and red dots equal areas high in hematite.

    Why Hematite Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.

    The Plan Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a 'pre-trench' sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to 'dig' a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.

    Index Map Details The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.

    The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the

  18. Coral larvae settle at a higher frequency on red surfaces

    NASA Astrophysics Data System (ADS)

    Mason, B.; Beard, M.; Miller, M. W.

    2011-09-01

    Although chemical cues serve as the primary determinants of larval settlement and metamorphosis, light is also known to influence the behavior and the settlement of coral planulae. For example, Porites astreoides planulae settle preferentially on unconditioned red substrata. In order to test whether this behavior was a response to color and whether other species also demonstrate color preference, settlement choice experiments were conducted with P. astreoides and Acropora palmata. In these experiments, larvae were offered various types of plastic substrata representing three to seven different color choices. Both species consistently settled on red (or red and orange) substrata at a higher frequency than other colors. In one experiment, P. astreoides settled on 100% of red, plastic cable ties but failed to settle on green or white substrata. In a second experiment, 24% of larvae settled on red buttons, more than settled on six other colors combined. A. palmata settled on 80% of red and of orange cables ties but failed to settle on blue in one experiment and settled on a greater proportion of red acrylic squares than on four other colors or limestone controls in a second experiment. The consistency of the response across a variety of plastic materials suggests the response is related to long-wavelength photosensitivity. Fluorescence and reflectance spectra of experimental substrata demonstrated that the preferred substrata had spectra dominated by wavelengths greater than 550 nm with little or no reflection or emission of shorter wavelengths. These results suggest that some species of coral larvae may use spectral cues for fine-scale habitat selection during settlement. This behavior may be an adaptation to promote settlement in crustose coralline algae (CCA)-dominated habitats facilitating juvenile survival.

  19. Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.

    PubMed

    Seager, S; Turner, E L; Schafer, J; Ford, E B

    2005-06-01

    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation. PMID:15941381

  20. 1064 nm Nd:YAG laser intracavity pumped at 946 nm and sum-frequency mixing for an emission at 501 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Jin, G. Y.; Wang, J. G.; Yin, X. D.; Zhang, A. F.

    2010-05-01

    We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 809 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. Intracavity sum-frequency mixing at 946 and 1064 nm was then realized in a LBO crystal to reach the cyan range. We obtained a continuous-wave output power of 485 mW at 501 nm with a pump laser diode emitting 25.4 W at 809 nm.

  1. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  2. All-solid-state continuous-wave frequency doubling Nd:YAG/LBO laser with 8.2 W output power at 660 nm

    NASA Astrophysics Data System (ADS)

    Zhu, P. F.; Li, B.; Liu, W. Q.; Liu, T. H.; Fang, C. X.; Zhao, Y.; Zheng, Q.

    2012-11-01

    An efficient and compact red laser at 660 nm is generated by intracavity frequency doubling of continuous wave (CW) laser operation of a diode pumped Nd:YAG laser at 1319 nm under the condition of suppression the higher gain transition near 1064 and 1319 nm under the condition of suppression the higher gain transition near 1064 and 1338 nm. With 40 W diode pump power and a frequency doubling crystal LBO, as high as 8.6 W of CW output power at 660 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 21.5% and the output power stability in 8 h is better than 2.73%. To the best of our knowledge, this it the highest conversion efficiency of watt-level laser at 660 nm generated by intracavity frequency doubling of a diode end pumped Nd:YAG laser at 1319 nm.

  3. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  4. Fluorinated dissolution inhibitors for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Hamad, Alyssandrea H.; Bae, Young C.; Liu, Xiang-Qian; Ober, Christopher K.; Houlihan, Francis M.; Dabbagh, Gary; Novembre, Anthony E.

    2002-07-01

    Fluorinated dissolution inhibitors (DIs) for 157 nm lithography were designed and synthesized as part of an ongoing study on the structure/property relationships of photoresist additives. The problem of volatilization of small DI candidates was observed from matrices such as poly(methyl methacrylate) (PMMA) and poly(hexafluorohydroxy-isopropyl styrene) (PHFHIPS) during post-apply bake cycles using Fourier Transform Infrared Spectroscopy (FT-IR). To avoid this problem, low volatility fluorinated inhibitors were designed and synthesized. Three fluorinated DIs, perfluorosuberic acid bis-(2,2,2,-trifluoro-1-phenyl-1-trifluoromethyl-ethyl) ester (PFSE1), perfluorosuberic acid bis-[1-(4-trifluoromethyl-phenyl)-ethyl] ester (PFSE2) and a fluorinated phenylmethanediol diester (FPMD1), largely remained in a PHFHIPS film during the post-apply bake. The dissolution behavior of the two fluorinated diesters was studied and found to slow down the dissolution rate of PHFHIPS with inhibition factors of 1.9 and 1.6, respectively. The absorbance of PHFHIPS films containing 10 wt% of the diester inhibitors is 3.6 AU/micron compared with an absorbance of 3.3 AU/micron for the polymer itself. The absorbance of 10% FPMD1 in PHFHIPS was measured as 3.5 AU/micron compared with an absorbance of 3.4 AU/micron for the polymer itself. Thus, the non-volatility and transparency of the fluorinated inhibitors at 157 nm as well as their ability to reduce the development rate of fluorinated polymers make them suitable for use in a 157 nm resist system.

  5. Novel optical signatures of sub-3 nm rare earth sesquioxide nanocrystals.

    NASA Astrophysics Data System (ADS)

    Dickerson, James; Mahajan, Sameer

    2008-03-01

    Europium and terbium based sesquioxide nanomaterials, known for their characteristic red and green luminescence, respectively, have recently garnered much research attention due to their size-dependent optical properties. Here, we present systematic investigation of the size-dependent optical properties Eu2O3, Tb2O3, and Gd2O3:Eu^3+ / Tb^3+ nanocrystals (NCs) in the size range of 1-3 nm in diameter. We observe a new luminescence peak at 620 nm in Eu2O3 and Gd2O3:Eu^3+ NCs, which represents modulation of the ^7F2 transition in Eu^3+ ion. Intensity modulation with respect to the 612 nm is observed as a function of nanocrystal size. For the Tb2O3 NCs, a new luminescence signature at 548 nm characterizes modulation of the ^7F5 transition in Tb^3+ ion. In addition, we probe the effect of NC size on the luminescence efficiencies of the doped and pure sesquioxide NCs. The concentration quenching effect, which leads to low luminescence efficiencies in bulk, pure sesquioxides, is explored in sub-3 nm sesquioxides.

  6. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  7. Red blood cells, multiple sickle cells (image)

    MedlinePlus

    ... inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  8. Red blood cells, multiple sickle cells (image)

    MedlinePlus

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  9. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  10. 248nm silicon photoablation: Microstructuring basics

    NASA Astrophysics Data System (ADS)

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-01

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  11. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  12. Red or uncomfortable eye.

    PubMed Central

    Davey, C.; Hurwitz, B.

    1992-01-01

    1. A red, uncomfortable eye may be accompanied by other symptoms such as blurred, decreased, or double vision, haloes, photophobia, pain or discharge. 2. A careful history and brief systematic examination will sort out most problems. 3. Examine eyelids, the conjunctivae and corneas. Checking visual acuity is often important. 4. The most common underlying causes can usually be managed within general practice, though a few patients will require urgent eye assessment, or routine referral to ophthalmic outpatients. 5. The following are typical eye problems which require urgent referral: History of pain as opposed to discomfort, Trauma including foreign bodies, chemicals and suspected penetrating injury, Unexplained drop in visual acuity of two lines or more in a painful eye. Specific conditions: preseptal cellulitis, herpes simplex ulcer, scleritis, orbital cellulitis, herpes zoster, bacterial corneal ulcer, dacryocystitis. 6. The following are typical problems which may require routine referral: Persistence of the problem not relieved by simple measures, Recurrent disorders of uncertain diagnosis, Eyelid swelling such as chalazion, cysts, basal cell carcinoma, Gradual loss of vision, for example cataract, macular degeneration. PMID:1345157

  13. Hybrid polymer waveguide characterization for microoptical tools with integrated laser diode chips for optogenetic applications at 430 nm and 650 nm

    NASA Astrophysics Data System (ADS)

    Schwaerzle, Michael; Nehlich, Julian; Schwarz, Ulrich T.; Paul, Oliver; Ruther, Patrick

    2016-03-01

    Appropriate micro-optical tools are required to exploit the key advantages of optogenetics in neuroscience, i.e. optical stimulation and inhibition of neural tissue at high spatial as well as temporal resolutions, providing cell specificity and the opportunity to simultaneously record electrophysiological signals. Besides the need for minimally invasive probes mandatory for a reduced tissue damage, highly flexible or wireless interfaces are demanded for experiments with freely behaving animals. Both these technical system requirements are achieved by integrating miniaturized waveguides for light transmission combined with bare laser diode (LD) chips integrated directly into neural probes. This paper describes a system concept using integrated, side emitting LD chips directly coupled to miniaturized waveguides implemented on silicon (Si) substrates. It details the fabrication, assembly, and optical as well as electrical characterization of waveguides (WG) made from the hybrid polymer Ormorcere. The WGs were photolithographically patterned to have a cross-section of 20x15 μm2. Bare LD chips are flip-chip bonded to electroplated gold (Au) pads with +/-5 μm accuracy relative to the WG facets. Transmitted radiant fluxes for blue (430 nm, (Al,In)GaN) and red (650 nm, AlGaInP) LDs are measured to be 150 μW (ID = 35 mA, 5% duty cycle) and 4.35 μW (ID = 225 mA, 0.5% duty cycle), respectively. This corresponds to an efficiency of the coupled and transmitted light of 44% for the red LDs. Long term measurements for 24 h using these systems with red LDs showed a decrease of the radiant flux of about 4% caused by LD aging at stable WG transmission properties. WGs immersed into Ringer's solution showed no significant change of their optical transmission properties after four weeks of exposure to the ionic solution.

  14. Efficient red electroluminescence from devices having multilayers of a europium complex

    NASA Astrophysics Data System (ADS)

    Hu, Wenping; Matsumura, Michio; Wang, Mingzhao; Jin, Linpei

    2000-12-01

    In order to get red electroluminescence from a europium (Eu) complex with high efficiency, a hole-injection layer was inserted between the Eu-complex layer and an indium-tin-oxide electrode, and a hole-blocking layer was inserted between the Eu-complex and electron-transporting layers. To further improve the efficiency, devices having multiple-stacked Eu-complex (2.5 nm)/hole blocking (2.5 nm) units were fabricated. By stacking six units, the maximal luminance and emission efficiency of the red emission were increased to more than twice that from a device with a single Eu-complex layer.

  15. Resolved Sideband Spectroscopy and Cooling of Strontium in a 532-nm Optical Lattice

    NASA Astrophysics Data System (ADS)

    Aman, James; Hill, Joshua; Killian, T. C.

    2016-05-01

    Resolved sideband cooling is a powerful and well established technique for driving ultracold atoms in optical lattices to the motional ground state of individual lattice sites. Here we present spectroscopy of the narrow 5s21S0 --> 5 s 5 p3P1 transition for neutral strontium-84 in a 532nm optical lattice. Resolved red- and blue-detuned sidebands are observed corresponding to changes in the motional state in the lattice sites. Driving the red sideband, we demonstrate cooling into the ground state, which increases the initial phase-space density before forced evaporative cooling. This is a promising technique for improving the production of strontium quantum degenerate gases. Research supported by the Robert A, Welch Foundation under Grant No. C-1844.

  16. 1085 nm Nd:YVO4 laser intracavity pumped at 914 nm and sum-frequency mixing to reach cyan laser at 496 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Xia, J.; Yin, X. D.; Wang, D.; Zhang, X. H.

    2010-01-01

    We present for the first time a Nd:YVO4 laser at 1085 nm intracavity pumped at 914 nm by a Nd:YVO4 laser. We obtained intracavity powers of 57 W at 914 nm and 62 W at 1085 nm. Using type-I critical phase-matching LiB3O5 (LBO) crystal, a cyan laser at 496 nm is obtained by 914 and 1085 nm intracavity sum-frequency mixing. The maximum laser output power of 142 mW is obtained when an incident pump laser of 19.6 W is used.

  17. Red ginseng and cancer treatment.

    PubMed

    Wang, Chong-Zhi; Anderson, Samantha; DU, Wei; He, Tong-Chuan; Yuan, Chun-Su

    2016-01-01

    The ginseng family, including Panax ginseng (Asian ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (notoginseng), is commonly used herbal medicine. White ginseng is prepared by air-drying after harvest, while red ginseng is prepared by a steaming or heating process. The anticancer activity of red ginseng is significantly increased, due to the production of active anticancer ginsenosides during the steaming treatment, compared with that of white ginseng. Thus far, anticancer studies have been mostly focused on Asian ginseng. In this article, we review the research progress made in the anticancer activities of red Asian ginseng, red American ginseng and red notoginseng. The major anticancer mechanisms of red ginseng compounds include cell cycle arrest, induction of apoptosis/paraptosis, and inhibition of angiogenesis. The structure-function relationship analysis has revealed that the protopanaxadiol group ginsenosides have more potent effects than the protopanaxatriol group. Sugar molecules in ginsenosides inversely impact the antiproliferative potential of these compounds. In addition, ginsenoside stereoselectivity and double bond position also influence the anticancer activity. Future studies should focus on characterizing active red ginseng derivatives as potential anticancer drugs. PMID:26850342

  18. Light spectrum regulates cell accumulation during daytime in the raphidophyte Chattonella antiqua causing noxious red tides.

    PubMed

    Shikata, Tomoyuki; Matsunaga, Shigeru; Kuwahara, Yusuke; Iwahori, Sho; Nishiyama, Yoshitaka

    2016-07-01

    Most marine raphidophyte species cause noxious red tides in temperate coastal areas around the world. It is known that swimming abilities enable raphidophytes to accumulation of cells and to actively acquire light at surface layers and nutrients over a wide depth range. However, it remains unclear how the swimming behavior is affected by environmental conditions, especially light condition. In the present study, we observed the accumulation of the harmful red-tide raphidophyte Chattonella antiqua under various light conditions during the daytime in the laboratory. When exposed to ultraviolet-A/blue light (320-480nm) or red light (640-680nm) from above, cells moved downward. In the case of blue light (455nm), cells started to swim downward after 5-15min of irradiation at a photon flux density≥10μmolm(-2)s(-1). When exposed to monochromatic lights (400-680nm) from the side, cells moved away from the blue light source and then descended, but just moved downward under red light. However, mixing of green/orange light (520-630nm) diminished the effects of blue light. When exposed to a mixture of 30μmolm(-2)s(-1) of blue light (440nm) and ≥6μmolm(-2)s(-1) of yellow light (560nm) from above, cells did not move downward. These results indicate that blue light induces negative phototaxis and ultraviolet-A/blue and red lights induce descending, and green/orange light cancels out their effects in C. antiqua. PMID:27107332

  19. Romantic red: red enhances men's attraction to women.

    PubMed

    Elliot, Andrew J; Niesta, Daniela

    2008-11-01

    In many nonhuman primates, the color red enhances males' attraction to females. In 5 experiments, the authors demonstrate a parallel effect in humans: Red, relative to other achromatic and chromatic colors, leads men to view women as more attractive and more sexually desirable. Men seem unaware of this red effect, and red does not influence women's perceptions of the attractiveness of other women, nor men's perceptions of women's overall likeability, kindness, or intelligence. The findings have clear practical implications for men and women in the mating game and, perhaps, for fashion consultants, product designers, and marketers. Furthermore, the findings document the value of extending research on signal coloration to humans and of considering color as something of a common language, both within and across species. PMID:18954199

  20. Luminescence Properties of Eu2+-Doped Red-Emitting Sr-Containing Sialon Phosphor

    NASA Astrophysics Data System (ADS)

    Fukuda, Yumi; Okada, Aoi; Keiko Albessard, Ariane

    2012-06-01

    We developed a Eu2+-doped red-emitting Sr-containing sialon phosphor Sr2Si7Al3ON13:Eu2+ that could play a very important role in high color rendering of white light-emitting diodes (LEDs) for solid-state lighting. It realizes both high efficiency and small thermal quenching under excitation by blue light, which are essential for operation in a high-temperature atmosphere. It shows a highly efficient red luminescence whose external quantum efficiency reaches 73% for 450 nm excitation. These features show that this red-emitting phosphor has high potential for application to white LEDs.

  1. Quenched carbonaceous composite - Fluorescence spectrum compared to the extended red emission observed in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Narisawa, Takatoshi; Asano, Yoichi; Iijima, Yutaka; Onaka, Takashi; Tokunaga, Alan T.

    1992-01-01

    The photoluminescence (fluorescence) of a film of the laboratory-synthesized quenched carbonaceous composite (filmy QCC) is shown to have a single broad emission feature with a peak wavelength that varies from 670 to 725 nm, and coincides with that of the extended red emission observed in reflection nebulae. The rapid decay of the filmy QCC red fluorescence in air and of the stable blue fluorescence of the filmy QCC dissolved in liquid Freon suggests that the red fluorescence originates from the interaction of active chemical species and aromatic components in the filmy QCC. A material similar in nature to that of the filmy QCC may be a major component of interstellar dust.

  2. Electrically-pumped 850-nm micromirror VECSELs.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-02-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  3. Red Meat and Colorectal Cancer

    PubMed Central

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide. More than half of cases occur in more developed countries. The consumption of red meat (beef, pork, lamb, veal, mutton) is high in developed countries and accumulated evidence until today demonstrated a convincing association between the intake of red meat and especially processed meat and CRC risk. In this review, meta-analyses of prospective epidemiological studies addressed to this association, observed link of some subtypes of red meat with CRC risk, potential carcinogenic compounds, their mechanisms and actual recommendations of international guidelines are presented. PMID:26779313

  4. Red Meat and Colorectal Cancer.

    PubMed

    Aykan, Nuri Faruk

    2015-02-10

    Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide. More than half of cases occur in more developed countries. The consumption of red meat (beef, pork, lamb, veal, mutton) is high in developed countries and accumulated evidence until today demonstrated a convincing association between the intake of red meat and especially processed meat and CRC risk. In this review, meta-analyses of prospective epidemiological studies addressed to this association, observed link of some subtypes of red meat with CRC risk, potential carcinogenic compounds, their mechanisms and actual recommendations of international guidelines are presented. PMID:26779313

  5. Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Hastie, Jennifer E.; Morton, Lynne G.; Kemp, Alan J.; Dawson, Martin D.; Krysa, Andrey B.; Roberts, John S.

    2006-08-01

    An optically pumped red vertical-external-cavity surface-emitting laser with an AlInGaP gain region produced more than 1W of continuous-wave output power at a wavelength of 675nm. Frequency doubling in a beta-barium borate crystal placed at an intracavity beam waist generated 120mW of total output power at 338nm. Using an intracavity birefringent filter a second harmonic tuning range of ˜5nm was achieved.

  6. Diode pumped Pr3+:LiYF4-BBO ultraviolet laser at 320 nm

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Liu, X. H.; Wu, J. B.; Zhang, X.; Li, Y. L.

    2012-03-01

    A diode pumped Pr3+:LiYF4 laser at 639.5 nm has been demonstrated. With an incident pump power of 920 mW, the maximum red output power was 272 mW. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum ultraviolet power of 23 mW by using a β-BaB2O4 (BBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous-wave ultraviolet generation by intracavity frequency doubling Pr3+:LiYF4 laser.

  7. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  8. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  9. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  10. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  11. Red Tide off Texas Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  12. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  13. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  14. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore.

    PubMed

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation. PMID:15751884

  15. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation.

  16. Unusual red shift of the sensor while detecting the presence of Cd2+ in aqueous environment.

    PubMed

    Sarkar, Santu; Shunmugam, Raja

    2013-08-14

    A norbornene derived 8-hydroxyquinoline (N8HQ) is designed and synthesized. A "turn-on" ratiometric fluorescent response is observed for Cd(2+) in aqueous solution upon binding with N8HQ with a characteristic huge red shift of 164 nm. A lowest detection limit of 1.6 nM of Cd(2+) is achieved in the presence of other heavy metals. PMID:23879449

  17. Surface micromachined MEMS tunable VCSEL at 1550 nm with > 70 nm single mode tuning

    NASA Astrophysics Data System (ADS)

    Gierl, Christian; Gründl, Tobias; Debernardi, Pierluigi; Zogal, Karolina; Davani, Hooman A.; Grasse, Christian; Böhm, Gerhard; Meissner, Peter; Küppers, Franko; Amann, Markus-Christian

    2012-03-01

    We present surface micro-machined tunable vertical-cavity surface-emitting lasers (VCSELs) operating around 1550nm with tuning ranges up to 100nm and side mode suppression ratios beyond 40 dB. The output power reaches 3.5mW at 1555 nm. The electro-thermal and the electro-statical actuation of a micro electro-mechanical system (MEMS) movable distributed Bragg reflector (DBR) membrane increases/decreases the cavity length which shifts the resonant wavelength of the cavity to higher/lower values. The wavelength is modulated with 200 Hz/120 kHz. Both tuning mechanisms can be used simultaneously within the same device. The newly developed surface micro-machining technology uses competitive dielectric materials for the MEMS, deposited with low temperature plasma enhanced chemical vapor deposition (PECVD), which is cost effective and capable for on wafer mass production.

  18. Spatially Controlled Fabrication of Brightly Fluorescent Nanodiamond-Array with Enhanced Far-Red Si-V Luminescence

    PubMed Central

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2014-01-01

    We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286

  19. Ultraviolet continuous-wave laser source at 205 nm for hydrogen spectroscopy

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Nez, François; Julien, Lucile; Biraben, François

    This paper reports on the generation of 15 mW of continuous narrow-band laser source at 205 nm. The infra-red light source provided by a Titanium-Sapphire (TiSa) laser is mixed with the fourth harmonic of a Nd:YVO4 laser by the use of a β-barium borate (BBO) non-linear crystal. This highly reliable and powerful ultraviolet (UV) source is an ideal tool for the 1S-3S hydrogen spectroscopy. Moreover, the wide tunability of the TiSa laser combined with this experimental set up makes the generation of bright deep ultra-violet (D-UV) sources possible. In particular, we plan to produce a 194 nm continuous light beam which is necessary to perform the 1S-4S transition in hydrogen.

  20. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    PubMed

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm. PMID:26367654

  1. Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation.

    PubMed

    Wu, Duanduan; Peng, Jian; Cai, Zhiping; Weng, Jian; Luo, Zhengqian; Chen, Nan; Xu, Huiying

    2015-09-01

    Gold nanoparticle (GNP) possesses saturable absorption bands in the visible region induced by surface plasmon resonance (SPR). We firstly applied the GNP as a visible saturable absorber (SA) for the red Q-switched pulse generation. The GNPs were embedded in polyvinyl alcohol (PVA) for film-forming and inserted into a praseodymium (Pr(3+))-doped fiber laser cavity to achieve 635 nm passive Q-switching. The visible 635 nm Q-switched fiber laser has a wide range of pulse-repetition-rate from 285.7 to 546.4 kHz, and a narrow pulse width of 235 ns as well as the maximum output power of 11.1 mW. The results indicate that the GNPs-based SA is available for pulsed operation in the visible spectral range. PMID:26368498

  2. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy.

    PubMed

    Lupoi, Jason S; Smith, Emily A

    2012-08-01

    Biomass representing different classes of bioenergy feedstocks, including woody and herbaceous species, was measured with 1064 nm Raman spectroscopy. Pine, oak, poplar, kenaf, miscanthus, pampas grass, switchgrass, alfalfa, orchard grass, and red clover were included in this study. Spectral differences have been identified with an emphasis on lignin guaiacyl and syringyl monomer content and carotenoid compounds. The interpretation of the Raman spectra was correlated with (13)C-nuclear magnetic resonance cross-polarization/magic-angle spinning spectra of select biomass samples. Thioacidolysis quantification of guaiacyl and syringyl monomer composition and the library of Raman spectra were used as a training set to develop a principal component analysis model for classifying plant samples and a principal component regression model for quantifying lignin guaiacyl and syringyl composition. Raman spectroscopy with 1064 nm excitation offers advantages over alternative techniques for biomass characterization, including low spectral backgrounds, higher spectral resolution, short analysis times, and nondestructive analyses. PMID:22800567

  3. 615 nm GaInNAs VECSEL with output power above 10 W.

    PubMed

    Kantola, Emmi; Leinonen, Tomi; Penttinen, Jussi-Pekka; Korpijärvi, Ville-Markus; Guina, Mircea

    2015-08-10

    A high-power optically-pumped vertical-external-cavity surface-emitting laser (VECSEL) generating 10.5 W of cw output power at 615 nm is reported. The gain mirror incorporated 10 GaInNAs quantum wells and was designed to have an emission peak in the 1230 nm range. The fundamental emission was frequency doubled to the red spectral range by using an intra-cavity nonlinear LBO crystal. The maximum optical-to-optical conversion efficiency was 17.5%. The VECSEL was also operated in pulsed mode by directly modulating the pump laser to produce light pulses with duration of ~1.5 µs. The maximum peak power for pulsed operation (pump limited) was 13.8 W. This corresponded to an optical-to-optical conversion efficiency of 20.4%. PMID:26367883

  4. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  5. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  6. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  7. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

    PubMed Central

    1993-01-01

    The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potentials that favored the movement of ruthenium red into the channel conduction pore produced stronger block. The half dissociation constants (Kd) for ruthenium red block of the 500 pS channel were 0.22, 0.38, and 0.62 microM, at +100, +80, and +60 mV, respectively. Multiple ruthenium red molecules seemed to be involved in the inhibition, because a Hill coefficient of close to 2 was obtained from the dose response curve. The half dissociation constant of ruthenium red block of the lower conductance state of the ryanodine activated channel (250 pS) was higher (Kd = 0.82 microM at +100 mV), while the Hill coefficient remained approximately the same (nH = 2.7). Ruthenium red block of the channel was highly asymmetric, as trans ruthenium red produced a different blocking effect. The blocking and unblocking events (induced by cis ruthenium red) can be resolved at the single channel level at a cutoff frequency of 2 kHz. The closing rate of the channel in the presence of ruthenium red increased linearly with ruthenium red concentration, and the unblocking rate of the channel was independent of ruthenium red concentrations. This suggests that ruthenium red block of the channel occurred via a simple blocking mechanism. The on-rate of ruthenium red binding to the channel was 1.32 x 10(9) M-1 s-1, and the off-rate of ruthenium red binding was 0.75 x 10(3) s-1 at +60 mV, in the presence of 200 nM ryanodine. The two related compounds, 4APd and 4APt, blocked the channel in a similar way to that

  8. Online monitoring of red meat color using hyperspectral imaging.

    PubMed

    Kamruzzaman, Mohammed; Makino, Yoshio; Oshita, Seiichi

    2016-06-01

    A hyperspectral imaging system in the spectral range of 400-1000 nm was tested to develop an online monitoring system for red meat (beef, lamb, and pork) color in the meat industry. Instead of selecting different sets of important wavelengths for beef, lamb, and pork, a set of feature wavelengths were selected using the successive projection algorithm for red meat colors (L*, a*, b) for convenient industrial application. Only six wavelengths (450, 460, 600, 620, 820, and 980 nm) were further chosen as predictive feature wavelengths for predicting L*, a*, and b* in red meat. Multiple linear regression models were then developed and predicted L*, a*, and b* with coefficients of determination (R(2)p) of 0.97, 0.84, and 0.82, and root mean square error of prediction of 1.72, 1.73, and 1.35, respectively. Finally, distribution maps of meat surface color were generated. The results indicated that hyperspectral imaging has the potential to be used for rapid assessment of meat color. PMID:26874594

  9. Dipyrrolylquinoxaline difluoroborates with intense red solid-state fluorescence.

    PubMed

    Yu, Changjiang; Hao, Erhong; Li, Tingting; Wang, Jun; Sheng, Wanle; Wei, Yun; Mu, Xiaolong; Jiao, Lijuan

    2015-08-21

    A set of organic fluorescent dyes of dipyrrolylquinoxalines (PQs ) and their BF2 complexes (BPQs ) were synthesized from commercial reagents, and were characterized by their X-ray structural analysis, and optical and electrochemical properties. BPQs showed intense broad absorption in the visible region in the solution-state. In comparison with that of PQs , there is an over 110 nm red-shift of the absorption maximum in the BPQs (up to 583 nm). Interestingly, dyes all exhibit red solid-state fluorescence with moderate to high fluorescence quantum yields except for PQ which showed bright yellow solid-state fluorescence. X-ray structures of BPQs showed the planar structure of quinoxaline with one pyrrole unit via the BF2 chelation and the almost perpendicular orientation of the uncoordinated pyrrole to the NBN core plane (the dihedral angle of 70-73°). The extended π-conjugation was in good agreement with the observed red-shift of the spectra. These dyes formed well-ordered intermolecular packing structures via the intermolecular hydrogen bonding between the N atoms of quinoxaline moieties and the NH units of adjacent pyrroles. The lack of π-π stacking in their crystal packing structures may explain the interestingly intense solid-state fluorescence of these dyes. PMID:26152609

  10. 650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Rong; Teng, Jing-Hua; Chua, Soo-Jin; Foo, Boon-Chin; Wang, Yan-Jun; Yuan, Hai-Rong; Yuan, Shu

    2003-07-01

    Using tertiarybutylphosphine (TBP) as phosphorus precursor, high-quality AlGaInP epilayers and AlGaInP/GaInP multiple-quantum-well (MQW) structures have been grown by metalorganic chemical vapor deposition. The photoluminescence results indicate that the AlGaInP materials are as good as those grown using PH3 in terms of optical quality. Finally, AlGaInP MQW red laser structures have been grown, and the electrically pumped AlGaInP red lasers grown by TBP have been demonstrated with the emission wavelength of 647 nm, indicating that TBP can be used to grow high-quality AlGaInP epilayers and AlGaInP-based red lasers, which presently is dominated by the highly toxic gas source PH3.

  11. Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED.

    PubMed

    Zhong, Ping; He, Guoxing; Zhang, Minhao

    2012-09-10

    The correlated color temperature (CCT) tunable white-light LED cluster, which consists of direct-emission blue and red LEDs as well as phosphor-conversion (PC) LEDs packaged by combining green and orange phosphors with a blue LED die, has been obtained by nonlinear program for maximizing luminous efficacy (LE) of radiation (LER) under conditions of both color rendering index (CRI) and special CRI of R9 for strong red above 90 at CCTs of 2700 K to 6500 K. The optimal peak wavelengths of blue LED, red LED, blue LED die, green and orange phosphors are 465 nm, 628 nm, 452 nm, 530 nm and 586 nm, respectively. The real CCT tunable PC/red/blue LED cluster with CRIs of 90~96, R9s of 90~96, CQSs of 89~94, LERs of 303~358 lm/W, and LEs of 105~119 lm/W has been realized at CCTs of 2722 K to 6464 K. The deviation of the peak wavelength should be less than ± 5 nm for blue LED die, ± 1 nm for red LED, and ± 2 nm for blue LED to achieve the PC/R/B LED cluster with high optical performance. PMID:23037535

  12. 39 CFR 259.2 - Red Cross.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Red Cross. 259.2 Section 259.2 Postal Service....2 Red Cross. (a) General. The Postal Service and the Red Cross cooperate to maintain communication... those caused by enemy action. (b) Role of Postal Service. The Postal Service and the Red Cross...

  13. 39 CFR 259.2 - Red Cross.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Red Cross. 259.2 Section 259.2 Postal Service....2 Red Cross. (a) General. The Postal Service and the Red Cross cooperate to maintain communication... those caused by enemy action. (b) Role of Postal Service. The Postal Service and the Red Cross...

  14. 39 CFR 259.2 - Red Cross.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Red Cross. 259.2 Section 259.2 Postal Service....2 Red Cross. (a) General. The Postal Service and the Red Cross cooperate to maintain communication... those caused by enemy action. (b) Role of Postal Service. The Postal Service and the Red Cross...

  15. 39 CFR 259.2 - Red Cross.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Red Cross. 259.2 Section 259.2 Postal Service....2 Red Cross. (a) General. The Postal Service and the Red Cross cooperate to maintain communication... those caused by enemy action. (b) Role of Postal Service. The Postal Service and the Red Cross...

  16. Galaxy Zoo: passive red spirals

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Mosleh, Moein; Romer, A. Kathy; Nichol, Robert C.; Bamford, Steven P.; Schawinski, Kevin; Lintott, Chris J.; Andreescu, Dan; Campbell, Heather C.; Crowcroft, Ben; Doyle, Isabelle; Edmondson, Edward M.; Murray, Phil; Raddick, M. Jordan; Slosar, Anže; Szalay, Alexander S.; Vandenberg, Jan

    2010-06-01

    We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up ~6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M* < 1010 Msolar), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a

  17. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  18. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  19. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  20. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  1. Photochemical Formation of Hydroxyl Radical in Red-Soil-Polluted Seawater in Okinawa, Japan -Potential Impacts on Marine Organisms

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Hamdun, A. M.; Okada, K.; Kuroki, Y.; Ikota, H.; Fujimura, H.; Oomori, T.

    2004-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into coastal ocean (locally termed as red-soil-pollution) in the north of Okinawa Island, Japan. In an attempt to understand the impacts of red soil on oxidizing power of the seawater, we studied formation of hydroxyl radical (OH radical), the most potent oxidant in the environment, in red-soil-polluted seawaters, using 313 nm monochromatic light. Photo-formation rates of OH radical showed a good correlation with dissolved iron concentrations (R = 0.98). The major source of OH radical was found to be the Fenton reaction (a reaction between Fe(II) and HOOH). The un-filtered red-soil-polluted seawater samples exhibited faster OH radical formation rates than the filtered samples, suggesting that iron-bearing red soil particles enhanced formation of OH radical.

  2. Red tide detection by means of peak shift of remote sensing reflectance and possibility of red tide detection with polarized radiance measurements

    NASA Astrophysics Data System (ADS)

    Arai, Kohei; Terayama, Yasunori

    2010-11-01

    A method for detection of red tide by means of remote sensing reflectance peak shift is proposed together with suspended solid influence eliminations. Although remote sensing reflectance peak is situated at around 550nm for sea water without suffered from red tide, the peak is shifted to the longer wavelength when sea water is suffered from red tide. Based on this fact, it is capable to detect red tide using high wavelength resolution of spectral-radiometers. The proposed system uses web camera with band-pass filter on the optics surface. Acquired imagery data can be transmitted through wireless LAN to Internet terminal and can be archived in server through Internet. Validity of the proposed method is confirmed with the system deployed in Ariake Sea which is situated in northern Kyushu, Japan. Also a method for red tide detection with satellite imagery data is attempted with suspended solid influence eliminations. Furthermore, a possibility of red tide detection with polarized radiance measurements is discussed through polarization camera derived sue surface imagery data, in particular, for non-spherical shape of red tide.

  3. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 9.6 W output power at 672 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2012-12-01

    An efficient and compact red laser at 672 nm is generated by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser at 1344 nm under the condition of suppression the higher gain transition near 1064 nm. With 38 W diode pump power and a frequency doubling crystal LBO, as high as 9.6 W of CW output power at 672 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 25.3% and the output power stability in 8 h is better than 2.38%. To the best of our knowledge, this it the highest conversion efficiency of watt-level laser at 672 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1344 nm.

  4. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 9.6 W output power at 458 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-02-01

    An efficient and compact red laser at 458 nm is generated by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser at 916 nm under the condition of suppression the higher gain transition near 1064 nm. With 30 W diode pump power and a frequency doubling crystal LBO, as high as 9.6 W of CW output power at 458 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 32.0% and the output power stability in 8 hours is better than 2.35%. To the best of our knowledge, this it the highest conversion efficiency of watt-level laser at 458 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 916 nm.

  5. Far-red light photoacclimation: Chromophorylation of FR induced α- and β-subunits of allophycocyanin from Chroococcidiopsis thermalis sp. PCC7203.

    PubMed

    Xu, Qian-Zhao; Han, Jia-Xin; Tang, Qi-Ying; Ding, Wen-Long; Miao, Dan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2016-09-01

    Cyanobacterial light-harvesting complexes, phycobilisomes, can undergo extensive remodeling under varying light conditions. Acclimation to far-red light involves not only generation of red-shifted chlorophylls in the photosystems, but also induction of additional copies of core biliproteins that have been related to red-shifted components of the phycobilisome (Gan et al., Life 5, 4, 2015). We are studying the molecular basis for these acclimations in Chroococcidiopsis thermalis sp. PCC7203. Five far-red induced allophycocyanin subunits (ApcA2, ApcA3, ApcB2, ApcB3 and ApcF2) were expressed in Escherichia coli, together with S-type chromophore-protein lyases and in situ generated chromophore, phycocyanobilin. Only one subunit, ApcF2, shows an unusual red-shift (λAmax~675nm, λFmax~698nm): it binds the chromophore non-covalently, thereby preserving its full conjugation length. This mechanism operates also in two Cys-variants of the induced subunits of bulky APC. All other wild-type subunits bind phycocyanobilin covalently to the conventional Cys-81 under catalysis of the lyase, CpcS1. Although three of them also show binding to additional cysteines, all absorb and fluoresce similar to conventional APC subunits (λAmax~610nm, λFmax~640nm). Another origin of red-shifted complexes was identified, however, when different wild-type α- and β-subunits of the far-red induced bulky APC were combined in a combinatorial fashion. Strongly red-shifted complexes (λFmax≤722nm) were formed when the α-subunit, PCB-ApcA2, and the β-subunit, PCB-ApcB2, were generated together in E. coli. This extreme aggregation-induced red-shift of ~90nm of covalently bound chromophores is reminiscent, but much larger, than the ~30nm observed with conventional APC. PMID:27368145

  6. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    PubMed

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region. PMID:27179173

  7. [Using extraction of red edge position to validate consistency of hyperspectral imaging and non-imaging data].

    PubMed

    Wang, Da-Cheng; Zhang, Dong-Yan; Zhao, Jin-Ling; Li, Cun-Jun; Zhu, Da-Zhou; Huang, Wen-Jiang; Li, Yu-Fei; Yang, Xiao-Dong

    2011-09-01

    Using Pushbroom imaging spectrometer (PIS) and FieldSpec ProFR2500 (ASD), spectral reflectances of winter wheat and maize at different stages were collected synchronously. In order to validate the reliability of imaging spectral data, the red edge position of hyperspectral data for PIS and ASD were extracted by different algorithms, respectively. The following results were obtained: (1) The original spectrum of both instruments had high inosculation in red light region (670-740 nm); (2) With the spectra collected under laboratory condition (maize leaf), the extracted red edge position was is concentrated between 700 and 720 nm for the two instruments; (3) With the spectra collected undre field condition (wheat leaf), the extracted red edge position for PIS and ASD were different, the red edge position of PIS data was in 760 nm, while it was in 720 nm for ASD data. The main reason might be that the imaging spectral data were influenced by oxygen absorbtion; (4) the red edge rangeability of PIS and ASD were different, but the trends were the same. The above results could provide some references for hyperspectral imaging data's extensive application. PMID:22097847

  8. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  9. RED: a red-cell antibody identification expert module.

    PubMed

    Smith, J W; Svirbely, J R; Evans, C A; Strohm, P; Josephson, J R; Tanner, M

    1985-06-01

    We describe a software module in an expert system RED, which interprets data related to red cell antibody identification. There are three portions to this module: the problem-solving component, which incorporates the knowledge required for antibody identification as a hierarchy of programs. The programs in the hierarchy organize within themselves small pieces of knowledge represented in the form of production rules, which are capable of making judgments concerning a specific hypothesis; an intelligent data base for storage of patient data, red cell attributes, and test results; the "overview critic" portion, which combines the atomic hypotheses judged favorably by the antibody programs into a unified judgment concerning the case. Overview makes the decision to terminate processing with a conclusion about which antibodies are actually present and what specific further tests need to be performed to resolve any remaining ambiguities. PMID:3840517

  10. Mosaic of Jupiter's Great Red Spot (in the near infrared)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the near-infrared (756 nm) filter of the Galileo imaging system. The image, taken approximately 10 hours after the first mosaic of the Great Red Spot, is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over an 80 second interval beginning at universal time 14 hours, 30 minutes, 23 seconds, on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    PubMed

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of <25 nm hydrodynamic size and their application as fluorescent cell labels. Hydrophobic carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes. PMID:27011336

  12. Rational and random mutagenesis of firefly luciferase to identify an efficient emitter of red bioluminescence

    NASA Astrophysics Data System (ADS)

    Branchini, Bruce R.; Southworth, Tara L.; Khattak, Neelum F.; Murtiashaw, Martha H.; Fleet, Sarah E.

    2004-06-01

    Firefly luciferase, which emits yellow-green (557 nm) light, and the corresponding cDNA have been used successfully as a bioluminescence reporter of gene expression. One particularly exciting application is in the area of in vivo bioluminescence imaging. Our interest is in developing improved reagents by identifying Photinus pyralis luciferase mutants that efficiently emit red bioluminescence. In this way, the proven advantages of the P. pyralis protein can be combined with the potential advantages of a red-shifted emitter. Using site-directed mutagenesis techniques, we have identified many mutants emitting red bioluminescence. Unfortunately, these enzymes generally have significantly decreased bioluminescence activity. Interestingly, we discovered a mutation, Ile351Ala, that produced a moderate 16 nm red-shift, while maintaining excellent bioluminescence activity. We then undertook a random mutagenesis approach to identify luciferase mutants that emit further red-shifted bioluminescence with minimal loss of activity. Libraries of mutants were created using an error-prone PCR method and the Ile351Ala luciferase mutant as the template DNA. The libraries were screened by in vivo bacterial assays and the promising mutants were purified to enable accurate determination of bioluminescence emission spectra and total bioluminescence activity. We will report the characterization results, including the identification of the randomly altered amino acids, of several mutants that catalyze bioluminescence with emission maxima of approximately 600 nm.

  13. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1977-01-01

    Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.

  14. Silica-on-silicon based 650/1550nm wavelength Mux/Demux for swept source OCT

    NASA Astrophysics Data System (ADS)

    Wu, Zhongwei; Zhou, Hui; Zhang, Xuan; Wan, Suiren; Sun, Xiaohan

    2015-02-01

    We propose a 650/1550nm wavelength Mux/DeMux for SS-OCT system based on silica-on-silicon (SoS), in which mixing red/infrared lightbeams can be fully separated at low insert loss through special cascaded multimode interference (MMI) structure. Each independent lightbeam is entered into its respective channel by selecting proper width and length of the MMI. By using of Finite Difference Beam Propagation Method (FD-BPM), the Mux/DeMux is optimally designed in size of 1×0.1cm2, working at 650nm and 1550nm simultaneously. The results show the degrees of separation between two lightwaves are super high, loss of infrared light is less than 0.5dB and 1dB, and its output power stability is less than 0.25dB and 0.8dB, in 1510nm -1570nm and in 1500nm -1600nm, respectively. The Mux/DeMux can be used in SS-OCT PIC based on SoS.

  15. White and Red Light Photoluminescence of ZnS:Eu3+ - CMC Nanophosphors

    NASA Astrophysics Data System (ADS)

    Ikorkya, Ahemen; de, Dilip; Meludu, Osita; Bruno, V.

    2015-03-01

    White and red photoluminescence based on europium-doped zinc sulfide nanocrystals capped with sodium carboxymethyl cellulose (ZnS: Eu3+ - CMC) was synthesized using precipitation technique with Eu3+ ions doping concentrations of 1 mol% and 5 mol%. Some portions of the doped samples were annealed at 300 °C in a sulfur-rich atmosphere. All samples show cubic (zinc blende) structure with crystal sizes; 2.56 nm and 2.91 nm, for the as-synthesized samples, 4.35 nm and 3.65 nm for thermally treated samples, respectively. The as-synthesized samples have equal energy band gap of 4.2 eV, but decreased to 3.76 eV and 3.81 eV after heat treatment. Photoluminescence studies indicate defect emission bands and Eu3+ ion lines for the as-synthesized samples. The as-synthesized samples gave pure orange-red emission when excited at wavelength of 394 nm and 465 nm. After thermal annealing of the samples, a broad emission band in the blue-green region assigned to defect related states emerged or were enhanced. Also enhanced were the emission lines of Eu3+ ions in the orange-red region. A combination of these two transitions gave white light of different shades depending on Eu concentration or excitation wavelength. Different shades of white light from cool white through Day-light to warm white light were recorded on the CIE 1931 chromaticity diagram. The source excitation wavelengths range from UV-330 nm through near UV - 396 nm to blue - 465 nm wavelengths which are in the range of InGaN -based LEDs emissions.

  16. Characterizing warfare in red teaming.

    PubMed

    Yang, Ang; Abbass, Hussein A; Sarker, Ruhul

    2006-04-01

    Red teaming is the process of studying a problem by anticipating adversary behaviors. When done in simulations, the behavior space is divided into two groups; one controlled by the red team which represents the set of adversary behaviors or bad guys, while the other is controlled by the blue team which represents the set of defenders or good guys. Through red teaming, analysts can learn about the future by forward prediction of scenarios. More recently, defense has been looking at evolutionary computation methods in red teaming. The fitness function in these systems is highly stochastic, where a single configuration can result in multiple different outcomes. Operational, tactical and strategic decisions can be made based on the findings of the evolutionary method in use. Therefore, there is an urgent need for understanding the nature of these problems and the role of the stochastic fitness to gain insight into the possible performance of different methods. This paper presents a first attempt at characterizing the search space difficulties in red teaming to shed light on the expected performance of the evolutionary method in stochastic environments. PMID:16604725

  17. Features of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment

  18. Red surface emitters: powerful and fast

    NASA Astrophysics Data System (ADS)

    Schweizer, Heinz; Ballmann, Tabitha; Butendeich, Rainer; Rossbach, Robert; Raabe, Bernd; Jetter, Michael; Scholz, Ferdinand

    2003-12-01

    Vertical cavity surface emitting lasers (VCSEL) in the GaInP/AlGaInP material system have experienced a rapid development in their short history. In general lasers from that material system are suitable for a huge number of applications beginning with TV lasers and high power lasers for edge emitters, continuing with optical data storage, medical applications as well as data communication in cars, air planes, offices and between computers as application field for VCSELs. Especially automotive applications show the highest requirements on a laser with respect to operation temperature and power. In this talk we draw out the problems of the material system AlGaInP and its implications for laser applications. We discuss the epitaxial and technological solutions to overcome at least a part of these inherent problems. We will discuss the possible power that we can expect from VCSELs emitting in the range between 650 nm to 670 nm. We got from our lasers 5 mW, CW @ RT, 670nm and 2.5mW, CW@RT, 650 nm. We emphasize the role of doping, Bragg mirror grading, suitable detuning of cavity mode and gain, and optimisation of the contact layer and control of the oxide aperture in the VCSEL structure to get improved operation characteristics at higher temperatures. From the analysis of high frequency measurements, we could evaluate modulation bandwidths between 4 GHz and 10 GHz. The application of polyimide as a dielectric isolation material shows the potential to obtain modulation bandwidths beyond 10 GHz. For the intrinsic modulation bandwidth we get a value of 25 GHz, which is near the value edge emitters show. A more detailed discussion on photon lifetimes and carrier transport times will be given in the talk. Red light emitting VCSELS driven with short current pulses showed laser emission up to + 160°C case temperature. Thus, a CW operation up to +120°C can be expected after further improvement of power generation (decrease of series resistance) and heat spreading (optimized

  19. Red organic light emitting device based on TPP and a new host material

    NASA Astrophysics Data System (ADS)

    Janghouri, Mohammad; Mohajerani, Ezeddin; Amini, Mostafa M.; Najafi, Ezzatollah

    2014-02-01

    A novel coating method for fabrication of red OLEDs by using a new host material has been developed with the aid of a single furnace. The host material, zinc complex, was prepared from the reaction of zinc acetate and 2-methyl-8-hydroxyquinoline and after characterization by UV-vis, FT-IR, and 1H NMR spectroscopes was used as an emitting material in the fabrication of OLEDs. Since meso-tetraphenylporphyrin (TPP) and zinc complex have a close molecular weight, both materials were evaporated from a single furnace. Devices with TPP and structures of ITO/PEDOT:PSS (55 nm)/PVK (90 nm)/zinc complex:TPP (65 nm)/Al (180 nm) were fabricated; Without TPP green and with TPP red emission was achieved. The device with 2 % TPP that doped into the zinc complex showed the purest red emission among all devices. The device showed the CIE coordinates of 0.70 and 0.28 at 14 V and a maximum luminance of about 94.2 cd/m2. This new method is a promising candidate for fabrication of low cost red OLEDs with a more homogeneous layer.

  20. Infra-red detector and method of making and using same

    DOEpatents

    Craig, Richard A.; Griffin, Jeffrey W.

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  1. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells

    PubMed Central

    Müller, Konrad; Engesser, Raphael; Metzger, Stéphanie; Schulz, Simon; Kämpf, Michael M.; Busacker, Moritz; Steinberg, Thorsten; Tomakidi, Pascal; Ehrbar, Martin; Nagy, Ferenc; Timmer, Jens; Zubriggen, Matias D.; Weber, Wilfried

    2013-01-01

    Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system’s performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms. PMID:23355611

  2. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

    PubMed

    Li, Yaqiong; Lin, Yuankui; Garvey, Christopher J; Birch, Debra; Corkery, Robert W; Loughlin, Patrick C; Scheer, Hugo; Willows, Robert D; Chen, Min

    2016-01-01

    Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions. PMID:26514405

  3. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution

    NASA Astrophysics Data System (ADS)

    AL-Thabaiti, Shaeel Ahmed; Aazam, Elham Shafik; Khan, Zaheer; Bashir, Ommer

    2016-03-01

    Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag+ ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol- 1 dm3 cm- 1 at 495 nm. Absorption spectra of Congo red with Ag+ ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 104 mol- 1 dm3 and 11,764 mol- 1 dm3 cm- 1, respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

  4. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange

    PubMed Central

    Subach, Oksana M.; Patterson, George H.; Ting, Li-Min; Wang, Yarong; Condeelis, John S.; Verkhusha, Vladislav V.

    2011-01-01

    We report a monomeric PSmOrange protein that is initially orange (excitation and emission at 548 and 565 nm) but becomes far-red (excitation and emission at 636 and 662 nm) after irradiation with blue-green light. Compared to its parental orange proteins, PSmOrange has greater brightness, faster maturation, higher photoconversion contrast, and better photostability. The red-shifted spectra of both forms of PSmOrange enable its simultaneous use with cyan-to-green photoswitchable proteins to study four intracellular populations. Photoconverted PSmOrange has, to date, the most far-red excitation peak, provides diffraction-limited and super-resolution imaging in far-red range, is optimally excited with common red lasers, and can be photoconverted subcutaneously in a mouse. PSmOrange photoswitching occurs via a two-step photo-oxidation process, which causes cleavage of the polypeptide backbone. The far-red fluorescence of photoconverted PSmOrange results from a novel chromophore containing N-acylimine with a coplanar carbon-oxygen double bond. PMID:21804536

  5. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  6. Growth declines in red spruce

    SciTech Connect

    McLaughlin, S.B. ); Adams, H.S. )

    1987-10-01

    In this letter, the authors take issue with Zedaker, Hyink, and Smith who have indicated that observed red spruce growth declines can be expected based on growth trends for even-aged stands of red spruce as documented in Meyer (1929). Recently, an examination was made of stand stocking levels at 750 sites where red spruce were cored and neither the rate of growth decline nor the extent of mortality were found to be related to stand stocking levels or previous disturbance history. The authors conclude that the Meyer data do not represent an appropriate model for stand dynamics of old-growth, high-elevation stands and no not adequately explain the growth declines observed at many of those sites.

  7. Jupiter Great Red Spot Mosaic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photo of Jupiter's Great Red Spot was taken by Voyager 1 in early March 1979. Distance from top to bottom of the picture is 15,000 miles (24,000 kilometers). Smallest features visible are about 20 miles (30 kilometers) across. The white feature below the Great Red Spot is one of several white ovals that were observed to form about 40 years ago; they move around Jupiter at a different velocity from the Red Spot. During the Voyager 1 encounter period, material was observed to revolve around the center of the spot with a period of six days. The Voyager project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  8. Infrared Luminescence at 1010 nm and 1500 nm in LiNbO3:Er3+ Excitted by Short Pulse Radiation at 980 nm

    NASA Astrophysics Data System (ADS)

    Kokanyan, E. P.; Demirkhanyan, G. G.; Steveler, E.; Rinnert, H.; Aillerie, M.

    Luminescence of LiNbO3:Er3+ crystal at a wavelength of 1010 nm and 1500 nm under pulsed excitation of different power at a wavelength of 980 nm are experimentally and theoretically studied. It is revealed, that the main part of the absorbed energy gives rise to the luminescence at 1500 nm. Considered concentrations of Er3+ impurity ions allow to exclude cooperative processes in the impurity subsystem. The experimental results are interpreted in the framework of a three electronic levels system, assuming that the population of the higher lasing level 4I13/2 in the crystal under study is caused by relaxation processes from the excited level. It is shown that for obtaining of a laser radiation at about 1500 nm one can effectively use a pulse-pumping at 980 nm with a power density in a range of 50 ÷ 60 MW/cm2.

  9. Cochlodinium polykrikoides red tide detection in the South Sea of Korea using spectral classification of MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Young Baek; Ishizaka, Joji; Jeong, Jong-Chul; Kim, Hyun-Choel; Lee, Taehee

    2011-12-01

    To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.

  10. Fast dispersion encoded full range OCT for retinal imaging at 800 nm and 1060 nm

    NASA Astrophysics Data System (ADS)

    Hofer, Bernd; Považay, Boris; Unterhuber, Angelika; Wang, Ling; Hermann, Boris; Rey, Sara; Matz, Gerald; Drexler, Wolfgang

    2011-03-01

    The dispersion mismatch between sample and reference arm in frequency-domain OCT can be used to iteratively suppress complex conjugate artifacts and thereby increase the imaging range. We propose a fast dispersion encoded full range (DEFR) algorithm that detects multiple signal components per iteration. The influence of different dispersion levels on the reconstruction quality is analyzed for in vivo retinal tomograms at 800 nm. Best results have been achieved with about 30 mm SF11, with neglectable resolution decrease due to finite resolution of the spectrometer. Our fast DEFR algorithm achieves an average suppression ratio of 55 dB and converges within 5 to 10 iterations. The processing time on non-dedicated hardware was 5 to 10 seconds for tomograms with 512 depth scans and 4096 sampling points per depth scan. Application of DEFR to the more challenging 1060 nm wavelength region is demonstrated by introducing an additional optical fibre in the sample arm.

  11. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  12. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  13. Red facts: Ethylene. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    EPA is directed by the Federal Insecticide, Fungicide, and Rodenticide Act as amended in 1988 (FIFRA '88) to review all pesticide products containing active ingredients initially registered before November 1, 1984, and to reregister those products that have a substantially complete data base and do not pose unreasonable adverse effects to people or the environment. The pesticide reregistration program is to be completed by the late 1990's. The RED FACTS fact sheet summarizes EPA's conclusion, as set forth in the Reregistration Eligibility Document (or RED), that products containing a pesticide do not pose unreasonable risks when used as directed by Agency-approved labeling, and are eligible for reregistration.

  14. Red Plague Control Plan (RPCP)

    NASA Technical Reports Server (NTRS)

    Cooke, Robert W.

    2010-01-01

    SCOPE: Prescribes the minimum requirements for the control of cuprous / cupric oxide corrosion (a.k.a. Red Plague) of silver-coated copper wire, cable, and harness assemblies. PURPOSE: Targeted for applications where exposure to assembly processes, environmental conditions, and contamination may promote the development of cuprous / cupric oxide corrosion (a.k.a. Red Plague) in silver-coated copper wire, cable, and harness assemblies. Does not exclude any alternate or contractor-proprietary documents or processes that meet or exceed the baseline of requirements established by this document. Use of alternate or contractor-proprietary documents or processes shall require review and prior approval of the procuring NASA activity.

  15. Betelgeuse and the Red Supergiants

    NASA Astrophysics Data System (ADS)

    van Loon, J. Th.

    2013-05-01

    Betelgeuse is one of the most magnificent stars in the sky, and one of the nearest red supergiants. Astronomers gathered in Paris in the Autumn of 2012 to decide what we know about its structure, behaviour, and past and future evolution, and how to place this in the general context of the class of red supergiants. Here I reflect on the discussions and propose a synthesis of the presented evidence. I believe that, in those four days, we have achieved to solve a few riddles.

  16. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  17. Interaction of Human Cytochrome P450 3A4 with Hydrophobicity Probe Nile Red Shows Heterogeneous, Strong Binding

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer; Guengerich, F.; Martin, Martha; Marsch, Glenn

    2009-03-01

    Human cytochrome P450 3A4 (CYP 3A4) binds an unusually wide variety of substrates, and metabolizes about 50% of all drugs. Steady-state fluorescence spectra were acquired for complexes of CYP 3A4 and the fluorescence probe Nile Red. Difference fluorescence spectra and Hill plots were generated, and Hill coefficients were determined. The fluorescence from multiple Nile Red bound states was observed, with all bound states having higher emission energies than the fluorescence from free Nile Red. Nile Red was titrated into 150nM CYP 3A4, and fluorescence difference spectra showed the quenching of CYP 3A4 tryptophan fluorescence by Nile Red. CYP 3A4 was also added to Nile Red, and changes in the Nile Red fluorescence spectra were monitored. The dissociation constant showed tight binding, with Kd = 44nM. Good fits to the Hill plots were obtained with n = 1, suggesting non-cooperative binding. This study revealed strong, heterogeneous, non-cooperative binding of Nile Red to CYP 3A4.

  18. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGESBeta

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  19. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  20. Demonstration of a high output power 1533nm optical parametric oscillator pumped at 1064nm

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Robert J.; Wojcik, Michael D.

    2010-10-01

    A high output power, eye-safe, LIDAR transmitter based on a KTA optical parametric oscillator (OPO) was demonstrated. The OPO was based on a two crystal, NCPM, KTA ring cavity which was doubly resonant. A 7ns, 30Hz, flashlamp-pumped, Q-switched Nd:YAG laser was injection seeded and used to pump the OPO. The OPO converted the 1064 nm pump beam into a 1533 nm signal wave and 3475 nm idler wave. In addition to demonstrating a high power OPO system, we investigated the effects of seeding the pump laser on the OPO's conversion efficiency, oscillation threshold, maximum signal power, and beam quality. The power conversion efficiency between the signal and the injection seeded pump was 22% with an oscillation threshold of 104 MW/cm2 (500 mJ) and a maximum signal power of 6.44 W (215 mJ). The power conversion efficiency between the signal and the unseeded pump was 24% with an oscillation threshold of 77 MW/cm2 (367mJ) and a maximum signal power of 7 W (233 mJ). The beam quality of the signal beam was produced an M2 =15. When the pump laser was seeded, the full angle divergence improved by nearly a factor of five.

  1. Crystallographic study of red fluorescent protein eqFP578 and its far-red variant Katushka reveals opposite pH-induced isomerization of chromophore

    SciTech Connect

    Pletneva, Nadya V.; Pletnev, Vladimir Z.; Shemiakina, Irina I.; Chudakov, Dmitriy M.; Artemyev, Igor; Wlodawer, Alexander; Dauter, Zbigniew; Pletnev, Sergei

    2012-08-10

    The wild type red fluorescent protein eqFP578 (from sea anemone Entacmaea quadricolor, {lambda}{sub ex} = 552 nm, {lambda}{sub em} = 578 nm) and its bright far-red fluorescent variant Katushka ({lambda}{sub ex} = 588 nm, {lambda}{sub em} = 635 nm) are characterized by the pronounced pH dependence of their fluorescence. The crystal structures of eqFP578f (eqFP578 with two point mutations improving the protein folding) and Katushka have been determined at the resolution ranging from 1.15 to 1.85 {angstrom} at two pH values, corresponding to low and high level of fluorescence. The observed extinguishing of fluorescence upon reducing pH in eqFP578f and Katushka has been shown to be accompanied by the opposite trans-cis and cis-trans chromophore isomerization, respectively. Asn143, Ser158, His197 and Ser143, Leu174, and Arg197 have been shown to stabilize the respective trans and cis fluorescent states of the chromophores in eqFP578f and Katushka at higher pH. The cis state has been suggested as being primarily responsible for the observed far-red shift of the emission maximum of Katushka relative to that of eqFP578f.

  2. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  3. Harvesting Far-Red Light by Chlorophyll f in Photosystems I and II of Unicellular Cyanobacterium strain KC1.

    PubMed

    Itoh, Shigeru; Ohno, Tomoki; Noji, Tomoyasu; Yamakawa, Hisanori; Komatsu, Hirohisa; Wada, Katsuhiro; Kobayashi, Masami; Miyashita, Hideaki

    2015-10-01

    Cells of a unicellular cyanobacterium strain KC1, which were collected from Japanese fresh water Lake Biwa, formed chlorophyll (Chl) f at 6.7%, Chl a' at 2.0% and pheophytin a at 0.96% with respect to Chl a after growth under 740 nm light. The far-red-acclimated cells (Fr cells) formed extra absorption bands of Chl f at 715 nm in addition to the major Chl a band. Fluorescence lifetimes were measured. The 405-nm laser flash, which excites mainly Chl a in photosystem I (PSI), induced a fast energy transfer to multiple fluorescence bands at 720-760 and 805 nm of Chl f at 77 K in Fr cells with almost no PSI-red-Chl a band. The 630-nm laser flash, which mainly excited photosystem II (PSII) through phycocyanin, revealed fast energy transfer to another set of Chl f bands at 720-770 and 810 nm as well as to the 694-nm Chl a fluorescence band. The 694-nm band did not transfer excitation energy to Chl f. Therefore, Chl a in PSI, and phycocyanin in PSII of Fr cells transferred excitation energy to different sets of Chl f molecules. Multiple Chl f forms, thus, seem to work as the far-red antenna both in PSI and PSII. A variety of cyanobacterial species, phylogenically distant from each other, seems to use a Chl f antenna in far-red environments, such as under dense biomats, in colonies, or under far-red LED light. PMID:26320210

  4. Reflectance changes in clotting native blood: evidence of a red-cell process.

    PubMed

    Greco, Frank A

    2007-01-01

    When broadband light illuminates clotting native blood, the reflectance at each wavelength traces a time course with four discernible regions. Clot formation occurs just before the second phase. Two wavelengths, 471 and 771 nm, were selected for more detailed study of the first two phases. Analysis of each time course in native blood demonstrates that both signals track a single process during the first phase, but distinct processes during the second. Experiments on citrated blood identified which blood components contribute to reflectance changes. Comparison of liquid and clotting blood reveals a single process during the first phase, entailing that rouleaux formation determines the time course at both wavelengths. Control experiments eliminate clot propagation and shape change of red cells or platelets as possible factors in the second phase. Exogenous ADP added to EDTA blood evokes the second-phase response at 471 but not 771 nm, a novel phenomenon that requires the presence of red cells. The descriptive name 'ADP-end-response' is suggested for this red cell process until it is further characterized. We propose that the ADP-end-response determines the 471-nm signal during the second phase of clotting native blood and depends upon platelets in the absence of exogenous ADP. The 771-nm signal reports fibrin cross-linking during the second phase. An earlier pilot study demonstrated that rofecoxib effects the 471-nm signal ex vivo, which indicates that reflectance spectroscopy may be useful in the assessment of drug effects on platelet-erythrocyte interactions. PMID:18332611

  5. Designing dual-trench alternating phase-shift masks for 140-nm and smaller features using 248-nm KrF and 193-nm ArF lithography

    NASA Astrophysics Data System (ADS)

    Petersen, John S.; Socha, Robert J.; Naderi, Alex R.; Baker, Catherine A.; Rizvi, Syed A.; Van Den Broeke, Douglas J.; Kachwala, Nishrin; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.; Takeuchi, Susumu; Yamada, Yoshiro; Senoh, Takashi; McCallum, Martin

    1998-09-01

    One method for making the alternating phase-shift mask involves cutting a trench into the quartz of the mask using an anisotropic dry etch, followed by an isotropic etch to move the corners of the trench underneath the chrome to minimize problems caused by diffraction at the bottom corners of the phase-trench. This manufacturing method makes the addition of subresolution scattering bars and serifs problematic, because the amount of the undercut causes chrome lifting of these small features. Adding an additional anisotropically etched trench to both cut and uncut regions is helpful, but the etch does not move the trench corners under the chrome and result in a loss to intensity and image contrast. At 248 nm illumination and 4X magnification, our work shows that a combination of 240 nm dual-trench and 5 nm to 10 nm undercut produces images with equal intensity between shifted and unshifted regions without loss of image contrasts. This paper demonstrates optical proximity correction for doing 100 nm, 120 nm, 140 nm and 180 nm lines of varying pitch for a simple alternating phase-shift mask, with no dual-trench or undercut. Then the electromagnetic field simulator, TEMPEST, is used to find the best combination of dual-trench depth and amount of undercut for an alternating phase-shift mask. Phase measurement using 248 nm light and depth measurement of thirty-six unique combinations of dual-trench and phase-shift trench are shown. Based on modeling and experimental results, recommendations for making a fine tuned dual-trench 248 nm mask, as well as an extension of the dual-trench alternating phase-shift technique to 193 nm lithography, are made.

  6. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans.

    PubMed

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples. PMID:26313214

  7. Efficient configuration transition in a new azobenzene-LC polymer for red light holographic recording

    NASA Astrophysics Data System (ADS)

    Mao, Weidong; Sun, Qunhui; Baig, Sarfaraz; Lu, Hui; Wang, Michael R.

    2012-02-01

    We demonstrate cis-to-trans transition based red light holographic recording in an azobenzene-liquid crystal (LC) polymer material following efficient crucial transition of trans-to-cis, which is prepared by selected wavelength light pre-illumination. The presence and orientation of soft liquid crystal impregnating the polymer backbone allows the cis intermediate states to hold for the stable red hologram recording and non-destructive readout. Using a 50 nm bandwidth light source at the center wavelength of 575 nm, we have efficient pre-illumination on the material. The diffraction efficiency of up to 2% can be achieved by a HeNe laser at 632.8 nm wavelength, and two-dimensional holograms of USAF resolution target are successfully recorded.

  8. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  9. Return to the Red Planet

    NASA Technical Reports Server (NTRS)

    Lee, W.

    1996-01-01

    In November 1996, NASA and the Jet Propulsion Laboratory will begin America's return to Mars after a 20-year absence by launching the Mars Global Surveyor (MGS) spacecraft. This mission will usher in a new and exciting era of scientific missions to study the red planet.

  10. Growth declines in red spruce

    SciTech Connect

    Zedaker, S.M.; Hyink, D.M.; Smith, D.W.

    1987-01-01

    Over the past two decades second-growth red spruce stands in the Northeast have demonstrated declines in radial increment. Some observers are implicating air pollution as a primary cause of the declines, based on recently acquired increment cores from dominant trees. Various forms of air pollution (O/sub 3/, NO/sub x/, SO/sub 2/, and trace metals) are known to reduce growth and development of tree species, but few studies have provided concrete evidence of regional pollution-caused declines in forest ecosystems. Recently published evidence of a synchronous, consistent, and unprecedented regional decline in red spruce should be weighed against the realization that radial increment in red spruce declines naturally as stands age. Separating anthropogenic stress-caused growth patterns from natural stand dynamics requires an in-depth knowledge of forest growth and yield, tree silvics, and forest ecosystem processes. Detailed analyses of growth by stand characteristics - site index, density, elevation, stand history - will be necessary to implicate air pollution as a primary cause of red spruce decline.

  11. Infra-red soft universality

    SciTech Connect

    Jack, I.

    1997-06-15

    In a special class of supersymmetric grand unified theories, the commonly assumed universal form of the soft supersymmetry-breaking terms is approached in the infra-red limit. The resulting universal scalar mass and trilinear coupling are predicted in terms of the gaugino mass.

  12. "Red Power" and Indian Education.

    ERIC Educational Resources Information Center

    Heath, G. Louis

    The document is the result of research conducted on 14 Indian reservations and one settlement in the Southwest, Midwest, West, and Pacific Northwest by Illinois State University in the summer of 1970. Some 124 Indians were interviewed, many of whom were leaders and participants in various Red Power organizations. As noted, the dominant impression…

  13. Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Svensmark, H.

    2012-12-01

    The role of ionization in the formation of clouds and aerosols has been debated for many years. A body of evidence exists that correlates cloud properties to galactic cosmic ray ionization; however these results are still contested. In recent years experimental evidence has also been produced showing that ionization can promote the nucleation of small aerosols at atmospheric conditions. The experiments showed that an increase in ionization leads to an increase in the formation of ultrafine aerosols (~3 nm), but in the real atmosphere such small particles have to grow by coagulation and condensation to become cloud condensation nuclei (CCN) in order to have an effect on clouds. However, numerical studies predict that variations in the count of ultra-fine aerosols will lead only to an insignificant change in the count of CCN. This is due to 1) the competition between the additional ultra-fine aerosols for the limited supply of condensable gases leading to a slower growth and 2) the increased loss rates of the additional particles during the longer growth-time. We investigated the growth of aerosols to CCN sizes using an 8 m3 reaction chamber made from electro-polished stainless steel. One side was fitted with a Teflon foil to allow ultraviolet light to illuminate the chamber, which was continuously flushed with dry purified air. Variable concentrations of water vapor, ozone, and sulfur dioxide could be added to the chamber. UV-lamps initiated photochemistry producing sulfuric acid. Ionization could be enhanced with two Cs-137 gamma sources (30 MBq), mounted on each side of the chamber. Figure 1 shows the evolution of the aerosols, following a nucleation event induced by the gamma sources. Previous to the event the aerosols were in steady state. Each curve represents a size bin: 3-10 nm (dark purple), 10-20 nm (purple), 20-30 nm (blue), 30-40 nm (light blue), 40-50 nm (green), 50-60 nm (yellow), and 60-68 nm (red). Black curves show a ~1 hour smoothing. The initial

  14. White light tunable emissions from ZnS: Eu3+ nanophosphors over 330–465 nm excitation range for white LED applications

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; De, D. K.; Dejene, F. B.; Viana, B.

    2016-04-01

    (ZnS: Eu3+ - CMC) nanophosphors of cubic (zinc blende) structure were synthesized using a precipitation technique with doping concentrations of Eu3+ ions 1 mol% and 5 mol%. The crystal sizes were 2.56 nm and 2.91 nm respectively. Annealing at 300 °C in a sulfur-rich atmosphere altered the crystal size to 4.35 nm and 3.65 nm respectively and the band gap from 4.2 eV to 3.76 eV and 3.81 eV respectively. The as-synthesized samples gave pure orange-red emission when excited at wavelengths of 394 nm and 465 nm. After thermal annealing of the samples, a broad emission band in the blue-green region assigned to defect related states emerged or were enhanced. Also enhanced were the emission lines of Eu3+ ions in the orange-red region. A combination of these two transitions gave white light of different shades (recorded on the CIE 1931 chromaticity diagram) from cool white through day-light to warm white light, depending on Eu3+ concentration and the excitation wavelengths (UV-330 to blue 465 nm), thus showing great potential of these nano-phosphors in the generation of high quality white light.

  15. Crystal growth and luminescence properties of Yb2Si2O7 infra-red emission scintillator

    NASA Astrophysics Data System (ADS)

    Horiai, Takahiko; Kurosawa, Shunsuke; Murakami, Rikito; Pejchal, Jan; Yamaji, Akihiro; Shoji, Yasuhiro; Chani, Valery I.; Ohashi, Yuji; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2016-08-01

    (CexYb1-x)2Si2O7 (x = 0.00, 0.01) single crystals were grown by the micro-pulling-down method to test the possibility of its application as infra-red scintillator for medical imaging. Powder X-ray diffraction analysis indicated that the crystals were single-phase materials. The radioluminescence spectra of the crystals demonstrated presence of two near infra-red emission peaks (at 1010 and 1030 nm). The emission peaks at 420 and 580 nm ascribed to defects were also observed in the crystals. The human body has maximum transmission in wavelength range from 650 to 1200 nm. Therefore, Yb2Si2O7 is expected to be used as efficient infra-red scintillator for medical applications.

  16. Experimental study on the all-fiberized continuous-wave ytterbium-doped laser operating near 980 nm.

    PubMed

    Wang, Ruixing; Liu, Ying; Cao, Jianqiu; Guo, Shaofeng; Si, Lei; Chen, Jinbao

    2013-08-20

    All-fiberized continuous-wave Yb-doped fiber lasers operating near 980 nm are fabricated, and 1.73 W, 980 nm lasing is obtained. Moreover, the output properties of the 980 nm fiber laser are studied by experiment. It is demonstrated, for the first time to the best of our knowledge, that the output power curve versus the active fiber length experiences double-peak values, which are caused by the red shift of the lasing wavelength induced by the longitudinal-mode competition. It is also demonstrated that the pump threshold increases exponentially with the active fiber length. The relationship between the pump threshold and the optimum active fiber length is examined. PMID:24084992

  17. Genetic Basis for Red Coloration in Birds.

    PubMed

    Lopes, Ricardo J; Johnson, James D; Toomey, Matthew B; Ferreira, Mafalda S; Araujo, Pedro M; Melo-Ferreira, José; Andersson, Leif; Hill, Geoffrey E; Corbo, Joseph C; Carneiro, Miguel

    2016-06-01

    The yellow and red feather pigmentation of many bird species [1] plays pivotal roles in social signaling and mate choice [2, 3]. To produce red pigments, birds ingest yellow carotenoids and endogenously convert them into red ketocarotenoids via an oxidation reaction catalyzed by a previously unknown ketolase [4-6]. We investigated the genetic basis for red coloration in birds using whole-genome sequencing of red siskins (Spinus cucullata), common canaries (Serinus canaria), and "red factor" canaries, which are the hybrid product of crossing red siskins with common canaries [7]. We identified two genomic regions introgressed from red siskins into red factor canaries that are required for red coloration. One of these regions contains a gene encoding a cytochrome P450 enzyme, CYP2J19. Transcriptome analysis demonstrates that CYP2J19 is significantly upregulated in the skin and liver of red factor canaries, strongly implicating CYP2J19 as the ketolase that mediates red coloration in birds. Interestingly, a second introgressed region required for red feathers resides within the epidermal differentiation complex, a cluster of genes involved in development of the integument. Lastly, we present evidence that CYP2J19 is involved in ketocarotenoid formation in the retina. The discovery of the carotenoid ketolase has important implications for understanding sensory function and signaling mediated by carotenoid pigmentation. PMID:27212400

  18. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing

    NASA Astrophysics Data System (ADS)

    Lu, Zhansheng; Li, Shuo; Lv, Peng; He, Chaozheng; Ma, Dongwei; Yang, Zongxian

    2016-01-01

    Based on the dispersion-corrected density functional calculations (DFT-D), we systematically studied the adsorption of noble metals (NM), Pd, Pt, Rh and Ir, on graphdiyne (GDY). We present a systematic study on the geometry, embedded adsorption energy and electronic structure of four different adatoms adsorbed on the GDY. The strong interaction between the NM adatoms and the GDY substrate is found with the NM embedded in the 18C-hexagon of the GDY. We investigated the mobility of the NM adatoms on the GDY, and found that the mobility barrier energy increases along with the increasing of the embedded adsorption energy. We present the NM adatoms growth of high concentrations on the GDY. Upon the analysis of the electronic structure and the frontier molecular orbitals, Rh and Ir adatoms of low concentrations (about 1.37 at%) on the GDY have the potential to be applied as single metal catalysts or gas molecule sensors.

  19. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  20. Cycloolefin/cyanoacrylate (COCA) copolymers for 193-nm and 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Dammel, Ralph R.; Sakamuri, Raj; Lee, Sang-Ho; Rahman, Dalil; Kudo, Takanori; Romano, Andrew R.; Rhodes, Larry F.; Lipian, John-Henry; Hacker, Cheryl; Barnes, Dennis A.

    2002-07-01

    The copolymerization reaction between methyl cyanoacrylate (MCA) and a variety of cycloolefins (CO) was investigated. Cycololefin/cyanoacrylate (COCA) copolymers were obtained in good yields and with lithographically interesting molecular weights for all cycoolefins studied. Anionic MCA homopolymerization could be largely suppressed using acetic acid. Based on NMR data, the copolymerization may tend to a 1:1 CO:MCA incorporation ratio but further work with better suppression of the anionic component is needed to confirm this. Lithographic tests on copolymers of appropriately substituted norbornenes and MCA showed semi-dense and isolated line performance down to 90 nm.

  1. Controlling the Color of Lead-Free Red Overglaze Enamels and a Process for Preparing High-Quality Red Paints.

    PubMed

    Hashimoto, Hideki; Inada, Hirofumi; Okazaki, Yuki; Takaishi, Taigo; Fujii, Tatsuo; Takada, Jun

    2016-05-01

    Akae porcelain, an artistic Japanese traditional overglaze ceramic typically known for Kakiemon-style ware, has fascinated porcelain lovers around the world for over 400 years because of the graceful red color displayed by akae that matches so well with white porcelain bodies. In this work, we clarified the factors that control the color of akae and those that are conventionally controlled by artisans based on empirical experience. Inspired by a recent particle-design method, we also developed a practical facile process to prepare red paints that yields high-quality akae. Various akae samples were prepared from a combination of lead-free alkali borosilicate glass frits with different particle sizes and hematite powders with differing dispersibilities. Polarized light microscopy, scanning electron microscopy, and transmission electron microscopy analyses indicate that considering only the dispersibility of hematite powders is not sufficient, but the frit-particle size must be controlled to obtain high-quality akae with a high reflectance value for ≥580 nm visible light. In addition, we developed a process for preparing high-quality red paints that uses a large-particle frit powder and a strongly aggregated-hematite powder, both of which are easily obtainable. The red paint composed of frit, hematite, and the solvent is mixed until the paint is drying. By adding more solvent and repeating this process three times, we obtained high-quality akae with a higher reflectance value than for the akae prepared from a frit with submicron-sized particles and weakly aggregated-hematite powder. On the basis of transmission electron microscopic observations, we consider the red paint to consist of a core/shell-like composite structure of frit and hematite, forming a three-dimensional network in the akae glass layer. The good dispersibility of these particles leads to high-quality akae. PMID:27093650

  2. Red blood cells, sickle cell (image)

    MedlinePlus

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  3. Red blood cells, sickle cell (image)

    MedlinePlus

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). The abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  4. Fluorescence Imaging in the Red and Far-Red Region during Growth of Sunflower Plantlets. Diagnosis of the Early Infection by the Parasite Orobanche cumana

    PubMed Central

    Ortiz-Bustos, Carmen M.; Pérez-Bueno, María L.; Barón, Matilde; Molinero-Ruiz, Leire

    2016-01-01

    Broomrape, caused by the root holoparasite Orobanche cumana, is the main biotic constraint to sunflower oil production worldwide. By the time broomrape emerges, most of the metabolic imbalance has been produced by O. cumana to sunflower plants. UV-induced multicolor fluorescence imaging (MCFI) provides information on the fluorescence emitted by chlorophyll (Chl) a of plants in the spectral bands with peaks near 680 nm (red, F680) and 740 nm (far-red, F740). In this work MCFI was extensively applied to sunflowers, either healthy or parasitized plants, for the first time. The distribution of red and far-red fluorescence was analyzed in healthy sunflower grown in pots under greenhouse conditions. Fluorescence patterns were analyzed across the leaf surface and throughout the plant by comparing the first four leaf pairs (LPs) between the second and fifth week of growth. Similar fluorescence patterns, with a delay of 3 or 4 days between them, were obtained for LPs of healthy sunflower, showing that red and far-red fluorescence varied with the developmental stage of the leaf. The use of F680 and F740 as indicators of sunflower infection by O. cumana during underground development stages of the parasite was also evaluated under similar experimental conditions. Early increases in F680 and F740 as well as decreases in F680/F740 were detected upon infection by O. cumana. Significant differences between inoculated and control plants depended on the LP that was considered at any time. Measurements of Chl contents and final total Chl content supported the results of MCFI, but they were less sensitive in differentiating healthy from inoculated plants. Sunflower infection was confirmed by the presence of broomrape nodules in the roots at the end of the experiment. The potential of MCFI in the red and far-red region for an early detection of O. cumana infection in sunflower was revealed. This technique might have a particular interest for early phenotyping in sunflower breeding

  5. Fluorescence Imaging in the Red and Far-Red Region during Growth of Sunflower Plantlets. Diagnosis of the Early Infection by the Parasite Orobanche cumana.

    PubMed

    Ortiz-Bustos, Carmen M; Pérez-Bueno, María L; Barón, Matilde; Molinero-Ruiz, Leire

    2016-01-01

    Broomrape, caused by the root holoparasite Orobanche cumana, is the main biotic constraint to sunflower oil production worldwide. By the time broomrape emerges, most of the metabolic imbalance has been produced by O. cumana to sunflower plants. UV-induced multicolor fluorescence imaging (MCFI) provides information on the fluorescence emitted by chlorophyll (Chl) a of plants in the spectral bands with peaks near 680 nm (red, F680) and 740 nm (far-red, F740). In this work MCFI was extensively applied to sunflowers, either healthy or parasitized plants, for the first time. The distribution of red and far-red fluorescence was analyzed in healthy sunflower grown in pots under greenhouse conditions. Fluorescence patterns were analyzed across the leaf surface and throughout the plant by comparing the first four leaf pairs (LPs) between the second and fifth week of growth. Similar fluorescence patterns, with a delay of 3 or 4 days between them, were obtained for LPs of healthy sunflower, showing that red and far-red fluorescence varied with the developmental stage of the leaf. The use of F680 and F740 as indicators of sunflower infection by O. cumana during underground development stages of the parasite was also evaluated under similar experimental conditions. Early increases in F680 and F740 as well as decreases in F680/F740 were detected upon infection by O. cumana. Significant differences between inoculated and control plants depended on the LP that was considered at any time. Measurements of Chl contents and final total Chl content supported the results of MCFI, but they were less sensitive in differentiating healthy from inoculated plants. Sunflower infection was confirmed by the presence of broomrape nodules in the roots at the end of the experiment. The potential of MCFI in the red and far-red region for an early detection of O. cumana infection in sunflower was revealed. This technique might have a particular interest for early phenotyping in sunflower breeding

  6. Suppression of high-order-harmonic intensities observed in aligned CO2 molecules with 1300-nm and 800-nm pulses

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Minemoto, Shinichirou; Sakai, Hirofumi

    2011-08-01

    High-order-harmonic generation from aligned N2, O2, and CO2 molecules is investigated by 1300-nm and 800-nm pulses. The harmonic intensities of 1300-nm pulses from aligned molecules show harmonic photon energy dependence similar to those of 800-nm pulses. Suppression of harmonic intensity from aligned CO2 molecules is observed for both 1300- and 800-nm pulses over the same harmonic photon energy range. As the dominant mechanism for the harmonic intensity suppression from aligned CO2 molecules, the present results support the two-center interference picture rather than the dynamical interference picture.

  7. Flux-calibration of medium-resolution spectra from 300 nm to 2500 nm

    NASA Astrophysics Data System (ADS)

    Moehler, Sabine; Modigliani, Andrea; Freudling, Wolfram; Giammichele, Noemi; Gianninas, Alexandros; Gonneau, Anais; Kausch, Wolfgang; Lançon, Ariane; Noll, Stefan; Rauch, Thomas; Vinther, Jakob

    2014-08-01

    While the near-infrared wavelength regime is becoming more and more important for astrophysics there are few spectrophotometric standard star data available to flux calibrate such data. On the other hand flux calibrating high-resolution spectra is a challenge even in the optical wavelength range, because the available flux standard data are often too coarsely sampled. We describe a method to obtain reference spectra derived from stellar model atmospheres, which allow users to derive response curves from 300 nm to 2500 nm also for high-resolution spectra. We verified that they provide an appropriate description of the observed standard star spectra by checking for residuals in line cores and line overlap regions in the ratios of observed spectra to model spectra. The finally selected model spectra are then empirically corrected for remaining mismatches and photometrically calibrated using independent observations. In addition we have defined an automatic method to correct for moderate telluric absorption using telluric model spectra with very high spectral resolution, that can easily be adapted to the observed data. This procedure eliminates the need to observe telluric standard stars, as long as some knowledge on the target spectrum exists.

  8. Red cell distribution width and nonalcoholic steatohepatitis

    PubMed Central

    Gulcan Kurt, Yasemin; Cayci, Tuncer; Aydin, Fevzi Nuri; Agilli, Mehmet

    2014-01-01

    Red cell distribution width is a measure of deviation of the volume of red blood cells. It is a marker of anisocytosis and often used to evaluate the possible causes of anemia. Elevated red cell distribution width levels are also associated with acute and chronic inflammatory responses. In nonalcoholic steatohepatitis, inflammation is accompanied with steatosis. For assuming red cell distribution width as a marker of nonalcoholic steatohepatitis, intervening factors such as levels of inflammatory markers should also be evaluated. PMID:25473202

  9. Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration

    NASA Astrophysics Data System (ADS)

    Aleahmad, P.; Bakhshi, S.; Christodoulides, D.; LiKamWa, P.

    2015-08-01

    We demonstrate bandgap tuning of InGaAsP multiple quantum well structures by utilizing an impurity-free vacancy diffusion technique. Substantial modification of the bandgap energy toward the red and blue parts of the spectrum has been observed using SiO2/SiOyNx/SiNx capping layers and by controlling the associated oxygen and nitrogen content. The resulting degree of tuning, up to 120 nm red shift and 140 nm blue shift of the band-to-band wavelength emission, has been studied using room-temperature photoluminescence, in agreement with the emission spectra obtained from semiconductor optical amplifier waveguide strips.

  10. Grape (Vitis spp.) - Grapevine Red Blotch Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine red blotch disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho and elsewhere in the U.S. The discovery occurred when grapevines with red leaf symptoms that tested negati...

  11. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  12. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  13. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  14. 7 CFR 29.1053 - Red (R).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Red (R). 29.1053 Section 29.1053 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1053 Red (R). A brownish red....

  15. 7 CFR 29.1053 - Red (R).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Red (R). 29.1053 Section 29.1053 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1053 Red (R). A brownish red....

  16. 7 CFR 29.1053 - Red (R).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Red (R). 29.1053 Section 29.1053 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1053 Red (R). A brownish red....

  17. 7 CFR 29.1053 - Red (R).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Red (R). 29.1053 Section 29.1053 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1053 Red (R). A brownish red....

  18. 7 CFR 29.1053 - Red (R).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Red (R). 29.1053 Section 29.1053 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1053 Red (R). A brownish red....

  19. Registration of ‘Red Amber’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red Amber’ (Reg. No.__________ PI _______) soft red winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released March 28, 2008 in a licensing agreement through Michigan State University (MSU) Technologies. Red Amber was selected from the cross ‘255...

  20. 27 CFR 9.167 - Red Mountain

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Red Mountain 9.167 Section... Mountain (a) Name. The name of the viticultural area described in this section is “Red Mountain.” (b) Approved maps. The appropriate map for determining the boundaries of the Red Mountain viticultural area...

  1. 27 CFR 9.167 - Red Mountain

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Red Mountain 9.167 Section... Mountain (a) Name. The name of the viticultural area described in this section is “Red Mountain.” (b) Approved maps. The appropriate map for determining the boundaries of the Red Mountain viticultural area...

  2. 27 CFR 9.167 - Red Mountain

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Red Mountain 9.167 Section... Mountain (a) Name. The name of the viticultural area described in this section is “Red Mountain.” (b) Approved maps. The appropriate map for determining the boundaries of the Red Mountain viticultural area...

  3. 27 CFR 9.167 - Red Mountain

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Red Mountain 9.167 Section... Mountain (a) Name. The name of the viticultural area described in this section is “Red Mountain.” (b) Approved maps. The appropriate map for determining the boundaries of the Red Mountain viticultural area...

  4. 27 CFR 9.167 - Red Mountain

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Red Mountain 9.167 Section... Mountain (a) Name. The name of the viticultural area described in this section is “Red Mountain.” (b) Approved maps. The appropriate map for determining the boundaries of the Red Mountain viticultural area...

  5. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues.

    PubMed

    Palmer, Caroline V; Roth, Melissa S; Gates, Ruth D

    2009-02-01

    Reports of coral disease have increased dramatically over the last decade; however, the biological mechanisms that corals utilize to limit infection and resist disease remain poorly understood. Compromised coral tissues often display non-normal pigmentation that potentially represents an inflammation-like response, although these pigments remain uncharacterized. Using spectral emission analysis and cryo-histological and electrophoretic techniques, we investigated the pink pigmentation associated with trematodiasis, infection with Podocotyloides stenometre larval trematode, in Porites compressa. Spectral emission analysis reveals that macroscopic areas of pink pigmentation fluoresce under blue light excitation (450 nm) and produce a broad emission peak at 590 nm (+/-6) with a 60-nm full width at half maximum. Electrophoretic protein separation of pigmented tissue extract confirms the red fluorescence to be a protein rather than a low-molecular-weight compound. Histological sections demonstrate green fluorescence in healthy coral tissue and red fluorescence in the trematodiasis-compromised tissue. The red fluorescent protein (FP) is limited to the epidermis, is not associated with cells or granules, and appears unstructured. These data collectively suggest that the red FP is produced and localized in tissue infected by larval trematodes and plays a role in the immune response in corals. PMID:19218493

  8. “AmaRosa,” a red skinned, red fleshed fingerling with high phytonutrient value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AmaRosa is a mid season specialty potato with red skin and red flesh. This selection is unique among commercially available potato varieties in that plants set a large number of smooth, small, fingerling-shaped tubers with red skin and red flesh. AmaRosa tubers have higher total anthocyanin and hyd...

  9. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY... Safety Unit Duluth, MN is establishing a temporary safety zone on the Red River, MN. This safety zone is... entering all navigable waters of the Red River in the State of Minnesota north of a line drawn...

  10. Jupiter's Great Red Spot Region

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This mosaic of the Great Red Spot shows that the region has changed significantly since the Voyager 1 encounter three months ago. Around the northern boundary a white cloud is seen, which extends to east of the region. The presence of this cloud prevents small cloud vertices from circling the spot in the manner seen in the Voyager 1 encounter. Another white oval cloud (different from the one present in this position three months ago) is seen south of the Great Red Spot. The internal structure of these spots is identical. Since they both rotate in an anticyclonic manner these observations indicate that they are meteorologically similar. This image was taken on July 6 from a range of 2,633,003 kilometers.

  11. The Red Light District and Its Effects on Zebrafish Reproduction.

    PubMed

    Adatto, Isaac; Krug, Lauren; Zon, Leonard Ira

    2016-06-01

    Light-dark cycles mimicking natural settings in a zebrafish facility are crucial for maintaining fish with an entrained circadian clock making them an ideal vertebrate model to study such rhythms. However, failure to provide optimal conditions to include complete darkness can lead to a disturbed circadian pacemaker affecting physiology and behavior in zebrafish. To meet building code requirements, the aquatics facility in use was outfitted with EXIT signs emitting a constant light. To determine if light radiating from the EXIT sign has an effect on zebrafish embryo production, 100 fish (1:1 m/f ratio) were split and housed at 10 fish/L. Half were housed directly in front of the EXIT sign, whereas the other half (control) were housed under a true 14-h light-10-h dark cycle. Reproductive success was evaluated by recording fecundity and viability from 10 weekly matings under two light colors: red (640 nm) and green (560 nm). On average the control group spawned twice as many embryos compared to those housed in front of a red EXIT sign, whereas green EXIT sign showed no difference. This suggests the importance of providing a complete dark environment within the night cycle and a recommendation toward dim green EXIT signs to avoid a decline in reproductive performance. PMID:26978703

  12. Photoswitchable red fluorescent protein with a large Stokes shift

    PubMed Central

    Piatkevich, Kiryl D.; English, Brian P.; Malashkevich, Vladimir N.; Xiao, Hui; Almo, Steven C.; Singer, Robert H.; Verkhusha, Vladislav V.

    2014-01-01

    SUMMARY Subclass of fluorescent proteins, large Stokes shift fluorescent proteins, is characterized by their increased spread between the excitation and emission maxima. Here we report a photoswitchable variant of a red fluorescent protein with a large Stokes shift, PSLSSmKate, which initially exhibits excitation/emission at 445/622 nm, but irradiation with violet light photoswitches PSLSSmKate into a common red form with excitation/emission at 573/621 nm. We characterize spectral, photophysical and biochemical properties of PSLSSmKate in vitro and in mammalian cells, and determine its crystal structure in the large Stokes shift form. Mass-spectrometry, mutagenesis and spectroscopic analysis of PSLSSmKate allow us to propose molecular mechanisms for the large Stokes shift, pH dependence and light-induced chromophore transformation. We demonstrate applicability of PSLSSmKate to superresolution PALM microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects. PMID:25242289

  13. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    NASA Technical Reports Server (NTRS)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  14. Excited State Proton Transfer in the Red Fluorescent Protein mKeima

    PubMed Central

    Henderson, J. Nathan; Osborn, Maire F.; Koon, Nayden; Gepshtein, Rinat; Huppert, Dan; Remington, S. James

    2009-01-01

    mKeima is an unusual monomeric red fluorescent protein (λemmax ~620 nm) that is maximally excited in the blue (λexmax ~440 nm). The large Stokes shift suggests that the chromophore is normally protonated. A 1.63 Å resolution structure of mKeima reveals the chromophore to be imbedded in a novel hydrogen bond network, different than in GFP, which could support proton transfer from the chromophore hydroxyl, via Ser142, to Asp157. At low temperatures the emission contains a green component (λemmax ~535 nm), enhanced by deuterium substitution, presumably resulting from reduced proton transfer efficiency. Ultrafast pump/probe studies reveal a rising component in the 610 nm emission with lifetime ~4 ps, characterizing the rate of proton transfer. Mutation of Asp157 to neutral Asn changes the chromophore resting charge state to anionic (λexmax ~565 nm, λemmax ~620 nm). Thus, excited state proton transfer (ESPT) explains the large Stokes shift. This work unambiguously characterizes green emission from the protonated acylimine chromophore of red fluorescent proteins. PMID:19708654

  15. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  16. Mosaic of Jupiter's Great Red Spot (Violet Filter)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the violet (404 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 75 second interval beginning at universal time 4 hours, 18 minutes, 8 seconds on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.76 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Mosaic of Jupiter's Great Red Spot (in the near infrared)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the near-infrared (756 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over an 80 second interval beginning at universal time 4 hours, 19 minutes, 40 seconds, on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Mosaic of Jupiter's Great Red Spot (Methane Filter)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the methane (886 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 76 second interval beginning at universal time 14 hours, 33 minutes, 22 seconds, on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.46 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA s Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Green-to-Red Photoconversion of GCaMP

    PubMed Central

    Ai, Minrong; Mills, Holly; Kanai, Makoto; Lai, Jason; Deng, Jingjing; Schreiter, Eric; Looger, Loren; Neubert, Thomas; Suh, Greg

    2015-01-01

    Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs—including GCaMP3, GCaMP5 and GCaMP6—can be converted from green to red following exposure to blue-green light (450–500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals. PMID:26382605

  20. Green-to-Red Photoconversion of GCaMP.

    PubMed

    Ai, Minrong; Mills, Holly; Kanai, Makoto; Lai, Jason; Deng, Jingjing; Schreiter, Eric; Looger, Loren; Neubert, Thomas; Suh, Greg

    2015-01-01

    Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs--including GCaMP3, GCaMP5 and GCaMP6--can be converted from green to red following exposure to blue-green light (450-500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals. PMID:26382605

  1. Novel high refractive index fluids for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Santillan, Julius; Otoguro, Akihiko; Itani, Toshiro; Fujii, Kiyoshi; Kagayama, Akifumi; Nakano, Takashi; Nakayama, Norio; Tamatani, Hiroaki; Fukuda, Shin

    2006-03-01

    Despite the early skepticism towards the use of 193-nm immersion lithography as the next step in satisfying Moore's law, it continuous to meet expectations on its feasibility in achieving 65-nm nodes and possibly beyond. And with implementation underway, interest in extending its capability for smaller pattern sizes such as the 32-nm node continues to grow. In this paper, we will discuss the optical, physical and lithographic properties of newly developed high index fluids of low absorption coefficient, 'Babylon' and 'Delphi'. As evaluated in a spectroscopic ellipsometer in the 193.39nm wavelength, the 'Babylon' and 'Delphi' high index fluids were evaluated to have a refractive index of 1.64 and 1.63 with an absorption coefficient of 0.05/cm and 0.08/cm, respectively. Lithographic evaluation results using a 193-nm 2-beam interferometric exposure tool show the imaging capability of both high index fluids to be 32-nm half pitch lines and spaces.

  2. Temperature characteristic of 808nm VCSELs with large aperture

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Feng, Dawei; Hao, Yongqin; Wang, Yong; Yan, Changling; Lu, Peng; Li, Yang

    2015-03-01

    In order to study the output characteristics of 808nm vertical cavity surface emitting laser(VCSEL) with large aperture at different temperature, 808nm VCSEL with 500μm emitting diameter are fabricated with Reticular Electrode Structure(RES). Lasing wavelength, optical power and the threshold current are measured by changing the temperature of heat sink. And an output power of 0.42W is achieved at 1.3A at room temperature under continuous wave operation. The central wavelength is 803.32nm, and the full width at half maximum is 0.16nm, the temperature shift is 0.06nm/°, the thermal resistance is 0.098°/mW. The testing results show that 808nm VCSEL with large aperture is good temperature characteristic.

  3. Red cell DAMPs and inflammation.

    PubMed

    Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola

    2016-09-01

    Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury. PMID:27251171

  4. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  5. Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs.

    PubMed

    Yuan, Shuanglong; Yang, Yunxia; Zhang, Xianghua; Tessier, Franck; Cheviré, François; Adam, Jean-Luc; Moine, Bernard; Chen, Guorong

    2008-12-01

    A new red phosphor, Ba(2)Mg(BO(3))(2):Eu,Mn, was synthesized by the solid-state reaction method and its photoluminescence properties were investigated by excitation and emission spectra and decay curves. Its excitation band is extending from 250-450 nm, which is adaptable to the emission band of near-ultraviolet LED chips (350-420 nm). Upon the excitation of 365 nm light, the phosphor exhibits strong red emission centered at 615 nm. The relationship between Eu(2+) and Mn(2+) dopants was studied from the viewpoint of a crystal structure and by photoluminescence spectra and decay curves. The results show that the characteristic Eu(2+) emission predominate in the emission band and Mn(2+) promote the redistribution of Eu(2+) at the cation sites of the host crystal. PMID:19037454

  6. Versatile 1 W narrow band 976 nm and 1064 nm light sources

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Pfeiffer, H.-U.; Zibik, E. A.; Sverdlov, B.; Pliska, T.; Lichtenstein, N.

    2011-02-01

    We report on development of novel curved waveguide (CWG) laser devices, where the emission wavelength centered at ~976 nm is stabilized to a 20 dB bandwidth of less than 100 picometer by using fiber Bragg gratings (FBG). Radiation from the curved waveguide laser is coupled using an anamorphic fiber lens into a single mode polarization maintaining fiber containing the FBG, the latter acting as a front reflector. The high power gain chip is based on Oclaro's InGaAs/AlGaAs quantum well laser. Use of the curved waveguide geometry allows to eliminate residual reflections in the optical path of the cavity, which is formed by the rear chip facet and the FBG. It is well known that additional reflections lead to significant deterioration of the spectral and power stability. The devices, assembled in telecom type housings, provide up to 1 W of low-noise and kink-free CW power. In addition pulse operation in nanosecond range is also investigated. The spectral stabilization time to the wavelength of the FBG is limited by the external cavity roundtrip of ~2 ns. A side mode suppression ratio of about 40 dB and higher is achieved for pulsed and CW operation. Results are also presented for a device at 1064 nm. Numerous applications can be envisioned for these devices. For instance devices with high power and ultranarrow spectral bandwidth allow greater flexibility in the choice of parameters for frequency conversion applications. In pulsed mode the device can be used in the special sensing applications where spectral stability is crucial.

  7. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity.

    PubMed

    do Nascimento, Ticiano Gomes; da Silva, Priscilla Fonseca; Azevedo, Lais Farias; da Rocha, Louisianny Guerra; de Moraes Porto, Isabel Cristina Celerino; Lima E Moura, Túlio Flávio Accioly; Basílio-Júnior, Irinaldo Diniz; Grillo, Luciano Aparecido Meireles; Dornelas, Camila Braga; Fonseca, Eduardo Jorge da Silva; de Jesus Oliveira, Eduardo; Zhang, Alex Tong; Watson, David G

    2016-12-01

    The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of "multiple-constituent extract in co-delivery system" for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ε-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200-280 nm) in nanometric scale and zeta analysis (-20 to -26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38

  8. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  9. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  10. Polarization-dependent aluminum metasurface operating at 450 nm.

    PubMed

    Højlund-Nielsen, Emil; Zhu, Xiaolong; Carstensen, Marcus S; Sørensen, Michael K; Vannahme, Christoph; Asger Mortensen, N; Kristensen, Anders

    2015-11-01

    We report on a polarization-dependent plasmonic aluminum-based high-density metasurface operating at blue wavelengths. The fabricated sub-wavelength structures, tailored in size and geometry, possess strong, localized, plasmonic resonances able to control linear polarization. Best performance is achieved by rotating an elongated rectangular structure of length 180 nm and width 110 nm inside a square lattice of period 250 nm. In the case of 45 degrees rotation of the structure with respect to the lattice, the normal-incidence reflectance drops around the resonance wavelength of 457 nm from about 60 percent to below 2 percent. PMID:26561151

  11. A direct and simultaneous detection of zinc protoporphyrin IX, free protoporphyrin IX, and fluorescent heme degradation product in red blood cell hemolysates.

    PubMed

    Chen, Qiuying; Hirsch, Rhoda Elison

    2006-03-01

    Fluorescence emission of free protoporphyrin IX (PPIX, em. approximately 626 nm), zinc protoporphyrin IX (ZPP, em. approximately 594 nm) and fluorescent heme degradation product (FHDP, em. approximately 466 nm) are identified and simultaneously detected in mouse and human red cell hemolysates, when excited at 365 nm. A novel method is established for comparing relative FHDP, PPIX and ZPP levels in hemolysates without performing red cell porphyrin extractions. The ZPP fluorescence directly measured in hemolysates (F(365/594)) correlates with the ZPP fluorescence obtained from acetone/water extraction (R(2) = 0.9515, P < 0.0001). The relative total porphyrin (ZPP and PPIX) fluorescence obtained from direct hemolysate fluorescence measurements also correlates with red blood cell total porphyrins determined by ethyl acetate extraction (Piomelli extraction, R(2) = 0.88, P < 0.0001). These fluorescent species serves as biomarkers for alterations in Hb synthesis and Hb stability. PMID:16484045

  12. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands

    PubMed Central

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang

    2015-01-01

    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions. PMID:26608870

  13. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang

    2015-11-01

    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions.

  14. On the Red Edge an Optical Biomarker for Detecting Extrateresstrial Plants

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2005-12-01

    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the ``red edge,'' as a tool for astrobiology. First, we review the basic characteristics and physical origin of the red edge. Then, we discuss the challenges involved in detecting the red edge in Earthshine (i.e., a spatially integrated scattered light spectrum of the Earth), as evidenced by recent attempts to detect the red edge using spectroscopic observations of the dark side of the moon (which is illuminated by Eartshine). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial ``light-harvesting organisms'' have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths). Due to the small amplitude of the terrestrial red edge, the temporal variability of atmospheric water vapor, and the potential for similar mineralogical features, we conclude that great care must be taken in the interpretation of any

  15. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  16. Influence of laser diode red beams on germination rate of tomato seeds

    NASA Astrophysics Data System (ADS)

    Niculita, P.; Danaila-Guidea, Silvana; Livadariu, Oana; Popa, M.; Ristici, M.; Ristici, Esofina

    2007-08-01

    Laser diodes are lighting devices in which the light is generated by stimulated emission rather than spontaneous emission, with high generation efficiency. A device using 20 red laser diodes is presented. Emission wavelengths are in the 650-670 nm range. Emission power for each laser diode is about 4 mW. This device is used to irradiate the tomato seeds with three different irradiating doses. There were three Petri vessels for each dose having 25 seeds each of them. Results show that the germination rate increases for irradiated seeds. The red light has a positive effect for vegetable cultivated in protected area.

  17. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand

    SciTech Connect

    Mufti, Nandang Atma, T. Fuad, A.; Sutadji, E.

    2014-09-25

    The aim of this research is to synthesize nanoparticles of black pigment of Magnetite (Fe{sub 3}O{sub 4}), red pigment of hematite (α-Fe{sub 2}O{sub 3}), and yellow pigment of ghoetite (α-FeOOH) from the iron sand. The black pigment of Fe{sub 3}O{sub 4} and the yellow pigment α-FeOOH nanoparticles were synthesized by coprecipitation method with variation of pH. Whereas, the red pigment Fe{sub 2}O{sub 3} was synthesized by sintering Fe{sub 3}O{sub 4} nanoparticles at temperature between 400 °C and 700 7°C for 1 hour. All the pigments has been characterized using X-ray diffraction and SEM. The XRD results shown that the particle size of the black pigmen Fe{sub 3}O{sub 4}, red pigment Fe{sub 3}O{sub 4} and yellow pigment α-FeOOH are around 12, 32, and 30 nm respectively. The particle size of Fe{sub 2}O{sub 3} nanoparticles increase by increasing sintering temperature from 32 nm at 400 °C to 39 nm at 700 °C. For yellow pigment of α-FeOOH, the particle size increase by increasing pH from 30,54 nm at pH 4 to 48,60 nm at pH 7. The SEM results shown that the morphologies of black, yellow and red pigments are aglomarated.

  18. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  19. Red/NIR G-Quadruplex Sensing, Harvesting Blue Light by a Coumarin-Naphthalene Diimide Dyad.

    PubMed

    Zuffo, Michela; Doria, Filippo; Spalluto, Vincenzo; Ladame, Sylvain; Freccero, Mauro

    2015-12-01

    A conceptually new light-up nucleic acid fluorescent probe resulting from the conjugation of a coumarin to a naphthalene diimide exhibits a single wavelength emission at 498 nm when free in solution and an additional red/NIR emission when bound to G-quadruplex DNA. The light-up response centred at 666 nm is highly specific for quadruplex DNA when compared to duplex DNA or to RNA quadruplexes. PMID:26463116

  20. Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations.

    PubMed

    Hasegawa, Jun-ya; Ise, Takehiko; Fujimoto, Kazuhiro J; Kikuchi, Akihiro; Fukumura, Eiko; Miyawaki, Atsushi; Shiro, Yoshitsugu

    2010-03-01

    The emitting states of green fluorescent protein (GFP), monomeric Kusabira orange (mKO), and Discosoma red (DsRed) were studied using QM/MM and SAC-CI methods. By comparing the electronic structures among the green-, orange-, and red-emitting states as well as their electrostatic and quantum mechanical interactions within the protein cavity, the basic mechanisms for determining emission colors have been clarified. We found that the orange and red emissions of mKO and DsRed, respectively, result from cancellation between two effects, the pi skeleton extension (red shift) and protein electrostatic potential (blue shift). The extension of the pi skeleton enhances the intramolecular charge-transfer character of the transition, which makes the fluorescence energy more sensitive to the protein's electrostatic potential. On the basis of this mechanism, we predicted amino acid mutations that could red shift the emission energy of DsRed. A novel single amino acid mutation, which was examined computationally, reduced the DsRed emission energy from 2.14 (579 nm) to 1.95 eV (636 nm), which is approaching near-infrared fluorescence. PMID:20131896

  1. Flash-lamp pumped Pr:YAP laser operated at wavelengths of 747 nm and 662 nm

    NASA Astrophysics Data System (ADS)

    Fibrich, Martin; Jelínková, Helena; Šulc, Jan; Nejezchleb, Karel; Škoda, Václav

    2009-02-01

    Successful room-temperature generation of Pr:YAP laser radiation at wavelengths of 747 nm and 662 nm was demonstrated. A flash-lamp pumped Pr:YAP laser was operated in free-running pulsed regime at room temperature. Permanent laser action was reached by means of a special UV color glass plate filter placed directly into the laser cavity. The maximum output energy and pulse length reached at wavelengths of 747 nm and 662 nm were 102 mJ, 92 μs and 6.1 mJ, 47.5 μs, respectively. The laser beam parameter M2 ~ 1.5 was measured when the 662 nm wavelength was generated. In the case of 747 nm wavelength generation, M2 ~ 1.2 was reached with a diaphragm inside the resonator. For different pumped energy values, the line shape and linewidth remained stable for both cases.

  2. Experimental characterization of peripheral photocurrent in CMOS photodiodes down to 65 nm technology

    NASA Astrophysics Data System (ADS)

    Blanco-Filgueira, B.; López, P.; Roldán, J. B.

    2013-04-01

    In this work, an in-depth experimental characterization of submicron CMOS p-n+ junction photodiodes operating under uniform illumination in the visible range is performed. The experimental measurements are used to validate a previous two-dimensional analytical model for the photoresponse estimation of these structures, which pays special attention to the lateral collection and was verified by means of device simulations. To do so, square p-n+ junction photodiodes with different sizes down to an active area of 0.56 μm wide have been fabricated in 180 and 65 nm technological nodes and characterized under blue, green and red light sources. As a result, the importance of the lateral collection in the overall response for small photodiodes that was previously theoretically reported is confirmed. The experimentally validated two-dimensional analytical model is a powerful tool that can be employed for the design of CMOS imagers and related electronics circuits.

  3. Laser-diode based 10MHz photoacoustic Doppler flowmetry at 830 nm

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2012-02-01

    Photoacoustic Doppler Flowmetry has several potential advantages over its purely acoustical counterpart. The key ones are better inherent contrast and potential molecular information. It is therefore highly desired to continue to develop this modality into a viable complementary tool alongside with Doppler Ultrasound flowmetry. Working towards this goal we have constructed a Photoacoustic Doppler setup based on a combined pair of laser diodes at 830nm and a 10MHz focused acoustical transducer. Using tone-burst intensity modulation, depth-resolved Doppler spectrograms of a phantom vessel containing flowing suspension of carbon particles, were obtained. In order to investigate the conditions required for successful photoacoustic Doppler measurement in blood a k-space photoacoustic simulation was performed. It tested the photoacoustic response which is obtained for moving random spatial distributions of red blood cells and the effect of several parameters, such as particles density, ultrasonic frequency and optical spot size.

  4. Great Red Spot Mosaic - Near-infrared Filter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot (GRS) of Jupiter as seen through the near-infrared (757 nm) filter of the Galileo imaging system. The image is a mosaic of six images taken over an 80 second interval during the first GRS observing sequence on June 26, 1996. They have been map-projected to a uniform grid of latitude and longitude. North is at the top. The Red Spot, which is 20,000 km long, has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. Counterclockwise winds around its periphery reach 100 m/s. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, such as the three smaller vortices visible to the south. Other features of interest include a very bright cloud feature to the northwest and the dark collar surrounding the Great Red Spot.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Mesosphere-thermosphere regions coupling with the lower atmosphere through the inter-annual variations of the hydroxyl OH(8-3) bands, the oxygen 557.7 nm and 630.0 nm lines nightglow intensities

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Javakhishvili, Giorgi; Todua, Maya; Toriashvili, Lekso

    2016-04-01

    The characteristics of the inter-annual/seasonal distributions of the mid-latitude nightglow intensities of the mesopause hydroxyl OH(8-3) bands (maximum luminous layer about 87 km), the thermosphere oxygen green 557.7 nm (main maximum of luminous layer in the lower thermosphere at about 95 km) and the red 630.0 nm line (emitted from the ionosphere F2 region with maximum luminous layer about 230-280 km) intensities are considered by observations from Abastumani (41.75 E; 42.82 E). The observed inter-annual variations of the OH bands and green line, along with the maximal values at spring (March-April) and fall (September-October) equinoxial periods which are noticed also from other regions, exhibit maxima in June as well. The red line intensity mainly tends to decrease at equinoxial months, while it is maximal in summer and is accompanied by relatively small increase in June (compared to May and July). Maximal values of OH band and green line intensities in June are observed both in maximum and minimum phases of solar activity. This is considered as a manifestation of the features of upper and lower atmosphere dynamical coupling of this region of the South Caucasus. Such dynamical coupling can involve the ionosphere F2 region and can be accompanied by relative decrease of the red line intensity in June. It is observed that the increase of OH band and green line intensities is accompanied by the red line intensity decrease at the end of March and beginning of April, which also is considered as a manifestation of lower and upper atmosphere dynamical coupling. Acknowledgements: This work has been supported by Shota Rustaveli National Science Foundation Grants no. 31/56 and 31/81.

  6. 1319 nm and 1356 nm dual-wavelength operation of diode-side-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Zhi-chao; Zhang, Shen-jin; Yang, Feng; Zhang, Feng-feng; Yuan, Lei; He, Miao; Li, Jia-jia; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2016-05-01

    We report the first demonstration on a diode-side-pumped quasi continuous wave (QCW) dual-wavelength Nd:YAG laser operating at 1319 nm and 1356 nm. The resonator adopts symmetrical L-shaped flat-flat structure working in a thermally near unstable cavity. By precise coating on the cavity mirrors, the simultaneous oscillation at 1319 nm and 1356 nm is delivered. A maximum dual-wavelength output power of 9.4 W is obtained. The beam quality factor M2 is measured to be 1.9.

  7. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  8. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  9. Model-based scattering bars implementation for 65nm and 45nm nodes using IML technology

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Van Den Broeke, Doug; Laidig, Tom; Wampler, Kurt E.; Hollerbach, Uwe; Socha, Robert; Chen, J. F.; Hsu, Stephen; Shi, Xuelong

    2005-06-01

    Scattering Bars (SB) OPC, together with optimized illumination, is no doubt one of the critical enablers for low k1 lithography manufacturing. The manufacturing implementation of SB so far has been mainly based on rule-based approach. While this has been working well, a more effective model-based approach is much more desired lithographically for manufacturing at 65nm and 45nm nodes. This is necessary to ensure sufficient process margin using hyper NA for patterning random IC design. In our model-based SB (M-SB) OPC implementation, we have based on the patented IML Technology from ASML MaskTools. In this report, we use both dark field contact hole and clear field poly gate mask to demonstrate this implementation methodology. It is also quite applicable for dark field trench masks, such as local interconnect mask with damascene metal. For our full-chip implementation flow, the first step is to determine the critical design area and then to proceed with NA and illumination optimization. We show that, using LithoCruiser, we are able to select the best NA in combination with optimum illumination via a Diffraction Optical Element (DOE). The decision to use a custom DOE or one from the available DOE library from ASML can be made based on predicted process performance and cost effectiveness. With optimized illumination, it is now possible to construct an interference map for the full-chip mask pattern. Utilizing the interference map, M-SB OPC is generated. Next, model OPC can be applied with the presence of M-SB for the entire chip. It is important to note here, that from our experience, the model OPC must be calibrated with the presence of SB in order to achieve the desired accuracy. We report the full-chip processing benchmark using MaskWeaver to apply both M-SB and model OPC. For actual patterning performance, we have verified the full chip OPC treatment using SLiC, a DFM tool from Cadence. This implementation methodology can be applied to binary chrome mask

  10. A simple one-step synthesis of melanin-originated red shift emissive carbonaceous dots for bioimaging.

    PubMed

    Hu, Chuan; Liu, Yongmei; Chen, Jiantao; He, Qin; Gao, Huile

    2016-10-15

    Carbonaceous dots (CDs) are superior nanomaterials owing to their promising luminescence properties and good biocompatibility. However, most CDs have relatively short excitation/emission, which restrict their application in bioimaging. In this study, a simple one-step procedure was developed for synthesis of melanin-originated CDs (MNPs). The MNPs showed two long red shift emissions at 570nm and 645nm with broad absorptions from 200nm to 400nm and 500nm to 700nm, suggesting the great potential of MNPs in bioimaging. Besides, several experiments indicated that MNPs possessed good serum stability and well blood compatibility. In vitro, MNPs could be taken up by C6 cell in a concentration- and time-dependent manner with endosomes involved. In conclusion, MNPs were prepared using a simple one-step method with unique optical and good biological properties and could be used for bioimaging. PMID:27416289

  11. Electron beam inspection of 16nm HP node EUV masks

    NASA Astrophysics Data System (ADS)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  12. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with

  13. Scattering matrices of martian dust analogs at 488 nm and 647 nm

    NASA Astrophysics Data System (ADS)

    Dabrowska, Dominika D.; Muñoz, Olga; Moreno, Fernando; Ramos, José L.; Martínez-Frías, Jesús; Wurm, Gerhard

    2015-04-01

    We present measurements of the complete scattering matrix as a function of the scattering angle of five martian dust analogs, namely montmorillonite, two palagonite (JSC-1) samples, basalt, and calcite. The measurements are performed at 488 and 647 nm, covering the scattering angle range from 3° to 177°. The experimental scattering matrices are compared with results of Lorenz-Mie calculations performed for the same size distributions and refractive indices as our analog samples. As expected, we find that scattering matrices of realistic polydispersions of dust particles cannot be replaced by such calculated matrices. In contrast, the measured phase functions for our martian dust analogs may be considered a good approximation for martian dust at the studied wavelengths. Further, because of the sensitivity of polarimetry to particle microphysics, spectro-polarimetric observations from the martian surface appear to be a powerful diagnostic tool to infer the composition of the dust in the martian atmosphere. To facilitate the use of the experimental matrices for multiple-scattering calculations with polarization included, we compute the corresponding synthetic scattering matrices based on the measurements and defined in the full angle range from 0° to 180°.

  14. Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive.

    PubMed

    Liu, Yanju; Naidu, Ravi; Ming, Hui; Dharmarajan, Rajarathnam; Du, Jianhua

    2016-06-01

    Extremely large amounts of red mud (bauxite residue) are generated globally every year from alumina refining industries, which are being disposed of on engineered landfills. The objective of this study is to investigate the effects of thermal treatments on red mud for development of utilisation strategies. Thermal treatments of red mud samples and their characterisations were investigated under inert (N2) and oxidative (air) conditions with and without sawdust addition at 200-600°C. After calcination, the resulting samples were analysed using thermogravimetric-infrared spectroscopy (TG-IR) for functional group transformations, thermogravimetric analysis (TGA) for thermal loss profiles and X-ray diffraction (XRD) for mineral transformations. The characterisation results showed that in N2 environment, boehmite in red mud was transferred to transition alumina at around 400°C while losing water from structural components. The addition of sawdust for incubation and calcination of red mud in air increased the surface area, whereas that in nitrogen atmosphere lead to reduction of hematite to magnetite at around 500°C. The incorporated carbon materials played a major role in increasing the surface area especially for pore size less than 2.5 nm. This treated red mud with altered mineral composition and improved properties for binding contaminants can be used for environmental remediation and in the process of metal recovery such as iron. PMID:26951343

  15. Temperatures associated with thermally induced red blood cell changes in tissues irradiated in vivo

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.; Schwartz, Jon A.; Joseph, Rachel; Pearce, John A.; Rae, Brian; McMurray, Tom J.

    1994-07-01

    Photothermal coagulation and ablation lesions were produced in exposed livers of anesthetized rats with a cw Nd:YAG laser ((lambda) equals1064 nm; beam power 3.2 to 10 W; exposure times 3 to 10 s, and spot diameter, 0.7 to 1.9 mm). The surface temperatures produced by the irradiations were derived from IR camera images calibrated with temperature controlled black bodies present in the scene. Targetoid lesions with central white and outer red zones marked areas of surface and deep coagulation grossly. The animals were sacrificed 30 minutes after irradiation. The lesions and surrounding normal liver were collected for light microscopy. Microscopically, characteristic, thermally-induced red blood cell alterations were found in the white and red zones and at the boundaries separating them. The boundaries of the concentric surface zones were measured grossly from the lesion centers and compared to the thermal images to determine the temperatures associated with the red blood cell changes. The temperatures for the surface and deep morphologic isotherms defined by the white/red and red/normal boundaries of rat liver irradiated in vivo are 68+/- 5.0 degree(s)C and 55+/- 2.7 degree(s)C.

  16. Tailoring 10 nm scale suspended graphene junctions and quantum dots.

    PubMed

    Tayari, Vahid; McRae, Andrew C; Yiğen, Serap; Island, Joshua O; Porter, James M; Champagne, Alexandre R

    2015-01-14

    The possibility to make 10 nm scale, and low-disorder, suspended graphene devices would open up many possibilities to study and make use of strongly coupled quantum electronics, quantum mechanics, and optics. We present a versatile method, based on the electromigration of gold-on-graphene bow-tie bridges, to fabricate low-disorder suspended graphene junctions and quantum dots with lengths ranging from 6 nm up to 55 nm. We control the length of the junctions, and shape of their gold contacts by adjusting the power at which the electromigration process is allowed to avalanche. Using carefully engineered gold contacts and a nonuniform downward electrostatic force, we can controllably tear the width of suspended graphene channels from over 100 nm down to 27 nm. We demonstrate that this lateral confinement creates high-quality suspended quantum dots. This fabrication method could be extended to other two-dimensional materials. PMID:25490053

  17. High-efficency stable 213-nm generation for LASIK application

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  18. Methods to achieve sub-100-nm contact hole lithography

    NASA Astrophysics Data System (ADS)

    Lindsay, Tracy K.; Kavanagh, Robert J.; Pohlers, Gerd; Kanno, Takafumi; Bae, Young C.; Barclay, George G.; Kanagasabapathy, Subbareddy; Mattia, Joseph

    2003-06-01

    There are numerous methods being explored by lithographers to achieve contact holes below 100nm. Regarding optical impact on contact hole imaging, very high numerical aperture tools are becoming available at 193nm (as high as 0.9) and various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. In this paper, the impact of the ArF photoresist is investigated. Polymers capable of thermal reflow of larger (~140nm) to smaller (90nm and below) contact holes are presented. Improved materials to achieve the properties necessary for good contact hole imaging for standard single layer resist (SLR) processing are also discussed. State-of-the-art ultra-thin resists (UTR) for contact holes and 193nm bi-layer resist systems are also studied as viable techniques to achieving very small contact holes.

  19. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  20. Design of 200-nm, 170-nm, and 140-nm DUV contact sweeper high-transmission attenuating phase-shift mask: II. Experimental results

    NASA Astrophysics Data System (ADS)

    Socha, Robert J.; Shi, Xuelong; Holman, Ken C.; Dusa, Mircea V.; Conley, Will; Petersen, John S.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.; Chu, M. C.; Su, Chung Jen; Hung, Kuei-Chun; Chen, C.; Wang, F.; Le, C.; Pierrat, Christophe; Su, Bo

    1999-07-01

    Experiments for 140nm and 160nm contacts were optimized through simulation on an 18 percent transmitting phase shift mask for KrF lithography. A transmission of 18 percent is shown to have the most linear aerial image behavior through focus. The simulations were run using a primitive positive photoresist model in order to predict trends in resolution and to predict when side lobes begin printing. Experiments show that the 140nm and 160nm contact holes resolve without side lobe printing through focus and through exposure. Reticle SEMs verify that a ternary contact hole mask is capable of manufacture. By adding both opaque and clear sub- resolution assist features, the experiments show contacts as small as 140nm resolve with 0.50 micrometers focus latitude with 10 percent exposure latitude through pitch. Cross sectional SEMs verify that contact holes are larger due to the addition of zero order light as suggested by theory and show that side lobes begin to print. Experiments also prove that NA has the largest impact on resolution and exposure latitude and that (sigma) has the largest impact on depth of focus.

  1. Role of iNOS gene expression in the anti-inflammatory and tissue protective mechanisms of continuous wave at 630-905nm and 905nm superpulsed laser therapy

    NASA Astrophysics Data System (ADS)

    Mandel, Arkady; Moriyama, Yumi; Fong, Jamie; Dumoulin-White, Roger; Lilge, Lothar

    2012-03-01

    Up regulation of iNOS gene expression is playing a role in the initiation of the anti-inflammatory and tissue protective mechanisms related to nitric oxide (NO) for continuous wave red and infrared as well as 905nm superpulsed laser therapy (SPLT). The iNOS expression before and after laser therapy was evaluated in a zymosan-induced acute arthritis model, in knee joints of young (<15 weeks), middle aged (>15 weeks and < 35 weeks) and old (> 35 weeks) FVB/N-Tg (iNOS-luc) mice by bioluminescence imaging.

  2. Red is romantic, but only for feminine females: sexual dimorphism moderates red effect on sexual attraction.

    PubMed

    Wen, Fangfang; Zuo, Bin; Wu, Yang; Sun, Shan; Liu, Ke

    2014-01-01

    Previous researchers have documented that the color red enhances one's sexual attraction to the opposite sex. The current study further examined the moderating role of sexual dimorphism in red effects. The results indicated that red enhanced men's sexual attraction to women with more feminine facial characteristics but had no effect on ratings of perceived general attractiveness. Red clothing also had a marginally significant effect on men's sexual attractiveness. In addition, regardless of sexual dimorphism cues, male participants rated women with red as warmer and more competent. The underlying mechanisms of the red effect, the limitations of the current study, and suggestions for future directions are discussed. PMID:25300050

  3. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  4. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Taira, T.

    2002-06-01

    Highly efficient 1064 nm continuous-wave laser emission under 885 nm diode pumping in concentrated Nd: Yttrium aluminum garnet (YAG) crystals (up to 3.5 at. % Nd) and ceramics (up to 3.8 at. % Nd) is reported. A highly doped (2.4 at. %) Nd:YAG laser, passively Q switched by a Cr4+:YAG saturable absorber, is demonstrated.

  5. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser

    PubMed Central

    Perillo, Evan P.; McCracken, Justin E.; Fernée, Daniel C.; Goldak, John R.; Medina, Flor A.; Miller, David R.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2016-01-01

    Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth. PMID:26977343

  6. White and full color upconversion film-on-glass displays driven by a single 978 nm laser.

    PubMed

    Han, Xiumei; Castellano-Hernández, Elena; Hernández-Rueda, Javier; Solís, Javier; Zaldo, Carlos

    2014-10-01

    White and full-color displays based on upconversion (UC) processes in multilayered NaLu₁-x-yYbxTmy(WO₄)₂/NaLu₁-x-zYbxHoz(WO₄)₂ films deposited on 20 × 20 mm² Pyrex glass substrates are demonstrated by scanning with a 978 nm focused beam from a diode laser. Moreover, spatially resolved red, green and blue pixels are selected by focusing the excitation light at different depths on three stacked films with compositions individually optimized for UC emission of each fundamental color. The highest temperature used in synthesis/deposition process was 580 °C allowing the use of glass substrates. PMID:25321986

  7. An optoelectronic device in bulk LiF with sub-micron periodic gratings fabricated by interference of 400 nm femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Obayashi, Y.; Kurashima, M.; Hirose, Y.; Sakai, T.; Aoshima, S.; Kojima, T.; Okuda, S.

    2008-06-01

    Sub-micron periodic gratings of transparent materials are holographically fabricated by interference with the second harmonic (400 nm) of a mode-locked Ti:sapphire oscillator-amplifier laser. As one optoelectronic application, a pulsed, room temperature laser action in bulk lithium fluoride is demonstrated, for the first time, in the green spectral region based on the laser-active F3+colour centres utilizing a distributed feedback structure encoded by interference of 400 nm femtosecond laser pulses. A lasing output with a linewidth of 1 nm is obtained at approximately 539 nm, which value reflects the selective laser resonator. Realization of green and red distributed feedback colour centre laser action based on the F3+and F2 centres in LiF excited by a single wavelength can be expected.

  8. CaTiO3:Eu3+ red nanophosphor: low temperature synthesis and photoluminescence properties.

    PubMed

    Shivram, M; Prashantha, S C; Nagabhushana, H; Sharma, S C; Thyagarajan, K; Harikrishna, R; Nagabhushana, B M

    2014-01-01

    Nanoparticles of Eu3+ doped (1-9 mol%) CaTiO3 were prepared using low temperature (500°C) solution combustion technique using metal nitrates as precursors and urea as fuel. The powder X-ray diffraction patterns of the as-formed products show single orthorhombic phase. The crystallite size was estimated using Scherrer's method and found to be in the range 40-45 nm. The effect of Eu3+ ions on luminescence characteristics of CaTiO3 was studied and the results were discussed in detail. The phosphors exhibit bright red emission upon 398 nm excitation. The characteristic emission peaks recorded at ∼540, 593, 615, 653, 696 and 706 nm (5D0→7Fj=0,1,2,3,4,5) were attributed to Eu3+ ions. The electronic transition corresponding to 5D0→7F2 (615 nm) was stronger than the magnetic dipole transition 5D0→7F1 of Eu3+ ions (596 nm). The CIE chromaticity co-ordinates were calculated from emission spectra, the values (x,y) very close to NTSC standard value of red emission. Therefore, the present phosphors were highly useful for display applications. PMID:24211621

  9. Still from Red Spot Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is one of seven from the narrow-angle camera on NASA's Cassini spacecraft assembled as a brief movie of cloud movements on Jupiter. It was taken with a blue filter. The smallest features visible are about 500 kilometers (about 300 miles) across.

    Small bright clouds appear suddenly to the west of the Great Red Spot. Based on data from NASA's Galileo spacecraft, scientists suspect that these small white features are lightning storms, where falling raindrops create an electrical charge. The lightning storms eventually merge with the Red Spot and surrounding jets, and may be the main energy source for these large-scale features. Imaging observations of the darkside of the planet in the weeks following Cassini's closest approach to Jupiter on Dec. 30, 2000 will search for lightning storms like these.

    This image was re-projected by cylindrical-map projection of an image taken in the first week of October 2000. It shows an area from 50 degrees north of Jupiter's equator to 50 degrees south, extending 100 degrees east west, about one quarter of Jupiter's circumference.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  10. What is red cell deformability?

    PubMed

    Schmid-Schönbein, H; Gaehtgens, P

    1981-01-01

    Microscopic flow visualization of the process of red cell adaptation to flow shows that red cell deformation in flow is the consequence of a continuous viscous rather than an elastic deformation. This fluid drop-like adaptation primarily depends on: (a) the fluidity of the cytoplasm and (b) the favourable surface-area-to-volume ratio, with an excess of surface area allowing strong deformations without an increase in surface area (a real strain). (c) In contrast to previous notions, the modulus of shear elasticity of the membrane is probably less significant. After many attempts to differentiate the contribution of bending and shear stiffness to the elastic recovery of the normal biconcave cell shape have not produced equivocal results, we have changed the elastic shear modulus experimentally by cross-linking the spectrin using the membrane-permeant, bifunctional SH-reagent DIAMIDE, which allows to increase the elastic shear modulus in a dose-dependent manner. Despite a 25-fold decrease in compliance the DIAMIDE-treated cells have normal shape and show remarkably small changes in the rheological behaviour when tested in vitro and in vivo. PMID:6948373

  11. Modeling the distributed gain of single--(1050 or 1410 nm) and dual-wavelength--(800 + 1050 nm or 800 + 1410 nm) pumped thulium-doped fiber amplifiers.

    PubMed

    Floridia, Claudio; Carvalho, M T; Lüthi, S R; Gomes, A S L

    2004-09-01

    The distributed gain of single- and dual-wavelength-pumped thulium-doped fiber amplifiers is modeled. The excellent agreement between the model and coherent optical frequency domain reflectometry measurements enables us to estimate intrinsic loss, branching ratios of fluorescence originating from the 3H4 level, and cross sections of upconversion pumping at 1050 and 1410 nm for the Tm3+ ions in the fiber. With the branching ratios obtained it is possible to describe induced signal absorption when pumping at 800 nm. PMID:15455754

  12. Intense red upconversion luminescence from Tm3+/Yb3+ codoped transparent glass ceramic.

    PubMed

    Xu, Wei; Chen, Jianmin; Wang, Peng; Zhang, Zhiguo; Cao, Wenwu

    2012-01-15

    Tm3+/Yb3+ codoped transparent glass ceramic containing β-PbF2 nanocrystals was successfully prepared. After thermal treatment, emissions from the state of Tm3+ excited by 980 nm laser were greatly quenched by cross relaxation and the 700 nm luminescence from Tm3+:3F2,3→3H6 transition was strongly enhanced. A nearly monochromatic red luminescence band was observed. Based on the luminescence decay curves and Judd-Ofelt analysis, the strengthened cross relaxation played an important role in such phenomenon. PMID:22854468

  13. Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3

    NASA Astrophysics Data System (ADS)

    Hreniak, D.; Strek, W.; Speghini, A.; Bettinelli, M.; Boulon, G.; Guyot, Y.

    2006-04-01

    Polycrystalline lithium niobate powders were prepared by the sol-gel method. Different grain sizes were obtained by controlling the annealing temperature. The Eu3+ ion was used as a luminescent probe of the nonlinear optical properties of the grains. Strong red emission deriving from Eu3+ ions was observed under pulsed infrared laser irradiation at 936.0nm due to absorption of the light produced in the second harmonic generation process. A measurable emission was observed only for grains having a size of the least 200nm, depending on the annealing temperature.

  14. Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1.

    PubMed

    Raschellà, Raffaella; Marino, Iari-Gabriel; Lottici, Pier Paolo; Bersani, Danilo

    2003-11-15

    Polarization holographic gratings in sp configuration are written at 488 nm in photorefractive organic-inorganic films based on SiO2. The films, prepared by a solgel technique, contain Disperse Red 1, carbazole units, and 2,4,7-trinitro-9-fluorenone. The gratings are characterized by their diffraction efficiency for a 632.8-nm probe. The polarization gratings act as a half-wave plate, and the diffraction efficiency is independent of the polarization direction of the probe. PMID:14649954

  15. Spectral fluorescent properties of tissues in vivo with excitation in the red wavelength range

    NASA Astrophysics Data System (ADS)

    Stratonnikov, Alexander A.; Loschenov, Victor B.; Klimov, D. V.; Edinac, N. E.; Wolnukhin, V. A.; Strashkevich, I. A.

    1997-12-01

    The spectral fluorescence analysis is a promising method for differential tissue diagnostic. Usually the UV and visible light is used for fluorescence excitation with emission registration in the visible wavelength range. The light penetration length in this wavelength range is very small allowing one to analyze only the surface region of the tissue. Here we present the tissue fluorescent spectra in vivo excited in the red wavelength region. As excitation light source we used compact He-Ne laser (632.8 nm) and observed the fluorescence in 650 - 800 nm spectral range. The various tissues including normal skin, psoriasis, tumors, necrosis as well as photosensitized tissues have been measured.

  16. Study of 193-nm resist degradation under various etch chemistries

    NASA Astrophysics Data System (ADS)

    Bazin, Arnaud; May, Michael; Pargon, Erwine; Mortini, Benedicte; Joubert, Olivier

    2007-03-01

    The effectivity of 193nm photoresists as dry etch masks is becoming more and more critical as the size of integrated devices shrinks. 193nm resists are known to be much less resistant to dry etching than 248nm resists based on a poly(hydroxystyrene) polymer backbone. The decrease in the resist film budget implies a better etch resistance to use single layer 193nm photoresists for the 65nm node and beyond. In spite of significant improvements made in the past decade regarding the etch resistance of photoresists, much of the fundamental chemistry and physics that could explain the behaviour of these materials has to be better understood. Such knowledge is necessary in order to propose materials and etch processes for the next technology nodes (45nm and below). In this paper, we report our studies on the etch behaviour of different 193nm resist materials as a function of etch chemistry. In a first step, we focus our attention on the interactions between photoresists and the reactive species of a plasma during a dry etch step. Etch experiments were carried out in a DPS (Decoupled Plasma Source) high density chamber. The gas chemistry in particular was changed to check the role of the plasma reactive species on the resist. O II, Cl II, CF 4, HBr and Ar gas were used. Etch rates and chemical modifications of different materials were quantified by ellipsometry, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Photoelectrons Spectroscopy (XPS). We evaluated different materials including 248nm model polymer backbones (pure PHS or functionalized PHS), and 193nm model polymers (PMMA and acrylate polymers) or resist formulations. Besides the influence of resist chemistry, the impact of plasma parameters was addressed.

  17. Assessing the therapeutic effect of 625-nm light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mao, Zongzhen; Xu, Guodong; Yang, Yi

    2014-09-01

    To evaluate the effects of red Light-Emitting Diodes on elbow extensor and flexor strength and the recovery of exercise induced fatigue, the torque values from the isokinetic dynamometer as well as biochemistry parameters were used as outcome measures. A randomized double-blind placebo-controlled crossover trial was performed with twenty male young tennis athletes. Active LED therapy (LEDT, with wavelength 625nm, 10 minutes total irradiation time, irradiated area amount to 30cm2, and 900J of total energy irradiated) or an identical placebo was delivered under double-blinded conditions to the left elbow just before exercise. The isokinetic muscle strength was measured immediately after irradiation. The blood lactate levels were sampled pre-exercise and post-exercise. The peak torque values of elbow extensor strength were significantly different between two groups. As in elbow flexor strength, the difference of peak torque was not significant. The blood lactate concentration of LEDT group post-exercise was significantly lower than those of placebo group. The results indicate that 625nm LED therapy is effective in preventing muscle fatigue as it can significantly reduce peak torque value of elbow extensors and blood lactate concentration. It has no effect on the strength of left elbow flexor or backhand performance in tennis.

  18. Sub-100 nm patterning of supported bilayers by nanoshaving lithography.

    PubMed

    Shi, Jinjun; Chen, Jixin; Cremer, Paul S

    2008-03-01

    Sub-100 nm wide supported phospholipid bilayers (SLBs) were patterned on a planar borosilicate substrate by AFM-based nanoshaving lithography. First, a bovine serum albumin monolayer was coated on the glass and then selectively removed in long strips by an AFM tip. The width of vacant strips could be controlled down to 15 nm. Bilayer lines could be formed within the vacant strips by vesicle fusion. It was found that stable bilayers formed by this method had a lower size limit of approximately 55 nm in width. This size limit stems from a balance between a favorable bilayer adhesion energy and an unfavorable bilayer edge energy. PMID:18257567

  19. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  20. All-fibre ytterbium laser tunable within 45 nm

    SciTech Connect

    Abdullina, S R; Babin, S A; Vlasov, A A; Kablukov, S I; Shelemba, I S; Kurkov, A S

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  1. Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits

    PubMed Central

    Calogero, Giuseppe; Di Marco, Gaetano; Cazzanti, Silvia; Caramori, Stefano; Argazzi, Roberto; Di Carlo, Aldo; Bignozzi, Carlo Alberto

    2010-01-01

    Dye-sensitized solar cells (DSSCs) were assembled by using the bougainvillea flowers, red turnip and the purple wild Sicilian prickly pear fruit juice extracts as natural sensitizers of TiO2 films. The yellow orange indicaxanthin and the red purple betacyanins are the main components in the cocktail of natural dyes obtained from these natural products. The best overall solar energy conversion efficiency of 1.7% was obtained, under AM 1.5 irradiation, with the red turnip extract, that showed a remarkable current density (Jsc = 9.5 mA/cm2) and a high IPCE value (65% at λ = 470 nm). Also the purple extract of the wild Sicilian prickly pear fruit showed interesting performances, with a Jsc of 9.4 mA/cm2, corresponding to a solar to electrical power conversion of 1.26%. PMID:20162014

  2. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging.

    PubMed

    Kamruzzaman, Mohammed; Makino, Yoshio; Oshita, Seiichi

    2016-04-01

    A hyperspectral imaging system in the spectral range of 400-1000 nm was investigated to develop a multispectral real-time imaging system allowing the meat industry to determine moisture content in red meat including beef, lamb, and pork. Multivariate calibration models were developed using partial least-squares regression (PLSR) and least-squares support vector machines (LS-SVM) in the full spectral range. Instead of selection of different sets of feature wavelengths for beef, lamb, and pork, a set of 10 feature wavelengths was selected for convenient industrial application for the determination of moisture content in red meat. A quantitative linear function was then established using MLR based on these key feature wavelengths for predicting moisture content of red meat in an online system and creating moisture distribution maps. The results reveal that the combination of hyperspectral imaging and multivariate has great potential in the meat industry for real-time determination of moisture content. PMID:26593592

  3. Malignant Melanoma Arising in Red Tattoo Ink

    PubMed Central

    Duff, Gerald; McKenna, Dermot; Regan, Padraic James

    2015-01-01

    We report the case of a 33-year-old male who presented with a malignant melanoma on his anterior chest wall. The lesion was only found in the red ink pigment of the tattoo, as were several in-transit dermal metastases. Possible explanations include a pre-existing lesion which was seeded with red ink or the possibility of the red ink causing an inflammatory reaction leading to malignant transformation. This is the first reported case of a melanoma developing in the red ink pigment of a multi-colored tattoo. PMID:26217569

  4. Metal-based netropsin mimics showing AT-selective DNA binding and DNA cleavage activity at red light.

    PubMed

    Patra, Ashis K; Bhowmick, Tuhin; Ramakumar, Suryanarayanarao; Chakravarty, Akhil R

    2007-10-29

    Copper(II) bis-arginate [Cu(l-arg)2](NO3)2 (1) and [Cu(l-arg)(phen)Cl]Cl (2) as mimics of the minor-groove-binding natural antibiotic netropsin show preferential binding to the AT-rich region of double-stranded DNA. The complexes with a d-d band near 600 nm display oxidative DNA cleavage activity on photoirradiation at UV-A light of 365 nm and at red light of 647.1 nm (Ar-Kr laser) in a metal-assisted photoexcitation process forming singlet oxygen (1O2) species in a type-2 pathway. PMID:17880211

  5. Effects of somatolactin on melanosome aggregation in the melanophores of red drum (Sciaenops ocellatus) scales.

    PubMed

    Zhu, Y; Thomas, P

    1997-01-01

    The effects of purified red drum somatolactin on pigment movement in red drum scales were studied in vitro and in vivo. The integument became pale within 2 min following an intramuscular injection of somatolactin (1 nmol/g body weight) in fish held in a black-background aquarium, and gradually regained its black coloration during the subsequent 30 min. No melanosome aggregation was observed in fish injected with vehicle or somatolactin over the dose range of 10(-9)-10(2) pmol/g. Melanosomes in the melanophores of scales were completely aggregated within 10 min of incubation with 1 microM somatolactin in vitro. The effect of somatolactin on melanosome aggregation was dose-dependent. Somatolactin caused only partial aggregation at a concentration of 500 nM and 250 nM somatolactin had little or no effect. Somatolactin caused melanosome aggregation in both innervated and denervated melanophores. Aggregated melanosomes which had been preincubated with somatolactin dispersed within 30 min after rinsing with a physiological buffer. No melanosome aggregation was observed in scales incubated with 10 nM-1 microM of red drum prolactin (PRL), red drum growth hormone (GH), ovine PRL, or recombinant tuna GH. These results indicate that the action of somatolactin on melanosome movement is direct, specific, reversible, and is probably mediated by a specific somatolactin receptor on the melanophores. Melanin-concentrating hormone (MCH) and norepinephrine (NE) also induced melanosome aggregation in scales at a low concentration of 10 nM. Addition of 1 microM alpha-melanophore-stimulating hormone (alpha-MSH) following preincubation of scales with 1 microM somatolactin, 10 nM MCH, or 10 nM NE resulted in partial dispersion of the melanosomes. These results suggest that melanosome migration in red drum scales is under multiple hormonal control. Although a direct action of somatolactin on melanosome aggregation is demonstrated in this study, its physiological role in the regulation of

  6. Removal of copper oxide from copper surfaces using Q-switched Nd:YAG radiation at 1064 nm, 532 nm, and 266 nm

    NASA Astrophysics Data System (ADS)

    Kearns, Aileen; Fischer, C.; Watkins, Kenneth G.; Glasmacher, Mathias; Steen, William M.; Kheyrandish, H.; Brown, A.

    1997-08-01

    During electronic device fabrication it is necessary to remove the oxides from copper surfaces prior to soldering in order to improve the surface wetability and achieve a good quality solder joint. The usual method of achieving this is by using acids in a flux. The work reported here explores the possibility of removing these oxides by laser cleaning using the harmonics of a Q-switched Nd:YAG laser, a technique which could be incorporated into a industrial laser soldering process. The effect of Q-switched Nd:YAG radiation (5 - 10 ns pulses), at 1064 nm, 532 nm and 266 nm, on the oxidized surface of a copper alloy foil is studied with increasing fluence. In order to successfully compare the effect of increasing fluence at the three wavelengths each area treated was only subjected to one laser pulse. The laser treated surfaces were characterized using optical microscopy, SEM, and surface analysis performed by static secondary ion mass spectrometry (SSIMS). SSIMS and SNMS (secondary neutral mass spectrometry) with mechanical depth profilometry were used to characterize the oxide layer. The reflectivity of the oxidized plates for the three wavelengths was ascertained using a reflectivity spectrometer. Successful cleaning was achieved at all wavelengths, above certain threshold values which defined the lower end of the process operating window for single pulse operation. The threshold for the cleaning process decreased with laser wavelength. Surface melting was evident at the lowest fluences examined for all the wavelengths (< .5 J/cm2). This value is well below the lower end of the process windows of all wavelengths. Microscopic `explosive' features were found at the onset of copper oxide removal possibly resulting from ionization or a plasma induced shock waves. There was some possible evidence of mechanical effects at 1064 nm and 532 nm. Large amounts of sputtered debris was found around the 266 nm craters. A SSIMS analysis was performed on the 532 nm spots. The

  7. Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis.

    PubMed

    Tong, Yao; Yung, Lisa Y; Wong, Yung H

    2015-06-01

    Nm23H1 and H2 are prototypical metastasis suppressors with diverse functions, but recent studies suggest that they may also regulate tumorigenesis. Here, we employed both cellular and in vivo assays to examine the effect of Nm23H1 and H2 on tumorigenesis induced by oncogenic Ras and/or p53 deficiency. Co-expression of Nm23H1 but not H2 in NIH3T3 cells effectively suppressed neoplastic transformation and tumorigenesis induced by the oncogenic H-Ras G12V mutant. Overexpression of Nm23H1 but not H2 also inhibited tumorigenesis by human cervical cancer HeLa cells with p53 deficiency. However, in human non-small-cell lung carcinoma H1299 cells harboring N-Ras Q61K oncogenic mutation and p53 deletion, overexpression of Nm23H1 did not affect tumorigenesis in nude mice assays, while overexpression of Nm23H2 enhanced tumor growth with elevated expression of the c-Myc proto-oncogene. Collectively, these results suggest that Nm23H1 and H2 have differential abilities to modulate tumorigenesis. PMID:25748386

  8. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  9. High-resolution optical signatures of fresh and aged explosives in the 420nm to 620nm illumination range

    NASA Astrophysics Data System (ADS)

    Lunsford, Robert; Grun, Jacob; Gump, Jared

    2012-06-01

    Optical signatures of fresh and aged explosives are measured and compared to determine whether there exist differences in the signatures that can be exploited for detection. The explosives examined are RDX, TNT, and HMX, which have been heated for two weeks at 75 degrees centigrade or irradiated for two weeks with a 15-Watt ultraviolet lamp (254nm). The optical signatures are obtained by illuminating the samples with a sequence of laser wavelengths between 420nm and 620nm in 10 nm steps and measuring the spectra of light scattered from the sample at each laser wavelength. The measurements are performed on the Naval Research Laboratory's SWOrRD instrument. SWOrRD is capable of illuminating a sample with laser wavelength between 210nm and 2000nm, in steps of 0.1nm, and measuring the spectrum of light scattered from the sample at each wavelength. SWOrRD's broad tuning range, high average power (1- 300mW), narrow line width (< 4cm-1), and rapid wavelength tunability enable these measurements. Results, based on more than 80 measurements - each at 21 sequential laser wavelengths, indicate that the variation in spectral line amplitude observed when altering laser illumination wavelength differs between fresh and aged explosives. Thus, an instrument for rapid and reagent-less differentiation between aged and fresh explosives, based on illumination with a few appropriately chosen laser wavelengths appears feasible.

  10. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  11. Fiber-integrated 780 nm source for visible parametric generation.

    PubMed

    Hu, D J J; Murray, R T; Legg, T; Runcorn, T H; Zhang, M; Woodward, R I; Lim, J L; Wang, Y; Luan, F; Gu, B; Shum, P P; Kelleher, E J R; Popov, S V; Taylor, J R

    2014-12-01

    We report the development of a fully fiber-integrated pulsed master oscillator power fibre amplifier (MOPFA) source at 780 nm, producing 3.5 W of average power with 410 ps pulses at a repetition rate of 50 MHz. The source consists of an intensity modulated 1560 nm laser diode amplified in an erbium fiber amplifier chain, followed by a fiber coupled periodically poled lithium niobate crystal module for frequency doubling. The source is then used for generating visible light through four-wave mixing in a length of highly nonlinear photonic crystal fiber: 105 mW at 668 nm and 95 mW at 662 nm are obtained, with pump to anti-Stokes conversion slope efficiencies exceeding 6% in both cases. PMID:25606903

  12. Photorefractive effect at 775 nm in doped lithium niobate crystals

    SciTech Connect

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V.; Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C.

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  13. 100-nm node lithography with KrF?

    NASA Astrophysics Data System (ADS)

    Fritze, Michael; Tyrrell, Brian; Astolfi, David K.; Yost, Donna; Davis, Paul; Wheeler, Bruce; Mallen, Renee D.; Jarmolowicz, J.; Cann, Susan G.; Liu, Hua-Yu; Ma, M.; Chan, David Y.; Rhyins, Peter D.; Carney, Chris; Ferri, John E.; Blachowicz, B. A.

    2001-09-01

    We present results looking into the feasibility of 100-nm Node imaging using KrF, 248-nm, exposure technology. This possibility is not currently envisioned by the 1999 ITRS Roadmap which lists 5 possible options for this 2005 Node, not including KrF. We show that double-exposure strong phase- shift, combined with two mask OPC, is capable of correcting the significant proximity effects present for 100-nm Node imaging at these low k1 factors. We also introduce a new PSM Paradigm, dubbed 'GRATEFUL,' that can image aggressive 100-nm Node features without using OPC. This is achieved by utilizing an optimized 'dense-only' imaging approach. The method also allows the re-use of a single PSM for multiple levels and designs, thus addressing the mask cost and turnaround time issues of concern in PSM technology.

  14. Absolute measurement of F2-laser power at 157 nm

    SciTech Connect

    Kueck, Stefan; Brandt, Friedhelm; Kremling, Hans-Albert; Gottwald, Alexander; Hoehl, Arne; Richter, Mathias

    2006-05-10

    We report a comparison of laser power measurements at the F2-laser wavelength oaf nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of?10 {mu}J, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.

  15. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  16. Raman spectroscopy using 1550 nm (retina-safe) laser excitation.

    PubMed

    Brouillette, Carl; Huang, Hermes; Smith, Wayne; Farquharson, Stuart

    2011-05-01

    During the past decade, the use of portable Raman analyzers for field measurements has grown dramatically. However, most analyzers use 785 nm excitation lasers that can cause permanent eye damage. To overcome this safety concern, we have built a portable Fourier transform (FT) Raman analyzer using a 1550 nm retina-safe excitation laser and have compared its performance to our 1064 nm FT-Raman analyzer, which uses the same optical design. Raman theory predicts approximately five times lower peak intensities at 1550 nm. Although we found that intensities were as much as 20 times less intense, the analyzer is still capable of measuring spectra of sufficient quality to identify and differentiate chemicals. PMID:21513601

  17. Notably Improved Red Photoresponse of Organic Diode Employing Gold Nanoparticles Plasmonic Absorption.

    PubMed

    Luo, Xiao; Wen, Zhanwei; Du, Lili; Lv, Wenli; Zhao, Feiyu; Tang, Ying; Chen, Zhen; Peng, Yingquan

    2016-06-01

    The wide variation of optical absorptions of AuNPs provides a strategy to fabricate simple photosensitive sensors. We demonstrate a notably improved red photoresponse of organic diode by incorporation of 3-nm gold nanoparticles (AuNPs) into NPB/C60 heterojunction interface. Near-field enhancement around AuNPs gives rise to the significant improvement of exciton generation and dissociation in the interface of organic photodiode (OPD), thereby obtaining a sharply increasing photocurrent. A detailed energy level diagram is proposed to interpret the improvement of photocurrent. Significantly, the OPD exhibits excellent diode characteristics in the dark. On the other hand, the device shows a large red photoresponse with responsivity greater than 200 mA/W. The calculated maximum D* and EQE are 1.52 x 10(11) jones and 39.21% at a very low voltage of -0.5 V, respectively. Note that the NPB and C60 almost have no absorption at 650 nm; the red photoresponse performance above is one of the highest values reported thus far for the single AuNPs layer dominant OPDs. It is expected that such a red-light detector will have potential application in future optoelectronic devices. PMID:27427619

  18. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Macler, Bruce A.; Plummer, Stephen E.

    1991-01-01

    The effect of a leaf pigment - red amaranthin - on red edge and chlorophyll concentration is investigated in amaranth leaves by means of treatments with nitrate and salts. A near-linear relationship between red edge and chlorophyll concentration is observed for leaves with low amaranthin concentration, and no relationship is noted at high concentrations. The study demonstrates the limitation inherent in estimating chlorophyll concentration by using remotely sensed red edge.

  19. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  20. Low-k/copper integration scheme suitable for ULSI manufacturing from 90nm to 45nm nodes

    NASA Astrophysics Data System (ADS)

    Nogami, T.; Lane, S.; Fukasawa, M.; Ida, K.; Angyal, M.; Chanda, K.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan, M.; Dziobkowski, C.; Fitzsimmons, J.; Flaitz, P.; Grill, A.; Gill, J.; Inoue, K.; Klymko, N.; Kumar, K.; Labelle, C.; Lane, M.; Li, B.; Liniger, E.; Madon, A.; Malone, K.; Martin, J.; McGahay, V.; McLaughlin, P.; Melville, I.; Minami, M.; Molis, S.; Nguyen, S.; Penny, C.; Restaino, D.; Sakamoto, A.; Sankar, M.; Sherwood, M.; Simonyi, E.; Shimooka, Y.; Tai, L.; Widodo, J.; Wildman, H.; Ono, M.; McHerron, D.; Nye, H.; Davis, C.; Sankaran, S.; Edelstein, D.; Ivers, T.

    2005-11-01

    This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.

  1. [Luminescent properties of Eu3+ doped layered perovskite structure M2TiO4 (M = Ca, Sr, Ba) red-emitting phosphors].

    PubMed

    Lu, Zhou; Le, Zhang; Xu, Nai-Cen; Wang, Li-Xi; Zhang, Qi-Tu

    2012-10-01

    Series of Eu3+ doped layered perovskite structure M2TiO4: Eu3+ (M = Ca, Sr, Ba) red phosphors were prepared by the high-temperature solid state reaction method. Their phase compositions and photoluminescence properties were investigated by XRD, UV-Vis DRS and fluorescence spectra The results indicated that pure Sr2 TiO4 and Ba2 TiO4 powers could be prepared under 1 100 degrees C for 2 hours, but Ca2 TiO4 powers could not be synthesized even raising the calcination temperature and lengthening the calcination time. Ba2TiO4: Eu3+ phosphor emitted 594 nm (5D0 --> 7F1) and 615 nm (5D0 --> 7F2) orange-red light under the excitation of 395 nm. Sr2TiO4 : Eu3+ phosphor gave a unusual and strong orange-red emission of 578 nm (5D0 --> 7F0) and 626 nm (5 D0 --> 7F2) under the excitation of near ultraviolet or blue light, resulting in the better color purity and higher luminescent intensity. In addition, this phosphor had the highest luminous efficiency when excited by the charge migration excitation at 363 nm and it had the great potential to be a red phosphor for N-UV LED and blue light chip. PMID:23285854

  2. Applications of combination wavelength (1060-nm and 530-nm) and pulsed Nd:YAG laser for contact laser surgery.

    PubMed

    Liu, K R; Peyman, G A; Myers, J D; Hamlin, S A; Katoh, N

    1989-01-01

    Two pulsed neodimium yittrium aluminum garnet (Nd:YAG) laser systems were evaluated for contact surgery through a fiberoptic system with a sapphire tip. Pulsed Nd:YAG laser at 1060 nm was as effective as continuous-wave Nd:YAG laser in producing tissue incisions. A combination of 1060-nm and 530-nm wavelengths achieved smooth cutting at lower energy levels. Corneal endothelial cell damage occurred at the high power level (7 watts) required for smooth underwater incisions with both continuous wave and pulsed lasers. PMID:2733255

  3. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein

    PubMed Central

    Chu, Jun; Haynes, Russell D; Corbel, Stéphane Y; Li, Pengpeng; González-González, Emilio; Burg, John S; Ataie, Niloufar J; Lam, Amy J; Cranfill, Paula J; Baird, Michelle A; Davidson, Michael W; Ng, Ho-Leung; Garcia, K Christopher; Contag, Christopher H; Shen, Kang; Blau, Helen M; Lin, Michael Z

    2014-01-01

    A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail. PMID:24633408

  4. Voyager 1 Red Spot Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie shows the portion of Jupiter around the Great Red Spot as it swirls through more than 60 Jupiter days. Notice the difference in speed and direction of the various zones of the atmosphere. The interaction of the atmospheric clouds and storm shows how dynamic the Jovian atmosphere is.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 66 images taken once every Jupiter rotation period (about 10 hours). This time-lapse movie uses images taken every time Jupiter longitude 68W passed under the spacecraft. These images were acquired in the Blue filter from Jan. 6 to Feb. 3 1979. The spacecraft flew from 58 million kilometers to 31 million kilometers from Jupiter during that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  5. Trends in nanosecond melanosome microcavitation up to 1540 nm

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Vincelette, Rebecca L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-09-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ˜0.159 J/cm2 at 800 nm to 4.5 J/cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  6. Alternatives to chemical amplification for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Zhao, Meng; Yin, Ran; Xie, Peng; Scholz, Chris; Smith, Bruce; Smith, Thomas; Zimmerman, Paul

    2010-04-01

    Research has been conducted to develop alternatives to chemically amplified 193 nm photoresist materials that will be able to achieve the requirements associated with sub-32 nm device technology. New as well as older photoresist design concepts for non-chemically amplified 193 nm photoresists that have the potential to enable improvements in line edge roughness while maintaining adequate sensitivity, base solubility, and dry etch resistance for high volume manufacturing are being explored. The particular platforms that have been explored in this work include dissolution inhibitor photoresist systems, chain scissioning polymers, and photoresist systems based on polymers incorporating formyloxyphenyl functional groups. In studies of two-component acidic polymer/dissolution inhibitor systems, it was found that compositions using ortho-nitrobenzyl cholate (NBC) as the dissolution inhibitor and poly norbornene hexafluoro alcohol (PNBHFA) as the base resin are capable of printing 90 nm dense line/space patterns upon exposure to a 193 nm laser. Studies of chain scission enhancement in methylmethacrylate copolymers showed that incorporating small amounts of absorptive a-cleavage monomers significantly enhanced sensitivity with an acceptable increase in absorbance at 193 nm. Specifically, it was found that adding 3 mol% of α-methyl styrene (α-MS) reduced the dose to clear of PMMA-based resist from 1400 mJ/cm2 to 420 mJ/cm2. Preliminary data are also presented on a direct photoreactive design concept based on the photo-Fries reaction of formyloxyphenyl functional groups in acrylic copolymers.

  7. Tissue measurement using 1064 nm dispersive Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lieber, Chad A.; Wu, Huawen; Yang, William

    2013-03-01

    The use of Raman spectroscopy to provide characterization and diagnosis of biological tissues has shown increasing success in recent years. Most of this work has been performed using near-infrared laser sources such as 785 or 830 nm, in a balance of reduced intrinsic fluorescence in the tissues and quantum efficiency in the silicon detectors often used. However, even at these wavelengths, many tissues still exhibit strong or prohibitive fluorescence, and these wavelengths still cause autofluorescence in many common sampling materials, such as glass. In this study, we demonstrate the use of 1064 nm dispersive Raman spectroscopy for the study of biological tissues. A number of tissues are evaluated using the 1064 nm system and compared with the spectra obtained from a 785 nm system. Sampling materials are similarly compared. These results show that 1064 nm dispersive Raman spectroscopy provides a viable solution for measurement of highly fluorescent biological tissues such as liver and kidney, which are difficult or impossible to extract Raman at 785 nm.

  8. High-index nanocomposite photoresist for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Bae, Woo Jin; Trikeriotis, Makros; Rodriguez, Robert; Zettel, Michael F.; Piscani, Emil; Ober, Christopher K.; Giannelis, Emmanuel P.; Zimmerman, Paul

    2009-03-01

    In immersion lithography, high index fluids are used to increase the numerical aperture (NA) of the imaging system and decrease the minimum printable feature size. Water has been used in first generation immersion lithography at 193 nm to reach the 45 nm node, but to reach the 38 and 32 nm nodes, fluids and resists with a higher index than water are needed. A critical issue hindering the implementation of 193i at the 32 nm node is the availability of high refractive index (n > 1.8) and low optical absorption fluids and resists. It is critical to note that high index resists are necessary only when a high refractive index fluid is in use. High index resist improves the depth of focus (DOF) even without high index fluids. In this study, high refractive index nanoparticles have been synthesized and introduced into a resist matrix to increase the overall refractive index. The strategy followed is to synthesize PGMEA-soluble nanoparticles and then disperse them into a 193 nm resist. High index nanoparticles 1-2 nm in diameter were synthesized by a combination of hydrolysis and sol-gel methods. A ligand exchange method was used, allowing the surface of the nanoparticles to be modified with photoresist-friendly moieties to help them disperse uniformly in the resist matrix. The refractive index and ultraviolet absorbance were measured to evaluate the quality of next generation immersion lithography resist materials.

  9. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time. PMID:21403756

  10. High-performance 193nm photoresists based on fluorosulfonamide

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Chen, Kuang-Jung; Kwong, Ranee; Lawson, Margaret C.; Khojasteh, Mahmoud; Popova, Irene; Varanasi, P. Rao; Shimokawa, Tsutomu; Yamaguchi, Yoshikazu; Kusumoto, Shiro; Sugiura, Makoto; Kawakami, Takanori; Slezak, Mark; Dabbagh, Gary; Liu, Zhi

    2007-03-01

    The combination of immersion lithography and reticle enhancement techniques (RETs) has extended 193nm lithography into the 45nm node and possibly beyond. In order to fulfill the tight pitch and small critical dimension requirements of these future technology nodes, the performance of 193nm resist materials needs to further improve. In this paper, a high performance 193nm photoresist system based on fluorosulfonamide (FSM) is designed and developed. The FSM group has good transparency at 193nm. Compared to the commonly used hexafluoroalcohol (HFA) group, the trifluoromethyl sulfonamide (TFSM) functionality has a lower pKa value and contains less fluorine atoms. Polymers containing the TFSM functionality have exhibited improved dissolution properties and better etch resistance than their HFA counterparts. Resists based on the FSM-containing polymers have shown superior lithographic performance for line, trench and contact hole levels under the 45nm node exposure conditions. In addition, FSM resists have also demonstrated excellent bright field and dark field compatibility and thereby make it possible to use one resist for both bright field and dark field level applications. The structure, property and lithographic performance of the FSM resist system are reported.

  11. 33 CFR 165.T09-0263 - Safety zone; Red River Safety Zone, Red River, MN.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety zone; Red River Safety..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED... § 165.T09-0263 Safety zone; Red River Safety Zone, Red River, MN. (a) Location. The following area is...

  12. Chemical toxicity of red cells.

    PubMed Central

    Piomelli, S

    1981-01-01

    Exposure to toxic chemicals may result in alterations of red cell function. In certain cases, the toxic effect requires a genetic predisposition and thus affects only a restricted number of individuals; in other instances, the toxic effect is exerted on the hematopoietic system of every person. Glucose-6-phosphate dehydrogenase deficiency is probably the most widespread genetic disorder. It is observed at highest frequency in populations from subtropical countries as a result of its selective advantage vis à vis falciparum malaria. The gene controlling this enzyme is located on the X-chromosome; thus, the defect is sex-linked. Individuals with a genetic defect of this enzyme are extremely susceptible to hemolysis, when exposed to oxidant drugs (such as certain antimalarials and sulfonamides) because of the inability of their red cells to regenerate NADPH. Lead poisoning result in profound effects on the process of heme synthesis. Among the steps most sensitive to lead toxicity are the enzyme delta-aminolevulinic acid dehydratase and the intramitochondrial step that leads to the incorporation of iron into protoporphyrin. By these mechanisms, in severe lead intoxication there is an accumulation of large amounts of delta-aminolevulinic acid (a compound with inherent neurotoxicity), and there are abnormalities of mitochondrial function in all cells of the body. Individuals living in an industrialized society are unavoidably exposed to some environmental lead. Recent evidence indicates that, even at levels of exposure which do not increase the blood lead level above values presently considered normal, abnormalities of heme synthesis are clearly detectable. PMID:7016524

  13. Red blood cell membrane defects.

    PubMed

    Iolascon, Achille; Perrotta, Silverio; Stewart, Gordon W

    2003-03-01

    We present an overview of the currently known molecular basis of red cell membrane disorders. A detailed discussion of the structure of the red cell membrane and the pathophysiology and clinical aspects of its disorders is reported. Generally speaking, hereditary spherocytosis (HS) results from a loss of erythrocyte surface area. The mutations of most cases of HS are located in the following genes: ANK1, SPTB, SLC4A1, EPB42 and SPTA1, which encode for ankyrin, spectrin beta-chain, the anion exchanger 1 (band 3), protein 4.2 and spectrin alpha-chain, respectively. Hereditary elliptocytosis (HE) reflects a diminished elasticity of the skeleton. Its aggravated form, hereditary pyropoikilocytosis (HPP), implies that the skeleton undergoes further destabilization. The mutations responsible for HE and HPP, lie in the SPTA1 and SPTB gene, and in the EPB41 gene encoding protein 4.1. Allele alpha LELY is a common polymorphic allele, which plays the role of an aggravating factor when it occurs in trans of an elliptocytogenic allele of the SPTA1 gene. Southeast Asian ovalocytosis derives from a change in band 3. The genetic disorders of membrane permeability to monovalent cations required a positional cloning approach. In this respect, channelopathies represent a new frontier in the field. Dehydrated hereditary stomatocytosis (DHS) was shown to belong to a pleiotropic syndrome: DHS + fetal edema + pseudohyperkalemia, which maps 16q23-24. Splenectomy is strictly contraindicated in DHS and another disease of the same class, overhydrated hereditary stomatocytosis, because it increases the risk of thromboembolic accidents. PMID:14692233

  14. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity

    NASA Astrophysics Data System (ADS)

    do Nascimento, Ticiano Gomes; da Silva, Priscilla Fonseca; Azevedo, Lais Farias; da Rocha, Louisianny Guerra; de Moraes Porto, Isabel Cristina Celerino; Lima e Moura, Túlio Flávio Accioly; Basílio-Júnior, Irinaldo Diniz; Grillo, Luciano Aparecido Meireles; Dornelas, Camila Braga; Fonseca, Eduardo Jorge da Silva; de Jesus Oliveira, Eduardo; Zhang, Alex Tong; Watson, David G.

    2016-06-01

    The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of "multiple-constituent extract in co-delivery system" for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ɛ-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200-280 nm) in nanometric scale and zeta analysis (-20 to -26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38.0

  15. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Han; Wu, Jui-pin; Kuo, Yu-zheng; Chiu, Yi-jen; Tzeng, T. E.; Lay, T. S.

    2011-05-01

    In this paper, a new type of high-speed electroabsorption modulator (EAM) based on quantum dot (QD) p-i-n heterostructure is demonstrated. The QD layers sandwiched by p-AlGaAs and n-AlGaAs are grown by multilayer InGaAs self-assembled QD with luminance wavelength of 1300 nm, serving as the active region of EAM. The photocurrent spectrum measurement exhibits a red shift of 15 nm in QD transition energy levels on biasing from 0 to 6 V. A quadratic relation of energy shift against the reversed bias is extracted, confirming the quantum-confined Stark effect (QCSE) in QD. On fabricating a 300 μm long EAM, as high as DC 5 dB extinction ratio by 6 V voltage swing at 1310 nm is observed. As compared with well-developed quantum well (QW) EAM (well thickness ∼10 nm) of the same length, the lower density of states still shows the same order of magnitude in extinction ratio, suggesting strong QCSE in such 3-dimensional confined QD. An electrical-to-optical conversion with -3 dB bandwidth of 3.3 GHz is also attained in such QD EAM, where the speed is mainly limited by the parasitic capacitance on substrate. It implies that through optimization of QD and device structures, the advantages of QD properties are quite promising to be used in high-speed optoelectronic fields.

  16. Confinement of holes and electrons in blue organic light-emitting diodes with additional red emissive layers

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung; Yoo, Seung Il; Kim, Jin Wook; Yoon, Geum Jae; Yi, Seungjun; Kim, Woo Young

    2016-02-01

    We used various emissive layer (EML) structures with ultrathin red EMLs to enhance the charge carrier balance and carrier recombination rate in blue PHOLED devices. These EML materials have different energy gaps between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The ultrathin red EMLs, which were inserted in between the blue EMLs, effectively confined the charge carriers in EML, and increased the carrier recombination rate. The thickness of the individual EML was optimized, under 30 nm of the total thickness of EML. The blue PHOLEDs with ultrathin red EMLs achieved a luminous efficiency of 19.24 cd/A, which was 28.7% higher than those without ultrathin red EMLs, and the maximum external quantum efficiency was 11.81% at 500 cd/m2.

  17. Red Drop in the Quantum Yield of Fluorescence of Sonicated Algae

    PubMed Central

    Das, M.; Rabinowitch, E.; Szalay, L.

    1968-01-01

    The change of the quantum yield of fluorescence, Φ, with the frequency of exciting light, was investigated in Chlorella, Anacystis, and Porphyridium suspensions, and in sonicates from these cells prepared under aerobic and anaerobic conditions. In case of Chlorella, sonicates were made in acid and in alkaline media (pH 4.65 and 7.80). In the alkaline medium, a drop of Φ towards the longer waves was found to begin at 1.466 × 104 cm-1 (682 nm) in sonicates, and in suspension. In the acid medium, the drop began at 1.471 × 104 cm-1 (680 nm), 1.418 × 104 cm-1 (705 nm), and 1.389 × 104 cm-1 (720 nm) in suspension, anaerobic sonicate, and aerobic sonicate, respectively. The results indicate that the cause of the change in the red drop is preferential destruction of a long-wave component of chlorophyll a (such as Chl a 693). The amount of this component remaining after sonication is larger in alkaline than in acid sonicates. With Anacystis and Porphyridium, only alkaline suspensions (pH 7.80) could be used for sonication, because in acid medium, the phycobilin-chlorophyll complex is rapidly broken and phycobilin extracted from the cell. In Anacystis, the red drop begins at 1.562 × 104 cm-1 (640 nm) and 1.538 × 104 cm-1 (650 nm) in suspension and sonicate, respectively; in Porphyridium, it starts at 1.550 × 104 cm-1 (645 nm) in both cases. These results suggest that sonication in alkaline medium (pH 7.80) destroys some Chl a 693 in Anacystis, but not in Porphyridium. PMID:5679392

  18. Synthesis and luminescence properties of novel deep red emitting phosphors Li2MgGeO4:Mn4+

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Ceng, Dong; Yu, Xiaoguang; Guo, Siling; Wen, Yufeng; Zheng, Guotai

    2015-03-01

    Novel deep red phosphor Li2MgGeO4:Mn4+ is synthesized by high temperature solid state reaction method in air. The strongest PL band peaking at 671 nm in the range of 600-750 nm is due to the 2E → 4A2 transition of Mn4+ ion and the PLE spectra shows broad band peaking at 323 within the range 220-550 nm owing to the 4A2 → 4T1 transitions of Mn4+ ion. The optimum Mn4+ doping concentration is about 0.4 mol.%. The luminous mechanism is explained by Tanabe-Sugano diagram of Mn4+ ion. The results indicate that red phosphor Li2MgGeO4:Mn4+ is a beneficial phosphor for use in white light-emitting-diodes (LEDs).

  19. Purification of Hemoglobin from Red Blood Cells using Tangential Flow Filtration and Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Elmer, Jacob; Harris, David; Palmer, Andre F.

    2011-01-01

    Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are examined and compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter. PMID:21195679

  20. Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength.

    PubMed

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Huber, Robert

    2009-07-01

    We report on recent progress in Fourier domain mode-locking (FDML) technology. The paper focuses on developments beyond pushing the speed of these laser sources. After an overview of improvements to FDML over the last three years, a brief analysis of OCT imaging using FDML lasers with different wavelengths is presented. For the first time, high speed, high quality FDML imaging at 1550 nm is presented and compared to a system at 1310 nm. The imaging results of human skin for both wavelengths are compared and analyzed. Sample arm optics, power on the sample, heterodyne gain, detection bandwidth, colour cut levels and sample location have been identical to identify the influence of difference in scattering and water absorption. The imaging performance at 1310 nm in human skin is only slightly better and the results suggest that water absorption only marginally affects the penetration depth in human skin at 1550 nm. For several applications this wavelength may be preferred. PMID:19565537

  1. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range. PMID:26421536

  2. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  3. Determination of proteins by fluorescence quenching of Magdala Red

    NASA Astrophysics Data System (ADS)

    Qin, Wen-wu; Gong, Guo-quan; Song, Yu-min

    2000-04-01

    Magdala Red (MR) binding to protein causes a decrease in the fluorescence intensity of MR at 556 nm. Based on this, a new quantitative determination method for proteins is developed. The linear range of this assay is 0.1-4.0 μg ml -1 of Bovine Serum albumin (BSA). The measurements can be made easily on a common fluorimeter. The reaction between MR and proteins is completed in 1 min, and the fluorescence intensity is stable for at least 2 h. There is little or no interference from amino acids and most metal ions. The proposed method has been applied to the determination of protein in milk powder and soybean milk powder and the results are in agreement with the results by the other methods.

  4. Measurement of red blood cell mechanics during morphological changes

    NASA Astrophysics Data System (ADS)

    Popescu, Gabriel; Park, Yongkeun; Best, Catherine; Dasari, Ramachandra; Feld, Michael; Kuriabova, Tatiana; Henle, Mark; Levine, Alex

    2010-03-01

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a Noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery.

  5. Public perceptions of Florida red tide risks.

    PubMed

    Kuhar, Sara E; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A

    2009-07-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals' responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides. PMID:19392675

  6. Public Perceptions of Florida Red Tide Risks

    PubMed Central

    Kuhar, Sara E.; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A.

    2009-01-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals’ responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides. PMID:19392675

  7. Improving Mineral Nutrition of Micropropagated Red Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro propagation is important for fast multiplication of a wide range of nursery crops, including red raspberry. The variation in genetic background of the many red raspberry cultivars makes it difficult to successfully use one growth medium for all. Although most cultivars will grow on Murashig...

  8. Red discoloration of fully cooked poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red or bloody appearance of fully cooked poultry meat is a severe defect. Methods for inducing discoloration for further study, including control of and causes of red discoloration were determined. Cooked retail parts (n=274) showed approximately 11% discoloration and 0.4% bloodiness. To induce r...

  9. Persistence of Grazed Red Clover Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, red clover (Trifolium pratense) has been limited by its lack of stand persistence in hay and grazed systems compared to other small-seeded forage legumes. Breeding over the past 50 years has extended red clover persistence in a hay management system to four years. This study examined g...

  10. Biological control of red imported fire ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two species of Imported Fire Ants (IFA), the Red Imported Fire Ant, Solenopsis invicta Buren, and the Black Imported Fire Ant, S. richteri Forel, were introduced into the United States in the early 1900s and currently inhabit over 320 million acres in the southern United States and Puerto Rico. Red ...

  11. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.

    PubMed

    Twyman, Hanlu; Valenzuela, Nicole; Literman, Robert; Andersson, Staffan; Mundy, Nicholas I

    2016-08-17

    Avian ketocarotenoid pigments occur in both the red retinal oil droplets that contribute to colour vision and bright red coloration used in signalling. Turtles are the only other tetrapods with red retinal oil droplets, and some also display red carotenoid-based coloration. Recently, the CYP2J19 gene was strongly implicated in ketocarotenoid synthesis in birds. Here, we investigate CYP2J19 evolution in relation to colour vision and red coloration in reptiles using genomic and expression data. We show that turtles, but not crocodiles or lepidosaurs, possess a CYP2J19 orthologue, which arose via gene duplication before turtles and archosaurs split, and which is strongly and specifically expressed in the ketocarotenoid-containing retina and red integument. We infer that CYP2J19 initially functioned in colour vision in archelosaurs and conclude that red ketocarotenoid-based coloration evolved independently in birds and turtles via gene regulatory changes of CYP2J19 Our results suggest that red oil droplets contributed to colour vision in dinosaurs and pterosaurs. PMID:27488652

  12. Regulation of anthocyanin biosynthesis in red cabbages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The color of red cabbage is due to the accumulation of large quantity of anthocyanins. To investigate the general regulatory control of anthocyanin production in red cabbages, the expression of anthocyanin biosynthetic genes and regulators from eight commercial cultivars was examined. While the four...

  13. Red Dirt Thinking on Aspiration and Success

    ERIC Educational Resources Information Center

    Osborne, Sam; Guenther, John

    2013-01-01

    This article sets the scene for the series of five articles on "red dirt thinking". It first introduces the idea behind red dirt thinking as opposed to "blue sky thinking". Both accept that there are any number of creative and expansive solutions and possibilities to identified challenges--in this case, the challenge of…

  14. 76 FR 23485 - Safety Zone; Red River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Red River AGENCY: Coast Guard, DHS. ACTION... Red River in the State of North Dakota, including those portions of the river bordered by Richland... across latitude 46 20'00'' N, extending the entire width of the river. This safety zone is needed...

  15. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  16. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  17. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  18. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  19. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  20. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  1. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  2. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  3. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  4. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  5. Unripe red fruits may be aposematic

    PubMed Central

    Ne'eman, Gidi; Izhaki, Ido

    2009-01-01

    The unripe fruits of certain species are red. Some of these species disperse their seeds by wind (Nerium oleander, Anabasis articulata), others by adhering to animals with their spines (Emex spinosa) or prickles (Hedysarum spinosissimum). Certainly neither type uses red coloration as advertisement to attract the seed dispersing agents. Fleshy-fruited species (Rhamnus alaternus, Rubus sanguineus and Pistacia sp.), which disperse their seeds via frugivores, change fruit color from green to red while still unripe and then to black or dark blue upon ripening. The red color does not seem to function primarily in dispersal (unless red fruits form advertisement flags when there are already black ripe fruits on the plant) because the red unripe fruits of these species are poisonous, spiny, or unpalatable. The unripe red fruits of Nerium oleander are very poisonous, those of Rhamnus alaternus and Anabasis articulata are moderately poisonous, those of Rubus sanguineus are very sour, those of Pistacia sp. contain unpalatable resin and those of Emex spinosa and Hedysarum spinosissimum are prickly. We propose that these unripe red fruits are aposematic, protecting them from herbivory before seed maturation. PMID:19847110

  6. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  7. Unripe red fruits may be aposematic.

    PubMed

    Lev-Yadun, Simcha; Ne'eman, Gidi; Izhaki, Ido

    2009-09-01

    The unripe fruits of certain species are red. Some of these species disperse their seeds by wind (Nerium oleander, Anabasis articulata), others by adhering to animals with their spines (Emex spinosa) or prickles (Hedysarum spinosissimum). Certainly neither type uses red coloration as advertisement to attract the seed dispersing agents. Fleshy-fruited species (Rhamnus alaternus, Rubus sanguineus and Pistacia sp.), which disperse their seeds via frugivores, change fruit color from green to red while still unripe and then to black or dark blue upon ripening. The red color does not seem to function primarily in dispersal (unless red fruits form advertisement flags when there are already black ripe fruits on the plant) because the red unripe fruits of these species are poisonous, spiny, or unpalatable. The unripe red fruits of Nerium oleander are very poisonous, those of Rhamnus alaternus and Anabasis articulata are moderately poisonous, those of Rubus sanguineus are very sour, those of Pistacia sp. contain unpalatable resin and those of Emex spinosa and Hedysarum spinosissimum are prickly. We propose that these unripe red fruits are aposematic, protecting them from herbivory before seed maturation. PMID:19847110

  8. Red, Rank, and Romance in Women Viewing Men

    ERIC Educational Resources Information Center

    Elliot, Andrew J.; Niesta Kayser, Daniela; Greitemeyer, Tobias; Lichtenfeld, Stephanie; Gramzow, Richard H.; Maier, Markus A.; Liu, Huijun

    2010-01-01

    In many nonhuman species of vertebrates, females are attracted to red on male conspecifics. Red is also a signal of male status in many nonhuman vertebrate species, and females show a mating preference for high-status males. These red-attraction and red-status links have been found even when red is displayed on males artificially. In the present…

  9. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  10. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  11. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  12. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  13. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  14. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  15. Generation of Thermospheric OI 845 nm Emission by Bowen Fluorescence

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Sharpee, B. D.; Cosby, P. C.; Slanger, T. G.

    2006-12-01

    777 and 845 nm emissions from the 3p-3s multiplets of atomic oxygen are commonly observed at non-auroral latitudes in the terrestrial nightglow. By studying the relative strengths of these emissions we can learn something about the mechanisms that produce them and what they can teach us about the atmosphere. Recently [1] we have used intensity-calibrated sky spectra from the Keck telescopes to investigate the relative strengths of a wide range of O-atom Rydberg lines and have confirmed that electron-ion radiative recombination is a primary source of excitation for both the triplet and quintet systems. Following the intensity of the 777 and 845 nm lines during the night, we find that for most of the night the quintet 777 nm line is consistently stronger than the triplet 845 nm line, with a nearly constant intensity ratio I(777)/I(845) near 2.3, although both intensities fall rapidly as the night progresses. However, late in the night the 845 nm intensity levels off, while the 777 nm intensity continues to fall, and the I(777)/I(845) ratio plunges by a factor of 5-10. We interpret these observations as indicating that the O-atom quintet states are still being excited by the same mechanism as earlier in the night, i.e. radiative recombination, but some triplet states are also being excited by an additional mechanism. Such a mechanism has been proposed before [2-6] but not previously observed directly in the terrestrial nightglow. The oxygen triplet 3d-2p transition at 102.576 nm is in close coincidence with the solar hydrogen Lyman-β line at 102.572 nm. Radiative transport in the hydrogen geocorona will deliver Lyman-β intensity into the Earth's shadow and will produce triplet O(3d 3D) high in the atmosphere, even prior to direct solar illumination. The result is observable in a radiative cascade sequence 3d-3p(1129 nm) → 3p- 3s(845 nm) → 3s-2p(130 nm). A similar effect is observed in the H-α emission, which is also excited by Lyman-β absorption. This process

  16. Microdrilling of metals using femtosecond laser pulses and high average powers at 515 nm and 1030 nm

    NASA Astrophysics Data System (ADS)

    Döring, S.; Ancona, A.; Hädrich, S.; Limpert, J.; Nolte, S.; Tünnermann, A.

    2010-07-01

    We investigate the microdrilling of metals (stainless steel, copper and tungsten) for two different wavelengths, 1030 nm and 515 nm, in the regime of femtosecond laser pulses. An ytterbium-doped fibre CPA system provides high pulse energies (up to 70 μJ) and high repetition rates (up to 800 kHz), corresponding to high average powers of about 50 W, for this experimental study.

  17. Measurements of Photoabsorpton Cross Sections and their Temperature Dependence for CO2 in the 170nm to 200nm Region

    NASA Astrophysics Data System (ADS)

    Parkinson, W. H.; Yoshino, K.

    2001-11-01

    All the photochemical models for the predominately CO2 Martian atmosphere ar e very sensitive to the amount of CO2 and to the values and spectral details of the absorpton cross sections of CO2 in the region 170nm-200nm. Earlier we had measured and published absolute cross sections of CO2 in the region 118.0 nm-175.5 nm at 295K and 195K. We have recently extended these measurements from 170 nm to 200 nm at 300K and 1 95K. The new measurements have been carried out at high resolution with our 6.65 -m normal incidence , photoelectric spectrometer. To measure the weak photoabsorption of the CO2 bands in the wavelength region 170 --200 nm, we required a high column density of the gas. We obtained this by using a multi pass technique, a White cell. The White cell was designed to have a distance of 1.50 m between two main mirrors, and was set for four, double pas ses making a path length of 12.0 m. CO2 gas was frozen in a stainless cylinder immersed in liquid nitrogen, and t he frozen product (dryice) was pumped by the diffusion pump for purification. The CO2 was warmed up slowly and kept in the cylinder at high pressure. The CO2 pressure used in the White cell was varied from 1 to 1000 Torr depend ing on the wavelength region, and was measured with a a capacitance manometer (M KS Baratron, 10 Torr and 1000 Torr). We divided the spectral region into twenty sections of about 1.5 nm extent. At each scan range, another scan was obtained from the emission spectrum of the fourth positive bands of CO for wavelength calibration. We acknowledge funding from NASA, grant NAGS-7859 to Harvard College Observatory.

  18. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  19. The Art of Red Tide Science

    PubMed Central

    Hall, Emily R.; Nierenberg, Kate; Boyes, Anamari J.; Heil, Cynthia A.; Flewelling, Leanne J.; Kirkpatrick, Barbara

    2012-01-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined “The Art of Red Tide Science,” consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues. PMID:22712002

  20. Red wine as a cause of migraine.

    PubMed

    Littlewood, J T; Gibb, C; Glover, V; Sandler, M; Davies, P T; Rose, F C

    1988-03-12

    Patients with migraine who believed that red wine but not alcohol in general had a headache-provoking effect on them were challenged either with red wine or with a vodka and diluent mixture of equivalent alcohol content, both consumed cold out of dark bottles to disguise colour and flavour. The red wine, which had a negligible tyramine content, provoked a typical migraine attack in 9 of 11 such patients, whereas none of the 8 challenged with vodka had an attack. Neither red wine nor vodka provoked such episodes in other migrainous subjects or controls. These findings show that red wine contains a migraine-provoking agent that is neither alcohol nor tyramine. PMID:2894493