Science.gov

Sample records for 532-nanometer lidar designed

  1. Development of a lidar for integration with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Regush, Murray M.

    1993-06-01

    A lidar was designed and manufactured at the Naval Postgraduate School, Monterey, CA, to provide range information to atmospheric features, such as clouds. It is further planned to integrate the lidar with the NPS-IRSTD system at some future date. The NPS-IRSTD uses two vertical linear focal plane arrays for target detection and target direction can be determined very accurately but the system does not provide any useful range information. The lidar was proposed as the solution for this shortcoming. The lidar used a frequency-doubled Nd:YAG laser which had an energy output of 2 millijoules. The laser beam was expanded to 17.75 inches using a Dall-Kirkham telescope to operate within laser safety limitations. The theoretical analysis of the 'Klett' method for the inversion of lidar returns was derived and a MATLAB program was written to demonstrate the process. A daytime and nighttime maximum range equation for the lidar was developed. The considerations for integrating the lidar with the NPS-IRSTD were listed and a solution was proposed to obtain the mean extinction coefficient along the path in the infrared spectrum using the lidar inversion extinction coefficient profile at 532 nanometers.

  2. LIDAR Surveys for Road Design in Thailand

    DTIC Science & Technology

    2004-11-01

    25th ACRS 2004 Chiang Mai, Thailand 167 New Generation of Sensors and Applications A-4.6 LIDAR SURVEYS FOR... LiDAR , DEM, Road design, Pilot project, Thailand, NBIA ABSTRACT Concerned with environmental and drainage problems associated with road...as hilly, unstable terrain. LiDAR technology is of great interest to DOH as its use can make them save enormous amounts of time and money by providing

  3. Polarization Lidar for Shallow Water Depth Measurement

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Thayer, J. P.

    2011-12-01

    A bathymetric, polarization lidar system transmitting at 532 nanometers is developed for applications of shallow water depth measurement. The technique exploits polarization attributes of the probed water body to isolate surface and floor returns, enabling constant fraction detection schemes to determine depth. The minimum resolvable water depth is no longer dictated by the system's laser or detector pulse width and can achieve better than an order of magnitude improvement over current water depth determination techniques. In laboratory tests, a Nd:YAG microchip laser coupled with polarization optics, a single photomultiplier tube, a constant fraction discriminator and a time to digital converter are used to target various water depths. Measurement of 1 centimeter water depths with an uncertainty of ±3 millimeters are demonstrated using the technique. Additionally, a dual detection channel version of the lidar system is in development, permitting simultaneous measurement of co- and cross-polarized signals scattered from the target water body. This novel approach enables new approaches to designing laser bathymetry systems for shallow depth determination from remote platforms while not compromising deep water depth measurement, supporting comprehensive hydrodynamic studies.

  4. Coherent lidar design and performance verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of

  5. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    NASA Astrophysics Data System (ADS)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  6. Mechanical design of a lidar system for space applications - LITE

    NASA Technical Reports Server (NTRS)

    Crockett, Sharon K.

    1990-01-01

    The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.

  7. Underwater lidar system: design challenges and application in pollution detection

    NASA Astrophysics Data System (ADS)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  8. Unsupervised classification of lidar-based vegetation structure metrics at Jean Lafitte National Historical Park and Preserve

    USGS Publications Warehouse

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert

    2012-01-01

    Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.

  9. Laser safety in design of near-infrared scanning LIDARs

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (<1.4μm) is mainly from the thermal effect accumulated from many individual pulses over a period of seconds, scanning can effectively reduce the laser beam hazard effect from the LIDARs. Neptec LIDARs have been used in docking to the International Space Station, military helicopter landing and industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  10. Design of signal receiving circuit of Lidar based on APD

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Han, Shaokun; Han, Dalong; Xia, Wenze; Cao, Jingya; Wang, Liang; Zhai, Qian

    2015-08-01

    This paper focuses on the study of Signal Receiving Circuit of Lidar. A signal receiving circuit for a pulsed time-of-flight (TOF) Lidar has been designed. This paper introduces the theories of Lidar and high speed photoelectric detection. The circuit consists of APD array, transimpedance amplifier and differential received amplifier. In the circuit, we use an APD as a photoelectric transformer, AD8015 is used in the circuit because it's wide bandwidth, and single supply transimpedance. The AD8130 is a differential-to-single-ended amplifier with extremely high CMRR at high frequency, therefore it is used to converting differential signals to single-ended signals. In this paper, the laser pulse signal of 905nm wavelength, 20ns pulse width is used to detect experimentally verified. It is tested that the performance of the receiving circuit of Lidar satisfies the request of the principle system.

  11. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  12. Comparison of Two Independent Lidar-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  13. Design of an ultraviolet fluorescence lidar for biological aerosol detection

    NASA Astrophysics Data System (ADS)

    Rao, Zhimin; Hua, Dengxin; He, Tingyao; Le, Jing

    2016-09-01

    In order to investigate the biological aerosols in the atmosphere, we have designed an ultraviolet laser induced fluorescence lidar based on the lidar measuring principle. The fluorescence lidar employs a Nd:YAG laser of 266 nm as an excited transmitter, and examines the intensity of the received light at 400 nm for biological aerosol concentration measurements. In this work, we firstly describe the designed configuration and the simulation to estimate the measure range and the system resolution of biological aerosol concentration under certain background radiation. With a relative error of less than 10%, numerical simulations show the system is able to monitor biological aerosols within detected distances of 1.8 km and of 7.3 km in the daytime and nighttime, respectively. Simulated results demonstrate the designed fluorescence lidar is capable to identify a minimum concentration of biological aerosols at 5.0×10-5 ppb in the daytime and 1.0×10-7 ppb in the nighttime at the range of 0.1 km. We believe the ultraviolet laser induced fluorescence lidar can be spread in the field of remote sensing of biological aerosols in the atmosphere.

  14. Design and implementation of a preprocessing system for a sodium lidar

    NASA Technical Reports Server (NTRS)

    Voelz, D. G.; Sechrist, C. F., Jr.

    1983-01-01

    A preprocessing system, designed and constructed for use with the University of Illinois sodium lidar system, was developed to increase the altitude resolution and range of the lidar system and also to decrease the processing burden of the main lidar computer. The preprocessing system hardware and the software required to implement the system are described. Some preliminary results of an airborne sodium lidar experiment conducted with the preprocessing system installed in the sodium lidar are presented.

  15. Measurement of Spray Drift with a Specifically Designed Lidar System.

    PubMed

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  16. Measurement of Spray Drift with a Specifically Designed Lidar System

    PubMed Central

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R.

    2016-01-01

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R2 > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift. PMID:27070613

  17. Design and analysis of a spaceborne lidar telescope

    NASA Astrophysics Data System (ADS)

    Feng, Chen; Ahmad, Anees; Amzajerdian, Farzin

    1995-09-01

    A spaceborne telescope has been designed and analyzed for a 2-micron solid state coherent lidar system operating on a satellite. The optical system consists of a large off-axis reflective telescope, a large-aperture diffractive scanner, an image derotator and a lag angle compensator. Due to the orbiting motion of the satellite and scanning, the boresight of the telescope shifts during the round trip travel time of the laser pulses to the target. In a coherent lidar system utilizing optical heterodyne detection, the relative alignment of the received signal with respect to the local oscillator beam is particularly critical. Two compensators have been designed to correct the boresight errors as well as the wavefront errors caused by beam wandering due to the boresight changes. Several design approaches for the compensators have been investigated. The optical and optomechanical design issues for such a system are discussed. The results of optical performance, modeling, and tolerance analysis for the telescope are also presented.

  18. Lidar

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1969-01-01

    Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

  19. Lidar

    NASA Astrophysics Data System (ADS)

    Sage, J.-P.; Aubry, Y.

    1981-09-01

    It is noted that a photodetector at the telescope focal plane of a lidar produces a signal which is processed, giving information on the concentration of the species being monitored. The delay between the emitted and return signals indicates the distance to the interacting volume. Because of the poor efficiency of the interaction processes, the main difficulty in developing a good lidar has to do with the availability of sufficiently efficient lasers. Certain laser characteristics are discussed, and a CNES program for the development of lasers for lidar techniques is presented, future space applications being considered as mid-term objectives. The various components of the laser system developed by CNES are described. These are a dual frequency tunable oscillator, the amplifier chain, the beam control unit and wavelength servo-system, and the harmonic conversion subsystem.

  20. Optical systems design for a stratospheric lidar system.

    PubMed

    McDermid, I S; Walsh, T D; Deslis, A; White, M L

    1995-09-20

    The optical systems for the transmitter and receiver of a high-power lidar for stratospheric measurements have been designed and analyzed. The system requirements and design results are presented and explained. An important and driving factor of this design was the requirement for a small image diameter in the plane of an optical chopper to allow the high-intensity lidar returns from the lower atmosphere to be shielded from the detection system. Some results relevant to the optical performance of the system are presented. The resulting system has been constructed and is now in operation at the Mauna Loa Observatory, Hawaii, and is making regular measurements of stratospheric ozone, temperature, and aerosol profiles.

  1. Design of an ROV-based lidar for seafloor monitoring

    NASA Astrophysics Data System (ADS)

    Harsdorf, Stefan; Janssen, Manfred; Reuter, Rainer; Wachowicz, Bernhard

    1997-05-01

    In recent years, accidents of ships with chemical cargo have led to strong impacts on the marine ecosystem, and to risks for pollution control and clean-up teams. In order to enable a fast, safe, and efficient reaction, a new optical instrument has been designed for the inspection of objects on the seafloor by range-gated scattered light images as well as for the detection of substances by measuring the laser induced emission on the seafloor and within the water column. This new lidar is operated as a payload of a remotely operated vehicle (ROV). A Nd:YAG laser is employed as the light source of the lidar. In the video mode, the submarine lidar system uses the 2nd harmonic laser pulse to illuminate the seafloor. Elastically scattered and reflected light is collected with a gateable intensified CCD camera. The beam divergence of the laser is the same as the camera field-of-view. Synchronization of laser emission and camera gate time allows to suppress backscattered light from the water column and to record only the light backscattered by the object. This results in a contrast enhanced video image which increases the visibility range in turbid water up to four times. Substances seeping out from a container are often invisible in video images because of their low contrast. Therefore, a fluorescence lidar mode is integrated into the submarine lidar. the 3rd harmonic Nd:YAG laser pulse is applied, and the emission response of the water body between ROV and seafloor and of the seafloor itself is recorded at variable wavelengths with a maximum depth resolution is realized by a 2D scanner, which allows to select targets within the range-gated image for a measurement of fluorescence. The analysis of the time- and spectral-resolved signals permits the detection, the exact location, and a classification of fluorescent and/or absorbing substances.

  2. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  3. Optical design and development of near-range compact lidar

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo

    2011-12-01

    There are large demands to monitor the atmosphere in the closed space (hall, factory and so on), to check vegetation remotely and to detect hazardous gases such as explosive gas and bio terror from explosion-proof distance. On the contrary, traditional lidars have blind area, it is hard to monitor the atmosphere and the gas in the near range. In this study, optical designs and concrete developments for the atmosphere monitoring and the certain gas detection in near range were accomplished. Unique optical designs are introduced and their practical setups are explained.

  4. Cloud and Aerosol Lidar Channel Design and Performance of the Geoscience Laser Altimeter System on the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Krainak, Michael A.; Spinhirne, James D.; Palm, Steve S.; Lancaster, Redgie S.; Allan, Graham R.

    2004-01-01

    The design of the 532 and 1064nm wavelength atmosphere lidar channels of the Geoscience Laser Altimeter System on the ICESat spacecraft is described. The lidar channel performance per on orbit measurements data will be presented.

  5. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  6. Design and Operation of the GL/OPA Mobile Doppler Lidar.

    DTIC Science & Technology

    1991-03-15

    AD-A240 257 PL-TR-91-2057 DESIGN AND OPERATION OF THE GL/OPA MOBILE DOPPLER LIDAR Patrick J. McNicholl PhotoMetrics, Inc. 4 Arrow Drive Woburn, MA...everse .wrceZary and ioerty by YocxK *umoer) This report, covers the theory, design, and operation of tho_ GTJO0PA mobile p.ilsed Doppler Lidar ...2.1 Definitions and Units 3 2.2 State Vector Formalism and Dirac Notation 5 2.3 Heterodyne Signal and Noise Formulas 7 2.4 Derivation of the Lidar

  7. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Optical design and development of the Near Range Lidar system for aerosol investigation at Belsk

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Piatruczuk, Aleksander; Szkop, Artur

    2015-04-01

    The development of the lidar system in the Central Geophysics Observatory at Belsk (Poland) is presented. Belsk is an aerosol background site located in a rural area about 50 km south from Warsaw. A new near range (NR) lidar was added to the existing far range (FR) lidar system to enable the acquisition of lidar signals at the distance of a few hundred meters from the device. In the existing design of the FR lidar a 600 mm diameter mirror was used which resultedin anoverlap over 1500 mmaking this device suitable for observations of aerosols in free troposphere and lower stratosphere but not in the Planetary Boundary Layer (PBL).To enable measurements in the PBL the near range detection systemwas designed as a complement of the existing FR lidar. A secondtelescope with a set of detectors was used with the same laser as in the FR system as a light source. The Nd:YAGpulselasergenerates three wavelengths (1064, 532 and 355 nm).Energies of light pulses are about 320 mJ while their repetition rate is 15 Hz. In the optical receiver of the NR lidar a telescope with a 150 mm diameter parabolic mirror with optical fiber (1 mm core diameter) as a field stop was used. Our analysis shows that full overlap of the laser beam and the NR telescope field of view is expected at about 150 m. A polichromator based on dichroic beam splitters and a set of narrow band pass filters were used to separate wavelengths. The design of the NR lidar easily allows to add Raman channels to the system. The acquisition of the analog lidar echoes was done by photomultipliers (at 355 and 532 nm) and the avalanche photodiode (at 1064 nm). 14 bit analog to digital converters coupled with PC computer by USB 2.0 were also used.

  9. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

  10. The Design and Testing of a LIDAR Platform for a Uav for Heritage Mapping

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yan, Y.; Jing, Y.; Zhao, S. G.

    2015-08-01

    In the discovering, identifying and mapping work of heritage objects in forest or desert areas, LiDAR ensures work efficiency and can provide the most complete and accurate 3D data. In the field of heritage documentation in China, the integration of LiDAR and small UAV is highly desirable. However, due to issues on the vibration of flying platform, load capacity, safety and other factors, not all UAVs can be used as LiDAR carriers. Therefore, the selection and design of suitable UAVs are very important. Little research has been done in this area and related experiments, complete test data and clear conclusions are hard to find. After long-term selection, design, trial-manufacturing and testing, the authors compare the vibration, capacity, reliability, stability of many UAV types, and finally develop two UAV platforms which are most suitable for carrying LiDAR for heritage mapping projects.

  11. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  12. Design and Demonstration of a Miniature Lidar System for Rover Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Benjamin

    2010-01-01

    A basic small and portable lidar system for rover applications has been designed. It uses a 20 Hz Nd:YAG pulsed laser, a 4-inch diameter telescope receiver, a custom-built power distribution unit (PDU), and a custom-built 532 nm photomultiplier tube (PMT) to measure the lidar signal. The receiving optics have been designed, but not constructed yet. LabVIEW and MATLAB programs have also been written to control the system, acquire data, and analyze data. The proposed system design, along with some measurements, is described. Future work to be completed is also discussed.

  13. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  14. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  15. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part III

    NASA Astrophysics Data System (ADS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  16. Eye Safe, Visible Wavelength Lidar Systems: Design and Operational Advances, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Ellsworth J.; Berkoff, Timothy; Campbell, James

    2007-01-01

    In the early nineties the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. The important advance of the design was a system that, unlike most existing lidar, operated at eye safe energy densities and could thus operate unattended for full time monitoring. Since that time there have been many dozens of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In thc course of application of these instruments there have been significant improvements in the, design and performance of the systems. In the last half decade particularly there has been significant application and technical development of MPL systems. In this paper we review progress. The current MPL systems in use are all single wavelength systems designed for cloud and aerosol applications. For the cloud and aerosol applications, both lidar depolarization and multi wavelength measurements have significant applications. These can be accomplished with the MPL, approach. The main current challenge for the lidar network activity are in the area of the reliability, repeatability and efficiency of data processing. The network makes use of internet data downloads and automated processing. The heights of all cloud and aerosol layers are needed. The recent emphasis has been in operationally deriving aerosol extinction cross section. Future emphasis will include adding cirrus optical parameters. For operational effectiveness, improvements to simplify routine data signal calibration are being researched. Overall the MPL systems have proven very effective. A large data base of results from globally distributed sites can be easily accessed through the internet. Applications have included atmospheric model development. Validation of current global satellite observations of aerosol and clouds, including now orbital lidar

  17. Design of an airborne lidar for stratospheric aerosol measurements

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1977-01-01

    A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.

  18. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part I

    NASA Astrophysics Data System (ADS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  19. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    NASA Technical Reports Server (NTRS)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  20. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    NASA Technical Reports Server (NTRS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  1. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part II

    NASA Astrophysics Data System (ADS)

    Crasner, Aaron I.; Scola, Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  2. Design and development of a compact lidar/DIAL system for aerial surveillance of urban areas

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Richetta, M.; Antonucci, A.; Ventura, P.; Murari, A.; Vega, J.

    2013-10-01

    Recently surveying large areas in an automatic way, for early detection of harmful chemical agents, has become a strategic objective of defence and public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere but, up to now, they have been mainly deployed as ground based stations. The design reported in this paper concerns the development of a Lidar-Dial system compact enough to be carried by a small airplane and capable of detecting sudden releases in air of harmful and/or polluting substances. The proposed approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement. Once a significant increase in the density of backscattering substances is revealed, it is intended to switch to the Dial technique to identify the released chemicals and to determine its concentration. In this paper, the design of the proposed system is described and the simulations carried out to determine its performances are reported. For the Lidar measurements, commercially available Nd- YAG laser sources have already been tested and their performances, in combination with avalanche photodiodes, have been experimentally verified to meet the required specifications. With regard to the DIAL measurements, new compact CO2 laser sources are being investigated. The most promising candidate presents an energy per pulse of about 50 mJ typical, sufficient for a range of at least 500m. The laser also provides the so called "agile tuning" option that allows to quickly tune the wavelength. To guarantee continuous, automatic surveying of large areas, innovative solutions are required for the data acquisition, self monitoring of the system and data analysis. The results of the design, the simulations and some preliminary tests illustrate the potential of the chosen, integrated approach.

  3. Design and Demonstration of a Miniature Lidar System for Rover Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Benjamin

    2011-01-01

    Public awareness of harmful human environmental effects such as global warming has increased greatly in recent years and researchers have increased their efforts in gaining more knowledge about the Earth's atmosphere. Natural and man-made processes pose threats to the environment and human life, so knowledge of all atmospheric processes is necessary. Ozone and aerosols are important factors in many atmospheric processes and active remote sensing techniques provide a way to analyze their quantity and distribution. A compact ground-based lidar system for a robotic platform meant for atmospheric aerosol measurements was designed, tested, and evaluated. The system will eventually be deployed for ozone and aerosol measurements in Mars and lunar missions to improve our knowledge and understanding of atmospheres on Mars and the Moon. Atmospheric testing was performed to test the operability of the receiver system to acquire the lidar return signal from clouds and aerosols.

  4. Design Of A Low Cost Diode-Laser-Based High Spectral Resolution Lidar (HSRL)

    NASA Astrophysics Data System (ADS)

    Hayman, Matthew; Spuler, Scott; Morley, Bruce; Eloranta, Edwin W.

    2016-06-01

    A concept for an eye-safe, semiconductor-based high spectral resolution lidar has been developed at the National Center for Atmospheric Research. The lidar operates at a wavelength of 780 nm near several rubidium absorption peaks. A rubidium vapor cell is used to block aerosol backscatter in one channel to provide a molecular backscatter measurement for calculating extinction and backscatter ratio (calibrated backscatter). Laser and optical components around 780 nm are widely developed due to the large growth in atomic cooling and trapping of rubidium. Thus this instrument can be built largely using mature commercial-off-the-shelf parts. The simulation of the conceptual design shown here uses known commercial products and suggests that such an instrument could be used for quantitative profiling of the lower troposphere.

  5. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing.

    PubMed

    Tan, Songxin; Narayanan, Ram M

    2004-04-10

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  6. Optical system design and experimental evaluation of a coherent Doppler wind Lidar system for the predictive control of wind turbine

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Tauscher, Julian Asche; Beuth, Thorsten; Heussner, Nico; Fox, Maik; Babu, Harsha Umesh; Stork, Wilhelm

    2014-09-01

    The control of wind turbine blade pitch systems by Lidar assisted wind speed prediction has been proposed to increase the electric power generation and reduce the mechanical fatigue load on wind turbines. However, the sticking point of such Lidar systems is the price. Hence, our objective is to develop a more cost efficient Lidar system to support the pitch control of horizontal axis wind turbines and therefore to reduce the material requirement, lower the operation and maintenance costs and decrease the cost of wind energy in the long term. Compared to the state of the art Lidar systems, a laser with a shorter coherence length and a corresponding fiber delay line is introduced for reducing the costs. In this paper we present the experimental evaluation of different sending and receiving optics designs for such a system from a free space laboratory setup.

  7. Performance of the Lidar Design and Data Algorithms for the GLAS Global Cloud and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Stephen P.; Hlavka, Dennis L.; Hart, William D.

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in early 2003 is the first polar orbiting satellite lidar. The instrument design includes high performance observations of the distribution and optical scattering cross sections of atmospheric clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. For the atmospheric cloud and aerosol measurements, the 532 nm channel was designed for ultra high efficiency with solid state photon counting detectors and etalon filtering. Data processing algorithms were developed to calibrate and normalize the signals and produce global scale data products of the height distribution of cloud and aerosol layers and their optical depths and particulate scattering cross sections up to the limit of optical attenuation. The paper will concentrate on the effectiveness and limitations of the lidar channel design and data product algorithms. Both atmospheric receiver channels meet and exceed their design goals. Geiger Mode Avalanche Photodiode modules are used for the 532 nm signal. The operational experience is that some signal artifacts and non-linearity require correction in data processing. As with all photon counting detectors, a pulse-pile-up calibration is an important aspect of the measurement. Additional signal corrections were found to be necessary relating to correction of a saturation signal-run-on effect and also for daytime data, a small range dependent variation in the responsivity. It was possible to correct for these signal errors in data processing and achieve the requirement to accurately profile aerosol and cloud cross section down to 10-7 llm-sr. The analysis procedure employs a precise calibration against molecular scattering in the mid-stratosphere. The 1064 nm channel detection employs a high-speed analog APD for surface and atmospheric measurements where the detection sensitivity is limited by detector noise and is over an order of magnitude less than at 532 nm. A unique feature of

  8. A Conceptual Design For A Spaceborne 3D Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2002-01-01

    First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.

  9. Six-channel polychromator design and implementation for the UPC elastic/Raman lidar

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Rocadenbosch, Francesc; Sicard, Micha"l.; Comeron, Adolfo; Muñoz, Constantino; Lange, Diego; Tomás, Sergio; Gregorio, Eduard

    2011-11-01

    A 6-channel dichroic-based polychromator is presented as the spectrally selective unit for the U.P.C. elastic/Raman lidar. Light emission is made at 355-nm (ultraviolet, UV), 532-nm (visible, VIS) and 1064-nm (near infrared, NIR) wavelengths. In reception, the polychromator is the spectral separation unit that separates the laser backscattered composite return into 3 elastic (355, 532, 1064-nm wavelengths) and 3 Raman channels (386.7, 607.4 and 407.5-nm (water-vapor) wavelengths). The polychromator houses photo-multiplier tubes (PMT) for all the channels except for the NIR one, which is avalanche photodiode (APD) based. The optomechanical design uses 1-inch optics and Eurorack standards. The APD-based receiver uses a XY-axis translation/elevation micro-positioning stage due to its comparatively small active area and motorised neutral density filters are used in all PMT-based channels to avoid detector saturation. The design has been specially optimized to provide homogeneous spatial light distribution onto the photodetectors and good mechanical repeatability. All channels are acquired in mixed analog and photon-counting mode using Licel® transient recorders, which are controlled by means of a user friendly LabVIEWTM interface. The paper focuses on the main polychromator optical design parameters, that is, light collimation trade-offs, end-to-end transmissivity, net channel responsivity, light distribution and spot size onto the photodetectors. The polychromator along with the rest of the U.P.C. lidar system has successfully been tested during a recent lidar system intercomparison campaign carried out in Madrid, Spain) during Oct. 2010.

  10. Multi-beam Lidar Instrument Design, Measurement Capabilities, and Technical Readiness

    NASA Astrophysics Data System (ADS)

    Blair, B.; Ranson, J.; Dubayah, R.; Coyle, B.; Salerno, C.

    2007-12-01

    A multi-beam Laser Altimeter has been designed and studied at NASA Goddard Space Flight Center and the critical technologies have developed and tested resulting in a mature and technically ready instrument approach. The instrument consists of three separate beams each providing a near-contiguous profile of 25 m diameter laser footprints. The across-track separation of the beams can be <1 km to as much as ~5 km. A return waveform is collected for each footprint and the system has sufficient Signal-to-Noise Ratio (SNR) to penetrate dense (i.e. 98-99% cover) canopies in relatively clear sky conditions and can penetrate clouds to provide precise topography over unvegetated surfaces. The Multi-beam Laser Altimeter design includes a high-quality GPS receiver for providing precise orbital position information and a state-of-the-art Star Tracker and Inertial Measurement Unit to provide precise and accurate laser beam pointing knowledge. The digitizer-based ranging system will provide ranging to bare surfaces with ~3 cm range precision. The return waveforms will also provide vegetation height measurements with ~1 m of accuracy. The laser transmitters have been fully developed, characterize, and tested. Engineering Test Unit has been built at NASA/GSFC for environmental testing. Test units of the laser demonstrated 5 Billion shots without damage and diode testing indicates lifetimes of ~10 Billion shots per laser can be expected. A new waveform digitizer has been developed with improvements in sampling rate and dynamic range over the ICESat digitizer system, thus allowing higher quality waveforms to be collected, which is critical importantly for vegetation studies. This multi-beam Lidar design is the basis for the Lidar on the DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission described in the NRC Decadal Survey Report that consists of a Multi-beam Lidar and an L-band InSAR to be launched in the 2010-2013 timeframe.

  11. Design and Performance of the Vegetation Canopy Lidar (VCL) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Kay, Richard B.; Lindauer, Steven J., II

    2002-01-01

    The Vegetation Canopy Lidar (VCL) laser is a Nd:YAG Q-switched, diode side-pumped, zig-zag slab design producing 10 ns, 15 mJ pulses at 1064 nm. It employs an unstable resonator as well as a graded reflectivity output coupler with a Gaussian reflectivity profile. In order to conserve power, a conductively cooled design is employed and is designed to operate over a range of 25 C without active thermal control. The laser is an oscillator-only design and equipped with an 15X beam expander to limit the output divergence to less than 60 microrad. Thermal lensing compensation in the side-pumped slab was performed with different treatments of the x and y portions of the z-directed beam. Performance data as a function of temperature are given.

  12. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Peng, Zhangxian

    2016-06-01

    A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV) objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  13. An Autonomous Polarized Raman Lidar System Designed for Summit Camp, Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Neely, Ryan R.; Pilewskie, Peter; O'Neill, Michael; Thayer, Jeffrey P.; Hayman, Matthew

    2016-06-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure water vapor mixing ratio, temperature, extinction, and cloud phase profiles through the troposphere, is designed for deployment to Summit Camp, Greenland (72° 36' N, 38° 25' W, 3250 [m]). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes. The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature will reveal detailed microphysical information. A system description will be provided with an emphasis on the Monte Carlo safety analysis done to ensure eye safety in all relevant weather conditions.

  14. Design and development of micro pulse lidar for cloud and aerosol studies

    NASA Astrophysics Data System (ADS)

    Dubey, P. K.; Arya, B. C.; Ahammed, Y. Nazeer; Kumar, Arun; Kulkarni, P. S.; Jain, S. L.

    2008-12-01

    A micro pulse lidar (MPL) has been indigenously designed and developed at the National Physical Laboratory, New Delhi using a 532 nm, 500 pico second pulsed laser having average power of 50mW (at 7.5 KHz PRR). Photon counting technique has been incorporated using the conventional optics, multichannel scaler (Stanford Research Systems SR430) and high sensitive photomultiplier tube. The sensitivity, range and bin etc are computer controlled in the present system. The interfacing between MPL and computer has been achieved by serial (RS232) and parallel printer port. The necessary software and graphical user interface has been developed using visual basic. In addition to this the telescope cover status sensing circuit has been incorporated to avoid conflict between dark count and background acquisition. The micro pulse lidar will be used for the aerosol, boundary layer and the cloud studies at a bin resolution of 6 meters. In the present communication the details of the system and preliminary results will be presented.

  15. Design and Demonstration of a Miniature Lidar System for Rover Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Benjamin

    2011-01-01

    Public awareness of harmful human environmental effects such as global warming has increased greatly in recent years and researchers have increased their efforts in gaining more knowledge about the Earth s atmosphere. Natural and man-made processes pose threats to the environment and human life, so knowledge of all atmospheric processes is necessary. Ozone and aerosols are important factors in many atmospheric processes and active remote sensing techniques provide a way to analyze their quantity and distribution. A compact ground-based lidar system for a robotic platform meant for atmospheric aerosol measurements was designed, tested, and evaluated. The system will eventually be deployed for ozone and aerosol measurements in Mars and lunar missions to improve our knowledge and understanding of atmospheres on Mars and the Moon. All of the major subsystems were described in detail and atmospheric testing was performed to test the operability of the receiver system to acquire the lidar return signal from clouds and aerosols. The measured backscattered results are discussed and compared with theoretical results.

  16. A Novel High Efficient Laser Transmitter Design for a Space-borne Ozone Differential Lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Edwards, W. C.; Chen, S.; Petway, L. B.; Marsh, W. D.; Storm, M. E.; Barnes, J. C.

    2000-01-01

    Development of a UV laser transmitter capable of operating from a space platform is a critical step in enabling global earth observations of aerosols and ozone at resolutions greater than current passive instrument capabilities. Tropospheric chemistry is well recognized as the next frontier for global atmospheric measurement. NASA Langley Research Center (LaRC) and the Canadian Space Agency (CSA) have jointly studied the requirements for a satellite based, global ozone monitoring instrument. The study, called Ozone Research using Advanced Cooperative Lidar Experiment (ORACLE) has defined the Differential Absorption Lidar (DIAL) instrument performance, weight and power, and configuration requirements for a space based measurement. In order to achieve the measurement resolution and acceptable signal-to-noise from lidar returns, 500mJ/pulse (5 Watts average power) is required at both 305-308nm and 315-320nm wavelengths. These are consecutive pulses, in a 10 Hz, double-pulsed format. The two wavelengths are used as the on- and off-lines for the ozone DIAL measurement. NASA Langley is currently developing technology for a UV laser transmitter capable of meeting the ORACLE requirements. Experimental efforts to date have shown that the UV generation scheme is viable, and that energies greater than l00mJ/pulse are possible. In this paper, we will briefly discuss the down select process for the proposed laser design, the study effort to date and the laser system design, including both primary and alternate approaches. We will describe UV laser technology that minimizes the total number of optical components (for enhanced reliability) as well as the number of UV coated optics required to transmit the light from the laser (for enhanced optical damage resistance). While the goal is to develop a laser that will produce 500 mJ of energy, we will describe an optional design that will produce output energies between 100 - 200 mJ/unit and techniques for combining multiple laser

  17. Design and implementation of an inexpensive LIDAR scanning system with applications in archaeology

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Sui, Yunfeng; Ringle, William; Galor, Katherina

    2009-01-01

    This paper describes the development of a system and associated software capable of capturing 3D LIDAR data from surfaces up to 20m from the sensor. The chief concern of this initial system is to minimize cost which, for this initial system, is approximately $10.5k (USD). Secondary considerations for the system include portability, robustness, and size. The system hardware consists of two motors and a single-point sensor, capable of measuring the range of a single surface point location. The motors redirect the emitted laser along lines nearly equivalent to that specified by a spherical coordinate system generating a spherical range image, r = f ( φ, θ). This article describes the technical aspects of the scanner design which include a bill-of-materials for the scanner components and the mathematical model for the measured 3D point data. The designed system was built in 2007 and has since been used in the field twice: (1) for scanning ruins and underground cisterns within Mayan cities near Merida, Mexico and (2) for scanning the ruins of a Crusader castle at Apollonia-Arsuf, located on the Mediterranean shore near Herzliya, Israel. Using this system in these vastly different environments has provided a number of useful insights or "best practices" on the use of inexpensive LIDAR sensors which are discussed in this paper. We also discuss a measurement model for the generated data and an efficient and easy-to-implement algorithm for polygonizing the measured 3D (x,y, z) data. Specific applications of the developed system to archaeological and anthropological problems are discussed.

  18. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  19. Rio Grande Lidar Bank Erosion Monitoring: Preliminary 2007-2008 Results and Survey Design Considerations

    DTIC Science & Technology

    2010-09-01

    resolution DEM based on 2001 Bernalillo County airborne lidar dataset...February 2008 and have been colored based on distance between that scan and scan collected 26 March 2007, measured parallel to dam abutment’s normal...1996). In this context, studies based on airborne lidar data are only able to capture major changes in bank modification. In addition, James et al

  20. Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.

  1. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  2. Impacts of Sample Design on Estimation of Aboveground Biomass: Implications for the Assimilation of Lidar and Forest Inventory Data

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Keller, M. M.; Morton, D. C.; Schimel, D.

    2015-12-01

    The availability of lidar data that can be used to characterize forest structure and estimate aboveground biomass (AGB) is rapidly increasing. When lidar data are considered in conjunction with forest inventory data to estimate AGB, the order of acquisition for these data products may impact the quality of the resulting estimates. In this work, we address this question in the context of uncertainty reduction with respect to estimation of AGB in a degraded forest in Paragominas, Brazil. We have developed a simulation framework that quantitatively assesses the uncertainty associated with estimation of AGB for different sampling strategies that combine forest inventory and lidar data. We utilize a Bayesian hierarchical modeling (BHM) data assimilation framework to combine information from the forest inventory and lidar data products into a higher order data product of AGB. Spatially explicit realizations of AGB are generated under different sampling strategies. Sampling strategies are assessed using the distributional properties of the assimilated higher order data product in the context of uncertainty reduction. We consider both spatially explicit maps of uncertainty as well as the standard deviation of the posterior predictive distributions of AGB as endpoints for the quantification of uncertainty. This framework allows for the explicit characterization of important sources of uncertainty. Our results show that a significant reduction in the uncertainty associated with estimation of AGB can be realized when design optimization is utilized in this context.

  3. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  4. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems

    NASA Astrophysics Data System (ADS)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  5. Design of the interferometric spectral discrimination filters for a three-wavelength high-spectral-resolution lidar.

    PubMed

    Luo, Jing; Liu, Dong; Zhang, Yupeng; Cheng, Zhongtao; Liu, Chong; Bai, Jian; Shen, Yibing; Yang, Yongying; Zhou, Yudi; Tang, Peijun; Liu, Qun; Xu, Peituo; Su, Lin; Zhang, Xiaoyu; Yang, Liming

    2016-11-28

    We address design of the interferometric spectral discrimination (ISD) filters for a specific three-wavelength high-spectral-resolution lidar (HSRL) in this paper. Taking into account the strong dependence of the transmittance of the ISD filters on the incident angle of light ray, the optical path of the receiving channel with an ISD filter in HSRL is analyzed. We derive the lidar equation with the angular distribution of backscatter signal, through which Monte Carlo (MC) simulations are then carried out to obtain the optimal parameters of the ISD filters for the HSRL at 1064 nm, 532 nm and 355 nm, respectively. Comparing the retrieval errors of the MC simulations based on different ISD filters, the configuration and parameters of the best ISD filter at each wavelength are determined. This paper can be employed as a theoretical guidance during the design of a three-wavelength HSRL with ISD filters.

  6. Ground-based Rayleigh-Mie Doppler wind lidar: design, observations and proposal for ADM-Aeolus cal/val

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Hauchecorne, Alain; Porteneuve, Jacques; Mariscal, Jean-François; D'Almeida, Eric; Cammas, Jean-Pierre; Keckhut, Philippe

    2015-04-01

    A unique Rayleigh-Mie Doppler wind lidar, measuring Doppler shift between the emitted and backscattered light by means of a Fabry-Perot interferometer is deployed at Observatory of Haute-Provence (Southern France) and at Reunion island (tropical Indian Ocean). The technique was shown capable of wind measurements between 5 and 50 km with accuracy better than 1 m/s up to 30 km. The system consists of a monomode Nd:Yag laser operating at 532 nm, three telescopes and a double-edge Fabry-Perot interferometer. The laser light is sent alternatively in the vertical as well as zonal and meridional directions at 45° from the zenith using a rotating mirror. The two components of the horizontal wind are obtained from the measurement of the Doppler shift of the return signal spectrally filtered by a double-edge Fabry-Pérot etalon. The vertical pointing is used to obtain zero Doppler shift. After demonstration of the method in 1989 at Observatory of Haute-Provence the measurements were used for studying mesoscale wind fluctuations and intertia-gravity waves in the mid-stratosphere as well as for constructing wind climatology up to 50 km altitude. A new system, featuring a more compact design was installed at Maïdo observatory at Reunion island (22° S). The design of the instrument, the results of observations and comparisons against GPS radiosondes are presented. The European Space Agency (ESA) Atmospheric Dynamic Mission (ADM-Aeolus) aimed at providing global observations of wind in the lower and middle atmosphere using 355 nm Doppler lidar ALADIN is expected to be launched in late-2015. A similarity of the measurements techniques exploited by ALADIN system and by the French ground-based Doppler lidar makes the latter an attractive mean for Aeolus validation. We present a proposal for ADM-Aeolus cal/val activities based on the operations of two wind lidars operating at mid-latitude and tropical sites. These activities include a pre-cal/val phase aimed at development of a

  7. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  8. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  9. Lidar Report

    SciTech Connect

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  10. Aureole lidar: Design, operation, and comparison with in-situ measurements

    NASA Technical Reports Server (NTRS)

    Hooper, William P.; Jensen, D. R.

    1992-01-01

    In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.

  11. Computer simulation of the micropulse imaging lidar

    NASA Astrophysics Data System (ADS)

    Dai, Yongjiang; Zhao, Hongwei; Zhao, Yu; Wang, Xiaoou

    2000-10-01

    In this paper a design method of the Micro Pulse Lidar (MPL) is introduced, that is a computer simulation of the MPL. Some of the MPL parameters concerned air scattered and the effects on the performance of the lidar are discussed. The design software for the lidar with diode pumped solid laser is programmed by MATLAB. This software is consisted of six modules, that is transmitter, atmosphere, target, receiver, processor and display system. The method can be extended some kinds of lidar.

  12. Design and experimental verification of a novel Mie Doppler wind lidar based on all-fiber Mach-Zehnder frequency discriminator

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gao, Fei; Wang, Jun; Yan, Qing; Chang, Bo; Hua, Dengxin

    2017-04-01

    Spaceborne Doppler wind lidar is currently one of the hot spots on the lidar technology. The all-fiber Mach-Zehnder interferometer (FMZI) as a frequency discriminator of Doppler wind lidar is proposed for profiling the atmospheric wind velocity. The frequency discriminator system parameters are optimized, and the retrieval method of wind velocity based on FMZI is deduced. The arm length difference of FMZI for the aerosol backscattering signal is optimized to be 74.8 cm at the laser wavelength of 532 nm. The maximum system sensitivity for wind profiling can reach up to 2.62%/(m/s), and the dynamic range of wind velocity is ±18.2 m/s. The system simulation shows that the detection range is up to 6.7 km for 1 m/s wind velocity error at a wind velocity of 15 m/s with laser energy of 250 mJ and telescope diameter of 406 mm. A rotating disc experimental system is designed to simulate the atmospheric wind field for verifying the feasibility of the system, and the results show that there is good agreement between the retrieved wind velocity and simulated wind velocity. The simulation and experimental test results show that FMZI is feasible as a frequency discriminator and can be suitable for direct Mie Doppler lidar, especially for satellite-based platform lidar due to its desirable characteristics, including its small volume, light weight, good stability and compact structure.

  13. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  14. The Design, Development and Test of Balloonborne and Groundbased Lidar Systems. Volume 2. Flight Test of Atmospheric Balloon Lidar Experiment, ABLE 2

    DTIC Science & Technology

    1991-06-01

    Balloon Lidar E-xperiment) is part of Air Force Phillips Laboratory’s continuing interest in developing techniques for making remote measurements of...shaft is rotated until the two pointing mirrors are reflecting away from the payload. Using an autocollimator, the reticula pattern reflected from the...laser pointing mirror is made coincident with the reticula pattern reflected from the receiver pointing mirror by adjusting the mounting of the former

  15. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  16. Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver

    SciTech Connect

    Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Fuller, K.

    1997-06-01

    The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.

  17. Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidars

    NASA Astrophysics Data System (ADS)

    Smith, John A.; Chu, Xinzhao; Huang, Wentao; Tan, Bo

    2009-10-01

    A dye ring laser is stabilized to a D2a Doppler-free feature of sodium vapor using a LabVIEW®-based, phase-sensitive servo. Locking precision and stability, at better than +/-1 MHz, are suitable for Na lidar applications. This performance was achieved with improved digital filtering and new approaches to the problem. The inverse (type II) Chebyshev discrete filter employed demonstrates superior filtering and computational efficiency plus improved flexibility. New approaches include the determination of optimum modulation frequency, laser-tuning sensitivity, and bandwidth requirements via spectral analyses of the noise spectrum, derivative scan, and modulated spectrum. This practice guides a user in selecting the system operation parameters and negotiating the trade-offs involved when expanding the filter's passband. Allan deviation plots provide a quantitative description of the short- and long-term frequency excursions. A comparison of Allan deviation plots before and after locking shows a substantial improvement in stability throughout time scales from 0.10 to 10 s.

  18. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  19. Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar.

    PubMed

    Herbst, Jonas; Vrancken, Patrick

    2016-09-01

    The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.

  20. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  1. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  2. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  3. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  4. Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: system design and performance.

    PubMed

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Barny, Hervé; Rondeau, Philippe; Veerman, Henk

    2016-11-10

    A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture, it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuation measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configuration for use in cruise flight altitudes. Flight test measurements demonstrate this unique lidar system being able to resolve air density fluctuations occurring in light-to-moderate CAT at 5 km or moderate CAT at 10 km distance. A scaling of the determined stability and noise characteristics shows that such performance is adequate for an application in commercial air transport.

  5. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  6. The new FIRE cloud lidar at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Alvarez, Jose M.; Mccormick, M. P.; Vaughn, M. A.; Kent, G.; Hunt, W. H.; Fuller, W. H.; Rouse, B. R.; Dubinsky, R.

    1990-01-01

    Using the Langley Aircraft Lidar for cirrus cloud observations at Langley Research Center in Hampton, Virginia is overkill both in terms of the actual lidar and the people required to run the system. A small lidar system to be used specifically for cloud probing was designed and constructed at Langley in 1987. This lidar is presently being used to collect the FIRE ETO (Extended Time Observation) data at Langley. A description of the new FIRE Cloud Lidar System is presented. The data collected by this lidar is discussed as well as some of the cloud statistics emerging from the data. A brief synopsis of system performance is also given.

  7. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  8. Concept Design of a Multiwavelength Aerosol Lidar System With Mitigated Diattenuation Effects and Depolarization-Measurement Capability

    NASA Astrophysics Data System (ADS)

    Comerón, Adolfo; Sicard, Michaël; Vidal, Eric; Barragán, Rubén; Muñoz, Constantino; Rodríguez, Alejandro; Tiana-Alsina, Jordi; Rocadenbosch, Francesc; García-Vizcaíno, David

    2016-06-01

    It is known that the retrieval of aerosol extinction and backscatter coefficients from lidar data acquired through so-called total-power channels - intended to measure the backscattered power irrespective of the polarization - can be adversely affected by varying depolarization effects produced by the aerosol under measurement. This effect can be particularly noticeable in advanced multiwavelength systems, where different wavelengths are separated using a system of dichroic beam splitters, because in general the reflection and transmission coefficients of the beam splitters will be different for fields with polarization parallel or perpendicular to the incidence plane. Here we propose a setup for multiwavelength aerosol lidars alleviating diattenuation effects due to changing depolarization conditions while allowing measure linear depolarization.

  9. Design of a fused optical fibre bundle-based receiver for low-altitude profiling of water vapour using Raman lidar

    NASA Astrophysics Data System (ADS)

    Sangeetha, N.; Yellapragada, Bhavani Kumar; Machavaram, Venkata Rajanikanth

    2016-05-01

    Water vapour profiling of surface layer, which constitutes the lowest hundred meters from earth's surface, can aid in the understanding of spatial variability of atmospheric turbulence and the dynamics of boundary layer. In lidars, the effective area of an optical fiber-based receiver, also called the aperture stop diameter, controls the field of view of the telescope which in turn governs the overlap function. We determined overlap function vs altitude for different aperture stop diameters which showed that lower altitude profiling requires fibre receivers of larger effective area positioned at the location of blur disk or the position of maximum capture of back scattered light. We report on the design of a receiver which comprises of a converging lens system in conjunction with a commercially available fibre bundle of fused hexagonal shaped fibres of adequate numerical aperture and enhanced effective light capturing area. For a specified biaxial Raman lidar system with an excitation laser emitting at 532 nm, placing a one inch diameter lens at the plane of blur disk of diameter 21 mm and the aforesaid fibre bundle of diameter 7.3 mm at the image plane of the blur disk was found to be suitable for relatively efficient light capture to enable profiling from an altitude of 8m and above. The light capturing efficiency of the system was determined and compared with that of a conventional circular fibre-based bundle of same diameter. The proposed receiver design offers potential solution for low altitude profiling with reduced central obscuration.

  10. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  11. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  12. Optimizing embedded sensor network design for catchment-scale snow-depth estimation using LiDAR and machine learning

    NASA Astrophysics Data System (ADS)

    Oroza, Carlos A.; Zheng, Zeshi; Glaser, Steven D.; Tuia, Devis; Bales, Roger C.

    2016-10-01

    We evaluate the accuracy of a machine-learning algorithm that uses LiDAR data to optimize ground-based sensor placements for catchment-scale snow measurements. Sampling locations that best represent catchment physiographic variables are identified with the Expectation Maximization algorithm for a Gaussian mixture model. A Gaussian process is then used to model the snow depth in a 1 km2 area surrounding the network, and additional sensors are placed to minimize the model uncertainty. The aim of the study is to determine the distribution of sensors that minimizes the bias and RMSE of the model. We compare the accuracy of the snow-depth model using the proposed placements to an existing sensor network at the Southern Sierra Critical Zone Observatory. Each model is validated with a 1 m2 LiDAR-derived snow-depth raster from 14 March 2010. The proposed algorithm exhibits higher accuracy with fewer sensors (8 sensors, RMSE 38.3 cm, bias = 3.49 cm) than the existing network (23 sensors, RMSE 53.0 cm, bias = 15.5 cm) and randomized placements (8 sensors, RMSE 63.7 cm, bias = 24.7 cm). We then evaluate the spatial and temporal transferability of the method using 14 LiDAR scenes from two catchments within the JPL Airborne Snow Observatory. In each region, the optimized sensor placements are determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys is then compared to 100 configurations of sensors selected at random. We find the error statistics (bias and RMSE) to be more consistent across the additional surveys than the average random configuration.

  13. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  14. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed.

  15. Wind measurement via direct detection lidar

    NASA Astrophysics Data System (ADS)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  16. Lidar Wind Measurements with the Goddard Lidar Observatory for Winds (GLOW)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Chen, Hualilin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We report on the development of GLOW (Goddard Lidar Observatory for Winds), a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system employs a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at a wavelength of 1064 run or molecular backscatter at 355 nm. The system is modular in design to allow the incorporation of new technologies as they become available. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. Finally it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the first validated lidar wind profiles obtained with the system using a new molecular 'double edge' receiver.

  17. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  18. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    In late 2009, a $14.3 million allocation from the “American Recovery and Reinvestment Act” for new light detection and ranging (lidar) elevation data prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common base specification for all lidar data acquired for The National Map. Released as a draft in 2010 and formally published in 2012, the USGS–NGP “Lidar Base Specification Version 1.0” (now Lidar Base Specification) was quickly embraced as the foundation for numerous state, county, and foreign country lidar specifications. Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a USGS-led consortium of Federal agencies commissioned a National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. A 2012 NEEA report documented a substantial return on such an investment, defined five Quality Levels (QL) for elevation data, and recommended an 8-year collection cycle of Quality Level 2 (QL2) lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized. Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  19. The need for a national LIDAR dataset

    USGS Publications Warehouse

    Stoker, Jason M.; Harding, David; Parrish, Jay

    2008-01-01

    On May 21st and 22nd 2008, the U.S. Geological Survey (USGS), the National Aeronautics and Space Administration (NASA), and the Association of American State Geologists (AASG) hosted the Second National Light Detection and Ranging (Lidar) Initiative Strategy Meeting at USGS Headquarters in Reston, Virginia. The USGS is taking the lead in cooperation with many partners to design and implement a future high-resolution National Lidar Dataset. Initial work is focused on determining viability, developing requirements and specifi cations, establishing what types of information contained in a lidar signal are most important, and identifying key stakeholders and their respective roles. In February 2007, USGS hosted the fi rst National Lidar Initiative Strategy Meeting at USGS Headquarters in Virginia. The presentations and a published summary report from the fi rst meeting can be found on the Center for Lidar Information Coordination and Knowledge (CLICK) Website: http://lidar.cr.usgs.gov. The fi rst meeting demonstrated the public need for consistent lidar data at the national scale. The goals of the second meeting were to further expand on the ideas and information developed in the fi rst meeting, to bring more stakeholders together, to both refi ne and expand on the requirements and capabilities needed, and to discuss an organizational and funding approach for an initiative of this magnitude. The approximately 200 participants represented Federal, State, local, commercial and academic interests. The second meeting included a public solicitation for presentations and posters to better democratize the workshop. All of the oral presentation abstracts that were submitted were accepted, and the 25 poster submissions augmented and expanded upon the oral presentations. The presentations from this second meeting, including audio, can be found on CLICK at http://lidar.cr.usgs.gov/national_lidar_2008.php. Based on the presentations and the discussion sessions, the following

  20. Advanced Digital Signal Processing for Hybrid Lidar FY 2013

    DTIC Science & Technology

    2013-01-01

    Report 4. TITLE AND SUBTITLE Advance Digital Signal Processing for Hybrid Lidar 6. AUTHOR(S) William D. Jemison 7. PERFORMING ORGANIZATION NAME(S...development of signed processing algorithms for hybrid lidar - radar designed to improve detection performance. i , 15. SUBJECT TERMS Hybrid... Lidar - Radar 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  1. Acousto-optic filtering of lidar signals

    NASA Astrophysics Data System (ADS)

    Kolarov, G.; Deleva, A.; Mitsev, Ts.

    1992-07-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  2. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  3. Requirements for Space-Based Wind Lidar

    NASA Technical Reports Server (NTRS)

    Atlas, Robert M.; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global wind profiles are needed for a wide range of meteorological applications. Since the 1980's, observing system simulation experiments have been conducted in order to evaluate the potential impact of space-based wind profiler data on numerical weather prediction, and to evaluate trade-offs in lidar design. These experiments indicated tremendous potential for satellite lidar observations to improve atmospheric analyses and forecasts. More recent experiments are aimed at assessing the precise requirements for space-based lidar wind profile data and to evaluate the potential for alternative technologies. At the workshop, OSSE methodology, and results from experiments conducted at the DAO to the define requirements for space-based lidar wind will be presented.

  4. Holographic optical elements as scanning lidar telescopes

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2006-09-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. Rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  5. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  6. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-08-29

    signal is used with a digital receiver to form a chaotic LIDAR (CLIDAR) ranging system. The design of the chaotic fiber ring laser and the fiber ...the first fiscal year we reported the development of wideband noise-like chaotic signals using low-power fiber ring lasers operating at infrared...ytterbium-doped fiber laser (YDFL), which outputs a >1 GHz noise-like chaotic intensity modulation. This signal is amplified by a 2-stage fiber

  7. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-09-30

    digital receiver to form a chaotic LIDAR (CLIDAR) ranging system. The design of the chaotic fiber ring laser and the fiber amplifiers are guided by...Progress In the first fiscal year we reported the development of wideband noise-like chaotic signals using low-power fiber ring lasers operating... fiber laser (YDFL), which outputs a >1 GHz noise-like chaotic intensity modulation. This signal is amplified by a 2-stage fiber amplifier chain to

  8. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 1, Instrument Design and Operation

    NASA Astrophysics Data System (ADS)

    Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.

    2014-12-01

    CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations

  9. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  10. Continuous Monitoring of Greenland Outlet Glaciers Using an Autonomous Terrestrial LiDAR Scanning System: Design, Development and Testing at Helheim Glacier

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Hamilton, G. S.; Stearns, L. A.; Gadomski, P. J.

    2014-12-01

    Greenland's fast-flowing tidewater outlet glaciers play a critical role in modulating the ice sheet's contribution to sea level rise. Increasing evidence points to the importance of ocean forcing at the marine margins as a control on outlet glacier behavior, but a process-based understanding of glacier-ocean interactions remains elusive in part because our current capabilities for observing and quantifying system behavior at the appropriate spatial and temporal scales are limited. A recent international workshop on Greenland's marine terminating glaciers (US CLIVAR, Beverly, MA, June 2013) recommended the establishment of a comprehensive monitoring network covering Greenland's largest outlet glacier-fjord systems to collect long-term time series of critical in situ glaciological, oceanographic and atmospheric parameters needed to understand evolving relationships between different climate forcings and glacier flow. Given the remote locations and harsh environments of Greenland's glacial fjords, the development of robust autonomous instrumentation is a key step in making the observing networks a reality. This presentation discusses the design and development of a fully-autonomous ground-based Light Detection and Ranging (LiDAR) system for monitoring outlet glacier behavior. Initial deployment of the system is planned for spring 2015 at Helheim Glacier in southeast Greenland. The instrument will acquire multi-dimensional point-cloud measurements of the mélange, terminus, and lower-reaches of the glacier. The heart of the system is a long-range, 1064 nm wavelength Terrestrial Laser Scanner (TLS) that we have previously used in campaign-style surveys at Helheim Glacier and at Hubbard Glacier in Alaska. We draw on this experience to design and fabricate the power and enclosure components of the new system, and use previously acquired data from the instrument, collected August 2013 and July 2014 at Helheim, to optimize our data collection strategy and design the data

  11. Validar: A Testbed for Advanced 2-Micron Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    High-energy 2-microns lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  12. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  13. Validar: a testbed for advanced 2-micron Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-09-01

    High-energy 2-micron lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  14. A cloud masking algorithm for EARLINET lidar systems

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  15. Methodology of dimensionless multiplicative decomposition for atmospheric lidar evaluation

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil; Gross, Barry; Comeron, Adolfo

    2006-09-01

    In the present paper, we show application examples of united generalized methodology for atmospheric lidar assessment, which uses the dimensionless-parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. A methodology of spatial-angular filtering efficiency was used for comparison of different receiving system designs on the criterion of stability against background radiation. The dimensionless parameterization concept applied to photodetectors of remote sensing instruments allowed predicting the lidar receiver performance in presence of sky background. The approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote sensing applications, as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a methodology provides generalized, uniform and objective approach for the evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL), operating on different targets (backscatter or topographic) and under intense sky background conditions, and can be used within the lidar community to compare different lidar instruments.

  16. Lidar Sensors for Autonomous Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.; Reisse, Robert A.; Pierrottet, Diego F.

    2013-01-01

    Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions.

  17. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  18. Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Bilbro, J.; Beranek, R.; Fitzjarrald, D.; Mabry, J.

    1987-01-01

    The results of a study to design and accommodate a simplified version of a coherent lidar system capable of performing tropospheric wind measurements are outlined. The following topics are addressed: system sensitivity, orbital analysis, science experiments, preliminary system design, accommodations, and the space qualification of a 2J CO2 laser.

  19. Forest Biomass retrieval strategies from Lidar and Radar modeling

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, J.

    2008-12-01

    Estimates of regional and global forest biomass and forest structure are essential for understanding and monitoring ecosystem responses to human activities and climate change. Lidars with capabilities of recording the time-varying return signals provide vegetation height, ground surface height, and vertical distribution of vegetated surfaces intercepted by laser pulses. Large footprint lidar has been shown to be an effective technique for measuring forest canopy height, and biomass from space. Essentially, radar responds to the amount of water in a forest canopy, as well as its spatial structure. Data from these sensors contain information relevant to different aspects of the biophysical properties of the vegetation canopy including above ground biomass. The planned NASA new mission DESDynI will provide global systematic lidar sampling data and complete global coverage of L-band high resolution SAR and InSAR data for vegetation 3D structure mapping. By combining lidar and high-resolution SAR data, our quantitative knowledge of global carbon dynamics and ecosystem structure and function can be improved. This requires some new data processing and fusion technologies. What is the proper lidar sampling design and how to expand the vegetation spatial structural parameters estimated at lidar footprints to global spatial coverage in high resolution need to be resolved. Current configuration of DESDynI may also require lidar observations with variable looking angles, which creates a new challenge in lidar data processing. Models designed to simulate lidar and radar response from a variety of forest canopies can help answer these questions. In this paper we present an overview of our spatially explicit lidar and radar models and their use for examining the questions above. Specifically we will discuss sensitivities of large-footprint lidar and L-band polarimetric and interferometric radar to forest

  20. Pulsed Lidar Performance/Technical Maturity Assessment

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; West, Leanne L.; Wood, Jack W.; Frehlich, Rod

    2004-01-01

    This report describes the results of investigations performed by the Georgia Tech Research Institute (GTRI) and the National Center for Atmospheric Research (NCAR) under a task entitled 'Pulsed Lidar Performance/Technical Maturity Assessment' funded by the Crew Systems Branch of the Airborne Systems Competency at the NASA Langley Research Center. The investigations included two tasks, 1.1(a) and 1.1(b). The Tasks discussed in this report are in support of the NASA Virtual Airspace Modeling and Simulation (VAMS) program and are designed to evaluate a pulsed lidar that will be required for active wake vortex avoidance solutions. The Coherent Technologies, Inc. (CTI) WindTracer LIDAR is an eye-safe, 2-micron, coherent, pulsed Doppler lidar with wake tracking capability. The actual performance of the WindTracer system was to be quantified. In addition, the sensor performance has been assessed and modeled, and the models have been included in simulation efforts. The WindTracer LIDAR was purchased by the Federal Aviation Administration (FAA) for use in near-term field data collection efforts as part of a joint NASA/FAA wake vortex research program. In the joint research program, a minimum common wake and weather data collection platform will be defined. NASA Langley will use the field data to support wake model development and operational concept investigation in support of the VAMS project, where the ultimate goal is to improve airport capacity and safety. Task 1.1(a), performed by NCAR in Boulder, Colorado to analyze the lidar system to determine its performance and capabilities based on results from simulated lidar data with analytic wake vortex models provided by NASA, which were then compared to the vendor's claims for the operational specifications of the lidar. Task 1.1(a) is described in Section 3, including the vortex model, lidar parameters and simulations, and results for both detection and tracking of wake vortices generated by Boeing 737s and 747s. Task 1

  1. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  2. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  3. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  4. Lidar sounding of the optical parameter of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Gurvich, A. S.; Fortus, M. I.

    2016-03-01

    The operation of a lidar intended for clear air turbulence (CAT) positioning on the basis of the backscatter enhancement (BSE) effect is analyzed using a turbulence model with a power-law spectrum. Systematic distortions occurring due to a need to regularize the lidar positioning problem solution are estimated. It is shown that the effect of molecular viscosity of air on the positioning result can be neglected if the wave parameter, which characterizes the diffraction manifestation, is higher than 3. This corresponds to sounding ranges of more than 1 km for optical or UV lidars. The analysis results show that the BSE lidar positioning accuracy weakly depends on the exponent in the turbulence spectrum in regions of severe turbulence. The results can justify a physical experiment for the design of an aircraft system for the lidar detection of CAT regions ahead of the flight course.

  5. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  6. Statistical aspects of the lidar sounding of the atmosphere

    NASA Astrophysics Data System (ADS)

    Glazov, Grigorii Naumovich

    This monograph presents the elements of a statistical theory of the lidar sounding of the atmosphere, including an analysis of signal and noise statistics, the analysis and synthesis of lidar signals in an estimation program, and the identification, recognition and filtering of atmospheric characteristics. Lidar photoelectron statistics are examined. Attention is given to a lidar-signal procesing procedure providing for the optimal Markov filtering of fluctuating profiles of temperature, density, and pressure. Taking these fluctuations into account, new algorithms are synthesized, and random errors in the measurement of gas concentration and temperature are determined. It is concluded that the results obtained will be useful for the design of lidars, the prediction of their operating efficiency, and the interpretation of sounding data.

  7. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Space Lidar and Applications

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, David E. (Technical Monitor)

    2001-01-01

    With advances in lasers and electro-optic technology, lidar is becoming an established technique for remote sensing of the Earth and planets from space. Some of the earliest space-based lidar measurements were made in the early 1970s from lunar orbit using the laser altimeter on the Apollo 15 mission. Space lidar instruments in active use today include the MOLA instrument aboard the Mars Global Surveyor mission and the Near Laser Rangefinder on the Near Earth Asteroid Rendezvous (NEAR) Mission. This talk will review laser remote sensing techniques, critical technologies, and some results from past and present NASA missions. It will also review near term plans for NASA's ICESat and Picasso missions and summarize some concepts for lidar on future missions.

  9. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  10. Overview of Japan's spaceborne vegetation lidar mission

    NASA Astrophysics Data System (ADS)

    Murooka, Jumpei; Kobayashi, Takashi; Imai, Tadashi; Suzuki, Keiko; Sakaizawa, Daisuke; Yamakawa, Shiro; Sato, Ryota; Sawada, Haruo; Asai, Kazuhiro

    2013-10-01

    Vegetation LIDAR, which measures an accurate canopy height, has been studied by JAXA. Canopy height is a very important parameter to estimate forest biomass, and global measurement of accurate canopy height leads to better understanding of the global carbon cycle. The vegetation LiDAR is designed based on the assumption that it is to be mounted on the Exposed Facility (EF) of the Japanese Experiment Module (JEM, also known as "Kibo") on the International Space Station (ISS). The vegetation LIDAR uses an array detector (2x2) for dividing the ground footprint, making it possible to detect the slope of the ground for improving the accuracy of canopy height measurement. However, dividing the footprint may cause a reduction in reflected lights and signal-to-noise ratio (SNR); hence, the vegetation LiDAR system needs high sensitivity and low-noise array detector module. We made a prototype of the array detector module and it satisfied the tentative target SNR which we set. This presentation will introduce the mission objectives, the LiDAR system including experimental prototypes of array detector module, and some results of the study.

  11. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  12. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect

    White, Devin A

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  13. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  14. Beam optimization for imaging lidar

    NASA Astrophysics Data System (ADS)

    Ruppert, Lyle

    2015-05-01

    Active remote sensing returns information of the highest value at the lowest cost when outgoing energy can be carefully shaped and directed to the task at hand. This paper presents results of lab and airborne testing of an Electronically Steerable Flash Lidar (ESFL) under continuing development by Ball Aerospace and Technologies Corp. The results highlight the adaptive nature of this and other active instruments having fine control of illumination, and show the benefits of combining lab simulation with flight testing in validation of algorithms and control design.

  15. Analysis of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.

  16. Overview and status of vegetation lidar mission MOLI

    NASA Astrophysics Data System (ADS)

    Murooka, Jumpei; Sakaizawa, Daisuke; Imai, Tadashi; Kimura, Toshiyoshi; Asai, Kazuhiro

    2016-05-01

    Accurate measurements of forest biomass are important to evaluate its contribution to the global carbon cycle. Forest biomass correlates with forest canopy height; therefore, global measurements of canopy height enable a more precise understanding of the global carbon cycle. Space-borne lidar has the unique capability of measuring forest canopy height. A vegetation lidar named Multi-footprint Observation Lidar and Imager (MOLI) has been designed to make accurate measurements of canopy height and is currently being studied in the Japan Aerospace Exploration Agency. This papers introduces an overview of MOLI and its current status.

  17. A Pseudorandom Code Modulated LIDAR

    NASA Astrophysics Data System (ADS)

    Hunt, K. P.; Eichinger, W. E.; Kruger, A.

    2009-12-01

    Typical Light Detection and Ranging (LIDAR) uses high power pulsed lasers to ensure a detectable return signal. For short ranges, modulated diode lasers offer an attractive alternative, particularly in the areas of size, weight, cost, eye safety and use of energy. Flexible electronic modulation of the laser diode allows the development of pseudorandom code (PRC) LIDAR systems that can overcome the disadvantage of low output power and thus low signal to noise ratios. Different PRCs have been proposed. For example, so called M-sequences can be generated simply, but are unbalanced: they have more ones than zeros, which results in a residual noise component. Other sequences such as the A1 and A2 sequences are balanced, but have two autocorrelation peaks, resulting in undesirable pickup of signals from different ranges. In this work, we investigate a new code, an M-sequence with a zero added at the end. The result is still easily generated and has a single autocorrelation peak, but is now balanced. We loaded these sequences into a commercial arbitrary waveform generator (ARB), an Agilent 33250A, which then modulates the laser diode. This allows sequences to be changed quickly and easily, permitting us to design and investigate a wide range of PRC sequences with desirable properties. The ARB modulates a Melles Griot 56ICS near infrared laser diode at a 10 MHz chip rate. Backscatter is collected and focused by a telescope and the detected signal is sampled and correlated with the known PRC. We have gathered data from this LIDAR system and experimentally assessed the performance of this new class of codes.

  18. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  19. Multiple scattering technique lidar

    NASA Technical Reports Server (NTRS)

    Bissonnette, Luc R.

    1992-01-01

    The Bernouilli-Ricatti equation is based on the single scattering description of the lidar backscatter return. In practice, especially in low visibility conditions, the effects of multiple scattering can be significant. Instead of considering these multiple scattering effects as a nuisance, we propose here to use them to help resolve the problems of having to assume a backscatter-to-extinction relation and specifying a boundary value for a position far remote from the lidar station. To this end, we have built a four-field-of-view lidar receiver to measure the multiple scattering contributions. The system has been described in a number of publications that also discuss preliminary results illustrating the multiple scattering effects for various environmental conditions. Reported here are recent advances made in the development of a method of inverting the multiple scattering data for the determination of the aerosol scattering coefficient.

  20. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  1. Visibility and Cloud Lidar

    NASA Astrophysics Data System (ADS)

    Werner, Christian; Streicher, Jürgen; Leike, Ines; Münkel, Christoph

    In summary it can be stated that visibility lidar is an accepted technology wherever impaired vision must be detected to impose speed limits to road or takeoff and landing restrictions to air traffic. Visibility lidars known as ceilometers have reached a degree of maturity to work 24 hours a day in the required fully-automated, hands-off operation mode. The development of much smaller systems for use under restricted space conditions and of systems small and cheap enough to be used as a truck and car accessory is in progress, with good chances to reach full commercial availability soon.

  2. Telescope aperture optimization for spacebased coherent wind lidar

    NASA Astrophysics Data System (ADS)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  3. LIDAR data filtering and classification with TIN and assistant plane

    NASA Astrophysics Data System (ADS)

    Zeng, Qihong; Mao, Jianhua; Li, Xianhua; Liu, Xuefeng

    2007-06-01

    LIDAR is a new promising technique in obtaining instantly 3D point cloud data representing the earth surface information. In order to extract valuable earth surface feature information for further application, 3D sub-randomly spatial distributed LIDAR point cloud should be filtered and classified firstly. In this article, a new LIDAR data filtering and classification algorithm is presented. First, the points' neighboring relation and height-jump situation in TIN (triangulated irregular network) model for 3D LIDAR point cloud are analyzed. After that, the filtering algorithm based on TIN neighboring relation and height-jump is presented. Third, an assistant plane is designed in TIN neighborhood filtering algorithm in order to yield more effective filtering result. Then, the LIDAR points are classified into bare ground points, building points and vegetation points using the above filtering algorithms. The experiment is performed using the airborne LIDAR data, and the result shows that this method has better effect on filtering and classification of LIDAR point cloud data.

  4. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  5. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  6. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  7. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  8. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  9. LED mini-lidar as minimum setup

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo

    2014-10-01

    The LED mini-lidar has been designed and demonstrated as the near range atmosphere monitoring, dust and gas detections. The LED lamp is used as a lidar light source. It is not a special one, and just used as a small status indicator or a spot luminaire. For the atmospheric monitoring in the near range of a few hundreds meters, the energy of 1nJ (=100mW/10ns) is enough for lidar observation in the nighttime. The LED lamp is excited at the high repetition frequency of < 1MHz. The signal-to-noise ratio can be increased by this high frequency even if the receiving photons are a little at each pulse. It is adequate because the spatiotemporal scale of the low-altitude atmosphere is small of a ten seconds and a few tens meters. To pursue such quick motion of the atmosphere and dust, the high-speed photon counter has been developed. It can act with BIN width of 4ns (Spatial resolution 0.6m) at the repetition frequency of <500kHz. The LED mini-lidar has been demonstrated to monitor the actual atmosphere of the observation range of <500m in the nighttime and <100m in the daytime with the receiving lens of 200mmφ. The interest approach is tired to distinguish the dust characteristics by using the counting rate of dust echoes. It is effective in the case that the dust material is given. And for trial, the LED mini-Raman-lidar is developed to monitor certain gas detection in near distance, too.

  10. CRYSTAL-FACE Polarization Lidar Research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2005-01-01

    The University of Alaska Fairbanks (UAF) Polarization Diversity Lidar (PDL, Sassen 1994) participated in the July 2002 CRYSTAL-FACE field campaign, shortly after the PI moved from the University of Utah to UAF. The truck-mounted PDL is an advanced dual wavelength (1.06 and 0.532 micron), high resolution (0.1-s by 1.5-m), scanning lidar system designed as a testbed for evaluating laser backscatter depolarization techniques for the study of clouds and aerosols in the atmosphere. The main goals identified in our proposal for the CRYSTAL-FACE experiment were, i) the characterization of Florida thunderstorm anvil macrophysical and microphysical properties from lidar backscattering and depolarization, ii) the study of thin to subvisual tropopause-topped subtropical cirrus, iii) the search for indirect cloud effects of trans- Atlantic advected Saharan dust storm aerosols on clouds, and iv) the investigation of melting layer effects on lidar and multi-wavelength Doppler radar measurements in precipitation. Although we experienced adversity in the field during the campaign, sufficient data was collected to begin addressing these topics, and several conference presentations, three journal articles, and one book chapter have resulted from the data analysis effort supported by this grant. (PDL operations were delayed by FAA concerns over the initial sighting at the Kendall-Tamiami Airport, and a brief but major laser breakdown was experienced during the re- setup at the remote Ochopee Everglades site that also supported the N-POL radar.) All lidar data collected by the PDL system were processed and quality checked, and submitted to the CRYSTAL-FACE data archive in a timely manner.

  11. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  12. Laser sources for lidar applications

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2012-06-01

    Advanced LIDAR applications such as next gen: Micro Pulse; Time of Flight (e.g., Satellite Laser Ranging); Coherent and Incoherent Doppler (e.g., Wind LIDAR); High Spectral Resolution; Differential Absorption (DIAL); photon counting LIDAR (e.g., 3D LIDAR); are placing more demanding requirements on conventional lasers (e.g., increased rep rates, etc.) and have inspired the development of new types of laser sources. Today, solid state lasers are used for wind sensing, 2D laser Radar, 3D scanning and flash LIDAR. In this paper, we report on the development of compact, highly efficient, high power all-solidstate diode pulsed pumped ns lasers, as well as, high average power/high pulse energy sub nanosecond (<1ns) and picosecond (<100ps) lasers for these next gen LIDAR applications.

  13. Analysis of Coherent Lidar Data

    DTIC Science & Technology

    2007-11-02

    for understanding and predicting atmospheric processes. Recent advances in solid-state lasers have produced coherent Doppler lidar with improved...for the spatial statistics. The performance of coherent Doppler lidar in the weak signal regime was deter- mined by computer simulations and from data...reliable comparison of coherent Doppler lidar wind measurements. A new theoretical prediction of the effects of the pulse averaging of the wind field

  14. Development and Test of Blimp-Based Compact LIDAR Powewr-Line Inspection System

    NASA Astrophysics Data System (ADS)

    Pan, W. W.; Dou, Y. J.; Wang, G. L.; Wu, M. X.; Ren, R. G.; Xu, X.

    2015-03-01

    This paper introduces a compact LIDAR system designed to inspect overhead transmission line for maintenance purposes. This LIDAR system is carried by a small unmanned helium airship, which is guided by GPS and laser ranging to fly automatically along the power-line over a limited distance. The 3D coordinates of the power line, power tower and power line channel features are gathered by LIDAR. Test have been accomplished using this blimp-based compact LIDAR power-line inspection system. Its inspections of a 500kV power lines also shows the high efficient inspection, less risk to personnel and more inspections per day compared with manual inspection.

  15. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  16. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  17. Spectral Ratio Biospheric Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Knox, Robert G.

    2004-01-01

    A new active vegetation index measurement technique has been developed and demonstrated using low-power laser diodes to make horizontal-path lidar measurements of nearby deciduous foliage. The two wavelength laser transmitter operates within and adjacent to the 680 nm absorption feature exhibited by all chlorophyll containing vegetation. Measurements from early October through late November 2003 are presented and the results are discussed.

  18. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  19. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  20. Development of a pulsed 9.5 micron lidar for regional scale O3 measurement

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.

    1980-01-01

    A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.

  1. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  2. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina

    2016-02-01

    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  3. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G.

    2015-10-01

    In this paper we describe an automatic tool for the pre-processing of lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. The ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, the ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. The ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of the ELPP module, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of the ELPP module is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of the ELPP module. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. The ELPP module has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  4. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    trace of both the Polaris fault and the Dog Valley fault system are within composite swaths defined by overlapping seismo-lineaments. Composite seismo-lineaments indicate that multiple historic earthquakes might be associated with a fault. This apparently successful correlation of earthquakes with faults in an area where geologic mapping is good suggests another use for SLAM in areas where fault mapping is incomplete, inadequate or made particularly difficult because of vegetative cover. If no previously mapped fault exists along a composite swath generated using well constrained focal mechanism solutions, the swath might be used to guide the design of a LiDAR survey in support of reconnaissance for the causative fault. The acquisition and geomorphic analysis of LiDAR data along a compound seismo-lineament swath might reveal geomorphic evidence of a previously unrecognized fault trace that is worthy of additional field study.

  5. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  6. LiDAR: Providing structure

    USGS Publications Warehouse

    Vierling, Lee A.; Martinuzzi, Sebastián; Asner, Gregory P.; Stoker, Jason M.; Johnson, Brian R.

    2011-01-01

    Since the days of MacArthur, three-dimensional (3-D) structural information on the environment has fundamentally transformed scientific understanding of ecological phenomena (MacArthur and MacArthur 1961). Early data on ecosystem structure were painstakingly laborious to collect. However, as reviewed and reported in recent volumes of Frontiers(eg Vierling et al. 2008; Asner et al.2011), advances in light detection and ranging (LiDAR) remote-sensing technology provide quantitative and repeatable measurements of 3-D ecosystem structure that enable novel ecological insights at scales ranging from the plot, to the landscape, to the globe. Indeed, annual publication of studies using LiDAR to interpret ecological phenomena increased 17-fold during the past decade, with over 180 new studies appearing in 2010 (ISI Web of Science search conducted on 23 Mar 2011: [{lidar AND ecol*} OR {lidar AND fores*} OR {lidar AND plant*}]).

  7. Optimization of polarization lidar structure

    NASA Astrophysics Data System (ADS)

    Abramochkin, Alexander I.; Kaul, Bruno V.; Tikhomirov, Alexander A.

    1999-11-01

    The problems of the polarization lidar transceiver optimization are considered. The basic features and the optimization criteria of lidar polarization units are presented and the comparative analysis of polarization units is fulfilled. We have analyzed optical arrangements of the transmitter to form the desired polarization state of sounding radiation. We have also considered various types of lidar receiving systems: (1) one-channel, providing measurement of Stocks parameters at a successive change of position of polarization analyzers in the lidar receiver, and (2) multichannel, where each channel has a lens, an analyzer, and a photodetector. In the latter case measurements of Stocks parameters are carried out simultaneously. The optimization criteria of the polarization lidar considering the atmospheric state are determined with the purpose to decrease the number of polarization devices needed.

  8. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  9. Increasing the Efficiency of LiDAR Based Forest Inventories: A Novel Approach for Integrating Variable Radius Inventory Plots with LiDAR Data.

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Fekety, P.; Silva, C. A.; Hudak, A. T.

    2015-12-01

    LiDAR data are increasingly applied to support forest inventory and assessment across a variety of spatial scales. Typically this is achieved by integrating LiDAR data with forest inventory collected at fixed radius forest inventory plots. A well-designed forest inventory, one that covers the full range of structural and compositional variation across the forest of interest, is costly especially when collecting fixed radius plot data. Variable radius plots offer an alternative inventory protocol that is more efficient in terms of both time and money. However, integrating variable radius plot data with LiDAR data is problematic because the plots have unknown sizes that vary with variation in tree size. This leads to a spatial mismatch between LiDAR metrics (e.g., mean height, canopy cover, density, etc.) and plot data, which ultimately translates into errors in LiDAR derived forest inventory predictions. We propose and evaluate and novel approach for integrating variable radius plot data into a LiDAR based forest inventories in two different forest systems, one in the inland northwest and another in the northern lakes states of the USA. The novel approach calculates LiDAR metrics by weighting the point cloud proportional to return height, mimicking the way in which variable radius plot data weights tree measurements by tree size. This could increase inventory sampling efficiency, allowing for the collection of a greater number of inventory plots, and ultimately improve the performance of LiDAR based inventories.

  10. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  11. Making lidar more photogenic: creating band combinations from lidar information

    USGS Publications Warehouse

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  12. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    PubMed

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.

  13. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  14. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  15. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  16. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  17. Advances of Flash LIDAR Development Onboard Uav

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Yang, J.; Li, X.; Yang, X.

    2012-07-01

    A small cost-low civilian UAV (Unmanned Aerial Vehicle - UAV) platform usually requests that all carried components should be light in weight, small in volume, and efficient in energy. This paper presents the advance of a pre-mature of flash LiDAR system including laser emitting system, associate with the pulsed voltage technology. A complete laser emitting system, including laser diode, conic lens, alignment, divergence angle, etc., has been designed and implemented. The laser emitting system is first simulated and tested using 3D-Tool software, and then manufactured by an industrial company. In addition, a novel power supply topology based on two coupled coils, pulse generator circuit, and a fast switch, is proposed since several 100 V in voltage, 10-100 A in current, several hundred millisecond in pulse width is needed for flash LiDAR system onboard a small low-cost civilian UAV platform, and the traditional power supply had problems in efficiency and bulk. Finally, laser emitting and the power supply are assembled and tested. The size of laser footprint is 4398.031 mm x 4398.031 mm in x and y axes, respectively, when shitting from a flight height of 300 m, which is close to the theoretic size of 4.5 m x 4.5 m. The difference of 102 mm can meet the requirement of flash LiDAR data collection at a flight height of 300 m. Future work on extensive and on-going investigation and investments for a prototype of flash LiDAR system is drawn up as well.

  18. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  19. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  20. Simulation of Lidar System Performance in Terrestrial Mapping Applications

    NASA Astrophysics Data System (ADS)

    Pack, R. T.; Fullmer, R. R.

    2003-12-01

    Anyone who has used terrestrial lidar data in physical science applications has likely observed both systematic and random errors in datasets. An understanding of the potential sources of error is important when applying post-mission filters that remove errors, artifacts and unwanted features - such as vegetation - from lidar "point-cloud" data sets. System error sources typically include, (1) range error associated with transceiver optoelectronics design and atmospheric transmission characteristics, (2) pointing error associated with scanner dynamics, platform instability and GPS/INS readouts. To better understand and anticipate lidar data phenomenology and quality when designing lidar systems and surveys, simulation software has been developed at Utah State University Center for Advanced Imaging Ladar. The simulation focuses on energy-detection lidars common in commercial airborne mapping applications. It accepts as inputs: laser power, pulse width, wavelength, beam divergence and pulse repetition frequency; optics including aperture, field-of-view, and transmission loss; detector characteristics including focal plane array geometry, quantum efficiency, noise-equivalent power, optical efficiency, optical pass band, noise bandwidth, and readout error; scanner dynamics including bandwidth and damping ratio; GPS/INS errors associated with various instrument grades; environmental parameters including aerosol type, visibility, and solar spectral irradiance; scene parameters including backscatter distribution and reflectivity; and trajectories including position, velocity, and attitude. The simulation is designed to be adaptable to a wide variety of lidar system types, environmental settings, and aircraft trajectories over specific terrain models. It was built in MATLAB/Simulink, a convenient environment for computation and data generation, and has many graphical interfaces. Principally funded by the U.S. Naval Air Warfare Center at China Lake, California, it has been

  1. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  2. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  3. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  4. Analyses of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of reliable and compact coherent lidar systems for a wide range of applications. This research effort is aimed at further developing solid state coherent lidar technology for remote sensing of atmospheric processes such as wind, turbulence and aerosol concentration. The work performed by the UAH personnel under this Delivery Order concentrated on design and analyses of laboratory experiments and measurements, and development of advanced lidar optical subsystems in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. Under this delivery order, a lidar breadboard system was designed and analyzed by considering the major aircraft and space operational requirements. The lidar optical system was analyzed in detail using SYNOPSIS and Code V optical design packages. The lidar optical system include a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. This lidar system is to be used for demonstrating all the critical technologies for the development of a reliable and low-cost space-based instrument capable of measuring global wind fields. A number of laboratory experiments and measurements were performed at the NASA/MSFC Detector Characterization Facility, previously developed by the UAH personnel. These laboratory measurements include the characterization of a 2-micron InGaAs detectors suitable for use in coherent lidars and characterization of Holographic Optical Element Scanners. UAH

  5. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  6. Lidar applications to pollution studies.

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Fuller, W. H., Jr.

    1971-01-01

    This paper discusses the application of lidar (laser radar) to the measurement of air pollution. Lidar techniques and instrumentation utilizing elastic, Raman, and fluorescence scattering are discussed. Data showing measurements of the mixing of particulate pollutants in the atmosphere are presented. These data include: simultaneous two-wavelength results, isopleths showing the temporal dynamics of particulate mixing, measurements of the top of the earth's mixing layer, and measurements in a valley with restricted circulation and mixing. All measurements are compared with simultaneous radiosonde and/or aircraft-mounted temperature probe support. In addition, a second generation lidar system presently under development is described.

  7. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  8. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  9. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  10. Autonomous Ozone and Aerosol LIDAR Profiling of the Troposphere: A Synergistic Approach

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2015-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model/satellite verification and validation. In recent years, Environment Canada has designed several autonomous aerosol LIDAR systems for deployment across several regions of Canada. The current system builds on the successes of these autonomous LIDARS but using a synergistic approach by combining tropospheric ozone DIAL (Differential Absorption LIDAR) technology with simultaneous 3+2+1 aerosol LIDAR measurements. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. A few case studies are shown emphasizing the synergistic approach of coupling ozone and aerosol profiles to better understand air quality impacts on local and regional scales.

  11. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  12. Concept study of a vegetation lidar on International Space Station

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Imai, T.; Sakaizawa, D.; Kobayashi, T.; Murooka, J.

    2015-10-01

    IPCC Fifth Assessment Report says that there are still large uncertainties of carbon flux estimations in the interaction between ground and atmosphere. That is because of the uncertainties of "change of land use", in other words, "change of biomass" such as deforestation. Biomass estimation needs not only area of the forest but also its height information with topological features. In that sense, active sensors are highly expected for precise height measurement. Laser Altimeter or simply LIDAR is able to measure the height of dense forest, where SAR has salutation. ICESat / GLAS is firstly used to measure biomass as satellite LIDAR. However it was reported that there is uncertainty where terrain relief exists. To calibrate terrain relief using multi footprints, a Vegetation LIDAR named MOLI (Multi Observation LIDAR and Imager) was studied by JAXA. The unique points of MOLI are the dual beams with enough small and close footprints to determine terrain relief. Full wave analysis technique is also under development to distinguish canopy heights, crown depth and other forest features. Co-aligned imager will be used for determination of positions where LIDAR measured and observation of phonology. MOLI system design is about to finalize. Regarding Laser Transmitter, Bread Board Model with pressure vessel is being tested under vacuum condition. Target launch year of MOLI is around 2019.

  13. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  14. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  15. Balloonborne lidar payloads for remote sensing

    NASA Astrophysics Data System (ADS)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  16. AGLITE: a multiwavelength lidar for aerosol size distributions, flux, and concentrations

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Zavyalov, Vladimir V.; Bingham, Gail E.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-05-01

    We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.

  17. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  18. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  19. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  20. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  1. A calibration method of the multi-channel imaging lidar

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Liu, Jun; Shu, Rong

    2014-06-01

    We design a kind of imaging LiDAR with sixteen channels, which consists of a fiber laser source, dual scanning galvanometers, range measurement circuits and information processing circuits etc. The image LiDAR provides sixteen range measurements for one laser shot and the distance accuracy of each channel is about 4cm. This paper provides a calibrate method to correct point cloud images captured with the multi-channel LiDAR. The method needs to construct different slanted planes to cover the imaging field, and establish precise plane equations in the known ground coordinates, then fit planes with point clouds data and calculate correction parameters of all channels through the error model. The image accuracy is better than 5cm processed by this calibration method.

  2. Ge's Mobile, Coherent Doppler Lidar Test/Ealuation Facilities

    NASA Technical Reports Server (NTRS)

    Sroga, J. T.; Scott, J. W.; Kiernan, S. C.; Weaver, F. J.; Trotta, J. E.; Petheram, J. C.

    1992-01-01

    The primary objective of this independent research and development (IR and D) program in support of the Laser Atmospheric Wind Sounder (LAWS) program is to develop and evaluate technologies with direct applications to spaceborne laser wind sensing, and to develop system level engineering experience in designing, operating, and modeling a coherent Doppler lidar. GE is developing a mobile, ground based coherent Doppler lidar as an end-to-end system level test facility to evaluate applicable technologies, verify system level performance issues, perform instrument calibration, and validate end-to-end system performance model predictions. Here, the primary focus is on a description of the ground based lidar system and the performance during the initial shakedown operation after system integration.

  3. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  4. Relativity effects for space-based coherent lidar experiments

    NASA Technical Reports Server (NTRS)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  5. Multiwavelength micropulse lidar in atmospheric aerosol study: signal processing

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Malinowski, Szymon P.; Stacewicz, Tadeusz; Markowicz, Krzysztof M.; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw

    2011-11-01

    Multiwavelength micropulse lidar (MML) designed for continuous optical sounding of the atmosphere is presented. A specific signal processing technique applying two directional Kalman filtering is introduced in order to enhance signal to noise ratio. Application of this technique is illustrated with profiles collected in course of COAST 2009 and WRNP 2010 research campaigns.

  6. High-brightness all semiconductor laser at 1.57 μm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements

    NASA Astrophysics Data System (ADS)

    Esquivias, I.; Consoli, A.; Krakowski, M.; Faugeron, M.; Kochem, G.; Traub, M.; Barbero, J.; Fiadino, P.; Ai, Xiao; Rarity, J.; Quatrevalet, M.; Ehret, G.

    2014-05-01

    The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. The main objective of the European project BRITESPACE is to demonstrate the feasibility of an all-semiconductor laser source to be used as a space-borne laser transmitter in an Integrated Path Differential Absorption (IPDA) lidar system. We present here the proposed transmitter and system architectures, the initial device design and the results of the simulations performed in order to estimate the source requirements in terms of power, beam quality, and spectral properties to achieve the required measurement accuracy. The laser transmitter is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 μm. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered semiconductor amplifier optimized to maximize the optical output power. The design of the space-compliant laser module includes the beam forming optics and the thermoelectric coolers. The proposed system replaces the conventional pulsed source with a modulated continuous wave source using the Random Modulation-Continuous Wave (RM-CW) approach, allowing the designed semiconductor MOPA to be applicable in such applications. The system requirements for obtaining a CO2 retrieval accuracy of 1 ppmv and a spatial resolution of less than 10 meters have been defined. Envelope estimated of the returns indicate that the average power needed is of a few watts and that the main noise source is the ambient noise.

  7. 3D flash lidar imager onboard UAV

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Liu, Yilong; Yang, Jiazhi; Zhang, Rongting; Su, Chengjie; Shi, Yujun; Zhou, Xiang

    2014-11-01

    A new generation of flash LiDAR sensor called GLidar-I is presented in this paper. The GLidar-I has been being developed by Guilin University of Technology in cooperating with the Guilin Institute of Optical Communications. The GLidar-I consists of control and process system, transmitting system and receiving system. Each of components has been designed and implemented. The test, experiments and validation for each component have been conducted. The experimental results demonstrate that the researched and developed GLiDAR-I can effectively measure the distance about 13 m at the accuracy level about 11cm in lab.

  8. Raman lidar observations of cloud liquid water.

    PubMed

    Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

    2004-12-10

    We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed.

  9. Overview of mesocale research Doppler lidar activities

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D. E.

    1984-01-01

    In evaluating the performance of the airborne Doppler lidar system, a large number of deficiencies or mistakes were identified in the original system and experiment plans. All of the known problems were addressed and corrected in the planning and engineering for the fall 1984/spring 1985 ADLS flight series. Thus, the most significant result of the data analysis was the input it has provided to the preparations for the new experiment. Attitude measurements are taken together with the streamlined operating procedures, color graphics real time displays of data, and better experiment design, the result is a second-generation system that is considerably better than the one used in 1981.

  10. Landslides Mapped from LIDAR Imagery, Kitsap County, Washington

    USGS Publications Warehouse

    McKenna, Jonathan P.; Lidke, David J.; Coe, Jeffrey A.

    2008-01-01

    -distance measurements resulting in inaccurate elevation values, (3) removal of valid ground elevations, (4) false ground roughness, and (5) faceted surface texture. Several of these limitations are introduced by algorithms in the processing software that are designed to remove non-ground elevations from LIDAR data. Despite these limitations, the algorithm-enhanced LIDAR imagery does effectively 'remove' vegetation that obscures many landslides, and is therefore a valuable tool for landslide inventories and investigations in heavily vegetated regions such as the Puget Lowland.

  11. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  12. From Antarctica Lidar Discoveries to Oasis Exploration

    NASA Astrophysics Data System (ADS)

    Chu, Xinzhao; Yu, Zhibin; Fong, Weichun; Chen, Cao; Zhao, Jian; Barry, Ian F.; Smith, John A.; Lu, Xian; Huang, Wentao; Gardner, Chester S.

    2016-06-01

    Stunning new science discoveries including neutral thermospheric metal layers in the 100-200 km altitude from McMurdo lidar campaign and other world lidar observations have led to a new initiative in the middle and upper atmosphere science community—the very large-aperture lidar Observatory for Atmosphere Space Interaction Studies (OASIS). These discoveries and the recent technology breakthroughs in Fe and Na Doppler lidars are presented to illustrate the science drivers and technology foundations forming the basis for OASIS.

  13. Report of the First National Lidar Initiative Meeting, February 14-16, Reston, Va.

    USGS Publications Warehouse

    Stoker, Jason M.; Parrish, Jay; Gisclair, David; Harding, David; Haugerud, Ralph; Flood, Martin; Andersen, Hans-Erik; Schuckman, Karen; Maune, David; Rooney, Paul; Waters, Kirk; Habib, Ayman; Wiggins, Eddie; Ellingson, Bryon; Jones, Benjamin; Nechero, Steve; Nayegandhi, Amar; Saultz, Tim; Lee, George

    2007-01-01

    The first National Lidar Initiative meeting was held on February 14-16, 2007 at the USGS National Center in Reston, Virginia. This meeting was a successor to a meeting held September 12, 2006 of several agencies, including the National Aeronautics and Space Administration (NASA), the Association of American State Geologists (AASG), and the U.S. Geological Survey (USGS). During the 2006 discussion, the USGS presented a plan to organize a meeting to discuss the feasibility and strategy of a National Lidar Initiative. Originally scheduled as a workshop to be held in June, 2007, the meeting was moved up to February to accommodate the desire of AASG to have talking points available at their Annual Meeting in March, 2007. The original workshop was recast as a meeting of representatives from Federal, State, and local government, and from private industry, to formulate a national initiative with the goal of collecting high resolution, high accuracy light detection and ranging (lidar) data for all 50 states. The goals of the National Lidar Initiative meeting were to: 1) Identify government staff with all scales of applications who are willing to help devise a potential national strategy and communicate the initiative throughout the lidar community. 2) Identify points of contact for future meetings, information exchanges, and design teams. 3) Compose a document explaining the need of a consistent national lidar dataset. 4) Identify champions of this idea who would be willing to work toward funding this effort. This report is intended to summarize the views expressed by the invited speakers and the participant's discussions on a National Lidar Initiative. It is not intended to be a comprehensive document on the technical aspects of lidar, what lidar can be used for, or the state of the art in lidar technology, although many of these aspects do come through in the views of the presenters.

  14. High-efficiency receiver architecture for resonance-fluorescence and Doppler lidars.

    PubMed

    Smith, John A; Chu, Xinzhao

    2015-04-10

    A high-efficiency lidar receiver architecture that emphasizes boosting the receiver collection efficiency of resonance-fluorescence and Doppler lidars has opened up new avenues of study for the mesosphere and lower thermosphere-extended (MLT-X) at sites in Boulder, Colorado, USA, and Cerro Pachón, Chile. Described in this work are in-depth considerations in the design, construction, and alignment of Na Doppler lidar receivers that have yielded signal levels typically 5-10 times higher per power-aperture product than any demonstrated in the literature, to these authors' knowledge, making studies of fine-scale MLT turbulence and tenuous thermospheric layers in Na possible with temperature and vertical wind capability for the first time. A lowering of the detection threshold by higher receiver collection efficiency at Cerro Pachón has enabled this Na Doppler lidar to extend its measurement range far higher into the thermosphere, to regions with Na density less than 3  cm(-3). With renewed interest in the MLT-X region prompted by recent lidar discoveries of Fe in the thermosphere reaching 170 km at McMurdo, Antarctica, the receiver optimizations we have made now enable addressing an important need in the community. In addition, the higher spatial and temporal resolutions afforded by high signal-to-noise ratio, down to resolutions of ∼20  s and ∼20  m, promise to make the first direct measurements of eddy flux in the mesopause region possible. Results from deployment of optimized receivers at the Table Mountain Lidar Observatory in Boulder, the Andes Lidar Observatory at Cerro Pachón, and the Arecibo Observatory in Puerto Rico are presented to demonstrate the power and portability of our methods that are readily applicable to other lidar varieties, including, but not limited to, the newly developed Fe Doppler lidar and recently upgraded K Doppler lidar.

  15. Lidar extinction measurement in the mid infrared

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  16. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-09-30

    Advanced Digital Signal Processing for Hybrid Lidar William D. Jemison Clarkson University [Technical Section Technical Objectives The technical...objective of this project is the development and evaluation of various digital signal processing (DSP) algorithms that will enhance hybrid lidar ...algorithm as shown in Figure 1. Hardware Platform for Algorithm Implementation + Underwater Channel Characteristics ^ Lidar DSP Algorithm Figure

  17. Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.

    2012-01-01

    Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.

  18. Atmospheric aerosol and Doppler lidar studies

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeff; Bowdle, D. A.; Srivastava, V.; Jarzembski, M.; Cutten, D.; Mccaul, E. W., Jr.

    1991-01-01

    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions.

  19. The polarization lidar technique for cloud research - A review and current assessment

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1991-01-01

    The development of the polarization lidar technique is reviewed, and the current capabilities and limitations of the technique for the cloud research are discussed. At present, polarization lidar is a key component of climate-research programs designed to characterize the properties of cirrus clouds and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems such as winter mountain storms, making it possible to discriminate between cloud phases and to identify some particle types and orientations. Recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical-model simulations are expected to increase the utility of the polarization lidar technique.

  20. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  1. Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests.

    PubMed

    Simonson, William D; Allen, Harriet D; Coomes, David A

    2012-10-01

    Airborne lidar is a remote-sensing tool of increasing importance in ecological and conservation research due to its ability to characterize three-dimensional vegetation structure. If different aspects of plant species diversity and composition can be related to vegetation structure, landscape-level assessments of plant communities may be possible. We examined this possibility for Mediterranean oak forests in southern Portugal, which are rich in biological diversity but also threatened. We compared data from a discrete, first-and-last return lidar data set collected for 31 plots of cork oak (Quercus suber) and Algerian oak (Quercus canariensis) forest with field data to test whether lidar can be used to predict the vertical structure of vegetation, diversity of plant species, and community type. Lidar- and field-measured structural data were significantly correlated (up to r= 0.85). Diversity of forest species was significantly associated with lidar-measured vegetation height (R(2) = 0.50, p < 0.001). Clustering and ordination of the species data pointed to the presence of 2 main forest classes that could be discriminated with an accuracy of 89% on the basis of lidar data. Lidar can be applied widely for mapping of habitat and assessments of habitat condition (e.g., in support of the European Species and Habitats Directive [92/43/EEC]). However, particular attention needs to be paid to issues of survey design: density of lidar points and geospatial accuracy of ground-truthing and its timing relative to acquisition of lidar data.

  2. Calibrating Atmospheric Transmission with a Multiwavelength LIDAR

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Karle, J.; Cramer, C.; Lykke, K.; Woodward, J. T.

    2013-01-01

    Ground-based calibration of spectroradiometric standard stars in the optical and near-infrared require precise and accurate measurements of atmospheric transmission, at least as precise and accurate as the desired measurements of the stellar spectral energy distributions. Traditionally this was done by use of the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to the target star at a few well-chosen wavelengths. LIDAR is the laser analog to radar. Laser pulses are transmitted in the direction of interest and photons scattered back toward the receiver are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a three wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration to the transmitted laser power and receiver efficiency. FLAME is designed to measure a million photons per minute from the middle stratosphere (30-40km), where the atmosphere is stable and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency. When combined with calibration of the transmitter and receiver hardware, the only remaining variable is the two-way transmission to the stratosphere. The atmosphere above the stratosphere contributes only a small and easily modeled attenuation. Therefore FLAME can measure the absolute transmission of the atmosphere at three wavelengths by measuring backscattered light from the stratosphere. FLAME is currently under active development and we present

  3. Eye-Safe Lidar System for Pesticide Spray Drift Measurement

    PubMed Central

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R.

    2015-01-01

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m. PMID:25658395

  4. Eye-safe lidar system for pesticide spray drift measurement.

    PubMed

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R

    2015-02-04

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m.

  5. Japanese vegetation lidar (MOLI) on ISS (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kimura, Toshiyoshi; Imai, Tadashi; Sakaizawa, Daisuke; Murooka, Junpei

    2016-10-01

    Multi-footprint Observation LIDAR and Imager (MOLI) is a candidate mission for International Space Station - Japanese Experiment Module. The mission objective MOLI is to manage forest and to be a good calibrator for evaluation of forest biomass using satellite instrument such as L-band SAR. SAR is the powerful tool to evaluate biomass globally. However it has some signal saturation over 100 t/ha biomass measurement, whereas Vegetation LIDAR is expected to measure higher mass precisely. MOLI is designed to evaluate forest biomass with high accuracy. An imager, that is equipped together in good registration with LIDAR, will help to understand the situation of target forest. Also two simultaneous Laser beams from MOLI will calibrate the relief effect, which affects the precision of canopy height extremely. Using together with L-band SAR observation data or multispectral image, it is expected to have a good "wall to wall" biomass map with its phonological information. Such MOLI observation capability is so important, because both quantity and quality evaluation of biomass are essential for carbon circulation system understandings. Currently, as a key technical development, LASER Transmitters for MOLI is under test in vacuum condition. Its power is 40mJ and PRF is 150Hz. Pressure vessel design for LIDAR transmitter is supressing Laser induced contamination effect. MOLI is now under study towards around 2020 operation.

  6. Shuttle atmospheric lidar research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Shuttle atmospheric lidar program is discussed in relation to an understanding of the processes governing the Earth's atmosphere and in the capacity to evaluate the atmospheric susceptibility to manmade and natural perturbations. Applications of the lidar which are discussed are the determination of the global flow of water vapor and pollutants in the troposphere, improvement of chemical and transport models of the stratosphere and mesosphere, evaluation of radiative models of the atmosphere, investigation of chemistry and transport of thermospheric atomic species, and investigation of magnetospheric aspects of sun/weather relationships. The features of the lidar measurements discussed are the high spatial resolution, control of the source wavelength and intensity, and high measurement specificity.

  7. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  8. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  9. Lidar remote sensing of savanna biophysical attributes

    NASA Astrophysics Data System (ADS)

    Gwenzi, David

    plot level biomass into wall-to-wall maps that provide more ecological information. We evaluated the utility of three spatial modeling approaches to address this problem: deterministic methods, geostatistical methods and an image segmentation approach. Overall, the mean pixel biomass estimated by the 3 approaches did not differ significantly but the output maps showed marked differences in the estimation precision and ability of each model to mimic the primary variable's trend across the landscape. The results emphasized the need for future satellite lidar missions to consider increasing the sampling intensity across track so that biomass observations are made and characterized at the scale at which they vary. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA Goddard to simulate ICESat-2 data. We segmented each transect into different block sizes and calculated canopy top and mean ground elevation based on the structure of the histogram of the block's aggregated photons. Our algorithm was able to compute canopy height and generate visually meaningful vegetation profiles at MABEL's signal and noise levels but a simulation of the expected performance of ICESat-2 by adjusting MABEL data's detected number of signal and noise photons to that predicted using ATLAS instrument model design cases indicated that signal photons will be substantially lower. The lower data resolution reduces canopy height estimation precision especially in areas of low density vegetation cover. Given the clear difficulties in processing simulated ATLAS data, it appears unlikely that it will provide the kind of data required for mapping of the biophysical properties of savanna vegetation. Rather, resources are better concentrated on preparing for the Global Ecosystem Dynamics Investigation (GEDI) mission, a waveform lidar mission scheduled to launch by the end of this decade. In addition to the full waveform technique

  10. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  11. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  12. Development of a 2-micron Pulsed Direct Detection IPDA Lidar for CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Singh, U. N.

    2013-12-01

    NASA Langley is developing a 2-micron pulsed Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. The objective of this development is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable a first proof of principle demonstration of airborne direct detection CO2 measurements at 2-micron wavelength. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. The system is scheduled to fly on NASA UC12 or B200 research aircrafts before the end of 2013. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation.

  13. Raman Lidar for Meteorological Observations, RALMO - Part I: Instrument description

    NASA Astrophysics Data System (ADS)

    Dinoev, T. S.; Simeonov, V. B.; Arshinov, Y. F.; Bobrovnikov, S. M.; Ristori, P.; Calpini, B.; Parlange, M. B.; van den Bergh, H.

    2012-09-01

    A new Raman lidar for unattended, round the clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology- Lausanne. The lidar uses narrow-field-of-view, narrow-band configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the night-time range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day and night time lidar profiles compared to Vaisala RS-92 and Snow White® profiles and a six-day-continuous observation are presented as an illustration of the lidar measurement capability.

  14. Raman Lidar for Meteorological Observations, RALMO - Part 1: Instrument description

    NASA Astrophysics Data System (ADS)

    Dinoev, T.; Simeonov, V.; Arshinov, Y.; Bobrovnikov, S.; Ristori, P.; Calpini, B.; Parlange, M.; van den Bergh, H.

    2013-05-01

    A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.

  15. Power supply topology for lidar system onboard UAV platform

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Yang, Jiazhi; Yu, Xinchen; Zhu, Wei

    2011-10-01

    Laser diode adopted in LiDAR (Light Detection And Ranging) onboard a small low-cost UAV (Unmanned Aerial Vehicle - UAV) platform usually requires its carried components to be light in weight, small in volume, and specially efficient in energy supply. A DC-DC converter and a fast switch are often applied for the traditional power supply to drive the LiDAR system. This traditional method is not proper for application in a UAV platform. This paper provides a novel power supply topology, which consists of two coupled coils, pulse generator circuit, and a fast switch. The power supply topology has been designed, assembled, tested, and confirmed to generate pulse voltage of 100-300 V, up to 120 A pulse current, 50-200 μs pulse width, and 50 Hz maximum pulse frequency. The driver circuit is very simple, but could restrain current surge efficiently. This ensures that the laser diode does not be disturbed. It is demonstrated that it is sufficient to drive a laser diode used in LiDAR onboard UAV, and meets the requirement of weight and volume. Now the driver has been manufactured for application in UAV-based airborne lidar sample system.

  16. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  17. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  18. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  19. A study of marine stratocumulus using lidar and other FIRE aircraft observations

    NASA Technical Reports Server (NTRS)

    Jensen, Jorgen B.; Lenschow, Donald H.

    1990-01-01

    The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.

  20. Mobile Lidar Operations at GSFC

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.

    2003-01-01

    Since the last meeting, the GSFC Stratospheric Ozone Lidar has participated in two campaigns at MLO - an ozone and temperature comparison and a water vapor comparison. The trailer has been returned to GSFC to begin transfer into a sea container, before deployment to Reunion Island in Spring, 2004.

  1. Exicimer lidar measurements of ozone

    NASA Technical Reports Server (NTRS)

    Shibata, T.; Uchino, O.; Maeda, M.

    1985-01-01

    The observation of the atmospheric ozone profile in an altitude range of 3 to 28 km by means of differential absorption lidar in combination with an XeCl laser (308 nm) and SRS pumped by a KrF laser (249 nm) is discussed.

  2. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  3. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  4. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  5. Improving lidar turbulence estimates for wind energy

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  6. Modeling the Performance of Direct-Detection Doppler Lidar Systems in Real Atmospheres

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Hart, William D.; McKay, Jack A.; Spinhirne, James D.

    1999-01-01

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.

  7. Collision broadening effect upon tropospheric temperature calibration functions for pure rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. V.; Zuev, V. V.; Pravdin, V. L.; Nakhtigalova, D. P.; Pavlinskiy, A. V.

    2015-11-01

    We present the general calibration function for temperature retrievals in the cloud-free troposphere using pure rotational Raman (PRR) lidars under the condition of the laser-beam receiver-field-of-view complete overlap. The function is derived within the framework of the semiclassical theory and takes account of the broadened by collision effects elastic backscattered signal leakage into the nearest (to the laser line) lidar PRR channel. The two simplest nonlinear special cases of the general calibration function are considered to be applied in the temperature retrieval algorithm. The vertical temperature profiles retrieved from nighttime lidar measurements in Tomsk (56.48°N, 85.05°E), on October 2, 2014, are given as an example. The measurements were performed using a PRR lidar designed in Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS) for lower-atmosphere temperature-profile retrievals.

  8. Pure Rotational Raman Lidar for Temperature Measurements from 5-40 Km Over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Song, Shalei; Yang, Yong; Li, Faquan; Cheng, Xuewu; Chen, Zhenwei; Liu, Linmei; McCormick, M. Patrick; Gong, Shunsheng

    2016-06-01

    In this paper a pure rotational Raman lidar (PRR) was established for the atmospheric temperature measurements from 5 km to 40 km over Wuhan, China (30.5°N, 114.5°E). To extract the expected PRR signals and simultaneously suppress the elastically backscattered light, a high-spectral resolution polychromator for light splitting and filtering was designed. Observational results revealed that the temperature difference measured by PRR lidar and the local radiosonde below 30 km was less than 3.0 K. The good agreement validated the reliability of the PRR lidar. With the 1-h integration and 150-m spatial resolution, the statistical temperature error for PRR lidar increases from 0.4 K at 10 km up to 4 K at altitudes of about 30 km. In addition, the whole night temperature profiles were obtained for study of the long-term observation of atmospheric fluctuations.

  9. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  10. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  11. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  12. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  13. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  14. Balloonborne lidar for cloud physics studies.

    PubMed

    Di Donfrancesco, Guido; Cairo, Francesco; Buontempo, Carlo; Adriani, Alberto; Viterbini, Maurizio; Snels, Marcel; Morbidini, Roberto; Piccolo, Francesco; Cardillo, Francesco; Pommereau, Jean-Pierre; Garnier, Anne

    2006-08-01

    An innovative balloonborne microjoule lidar (MULID) has been developed within the framework of the HIBISCUS project to provide nighttime measurements of visible and subvisible cirrus and aerosols. MULID has been designed to be a low-cost and an ultralow consumption instrument, due to the remote possibilities of payload recovery and the necessity of a low-weight battery power supply. Ground tests have been performed at the Observatory of Haute Provence (France), and the first technical flight has been made from Trapani, Italy, on a stratospheric balloon; finally, the instrument has been scientifically deployed during the pre-HIBISCUS and HIBISCUS tropical campaigns in Bauru, Brazil, in February 2003 and February 2004, respectively. A description of the instrument is provided together with the results of the ground-based and flight tests as well as an overview and discussion of the first results.

  15. Ozone Lidar Observations for Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; Sullivan, John T.; Langford, Andrew O.; Senff, Christoph J.; Alvarez, Raul; Eloranta, Edwin

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  16. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  17. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  18. Analysis of Lidar Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1999-01-01

    Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.

  19. Improving Lidar Turbulence Estimates for Wind Energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  20. Towards a Greenhouse Gas Lidar in Space

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Amediek, Axel; Quatrevalet, Mathieu

    Highly accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) by a space-borne lidar will help to substantially improve knowledge of greenhouse gas fluxes. The method of integrated-path differential-absorption lidar for total column measurements has proven to be a suitable means for CH4 detection in natural gas leak surveillance and active remote sensing of CO2. This pioneering work facilitated the instrument development of an advanced greenhouse gas lidar on HALO and set the stage for the development of a CH4-lidar in space instrument foreseen in the Franco-German climate mission MERLIN.

  1. SAR and LIDAR fusion: experiments and applications

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  2. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-03-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar

  3. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2012-11-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network

  4. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  5. Three-dimension imaging lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  6. LIDAR Design for Space Situational Awareness

    DTIC Science & Technology

    2008-09-01

    by Stimulated Emission of Radiation . This acronym describes not only what a laser does, as most acronyms do, but also how it does it. With the...of low energy molecules in a lasing medium through a process known as pumping. As the molecules seek to return to their lower energy state, they...In lasers, however, this process occurs in a collimating tube, which reflects the photons emitted along the laser axis back into the lasing medium

  7. Helicopter Lidar Bathymeter System. Conceptual Design

    DTIC Science & Technology

    1990-06-01

    placed Because of the low normal operational altitude of the proposed HLBS and the high energy of the laser beam, care must be taken to ensure that the... RTSP ), consisting of log amp and time interval counter to measure the time of flight of the laser pulse, and hence the slant range to the water surface...returns at the low end and to prevent saturation of detectors at the high end, either a logarithmic amplifier or a dual-channel linear amplifier will be

  8. LIDAR data compression using wavelets

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.

    2005-10-01

    The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.

  9. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  10. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  11. Pose Performance of LIDAR-Based Relative Navigation for Non-Cooperative Objects

    NASA Astrophysics Data System (ADS)

    Sell, Jordan L.

    Flash LIDAR is an important new sensing technology for relative navigation; these sensors have shown promising results during rendezvous and docking applications involving a cooperative vehicle. An area of recent interest is the application of this technology for pose estimation with non-cooperative client vehicles, in support of on-orbit satellite servicing activities and asteroid redirect missions. The capability for autonomous rendezvous with non-cooperative satellites will enable refueling and servicing of satellites (particularly those designed without servicing in mind), allowing these vehicles to continue operating rather than being retired. Rendezvous with an asteroid will give further insight to the origin of individual asteroids. This research investigates numerous issues surrounding pose performance using LIDAR. To begin analyzing the characteristics of the data produced by Flash LIDAR, simulated and laboratory testing have been completed. Observations of common asteroid materials were made with a surrogate LIDAR, characterizing the reflectivity of the materials. A custom Iterative Closest Point (ICP) algorithm was created to estimate the relative position and orientation of the LIDAR relative to the observed object. The performance of standardized pose estimation techniques (including ICP) has been examined using non-cooperative data as well as the characteristics of the materials that will potentially be observed during missions. For the hardware tests, a SwissRanger ToF camera was used as a surrogate Flash LIDAR.

  12. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  13. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sibell, Russel; Vetorino, Steven; Higgins, Richard; Tracy, Allen

    2015-05-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  14. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  15. Real-time full-motion color Flash lidar for target detection and identification

    NASA Astrophysics Data System (ADS)

    Nelson, Roy; Coppock, Eric; Craig, Rex; Craner, Jeremy; Nicks, Dennis; von Niederhausern, Kurt

    2015-05-01

    Greatly improved understanding of areas and objects of interest can be gained when real time, full-motion Flash LiDAR is fused with inertial navigation data and multi-spectral context imagery. On its own, full-motion Flash LiDAR provides the opportunity to exploit the z dimension for improved intelligence vs. 2-D full-motion video (FMV). The intelligence value of this data is enhanced when it is combined with inertial navigation data to produce an extended, georegistered data set suitable for a variety of analysis. Further, when fused with multispectral context imagery the typical point cloud now becomes a rich 3-D scene which is intuitively obvious to the user and allows rapid cognitive analysis with little or no training. Ball Aerospace has developed and demonstrated a real-time, full-motion LIDAR system that fuses context imagery (VIS to MWIR demonstrated) and inertial navigation data in real time, and can stream these information-rich geolocated/fused 3-D scenes from an airborne platform. In addition, since the higher-resolution context camera is boresighted and frame synchronized to the LiDAR camera and the LiDAR camera is an array sensor, techniques have been developed to rapidly interpolate the LIDAR pixel values creating a point cloud that has the same resolution as the context camera, effectively creating a high definition (HD) LiDAR image. This paper presents a design overview of the Ball TotalSight™ LIDAR system along with typical results over urban and rural areas collected from both rotary and fixed-wing aircraft. We conclude with a discussion of future work.

  16. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  17. Nanosecond gated PMT for LIDAR-RADAR applications

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.; Concannon, Brian M.; Asmolova, Olha V.; Podobna, Yulia Y.

    2006-08-01

    Wide dynamic range gating photosensor modules has been design for LIDAR-RADAR applications on base R7400U (active area 8 mm. diameter) R7600U (active area 18x18 mm.) Hamamatsu photomultiplier tubes. The photomultiplier tubes R7400U, series have two kinds of photocathode: low resistance semitransparent multialkali photocathodes and semitransparent bialkali photocathodes with large resistance. Different kinds of photocathodes require different approach to gating circuits design. High-speed pulse gating (gating rise time 10 nsec, setting time 40 nsec for 99%) has been used for enhancing of target contrast at ocean optic application for both kinds: semitransparent bialkali and semitransparent multialkali photocathodes. Wide dynamic range (50 dB of optical power) has been achieved by optimizing of applied to dynodes voltages. Compression up to 30 dB has been used for following output signal digital processing. Hamamatsu photosensitive modules were used in the two system receivers in pulsed LIDAR system. The system was mounted on the bow of the R/V New Horizon and collected data from August 25 thru September 8, 2005 as part of the LOCO field test in Monterey Bay. Approximately 4 million LIDAR profiles were collected during this period. During the field test the profiles were processed to show relative changes in water optical properties and to reveal water column structure in real time.

  18. Revisiting Raman lidar: application of new techniques to improve system performance

    NASA Astrophysics Data System (ADS)

    Chen, Carl G.; Sedlacek, Arthur J., III

    1996-11-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants using resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it performance envelope. Chief among these new techniques is the use of pattern recognition to take advantage of the spectral fingerprint and a new laser frequency modulation technique, referred to as Frequency Modulated Excitation Raman Spectroscopy, designed to suppress broadband fluorescence. In the laboratory, broadband fluorescence suppression approaching 3 orders-of-magnitude has been achieved. In addition, the application of a BNL designed knife-edge Rayleigh filter has also bee demonstrated using our LIDAR system where spectral features as close as 200 cm-1 from the excitation line were observed. How all these features help increase the overall performance of Raman LIDAR will be discussed.

  19. Application of coherent 10 micron imaging lidar

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.

    1997-04-01

    With the continuing progress in mid-IR array detector technology and high bandwidth fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is becoming a reality. In this paper experimental results are described using a 10 micron coherent imaging lidar.

  20. Lidar: A laser technique for remote sensing

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  1. CALIPSO lidar ratio retrieval over the ocean.

    PubMed

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type.

  2. CALIPSO Lidar Ratio Retrieval Over the Ocean

    NASA Technical Reports Server (NTRS)

    Josset, Damien B.; Rogers, Raymond R.; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali H.; Zhai, Peng-Wang

    2011-01-01

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type

  3. Efficient Third Harmonic Generation for Wind Lidar Applications

    NASA Technical Reports Server (NTRS)

    Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.

    1998-01-01

    The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.

  4. Development of a multiple-field-of-view multiple-scattering polarization lidar: comparison with cloud radar.

    PubMed

    Okamoto, Hajime; Sato, Kaori; Nishizawa, Tomoaki; Sugimoto, Nobuo; Makino, Toshiyuki; Jin, Yoshitaka; Shimizu, Atsushi; Takano, Toshiaki; Fujikawa, Masahiro

    2016-12-26

    We developed a multiple-field-of-view multiple-scattering polarization lidar (MFMSPL) to study the microphysics of optically thick clouds. Designed to measure enhanced backscattering and depolarization ratio comparable to space-borne lidar, the system consists of four sets of parallel and perpendicular channels mounted with different zenith angles. Depolarization ratios from water clouds were large as observed by MFMSPL compared to those observed by conventional lidar. Cloud top heights and depolarization ratios tended to be larger for outer MFMSPL channels than for vertically pointing channels. Co-located 95 GHz cloud radar and MFMSPL observations showed reasonable agreement at the observed cloud top height.

  5. Development of the Wuhan lidar system

    NASA Astrophysics Data System (ADS)

    Hu, Zhilin; Liu, Yiping; Hu, Xiong; Zeng, Xizhi

    1998-08-01

    This paper reports new progress of the Wuhan lidar system. At the present time, our lidar works both at nighttime, to measure the sodium layer in menopause region, and at daytime to measure the aerosol in lower atmosphere region. The daytime working lidar system is equipped with a Faraday Anomalous Dispersion Optical Filter (FADOF), working at the Na resonance line (589 nm) and having an ultra-narrow bandwidth of 2 GHz. The daytime system uses this FADOF to obtain the lidar signal from an altitude of 20 km in our primary experiment. We will also report a comparison of the rms velocity measured by MF radar and Na lidar. A 90% confidence in rms velocity has been achieved.

  6. Reexamination of depolarization in lidar measurements.

    PubMed

    Gimmestad, Gary G

    2008-07-20

    Almost all of the depolarization papers in the lidar literature employ a physically inappropriate notation and they use a definition of the depolarization ratio that is not linear in the quantity of interest. This depolarization lidar legacy is misleading and confusing. In particular, subscripts meaning parallel and perpendicular do not apply to atmospheric parameters, such as the volume backscatter coefficient, because (for linear polarization) the two components of the backscattered light are polarized in the transmitted sense and completely unpolarized; the unpolarized component is not "perpendicular." An analysis of lidar depolarization measurements with a particle scattering matrix recently provided in the literature yields algorithms for retrieving the depolarization parameter from either linear or circular depolarization lidar measurements. The analysis, notation, and definitions recommended here harmonize lidar depolarization analysis with radiative transfer theory, particle scattering theory, and standard polarization measurement techniques.

  7. Components of an Atmospheric Lidar System: Doppler Wind Lidar.

    DTIC Science & Technology

    1987-11-30

    Street Blg 20332-6448 London WCIE 6BT, United Kingdom Boling AFB DC B3-4 3 NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT...necessary and identify by block number) ’ ,EL GROUP SUB- GROUP .%8S7RACT (Continue on reverse if necessary and identify’by block number) Six papers...Another one of these combined units was Integrated temporarily with the complete Lidar system of the Bonn University group at Andoya in August 1987, for

  8. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  9. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    NASA Technical Reports Server (NTRS)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  10. Modelling Sensor and Target effects on LiDAR Waveforms

    NASA Astrophysics Data System (ADS)

    Rosette, J.; North, P. R.; Rubio, J.; Cook, B. D.; Suárez, J.

    2010-12-01

    The aim of this research is to explore the influence of sensor characteristics and interactions with vegetation and terrain properties on the estimation of vegetation parameters from LiDAR waveforms. This is carried out using waveform simulations produced by the FLIGHT radiative transfer model which is based on Monte Carlo simulation of photon transport (North, 1996; North et al., 2010). The opportunities for vegetation analysis that are offered by LiDAR modelling are also demonstrated by other authors e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001. Simulations from the FLIGHT model were driven using reflectance and transmittance properties collected from the Howland Research Forest, Maine, USA in 2003 together with a tree list for a 200m x 150m area. This was generated using field measurements of location, species and diameter at breast height. Tree height and crown dimensions of individual trees were calculated using relationships established with a competition index determined for this site. Waveforms obtained by the Laser Vegetation Imaging Sensor (LVIS) were used as validation of simulations. This provided a base from which factors such as slope, laser incidence angle and pulse width could be varied. This has enabled the effect of instrument design and laser interactions with different surface characteristics to be tested. As such, waveform simulation is relevant for the development of future satellite LiDAR sensors, such as NASA’s forthcoming DESDynI mission (NASA, 2010), which aim to improve capabilities of vegetation parameter estimation. ACKNOWLEDGMENTS We would like to thank scientists at the Biospheric Sciences Branch of NASA Goddard Space Flight Center, in particular to Jon Ranson and Bryan Blair. This work forms part of research funded by the NASA DESDynI project and the UK Natural Environment Research Council (NE/F021437/1). REFERENCES NASA, 2010, DESDynI: Deformation, Ecosystem Structure and Dynamics of Ice. http

  11. Calibration of a Three Wavelength Lidar for Size Discriminated Ambient Particulate Measurement

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Zavyalov, V.; Bingham, G. E.; Marchant, C.; Herron, J.; Jones, D.; Bowman, J.; Moore, K. D.

    2007-12-01

    A three wavelength Lidar has been developed at Utah State University's Space Dynamics Laboratory for the measurement of size segregated ambient particulate matter concentrations as part of the AgLite program. The AgLite program, primarily funded by the U.S. Department of Agriculture's Agricultural Research Service, was developed to quantify particulate emissions from diffuse area sources, such as those typically found around confined animal feeding operations (CAFOs) and tillage operations. The Lidar system is capable of scanning horizontally and vertically across a suspected source area and can identify both spatial and temporal concentration fields which, when combined with locally measured wind field data, can be used to derive source emission estimates. The Lidar measures the relative magnitude of optical scattering by the atmosphere, which is a function of aerosol concentration. A Lidar scan around a source area gives a map of relative aerosol concentration. During an operational experiment, a scan is calibrated by point-sensors collocated with one or more points of the Lidar scan. In order to minimize potential systematic errors, a detailed calibration experiment was designed to compare Lidar return signals with Met One Instruments 8-channel Optical Particle Counters (Model 9722) and Airmetrics MiniVol filter-based samplers configured for collection of TSP, PM10, PM2.5, and PM1. The Lidar calibration experiment was performed in July 2007 at a farm owned and operated by Utah State University near Cache Junction, Utah. Multiple datasets were collected during which the Lidar moved between three stares, each a minute in duration, that were collocated with a cluster of MiniVols sampling the four size fractionations and an OPC. Sampler duration was between three and eight hours, depending upon background particulate concentrations. Prior to comparison of these instruments with the Lidar, the MiniVols and OPCs were compared against collocated PM2.5 and PM10 Federal

  12. Exploration of Whole Atmosphere Lidar: Mach-zehnder Receiver to Extend Fe Doppler Lidar Wind Measurements from the Thermosphere to the Ground

    NASA Astrophysics Data System (ADS)

    Smith, John A.; Chu, Xinzhao

    2016-06-01

    A receiver employing a field-widened Mach-Zehnder interferometer (MZI) is investigated for extending the wind measurement range of a narrowband Fe Doppler (372 nm) lidar from its existing measurement range in the mesosphere and lower thermosphere (MLT) down to the ground. This design uses the multiple transmitted frequencies available from the base Fe Doppler lidar in combination with an MZI receiver to make a measurement of the Doppler shift from Rayleigh-Mie scattering that is independent of aerosol backscatter ratio, temperature and pressure of the lidar volume and also independent of geometric overlap, the chopper function and any other factor affecting the signal in both MZI channels equally. A ratio is constructed from the three frequencies and two channels of the interferometer that exhibits a measurement performance of 1.75 times the Cramer-Rao lower bound, which is comparable to the dual MZI (DMZ) while preserving the insensitivity to backscatter spectrum of the quad MZI (QMZ). Using actual data obtained recently from the Fe Doppler lidar, we show the expected measurement performance of this whole atmosphere lidar instrument concept.

  13. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  14. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  15. Simultaneous High Resolution Lidar Imaging of the Shallow-water Seafloor and Beach with the Coastal Zone Mapping and Imaging Lidar (CZMIL) (Invited)

    NASA Astrophysics Data System (ADS)

    Tuell, G. H.

    2009-12-01

    The Coastal Zone Mapping and Imaging Lidar (CZMIL) is a data fusion system designed to simultaneously produce sub-meter 3D images of the beach and shallow-water seafloor. The lidar employs a high power, high frequency pulsed green laser, circular scanner, and novel receiver architecture enabling the system to handle the full dynamic range encountered in the littoral environment. A multi-channel receiver approach is used to establish multiple fields-of-view (FOV), and a segmented detector is used on the inner FOV, thereby creating a hybrid scanned/flash lidar. After applying a radiometric calibration, the bathymetric and topographic waveforms may be analyzed to estimate reflectance at the laser wavelength for each laser spot. Algorithms and software for CZMIL have been developed using SHOALS data. In this presentation, we demonstrate results achieved with SHOALS, and discuss the anticipated performance of CZMIL.

  16. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  17. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  18. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  19. Aerosol Products from The Future Space Lidar AEOLUS

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Dabas, Alain; Lever, Vincent; Flamant, Pierre; Huber, Dorit

    2016-06-01

    Ready for launch by the end of 2016, the Doppler lidar mission AEOLUS from the European Space Agency (ESA) will be the first High-Spectral Resolution Lidar (HSRL) in space. Operating in the UV, it implements two detection channels for aerosol and molecular backscatter. The system is primarily designed for the measurement of winds, but the HSRL capability enables the measurement of the particulate backscatter and extinction coefficients without any a priori assumption on the aerosol type. The level-2A (L2A) processor has been developed for these measurements and tested with synthetic data. The results show good aerosol backscatter profiles can be retrieved. Extinction coefficients are reasonable but do not reach the quality of backscatter coefficients. A precise, full, radiometric calibration of the lidar is required. A major limitation of the system is a single polarization component of the light is detected leading to an underestimation of backscatter coefficients when the atmospheric particles are depolarizing. The vertical resolution goes from 250 meters in the lowest part of the atmosphere, to 2 km in the lower stratosphere. The maximum altitude can reach above 20km. The basic horizontal averaging is 90km. Averaging on shorter distances (down to a few km) are possible but require a sufficient signal to noise ratio.

  20. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  1. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  2. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 microns and a direct detection molecular Doppler lidar operating at 0.355 microns. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 m diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 microns and 0.355 microns. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 microns and at 2 microns, raising the Technology Readiness Level (TRL) from 2 to 4.

  3. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 micron and a direct detection molecular Doppler lidar operating at 0.355 micron. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 micron diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 micron and 0.355 micron. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 micron and at 2 micron raising the Technology Readiness Level (TRL) from 2 to 4.

  4. Capacitively Stabilized Etalon Technology for Spaceborne Wind Lidar Application

    NASA Technical Reports Server (NTRS)

    Li, Steven X.; Gentry, Bruce M.; Korb, C. Laurance; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Global monitoring by satellites is important for many types of environmental studies. Among these, the wind field is the single most important atmospheric state variable required for understanding atmospheric motion and predicting weather. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 1-5 m/sec is critical for improved numerical weather forecasting. This measurement could be carried out with a spaceborne lidar system sensing the Doppler shift of a laser signal backscattered from the atmosphere. Over the past four years we have developed a ground-based Edge Technique lidar system and demonstrated wind measurements through the troposphere with high accuracy (1-6 m/s) and high spatial resolution. Recently, we began the design of a shuttle based wind measurement system for technology demonstration as part of the Zephyr program. In this paper, we present the characteristics of the high spectral resolution etalon filter technology for lidar wind measurement with the Edge Technique. In conclusion, a spacecraft motion compensation method has been discussed. We demonstrated experimentally that the etalon can be tuned to compensate for any satellite induced Doppler shift to an accuracy of better than 0.6 m/s over a time period of 2.5 ms.

  5. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  6. Classification of Water Surfaces Using Airborne Topographic LIDAR Data

    NASA Astrophysics Data System (ADS)

    Smeeckaert, J.; Mallet, C.; David, N.

    2013-05-01

    Accurate Digital Terrain Models (DTM) are inevitable inputs for mapping areas subject to natural hazards. Topographic airborne laser scanning has become an established technique to characterize the Earth surface: lidar provides 3D point clouds allowing a fine reconstruction of the topography. For flood hazard modeling, the key step before terrain modeling is the discrimination of land and water surfaces within the delivered point clouds. Therefore, instantaneous shoreline, river borders, inland waters can be extracted as a basis for more reliable DTM generation. This paper presents an automatic, efficient, and versatile workflow for land/water classification of airborne topographic lidar data. For that purpose, a classification framework based on Support Vector Machines (SVM) is designed. First, a restricted set of features, based only 3D lidar point coordinates and flightline information, is defined. Then, the SVM learning step is performed on small but well-targeted areas thanks to an automatic region growing strategy. Finally, label probabilities given by the SVM are merged during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that survey of millions of points are labelled with high accuracy (>95% in most cases for coastal areas, and >89% for rivers) and that small natural and anthropic features of interest are still well classified though we work at low point densities (0.5-4 pts/m2). Our approach is valid for coasts and rivers, and provides a strong basis for further discrimination of land-cover classes and coastal habitats.

  7. LIDAR Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    The primary goal of the NASA New Millennium Program (NMP) is to develop technology for use on future operational missions. The Program consists of two thrust areas, one oriented towards developing technologies for Deep Space Probes and one oriented towards developing technology for Earth Observing Probes. Each thrust area intends to fly several technology demonstrator space designated DS-X and EO-X respectively where X is the mission number. Each mission has an approximately $100 million cap on total mission cost. The EO-1 mission has been selected and is under development. The instrument discussed here was submitted by NASA MSFC as a potential candidate for the EO-2 or EO-3 missions due to launch in 2001 and late 2002 or early 2003 respectively. This report summarizes and follows the format of the material provided to NMP.

  8. Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris

    2010-01-01

    A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.

  9. Lidar system model for use with path obscurants and experimental validation.

    PubMed

    Giles, J W; Bankman, I N; Sova, R M; Morgan, T R; Duncan, D D; Millard, J A; Green, W J; Marcotte, F J

    2008-08-01

    When lidar pulses travel through a short path that includes a relatively high concentration of aerosols, scattering phenomena can alter the power and temporal properties of the pulses significantly, causing undesirable effects in the received pulse. In many applications the design of the lidar transmitter and receiver must consider adverse environmental aerosol conditions to ensure the desired performance. We present an analytical model of lidar system operation when the optical path includes aerosols for use in support of instrument design, simulations, and system evaluation. The model considers an optical path terminated with a solid object, although it can also be applied, with minor modifications, to cases where the expected backscatter occurs from nonsolid objects. The optical path aerosols are characterized by their attenuation and backscatter coefficients derived by the Mie theory from the concentration and particle size distribution of the aerosol. Other inputs include the lidar system parameters and instrument response function, and the model output is the time-resolved received pulse. The model is demonstrated and experimentally validated with military fog oil smoke for short ranges (several meters). The results are obtained with a lidar system operating at a wavelength of 0.905 microm within and outside the aerosol. The model goodness of fit is evaluated using the statistical coefficient of determination whose value ranged from 0.88 to 0.99 in this study.

  10. SPNDL: A concept for a small satellite Doppler lidar wind sounder

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Sokoloski, M. M.

    1993-01-01

    Given current resources and the technical challenges in developing a full coverage space-based Doppler lidar wind measuring system such as LAWS (Laser Atmospheric Wind Sounder), it is not likely that the science community will have data streams with which to work before the end of this decade. Currently, a 'fast track' demonstration mission is being seriously considered by several U.S. agencies. Such a mission would have as its primary objectives the demonstration of coherent Doppler lidar technology in space and the delivery of wind observations for science algorithm evaluation and development. However, for such a mission to be achieved at modest costs and within a short time frame, deviations from the full system design are required. Simulation models have been developed over the last decade to aide in the design of Doppler lidar missions and to provide simulated data for use in wind computation algorithm development. SWA has used both models to examine some options that might be cost-effective for a demonstration mission. Over the past few months, Simpson Weather Associates has been studying SPNDL (Spinning Platform with a Non-rotating telescope Doppler Lidar), a new concept for Doppler lidar wind observations from space. Science and Technology Corporation has an interest in participating in an engineering and shuttle accommodation study for SPNDL.

  11. Automated polarization-discrimination technique to minimize lidar-detected skylight background noise

    NASA Astrophysics Data System (ADS)

    Hassebo, Yasser Y.; Ahmed, Samir

    2007-10-01

    Recently, there has been significant interest in lidar signal-to-noise ratio (SNR) improvements, particularly for lidar daytime operations. Previously, we devised in the remote sensing laboratory at the City College of New York a polarization discrimination technique to maximize lidar detected SNR taking advantage of the natural polarization properties of scattered skylight radiation to track and minimize detected sky background signal (BGS). This tracking technique was achieved by rotating, manually, a combination of polarizer and analyzer on both the lidar transmitter and receiver subsystems, respectively. The polarization orientation at which the minimum BGS occurs, follows the solar azimuth angle, even for high aerosol loading. This has been confirmed, in our previous work, both theoretically, assuming single scattering theory, and experimentally. In this paper, a design to automate the polarization discrimination technique by real time tracking of the azimuth angle to attain the minimum BGS is presented. We introduce a feedback control system to track the minimum BGS by rotating the detector analyzer and the transmission polarizer simultaneously to maximize the SNR and attainable lidar ranges, thus achieving the same results as would be done manually. Analytical results for New York City are summarized and an approach for applying the proposed design globally is investigated.

  12. Correction function in the Lidar equation and the solution techniques for CO2 Lidar date reduction

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Lea, T. K.; Schotland, R. M.

    1986-01-01

    For lidar systems with long laser pulses the unusual behavior of the near-range signals causes serious difficulties and large errors in reduction. The commonly used lidar equation is no longer applicable since the convolution of the laser pulse with the atmospheric parameter distributions should be taken into account. It is important to give more insight into this problem and find the solution techniques. Starting from the original equation, a general form is suggested for the single scattering lidar equation where a correction function Cr is introduced. The correction Function Cr(R) derived from the original equation indicates the departure from the normal lidar equation. Examples of Cr(R) for a coaxial CO2 lidar system are presented. The Differential Absorption Lidar (DIAL) errors caused by the differences of Cr(R) for H2O measurements are plotted against height.

  13. Application of lidar to current atmospheric topics

    SciTech Connect

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  14. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  15. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  16. ATLID, ESA Atmospheric LIDAR Developement Status

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, João; Hélière, Arnaud; Le Hors, L.; Toulemont, Y.; Lefebvre, A.

    2016-06-01

    The ATmospheric LIDAR ATLID[1] is part of the payload of the Earth Cloud and Aerosol Explorer[2] (EarthCARE) satellite mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme. EarthCARE is a joint collaborative satellite mission conducted between ESA and the National Space Development Agency of Japan (JAXA) that delivers the Cloud Profiling Radar (CPR) instrument. The payload consists of four instruments on the same platform with the common goal to provide a picture of the 3D-dimensional spatial and the temporal structure of the radiative flux field at the top of atmosphere, within the atmosphere and at the Earth's surface. This paper is presenting an updated status of the development of the ATLID instrument and its subsystem design. The instrument has recently completed its detailed design, and most of its subsystems are already under manufacturing of their Flight Model (FM) parts and running specific qualification activities. Clouds and aerosols are currently one of the biggest uncertainties in our understanding of the atmospheric conditions that drive the climate system. A better modelling of the relationship between clouds, aerosols and radiation is therefore amongst the highest priorities in climate research and weather prediction.

  17. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; Modlin, Edward A.; Barnes, Bruce W.; Demoz, Belay B.

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  18. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-03-31

    project "Advanced Digital Signal Processing for Hybrid Lidar " covering the period of 1/1/2013-3/31/2013. 9LO\\SO^O’IH^’?’ William D. Jemison...Chaotic LIDAR for Naval Applications This document contains a Progress Summary for FY13 Q2 and a Short Work Statement for FY13 Progress Summary for...This technique has the potential to increase the unambiguous range of hybrid lidar -radar while maintaining reasonable range resolution. Proof-of

  19. Infrared lidars for atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Lidars using pulsed TEA-CO2 transmitters and coherent receivers have been developed at JPL and used to measure atmospheric backscatter and extinction at wavelengths in the 9-11 micron region. The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of aerosol and cloud backscatter and extinction. An airborne lidar was recently flown on the NASA DC-8 research aircraft for operation during two Pacific circumnavigation missions. The instrument characteristics, as well as representative measurement results, are discussed.

  20. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  1. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

    2012-01-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances

  2. Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank

    2005-01-01

    Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.

  3. Demonstration of novel polarization lidar technique for identifying horizontally oriented ice crystals

    NASA Astrophysics Data System (ADS)

    Hayman, M. M.; Thayer, J. P.; Neely, R. R.; O'Neill, M.; Stillwell, R.

    2011-12-01

    Ice crystals are known to horizontally orient in the atmosphere when drag forces overcome the randomizing effects of Brownian motion. Such ice crystals have been shown to have an impact on radiative transfer, reflecting a greater portion of incident sunlight than their randomly oriented counter parts. However, regular identification of oriented ice crystals in the atmosphere has proven challenging. Existing lidar techniques rely on detection of strong specular backscatter from oriented platelets. These measurements are not common to most lidar systems, and are in fact, frequently avoided because such strong specular signals generally overwhelm lidar detector systems designed for typical cloud and aerosol studies. When lidars are tilted to avoid these specular returns, the low polarization ratio observed in some clouds consisting of oriented ice crystals will cause researchers to incorrectly conclude they are composed of liquid water, thereby skewing cloud phase statistics and providing an incorrect estimate of the cloud's impact on radiative transfer. To address these problems, we apply a novel lidar configuration, which provides a unique polarization capability that detects oriented ice crystals. By tilting the lidar off zenith and performing three polarization measurements, diattenuation, a polarization attribute only exhibited by oriented ice crystals, can be measured. This allows us to disambiguate clouds consisting of oriented ice crystals and water. We present here some of the first measurements of diattenuation for detection of oriented ice crystals as performed by the CAPABL lidar system in Summit Camp, Greenland. This polarization technique avoids detecting the strong specular reflections commonly used to identify oriented ice crystals, allowing return signals from oriented crystals to remain in the same dynamic range as other clouds and aerosols. This feature makes it possible for CAPABL to perform accurate, high performance measurements of all clouds and

  4. Silicon photomultiplier detector for atmospheric lidar applications.

    PubMed

    Riu, Jordi; Sicard, Michaël; Royo, Santiago; Comerón, Adolfo

    2012-04-01

    The viability and performance of using a silicon photomultiplier (SiPM) in atmospheric lidar applications is experimentally compared against the well-established use of photomultiplier tubes. By using a modified lidar setup for simultaneous data acquisition of both types of sensors, we demonstrate that a SiPM can offer appropriate qualities for this specific application where the detection of fast, extremely low light pulses and large dynamic range signals are essential capabilities. The experimental results show that the SiPM has an appropriate behaviour offering suitable capabilities for elastic, backscatter aerosol lidars. To the best of our knowledge, this is the first study showing SiPM for atmospheric lidar applications.

  5. Cyclone diagnostics. [rainfall estimation, backscatter, and lidar

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A GOES IR rainfall estimation algorithm was completed and verified. The technique was applied to the South Pacific convergent zone. The NASA earth observation mission series is discussed briefly. Backscatter was investigated using 10.6 micron coherent lidar.

  6. UV fluorescence lidar detection of bioaerosols

    NASA Astrophysics Data System (ADS)

    Christesen, Steven D.; Merrow, Clifton N.; Desha, Michael S.; Wong, Anna; Wilson, Mark W.; Butler, John C.

    1994-06-01

    A UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV- LIDAR Fluorosensor system are a 200 mJ quadrupled Nd:YAG laser at 266 nm and a 16-inch Cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266 nm elastic backscatter, the total fluorescence between 300 and 400 nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). Our goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 m. Our tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000 m.

  7. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  8. A novel multi-beam correlation lidar for wind profiling and plume tracking for air quality applications

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.

    2014-12-01

    Various types of in-situ and remote sensing techniques are being utilized for measuring air quality parameters. In this paper, the development and testing of a novel three beam multifunctional direct detection lidar for air quality applications will be discussed. Operating at 1030 nm wavelength, this lidar is a nanosecond class direct detection system with three transceivers and is capable of tracking the motion of aerosol structures using elastic backscatter. Designed with scalable and modular elements and advanced algorithms and graphical user display, this lidar is tripod mounted and measures three component (3D) winds by cross correlation of aerosol backscatter from three near-parallel beams. Besides extracting multi-component wind data, the system is designed provide various atmospheric elements including turbulence. Performance of this lidar in regard to crosswind profiling has been validated with ultrasonic anemometers under low and high wind conditions. From the field data, it shown that this lidar is capable of providing relatively high spatial resolution (<1.2 m) and line-of-sight error less than 0.1 m/s over a range of greater than 2 km. With a maximum operational range of over 15 km, this lidar was recently used to study effluents from a smokestack. The results of our plume tracking study will be presented and follow-on applications for studying air emissions due to hydraulic fracturing or fracking, will be discussed.

  9. Process virtualization of large-scale lidar data in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Guan, Haiyan; Li, Jonathan; Zhong, Liang; Yongtao, Yu; Chapman, Michael

    2013-10-01

    Light detection and ranging (lidar) technologies have proven to be the most powerful tools to collect, within a short time, three-dimensional (3-D) point clouds with high-density, high-accuracy and significantly detailed surface information pertaining to terrain and objects. However, in terms of feature extraction and 3-D reconstruction in a computer-aided drawing (CAD) format, most of the existing stand-alone lidar data processing software packages are unable to process a large volume of lidar data in an effective and efficient fashion. To break this technical bottleneck, through the design of a Condor-based process virtualization platform, we presented in this paper a novel strategy that uses network-related computational resources to process, manage, and distribute vast quantities of lidar data in a cloud computing environment. Three extensive experiments with and without a cloud computing environment were compared. The experiment results demonstrated that the proposed process virtualization approach is promisingly applicable and effective in the management of large-scale lidar point clouds.

  10. Simulation of a Doppler lidar system for autonomous navigation and hazard avoidance during planetary landing

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Chester, David B.

    2016-05-01

    The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.

  11. ARCADE: Description of the project and setup of the Lidar/AMT system

    NASA Astrophysics Data System (ADS)

    Valore, L.; Buscemi, M.; Cassardo, C.; Cilmo, M.; Coco, M.; Ferrarese, S.; Guarino, F.; Iarlori, M.; Mathes, H. J.; Rizi, V.; Tonachini, A. S.; Wiencke, L.; Will, M.

    2015-03-01

    The ARCADE (Atmospheric Research for Climate and Astroparticle DEtection) project is a 3 years project funded by MIUR, that aims to study the aerosol attenuation of UV light in atmosphere using multiple instruments and techniques, as those commonly used in the cosmic rays community: elastic Lidar, Raman Lidar, side-scattering measurements using a distant laser source. All measurements will be acquired on the same air mass at the same time, in a semi-desertic site near Lamar, Colorado (U.S.). For each instrument, multiple analysis techniques will be tested: the target is a better comprehension of the systematics and limits of applicability of each method. The system is composed by a Lidar (elastic+Raman), fully designed and built within this project, and by the Atmospheric Monitoring Telescope (AMT), a telescope for the detection of UV light owned by the Colorado School of Mines. The setup of the two instruments is described in detail here. The project is presently in its third year: the Lidar system has been tested at the University of L'Aquila in February 2014 before shipment to the U.S., and the AMT has been recently reinstalled and tested in Lamar (May 2014). In June/July 2014 the ARCADE group will work out the final setup of the Lidar+AMT system in Lamar and will begin data acquisition.

  12. LIDAR pulse coding for high resolution range imaging at improved refresh rate.

    PubMed

    Kim, Gunzung; Park, Yongwan

    2016-10-17

    In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

  13. Laser remote sensing in highly turbid waters: validity of the lidar equation

    NASA Astrophysics Data System (ADS)

    Harsdorf, Stefan; Reuter, Rainer

    1999-09-01

    A submarine fluorescence lidar has been developed for the detection of hazardous chemicals on the seafloor of the German Bight. Signals are dependent on the inherent optical properties of the seawater column, the seabed and the substance properties, mainly their absorption coefficient, volume scattering function, fluorescence quantum yield and reflectance. Although the instrument is designed to inspect the seafloor it allows to record time-resolved spectra in order to derive information about the water column. Interpretation of these data is normally done with the classical lidar equation which is based on several simplifying assumptions. In its conventional analytical form multiple scattering is not considered. This leads to an increase in signal intensity and to optical ringing. Additionally, fluorescence lifetimes and detector response function may result in an uncertainty of distance determination. Monte Carlo simulations were done to analyze the performance of the submarine fluorescence lidar for realistic scenarios. Results are compared with theoretical predictions of the lidar equation. It is shown that the error in signal intensity increases with the turbidity whereas the slope of the lidar curve appears to be independent of it. Depth-resolved measurements are not limited by the penetration depth of the light but by multiple scattering effects.

  14. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  15. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2004-06-01

    The idea of deploying a lidar system on an Earth-orbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra-Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  16. Improved calibration method for depolarization lidar measurement.

    PubMed

    Liu, Bo; Wang, Zhien

    2013-06-17

    An improved calibration method for lidar depolarization measurement is described. With this method the system constants including the electronic gain ratio of the parallel and perpendicular channels, the optical reflectance and transmission parameters of the polarizing beam splitter, and the linear polarization ratio of the emitting laser beam can be determined conveniently by using lidar measurements with a half-wave plate oriented at selected angles.

  17. Multiple scattering effects on spaceborne lidar

    NASA Technical Reports Server (NTRS)

    Winker, David M.; Poole, Lamont R.

    1992-01-01

    A semianalytic Monte Carlo code originally developed for oceanographic calculations (Poole et al., 1981) has been modified for use in studying multiple scattering of space-based lidar. The approach is very similar to that described by Kunkel and Weinman (1976). The trajectory of each photon is followed from the transmitter through multiple scattering until the photon is either scattered backward out of the atmosphere, scattered forward into the ground and absorbed, or scattered out the sides of the cloud. The probability that the photon will return directly to the detector is computed and summed over all significant scattering events within the field of view of the detector. Multiple scattering of the lidar pulse causes an apparent increase in the transmittance of the medium. Multiple scattering effects for space-based lidar are more significant than for ground-based lidar due to the much larger beam diameter in the atmosphere. These larger diameters are due not only to the greater range between the lidar and the scattering volume, but also the need to maintain relatively large beam divergences to satisfy eye safety restrictions on the laser irradiance at the Earth's surface. The simulations presented here are for a wavelength of 1064 nm and the Deirmendjian C1 phase function, which yields an extinction coefficient of 17.259/km. We have looked at two cases: a space-based lidar at 296 km observing a C1 cloud 293 km from the lidar and, for comparison purposes, a ground-based lidar looking at a C1 cloud with a base height of either 2 km or 5 km. The C1 size distribution roughly approximates that of stratocumulus or altocumulus clouds (aufm Kampe and Weickmann, 1957).

  18. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  19. Octree-based segmentation for terrestrial LiDAR point cloud data in industrial applications

    NASA Astrophysics Data System (ADS)

    Su, Yun-Ting; Bethel, James; Hu, Shuowen

    2016-03-01

    Automated and efficient algorithms to perform segmentation of terrestrial LiDAR data is critical for exploitation of 3D point clouds, where the ultimate goal is CAD modeling of the segmented data. In this work, a novel segmentation technique is proposed, starting with octree decomposition to recursively divide the scene into octants or voxels, followed by a novel split and merge framework that uses graph theory and a series of connectivity analyses to intelligently merge components into larger connected components. The connectivity analysis, based on a combination of proximity, orientation, and curvature connectivity criteria, is designed for the segmentation of pipes, vessels, and walls from terrestrial LiDAR data of piping systems at industrial sites, such as oil refineries, chemical plants, and steel mills. The proposed segmentation method is exercised on two terrestrial LiDAR datasets of a steel mill and a chemical plant, demonstrating its ability to correctly reassemble and segregate features of interest.

  20. Fundamental measurement by in-line typed high-precision polarization lidar

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Miyamoto, Masakazu; Umaki, Dai; Noguchi, Kazuo; Fukuchi, Tetsuo

    2008-12-01

    An in-line typed new concept lidar system for high precision polarization measurement was developed. A specially designed polarization-independent optical circulator, which was composed by Gran laser prisms and highly transparent Faraday rotators, was developed. Its isolation between the orthogonal polarizations was improved up to more than 30 dB. It is sufficient to detect small rotation of the polarization plane of the propagating beam caused by lightning discharges due to the Faraday effect. The rotation angle of the polarization plane is estimated by the differential detection between the orthogonal polarization components of the lidar echoes. The in-line optics enables near range measurement from the near range of >30 m with the narrow field of view of 0.17 mrad. The fundamental measurements of lidar echoes in near and far fields, and low cloud activities were examined.

  1. Efficiency analysis of homodyne detection for a coherent lidar with adaptive optics

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Liang; Yao, Kainan; Cao, Jingtai; Huang, Danian; Gu, Haijun

    2016-12-01

    For a coherent lidar, the efficiency of homodyne detection is a significant factor. Adaptive optics (AO) is an effective way to correct the turbulence-induced wavefront distortions. Based on our previous works, an expression for the homodyne detection efficiency is given. The results of the numerical simulation show that the atmospheric coherent length has an influence on the homodyne detection efficiency for a fixed atmospheric Greenwood frequency and a closed-loop control bandwidth. In addition, an experimental AO system is employed to verify the effect of the AO on the coherent lidar. The results show that the homodyne detection efficiency is obviously improved after aberrations are corrected. The conclusion of this paper provides a reference for designing an AO system for a coherent lidar.

  2. Aerosol Typing by 3-Wavelength Elastic Lidar Signals Over the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Burlizzi, Pasquale

    2016-06-01

    Elastic lidar signals at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sunphotometer measurements collocated in space and time have been used to retrieve columnar lidar ratio (LR) values at the lidar wavelengths by a constrained iterative inversion procedure. Then, the relationships of LRs with AOTs, Ångström exponents, fine mode fractions (η), and fine mode radii (Rf) have been investigated for the aerosol typing. η and Rf values have been retrieved from a graphical framework. It is shown that the implemented methodology has allowed identifying three main aerosol types over the Central Mediterranean which are designed as urban/industrial, marine-polluted, and mixed-dust. Results on the relationships of LRs with AOTs, Å, η, and Rf for each aerosol type represent main paper results.

  3. Wide angle imaging lidar (WAIL): theory of operation, cross-platform validation, and potential applications.

    SciTech Connect

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-01-01

    The Wide-Angle Imaging Lidar (WAIL), a new instrument, that measures cloud optical and geometrical properties by means of off-beam lidar returns, was deployed as part of a multi-instrument campaign to probe a cloud field at ARM (Atmospheric Radiation Measurement) Southern Great Plain (SGP) site on March 25, 2002. WAIL is designed to determine physical and geometrical characteristics using the off-beam component of the lidar return that can be adequately modeled within the diffusion approximation. Using WAIL data, we estimate the extinction coefficient and geometrical thickness of a dense cloud layer; from there, we infer optical thickness. Results from the new methodology agree well with counterparts obtained from other instruments located permanently at the SGP ARM site and from the WAIL-like airborne instrument that flew over the site during our observation period.

  4. Four wavelength lidar applied to determination of chlorophyll a concentration and algae color group

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Mumola, P. B.; Brown, C. A., Jr.

    1973-01-01

    A technique for remote measurement of chlorophyll a density and determination of algae color group is described. In vivo fluorescence measurements of chlorophyll a for four color groups of algae (green, golden-brown, red, and blue-green) are described, and representative spectra are shown. The lidar equation is developed for the general case of a mixture of color groups showing the need for multicolor excitation. The lidar instrument which has been designed and fabricated at Langley Research Center for helicopter flights over surrounding portions of the Chesapeake Bay is described. The lidar package contains a unique four-color dye laser which permits multicolor excitation of chlorophyll a fluorescence from the various color groups of algae.

  5. Infrared lidar overlap function: an experimental determination.

    PubMed

    Guerrero-Rascado, Juan Luis; Costa, Maria João; Bortoli, Daniele; Silva, Ana Maria; Lyamani, Hassan; Alados-Arboledas, Lucas

    2010-09-13

    The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

  6. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  7. Use of LIDAR for Measuring Snowpack Depth

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Elder, K.; Cline, D.; Davis, R. E.; Ochs, E.

    2003-12-01

    Airborne LIDAR measurements were made near the date of peak snow accumulation in Colorado as part of the NASA Cold Land Processes Experiment (CLPX). LIDAR (LIght Detection And Ranging) overflights were repeated in the late summer following the experiment to obtain a baseline on the terrain in the areas where wintertime LIDAR data were collected. These areas were also measured for many snowpack parameters, including snow depth, by field crews near the winter overflight date. The surfaces generated by differencing the two LIDAR images produced a high-resolution spatial map of snow depth. The results were compared to point measurements of snow depth collected by the field teams. Results were also compared to modeled continuous distributions of snow cover to obtain differences in volume of snow predicted over the study sites. Absolute accuracy of the LIDAR data was evaluated using portions of the LIDAR imagery that was snow free during both overflights. The CLPX field campaign made on-site measurements at nine 1-km square study sites. Site characteristics varied greatly from subalpine to alpine, from thick forest to grassland, and from complex to flat terrain. The observed snowpacks varied between the deepest found in Colorado to shallow, discontinuous snow cover.

  8. Development of a Raman lidar simulation tool

    NASA Technical Reports Server (NTRS)

    Grasso, R. J.; Hummel, J. R.

    1992-01-01

    Raman Lidar is a useful and powerful tool for remote probing of the atmosphere. With Raman Lidars, one can accurately determine the identity and concentration of a particular molecular specie present in the atmosphere. We present the results from a program to develop a simulation capability of Raman Lidar systems for the remote detection of atmospheric gases and/or air polluting hydrocarbons. Our model, which integrates remote Raman spectroscopy with SPARTA's BACKSCAT atmospheric lidar simulation package, permits accurate determination of the performance of a Raman Lidar system. The accuracy with which our model operates is due to the accurate calculation, at any given excitation wavelength, of the differential scattering cross section for the molecular specie under investigation. We show excellent correlation of our calculated cross section data with experimental data from the published literature. In addition, the use of our BACKSCAT package, which provides a user friendly environment to define the operating conditions, provides an accurate calculation of the atmospheric extinction at both the excitation and Raman shifted wavelengths. Our code can be used to accurately predict the performance of a Raman Lidar system, the concentration and identification of a specie in the atmosphere, or the feasibility of making Raman measurements.

  9. Filter algorithm for airborne LIDAR data

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng

    2007-11-01

    Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.

  10. GLOW: The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  11. GLOW- The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  12. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  13. Research on target accuracy for ground-based lidar

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  14. Large-Scale Urban Localisation with a Pushbroom LIDAR

    DTIC Science & Technology

    2012-10-01

    65 3.29 NABU sensors: Firefly cameras, and IMU . . . . . . . . . . . . . . . 66 v LIST OF FIGURES 3.30 NABU: On-board PC and...GPS data through the on-board Applanix POS-LV 220 INS, and while the authors note that the precision of this particular INS is on the order of 0.1m...was designed to incorporate a variety of sensing modalities - from vision (PointGrey Bumblebee2 and Firefly cameras) to scanning-LIDAR sensors (the SICK

  15. Laser production for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar

    NASA Astrophysics Data System (ADS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-05-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  16. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  17. Laser transmitter for Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chang, John; Cimolino, Marc; Petros, Mulugeta

    1991-01-01

    The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.

  18. ALADIN doppler wind lidar: recent advances

    NASA Astrophysics Data System (ADS)

    Morancais, Didier; Fabre, Frédéric; Endemann, Martin; Culoma, Alain

    2007-10-01

    The Atmospheric Laser Doppler Instrument (ALADIN) is the payload of the ADM-Aeolus mission, which will provide direct measurements of global wind fields. It will determine the wind velocity component normal to the satellite velocity vector. The instrument is a direct detection Doppler Lidar operating in the UV, which will be the first of its kind in space. ALADIN comprises a high energy laser and a direct detection receiver operating on aerosol and molecular backscatter signals in parallel. The laser is all solid-state, based on Nd-YAG technology and high power laser diodes. The detector is a silicon CCD whose architecture allows on-chip accumulation of the returns, providing photon counting performance. The 1.5 m diameter telescope is lightweight, all made of silicon carbide. ALADIN is now in its final construction stage: the integration of the Flight Model is on-going. Most of the subsystems have been integrated; the payload performance and qualification test campaign will commence. This paper briefly describes the instrument design and provides insights on the development status and the results obtained so far. This regards in particular the receiver performance, the telescope development and the challenges of the laser. The Aeolus satellite is developed for the European Space Agency by EADS Astrium Satellites as prime contractor for the satellite and the instrument.

  19. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-02-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  20. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.

    PubMed

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O'Dowd, Colin

    2017-02-15

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  1. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    PubMed Central

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val. PMID:28198389

  2. An assessment of a software simulation tool for lidar atmosphere and ocean measurements

    NASA Astrophysics Data System (ADS)

    Powell, K. A.; Vaughan, M.; Burton, S. P.; Hair, J. W.; Hostetler, C. A.; Kowch, R. S.

    2014-12-01

    profiling has been used to guide the design of future airborne and satellite ocean-profiling lidars. Initial comparisons of simulated signals with ocean lidar profiles acquired on the Ship-Aircraft Bio-Optical Research (SABOR) experiment are being used to validate this new ocean-profiling measurement capability.

  3. Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.

    2016-01-01

    3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.

  4. Landslide stability analysis on basis of LIDAR data extraction

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  5. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  6. High-power multi-beam diode laser transmitter for a flash imaging lidar

    NASA Astrophysics Data System (ADS)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  7. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  8. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  9. Lidars: a key component of urban biodefense.

    PubMed

    Mayor, Shane D; Benda, Paul; Murata, Christina E; Danzig, Richard J

    2008-03-01

    A biological aerosol attack in a city could infect tens of thousands of people. In the absence of announcements by the attacker or detection by present point detection systems, victims would be unaware of their exposure prior to developing symptoms. Since infections are most effectively countered before the onset of symptoms, detection technologies that provide early awareness of an attack should be given high priority. Current biological point detection (BPD) systems collect environmental air samples and then analyze them in laboratories so as to permit detection within 12-36 hours of an attack. Improvements in the pipeline may reduce this lag time to as little as a few hours. However, BPD systems have inherent weaknesses when used to detect and respond to an aerosol attack. The likelihood of a limited number of BPD systems intercepting an aerosol plume in a vast attack space may be low. Moreover, BPD systems do not provide critical information needed for response, such as the source location, precise time, and geographic reach of an attack. The missing information would invaluably guide prophylaxis distribution, identification of contaminated areas, and criminal apprehension. This article describes how lidars used for real-time observation of aerosol plumes could complement BPD systems by providing fine-scale spatial and temporal information. A lidar system also could be used to corroborate positive BPD system results, to improve reaction to positive results, and/or to provide an independent basis for low-regret protective steps. Lidar systems can resolve key biodefense challenges, and this article describes three compatible concepts of operations. Leveraging lessons from a lidar system now operating at the Pentagon, a test of an expanded lidar network would provide immediate protection for key Washington, DC, assets, demonstrate the synergy of BPD systems and lidars, and provide a test bed for research to improve lidar's shortcomings.

  10. Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Petzar, Paul J.

    2009-01-01

    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center.

  11. Heterodyne lidar for chemical sensing

    SciTech Connect

    Oldenborg, R. C.; Tiee, J. J.; Shimada, T.; Wilson, C. W.; Remelius, D. K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging

  12. Applications of KHZ-CW Lidar in Ecological Entomology

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  13. Efficient Open Source Lidar for Desktop Users

    NASA Astrophysics Data System (ADS)

    Flanagan, Jacob P.

    Lidar --- Light Detection and Ranging --- is a remote sensing technology that utilizes a device similar to a rangefinder to determine a distance to a target. A laser pulse is shot at an object and the time it takes for the pulse to return in measured. The distance to the object is easily calculated using the speed property of light. For lidar, this laser is moved (primarily in a rotational movement usually accompanied by a translational movement) and records the distances to objects several thousands of times per second. From this, a 3 dimensional structure can be procured in the form of a point cloud. A point cloud is a collection of 3 dimensional points with at least an x, a y and a z attribute. These 3 attributes represent the position of a single point in 3 dimensional space. Other attributes can be associated with the points that include properties such as the intensity of the return pulse, the color of the target or even the time the point was recorded. Another very useful, post processed attribute is point classification where a point is associated with the type of object the point represents (i.e. ground.). Lidar has gained popularity and advancements in the technology has made its collection easier and cheaper creating larger and denser datasets. The need to handle this data in a more efficiently manner has become a necessity; The processing, visualizing or even simply loading lidar can be computationally intensive due to its very large size. Standard remote sensing and geographical information systems (GIS) software (ENVI, ArcGIS, etc.) was not originally built for optimized point cloud processing and its implementation is an afterthought and therefore inefficient. Newer, more optimized software for point cloud processing (QTModeler, TopoDOT, etc.) usually lack more advanced processing tools, requires higher end computers and are very costly. Existing open source lidar approaches the loading and processing of lidar in an iterative fashion that requires

  14. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    PubMed

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.

  15. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  16. Calibration Technique for Polarization-Sensitive Lidars

    NASA Technical Reports Server (NTRS)

    Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.

    2006-01-01

    Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).

  17. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  18. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  19. Compact scanning lidar systems using holographic optics

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Guerra, David

    1998-08-01

    Two scanning lidar systems have been built using holographic optical elements (HOE) that function as a scanning telescope primary optic. One is a ground based lidar using a reflection HOE, and uses a frequency doubled Nd:YAG laser transmitter. The other system is an airborne/ground based system that uses a transmission HOE and operates at the 1064 nm fundamental of the Nd:YAG laser. Each HOE has a focal spot on the center- line, normal to the flat disk holding the hologram, and a field of view (FOV) that points approximately 45 degrees from the normal. Rotating the disk effects a conical scan of the FOV. In both systems, the same HOE is also used to collimate and steer the transmitted laser beam. The utility of using the HOEs to save weight and size in scanning lidars is evidenced by the atmospheric backscatter data collected with these systems. They also will lower the cost of commercial systems due to the low cost of replicating HOEs and the simplified mechanical scanning systems. Development of airborne scanning lidar altimeters and other lidars and passive instruments using holographic optics are underway, including the development of a one meter diameter, space qualified holographic scanning telescope for use in the ultraviolet.

  20. Atmospheric Turbulence Estimates from a Pulsed Lidar

    NASA Technical Reports Server (NTRS)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  1. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    NASA Astrophysics Data System (ADS)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  2. A Multi-wavelength Ozone Lidar for the EASOE Experiment

    NASA Technical Reports Server (NTRS)

    Godin, S.; Ancellet, G.; David, C.; Porteneuve, J.; Leroy, C.; Mitev, V.; Emery, Y.; Flesia, C.; Rizi, V.; Visconti, G.

    1992-01-01

    The study of the ozone layer during winter and springtime in high latitude regions is a major issue in atmospheric research. For a better understanding of these problems, an important experimental campaign called EASOE (European Arctic Stratospheric Ozone Experiment) was organized by the European Community during the winter 1991-1992. Its main objective was to establish a budget of the ozone destruction processes on the whole northern hemisphere. This implied the simultaneous operation of different types of instruments located in both high and mid-latitude regions in order to study the destruction processes as well as the evolution of the ozone layer during the period of the campaign. A description will be given here of a mobile ozone lidar instrument specially designed for operation during the EASOE campaign. This system, which performs ozone measurements in the 5 to 40 km altitude range was located in Sodankyla, Finland as part of the ELSA experiment which also includes operation of another multi-wavelength lidar designed for polar stratospheric cloud measurements.

  3. Development of Navigation Doppler Lidar for Future Landing Mission

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III

    2016-01-01

    A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.

  4. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  5. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    PubMed

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  6. High-spectral-resolution lidar for ocean ecosystem studies

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhou, Yudi; Yang, Yongying; Cheng, Zhongtao; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Bai, Jian

    2016-05-01

    The research and protection of the ocean ecosystem are key works to maintain the marine status and develop marine functions. However, human's knowledge about the ocean is greatly limited. Now, in situ, acoustic and remote sensing methods have been applied in the research to understand and explore the ocean. Especially, the lidar is one outstanding remote sensing method for its high spatial and temporal resolution as well as the ability of the vertical detection. Highspectral- resolution lidar (HSRL) employs an ultra-narrow spectral filter to distinguish scattering signals between particles and water molecules without assuming a lidar ratio and obtains optical properties of the ocean with a high accuracy. Nevertheless, the complexity of the seawater causes variable marine optical properties, which gives huge potentiality to develop a HSRL working at different wavelengths in order to promote the inversion accuracy and increase the detection depth. The field-widened Michelson interferometer (FWMI), whose central transmittance can be tuned to any wavelength and field of view is large, can be employed as the HSRL spectral filter and solves problems that the operating wavelength of the iodine filter is fixed and the field of view of Fabry-Perot interferometer is small. The principle of the HSRL based on the FWMI designing for the ocean remote sensing will be presented in detail. In addition, the availability of the application of the FWMI influenced by the disturbance of the states of Brillouin scattering is analyzed and the preliminary theory shows that the HSRL instrument basing on FWMI could be employed in the marine remote sensing with a high accuracy.

  7. Remote Sensing of PMCs with the Polar Suborbital Science in the Upper Mesosphere (PoSSUM) Lidar

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Thayer, J. P.; Reimuller, J. D.

    2013-12-01

    The Polar Suborbital Science in the Upper Mesosphere (PoSSUM) experiment is a modular observatory readily integrated into commercial manned Reusable Suborbital Launch Vehicles (RSLV) for aeronomy, remote sensing, solar physics, astronomy/astrophysics, and Earth observations. The proposed observatory, scheduled for deployment in July 2015, is being designed to operate onboard the XCOR Lynx and Virgin Galactic SpaceShipTwo vehicles. The observatory will enable unprecedented capabilities to dedicate low-cost suborbital campaigns for the study of the small-scale dynamics of polar mesospheric clouds (PMC) by obtaining imagery and remotely sensed data from apogee altitudes in excess of 100 km. A key component of the observatory is the PoSSUM Lidar, a Rayleigh/Mie backscatter lidar currently being designed at the University of Colorado at Boulder. The proposed instrument transmitter consists of a 532 nm linearly polarized laser coupled with conditioning and steering optics. The receiver employs a photon counting approach to detect the received optical signals backscattered from PMCs during flight operations. The design of the PoSSUM Lidar will be presented, including the unique challenges associated with developing a lidar instrument for operations onboard a RSLV. Initial simulation data will be explored, including a discussion of the expected science products output by the lidar, such as PMC height and density, as well as the potential for depolarization measurements to evaluate PMC asphericity.

  8. Estimation of Droplet Size and Liquid Water Content Using Radar and Lidar: Marine Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J. Vivek; Jensen, Jorgen; Ellis, Scott; Morley, Bruce; Tsai, Peisang; Spuler, Scott; Ghate, Virendra; Schwartz, Christian

    2016-04-01

    During the Cloud Systems Evolution in the Trades (CSET) field campaign airborne measurements from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL) were made in the North Pacific. In addition, in situ observations of cloud and aerosols size distributions and radiation were also collected. The HCR operated at a frequency of 94 GHz (3 mm wavelength) and collected observations at high temporal (0.5 sec) and range (30 m) resolution. The capability of HCR is enhanced by the coordination with the HSRL that made high temporal and range resolution observations of calibrated backscatter and extinction. The lidar, designed and built by the University of Wisconsin. The radar and lidar are designed to fly on the NCAR Gulfstream V HIAPER aircraft. The remote and in situ measurements collected during CSET offer opportunities for evaluating the engineering performance of the instruments and developing cloud microphysical scientific products. The coincident HCR and HSRL measurements are analyzed for assess their utility to characterize cloud boundaries, estimate liquid water content (LWC) and mean particle size. Retrievals of LWC and mean particle sizes from remote radar and lidar measurements will be compared with those from the in situ instruments.

  9. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    NASA Astrophysics Data System (ADS)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  10. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  11. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  12. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  13. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    NASA Astrophysics Data System (ADS)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site

  14. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes

  15. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  16. Limits to the information gain from lidar measurements.

    PubMed

    Belmonte, Aniceto

    2015-04-15

    Measurements over the return signal are an integral part of lidar remote sensing by which we gather information about the characteristics of specific targets. But how much information is gained by performing a given lidar measurement? By defining Shannon's mutual information of a lidar observation, here we consider the bits of information content on the measurement and describe mathematically the capacity of lidar estimates to represent a corresponding property in the target. For heterodyne Doppler lidars in particular, we have found simple analytical formulas that consider the information gain in mean-frequency estimates.

  17. Analysis of Lidar Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gray D.

    1998-01-01

    An orbiting coherent Doppler lidar for measuring winds is required to provide two basic pieces of data to the user community. The first is the line of sight wind velocity and the second is knowledge of the position at which the measurement was made. In order to obtain this data for targets of interest to the atmospheric community the instrument must also have a level of backscatter sensitivity sufficient to achieve the goal. Sensitivity analyses for the line of sight velocity and position requirements for two lidar instruments, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude , 89 deg. inclination orbit are performed. The issues relating to the backscatter sensitivity of a coherent lidar have been well documented previously and are not discussed here other than to identify a space-specific issue that does not typically need to be considered for ground and aircraft based coherent lidars. Section 2 and appendices A1 and A2 document these sensitivity analyses. This contract was intended to develop requirements for a space shuttle (STS) based coherent lidar however, shortly after the award of this contract NASA MSFC won the SPARCLE program to put a coherent Doppler lidar on STS. Consequently much of the work conducted under this contract has been documented within the development of the SPARCLE project documentation. The relevant portions of the SPARCLE documentation are identified in section 3.0 and included in appendices A3 and A4. Section 4.0 briefly outlines miscellaneous other activities that occurred under this contract.

  18. Fog droplet distribution functions for lidar.

    PubMed

    Mallow, J V

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  19. Fog droplet distribution functions for lidar

    SciTech Connect

    Mallow, J.V.

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  20. Lidar Measurements of Industrial Benzene Emissions

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; van der Hoff, G. R.; Gast, L. F. L.

    2016-06-01

    The ability to measure benzene concentrations was added to the RIVM mobile DIAL system. In a ten-days campaign, it was used to measure benzene emissions in the Rijnmond, a heavily industrialised area in the South-west of the Netherlands with petrochemical industry, petrochemical products storage and the port of Rotterdam. On two of the ten days, benzene emissions were found. Combined with measurements of wind speed and wind direction, the Lidar measurements indicated the possible origins of these emissions. This makes the Lidar a valuable tool, augmenting the data collected at fixed monitoring stations.

  1. a Min-Cut Based Filter for Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ural, Serkan; Shan, Jie

    2016-06-01

    LiDAR (Light Detection and Ranging) is a routinely employed technology as a 3-D data collection technique for topographic mapping. Conventional workflows for analyzing LiDAR data require the ground to be determined prior to extracting other features of interest. Filtering the terrain points is one of the fundamental processes to acquire higher-level information from unstructured LiDAR point data. There are many ground-filtering algorithms in literature, spanning several broad categories regarding their strategies. Most of the earlier algorithms examine only the local characteristics of the points or grids, such as the slope, and elevation discontinuities. Since considering only the local properties restricts the filtering performance due to the complexity of the terrain and the features, some recent methods utilize global properties of the terrain as well. This paper presents a new ground filtering method, Min-cut Based Filtering (MBF), which takes both local and global properties of the points into account. MBF considers ground filtering as a labeling task. First, an energy function is designed on a graph, where LiDAR points are considered as the nodes on the graph that are connected to each other as well as to two auxiliary nodes representing ground and off-ground labels. The graph is constructed such that the data costs are assigned to the edges connecting the points to the auxiliary nodes, and the smoothness costs to the edges between points. Data and smoothness terms of the energy function are formulated using point elevations and approximate ground information. The data term conducts the likelihood of the points being ground or off-ground while the smoothness term enforces spatial coherence between neighboring points. The energy function is optimized by finding the minimum-cut on the graph via the alpha-expansion algorithm. The resulting graph-cut provides the labeling of the point cloud as ground and off-ground points. Evaluation of the proposed method on

  2. MATLAB tools for lidar data conversion, visualization, and processing

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhou, Kaijing; Yang, Jie; Lu, Yilong

    2011-10-01

    LIDAR (LIght Detection and Ranging) [1] is an optical remote sensing technology that has gained increasing acceptance for topographic mapping. LIDAR technology has higher accuracy than RADAR and has wide applications. The relevant commercial market for LIDAR has developed greatly in the last few years. LAS format is approved to be the standard data format for interchanging LIDAR data among different software developers, manufacturers and end users. LAS data format reduces the data size compared to ASCII data format. However, LAS data file can only be visualized by some expensive commercial software. There are some free tools available, but they are not user-friendly and have less or poor visualization functionality. This makes it difficult for researchers to investigate and use LIDAR data. Therefore, there is a need to develop an efficient and low cost LIDAR data toolbox. For this purpose we have developed a free and efficient Matlab tool for LIDAR data conversion, visualization and processing.

  3. Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    SciTech Connect

    Sivaraman, C; Comstock, J

    2011-07-25

    Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

  4. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, A; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  5. Lidar extinction-to-backscatter ratio of the ocean.

    PubMed

    Churnside, James H; Sullivan, James M; Twardowski, Michael S

    2014-07-28

    Bio-optical models are used to develop a model of the lidar extinction-to-backscatter ratio applicable to oceanographic lidar. The model is based on chlorophyll concentration, and is expected to be valid for Case 1 waters. The limiting cases of narrow- and wide-beam lidars are presented and compared with estimates based on in situ optical measurements. Lidar measurements are also compared with the model using in situ or satellite estimates of chlorophyll concentration. A modified lidar ratio is defined, in which the properties of pure sea water are removed. This modified ratio is shown to be nearly constant for wide-beam lidar operating in low-chlorophyll waters, so accurate inversion to derive extinction and backscattering is possible under these conditions. This ratio can also be used for lidar calibration.

  6. Construction and first atmospheric observations of a high spectral resolution lidar system in Argentina in the frame of a trinational Japanese-Argentinean-Chilean collaboration

    NASA Astrophysics Data System (ADS)

    Papandrea, S.; Jin, Y.; Ristori, P.; Otero, L.; Nishizawa, T.; Mizuno, A.; Sugimoto, N.; Quel, E.

    2016-05-01

    Atmospheric monitoring stations are being developed in Argentina. The most important targets are volcanic ashes, desert aerosols in particular Patagonian dust and biomass burning aerosols. Six stations deployed in the Patagonian Region and Buenos Aires have lidar systems, sun photometers integrated to the AERONET/NASA monitoring network, in situ optical particle analyzers, four solar radiation sensors (pyranometer, UVA, UVB and GUV), and meteorological equipment. The stations are in the main international airports of the Regions (San Carlos de Bariloche, Comodoro Rivadavia, Neuquén, Rio Gallegos) and in Buenos Aires (Aeroparque Jorge Newbery and at CEILAP/CITEDEF). CEILAP and the National Institute of Environmental Studies (NIES) at Tsukuba, Japan developed the first iodine cell-based high spectral resolution lidar (HSRL) in Argentina to add in the lidar network. We upgraded the standard CEILAP multi-wavelength Raman lidar adding the laser frequency tuning system and the 532 iodine-filtered channel at the reception to built the HSRL. HSRL will provide daytime and nighttime direct observation of the aerosol and cloud optical properties (backscatter and extinction) without the pre-assumption of the lidar ratio. This work shows the design and construction of the first Argentinean HSRL. We also show the first lidar observations done in the country with this kind of lidar.

  7. An Overview of Ocean Lidar Studies At NRL Stennis, NOAA ESRL and NASA LaRC (Invited)

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Arnone, R. A.; Churnside, J. H.

    2009-12-01

    between the two surveys. With no time delay the correlation is well above 0.9, and the correlation is essentially zero after about four days. The ocean lidar studies at NASA Langley Research Center started from the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The lidar, designed for cloud and aerosol observation, also provides information about (1) ocean subsurface particulate backscatter, and (2) high resolution ocean surface wind speeds / mean square wave slopes. More than three years of global ocean measurements from CALIPSO are analyzed and available to the community. Ocean and atmospheric seasonal and inter-annual variations are studied using the CALIPSO observations combined with measurements from other A-train satellites. Future studies at NASA Langley Research Center includes: (1) Improvement of CALIPSO ocean product; (2) Theoretical radiative transfer modeling, such as lidar multiple scatter and coupled ocean-atmospheric Stokes vector, and new retrieval concepts with combined lidar and multi-angle, multi-spectral polarimeter; (3) Aircraft based measurements of next generation lidar, polarimeter and hyperspectral measurements.

  8. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  9. Time-resolved lidar fluorosensor for sea pollution detection

    NASA Technical Reports Server (NTRS)

    Ferrario, A.; Pizzolati, P. L.; Zanzottera, E.

    1986-01-01

    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described.

  10. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  11. Sensitivity of LIDAR Canopy Height Estimate to Geolocation Error

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2010-12-01

    Many factors affect the quality of canopy height structure data derived from space-based lidar such as DESDynI. Among these is geolocation accuracy. Inadequate geolocation information hinders subsequent analyses because a different portion of the canopy is observed relative to what is assumed. This is especially true in mountainous terrain where the effects of slope magnify geolocation errors. Mission engineering design must trade the expense of providing more accurate geolocation with the potential improvement in measurement accuracy. The objective of our work is to assess the effects of small errors in geolocation on subsequent retrievals of maximum canopy height for a varying set of canopy structures and terrains. Dense discrete lidar data from different forest sites (from La Selva Biological Station, Costa Rica, Sierra National Forest, California, and Hubbard Brook and Bartlett Experimental Forests in New Hampshire) are used to simulate DESDynI height retrievals using various geolocation accuracies. Results show that canopy height measurement errors generally increase as the geolocation error increases. Interestingly, most of the height errors are caused by variation of canopy height rather than topography (slope and aspect).

  12. Photon counting altimeter and lidar for air and spaceborne applications

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan

    2011-06-01

    We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.

  13. Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm

    NASA Astrophysics Data System (ADS)

    Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, Ph.; Lapyonok, T.; Tanré, D.; Litvinov, P.

    2013-03-01

    Currently most of experiments pursuing comprehensive characterization of atmosphere include coordinated observations by both lidar and radiometers in order to obtain important complimentary information about aerosol properties. The passive observations by radiometers from ground are mostly sensitive to the properties of aerosol in total atmospheric column and have very limited sensitivity to vertical structure of the atmosphere. Such observations are commonly used for measuring aerosol optical thickness and deriving the information about aerosol microphysics including aerosol particles shape, size distribution, and complex refractive index. In a contrast, lidar observations of atmospheric responses from different altitudes to laser pulses emitted from ground are designed to provide accurate profiling of the atmospheric properties. The interpretation of the lidar observation generally relies on some assumptions about aerosol type and loading. Here we present the GARRLiC algorithm (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) that simultaneously inverts co-incident lidar and radiometer observations and derives a united set of aerosol parameters. Such synergetic retrieval is expected to result in additional enhancements in derived aerosol properties because the backscattering observations by lidar add some sensitivity to the columnar properties of aerosol, while radiometric observations provide sufficient constraints on aerosol type and loading that generally are missing in lidar signals. GARRLiC is based on AERONET algorithm for inverting combined observations by radiometer and multi-wavelength elastic lidar observations. It is expected that spectral changes of backscattering signal obtained by multi-wavelength lidar at different altitudes provide some sensitivity to the vertical variability of aerosol particle sizes. In order to benefit from this sensitivity the algorithm is set to derive not only the vertical profile of total aerosol

  14. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  15. Studying the MLT by a Combined Analysis of SABER/TIMED and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Zecha, M.; Gerding, M.; Luebken, F. J.; Fiedler, J.; vonZhan, U.; Russell, J. M., III

    2006-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The measurements have been performed continuously since January 25, 2002 to provide excellent coverage for both hemispheres. The Leibniz-Institute of Atmospheric Physics (LAP) at Kuehlungsborn, Germany (54N, 12E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges. The total altitude range of the lidar installation lies from 1 to 105 km. Another instrument used for intercomparison is the ALOMAR RMR lidar, located at Andoya, Norway (69N, 16E). We have searched the SABER and lidar datasets for coincidental common volume measurements within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude and approx. 1 hour in time for the sake of (a) comparison of measured temperatures; (b) validation of the models used in SABER data analysis; and (c) extracting new information about MLT parameters. In this work we applied the non-LTE ALI-ARMS code designed to calculate the nonequilibrium radiance in different viewing geometries to the analysis of measurements which satisfied these search criteria. The results of this analysis (a) support the application of higher value of CO2-O quenching rate (6e-12 cubic centimeters per second) by the non-LTE temperature retrievals from the SABER 15 micrometer limb radiance data, and (b) demonstrate the importance of accounting for the vibrational-vibrational energy exchange among the CO2 isotopes for accurate temperature retrievals. Using temperature profiles obtained in lidar measurements as inputs for the retrieval algorithm we also retrieved the nighttime CO2 densities from the SABER 15 micrometer limb radiances and compared them with the model and climatology CO2 data used in the SABER nighttime temperature retrievals.

  16. Quick-look eye-safety assessment for the short range lidar

    SciTech Connect

    Wehner, T.R.

    1998-07-02

    This is a quick-look eye-safety assessment for the Short Range (SR) lidar, a system under development for standoff biological aerosol detection in the outdoor environment. The ground-vehicle-mounted SR lidar system will scan a sector of the nearby atmosphere with a repetitively pulsed, multiple-wavelength, UV/IR laser beam. This laser is not intrinsically eye-safe, and hence the SR lidar system requires a protection system to minimize the risk of eye exposures above the ANSI-standard maximum permissible exposure within a nominal hazard zone. The nominal ocular hazard distance for the UV/IR laser itself was calculated to be 6 km. The protection system, which will include a scan-stop detector and a laser beam path interrogator, currently is conceptual only. Until the complete protection system is designed, evaluated, and tested, and a more detailed safety assessment has been performed, the eye-safety issue for the SR lidar system cannot be resolved.

  17. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  18. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  19. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  20. OPO DIAL lidar for remote measurements of atmospheric gases in the IR range

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Kharchenko, O. V.; Shumskii, V. K.; Sadovnikov, S. A.; Yakovlev, S. V.

    2016-05-01

    Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The new technique uses broadband radiation and a CCD detector, which ensures measurement of backscattering signals with simultaneous altitude and wavelength resolution. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. The laser system design provides a possibility of narrowing the laser line within the 0.01-5 cm-1 limits. This possible improvement along with a small step of laser line tuning and the presence of absorption lines of other atmospheric gases, including atmospheric pollutants, in the spectral range under study make this laser a unique instrument for atmospheric sounding.

  1. Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Koch, Grady James

    A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 mum. This wavelength is a further advantage to the lidar, as this wavelength offers a much higher level of eyesafety than shorter wavelengths conventionally used for DIAL. Two generations are lidars are described, with the first design making combined measurement of wind and water vapor. Wind speed measurements are shown of a precision better than 1 m/s, making it useful for many meteorological applications. Water vapor concentration measurements were of 86% accuracy, requiring improvement for scientific applications. This preliminary experiment revealed the largest source of error in concentration measurement to be a lack of stability in the wavelength of the laser. This problem was solved by implementing a means to precisely control the continuous-wave laser that injection seeds a pulsed laser. The finely tunable Ho:Tm:YLF laser was stabilized to absorption lines of both carbon dioxide and water vapor using a wavelength modulation technique. Long-term stabilization to within 13.5 MHz of absorption line center is shown, representing the first frequency-stabilized laser at or within 500 run of 2mum wavelength. Results are presented on injection seeding a pulsed Ho:Tm:YLF laser to impart the tunability and stabilization to the pulsed laser output. The stabilized laser system was incorporated into a

  2. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  3. Lidar measurements of aerosol at Varanasi (25.28° N, 82.96° E), India during CAIPEEX scientific campaign

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, Y. Jaya; Samuel, E. James J.; Thara, P.; Jayaraman, A.

    2016-05-01

    A compact dual polarization lidar (DPL) was designed and developed at National Atmospheric Research Laboratory (NARL) for daytime measurements of the boundary layer aerosol distribution and depolarization properties with very high vertical and temporal resolution. The lidar employs a compact flashlamp pumped Q-switched Nd:YAG laser and operates at 532 nm wavelength. The lidar system uses a stable biaxial configuration between transmitter and receiver units. The receiver utilizes a 150 mm Schmidt Cassegranin telescope for collecting laser returns from the atmosphere. The collected backscattered light is separated into co and cross-polarization signals using a polarization beam splitter cube. A set of mini-PMTs have been used for detection of light from atmosphere during daylight period. A two channel transient recorder system with built-in ADC has been employed for recording the detected light. The entire lidar system is housed in a compact cabinet which can be easily transported for field measurements. During 2014, the lidar system was installed at the Banaras Hindu University (BHU) campus, Varanasi (25.28° N, 82.96° E, 82 m AMSL) and operated for a period of three months in to support the cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX) conducted by Indian Institute of tropical meteorology (IITM). During this campaign period, the lidar measurements were carried out in the vertical direction with spatial resolution of 7.5 m and time sampling of 30s. The lidar measurements revealed the occurrence of boundary layer growth during convective periods and also detected the long-range transport dust layers with significant depolarization. In the present paper, we present the lidar measurements obtained during the campaign period and discuss the observation of transport of dust layer over the experimental site with support of back trajectory analysis and satellite data. The Lidar observations were compared with the available satellite

  4. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  5. Cloud Thickness from Offbeam Returns - Thor Lidar

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, and sometimes multiple cloud layers, can be estimated from the time delay of off-beam returns from a pulsed laser source illuminating one side of the cloud layer. In particular, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. The halo method works best for thick cloud layers, typically optical thickness exceeding 2, and thus compliments conventional lidar which cannot penetrate thick clouds. Cloud layer top and base have been measured independently over the ARM/SGP site using conventional laser ranging (lidar) and the top minus base thickness are compared with a cloud top halo estimate obtained from the NASA/Goddard THOR System (THOR = THickness from Offbeam Returns). THOR flies on the NASA P3, and measures the halo timings from several km above cloud top, at the same time providing conventional lidar cloud top height. The ARM/SGP micropulse lidar provides cloud base height for validation.

  6. Optics of the ozone lidar ELSA

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    In order to study the ozone layer in the Arctic, we have to define a new optical concept for a lidar. It was necessary to build a transportable system with a large collecting surface in a minimum of volume. It was too useful to have a multichannel receptor. A description of the Emettor Receptor System, collecting system, and analysis system is provided.

  7. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  8. Speckle noise in satellite based lidar systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1977-01-01

    The lidar system model was described, and the statistics of the signal and noise at the receiver output were derived. Scattering media effects were discussed along with polarization and atmospheric turbulence. The major equations were summarized and evaluated for some typical parameters.

  9. UV fluorescence lidar detection of bioaerosols

    SciTech Connect

    Christesen, S.D.; DeSha, M.S.; Wong, A.; Merrow, C.N.; Wilson, M.W.; Butler, J.

    1994-12-31

    Biological agents (e.g. bacterial spores, viruses, toxins) pose a serious threat to military forces on the modern battlefield. Remote detection of these agents is crucial to providing early warning of an attack and to allow for the avoidance of contaminated areas. Here, a UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV-LIDAR Fluorosensor system are a 200mJ quadrupled ND:YAG laser at 266nm and a 16 inch cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266nm elastic backscatter, the total fluorescence between 300 and 400nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). The goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 meters. The tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000m.

  10. Pre-shuttle lidar system research

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Zaghloul, M. E.

    1986-01-01

    Included are the results of the initial phase of a simulation study in connection with photomultiplier tubes (PMT) and associated networks and an analytical study of atmospheric physics (including multiscattering) leading to modeling studies in connection with differential absorption lidar (DIAL) observations. This effort was in support of the ER-2 aircraft DIAL projects.

  11. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  12. Comparison of measurements by the NASA/GSFC scanning raman lidar and the DOE/ARM CART raman lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Turner, David; Evans, Keith; Demoz, Belay; Melfi, Harvey; Schwemmer, Geary; Cadirola, Martin; Ferrare, Richard; Goldsmith, John; Tooman, Tim; Wise, Stacy

    1998-01-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warming scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy's Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  13. LIDAR vertical profiles over the Oil Sands Region: an important tool in understanding atmospheric particulate matter transport, mixing and transformation

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model verification and validation. In recent years, Environment Canada has designed an autonomous aerosol LIDAR system that can be deployed to remote areas such as the oil sands. Currently two autonomous LIDAR systems are making measurements in the oil sands region, one since December, 2012 and the other since July, 2013. The LIDAR transmitter emits two wavelengths (1064nm and 532nm) and the detector assembly collects four channels (1064nm backscatter, 532nm backscatter and 532nm depolarization, 607 nm nitrogen channel). Aerosol profiles from near ground to 20 km are collected every 10-60 s providing sufficient resolution to probe atmospheric dynamics, mixing and transport. The depolarization channel provides key information in identifying and discriminating the various aerosol layers aloft such as dust, forest fire plumes, industrial plume sources or ice crystals. The vertical resolution of the LIDAR can determine whether industrial plumes remain aloft or mix down to the surface and also provide estimates as to the concentration of the particulate at various altitudes. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. An intensive measurement campaign will be carried out in August and September of 2013 and will provide coincident airborne and ground-based measurements for the two LIDAR systems. The first results from this field study will be presented as well as some statistics on the frequency and evolution of plume events that were detected by the LIDARs.

  14. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  15. Voxel-Based LIDAR Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  16. Lidar techniques for environmental and ecological monitoring

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2015-04-01

    An overview of optical probing of the atmosphere will be given, where mostly active remote- sensing techniques of the laser-radar type will be covered, but also some passive techniques employing ambient radiation. Atmospheric objects of quite varying sizes can be studied. Mercury is the only pollutant in atomic form in the atmosphere, while other pollutants are either molecular or in particle form. Light detection and ranging (Lidar) techniques allow three-dimensional mapping of such constituents, and examples from atmospheric lidar work in Lund and in Guangzhou will be given. Recently, much larger lidar targets have been studied. Monitoring of flying insects and birds is of considerable ecological interest, and several projects have been pursued in collaboration with biologists. Mostly, elastic backscattering and fluorescence techniques are employed. Some references to recent activities by the author and his colleagues are given below. [1] Z.G. Guan, L. Mei, P. Lundin, G. Somesfalean, and S. Svanberg, Vertical Lidar Sounding of Air Pollutants in a Major Chinese City, Appl. Phys. B 101, 465 (2010) [2] L. Mei, G.Y. Zhou and S. Svanberg, Differential Absorption Lidar System Employed for Background Atomic Mercury Vertical Profiling in South China, Lasers Opt. Eng. 55, 128 (2013) [3] Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, and S. Svanberg, Insect Monitoring with Fluorescence LIDAR techniques - Field experiments, Appl. Optics 48, 5668 (2010) [4] A. Runemark, M. Wellereuther, H. Jayaweera, S. Svanberg and M. Brydegaard, Rare Events in Remote Dark Field Spectroscopy: An Ecological Case study of Insects, IEEE JSTQE 18, 1573 (2011) [5] L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, and G. Somesfalean, Agricultural Pest Monitoring using Fluorescence Lidar Techniques, Applied Physics B 106, 733 (2011) [6] P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Åkesson, and M. Brydegaard, Remote

  17. Lidar application to middle atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.

    2016-05-01

    LIDAR (LIght Detection And Ranging) is an optical remote sensing technique which can be used to probe middle atmosphere (stratosphere & mesosphere) from where RADAR (RAdio Detection And Ranging) system fails to get scattering. The Mie and Rayleigh lidar system installed at National Atmospheric Research Laboratory (NARL), Gadanki (13.5°N, 79.2°E) has been operating at 532 nm green laser with increased energy of 600 mJ/pulse and pulse repletion frequency of 50 Hz since 2007. From the Rayleigh lidar observations, vertical profiles of atmospheric density and temperature can be obtained above 25-30 km (where the aerosols are almost negligible) at high spatial and temporal resolutions. The temperature profiles often show mesospheric inversion layers (MILs), the causative mechanisms of which are yet to be understood. In the present study, the improved performance of the lidar system is demonstrated by showing the height profile of temperature and its error obtained with the high power laser ( 12 W per pulse) on 20 January 2007 when compared to the same obtained using the low power laser ( 5 W per pulse) on 05 February 2007 over Gadanki. The temperature errors observed at 80 km are 3.5 K, 18 K with high and low power lasers respectively. A large MIL has been observed on 20 January 2007 above 78 km with amplitude of 31 K from the lidar temperature operated with high power laser. The dominant gravity wave (GW) period and vertical wavelengths are found to be T 66 min and λz 6.4 km in the inversion region. The wave saturation ratio and eddy diffusion coefficient due to the GW breaking are calculated and it is found that the wave gets saturated at 84-85 km and the eddy diffusion coefficient increases from 25 m2/sec above the inversion region ( 83 km). This result suggests that the occurrence of this large MIL event is probably due to gravity wave breaking.

  18. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  19. Improving Lidar Turbulence Estimates for Wind Energy: Preprint

    SciTech Connect

    Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew; Klein, Petra

    2016-10-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  20. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography

  1. A study of atmospheric optical scattering parameters at 1.5 and 2 micron region for solid state Doppler lidar applications

    NASA Technical Reports Server (NTRS)

    Margalit, Eli; Amzajerdian, Farzin; Benoist, Rodney; Dubinsky, Richard

    1992-01-01

    The increasing interest in the development of an eye-safe, solid state, Doppler lidar for avionic applications has created the need for a quantitative evaluation of atmospheric effects on performance. Theoretical calculations were completed for optical scattering parameters to be compared with the field measurements. Computer codes were developed for the required calculations and designed to be interactive and user friendly in order to support comparison with experimental results and, thus, provide the basis for evaluation of eye-safe Doppler lidar over a wide range of atmospheric conditions and geographical locations. A holmium Doppler lidar operating at 2.09 microns was constructed for atmospheric backscattering, attenuation, and wind velocity measurements. Theoretical calculations and field studies were performed for backscatter coefficients. The selected wavelengths correspond to Er:glass, Tm:YAG, and Tm,Ho:YAG solid state lasers that are suitable for use in an eye-safe Doppler lidar system.

  2. An all-fiber spectroscopic Raman lidar system for atmospheric water vapor measurements

    NASA Astrophysics Data System (ADS)

    Wang, Yufeng; Zhao, Meina; Fu, Qiang; Li, Zhao; Di, Huige; Wang, Li; Hua, Dengxin

    2016-01-01

    Aimed to establish a Raman lidar system with high-reliability and high anti-interference performance, an newly all-fiber spectroscopic Raman lidar system was proposed for atmospheric water vapor measurement, in which optical fiber couplers, fiber band-width filters and fiber F-P filters constitute the all-fiber spectroscopic system. On the basis of the design of fiber F-P filters and its transmission analysis, the series connection of optical fiber coupler is designed as fiber optics splitter, which is not only to obtain fiber coupling of the input and output of lidar returns, and also to achieve the optimal energy output ratio at three fiber channels. Furthermore, fiber band-width filters are proposed to replace the dichroic mirrors, and the structure of fiber band-width filters and fiber F-P filters is to constitute the secondary cascade filter system, achieving the fine extraction of interested spectrum and high rejection rate to elastic scattering signals. Preliminary test results indicated that, the energy at the three output ports is %sim;5: 2.5: 2.5, and the two fiber band-width filters are provided with the central wavelength of 606nm and 660nm, the bandwidth of 20nm, and the out of band inhibition of >0.5%, which met the design requirements. The design and results will provide a reliable basis for the integration and experiment of the subsequent all-fiber spectroscopic system.

  3. New Raman Water Vapor and Temperature Lidar at JPL Table Mountain Facility: Optimization, Validations and Sonde Intercomparison

    NASA Technical Reports Server (NTRS)

    Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Walsh, D.; Howe, J.

    2006-01-01

    Jet Propulsion Laboratory currently operates lidar systems at Table Mountain Facility (TMF), California (34.4 deg N, 117.7 deg W at 2300m) and Mauna Loa Observatory (MLO), Hawaii (19.5 deg N, 155.6 deg W at 3400m) under the Network for the Detection of Atmospheric Composition Change (NDACC, formerly NDSC). To complement existing NDACC lidars at TMF, which acts as a primary site for inter-comparisons, a new water vapor and temperature lidar has begun routine operation with typically 3-4 nightly profiles per week. As water vapor is a key greenhouse gas, and is highly variable on annual and seasonal cycles, accurate long term measurements are necessary for predictions of climate change and to increase our understanding of the atmospheric processes it contributes to. The new TMF lidar has demonstrated high spatial and temporal resolution, with a high degree of optimization being achieved over the past year, although the authors believe further improvement may yet be possible. The lidar has been designed for accuracies of 5% up to 12km in the free troposphere with the capability to measure to the tropopause and lower stratosphere with accuracies of 1 ppm. It is anticipated that the data sets produced will be used for Aura validation and for incorporation into NDACC archives. Validation results for the optimized system are presented with intercomparisons using Vaisala RS92-K radiosondes.

  4. Small-footprint, waveform-resolving lidar estimation of submerged and sub-canopy topography in coastal environments

    USGS Publications Warehouse

    Nayegandhi, A.; Brock, J.C.; Wright, C.W.

    2009-01-01

    The experimental advanced airborne research lidar (EAARL) is an airborne lidar instrument designed to map near-shore submerged topography and adjacent land elevations simultaneously. This study evaluated data acquired by the EAARL system in February 2003 and March 2004 along the margins of Tampa Bay, Florida, USA, to map bare-earth elevations under a variety of vegetation types and submerged topography in shallow, turbid water conditions. A spatial filtering algorithm, known as the iterative random consensus filter (IRCF), was used to extract ground elevations from a point cloud of processed last-surface EAARL returns. Filtered data were compared with acoustic and field measurements acquired in shallow submerged (0-2.5 m water depth) and sub-canopy environments. Root mean square elevation errors (RMSEs) ranged from 10-14 cm for submerged topography to 16-20 cm for sub-canopy topography under a variety of vegetation communities. The effect of lidar sampling angles and global positioning system (GPS) satellite configuration on accuracy was investigated. Results show high RMSEs for data acquired during periods of poor satellite configuration and at large sampling angles along the edges of the lidar scan. The results presented in this study confirm the cross-environment capability of a green-wavelength, waveform-resolving lidar system, making it an ideal tool for mapping coastal environments.

  5. Single-Photon LIDAR for Vegetation Analysis

    NASA Astrophysics Data System (ADS)

    Rosette, J.; Field, C.; Nelson, R. F.; Decola, P.; Cook, B. D.; Degnan, J. J.

    2011-12-01

    Lidar is now an established and recognised technology which has been widely applied to assist forest inventory, monitoring and management. Small footprint lidar systems produce dense 'point clouds' from intercepted surfaces which, after classification of ground and vegetation returns, can be related to important forest biophysical parameters such as biomass or carbon. Within the context of NASA's Carbon Monitoring System (CMS) initiative (NASA, 2010), the prototype 100 beam, single-photon, scanning lidar, developed by Sigma Space Corporation, USA, is tested to assess the potential of this sensor for vegetation analysis. This emerging lidar technology is currently generally operated at green wavelengths (532 nm) and, like more conventional discrete return NIR lidar sensors, produces point clouds of intercepted surfaces. However, the high pulse repetition rate (20 kHz) and multibeam approach produces an unprecedented measurement rate (up to 2 Million pixels per second) and a correspondingly high point density. Furthermore, the single photon sensitivity enables the technique to be more easily extended to high altitudes and therefore larger swath widths. Additionally, CW diode laser pumping and a low laser pulse energy (6 μJ at 532 nm) favour an extended laser lifetime while the much lower energy per beamlet (~50nJ) ensures eye safety despite operating at a visible wavelength. Furthermore, the short laser pulse duration (0.7ns) allows the surface to be located with high vertical precision. Although the 532 nm green wavelength lies near the peak of the solar output, the spatial and temporal coherence of the surface returns, combined with stringent instrument specifications (small detector field of view and narrow optical band-pass filter), allow solid surfaces to be distinguished from the solar background during daylight operations. However, for extended volumetric scatterers such as tree canopies, some amount of solar noise is likely to be mixed in with valid biomass

  6. LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Clayton, T.D.; Nayegandhi, A.

    2004-01-01

    The NASA Experimental Advanced Airborne Research Lidar (EAARL), a temporal waveform-resolving, airborne, green wavelength LIDAR (light detection and ranging), is designed to measure the submeter-scale topography of shallow reef substrates. Topographic variability is a prime component of habitat complexity, an ecological factor that both expresses and controls the abundance and distribution of many reef organisms. Following the acquisition of EAARL coverage over both mid-platform patch reefs and shelf-margin bank reefs within Biscayne National Park in August 2002, EAARL-based optical indices of topographic variability were evaluated at 15 patch reef and bank reef sites. Several sites were selected to match reefs previously evaluated in situ along underwater video and belt transects. The analysis used large populations of submarine topographic transects derived from the examination of closely spaced laser spot reflections along LIDAR raster scans. At all 15 sites, each LIDAR transect was evaluated separately to determine optical rugosity (Rotran), and the average elevation difference between adjacent points (Av(??E ap)). Further, the whole-site mean and maximum values of Ro tran and Av(??Eap) for the entire population of transects at each analysis site, along with their standard deviations, were calculated. This study revealed that the greater habitat complexity of inshore patch reefs versus outer bank reefs results in relative differences in topographic complexity that can be discerned in the laser returns. Accordingly, LIDAR sensing of optical rugosity is proposed as a complementary new technique for the rapid assessment of shallow coral reefs. ?? Springer-Verlag 2004.

  7. Simulation of ultraviolet laser-induced fluorescence LIDAR for detecting bioaerosol

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yinchao; Chen, Siying; Lan, Tian; Wang, Yuzhao; Qiu, Zongjia; Kong, Weiguo; Ni, Guoqiang

    2009-11-01

    The biological warfare agent (BWA) is a kind of terrible threat during the war or raid from the terrorist. Last decade, the interest in utilizing ultraviolet laser-induced fluorescence (UV-LIF) LIDAR to detect the bioaerosol cloud has risen in order to measure the distribution of the bioaerosol particle. The UV-LIF LIDAR system can remotely detect and classify the bioaerosol agents and it is an active detecting system. As the infrared absorbing in the atmosphere is less, the range of infrared remote sensing is very far. The infrared laser at 1064 nm wavelength firstly begins to work in the UV-LIF LIDAR system and the aerosol cloud can be detected at very long range through the elastic backscattering signal from aerosol irradiated by infrared laser. But the category of aerosol can't be identified yet. If the infrared elastic backscattering level exceeds a threshold, UV laser at 355 nm wavelength will be triggered and induce the fluorescence. The excitated spectra of fluorescence can be used for discrimination of different aerosol species and particle concentration. This paper put forward for a UV-LIF LIDAR system model and the principle of the model is described summarily. Then the system parameters are presented and the simulation and analysis of the infrared elastic backscattering and laser-induced fluorescence are made, which is based on these parameters. Raman backscattering signal of Nitrogen gas in the atmosphere generally is taken to reduce measuring error, so the article also simulates this Raman backscatter signal at 387 nm wavelength. The studies above may provide some valuable instructions to the design of a real UV-LIF LIDAR system.

  8. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  9. Development of a 266 nm Raman lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Tsuda, T.; Yabuki, M.; Liu, Y.

    2014-12-01

    It is projected that localized extreme weather events could increase due to the effects of global warming, resulting in severe weather disasters, such as a torrential rain, floods, and so on. Understanding water vapor's behavior in the atmosphere is essen- tial to understand a fundamental mechanism of these weather events. Therefore, continuous monitoring system to measure the atmospheric water vapor with good spatio-temporal resolution is required. We have developed several water vapor Raman lidar systems employing the laser wavelengths of 355 and 532 nm. However, the signal-to-noise ratio of the Raman lidar strongly depends on the sky background because of the detection of the weak inelastic scattering of light by molecules. Therefore, these systems were mainly used during nighttime. Hence, we have newly developed a water vapor Raman lidar using a quadrupled Nd:YAG laser at a wavelength of 266 nm. This wavelength is in the ultraviolet (UV) range below 300 nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of having no daytime solar background radiation in the system. The lidar is equipped with a 25 cm receiving telescope and is used for measuring the light separated into an elastic backscatter signal and vibrational Raman signals of nitrogen and water vapor at wavelengths of 266.1, 283.6, and 294.6 nm, respectively. This system can be used for continuous water vapor measurements in the lower troposphere. This study introduces the design of the UV lidar system and shows the preliminary results of water vapor profiles.

  10. Laser amplifier development for IPDA Lidar measurements of CO2 from space

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander

    2015-02-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to better understand the global carbon cycle and the CO2 exchange between land, oceans and atmosphere. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar as a candidate for the NASA's planned ASCENDS mission to allow global measurements of atmospheric CO2 column densities from space. Our group has developed and demonstrated an airborne IPDA lidar for this purpose. It uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), and atmospheric backscatter profiles in the same path. In the airborne lidar, both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space version of this lidar must have a much larger laser power-telescope area product to compensate for the signal losses in the ~40x longer range. An analysis of signal to noise ratios indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, that 1.5 to 2 mJ laser energy is required to attain the needed measurement precision. To meet the laser energy requirements we have pursued two parallel power-scaling approaches for the space laser. These include a single-amplifier approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA) and a parallel amplifier approach using multiple (typically 8) large mode area (LMA) fiber amplifiers. In this paper we summarize the laser amplifier design approaches and preliminary results.

  11. Correcting for GPS Multipath Error in LIDAR Surveys Using Crossover Analysis

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Bills, B. G.; Fricker, H. A.; Minster, J. B.

    2003-12-01

    The quality of the range measurement from an airborne Light Detection and Ranging (LIDAR) survey is largely dependent on the accuracy of the GPS trajectory for the aircraft. GPS elevation error - which today is largely due to multipath effects at the aircraft and the GPS base station - contributes a major portion of the LIDAR vertical error budget. The usual practice of quoting an RMS value for the GPS component of the error budget implies that GPS noise is Gaussian, yet the true nature of the noise signal is time-varying with significant power at long periods. GPS noise with a 3-cm RMS can easily have more than 10 cm of total variability on a time scale of tens of minutes to several hours. We show examples from an airborne LIDAR survey over the open-pit Hector Mine where repeated flyovers of an area used for ground truth revealed large elevation biases between passes that could not be resolved by adjusting the (non-GPS) parameters of the LIDAR system. As part of the post-processing of a large kinematic GPS survey of the salar de Uyuni, Bolivia, we have developed an algorithm to correct time-varying GPS error using elevation mismatches at crossovers between vehicle paths. The survey was originally designed to incorporate a large number of crossovers for the purpose of determining survey repeatability, and we were later able to exploit the crossover difference observations to solve for a model of the actual error signal generating those differences. We give results from tests with synthetic noise and topography data indicating that this method removes more than two-thirds of the added noise from the topographic signal, and we show the excellent results obtained for the salar de Uyuni survey data. We believe that airborne LIDAR surveys incorporating crossovers at regular intervals can also benefit from the application of this algorithm.

  12. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  13. Pulse-compression ghost imaging lidar via coherent detection

    NASA Astrophysics Data System (ADS)

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-01

    Ghost imaging (GI) lidar, as a novel remote sensing technique,has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which can dramatically improve the detection sensitivity and detection range.

  14. Analytical Solution of the Two-Frequency Lidar Inversion Technique

    NASA Astrophysics Data System (ADS)

    Ackermann, Jrg

    1999-12-01

    A two-frequency lidar inversion on the assumptions of a range-independent relationship between the extinction coefficients of the two considered lidar wavelengths and of constant extinction-to-backscatter ratios was originally developed by Potter Appl. Opt. 26, 1250 (1987) . It is an iterative procedure to retrieve the boundary value for solution of the single-scatter lidar equation. This boundary value is expressed by the aerosol transmission along the evaluated lidar path. Recently, Kunz Appl. Opt. 38, 1015 (1999) stated that there is not enough information in the lidar signals of two wavelengths to obtain a unique solution for the boundary value and hence for the aerosol extinction profile. It is shown that a unique solution of the two-frequency lidar inversion exists, for which an analytical expression of the boundary value and, hence, the aerosol extinction profile, is given.

  15. ASPRS research on quantifying the geometric quality of lidar data

    USGS Publications Warehouse

    Sampath, Aparajithan; Heidemann, Hans K.; Stensaas, Gregory L.; Christopherson, Jon B.

    2014-01-01

    The ASPRS Lidar Cal/Val (calibration/validation) Working Group led by the US Geological Survey (USGS) to establish “Guidelines on Geometric Accuracy and Quality of Lidar Data” has made excellent progress via regular teleconferences and meetings. The group is focused on identifying data quality metrics and establishing a set of guidelines for quantifying the quality of lidar data. The working group has defined and agreed on lidar Data Quality Measures (DQMs) to be used for this purpose. The DQMs are envisaged as the first ever consistent way of checking lidar data. It is expected that these metrics will be used as standard methods for quantifying the geometric quality of lidar data. The goal of this article is to communicate these developments to the readers and the larger geospatial community and invite them to participate in the process.  

  16. Hardware Accelerated Compression of LIDAR Data Using FPGA Devices

    PubMed Central

    Biasizzo, Anton; Novak, Franc

    2013-01-01

    Airborne Light Detection and Ranging (LIDAR) has become a mainstream technology for terrain data acquisition and mapping. High sampling density of LIDAR enables the acquisition of high details of the terrain, but on the other hand, it results in a vast amount of gathered data, which requires huge storage space as well as substantial processing effort. The data are usually stored in the LAS format which has become the de facto standard for LIDAR data storage and exchange. In the paper, a hardware accelerated compression of LIDAR data is presented. The compression and decompression of LIDAR data is performed by a dedicated FPGA-based circuit and interfaced to the computer via a PCI-E general bus. The hardware compressor consists of three modules: LIDAR data predictor, variable length coder, and arithmetic coder. Hardware compression is considerably faster than software compression, while it also alleviates the processor load. PMID:23673680

  17. Role of Lidar Technology in Future NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2008-01-01

    The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

  18. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  19. Hardware accelerated compression of LIDAR data using FPGA devices.

    PubMed

    Biasizzo, Anton; Novak, Franc

    2013-05-14

    Airborne Light Detection and Ranging (LIDAR) has become a mainstream technology for terrain data acquisition and mapping. High sampling density of LIDAR enables the acquisition of high details of the terrain, but on the other hand, it results in a vast amount of gathered data, which requires huge storage space as well as substantial processing effort. The data are usually stored in the LAS format which has become the de facto standard for LIDAR data storage and exchange. In the paper, a hardware accelerated compression of LIDAR data is presented. The compression and decompression of LIDAR data is performed by a dedicated FPGA-based circuit and interfaced to the computer via a PCI-E general bus. The hardware compressor consists of three modules: LIDAR data predictor, variable length coder, and arithmetic coder. Hardware compression is considerably faster than software compression, while it also alleviates the processor load.

  20. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.

    PubMed

    Saito, Yasunori; Takano, Kengo; Kobayashi, Fumitoshi; Kobayashi, Kazuki; Park, Ho-Dong

    2014-10-20

    We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization.

  1. Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the SGP CART site

    NASA Astrophysics Data System (ADS)

    Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the SGP CART (southern great plains cloud and radiation testbed) site. Research conducted at several laboratories, including our work in a previous ARM instrument development project, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are in the final stages of building a ruggedized Raman lidar system that will reside permanently at the CART site, and that is computer automated to reduce the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar will provide quantitative characterization of aerosols and clouds, including depolarization measurements for particle phase studies.

  2. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  3. Estimating field-of-view loss in bathymetric lidar: application to large-scale simulations.

    PubMed

    Carr, Domenic; Tuell, Grady

    2014-07-20

    When designing a bathymetric lidar, it is important to study simulated waveforms for various combinations of system and environmental parameters. To predict a system's ranging accuracy, it is often necessary to analyze thousands of waveforms. In these large-scale simulations, estimating field-of-view loss is a challenge because the calculation is complex and computationally intensive. This paper describes a new procedure for quickly approximating this loss, and illustrates how it can be used to efficiently predict ranging accuracy.

  4. Development of photodetectors for recording lidar signals in the photon counting and analog modes

    NASA Astrophysics Data System (ADS)

    Slesar, A. S.; Chaikovskii, A. P.; Denisov, S. V.; Korol, M. M.; Osipenko, F. P.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Novoselov, M. M.

    2015-11-01

    A number of unified photodetector modules providing for recording lidar signals in the wavelength range from 0.26 to 1.6 μm in the modes of analog signals and photon counting are developed on the basis of photomultiplier tubes and avalanche photodiodes. The software is created for control of the photodetector modules, as well as the test bench for measuring their characteristics is designed.

  5. Full waveform hyperspectral LiDAR for terrestrial laser scanning.

    PubMed

    Hakala, Teemu; Suomalainen, Juha; Kaasalainen, Sanna; Chen, Yuwei

    2012-03-26

    We present the design of a full waveform hyperspectral light detection and ranging (LiDAR) and the first demonstrations of its applications in remote sensing. The novel instrument produces a 3D point cloud with spectral backscattered reflectance data. This concept has a significant impact on remote sensing and other fields where target 3D detection and identification is crucial, such as civil engineering, cultural heritage, material processing, or geomorphological studies. As both the geometry and spectral information on the target are available from a single measurement, this technology will extend the scope of imaging spectroscopy into spectral 3D sensing. To demonstrate the potential of the instrument in the remote sensing of vegetation, 3D point clouds with backscattered reflectance and spectral indices are presented for a specimen of Norway spruce.

  6. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  7. Injection seeded single mode alexandrite ring laser for lidar applications

    NASA Technical Reports Server (NTRS)

    Lee, H. Sang; Notari, Anthony

    1992-01-01

    Along with many spectroscopic applications, atmospheric lidar measurements require a tunable, narrow band laser with a very high degree of spectral purity. A standing wave pulsed alexandrite laser tuned by injection seeding with an AlGaAs laser diode has demonstrated high stability. The standing wave cavity, however, poses several difficulties in light of the single mode operation and efficient seeding beam into the cavity. In order to overcome these problems and to operate the high power alexandrite laser in a single axial mode with a high spectral purity, a new ring laser system is being developed. The design features of the ring laser and some measurements of the laser characteristics are presented.

  8. Gas dispersion measurements using a mobile Raman lidar system

    NASA Technical Reports Server (NTRS)

    Houston, J. D.; Brown, D. R.

    1986-01-01

    The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.

  9. Single photon lidar demonstrator for asteroid rendezvous missions

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Djurovic, Goran

    2015-01-01

    We present compact single photon lidar demonstrator dedicated for asteroid rendezvous missions. The instrument provides crucial data on altitude and terrain profile for altitudes exceeding 5km with a precision of less than 10 cm fulfilling the Rayleigh criterion. Transmitter and receiver optics designs are discussed, control and processing electronics based on a single rad-hard compatible FPGA (Field Programmable Gate Array) is analyzed. The FPGA electronics subsystems are TDC (Time-to-Digit Converter), laser trigger pulse generator and gate generator. Indoor calibration procedures of the whole demonstrator chain are proposed and evaluated. The calibration covers positioning of receiver and transmitter optics related to detector and laser, aligning of transmitter and receiver optical common paths. The retrieving strategy of terrain elevation profile is proposed and via indoor tests validated. Theory for surface slope and scanning is established, simulation and measurement results are compared and discussed.

  10. Status of Laser/Lidar Working Group Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Gentry, Bruce M.

    2006-01-01

    This viewgraph presentation reviews the status of the development of the requirements by the Laser/Lidar working group. Included in the presentation is another viewgraph report on the NASA Earth Science Technology Office (ESTO) Laser/Lidar working group, by the chairperson of the working group. Some of the uses of Laser and Lidar in earth sciences are reviewed and a roadmap for the future use of the technology is included.

  11. Feasibility Study of Compressive Sensing Underwater Imaging Lidar

    DTIC Science & Technology

    2014-03-28

    Compressive Sensing Underwater Imaging Lidar 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-12-1-0921 5c. PROGRAM ELEMENT NUMBER 6...Feasibility study of Compressive Sensing Underwater Imaging Lidar Bing Ouyang phone: (772) 242-2288 fax : (772) 242-2257 email: bouvang@hboi.fau.edu...study of the frame based Compressive Sensing concept. ■ Another related project "Airborne Compressive Sensing Topographic Lidar " is being

  12. Lidar vegetation mapping in national parks: Gulf Coast Network

    USGS Publications Warehouse

    Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha

    2011-01-01

    Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.

  13. Extracting Hidden Trails and Roads Under Canopy Using LIDAR

    DTIC Science & Technology

    2008-12-01

    instrument uses a green laser and a raster scanning mechanism to acquire LIDAR data while a GPS base station locates the position of the aircraft...discrete-return LIDAR .............................7 Figure 4. Maiman’s ruby laser (From: http://laserstars.org/history/ruby.html) ................8...24 Figure 22. Laser radar beams light up the sky on a winter’s night at the LIDAR Research Laboratory in Chatanika, Alaska as part of an

  14. The NASA Micro-Pulse Lidar Network (MPLNET): Co-location of Lidars with AERONET

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Holben, Brent; Tsay, Si-Chee

    2004-01-01

    We present the formation of a global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long-term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation gods. Red-time data products (next-day) are available, and include Level 1 daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction provides at times co-incident with AERONET observations. Testing of our quality assured aerosol extinction products, Level 2, is near completion and data will soon be available. Level 3 products, continuous daylight aerosol extinction profiles, are under development and testing has begun. An overview of h4PL" will be presented. Successful methods of merging standardized lidar operations with AERONET will also be discussed, with the first 4 years of MPLNET results serving as an example.

  15. Recent development of hyperspectral LiDAR using supercontinuum laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Li, Chuanrong; Zhou, Mei; Zhang, Huijing; He, Wenjing; Li, Wei; Qiu, Yuanyuan

    2016-10-01

    Hyperspectral Light Detection And Ranging (Hyperspectral LiDAR), a recently developed technique, combines the advantages of the LiDAR and hyperspectral imaging and has been attractive for many applications. Supercontinuum laser (SC laser), a rapidly developing technique offers hyperspectral LiDAR a suitable broadband laser source and makes hyperspectral Lidar become an installation from a theory. In this paper, the recent research and progressing of the hyperspectral LiDAR are reviewed. The hyperspectral LiDAR has been researched in theory, prototype system, instrument, and application experiment. However, the pulse energy of the SC laser is low so that the range of the hyperspectral LiDAR is limited. Moreover, considering the characteristics of sensors and A/D converter, in order to obtain the full waveform of the echo, the repetition rate and the pulse width of the SC laser needs to be limited. Recently, improving the detection ability of hyperspectral LiDAR, especially improving the detection range, is a main research area. A higher energy pulse SC laser, a more sensitive sensor, or some algorithms are applied in hyperspectral LiDAR to improve the detection distance from 12 m to 1.5 km. At present, a lot of research has been focused on this novel technology which would be applied in more applications.

  16. An investigation of mountain waves with lidar observations.

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Collis, R. T. H.; Lawrence, J. D., Jr.

    1973-01-01

    In March and April of 1969 and 1970, lidar (laser radar) observations of the atmospheric structure were made in the lee of the Sierra Nevada during the occurrence of mountain lee waves. Rawinsonde ascents and, on some occasions, research aircraft flights supported the lidar observations. The objective of the program was to explore the applicability of the lidar technique to atmospheric turbulence detection. The observations demonstrate that a ground-based lidar can delineate significant features of the atmospheric flow pattern by monitoring echoes from concentrations of particulate matter that characterize the airflow structure in the form of either visible or subvisible clouds and dust.

  17. DESDynI Lidar for Solid Earth Applications

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Hofton, Michelle; Bruhn, Ronald; Lutchke, Scott; Blair, Bryan

    2011-01-01

    As part of the NASA's DESDynI mission, global elevation profiles from contiguous 25 m footprint Lidar measurements will be made. Here we present results of a performance simulation of a single pass of the multi-beam Lidar instrument over uplifted marine terraces in southern Alaska. The significance of the Lidar simulations is that surface topography would be captured at sufficient resolution for mapping uplifted terraces features but it will be hard to discern I-2m topographic change over features less than tens of meters in width. Since Lidar would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m OEM.

  18. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  19. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible.

  20. Gluing for Raman lidar systems using the lamp mapping technique.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  1. Polarization lidar measurements of honeybees for locating buried landmines

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Seldomridge, Nathan L.; Dunkle, Dustin L.; Nugent, Paul W.; Spangler, Lee H.; Churnside, James H.; Wilson, James W.; Bromenshenk, Jerry J.; Henderson, Colin B.

    2005-08-01

    A polarization-sensitive lidar was used to detect honeybees trained to locate buried landmines by smell. Lidar measurements of bee location agree reasonably well with maps of chemical plume strength and bee density determined by visual and video counts, indicating that the bees are preferentially located near the explosives and that the lidar identifies the locations of higher bee concentration. The co-polarized lidar backscatter signal is more effective than the cross-polarized signal for bee detection. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to approximately thirty percent for bee bodies.

  2. Lidar In-Space Technology Experiment (LITE) - NASA's first in-space lidar system for atmospheric research

    NASA Technical Reports Server (NTRS)

    Couch, Richard H.; Rowland, Carroll W.; Ellis, K. Scott; Blythe, Michael P.; Regan, Curtis P.; Koch, Michael R.; Antill, Charles W.; Kitchen, Wayne L.; Cox, John W.; Delorme, Joseph F.

    1991-01-01

    Engineering aspects are presented of the design, fabrication, integration, and operation of the Lidar In-Space Technology Experiment (LITE) for flight aboard the Space Shuttle in mid-1993. The LITE system is being developed by NASA/Langley Research Center and will be used to detect stratospheric and tropospheric aerosols, probe the planetary boundary layer, measure cloud top heights, and measure atmospheric temperature and density in the 10- to 40-km range. The system consists of a nominal telescope receiver 1 meter in diameter, a three-color Nd:YAG laser transmitter, and the system electronics. The system makes extensive use of Space Shuttle resources for electrical power, thermal control, and command and data handling.

  3. Solar-blind Raman lidar, phase 2

    NASA Astrophysics Data System (ADS)

    Salik, A.

    1983-06-01

    This document describes the progress of the NADC Atmospheric Lidar Program funded by the Naval Environmental Prediction Research Facility, Monterey, California, under Program Element 62759N, Project F52553. The objective of this effort is to theoretically determine and experimentally verify the ability of a solar-blind lidar system to remotely measure profiles of atmospheric properties critical to naval operations. The properties chosen for investigation are water vapor concentration, temperature and transmission; with the acquisition of water vapor profiles as the primary goal. The theoretical feasibility studies have been thoroughly documented via publication in a professional journal, a technical report and a text on atmospheric water vapor. In addition, experimental results using a KrF excimer laser were presented at the winter 1983 topical meeting of the Optical Society of America. These results are presented in this document.

  4. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  5. Lidar Development at SRI - The First Decade

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1973-01-01

    On 22 July 1963 the first lidar observations of the lower atmosphere were made at SRI with a pulsed ruby system developed by a team led by the late Myron G. H. Ligda. Since that time SRI has carried out a continuous program of exploration and development of the technique, primarily related to applications in atmospheric research in the troposphere. In this frankly personal retrospective, some of the highlights of this ten years are reviewed, both in terms of progress made and difficulties experienced. Topics discussed will include the technological aspects of the lidar systems used, the range of applications identified and explored and the various forms of information recovery and display that have been developed.

  6. Turbulence-noise in infrared lidar sensing

    NASA Astrophysics Data System (ADS)

    Ferdinandov, E. S.; Tsanev, V. I.; Todorov, B. O.

    1995-01-01

    An analytical description of the laser location (lidar) systems for investigation of two-dimensional distributions of the scattering properties of aerosol fields (natural or anthropogenic) in the infrared range has been made on the basis of the heuristic concept for the influence of the atmospheric turbulence (AT) on the transverse spatial structure of optical radiations. It has been shown that the influence of AT on the information carried by the lidar images is negative. It acts along the path "laser-sounded aerosol layer" only, i.e. when there is utter initial transverse coherency of the optical radiation. Explicit results for the stratifications of the coherency radii, the dispersion and contrast of the transverse spatial fluctuations of the intensity, the averaging action of the apertures of matrix photodetector elements on the corresponding radiant fluxes' turbulent fluctuations and the "signal-to-turbulence-noise" ratio have been derived.

  7. Three-dimensional elastic lidar winds

    SciTech Connect

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  8. The Zugspitze Raman Lidar: System Testing

    NASA Astrophysics Data System (ADS)

    Höveler, Katharina; Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    A high-power Raman lidar system has been installed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m a.s.l., at the side of the existing wide-range differrential-absorption lidar. An industrial XeCl laser was modified for polarized single-line operation at an average power of about 175 W. This high power and a 1.5-m-diameter receiver are expected to allow us to extend the operating range for water-vapour sounding to more than 25 km, at an accuracy level of the order of 10 %. In addition, temperature measurements in the free troposphere and to altitudes beyond 80 km are planned. The system is currently thoroughly tested and exhibits an excellent performance up to the lowermost stratosphere. We expect that results for higher altitudes can be presented at the meeting.

  9. Miniature aerosol lidar for automated airborne application

    NASA Astrophysics Data System (ADS)

    Matthey, Renaud; Mitev, Valentin; Mileti, Gaetano; Makarov, Vladislav S.; Turin, Alexander V.; Morandi, Marco; Santacesaria, Vincenzo

    2000-09-01

    The Russian Mjasishchev 55 (M-55) <> high altitude aircraft is dedicated to atmospheric science research. It carries onboard a set of mutually complementary instruments for in- situ and remote sensing. The Green Miniature Aerosol Lidar (GMAL) has been developed to operate automatically on this platform. It is a short-range, zenith-looking, depolarization elastic-backscatter lidar based on a 532 nm micro-chip Nd-YAG laser. Compact, low-power consuming, it stands in a 27-litre isolating and warmed hermetic box. The device participated successfully to an extended test campaign in Italy during December 1998 and January 1999, and to the APE/THESEO campaign in the Indian Ocean during February-March 1999. It also showed capabilities for unattended measurement of the low troposphere from the ground. Description of the instrument and preliminary results are presented.

  10. Alexandrite laser source for atmospheric lidar measurements

    NASA Technical Reports Server (NTRS)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  11. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  12. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.

    1990-01-01

    Research is described on several aspects of stimulated Raman scattering (SRS) of 532 nm laser light in H2, D2, and CH4. The goals of this work are to develop a more thorough understanding of nonlinear processes involving the Raman effect and four-wave mixing, and to find the best way to generate radiation at several wavelengths simultaneously, for lidar applications. Issues addressed are conversion efficiency, optimization of operating conditions (gas pressure, confocal parameter, etc.) and the distribution of output pulse energy over three Stokes components, the first anti-Stokes component, and the zeroth order (pump) wavelength. The described research and results constitute another step in the development of SRS applications for NASA's atmospheric lidar program.

  13. Effective Lidar Ratios of Dense Dust Aerosol Layers over North Africa Observed by the CALIPSO Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Winker, D. M.; Omar, A. H.; Vaughan, M.; Trepte, C. R.; Hu, Y.; Hostetler, C. A.; Sun, W.; Lin, B.

    2009-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, a joint US and French mission, was launched three years ago to provide new insight into the role that clouds and aerosols play in regulating Earth's weather, climate, and air quality. A key instrument on board the CALIPSO payload is a two-wavelength, polarization-sensitive backscatter lidar. With its capabilities of depolarization ratio measurement and high resolution profiling, the CALIPSO lidar provides a unique opportunity to study the dust aerosol globally. Currently, a cloud and aerosol discrimination (CAD) algorithm that incorporates five-dimensional probability distribution function (5D-PDF) is being developed for implementation in future data releases. This new 5D-PDF approach allows nearly unambiguous identification of dense dust layers over/near their source regions and therefore enables the study of these layers using a large amount of the CALIPSO data. Lidar ratio (i.e., extinction-to-backscatter ratio) is an intrinsic optical property of aerosols and a key parameter necessary in the lidar signal inversion to retrieve profiles of aerosol extinction and backscatter coefficients, which are two primary products of the CALIPSO level 2 data. This parameter is usually selected in the CALIPSO lidar level 2 data processing based on the aerosol type identified. (Six types of aerosols have been modeled: dust, polluted dust, marine, continental, polluted continental, and smoke.) As more data is being collected by the CALIPSO lidar, validation studies with the CALIPSO measurements are being performed and are now becoming available. For opaque dust layers, the effective lidar ratio (the product of lidar ratio and multiple scattering factor) can be determined easily from integrated attenuated backscatter over the layer top and apparent base. We have performed an extensive analysis based on the first two and a half years (June 2006 - December 2008) of the CALIPSO lidar nighttime

  14. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    SciTech Connect

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-09

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  15. Doppler Lidar Wind Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  16. Raman-Augmented Stratospheric-Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart

    1994-01-01

    Differential-absorption lidar (DIAL) system measures concentration of ozone in stratosphere augmented with subsystem measuring Raman scattering from nitrogen. One of number of DIAL systems used in long-term monitoring of stratospheric ozone. Raman scattering from nitrogen provides data to correct for effects of aerosols. Channels at wavelengths of 332 and 385 nm added to DIAL receiver to measure Raman backscattering from nitrogen molecules in stratosphere. Data-acquisition electronics sample photon counts at a rate of 250 MHz.

  17. Decadal cirrus climatology with lidar at midlatitude

    NASA Astrophysics Data System (ADS)

    Hoareau, C.; Keckhut, P.; Baray, J. l.

    2012-04-01

    High-altitude clouds, like cirrus, have been identified as one important regulator of the radiance balance of the earth-atmosphere system (Twomey, 1991), and constitute about 30% of the earth's surface cover (Liou, 1986). Through radiation effects, these clouds are likely to modulate climate system on all scales and are important regulators of the radiative balance of the atmosphere despite their optical depth (Liou et al., 2002). Currently, role of cirrus clouds in the regulation of water vapor as well as the vertical transport of water vapor and ice particles in the vicinity of the tropopause is not perfectly known (Corti et al., 2008). The processes involved are debated (Kiemle et al., 2008) and different formation processes could lead to different cloud characteristics that require to be identified before specific statistical analysis (Keckhut et al., 2006). Lidar measurements provide accurate information on the vertical distribution of cirrus and, therefore, are now used to develop highly resolved cirrus database. A first climatology of cirrus clouds at Midlatitude from lidar measurements has shown cirrus clouds were observed in half of the time (~54%) with subvisible cirrus clouds (SVC) events composing ~23% of the occurrence (Goldfarb et al., 2001). However no distinction according the altitude have been investigated although altitude range and vertical extension of cirrus clouds are critical parameters for the radiative balance of the atmosphere. In a more recent study, a statistical multivariate analysis of one year lidar data acquired in south of France have been realized in order to determine distinct classes of cirrus showing three different classes (Keckhut et al. 2006). Similar results according the classification have been observed in this present study based on a climatology constructed over the period 1996-2007 using a high resolution Rayleigh-Mie-Raman lidar. As the database is long enough, the evolution of cirrus clouds occurrence has also been

  18. Use of LOGIC to support lidar operations

    NASA Astrophysics Data System (ADS)

    Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd

    1999-10-01

    The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.

  19. Versatile mobile lidar system for environmental monitoring.

    PubMed

    Weibring, Petter; Edner, Hans; Svanberg, Sune

    2003-06-20

    A mobile lidar (light detection and ranging) system for environmental monitoring is described. The optical and electronic systems are housed in a truck with a retractable rooftop transmission and receiving mirror, connected to a 40-cm-diameter vertically looking telescope. Two injection-seeded Nd:YAG lasers are employed in connection with an optical parametric oscillator-optical parametric amplification transmitter, allowing deep-UV to mid-IR wavelengths to be generated. Fast switching that employs piezoelectric drivers allows multiwavelength differential absorption lidar for simultaneous measurements of several spectrally overlapping atmospheric species. The system can also be used in an imaging multispectral laser-induced fluorescence mode on solid targets. Advanced LabVIEW computer control and multivariate data processing render the system versatile for a multitude of measuring tasks. We illustrate the monitoring of industrial atmospheric mercury and hydrocarbon emissions, volcanic sulfur dioxide plume mapping, fluorescence lidar probing of seawater, and multispectral fluorescence imaging of the facades of a historical monument.

  20. Experimental Evaluation of LIDAR Data Visualization Schemes

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lohan, B.

    2012-07-01

    LiDAR (Light Detection and Ranging) has attained the status of an industry standard method of data collection for gathering three dimensional topographic information. Datasets captured through LiDAR are dense, redundant and are perceivable from multiple directions, which is unlike other geospatial datasets collected through conventional methods. This three dimensional information has triggered an interest in the scientific community to develop methods for visualizing LiDAR datasets and value added products. Elementary schemes of visualization use point clouds with intensity or colour, triangulation and tetrahedralization based terrain models draped with texture. Newer methods use feature extraction either through the process of classification or segmentation. In this paper, the authors have conducted a visualization experience survey where 60 participants respond to a questionnaire. The questionnaire poses six different questions on the qualities of feature perception and depth for 12 visualization schemes. The answers to these questions are obtained on a scale of 1 to 10. Results are thus presented using the non-parametric Friedman's test, using post-hoc analysis for hypothetically ranking the visualization schemes based on the rating received and finally confirming the rankings through the Page's trend test. Results show that a heuristic based visualization scheme, which has been developed by Ghosh and Lohani (2011) performs the best in terms of feature and depth perception.