Science.gov

Sample records for 532-nm fiber laser

  1. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    NASA Astrophysics Data System (ADS)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  2. Ageing of optical components under laser irradiation at 532nm

    NASA Astrophysics Data System (ADS)

    Becker, S.; Delrive, L.; Bouchut, P.; Andre, B.; Geffraye, F.

    2005-09-01

    The pulsed Laser Induced Damage Threshold (LIDT) of optical components usually reaches several hundreds of MW/cm2. When exposed to laser power several order of magnitude below their LIDT, the optical component lifetime is, by default, considered infinite. Under specific conditions, the accumulation of laser pulses may lead to a contamination of the surface and a degradation of its optical properties and LIDT. In the first order, these phenomena depend on the experimental conditions such as the irradiation time, the laser power, and the environment. In order to better understand the physics emphasizing this degradation, we developed an experimental cell with an in-situ spectroscopic ellipsometry diagnostic. The dry-pumped cell sheltering the sample is associated with a mass spectrometer that enables us to follow the environmental conditions in which we experiment the ageing. Anti-reflection coatings on fused silica were tested under 10 kHz-532 nm laser ageing. We present first results of degradation obtained in these conditions.

  3. The Double-ended 750 nm and 532 nm Laser Output from PPLN-FWM

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Yu-Xiang; Yao, Jian-Quan; Guo, Ling; Wang, Zhuo; Han, Sha-Sha; Zhang, Cui-Ying; Zhong, Kai

    2013-06-01

    We investigate 750 nm and 532 nm dual-wavelength laser for applications in the internet of things. A kind of optical maser is developed, in which the semiconductor module outputs the 808 nm pump light and then it goes into a double-clad Nd3+ :YAG monocrystal optical fiber through the intermediate coupler and forms a 1064 nm laser. The laser outputs come from both left and right terminals. In the right branch, the laser goes into the right cycle polarization LinNbO3 (PPLN) crystal through the right coupler, produces the optical parametric oscillation and forms the signal light λ1 (1500 nm), the idle frequency light λ2 (3660.55 nm), and the second-harmonic of the signal light λ3 (750 nm). These three kinds of light and the pump light λ4 together form the frequency matching and the quasi-phase matching, then the four-wave mixing occurs to create the high-gain light at wavelength 750 nm. Meanwhile, in the left branch, the laser goes into the left PPLN crystal through the left coupler, engenders frequency doubling and forms the light at wavelength 532 nm. That is to say, the optical maser provides 750 nm and 532 nm dual-wavelength laser outputting from two terminals, which is workable.

  4. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.

    PubMed

    Li, Hao; Chen, Sijing; You, Lixing; Meng, Wengdong; Wu, Zhibo; Zhang, Zhongping; Tang, Kai; Zhang, Lu; Zhang, Weijun; Yang, Xiaoyan; Liu, Xiaoyu; Wang, Zhen; Xie, Xiaoming

    2016-02-22

    Superconducting nanowire single-photon detectors (SNSPDs) at a wavelength of 532 nm were designed and fabricated aiming to satellite laser ranging (SLR) applications. The NbN SNSPDs were fabricated on one-dimensional photonic crystals with a sensitive-area diameter of 42 μm. The devices were coupled with multimode fiber (ϕ = 50 μm) and exhibited a maximum system detection efficiency of 75% at an extremely low dark count rate of <0.1 Hz. An SLR experiment using an SNSPD at a wavelength of 532 nm was successfully demonstrated. The results showed a depth ranging with a precision of ~8.0 mm for the target satellite LARES, which is ~3,000 km away from the ground ranging station at the Sheshan Observatory. PMID:26907010

  5. Interaction between high power 532nm laser and prostatic tissue: in vivo evaluation for laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Malek, Reza; Kang, Hyun Wook; Peng, Steven Yihlih; Stinson, Douglas; Beck, Michael; Koullick, Ed

    2011-03-01

    A previous in vitro study demonstrated that 180W was the optimal power to reduce photoselective vaporization of the prostate (PVP) time for larger prostate glands. In this study, we investigated anatomic and histologic outcomes and ablation parameters of 180W laser performed with a new 750-μm side-firing fiber in a survival study of living canines. Eight male canines underwent anterograde PVP with the 180W 532-nm laser. Four each animals were euthanized 3 hours or 8 weeks postoperatively. Prostates were measured and histologically analyzed after hematoxylin and eosin (H&E), triphenyltetrazolium chloride (TTC), or Gomori trichrome (GT) staining. Compared to the previous 120W laser, PVP with the 180W laser bloodlessly created a 76% larger cavity (mean 11.8 vs. 6.7 cm3; p=0.014) and ablated tissue at a 77% higher rate (mean 2.3 vs. 1.3 cm3/min; p=0.03) while H&E- and TTC-staining demonstrated its 33% thicker mean coagulation zone (2.0+/-0.4 vs. 1.5+/-0.3 mm). H&E-stained cross-sectional prostatic tissue specimens from the 3-hour (acute) group showed histologic evolution of concentric non-viable coagulation zone, partially viable hyperemic transition zone of repair, and viable non-treated zone. H&E- and GT-stained specimens from the 8-week (chronic) group revealed healed circumferentially epithelialized, non-edematous, prostatic urethral channels with no increase in collagen in the subjacent prostatic tissue vis-á-vis the normal control. Our canine study demonstrates that 180W 532-nm laser PVP with its new fiber has a significantly higher ablation rate with a more hemostatic coagulation zone, but equally favorable tissue interaction and healing, compared with our previous 120W canine study.

  6. Interaction between high power 532nm laser and prostatic tissue: in vitro evaluation for laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Peng, Yihlih Steven; Stinson, Douglas

    2011-03-01

    Photoselective vaporization of the prostate (PVP) has been developed for effective treatment of obstructive benign prostatic hyperplasia. To maximize tissue ablation for large prostate gland, identifying the optimal power level for PVP is still necessary. We investigated the effect of various power levels on in vitro bovine prostate ablation with a 532-nm laser system. A custom-made 532-nm laser was employed to provide various power levels, delivered through a newly designed 750-μm side-firing fiber. Tissue ablation efficiency was evaluated in terms of power (P; 120~200W), treatment speed of fiber (TS; 2~8 mm/s), and working distance between fiber and tissue surface (WD; 1~5 mm). Coagulation depth was also estimated macroscopically and histologically (H&E) at various Ps. Both 180 and 200W yielded comparable ablated volume (104.3+/-24.7 vs. 104.1+/-23.9 mm3 at TS=4 mm/s and WD=2 mm; p=0.99); thus, 180W was identified as the optimal power to maximize tissue ablation, by removing tissue up to 80% faster than 120W (41.7+/-9.9 vs. 23.2+/-3.4 mm3/s at TS=4 mm/s and WD=2 mm; p<0.005). Tissue ablation was maximized at TS=4 mm/s and ablated equally efficiently at up to 3 mm WD (104.5+/-16.7 mm3 for WD=1 mm vs. 93.4+/-7.4 mm3 for WD=3 mm at 180W; p=0.33). The mean thickness of coagulation zone for 180W was 20% thicker than that for 120W (1.31+/-0.17 vs. 1.09+/-0.16 mm; p<0.005). The current in vitro study demonstrated that 180W was the optimal power to maximize tissue ablation efficiency with enhanced coagulation characteristics.

  7. Laser enhancements for Lunar Laser Ranging at 532 nm

    NASA Astrophysics Data System (ADS)

    Martinot-Lagarde, G.; Aimar, M.; Albanèse, D.; Courde, C.; Exertier, P.; Fienga, A.; Mariey, H.; Métris, G.; Rigard-Cerison, R.; Samain, E.; Torre, J.-M.; Viot, H.

    This article exposes how we improved (by more than a factor of four) the green Lunar Laser Ranging instrumental sensitivity of the French telemetric station of the "Observatoire de la Côte d'Azur" in 2012. The primary reason for this success is the doubling of the pulse energy of our green Nd:YAG laser, reaching now 200 mJ at 10 Hz. This first gain is due to the replacement (inside our oscillator cavity) of the dye cell with a CR4+:YAG crystal saturable absorber. Complementary spatial beam profile improvements are also described, regarding polarisation, flashlamp geometry and specific lens arrangements (to exclude ghosts from focusing on the 8 m long amplification chain). Those combined laser enhancements pave the way to future science breakthrough linked to quasi-millimetric determination of the Earth-Moon dynamics (Murphy, 2013). Jointly, we propose an empirical thermal lensing model, varying with the cycle ratio of the flashlamps. Our model connects Koechner's (1970) continuous pumping to our intermittent pumping case, with a "normalised heating coefficient" equalling 0.05 only if the electrical lamp input power is equal to 6 kW and scaling as this [electrical input power into the lamps] to the power of [half the pumping cycle ratio].

  8. Performance of multilayer optical coatings under long-term 532nm laser exposure

    NASA Astrophysics Data System (ADS)

    Poulios, D.; Konoplev, O.; Chiragh, F.; Vasilyev, A.; Stephen, M.; Strickler, K.

    2013-11-01

    The effects of long-term exposure to high intensity 532 nm radiation on various dielectric-coated optics are studied. To investigate potential photodarkening effects on optical surfaces, an accelerated life test platform was constructed where optics were exposed to 532 nm radiation from a short-pulse, high repetition rate fiber amplifier at total doses up to 1 trillion shots. The first run of trillion-shot tests were conducted on e-beam deposited and ion beam sputtering (IBS) coated high reflecting mirrors with onsurface intensities ranging from 1.0-1.4 GW/cm2. It was found that the e-beam coated mirrors failed catastrophically at less than 150 billion shots, while the IBS coated mirror was able to complete the trillionshot test with no measurable loss of reflectivity. Profiling the IBS mirror surface with a high-resolution white light interferometer post-irradiation revealed a ~10 nm high photocontamination deposit at the irradiation site that closely matched the intensity profile of the laser spot. Trillion-shot surface exposure tests were also conducted at multiple surface sites of an LBO frequency doubling crystal at ~1.5 GW/cm2 at multiple surface sites. The transmitted power and on-surface beam size were monitored throughout the tests, and periodic measurements of the beam quality and waist location of the transmitted light were also made using an M2 meter. No changes in transmitted power or M2 were observed in any of the tests, but 3D surface profiling revealed laser-induced contamination deposits at each site tested.

  9. Experience in the 532-nm green laser treatment of cutaneous angiodysplasias using an automatic delivery system

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Suchet-Lopez, Marie A.; Rotteleur, Guy; Brunetaud, Jean Marc

    1992-06-01

    Cutaneous angiodysplasias are currently treated by Argon, CW-Dye or Pulsed Dye Lasers. Green light at 532 nm is highly specific for hemoglobin-laden vessels. Therefore, this wavelength was evaluated on different cutaneous angiodysplasias. One hundred thirty-five (135) patients with either port wine stains (94) or facial telangiectasia (41) were treated with a 532 nm laser coupled to an automatic delivery system. Treatments were performed using the minimal blanching technique. The average fluence was 17 J/cm-2 for port wine stains and 15 J/cm-2 for facial telangiectasia. Pathologic scars were not reported for any patient. Sixty percent (60%) of the patients with port wine stains achieved good or excellent results after a 12-month period of observations. Ninety percent (90%) of the patients with facial telangiectasia achieved good or excellent results after a 12-month period of observation.

  10. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    PubMed

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively. PMID:25322220

  11. Treatment of facial telangiectasias with a diode-pumped Nd:YAG laser at 532 nm

    NASA Astrophysics Data System (ADS)

    Cassuto, Daniel A.; Ancona, Deborah M.; Emanuelli, Guglielmo

    2000-06-01

    Facial telangiectasias are a common cause of cosmetic concern. Current treatment modalities present various effects and limits. The pulsed dye laser has been considered the golden standard in efficacy and safety. Unfortunately it causes postoperative intracutaneous hematomata that discourage many patients form undergoing this treatment. Several other vascular lasers are disadvantaged by the risk of hypopigmented and atrophic scars. We assessed a recent powerful version of the potassium titanyl phosphate 532 nm laser, that can deliver sufficient energy in single pulses lasting 10-50 msec. Collateral damage is reduced while the heating of the vessel is slow enough to avoid explosive photothermolysis with its associated purpura. Sixty-six patients with facial telangiectasias were treated. In 62/66 patients, we achieved a 75 percent-100 percent clearance of the lesions, while two treatments were needed to reach an acceptable clearance in the remaining 4/66 patients. The overall need for more sessions was well tolerated, because the acceptable postoperative appearance allowed patients to continue normal business and social activities between treatments. No permanent complications or undesired effects were noted. The KTP/532nm laser is also being tested in combined laser-sclerotherapy of fine leg capillary telangiectasias with encouraging results.

  12. Influence of consecutive picosecond pulses at 532 nm wavelength on laser ablation of human teeth

    NASA Astrophysics Data System (ADS)

    Mirdan, Balsam M.; Antonelli, Luca; Batani, Dimitri; Jafer, Rashida; Jakubowska, Katarzyna; Tarazi, Saad al; Villa, Anna Maria; Vodopivec, Bruno; Volpe, Luca

    2014-07-01

    The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin-enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.

  13. Treatment of superficial cutaneous vascular lesions: experience with the KTP 532 nm laser.

    PubMed

    Clark, C; Cameron, H; Moseley, H; Ferguson, J; Ibbotson, S H

    2004-01-01

    Whilst most facial telangiectasias respond well to short-pulse-duration pulsed dye laser therapy, studies have shown that for the treatment of larger vessels these short-duration pulses are sub-optimal. Long-pulse frequency-doubled neodymium:YAG lasers have been introduced with pulse durations ranging from 1-50 ms and treatment beam diameters of up to 4 mm. We report the results of KTP/532 nm laser treatment for superficial vascular skin lesions. The aim was to determine the efficacy of the KTP/532 nm laser in the treatment of superficial cutaneous vascular lesions at a regional dermatology centre in a 2 year retrospective analysis. Patients were referred from general dermatology clinics to a purpose-built laser facility. A test dose was performed at the initial consultation and thereafter patients were reviewed and treated at 6 week intervals. Outcome was graded into five classifications by the patient and operator independently based on photographic records: clear, marked improvement, partial response, poor response, and no change or worsening. Over the 2 year period, 204 patients with 246 diagnoses were treated [156 female; median age 41 (range 1-74) years; Fitzpatrick skin types I-III]. Equal numbers of spider angioma (102) and facial telangiectasia (102) were treated. Of those patients who completed treatment and follow up, 57/58 (98%) of spider angiomas and 44/49 (90%) of facial telangiectasia markedly improved or cleared. Satisfactory treatment outcomes, with one clearance and two partial responses, occurred in three of five patients with port-wine stain. Few patients experienced adverse effects: two declined further treatment due to pain, and a small area of minimal superficial scarring developed in one case. Two patients developed mild persistent post-inflammatory hyperpigmentation, and one subject experienced an episode of acute facial erythema, swelling and blistering after one treatment. The KTP/532 nm frequency-doubled neodymium:YAG laser is a safe and

  14. Aesthetic earlobe remodeling: my personal experience with an LBO laser at 532 nm.

    PubMed

    Scrimali, Luca; Tamburino, Serena

    2014-06-01

    Since 1960, when Maiman built the first laser equipment, this technology has gone through a continuous development and an increasing utilization in several fields. Nowadays many pathologies find a less traumatic solution in laser technology. Laser can be either used to treat lesions with a high bleeding risk such as hemangioma and lymphangioma or in patients with coagulation diseases or hypertension, taking advantage of its capability to coagulate. Moreover healing and scarring are improved by the laser's effect of biostimulation and inhibition of bacterial growth, this leading to a greater comfort for the patient. The tissue vaporization and the dimension of the damaged area depend on several factors, those related to the laser used, such as wavelength, power, emission mode (continued or pulsed mode) and the power density, and those concerning to the treated tissue, like color and consistency. In this Study, we used an Lithium Borate, (LBO), laser, instead of scalpel for earlobe reduction in a 35-year-old male patient with pending lobule. LBO laser works through a solid active medium emitting a visible green light. A diode laser, with a wavelength of 810 nm, stimulates a crystal of Nd:YAG, which has a wavelength of 1064 nm. Then a crystal of LBO doubles the vibration frequency of the photons, leading to a final wavelength of 532 nm. PMID:24802299

  15. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  16. Photodissociation of 2, 4, 6-trinitrotoluene with a Nd:YAG laser at 532nm

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shen, Ruiqi; Ye, Yinghua; Wu, Lizhi; Hu, Yan; Zhu, Peng

    2015-05-01

    2, 4, 6-Trinitrotoluene (TNT) belongs to the group of aromatic nitro compounds which have extended use in industrial applications, in particular as explosives or additives to explosives. Understanding the initial step of laser induced decomposition of common explosives is important to the reliability and safety of laser initiators and firing systems. Lasers coupled with mass spectrometer find wide application in photochemical studies for identification of different ions formed due to photoexcitation/ionization of molecules by laser. In this paper, a pulsed Nd: YAG (15ns, 532nm) laser was used for ionizating the condensed TNT sample, and the ions produced in the ionization process were detected by a time of flight mass spectrometer (TOFMS). The influence of laser fluence and the delay time to the decomposition was also studied. According to the assignment of both positive and negative ions, possible laser induced dissociation pathways were proposed. The results may tell much about the initiation process and the chemical reaction that may occur in TNT when exposed to laser pulse.

  17. Effect on isoflavone of soybean seedlings by 532nm laser irradiation

    NASA Astrophysics Data System (ADS)

    Tian, J.; Jin, L. H.; Li, J. M.; Shen, B. J.; Wang, C. Y.; Lu, X.; Zhao, X. L.

    2010-02-01

    We took soybeans as experimental substance to study how the 532nm laser with different power density and irradiation time affected the pullulation ratio of the soybeans, average height of seedlings and the isoflavone content of seedlings' cotyledon and laminae. The mechanism that laser pretreatment of soybean seeds could increase the isoflavone content of the seedlings was discussed in such both aspects as the efficiency of the photosynthesis and the activity of a phenylalanine ammonia-lyase (PAL) as an initial enzyme for synthesizing the isoflavone. The results showed that after the soybean seeds were pretreated by laser, the activity of the PAL and the resultants of the photosynthesis such as the sugar of dissolubility, the sucrose, and the amylum all increased with the soybean seeds irradiated by laser in which the effect on the soybean seeds pretreated by 15mW/mm2 laser for 5 min was the most obvious. As a result, the photosynthesis efficiency of the soybean seedlings increased after being pretreated by laser, which might offer the foundation for accumulating a large amount of isoflavone.

  18. Effect on isoflavone of soybean seedlings by 532nm laser irradiation

    NASA Astrophysics Data System (ADS)

    Tian, J.; Jin, L. H.; Li, J. M.; Shen, B. J.; Wang, C. Y.; Lu, X.; Zhao, X. L.

    2009-10-01

    We took soybeans as experimental substance to study how the 532nm laser with different power density and irradiation time affected the pullulation ratio of the soybeans, average height of seedlings and the isoflavone content of seedlings' cotyledon and laminae. The mechanism that laser pretreatment of soybean seeds could increase the isoflavone content of the seedlings was discussed in such both aspects as the efficiency of the photosynthesis and the activity of a phenylalanine ammonia-lyase (PAL) as an initial enzyme for synthesizing the isoflavone. The results showed that after the soybean seeds were pretreated by laser, the activity of the PAL and the resultants of the photosynthesis such as the sugar of dissolubility, the sucrose, and the amylum all increased with the soybean seeds irradiated by laser in which the effect on the soybean seeds pretreated by 15mW/mm2 laser for 5 min was the most obvious. As a result, the photosynthesis efficiency of the soybean seedlings increased after being pretreated by laser, which might offer the foundation for accumulating a large amount of isoflavone.

  19. 532 nm Low-Power Laser Irradiation Facilitates the Migration of GABAergic Neural Stem/Progenitor Cells in Mouse Neocortex

    PubMed Central

    Fukuzaki, Yumi; Shin, Hyeryun; Kawai, Hideki D.; Yamanoha, Banri; Kogure, Shinichi

    2015-01-01

    Background and Objective Accumulating evidence has shown that low-power laser irradiation (LLI) affects cell proliferation and survival, but little is known about LLI effects on neural stem/progenitor cells (NSPCs). Here we investigate whether transcranial 532 nm LLI affects NSPCs in adult murine neocortex and in neurospheres from embryonic mice. Study Design/Materials and Methods We applied 532 nm LLI (Nd:YVO4, CW, 60 mW) on neocortical surface via cranium in adult mice and on cultured cells from embryonic mouse brains in vitro to investigate the proliferation and migration of NSPCs and Akt expression using immunohistochemical assays and Western blotting techniques. Results In vivo experiments demonstrated that 532 nm LLI significantly facilitated the migration of GABAergic NSPCs that were induced to proliferate in layer 1 by mild ischemia. In vitro experiments using GABAergic NSPCs derived from embryonic day 14 ganglionic eminence demonstrated that 532 nm LLI for 60 min promoted the migration of GAD67-immunopositive NSPCs with a significant increase of Akt expression. Meanwhile, the LLI induced proliferation, but not migration, of NSPCs that give rise to excitatory neurons. Conclusion It is concluded that 532 nm LLI promoted the migration of GABAergic NSPCs into deeper layers of the neocortex in vivo by elevating Akt expression. PMID:25919297

  20. Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations

    SciTech Connect

    Wagner, Frank R.; Hildenbrand, Anne; Natoli, Jean-Yves; Commandre, Mireille

    2011-08-01

    Nanosecond-laser-induced damage measurements in the bulk of KTiOPO{sub 4} (KTP) crystals are reported using incident 532 nm light or using incident 1064 nm light, which pumps more or less efficient second harmonic generation. No damage threshold fatigue effect is observed with pure 532 nm irradiation. The damage threshold of Z-polarized light is higher than the one for X- or Y-polarized light. During frequency doubling, the damage threshold was found to be lower than for pure 1064 or 532 nm irradiation. More data to quantify the cooperative damage mechanism were generated by performing fluence ramp experiments with varying conditions and monitoring the conversion efficiency. All damage thresholds plotted against the conversion efficiency align close to a characteristic curve.

  1. LD pumped high-repetition-rate high-power 532nm Nd:YAG/LBO solid state laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Liu, Dongyu; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Hu, Haowei; Zhang, Guangju; Yao, Yifei

    2013-09-01

    Diode pumped solid state 532 nm green laser is widely required for many industrial, medical and scientific applications. Among most of these applications, high power quasi-continuous-wave (QCW) green laser output is demanded. This can be efficiently achieved through a diode-side-pumped acoustic-optic Q-switched Nd:YAG laser with an intracavity second harmonic generation (SHG). In our experiment, LBO crystal is used for the second harmonic generation of high-average-power lasers of near infrared (NIR) range, though its effective NLO coefficient deff is relatively small. It is because of its high damage threshold (greater than 2.5 GW/cm2), large acceptance angle, small walk-off angle, and the nonhygroscopic characteristic. In this paper, we reported a high-repetition-rate high-power diode-side-pumped AO Q-switched Nd:YAG 532 nm laser. A plane-plane cavity with two rods, two AO Q-switches and the type II critical phase-matched LBO at room temperature were employed. Under the LD pump power of 480 W, 95.86 W at 1064 nm wavelength was achieved when the repetition rate was 15 kHz, and the 532 nm average output power of 44.77 W was obtained, with a pulse width of 111.7 ns, corresponding to an optical to optical conversion efficiency of 46.7% from 1064 nm to 532 nm. The 532 nm average output power was 40.10 W at a repetition rate of 10 kHz with a pulse width of 78.65 ns. The output characteristics of the SHG varying with the pumping current and the pulse repetition frequency (PRF) of the laser were also investigated. Further improvement of the SHG is under study.

  2. Our perspective of the treatment of naevus of Ota with 1,064-, 755- and 532-nm wavelength lasers.

    PubMed

    Felton, S J; Al-Niaimi, F; Ferguson, J E; Madan, V

    2014-09-01

    Naevus of Ota (NO) is a disfiguring pigmentary disorder affecting the face. Q-switched neodymium-doped yttrium aluminium garnet (QS Nd:YAG)-1,064 nm is a standard laser treatment because it causes highly selective destruction of melanin within the aberrant dermal melanocytes. However, not all lesions respond. This study aims to evaluate the efficacy/safety of QS Nd:YAG-1,064 nm and the shorter wavelength QS Alexandrite-755 nm and QS Nd:YAG-532 nm lasers in treating NO. Data were evaluated from 21 patients treated in our laser centre from 2004 to 2012. Lesional skin was irradiated with QS-532 nm/QS-755 nm/QS-1,064 nm, with settings titrated according to responses. All received initial test patches to direct initial wavelength choice, with subsequent treatments at 3-monthly intervals until clearance/lack of further response. Laser modality was switched following repeated test patches if there was no or no sustained improvement. Two thirds of patients had ≥ 90% improvement compared to baseline photographs. In 20% of patients, QS-1,064 nm was most efficacious with 97% mean improvement. The mean improvement was 80% for those in whom QS-755 nm was superior, and 90% for QS-532 nm. Median number of overall laser treatments was 8 (range 4-13). Number of treatments required varied significantly according to lesional colour and site: grey lesions and those on the forehead/temple were most resistant. We confirm successful treatment of NO with QS Nd:YAG-1,064 nm and the shorter wavelength QS-755 nm/QS-532 nm lasers without serious or irreversible side effects. We recommend judicious test patch analysis before treatment and a modality switch if complete clearance is not obtained. PMID:23640036

  3. Comparison of short-pulsed and long-pulsed 532 nm lasers in the removal of freckles.

    PubMed

    Vejjabhinanta, Voraphol; Elsaie, Mohamed L; Patel, Shalu S; Patel, Asha; Caperton, Caroline; Nouri, Keyvan

    2010-11-01

    The purpose of this study was to compare the efficacy and safety of the 532 nm long-pulsed laser (10 ms) with that of the 532 nm short-pulsed laser (10 ns) for freckle removal. Currently, the gold standard for treatment is the short-pulsed laser. Recently, several long-pulsed lasers have been introduced for both hair removal and the treatment of freckles. To our investigative team's knowledge, no controlled experiments have been performed to compare the safety and efficacy of long-pulsed versus short-pulsed lasers for the treatment of freckles. This was a 4-week trial, and all patients had three freckles that were randomly allocated to be treated with short-pulse laser, long-pulse laser, or to receive no treatment (control). All patients had three freckles that were randomly selected to be treated with short-pulse 532 nm Medlite IV laser (10 n, 1 J/cm(2)), or long-pulse 532 nm Aura laser (10 ms, 1 J/cm(2)) or to remain as a control (no treatment). The laser treatment was only performed once, followed by a 1-day and a 1-month follow-up visit. Freckle size was determined by a novel surface area measurement technique that was created by our research staff. The study included 17 sets of freckles (three in each set). All of the lesions which received the short-pulsed laser treatment had immediate whitening of the lesions, which turned into dry scabs the next day. None of the freckles treated in the long-pulsed group or control group developed immediate whitening or scabs. No blisters or ulcers developed. The average pain score in the short-pulsed laser group was 2-3 out of 10, while it was 0 out of 10 in the long-pulsed laser group. All scabs that developed in the short-pulsed laser group fell off between days 6 and 12 (average 8 days). The outcome of this study verified the appropriate treatment of freckles. The study confirmed that when the same energy settings, short-pulsed laser is the more effective laser treatment regimen (when compared with the long-pulsed laser

  4. Anti-Fungal Laser Treatment of Paper: A Model Study with a Laser Wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Pilch, E.; Pentzien, S.; Mädebach, H.; Kautek, W.

    Biodeterioration of organic cultural heritage materials is a common problem. Particularly the removal of discoloration caused by fungal pigments is yet an unsolved problem in paper conservation. In the present study, cellulose (cotton and linters) and 16th century paper (rag), were incubated with several fungi types, such as Cladosporium, Epicoccum, Alternaria, Chaetomium, Aspergillus, Trichophyton, and Penicillium on agar for three weeks. Then they were immersed in 70% Ethanol for removal of hyphae and mycelia and deactivation of the remaining conidia. These specimens were laser-treated in a computer-controlled laser cleaning system with a high pulse energy diode pumped Q-switched Nd:YAG laser operating at 532 nm and a pulse duration of 8 ns. Colour differences were determined spectrophotometrically. Best cleaning results were observed with fungi such as Penicillium and Alternaria. Dry laser cleaning generally turned out to be superb over wet bleaching approaches.

  5. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm

    NASA Astrophysics Data System (ADS)

    Tulea, Cristian-Alexander; Caron, Jan; Gehlich, Nils; Lenenbach, Achim; Noll, Reinhard; Loosen, Peter

    2015-10-01

    Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water-air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2 mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.

  6. Influence of water content on the ablation of skin with a 532 nm nanosecond Nd:YAG laser.

    PubMed

    Kim, Soogeun; Eom, Tae Joong; Jeong, Sungho

    2015-01-01

    This work reports that the ablation volume and rate of porcine skin changed significantly with the change of skin water content. Under the same laser irradiation conditions (532 nm Nd:YAG laser, pulse width = 11.5 ns, pulse energy = 1.54 J, beam radius = 0.54 mm), the ablation volume dropped by a factor of 4 as the skin water content decreased from 40 wt. % (native) to 19 wt. % with a change in the ablation rate below and above around 25 wt. %. Based on the ablation characteristics observed by in situ shadowgraph images and the calculated tissue temperatures, it is considered that an explosive rupture by rapid volumetric vaporization of water is responsible for the ablation of the high water content of skin, whereas thermal disintegration of directly irradiated surface layer is responsible for the low water content of skin. PMID:25581397

  7. Changing the optical and electrical properties of a crown dielectric surface using a 532 nm diode laser

    NASA Astrophysics Data System (ADS)

    Khairuzzaman, Md

    The optical response of a dielectric surface to a given laser radiation can be modified when this surface receives a supplemental uniform energy from an external source such as from the uniform electric field set up by a capacitor voltage. A low capacitor voltage across the dielectric can shift the wavelength of the probe laser as perceived by the dielectric surface toward smaller values. This shift is due to an increase of the vibrational frequency of the electric dipoles located on the dielectric surface. The change in the polarization properties of the dielectric surface suggests the usage of this configuration as an optoelectronic switch driven by a relatively small capacitor voltage. Another goal of this work is to observe the coupling between two lasers through a simultaneous interaction on the surface of a crown dielectric material. We analyze the destructive interference pattern between a weak probe laser and a stronger coupling laser in an electromagnetic induced transparency (EIT)-type configuration. We compare our destructive interference pattern obtained with crown glass illuminated with a diode laser of 532 nm, with previous results where a flint dielectric material was illuminated with the same radiation in similar experimental conditions.

  8. Fractional 532-nm Q-switched Nd:YAG laser: One of the safest novel treatment modality to treat café-au-lait macules.

    PubMed

    Won, Kwang Hee; Lee, Ye Jin; Rhee, Do Young; Chang, Sung Eun

    2016-10-01

    Café-au-lait macules (CALMs) are benign epidermal basilar hyperpigmentations that can be found in an isolated form or in association with neurocutaneous syndromes. Frequency-doubled Q-switched neodymium-doped yttrium aluminum garnet laser (532-nm QSNYL) does not penetrate deeply into the skin and is therefore suitable for epidermal pigmented lesion. Fractional photothermolysis (FP) targets only very small areas of the skin, without injuring adjacent areas of healthy, normal skin. Herein, we report a case of CALMs successfully treated with fractional 532-nm QSNYL. By applying FP to 532-nm QSNYL, we could treat CALMs safely with less downtime as compared to conventional laser treatments and expect more energy delivery for each microscopic hole, thereby allowing higher response rate. PMID:26962881

  9. 40W high beam quality 532nm green laser with LBO intracavity-frequecy-doubling

    NASA Astrophysics Data System (ADS)

    Liu, Xuesheng; Li, Jing; Liu, Youqiang; Wang, Zhiyong

    2014-12-01

    A high-power high-beam-quality 1064nm Nd:YAG rod laser and SHG by intracavity-frequency-doubling are reported. With two common side-pumped Nd:YAG rod modules in the short cavity, we achieved an 78.5W near diffraction-limited pulsed wave 1064nm laser(M2=1.5) with pulse frequency 30kHz, pulse width 94ns and a good power stability of +/-1% for over two hours. Finally, a 40W pulsed green laser with pulse width of 92ns in a near diffraction-limited beam (M2=1.45) is generated using an LBO crystal as the frequency doubler in the cavity.

  10. Transparency of the strong shock-compressed diamond for 532 nm laser light

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyu; Zhao, Yang; Yang, Jiamin

    2016-04-01

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probe laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.

  11. Randomised clinical trial evaluating best-corrected visual acuity and central macular thickness after 532-nm subthreshold laser grid photocoagulation treatment in diabetic macular oedema

    PubMed Central

    Pei-pei, W; Shi-zhou, H; Zhen, T; Lin, L; Ying, L; Jiexiong, O; Wen-bo, Z; Chen-jin, J

    2015-01-01

    Purpose To compare best-corrected visual acuity (BCVA) and central macular thickness (CMT) after 532-nm subthreshold laser grid photocoagulation and threshold laser grid photocoagulation for the treatment of diabetic macular oedema (DME). Patients and methods Twenty-three patients (46 eyes) with binocular DME were enroled in this study. The two eyes of each patient were divided into a subthreshold photocoagulation group and a threshold photocoagulation group. The eyes of the subthreshold group underwent 532-nm patter scan laser system (PASCAL) 50% end point subthreshold laser grid photocoagulation therapy, whereas the threshold photocoagulation group underwent short-pulse grid photocoagulation with a 532-nm PASCAL system. BCVA and CMT were assessed in all patients before treatment, 7 days after treatment, and 1, 3, and 6 months after treatment. Results After grid photocoagulation, the mean BCVA improved in both the subthreshold group, and the threshold group, and the two groups did not differ statistically significantly from each other. Similarly, the macular oedema diminished in both groups after treatment, and the two groups did not differ statistically significantly from each other with regard to CMT. Conclusion Both 532-nm subthreshold laser grid photocoagulation and threshold laser grid photocoagulation can improve the visual acuity and reduce CMT in DME patients. PMID:25697457

  12. 180W at 1kHz, 532nm SHG from LBO crystals using high average power Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Tamaoki, Yoshinori; Kato, Yoshinori; Iyama, Koichi; Kawashima, Toshiyuki; Miyanaga, Noriaki

    2014-02-01

    We have developed high average power MOPA laser system with SHG unit on the table top size (3 × 1.5m). At the wavelength 1064nm has been obtained the max average output power of 715W. We have achieved the average power 180W at the wavelength 532nm, the pulse width of about 100ns, the frequency of 1kHz. And the power efficiency of the SHG from the wavelength of 1064nm to 532nm was obtained about 25.6%.

  13. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses

    PubMed Central

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-01-01

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision. PMID:26173804

  14. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    NASA Astrophysics Data System (ADS)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (q<= 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  15. Stable, high-power, single-frequency generation at 532 nm from a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler.

    PubMed

    Martin, K I; Clarkson, W A; Hanna, D C

    1997-06-20

    We obtained 2.5 W of single-frequency TEM(00) output at 532 nm using a Brewster-angled LBO crystal for intracavity second-harmonic generation in a diode-bar-pumped Nd:YAG laser. By inserting a thin uncoated étalon, the 1061.4-nm laser transition can be selected, generating 1.6 W of output at 530.7 nm. PMID:18253441

  16. Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP.

    PubMed

    Huang, H-T; Qiu, G; Zhang, B-T; He, J-L; Yang, J-F; Xu, J-L

    2009-11-10

    A comparative study of a frequency-doubling 532 nm laser based on gray-tracking-resistant KTP (GTR-KTP) and conventional KTP is presented. The intracavity GTR-KTP was proved to have better temperature characteristics than that of conventional KTP. Within the normalized output power variation range of 0.8-1.0, GTR-KTP has a temperature tolerance of 35 degrees C, broader than the 21 degrees C obtained with conventional KTP. Under the laser diode (LD) pump power of 180 W, the maximum average output power at 532 nm was 40.6 W for GTR-KTP at a repetition frequency of 10 kHz. In the case of conventional KTP, the maximum available LD pump power was limited to 150 W, with the corresponding maximum green average output power of 27.2 W. PMID:19904338

  17. Generation of high-peak power 532-nm green pulses from composite, all-ceramics, passively Q-switched Nd:YAG/Cr4+:YAG laser

    NASA Astrophysics Data System (ADS)

    Salamu, Gabriela; Ionescu, Alina; Brandus, Catalina; Grigore, Oana; Pavel, Nicolaie; Dascalu, Traian

    2013-06-01

    Laser pulses at 1.06 μm with 2.5-mJ energy and 3.1-MW peak power have been obtained from a composite, all polycrystalline ceramics, passively Q-switched 1.1-at.% Nd:YAG/Cr4+:YAG laser that was quasi-continuous-wave pumped with diode lasers. Single-pass frequency doubling with LiB3O5 nonlinear crystal at room temperature yielded green laser pulses at 532 nm with energy of 0.36-mJ and 0.45-MW peak power; the infrared-to-green conversion efficiency was 0.27.

  18. Observation and Measurement of Temperature Rise and Distribution on GaAs Photo-cathode Wafer with a 532nm Drive Laser and a Thermal Imaging Camera

    SciTech Connect

    Shukui Zhang, Stephen Benson, Carlos Hernandez-Garcia

    2011-03-01

    Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power levels with over 20W laser power at 532nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles, it also applies to cathode heating study with other heating devices such as electrical heaters.

  19. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  20. Spectroscopic study of carbon plasma produced by the first (1064 nm) and second (532 nm) harmonics of Nd:YAG laser

    SciTech Connect

    Hanif, M.; Salik, M.; Arif, F.

    2015-03-15

    In this research work, spectroscopic studies of carbon (C) plasma by using laser-induced breakdown spectroscopy (LIBS) are presented. The plasma was produced by the first (1064 nm) and second (532 nm) harmonics of a Q-switched Nd:YAG (Quantel Brilliant) pulsed laser having a pulse duration of 5 ns and 10-Hz repetition rate, which is capable of delivering 400 mJ at 1064 nm and 200 mJ at 532 nm. The laser beam was focused on the target material (100% carbon) by placing it in air at atmospheric pressure. The experimentally observed line profiles of five neutral carbon (C I) lines at 247.85, 394.22, 396.14, 588.95, and 591.25 nm were used to extract the electron temperature T{sub e} by using the Boltzmann plot method and determine its value, 9880 and 9400 K, respectively, for the fundamental and second harmonics of the laser, whereas the electron density N{sub e} was determined from the Stark broadening profile of neutral carbon line at 247.85 nm. The values of N{sub e} at a distance of 0.05 mm from the target surface for the fundamental-harmonic laser with a pulse energy of 130 mJ and the second-harmonic laser with a pulse energy of 72 mJ are 4.68 × 10{sup 17} and 5.98 × 10{sup 17} cm{sup −3}, respectively. This extracted information on T{sub e} and N{sub e} is useful for the deposition of carbon thin films by using the pulsed laser deposition technique. Moreover, both plasma parameters (T{sub e} and N{sub e}) were also calculated by varying the distance from the target surface along the line of propagation of the plasma plume and also by varying the laser irradiance.

  1. Miniaturized diode laser module emitting green light at 532 nm with a power of more than 900 mW for next-generation holographic displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Blume, Gunnar; Jedrzejczyk, Daniel; Eppich, Bernd; Feise, David; Kreutzmann, Sabrina; Sahm, Alexander; Paschke, Katrin

    2016-02-01

    We present a micro-integrated laser module based on an amplified diode laser and second harmonic generation which is a promising candidate for a green light source in next-generation 3D holographic displays. The light emitted by the amplified laser has a wavelength of 1064 nm, reaches a power up to 8.2 W and has a long coherence length of >400 m. For second harmonic generation, we tested two geometries of periodically poled lithium niobate crystals in single pass: a bulk crystal and a planar waveguide crystal. With the planar waveguide crystal, we achieve an output power >900 mW and a coherence length >20 m at a wavelength of 532 nm.

  2. 32.5 mJ and 4.6 ns 532 nm Q-switched Nd:YAG laser at 500 Hz.

    PubMed

    Zhang, Zilong; Liu, Qiang; Gong, Mali

    2013-04-20

    A laser diode side-pumped electro-optical Q-switched Nd:YAG green light laser with high repetition rates, short pulse width, and high peak power was demonstrated. We studied the performance of the oscillator at the repetition rates from 100 to 500 Hz. At 500 Hz, 61 mJ, 5 ns of 1064 nm infrared light pulses were obtained with an oscillator-amplifier system. The peak power of the pulse was 12 MW. By frequency doubling with a LiB(3)O(5)(LBO) crystal, 32.5 mJ, 4.6 ns of 532 nm green light was achieved, corresponding to a peak power of 7 MW. The frequency conversion efficiency was 53.3%. PMID:23669684

  3. Optic detectors calibration for measuring ultra-high energy extensive air showers Cherenkov radiation by 532 nm laser

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Egorov, Yuri

    2015-08-01

    Calibration of a PMT matrix is crucial for the treatment of the data obtained with Cherenkov tracking detector. Furthermore, due to high variability of the aerosol abundance in the atmosphere depending on season, weather etc. A constant monitoring of the atmospheric transparency is required during the measurements. For this purpose, besides traditional methods, a station for laser atmospheric probing is used.

  4. Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets

    SciTech Connect

    Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R.

    2008-05-01

    This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

  5. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  6. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    NASA Astrophysics Data System (ADS)

    Menapace, J. A.; Ehrmann, P. R.; Bickel, R. C.

    2009-10-01

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.

  7. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    SciTech Connect

    Menapace, J A; Ehrmann, P R; Bickel, R C

    2009-11-05

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.

  8. Hadamard transform microchip electrophoresis combined with laser-induced fluorescence detection using a compact neodymium-doped yttrium aluminum garnet laser emitting at 532 nm

    NASA Astrophysics Data System (ADS)

    Hata, Kazuki; Kaneta, Takashi; Imasaka, Totaro

    2009-05-01

    Hadamard transform electrophoresis combined with laser-induced fluorescence (LIF) detection on a microchip was demonstrated. A compact, diode-pumped neodymium-doped yttrium aluminum garnet laser was employed as the light source for LIF detection. The analytical conditions were optimized using rhodamine B as the analyte. Under optimal conditions, the signal-to-noise ratio (S/N) of the analyte was improved by a factor of 7.5 by means of Hadamard transformation based on a 255-order cyclic S matrix. Additionally, the relationship between fluorescence intensity and analyte concentration was linear with a correlation coefficient of 0.993 in the inverse Hadamard transformed data at the concentration range from 25 to 100 pM. The results indicate that the present method is applicable to quantitative analysis at the concentration lower than the concentration limit of detection in a conventional method. The concentration limit of detection was ˜25 pM (the relative standard deviation of the peak height was 5.2%). The present technique was successfully applied to the separation of a mixture containing 1.9 nM phenylalanine and 1.9 nM glutamic acid labeled with rhodamine B isothiocyanate. The S/Ns of the analyte peaks were improved up to ˜10 in the inverse Hadamard transformed data derived from a 127-order cyclic S matrix, while neither peak was lower than the limit of detection (S/N<3) in conventional microchip electrophoresis by a single injection.

  9. Suppression of optical damage at 532 nm in Holmium doped congruent lithium niobate.

    PubMed

    Barnes, Eftihia; O'Connell, Nathan H; Balli, Nicolas R; Pokhrel, Madhab; Movsesyan, Anush; Kokanyan, Edvard; Sardar, Dhiraj K

    2014-10-20

    Optical damage experiments were carried out in a series of Holmium doped congruent lithium niobate (Ho:cLN) crystals as a function of dopant concentration and laser intensity. The light induced beam distortion was recorded with a camera and a detector under the pseudo-Z-scan configuration. At 532 nm, strong suppression of the optical damage was observed for the 0.94 mol. % doped crystal. Increased resistance to optical damage was also observed at 488 nm. The suppression of the optical damage is predominantly attributed to the reduction of the Nb antisites due to the holmium doping. PMID:25401654

  10. Energy Dependent Processing of Fiber Reinforced Plastics with Ultra Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Schilling, N.; Lasagni, A.; Klotzbach, U.

    In this paper the processing of a fiber reinforced plastic consisting of glass fibers embedded in polypropylene with ultra short laser systems is shown. Focus of the study is on the dependence of working wavelength (1064 nm, 532 nm and 355 nm) and pulse duration (500 fs to 10 ps) on the laser ablation characteristic of the treated material. Depending on the energy density and the material properties, two different process regions could be identified.

  11. Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.

    PubMed

    Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo

    2015-04-20

    A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis. PMID:25969082

  12. 100-watt fiber-based green laser with near diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric

    2010-02-01

    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2<1.4. Up to 101 W of 532 nm output was demonstrated and multi-hour runs were characterized at 75 W output. The weights of the IR laser package and doubler are 69 lbs and 14 lbs respectively. An overview of the system and full characterization results will be presented. Such compact, highbrightness green laser sources are expected to enable various scientific, defense and industrial applications.

  13. Nonlinear optical properties of Bi2O3-GeO2 glass at 800 and 532 nm

    NASA Astrophysics Data System (ADS)

    Oliveira, Tâmara R.; Falcão-Filho, Edilson L.; de Araújo, Cid B.; da Silva, Diego S.; Kassab, Luciana R. P.; da Silva, Davinson M.

    2013-08-01

    The nonlinear (NL) optical properties of glassy xBi2O3-(1-x) GeO2 with x = 0.72 and 0.82 were investigated. The experiments were performed with lasers at 800 nm (pulses of 150 fs) and 532 nm (pulses of 80 ps and 250 ns). Using the Kerr gate technique, we observed that the NL response of the samples at 800 nm is faster than 150 fs. NL refraction indices, |n2|≈ 5 × 10-16 cm2/W, and two-photon absorption coefficients, α2, smaller than 0.03 cm/GW, were measured at 800 nm. At 532 nm, we measured the NL transmittance of the samples. From the results obtained, we determined α2 ≈1 cm/GW and excited-state absorption cross-sections of ≈10-22 cm2 due to free-carriers.

  14. Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm.

    PubMed

    Beard, P C; Mills, T N

    1997-01-01

    Time-resolved photoacoustic spectroscopy has been used to characterize post mortem arterial tissue for the purpose of discriminating between normal and atheromatous areas of tissue. Ultrasonic thermoelastic waves were generated in post mortem human aorta by the absorption of nanosecond laser pulses at 436, 461 and 532 nm produced by a frequency doubled Q-switched Nd:YAG laser in conjunction with a gas filled Raman cell. A PVDF membrane hydrophone was used to detect the thermoelastic waves. At 436 nm, differences in the photoacoustic signatures of normal tissue and atherorma were found to be highly variable. At 461 nm, there was a clear and reproducible difference between the photacoustic response of atheroma and normal tissue as a result of increased optical attenuation in atheroma. At 532 nm, the generation of subsurface thermoelastic waves provided a means of determining the structure and thickness of the tissue sample. It is suggested that pulsed photoacoustic spectroscopy at 461 and 532 nm may find application in characterizing arterial tissue in situ by providing information about both the composition and thickness of the vessel wall. PMID:9015817

  15. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    SciTech Connect

    Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M.

    2013-02-07

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

  16. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M.

    2013-02-01

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ˜50 MW/cm2. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

  17. Revised Calibration Strategy for the CALIOP 532 nm Channel. Part II; Daytime

    NASA Technical Reports Server (NTRS)

    Powell, Kathleen A.; Vaughan, Mark A.; Kuehn, Ralph; Hunt, William H.; Pee, Kam-Pui

    2008-01-01

    The CALIPSO lidar (CALIOP) makes backscatter measurements at 532 nm and 1064 nm and linear depolarization ratios at 532 nm. Accurate calibration of the backscatter measurements is essential in the retrieval of optical properties. An assessment of the nighttime 532 nm parallel channel calibration showed that the calibration strategy used for the initial release (Release 1) of the CALIOP lidar level 1B data was acceptable. In general, the nighttime calibration coefficients are relatively constant over the darkest segment of the orbit, but then change rapidly over a short period as the satellite enters sunlight. The daytime 532 nm parallel channel calibration scheme implemented in Release 1 derived the daytime calibration coefficients from the previous nighttime coefficients. A subsequent review of the daytime 532 nm parallel channel calibration revealed that the daytime calibration coefficients do not remain constant, but vary considerably over the course of the orbit, due to thermally-induced misalignment of the transmitter and receiver. A correction to the daytime calibration scheme is applied in Release 2 of the data. Results of both nighttime and daytime calibration performance are presented in this paper.

  18. CARS imaging with a new 532-nm synchronously pumped picosecond OPO

    NASA Astrophysics Data System (ADS)

    Büttner, Edlef; Carrasco, Silvia; Evans, Conor L.; Ganikhanov, Feruz S.; Herbst, Johannes G.; Kopf, Daniel; Rimke, Ingo; Xie, Sunney

    2007-02-01

    A new, synchronously pumped picosecond OPO for CARS microscopy is presented. It is based on non-critically phasematched interaction in LBO pumped by a frequency-doubled modelocked Nd:Vanadat laser at 532 nm. Within the parametric process a tuneable pair of two different wavelengths in the NIR range is generated (Signal <680 ...990 nm, Idler 1150...>2450 nm). In this system they are extracted from the cavity at the same mirror and therefore propagating collinear at the same beam path. Due to the mechanism of their generation there is no jitter between Signal and Idler. Though the wavelengths are different the GVD is negligible for this picosecond pulse duration. As a result the two pulse trains are spatially and temporally perfectly matched. The pulses generated are close to transform limit with about 5-6 ps pulse duration, excellent beam quality (M2 < 1,1) and high pointing stability. The output power for Signal and Idler is about 1 W each @ 4 W pump power. The tuning mechanism is split into two parts - temperature tuning for rough variations and fast angular BRF tuning for the fine adjustment of the output wavelength. The perfect spatial and temporal overlap make the described OPO an ideal and nearly hands-free laser source for CARS microscopy with a tuneable energy difference 1,400 ... >10,000 cm -1. The absolute wavelength range is resulting in high penetration depth and low photo damage of the analyzed samples. Finally some CARS-images are presented and the latest results and methods for further sensitivity enhancements are shown.

  19. Assessment of the CALIPSO Lidar 532 nm Attenuated Backscatter Calibration Using the NASA LaRC Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Rogers, Raymond R.; Hostetler, Chris A.; Hair, Johnathan W.; Ferrare, Richard A.; Liu, Zhaoyan; Obland, Michael D.; Harper, David B.; Cook, Anthony L.; Powell, Kathleen A.; Vaughan, Mark A.; Winker, David M.

    2011-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using an internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that average HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% +/- 2.1% (CALIOP lower) at night and within 2.9 % +/- 3.9% (CALIOP lower) during the day., demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3 calibration scheme compared with the version 2 calibration scheme. Potential systematic uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 3.7% for this validation effort with HSRL. Results from this study are also compared to those from prior assessments of CALIOP calibration and attenuated backscatter.

  20. Large-scale characterization of silicon nitride-based evanescent couplers at 532nm wavelength

    NASA Astrophysics Data System (ADS)

    Claes, Tom; Jansen, Roelof; Neutens, Pieter; Du Bois, Bert; Helin, Philippe; Severi, Simone; Van Dorpe, Pol; Deshpande, Paru; Rottenberg, Xavier

    2014-05-01

    Recently, the photonics community has a renewed attention for silicon nitride.1-3 When deposited at temperatures below 650K with plasma-enhanced chemical vapor deposition (PECVD),4 it enables photonic circuits fabricated on-top of standard complementary metaloxidesemiconductor (CMOS) electronics. Silicon nitride is moreover transparent to wavelengths that are visible to the human eye and detectable with available silicon detectors, thus offering a photonics platform for a range of applications that is not accessible with the popular silicon-on-insulator platform. However, first-time-right design of large-scale circuits for demanding specifications requires reliable models of the basic photonic building blocks, like evanescent couplers (Figure 1), components that couple power between multiple waveguides. While these models typically exist for the silicon-on-insulator platform, they still lack maturity for the emerging silicon nitride platform. Therefore, we meticulously studied silicon nitride-based evanescent couplers fabricated in our 200mm-wafer facility. We produced the structures in a silicon nitride film deposited with low-temperature PECVD, and patterned it using optical lithography at a wavelength of 193nm and reactive ion etching. We measured the performance of as much as 250 different designs at 532nm wavelength, a central wavelength in the visible range for which laser sources are widespread. For each design, we measured the progressive transmission of up-to 10 cascaded identical couplers (Figure 2(a)), yielding very accurate figures for the coupling factor (Figure 2(b)). This paper presents the trends extracted from this vast data set (Figure 3), and elaborates on the impact of the couplers bend radius and gap on its coupling factors (Figure 4 and Figure 5). We think that the large- scale characterization of evanescent couplers presented in this paper, in excellent agreement with the simulated performance of the devices, forms the basis for a component

  1. Accuracy of Linear Depolarisation Ratios in Clean Air Ranges Measured with POLIS-6 at 355 and 532 NM

    NASA Astrophysics Data System (ADS)

    Freudenthaler, Volker; Seefeldner, Meinhard; Groß, Silke; Wandinger, Ulla

    2016-06-01

    Linear depolarization ratios in clean air ranges were measured with POLIS-6 at 355 and 532 nm. The mean deviation from the theoretical values, including the rotational Raman lines within the filter bandwidths, amounts to 0.0005 at 355 nm and to 0.0012 at 532 nm. The mean uncertainty of the measured linear depolarization ratio of clean air is about 0.0005 at 355 nm and about 0.0006 at 532 nm.

  2. High power, picosecond green laser based on a frequency-doubled, all-fiber, narrow-bandwidth, linearly polarized, Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Isyanova, Yelena; Stegeman, Robert; Huang, Ye; Chieffo, Logan R.; Moulton, Peter F.

    2016-03-01

    We report on the development of an all-fiber, 68-kW-peak-power, 16-ps-pulse-width, narrow-bandwidth, linearly polarized, 1064-nm fiber laser suitable for high-power, picosecond-pulse-width, green-light generation. Our 1064-nm fiber laser delivered an average power of up to 110 W at a repetition of 100- MHz in a narrow bandwidth, with minimal nonlinear distortion. We developed a high-power, picosecond green source at 532 nm through use of single-pass frequency-doubling of our 1064-nm fiber laser in lithium triborate (LBO). Using a 15-mm long LBO crystal, we have generated 30 W of average power in the second harmonic with 73-W of fundamental average power, for a conversion efficiency of 41%.

  3. Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry

    PubMed Central

    Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.

    2009-01-01

    Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600

  4. High Conversion Efficiency and Power Stability of 532 nm Generation from an External Frequency Doubling Cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Lin, Bai-Ke; Li, Ye; Zhang, Hong-Xi; Cao, Jian-Ping; Fang, Zhan-Jun; Li, Tian-Chu; Zang, Er-Jun

    2012-09-01

    We present a high-efficiency 532 nm green light conversion from an external cavity-enhanced second harmonic generation (SHG) with a periodically poled KTP crystal (PPKTP). The cavity is a bow-tie ring configuration with a unitized structure. When the impedance matching is optimized, the coupling efficiency of the fundamental is as high as 95%. Taking into account both the high power output of the second harmonic and the stability of the system, we obtain over 500 mW green passing through the output cavity mirror, corresponding to a net conversion efficiency higher than 75.2%. Under these operating conditions, the power stability is better than ±0.25% during 5 h. It is the highest conversion efficiency and power stability ever produced in the bow-tie ring cavity with PPKTP for 532 nm generation.

  5. Laser processing of glass fiber reinforced thermoplastics with different wavelengths and pulse durations

    NASA Astrophysics Data System (ADS)

    Schilling, N.; Krupop, B.; Klotzbach, U.

    2015-03-01

    In this paper, laser processing of fiber reinforced thermoplastics is investigated with different laser sources. Aim of the study is to determine the process windows in which selective ablation of polymer matrix and homogenous ablation of matrix and fiber occurs. To reach this, laser sources with different wavelengths (10600 nm, 1064 nm and 532 nm) and pulse durations in μs, ns and ps regime are compared on their ablation behavior of natural and black colored glass fiber reinforced polypropylene. Best results were achieved with ns lasers with IR wavelength at black colored material. At this parameter combination a wide process window can be shown where no damage of the reinforcing fibers happens.

  6. Seagrass Identification Using High-Resolution 532nm Bathymetric LiDAR and Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Prasad, S.; Starek, M. J.; Fernandez Diaz, J. C.; Glennie, C. L.; Carter, W. E.; Shrestha, R. L.; Singhania, A.; Gibeaut, J. C.

    2013-12-01

    Seagrass provides vital habitat for marine fisheries and is a key indicator species of coastal ecosystem vitality. Monitoring seagrass is therefore an important environmental initiative, but measuring details of seagrass distribution over large areas via remote sensing has proved challenging. Developments in airborne bathymetric light detection and ranging (LiDAR) provide great potential in this regard. Traditional bathymetric LiDAR systems have been limited in their ability to map within the shallow water zone (< 1 m) where seagrass is typically present due to limitations in receiver response and laser pulse length. Emergent short-pulse width bathymetric LiDAR sensors and waveform processing algorithms enable depth measurements in shallow water environments previously inaccessible. This 3D information of the benthic layer can be applied to detect seagrass and characterize its distribution. Researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and boat-based survey of the Redfish Bay State Scientific Area as part of a collaborative study to investigate the capabilities of bathymetric LiDAR and hyperspectral imaging for seagrass mapping. Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purpose of protecting and studying native seagrasses. Redfish Bay is part of the broader Coastal Bend Bays estuary system recognized by the US Environmental Protection Agency (EPA) as a national estuary of significance. For this survey, UH acquired high-resolution discrete-return and full-waveform bathymetric data using their Optech Aquarius 532 nm green LiDAR. In a separate flight, UH collected 2 sets of hyperspectral imaging data (1.2-m pixel resolution and 72 bands, and 0.6m pixel resolution and 36

  7. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  8. Thermal and damage data from multiple microsecond pulse trains at 532nm in an in vitro retinal model

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Tijerina, Amanda J.; Hoffman, Aaron; Clark, Clifton D.; Noojin, Gary D.; Rickman, John M.; Castellanos, Cherry C.; Shingledecker, Aurora D.; Boukhris, Sarah J.; Thomas, Robert J.; Rockwell, Benjamin A.

    2014-03-01

    An artificially pigmented retinal pigment epithelial (RPE) cell model was used to study the damage rates for exposure to 1, 10, 100, and 1,000 230-μs laser pulses at 532 nm, at two different concentrations of melanosome particles (MPs) per cell. Multiple pulses were delivered at pulse repetition rates of 50 and 99 pulses per second. Standard fluorescence viability indicator dyes and the method of microthermography were used to assess damage and thermal responses, respectively. Although frame rate during microthermography was more than five times slower than the duration of laser pulses, thermal information was useful in refining the BTEC computational model for simulating high-resolution thermal responses by the pigmented cells. When we temporally sampled the thermal model output at a rate similar to our microthermography, the resulting thermal profiles for multiple pulses resembled the thermal experimental profiles. Complementary to the thermal simulations, our computer-generated thresholds were in good agreement with the in vitro data. Findings are examined within the context of common exposure limit definitions in the national and international laser safety standards.

  9. Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm

    NASA Astrophysics Data System (ADS)

    Lin, S. H.; Hsiao, Y.-N.; Hsu, K. Y.

    2009-02-01

    This paper presents the development of a thick photopolymer for holographic data storage at a wavelength of 532 nm. Irgacure 784, one kind of the titanocene photoinitiators, has been selected and doped to synthesize the photopolymers in this research. Using a two-step thermo-polymerization procedure two photopolymer samples have been fabricated, Irgacure 784 doped poly(methyl methacrylate) (PMMA) and Irgacure 784 doped epoxy resin. Samples of 2 mm thick have been fabricated. Holographic measurements show that Irgacure 784 doped epoxy resin is very sensitive at 532 nm and that it is capable of supporting holographic data storage at a ultra-fast recording rate of 760 Mb s-1. Mass spectrum measurement, solid state 1H-NMR spectrum measurement, and thermogravity analyses (TGA) have been performed. The results reveal the physical mechanism of holographic recording in these samples, providing a guideline for a design strategy and fabrication technique to produce a low-shrinkage recording material for holographic data storage in the tera-byte information age.

  10. Resolved Sideband Spectroscopy and Cooling of Strontium in a 532-nm Optical Lattice

    NASA Astrophysics Data System (ADS)

    Aman, James; Hill, Joshua; Killian, T. C.

    2016-05-01

    Resolved sideband cooling is a powerful and well established technique for driving ultracold atoms in optical lattices to the motional ground state of individual lattice sites. Here we present spectroscopy of the narrow 5s21S0 --> 5 s 5 p3P1 transition for neutral strontium-84 in a 532nm optical lattice. Resolved red- and blue-detuned sidebands are observed corresponding to changes in the motional state in the lattice sites. Driving the red sideband, we demonstrate cooling into the ground state, which increases the initial phase-space density before forced evaporative cooling. This is a promising technique for improving the production of strontium quantum degenerate gases. Research supported by the Robert A, Welch Foundation under Grant No. C-1844.

  11. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  12. Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets

    NASA Astrophysics Data System (ADS)

    Hock, Klaus; Adelmann, Benedikt; Hellmann, Ralf

    This article presents a comparison between remote laser cutting with a fiber laser and water-jet guided laser cutting using a 532 nm solid state laser. Complex contours are processed in stainless steel and brass sheets (thickness ≤ 100 μm), respectively. Results for achievable quality and productivity as well as possible applications for both systems are shown and discussed. We sustained dross free cuts with almost no heat affected zone and small kerf width for the water-jet guided process, whereas small dross, notable heat affected zone and varying kerf width where observed for remote cutting. However, process times for the water-jet guided process where considerably higher than those for remote cutting.

  13. Removal of copper oxide from copper surfaces using Q-switched Nd:YAG radiation at 1064 nm, 532 nm, and 266 nm

    NASA Astrophysics Data System (ADS)

    Kearns, Aileen; Fischer, C.; Watkins, Kenneth G.; Glasmacher, Mathias; Steen, William M.; Kheyrandish, H.; Brown, A.

    1997-08-01

    During electronic device fabrication it is necessary to remove the oxides from copper surfaces prior to soldering in order to improve the surface wetability and achieve a good quality solder joint. The usual method of achieving this is by using acids in a flux. The work reported here explores the possibility of removing these oxides by laser cleaning using the harmonics of a Q-switched Nd:YAG laser, a technique which could be incorporated into a industrial laser soldering process. The effect of Q-switched Nd:YAG radiation (5 - 10 ns pulses), at 1064 nm, 532 nm and 266 nm, on the oxidized surface of a copper alloy foil is studied with increasing fluence. In order to successfully compare the effect of increasing fluence at the three wavelengths each area treated was only subjected to one laser pulse. The laser treated surfaces were characterized using optical microscopy, SEM, and surface analysis performed by static secondary ion mass spectrometry (SSIMS). SSIMS and SNMS (secondary neutral mass spectrometry) with mechanical depth profilometry were used to characterize the oxide layer. The reflectivity of the oxidized plates for the three wavelengths was ascertained using a reflectivity spectrometer. Successful cleaning was achieved at all wavelengths, above certain threshold values which defined the lower end of the process operating window for single pulse operation. The threshold for the cleaning process decreased with laser wavelength. Surface melting was evident at the lowest fluences examined for all the wavelengths (< .5 J/cm2). This value is well below the lower end of the process windows of all wavelengths. Microscopic `explosive' features were found at the onset of copper oxide removal possibly resulting from ionization or a plasma induced shock waves. There was some possible evidence of mechanical effects at 1064 nm and 532 nm. Large amounts of sputtered debris was found around the 266 nm craters. A SSIMS analysis was performed on the 532 nm spots. The

  14. High power amplification of a tailored-pulse fiber laser

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Caplette, Stéphane; Boula-Picard, Reynald; Drolet, Mathieu; Reid, Benoit; Salin, François

    2013-02-01

    We demonstrate the amplification of a 1064nm pulse-programmable fiber laser with Large Pitch Rod-Type Fibers of various Mode field diameters from 50 to 70 μm. We have developed a high power fiber amplifier at 1064nm delivering up to 100W/1mJ at 15ns pulses and 30W/300μJ at 2ns with linearly polarized and diffraction limited output beam (M²<1.2). The specific seeder from ESI - Pyrophotonics Lasers used in the experiment allowed us to obtain tailored-pulse programmable on demand at the output from 2ns to 600ns for various repetition rates from 10 to 500 kHz. We could demonstrate square pulses or any other shapes (also multi-pulses) whatever the repetition rate or the pulse duration. We also performed frequency conversion with LBO crystals leading to 50W at 532nm and 25W at 355nm with a diffraction limited output. Similar experiments performed at 1032nm are also reported.

  15. Improvements in filtered Rayleigh scattering measurements using Fabry-Perot etalons for spectral filtering of pulsed, 532-nm Nd:YAG output

    NASA Astrophysics Data System (ADS)

    Sutton, Jeffrey A.; Patton, Randy A.

    2014-09-01

    In this manuscript, we investigate a new methodology for increasing the spectral purity of the second-harmonic output of an injection-seeded, frequency-doubled, Q-switched Nd:YAG laser operating near 532 nm. Specifically, tunable Fabry-Perot etalons (FPEs) are used as ultra-narrowband spectral filters, transmitting the desired single-mode output, while filtering out a significant portion of the broadband pedestal characteristic of injection-seeded lasers. A specific emphasis is placed on the design and optimization of the FPEs in the context of filtered Rayleigh scattering (FRS) measurements and how their utilization results in substantial increases in spectral purity, realizable attenuation of unwanted scattering, and applications in environments with high particulate levels. Experimental results show an increase in laser spectral purity of more than one order-of-magnitude (from 0.99997 to 0.999998) when using FPE filters, which led to a two-order-of-magnitude increase in achievable attenuation of laser light passing through a molecular iodine filter. The utility of the FPE-based spectral filtering of the pulsed Nd:YAG output for 2D FRS imaging was demonstrated in turbulent, isothermal gas-phase jets, seeded with varying levels of non-evaporating droplets with particle volume fractions ( F Vp) ranging from ~5 to >60 parts-per-million (ppm). After implementation of an optimized air-spaced FPE in the 532-nm output, no particle scattering was observed (based on visual and statistical analysis), even for the highest seed case ( F Vp ~ 60 ppm), and the gas-phase Rayleigh-Brillouin signals were collected without interference from the flowfield particulate. The current results suggest that the implementation of properly specified FPEs allows FRS to be applied in environments with high flowfield particulate levels; levels are well beyond what have been suitable for previous FRS measurements.

  16. Evaluation of CALIOP 532-nm Aerosol Optical Depth Over Opaque Water Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.

    2015-01-01

    With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by approx. 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the

  17. Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Chulkov, R.; Markevich, V.; Orlovich, V.; El-Desouki, M.

    2015-12-01

    Stokes generation has been considered under the Fourier-limited nanosecond pulse excitation to find Raman gain coefficients in potassium-gadolinium tungstate. Data of numerical simulation under spontaneous Stokes initiation, light diffraction, and optical feedback have been compared with experimental results to reveal coefficient values of 14 ± 3 and 11 ± 3 cm/GW for the p[mm]p and p[gg]p sample orientations, respectively, at 532 nm wavelength.

  18. Thulium Fiber Laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard Leious, Jr.

    The Thulium Fiber Laser (TFL) has been studied as a potential alternative to the conventional Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is more ideally suited for laser lithotripsy because of the higher absorption coefficient of the emitted wavelength in water, the superior Gaussian profile of the laser beam, and the ability to operate at arbitrary temporal pulse profiles. The higher absorption of the TFL by water helps translate into higher ablation of urinary stones using less energy. The Gaussian spatial beam profile allows the TFL to couple into fibers much smaller than those currently being used for Ho:YAG lithotripsy. Lastly, the ability of arbitrary pulse operation by the TFL allows energy to be delivered to the stone efficiently so as to avoid negative effects (such as burning or bouncing of the stone) while maximizing ablation. Along with these improvements, the unique properties of the TFL have led to more novel techniques that have currently not been used in the clinic, such as the ability to control the movement of stones based on the manner in which the laser energy is delivered. Lastly, the TFL has led to the development of novel fibers, such as the tapered fiber and removable tip fiber, to be used for lithotripsy which can lead to safer and less expensive treatment of urinary stones. Overall, the TFL has been demonstrated as a viable alternative to the conventional Ho:YAG laser and has the potential to advance methods and tools for treatment of kidney stones.

  19. Optical fiber laser

    SciTech Connect

    Snitzer, E.

    1988-10-25

    This patent describes an optical fiber laser comprising: a gain cavity including a single mode optical fiber of given length and index of refraction and a cladding surrounding the core and having an index of refraction lower than that of the core. The core comprising a host material having incorporated therein a predetermined concentration of just erbium oxide having a fluorescence spectrum with a peak emission line at 1.54 micrometers; filter means optically coupled to each end of the fiber gain cavity for providing feedback in the cavity at the peak emission line of the erbium oxide and for permitting energy to be introduced into the cavity at the absorption band of the erbium oxide in the region of 1.45 to 1.53 micrometers; and a laser diode optically coupled to one end of the core for pumping energy into the end of the gain cavity so that the gain cavity oscillates at just the peak emission line.

  20. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  1. Pulsed Single Frequency Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin

    2016-06-01

    Pulsed single frequency fiber lasers with mJ level near 1 micron, 1.55 micron and 2 micron wavelengths were demonstrated by using our proprietary highly doped fibers. These fiber lasers exhibit excellent long term stable operation with M2<1.2.

  2. Optical fiber laser

    SciTech Connect

    Hakimi, F.; Po, H.; Snitzer, E.

    1987-07-14

    An optical fiber laser is described comprising: a gain cavity including a single mode optical fiber of given length having a core with a given index of refraction and a cladding surrounding the core and having an index of refraction lower than that of the core. The core comprises a host glass having incorporated a laser gain material with a fluorescence spectrum having at least one broadband region in which there is at least one peak emission line; filter means optically coupled to one end of the gain cavity and reflective to radiation emitted from the gain material over a predetermined wavelength interval about the peak emission line to provide feedback in the gain cavity; an etalon filter section butt coupled to the remaining end of the gain cavity optical fiber, the etalon filter section comprising a pair of filters spaced apart in parallel by a predetermined length of material transparent to any radiation emitted from the gain cavity. The predetermined length of the transparent material is such that the etalon filter section is no longer than the distance over which the wave train energy from the fiber core remains substantially planar so that the etalon filter section is inside the divergent region to enhance feedback in the gain cavity; and means for pumping energy into the gain cavity to raise the interval energy level such that only a small part of the ion population, corresponding to a predetermined bandwidth about the peak emission line, is raised above laser threshold. The laser emits radiation only over narrow lines over a narrow wavelength interval centered about the peak emission line.

  3. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  4. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  5. Fiber Laser Development for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  6. High average power quasi-CW single-mode green and UV fiber lasers

    NASA Astrophysics Data System (ADS)

    Avdokhin, Alexey; Gapontsev, Valentin; Kadwani, Pankaj; Vaupel, Andreas; Samartsev, Igor; Platonov, Nicholai; Yusim, Alex; Myasnikov, Daniil

    2015-02-01

    Kilowatt-level narrow-linewidth SM ytterbium fiber laser operating in high-repetition-rate QCW regime was used to obtain 700 W average power at 532 nm with single-mode beam quality and wall-plug efficiency of over 23 %. To the best of our knowledge, this is ~60 % higher power than previously reported for single-mode green lasers based on other platforms, and also is ~30 % increase comparing to the previous result obtained by our group on the base of similar fiber laser platform. We have also experimentally proved that the same type of fiber laser can be used for generating of world-record levels of power at other wavelengths of visible and UV spectral ranges by employing cascaded non-linear frequency conversion. Thus, utilizing frequency tripling in 2 LBO crystals, we achieved over 160 W average power of nearly single-mode UV light at 355 nm with THG efficiency of more than 25 %. As far as we know, this is the highest output power ever reported for UV laser with nearly diffraction limited beam quality. We also conducted some preliminary experiments to demonstrate suitability of our approach for generating longer wavelengths of the visible spectrum. By pre-shifting fundamental emission wavelength in fiber Raman converter, followed by frequency doubling in NCPM LBO, we obtained average powers of 36 W at 589 nm and 27 W at 615 nm. These proof-of-concept experiments were performed with low-power pump laser and were not fully optimized with respect to frequency conversion. Our analysis indicates that employing kW-level QCW ytterbium laser with optimized SRS and SHG converters we can achieve hundreds of Watts of average power in red and orange color with single-mode beam quality.

  7. Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator.

    PubMed

    Boulanger, B; Fève, J P; Guillien, Y

    2000-04-01

    We present experiments that show that gray tracking modifies the parametric gain and the generated wavelengths of a KTP optical parametric oscillator pumped at 532 nm near degeneracy. These perturbations occur over a limited range of pump intensity. We propose a satisfactory model that takes into account photochromic damage, the thermo-optical effect, and the combined processes of creation and saturation of a two-photon absorber at 532 nm. The temperature dependence of Sellmeier equations of KTP is also established at 20-200 degrees C. PMID:18064087

  8. Novel fiber lasers and applications

    NASA Astrophysics Data System (ADS)

    Zenteno, Luis A.; Walton, Donnell T.

    2003-07-01

    Glass fiber lasers were invented in the 60's by Elias Snitzer at Americal Optical, soon after the invention of the first solid-state glass laser. However, it was not until the 80's when these waveguide devices were deployed in industrial applications, driven largely by the technological success of the semiconductor laser diode, which provided practical and efficient pumps, and by the advent of low loss rare-earth-doped optical fiber.

  9. Fiber laser based high-spectral resolution lidar for earth science measurements

    NASA Astrophysics Data System (ADS)

    Chen, Youming; Berkoff, Timothy; Kimpel, Frank; Storm, Mark; Hoff, Raymond; Gupta, Shantanu

    2013-03-01

    We present a special high spectral resolution lidar (HSRL) by using a novel tunable fiber based transmitter. The transmitter can produce 50μJ pulse energy at 1064nm and >25μJ pulse energy at 532nm with 10 kHz repetition rate, 5ns pulse width, respectively. A key advantage of the transmitter is the frequency-tunability. The laser can be tuned over the Iodine absorption lines from 1111 to 1104. The laser has a ~130MHz linewidth at 1064nm close to the transform limit linewidth ~ 88MHz for a pulse width of 5ns. Even though it was not frequency locked, the laser has very good frequency stability, which is on the order of ~200MHz over minutes. The beam quality M2 is less than 1.5. All the preliminary transmitter parameters meet the basic requirements of a HSRL. The transmitter was implemented in UMBC's lidar lab that includes a ceiling hatch to enable vertical propagation and viewing of transmitted laser beams into the atmosphere. The atmospheric measurement demonstrates good agreement of the signal to the model Rayleigh decay over the profile range with no significant deviations. Most importantly, these results show that the measurement successfully suppresses the Mie scattering from clouds while recovering the full molecular signal as expected.

  10. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ozgur; Miyagi, Mitsunobu; Matsuura, Yuji

    2006-09-01

    A hollow-fiber bundle was designed and used to deliver high-peak-power pulses from a Q-switched Nd:YAG laser. An 80 cm long bundle with a total diameter of 5.5 mm was composed of 37 glass capillaries with bore diameters of 0.7 mm. Beam-resizing optics with two lenses were used to couple the laser beam into the bundle. The measured coupling loss due to the limited aperture ratio of the bundle was 2.3 dB, and the transmission loss at wavelengths of 1064 and 532 nm was 0.3 dB. When an inert gas flowed through the bores of the capillaries, the maximum output pulse energy was 200 mJ, which was the limit of the laser used in the experiment. Hollow-fiber bundles withstand irradiation better than single hollow fibers and silica-glass optical fibers do. They are suitable for many dermatological applications because they can be used to irradiate a large area.

  11. Imaging dynamic processes using fiber laser optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Shao, Peng; Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger J.

    2012-02-01

    Recently we have reported in vivo near-real-time volumetric optical-resolution photoacoustic microscopy (OR-PAM) using a high pulse-repetition-rate (PRR) nanosecond fiber-laser to realize 2 volumetric image frames per second (fps) within 1mm × 1mm field of view (FOV). Based on our previous OR-PAM system, we are developing a label-free realtime OR-PAM system in reflection mode for higher frame-rates. The system permits imaging of microcirculation hemodynamics, and helps make the technology easier to use for biologists, providing real-time feedback for focusing and positioning. Using a nanosecond-pulsed 532-nm fiber laser combined with fast-scanning mirrors, our proposed system demonstrated its capability of sustained in vivo imaging of horizontal and vertical translation at 0.5 fps for 1mm × 1mm FOV (400 × 400 pixels). Also, real-time in vivo imaging of blood flow at 30 fps for 250μm × 250μm FOV (100 × 100 pixels) was demonstrated. It is anticipated that the real-time nature of the system should prove important in clinical and preclinical adaption, and may prove useful for functional brain imaging studies.

  12. A demonstration of the simple optical fiber filter in visible and near-infrared wavelengths from green laser and red laser pointers

    NASA Astrophysics Data System (ADS)

    Talataisong, W.; Chitaree, R.; Arayathanitkul, K.

    2015-07-01

    The optical fiber filter can be used to reject the noise or unwanted spectrum in the optical communication system. In this study, the performance of the optical fiber filter in visible and near-infrared wavelengths is studied. The working principle of the filter is based on the cladding mode coupling to the high order mode introduced by perturbation on a short section of single-mode (SM) fiber with a specific cut-off wavelength. In the previous study, the filtered wavelengths from the SM-fibers with the cut-off wavelength of 600 nm are 547 nm and near IR range (980-1,100 nm). The filtered wavelength from the SM-fiber with the cut-off wavelength of 800 nm is 666 nm. Also, the magnitude of the filtered wavelengths can be controlled by the magnitude of the applied perturbation force. In this study, the green solid state laser with the wavelength of 532 nm (2nd harmonic component), 808 nm (pump wavelength), and 1,064 nm (fundamental component) and the red diode laser with the wavelength of 668 nm are launched into the SM-fiber with the cut-off wavelength of 600 and 800 nm, respectively. The experimental results clearly show that the harmonic wavelength of 1,064 nm of green laser can be filtered out by the fiber with cut-off wavelength of 600 nm up to 66% with the perturbation force 60 N. The fiber with cut-off wavelength of 800 nm can reject the red laser spectrum up to 50% with the perturbation force 80 N.

  13. Indium Telluride Cylinder Fiber Laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay

    A new type of fiber laser is described here. The laser consists of a 25 mm long fiber with an approximately 15 nm thick In2Te3 semiconductor layer at the glass core glass cladding boundary. The laser mirrors consist of a thick vacuum deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a Halogen Tungsten incandescent lamp or a blue, power LED. Since both, the gain of the In2Te3 semi-conductor and aluminum mirrors have a wide bandwidth the output consists of a pedestal from a wavelength of about 455 nm to about 650 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of - 73 dB.

  14. In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Hajireza, Parsin; Shao, Peng; Forbrich, Alexander; Zemp, Roger J.

    2011-08-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is capable of achieving optical-absorption-contrast images with micron-scale spatial resolution. Previous OR-PAM systems have been frame-rate limited by mechanical scanning speeds and laser pulse repetition rate (PRR). We demonstrate OR-PAM imaging using a diode-pumped nanosecond-pulsed Ytterbium-doped 532-nm fiber laser with PRR up to 600 kHz. Combined with fast-scanning mirrors, our proposed system provides C-scan and 3D images with acquisition frame rate of 4 frames per second (fps) or higher, two orders of magnitude faster than previously published systems. High-contrast images of capillary-scale microvasculature in a live Swiss Webster mouse ear with ~6-μm optical lateral spatial resolution are demonstrated.

  15. Coherent combining of fiber-laser-pumped frequency converters using all fiber electro-optic modulator for active phase control

    NASA Astrophysics Data System (ADS)

    Bourdon, P.; Durécu, A.; Canat, G.; Le Gouët, J.; Goular, D.; Lombard, L.

    2015-03-01

    Coherent beam combining (CBC) by active phase control could be useful for power scaling fiber-laser-pumped optical frequency converters like OPOs. However, a phase modulator operating at the frequency-converted wavelength is needed, which is non standard component. Fortunately, nonlinear conversion processes rely on a phase-matching condition correlating, not only the wave vectors of the coupled waves, but also their phases. This paper demonstrates that, using this phase correlation for indirect control of the phase, coherent combining of optical frequency converters is feasible using standard all-fibered electro-optic modulators. For the sake of demonstration, this new technique is experimentally applied twice for continuous wave second-harmonic-generator (SHG) combination: i) combining 2 SHG of 1.55-μm erbium-doped fiber amplifiers in PPLN crystals generating 775-nm beams; ii) combining 2 SHG of 1.064-μm ytterbium-doped fiber amplifiers in LBO crystals generating 532-nm beams. Excellent CBC efficiency is achieved on the harmonic waves in both these experiments, with λ/20 and λ/30 residual phase error respectively. In the second experiment, I/Q phase detection is added on fundamental and harmonic waves to measure their phase variations simultaneously. These measurements confirm the theoretical expectations and formulae of correlation between the phases of the fundamental and harmonic waves. Unexpectedly, in both experiments, when harmonic waves are phase-locked, a residual phase difference remains between the fundamen tal waves. Measurements of the spectrum of these residual phase differences locate them above 50 Hz, revealing that they most probably originate in fast-varying optical path differences induced by turbulence and acoustic-waves on the experimental breadboard.

  16. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  17. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  18. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  19. Wedged Fibers Suppress Feedback of Laser Beam

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  20. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  1. Optical turbulence in fiber lasers.

    PubMed

    Wabnitz, Stefan

    2014-03-15

    We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788

  2. Fiber-coupled laser-induced breakdown and Raman spectroscopy for flexible sample characterization with depth profiling capabilities

    NASA Astrophysics Data System (ADS)

    Glaus, Reto; Hahn, David W.

    2014-10-01

    A combined laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy system for depth profile analyses is presented. The system incorporates a single 532 nm laser source, which is delivered through an optical fiber to the sample site. The homogenized laser beam results in well-defined cylindrical craters with diameters of 100 μm. LIBS depth profiling analyses of metals was performed applying pulse energies of about 1 mJ. The application of up to 500 pulses allowed to drill through layers of several tens of microns, while observing sharp transitions at the layer interfaces. The capability of the system for Raman spectroscopy was investigated for various polymer samples by reducing the pulse energies below the respective ablation threshold. A combined Raman/LIBS depth profiling was applied to a polymer-coated metal. Additionally, the capability of the system for calibration-free LIBS quantification (CF-LIBS) was evaluated. Quantification of major elements in metallic reference materials showed good agreement with the certified values with relative deviations of less than 30%. Finally, the optimized system was applied for depth profiling and elemental composition analysis of ancient Roman bronze rings. Overall, the presented setup combines the high flexibility of a fiber-coupled system with Raman and micro-LIBS, making the system interesting for depth profiling and elemental quantification in archaeometric as well as industrial applications.

  3. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  4. Compact 151 W green laser with U-type resonator for prostate surgery

    NASA Astrophysics Data System (ADS)

    Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza

    2013-04-01

    We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.

  5. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  6. Controllable Dual-Wavelength Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhou, Jun; He, Bing; Liu, Hou-Kang; Liu, Chi; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-07-01

    We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.

  7. Multisoliton complexes in fiber lasers

    NASA Astrophysics Data System (ADS)

    Korobko, D. A.; Gumenyuk, R.; Zolotovskii, I. O.; Okhotnikov, O. G.

    2014-12-01

    The formation of stationary and non-stationary pulse groups is regularly observed in multiple pulse soliton fiber lasers. The environment developed in this study for the flexible investigation of this phenomenon is based on the cavity comprising a semiconductor saturable absorber mirror (SESAM) with complex dynamics of absorption recovery and all-fiber dispersion management. The detailed experimental and theoretical considerations show that multiple pulsing in fiber systems offers numerous embodiments ranging from stationary bound states to chaotic bunches. The pulse interaction through the dispersive waves was found to produce a principal impact on the bound state formation. The stability and transformation of stationary bound states and bunch propagation have been also addressed.

  8. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  9. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  10. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail. PMID:25322245

  11. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  12. Multi-mJ bursts of green light obtained by frequency doubling the output of a fiber based MOPA

    NASA Astrophysics Data System (ADS)

    Rowen, Eitan E.; Shalev, Nir; Tal, Eran; Lasri, Kobi; Inbar, Eran

    2016-03-01

    We demonstrate a fiber laser that generates bursts of 70-300 pulses at a frequency of 2-8 MHz with over 4 mJ of energy per burst at a wavelength of 532 nm. The output of an Yb-doped fiber amplifier chain is doubled in a single pass through an LBO crystal with efficiency of above 65%. A seed-diode generates the pulse train, which is amplified to a peak power that allows efficient SHG. Such a solution may have many industrial and other applications, where fiber-based solutions have many advantages, but suffer a disadvantage of relatively low pulse energy.

  13. Optical fiber lasers and amplifiers

    SciTech Connect

    Snitzer, E.; Po, H.; Tumminelli, R.P.; Hakimi, F.

    1989-03-21

    An optical fiber is described, which comprises: a substantially single-mode core having an index of refraction n/sub 1/ comprised of laser material disposed within a multi-mode cladding having an index of refraction n/sub 2/; and a further cladding having an index of refraction n/sub 3/ surrounding the multi-mode cladding with substantially no space between the further cladding and the multi-mode cladding; wherein the single-mode core is disposed at an offset from the geometric center of the multi-mode cladding.

  14. Multiwavelength fiber laser for the fiber link monitoring system

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Lee, Wei-Yun; Wu, Shin-Shian; Hu, Hsuan-Lun

    2013-10-01

    This work proposes a novel fiber link monitoring system that uses a multiwavelength fiber laser for wavelength-division-multiplexed (WDM) passive optical network (PON). The multiwavelength fiber laser is based on an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA). Experimental results show the feasibility using the system to monitor a fiber link with a high and stable signal-to-noise ratio (SNR) of over 26 dB. The link quality of downstream signals as well as the fiber link on WDM channels can be monitored in real time. Favorable carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) performance metrics were obtained for cable television (CATV) signals that were transported through 25 km of standard single-mode fiber (SMF).

  15. Fused fiber components for parallel coherent fiber lasers

    NASA Astrophysics Data System (ADS)

    Zoubir, A.; Dupriez, P.

    2015-10-01

    The concept of massively parallel coherent fiber lasers holds great promise to generate enormous laser peak power in order to produce highly energetic particle beams. Such technology is expected to provide a route to practical particle colliders or to proton generation for medical applications. Such concept is based on the phasing of thousands of fiber amplifiers each emitting mJ level pulses, in which optical fibers are key components. In this paper, we present important technological building blocks based on optical fibers, which could pave the way for efficient, compact and cost-effective components to address the technological challenges ahead.

  16. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  17. Microring embedded hollow polymer fiber laser

    SciTech Connect

    Linslal, C. L. Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  18. Effect of In3+ concentration on the photorefraction and scattering properties in In:Fe:CU:LiNbO3 crystals at 532 nm wavelength

    NASA Astrophysics Data System (ADS)

    Luo, Suhua; Meng, Qingxin; Wang, Jian; Sun, Xiudong

    2016-01-01

    The LiNbO3 crystals doped with Fe2O3, CuO and various In2O3, respectively, have been grown by the Czochralski method in air atmosphere. The photorefractive properties at 532 nm wavelength were measured by using the typical two-wave coupling experiments. Meanwhile, the incident exposure energy flux threshold for the light-induced scattering was characterized to investigate the scattering properties of the crystals. The results show that the response time shortens, the recording sensitivity improves, and the light-induced scattering decreases with the increasing In3+ ions concentration. However, the doping of In3+ ions leads to the decrease of the diffraction efficiency and the gain coefficient. So, the appropriate In3+ ions concentration should be doping in In:Fe:Cu:LiNbO3 crystals to adapt our practical application in the green light region photorefractive holographic recording.

  19. Visible upconversion fiber lasers in ring configuration

    NASA Astrophysics Data System (ADS)

    Caspary, Reinhard; Baraniecki, Tomasz P.; Kozak, Marcin M.; Kowalsky, Wolfgang

    2005-09-01

    Up-conversion fiber lasers based on Pr3+/Yb3+ doped fluoride fibers and pumped at 835 nm can operate on emission lines in the red, orange, green, and blue spectral region. Up to now only Fabry-Perot configurations with two mirrors butt-coupled to the fiber ends were investigated. In this paper we present the first visible Pr3+/Yb3+ fiber lasers in a ring configuration. In contrast to the usual Fabry-Perot configuration, the basic ring resonator setup contains no free-space optics and no parts which need to be adjusted. The main challenge for such a setup is the connection between the fluoride laser fiber and the remaining part of the ring resonator, which is made from silica fibers. Due to the very different melting temperatures of both glasses usual fusion splices are impossible. We use a special technique to couple the fibers with glue.

  20. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  1. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Advances in drilling with fiber lasers

    NASA Astrophysics Data System (ADS)

    Naeem, Mohammed

    2015-07-01

    High brightness quasi- continuous wave (QCW) and continuous wave (CW) fiber lasers are routinely being used for cutting and welding for a range of industrial applications. However, to date very little work has been carried out or has been reported on laser drilling with these laser sources. This work describes laser drilling ((trepan and percussion) of nickel based superalloys (thermal barrier coated and uncoated) with a high power QCW fiber laser. This presentation will highlight some of the most significant aspect of laser drilling, i.e. SmartPierceTM, deep hole drilling and small hole drilling. These advances in processing also demonstrate the potential for fiber laser processing when an advanced interface between laser and an open architecture controller are used.

  3. Pulsed laser damage to optical fibers

    SciTech Connect

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-10-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace.

  4. Self-tuning fiber lasers

    NASA Astrophysics Data System (ADS)

    Brunton, Steven L.; Kutz, J. N.; Fu, Xing

    2016-03-01

    Advanced methods in data science are driving the characterization and control of nonlinear dynamical systems in optics. In this work, we investigate the use of machine learning, sparsity methods and adaptive control to develop a self-tuning fiber laser, which automatically learns and adapts to maintain high-energy ultrashort pulses. In particular, a two-stage procedure is introduced consisting of a machine learning algorithm to recognize different dynamical regimes with distinct behavior, followed by an adaptive control algorithm to reject disturbances and track optimal solutions despite stochastically varying system parameters. The machine learning algorithm, called sparse representation for classification, comes from machine vision and is typically used for image recognition. The adaptive control algorithm is extremum-seeking control, which has been applied to a wide range of systems in engineering; extremum-seeking is beneficial because of rigorous stability guarantees and ease of implementation.

  5. Dual polarization fiber grating laser hydrophone.

    PubMed

    Guan, Bai-Ou; Tan, Yan-Nan; Tam, Hwa-Yaw

    2009-10-26

    A novel fiber optic hydrophone based on the integration of a dual polarization fiber grating laser and an elastic diaphragm is proposed and experimentally demonstrated. The diaphragm transforms the acoustic pressure into transversal force acting on the laser cavity which changes the fiber birefringence and therefore the beat frequency between the two polarization lines. The proposed hydrophone has advantages of ease of interrogation, absolute frequency encoding, and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique. PMID:19997174

  6. Multiplexed fiber-ring laser sensors for ultrasonic detection.

    PubMed

    Liu, Tongqing; Hu, Lingling; Han, Ming

    2013-12-16

    We propose and demonstrate a multiplexing method for ultrasonic sensors based on fiber Bragg gratings (FBGs) that are included inside the laser cavity of a fiber-ring laser. The multiplexing is achieved using add-drop filters to route the light signals, according to their wavelengths, into different optical paths, each of which contains a separate span of erbium-doped fiber (EDF) as the gain medium. Because a specific span of EDF only addresses a single wavelength channel, mode completion is avoided and the FBG ultrasonic sensors can be simultaneously demodulated. The proposed method is experimentally demonstrated using a two-channel system with two sensing FBGs in a single span of fiber. PMID:24514624

  7. Advances in fiber combined pump modules for fiber lasers

    NASA Astrophysics Data System (ADS)

    Crum, Trevor; Romero, Oscar; Li, Hanxuan; Jin, Xu; Towe, Terry; Chyr, Irving; Truchan, Tom; Liu, Daming; Cutillas, Serge; Johnson, Kelly; Park, Sang-Ki; Wolak, Ed; Miller, Robert; Bullock, Robert; Mott, Jeff; Fidric, Bernard; Harrison, James

    2009-02-01

    Fiber combining multiple pump sources for fiber lasers has enabled the thermal and reliability advantages of distributed architectures. Recently, mini-bar based modules have been demonstrated which combine the advantages of independent emitter failures previously shown in single-stripe pumps with improved brightness retention yielding over 2 MW/cm2Sr in compact economic modules. In this work multiple fiber-coupled mini-bars are fiber combined to yield an output of over 400 W with a brightness exceeding 1 MW/cm2Sr in an economic, low loss architecture.

  8. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  9. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  10. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  11. Flexible pulse-controlled fiber laser.

    PubMed

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  12. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  13. Amplifier/compressor fiber Raman lasers.

    PubMed

    Islam, M N; Mollenauer, L F; Stolen, R H; Simpson, J R; Shang, H T

    1987-10-01

    We show that the chirp from cross-phase modulation (XPM) dominates the operation of fiber Raman lasers (FRL's). Thus a FRL in the anomalous group-velocity regime is best described as a XPM-chirped Raman amplifier followed by a linear fiber compressor. While the output of such a laser is generally a narrow pulse with a broad pedestal, we show both experimentally and by computer simulation that negligible background is achievable. PMID:19741882

  14. Growth and optical photorefraction of Zr:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios at 532 nm wavelength

    NASA Astrophysics Data System (ADS)

    Luo, Suhua; Wang, Jian; Meng, Qingxin; Sun, Xiudong

    2013-11-01

    Zr:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.85, 1.05, and 1.38 in melt. Based on the ICP-AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formulas of Zr:Fe:LiNbO3 crystals were obtained. The sign of the dominate charge carriers as well as the two-wave coupling gain coefficient as a function of the [Li]/[Nb] ratios in crystal were investigated by using the typical two-wave coupling experimental setup. The results show that electrons are the dominate charge carriers and the gain coefficient is the largest when the recording angle 2θ=21° in the sample with [Li]/[Nb]=0.7111 in crystal. In addition, the dependence of the light-induced birefringence on the [Li]/[Nb] ratios was measured in Zr:Fe:LiNbO3 crystals, which shows that the optical damage resistance of Zr:Fe:LiNbO3 crystals increases with the increasing of [Li]/[Nb] ratios at 532 nm wavelength. The dependences of the green photorefraction on the defect structure of Zr:Fe:LiNbO3 crystals are discussed in detail based on the obtained chemical formulas.

  15. Broadband optically controlled switching effect in a microfluid-filled photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Luo, Mingming; Huang, Wei; Han, Tingting; Liu, Xiaoqi

    2016-05-01

    Broadband optically controlled switching in a microfluid-filled photonic bandgap fiber (MF-PBGF) was observed and investigated. The MF-PBGF was formed by infusing a temperature-sensitive high-index fluid into all of the cladding holes of a microstructured optical fiber (MOF). The fiber was then side pumped with a 532 nm continuous wave laser. An extinction ratio of greater than 20 dB at most of the bandgap wavelengths (more than 200 nm) was obtained with a switching power of ∼147 mW. Theoretical and experimental investigations revealed that the effect originated from changes in the temperature gradient induced by heat absorption of the fiber coating with laser illumination. These investigations offer a new and simple approach to achieve wideband and flexible all-optical fiber switching devices without using any photosensitive materials.

  16. Fiber-Optic Probe For Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Lynch, Dana H.; Mcalister, Kenneth W.; Gunter, William D., Jr.

    1992-01-01

    Size and weight of optics reduced considerably. Proposed fiber-optic probe in laser velocimeter smaller (and, therefore, lighter in weight and more maneuverable) than previous probe. Proposed configuration is product of calculations and experiments showing virtual waists serve same purpose. Laser-velocimeter lens brought close to transfer lenses to focus on virtual waists, thereby shortening probe head considerably.

  17. Excimer laser machining of optical fiber taps

    NASA Astrophysics Data System (ADS)

    Coyle, Richard J.; Serafino, Anthony J.; Grimes, Gary J.; Bortolini, James R.

    1991-05-01

    Precision openings for construction of an optical backplane have been machined in an optical fiber using an excimer laser operating at a wavelength of 193 nm. The openings were made by imaging the laser beam onto the polymer fiber cladding with a telescope, then ablating the cladding with a sufficient number of pulses to expose the core. Circular openings measuring 250 and 625 microns and elliptical openings measuring 650 X 350 microns have been made in the cladding of a 1 mm polymer-clad silica fiber. Examination by scanning electron microscopy reveals that the best quality openings are obtained with either the smaller circular geometry or the elliptical geometry. For various reasons, elliptical openings, with the major axis oriented along the longitudinal axis of the fiber, appear more suitable for tap construction. Individual optical fiber taps have been constructed by attaching a tap fiber to a laser machined opening in a central fiber using an ultraviolet-curable acralate. Individual tap measurements were made on the elliptical and the 250 micron circular openings. In addition, a triple tap assembly was made using elliptical tap openings. These results indicate that the excimer laser machining technique may be applicable to the construction of a linear tapped bus for optical backplanes.

  18. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  19. Fiber optic mounted laser driven flyer plates

    SciTech Connect

    Paisley, D.L.

    1990-12-31

    This invention is comprised of a laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs. 2 figs.

  20. Bidirectional pumped high power Raman fiber laser.

    PubMed

    Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M

    2016-03-21

    This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862

  1. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-06-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  2. Laser fiber optics ordnance initiation system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1976-01-01

    Recent progress on system development in the laser initiation of explosive devices is summarized. The topics included are: development of compact free-running mode and Q-switched lasers, development of low-loss fiber optic bundles and connectors, study of nuclear radiation effects on the system, characterization of laser initiation sensitivities of insensitive high explosives, and the design methods used to achieve attractive system weight and cost savings. Direction for future work is discussed.

  3. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  4. Fiber Delivery of mid-IR lasers

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James P.

    2011-08-24

    Fiber optics for the visible to near infrared (NIR) wavelength regimes (i.e. = 0.42 {mu}m) have proven to be extremely useful for a myriad of applications such as telecommunications, illumination, and sensors because they enable convenient, compact, and remote delivery of laser beams. Similarly, there is a need for fiber optics operating at longer wavelengths. For example, systems operating in the mid-IR regime (i.e., = 314 {mu}m) are being developed to detect trace molecular species with far-reaching applications, such as detecting explosives on surfaces, pollutants in the environment, and biomarkers in the breath of a patient. Furthermore, with the increasing availability of quantum cascade lasers (QCLs) which are semiconductor lasers that operate in the mid-IR regime additional uses are rapidly being developed. Here, we describe the development of hollow-core fibers for delivery of high-quality mid-IR laser beams across a broad spectral range.

  5. Laser jamming technique research based on combined fiber laser

    NASA Astrophysics Data System (ADS)

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2009-06-01

    A compact and light laser jamming source is needed to increase the flexibility of laser jamming technique. A novel laser jamming source based on combined fiber lasers is proposed. Preliminary experimental results show that power levels in excess of 10 kW could be achieved. An example of laser jamming used for an air-to-air missile is given. It shows that the tracking system could complete tracking in only 4 s and came into a steady state with its new tracking target being the laser jamming source.

  6. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  7. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  8. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  9. The crucial fiber components and gain fiber for high power ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liao, Lei; Liu, Peng; Xing, Ying-Bin; Wang, Yi-Bo; Dai, Neng-Li; Li, Jin-Yan; He, Bing; Zhou, Jun

    2015-08-01

    We have demonstrated a kW continuous-wave ytterbium-doped all-fiber laser oscillator with 7×1 fused fiber bundle combiner, fiber Bragg grating (FBG) and double-clad gain fiber fabricated by corresponding technologies. The results of experiment that the oscillator had operated at 1079.48nm with 80.94% slope efficiency without the influence of temperature and non-linear effects indicate that fiber components and gain fiber were suitable to high power environment. No evidence of the signal power roll-over showed that this oscillator possess the capacity to highest output with available pump power.

  10. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  11. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  12. Ho:YLF Laser Pumped by TM:Fiber Laser

    NASA Astrophysics Data System (ADS)

    Mizutani, Kohei; Ishii, Shoken; Itabe, Toshikazu; Asai, Kazuhiro; Sato, Atsushi

    2016-06-01

    A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  13. Cascade Raman soliton fiber ring laser

    SciTech Connect

    Gouveia-Neto, A.S.; Gomes, A.S.L.; Taylor, J.R.; Ainslie, B.J.; Craig, S.P.

    1987-11-01

    Pulses as short as 200 fsec at 1.5 ..mu..m and 230 fsec at 1.6 ..mu..m have been generated through a cascade Raman, solitonlike process in a fiber ring oscillator. A dispersion-shifted (lambda/sub 0/ = 1.46 ..mu..m) single-mode fiber was used as the gain medium, which was synchronously pumped by a cw mode-locked Nd:YAG laser operated at 1.32 ..mu..m.

  14. High-performance iodine fiber frequency standard.

    PubMed

    Lurie, Anna; Baynes, Fred N; Anstie, James D; Light, Philip S; Benabid, Fetah; Stace, Thomas M; Luiten, Andre N

    2011-12-15

    We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude. PMID:22179880

  15. Fiber laser vector hydrophone: theory and experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Zhang, Faxiang; Ma, Rui; He, Jun; Li, Fang; Liu, Yuliang

    2011-05-01

    A novel fiber laser vector hydrophone (FLVH) based on accelerometers is presented. Three fiber laser accelerometers (FLA), perpendicular to each other, are used to detect the acoustic induced particle acceleration. Theoretical analyses of the acoustic sensitivity and the natural frequency are given. Experiment shows a sensitivity of 0.1 pm/Pa@100 Hz is achieved, which results in a minimum detectable acoustic signal of 100 μPa/@Hz@100 Hz. Field demonstration shows that the proposed vector hydrophone has good directivity.

  16. Innovations in high power fiber laser applications

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank

    2012-02-01

    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  17. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many MHz. Therefore, this design does not need to throw away or dump 99% of the laser energy to produce what is required; this system can be far smaller, more efficient, cheaper, and readily deployed in the field when packaged efficiently. Finally, by producing custom diode seed pulses electronically, two major advantages over commercial systems are realized: First, this pulse shape is customizable and not affected by the cavity length or gain of the amplifier cavity, and second, it can produce adjustable (selectable) pulse widths by simply adding multiple seed diodes and coupling each into commercial, low-cost fiber-optic combiners.

  18. All-fiber normal-dispersion femtosecond laser

    PubMed Central

    Kieu, K.; Wise, F. W.

    2011-01-01

    Spectral filtering of a chirped pulse can be a strong pulse-shaping mechanism in all-normal-dispersion femtosecond fiber lasers. We report an implementation of such a laser that employs only fiber-format components. The Yb-doped fiber laser includes a fiber filter, and a saturable absorber based on carbon nanotubes. The laser generates 1.5-ps, 3-nJ pulses that can be dechirped to 250 fs duration outside the cavity. PMID:18648465

  19. CO2-Laser Cutting Fiber Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    Mueller, R.; Nuss, Rudolf; Geiger, Manfred

    1989-10-01

    Guided by experimental investigations laser cutting of glass fiber reinforced reactive injection moulded (RRIM)-polyurethanes which are used e.g. in car industry for bumpers, spoilers, and further components is described. A Comparison with other cutting techniques as there are water jet cutting, milling, punching, sawing, cutting with conventional knife and with ultrasonic excited knife is given. Parameters which mainly influence cutting results e.g. laser power, cutting speed, gas nature and pressure will be discussed. The problematic nature in characterising micro and macro geometry of laser cut edges of fiber reinforced plastic (FRP) is explained. The topography of cut edges is described and several characteristic values are introduced to specify the obtained working quality. The surface roughness of laser cut edges is measured by both, an optical and a mechanical sensor and their reliabilities are compared.

  20. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  1. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  2. Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm.

    PubMed

    Chaitanya Kumar, S; Canals Casals, J; Sanchez Bautista, E; Devi, K; Ebrahim-Zadeh, M

    2015-05-15

    We report a compact, stable, high-power, picosecond ultraviolet (UV) source at 266 nm based on simple single-pass two-step fourth-harmonic generation (FHG) of a mode-locked Yb-fiber laser at 79.5 MHz in LiB3O5 (LBO) and β-BaB2O4. Using a 30-mm-long LBO crystal for single-pass second-harmonic generation, we achieve up to 9.1 W of average green power at 532 nm for 16.8 W of Yb-fiber power at a conversion efficiency of 54% in 16.2 ps pulses with a TEM00 spatial profile and passive power stability better than 0.5% rms over 16 h. The generated green radiation is then used for single-pass FHG into the UV, providing as much as 1.8 W of average power at 266 nm under the optimum focusing condition in the presence of spatial walk-off, at an overall FHG conversion efficiency of ∼11%. The generated UV output exhibits passive power stability better than 4.6% rms over 1.5 h and beam pointing stability better than 84 μrad over 1 h. The UV output beam has a circularity of >80% in high beam quality with the TEM00 mode profile. To the best of our knowledge, this is the first report of picosecond UV generation at 266 nm at megahertz repetition rates. PMID:26393749

  3. AFIRE: fiber Raman laser for laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Bonaccini Calia, D.; Hackenberg, W.; Chernikov, S.; Feng, Y.; Taylor, L.

    2006-06-01

    Future adaptive optics systems will benefit from multiple sodium laser guide stars in achieving satisfactory sky coverage in combination with uniform and high-Strehl correction over a large field of view. For this purpose ESO is developing with industry AFIRE, a turn-key, rack-mounted 589-nm laser source based on a fiber Raman laser. The fiber laser will deliver the beam directly at the projector telescope. The required output power is in the order of 10 W in air per sodium laser guide star, in a diffraction-limited beam and with a bandwidth of < 2 GHz. This paper presents the design and first demonstration results obtained with the AFIRE breadboard. 4.2W CW at 589nm have so far been achieved with a ~20% SHG conversion efficiency.

  4. Supercontinuum fiber lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Devine, Adam; Hooper, Lucy; Clowes, John

    2016-05-01

    In this talk we give an overview of recent advances in the development of high power supercontinuum fiber lasers with powers exceeding 50W and spectral brightness of tens of mW/nm. We also discuss the fundamental limitations of power scaling and spectral broadening and review the existing and emerging applications of this unique light source which combines the broadband properties of a light bulb with the spatial properties of a laser.

  5. Hybrid fiber-rod laser

    SciTech Connect

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  6. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  7. Graphene Q-switched, tunable fiber laser

    NASA Astrophysics Data System (ADS)

    Popa, D.; Sun, Z.; Hasan, T.; Torrisi, F.; Wang, F.; Ferrari, A. C.

    2011-02-01

    We demonstrate a wideband-tunable Q-switched fiber laser exploiting a graphene saturable absorber. We get ˜2 μs pulses, tunable between 1522 and 1555 nm with up to ˜40 nJ energy. This is a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.

  8. Ribbon Fiber Laser-Theory and Experiment

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A

    2002-05-10

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  9. Dynamic pulsing of a MOPA fiber laser

    NASA Astrophysics Data System (ADS)

    Romero, Rosa; Guerreiro, Paulo T.; Hendow, Sami T.; Salcedo, José R.

    2011-05-01

    Dynamic Pulsing is demonstrated using a pulsed MOPA fiber laser at 1064nm. The output of the MOPA laser is a pulsed profile consisting of a burst of closely spaced pulses. Tests were performed under several materials with pulse bursts ranging from 10ns to 1μs and operating from 500kHz down to single shot. In particular, percussion drilling in stainless steel is demonstrated showing improvements in quality and speed of the process. These profiles allow high flexibility and optimization of the process addressing the specificity of the end application. Dynamic Pulsing allows the same MOPA fiber laser to be used in diverse materials as well as different processes such us marking, drilling, scribing and engraving. The pulsed fiber laser used in this study is a MOPA-DY by Multiwave Photonics. It is based on a modulated seed laser followed by a series of fiber amplifiers and ending with an optically isolated collimator. This pulsed laser model has an output in such a way that each trigger produces a fast burst of pulses, with a repetition frequency within the burst of the order of tens of MHz. Within the burst it is possible to change the number of pulses, the individual pulse profile, burst pulse period and even to generate non-periodic burst pulse separations. The laser allows full freedom for all these combinations. The study here reported compares the impact of pulse peak power, number of pulses within a burst and the pulse burst period, on process quality (heat affected zone, debris, hole uniformity) and drilling yield.

  10. Optical fiber laser of multifrequency emission

    NASA Astrophysics Data System (ADS)

    Beltrán-Pérez, Georgina; Jacobo Aispuro, Liliana; Lucian Rocha, Froylan; Castillo Mixcóatl, Juan; Múñoz Aguirre, Severino

    2007-03-01

    The wavelength division multiplexor (WDM) has a great importance in the technology of the communications by optical fiber, is an economic and efficient form, to increase the capacity of transmission by several orders of magnitude, reason why it is desirable to have laser sources of multiple wavelengths in a system WDM, which, according to reported works, have been obtained using diverse types of filters. In this work we presented a laser of multifrequency emission, of Erbium doped optical fiber, tuned with an optical fiber filter. The configuration of the optical filter, presents high stability and low lost by insertion, independence to the changes of polarization, low powers of light entrance, and has an useful spectral wide. It has the advantage to have a simple design and easy manufacture in addition to his low losses.

  11. Laser Cutting of Carbon Fiber Fabrics

    NASA Astrophysics Data System (ADS)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  12. High-power fiber laser studies at the Polaroid Corporation

    NASA Astrophysics Data System (ADS)

    Muendel, Martin H.

    1998-06-01

    Current work on the Polaroid double-clad fiber laser is discussed. Experiments towards testing the upper power limits of fiber lasers are described. Models for the laser output in the rate-equation approximation, for the laser polarization state, and for the axial-mode-beating noise are presented and compared to experiment.

  13. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  14. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  15. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases

    SciTech Connect

    Joshi, Sachin; Yalin, Azer P.; Galvanauskas, Almantas

    2007-07-01

    The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity ({approx}200 GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f of {approx}55 allowing spark formation with {approx}98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.

  16. Fiber Coupled Laser Diodes with Even Illumination Pattern

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  17. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    PubMed

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-01-01

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342

  18. All-fiber single-mode PM thulium fiber lasers using femtosecond laser written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Willis, Christina C. C.; Bradford, Joshua D.; Sims, R. Andrew; Shah, Lawrence; Richardson, Martin; Thomas, Jens; Becker, Ria G.; Voigtländer, Christian; Tünnermann, Andreas; Nolte, Stefan

    2011-02-01

    A polarization-maintaining (PM), narrow-linewidth, continuous wave, thulium fiber laser is demonstrated. The laser cavity is formed from two femtosecond-laser-written fiber Bragg gratings (FBGs) and operates at 2054 nm. The laser output possesses both narrow spectral width (78 pm) and a high polarization extinction ratio of ~18 dB at 5.24 W of output power. This laser is a unique demonstration of a PM thulium fiber system based on a two FBG cavity that produces high PER without any free-space elements. Such a narrow linewidth source will be useful for applications such as spectral beam combining which often employ polarization dependent combining elements.

  19. All fiber laser using a ring cavity

    NASA Astrophysics Data System (ADS)

    Flores, Alberto Varguez; Pérez, Georgina Beltrán; Aguirre, Severino Muñoz; Mixcóatl, Juan Castillo

    2008-04-01

    Mode-locked laser have a number of potential applications, depending on the wavelength and pulse width. They could be used as sources in communications systems for time division multiplexing (TDM) or wavelength-division-multiplexing (WDM) as spectroscopic tools in the laboratory for time-resolved studies of fast nonlinear phenomena in semiconductors, or as seeds for solid-state amplifers such as Nd:Glass, color center alexandrite, or Ti:Sapphire. Short pulses also have potential use in electro-optic sampling systems, as a source for pulsed sensors, or as tunable seed pulses for lasers in medical applications. Applications such as optical coherent tomography could take advantage of the broad bandwidth of a mode-locked fiber laser rather that the temporal ultra-short pulse width. This work shows the characterization of active mode-locking all-fiber laser by using an acousto-optic frequency shifter to the ring cavity, an erbium doped fiber (EDF) and polarization controllers (PC). The results shows a highly stable mode-locked, low noise of pulse generation with repetition rate of 10 MHz and width of 1.6 ns

  20. Polarization-modulated random fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wang, Zinan; He, Qiheng; Fan, Mengqiu; Li, Yunqi; Sun, Wei; Zhang, Li; Li, Yi; Rao, Yunjiang

    2016-05-01

    In this letter, we propose and experimentally demonstrate a polarization-modulated random fiber laser (RFL) for the first time. It is found that the output power of the half-opened RFL with polarized pumping is sensitive to the state of polarization (SOP) of the Stokes light in a fiber loop acting as a mirror. By inserting a polarization switch (PSW) in the loop mirror, the state of the random lasing can be switched between on/off states, thus such a polarization-modulated RFL can generate pulsed output with high extinction ratio.

  1. Novel optical fiber ultrasonic sensor based on fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Qi; Okabe, Yoji; Sun, Junqiang

    2014-03-01

    Researching high-sensitivity flexible ultrasonic sensor is important in the field of structural health monitoring (SHM). In this research, a novel ultrasonic sensor based on fiber ring laser with an in-built phase shifted fiber Bragg grating (PSFBG) is proposed and demonstrated. The first function of the PS-FBG is to determine the wavelength of the laser. Thus, this sensing system is robust to temperature change and quasi-static strain change because the PS-FBG is always illuminated. The other function of the PS-FBG is a sensor with ultra-steep slope and short effective grating length. It is beneficial for achievement of high-sensitivity and broad-bandwidth ultrasonic detection. The experimental evaluated sensitivity was 58.5+/-3 dB, which is 7.5 dB higher than traditional PZT sensor. This may be the highest sensitivity obtained by optical fiber sensing system. Because of the advantages including robustness, simple structure and low cost in addition to the high sensitivity and broad bandwidth, this sensing system has potential practical applications in ultrasonic SHM.

  2. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  3. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  4. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  5. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  6. Fiber amplifiers and lasers in Yb:silica

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Feit, M.D.; Nyman, B.

    1996-11-15

    We have measured gain and saturation in sing;e mode Yb:silica fiber, and developed fiber lasers and amplifiers at 1053 nm. The lasers are tunable over 10`s of nanometers, with amplifier gain flattened by fiber gratings or dielectric filters.

  7. Broad-Area Laser Diode With Fiber-Optic Injection

    NASA Technical Reports Server (NTRS)

    Hazel, Geoffrey; Mead, Patricia; Davis, Christopher; Cornwell, Donald

    1992-01-01

    Fiber-optic injection-locked broad-area laser diode features single-mode output via fiber-optic injection and serves as compact, rugged, high-power near-infrared source. Useful in free-space and fiber-optic communication links, as communication-receiver preamplifier, and pump source for solid-state lasers.

  8. Blackening of metals using femtosecond fiber laser.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine. PMID:25967633

  9. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  10. Drilling with fiber-transmitted, visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.; Werve, M.E.; Warner, B.E.

    1994-02-17

    High power and radiance copper-vapor laser technology developed at Lawrence Livermore National Laboratory shows great promise for many materials processing tasks. The authors recently transmitted the visible light produced by these lasers through fiber optics to perform hole drilling experiments. They found the tolerances on the hole circulatory and cylindricity to be excellent when compared to that produced by conventional optics. This technique lends itself to many applications that are difficult to perform when using conventional optics, including robotic manipulation and hole drilling in non-symmetric parts.

  11. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions

    NASA Astrophysics Data System (ADS)

    Walorny, Michael; Abramczyk, Jaroslaw; Jacobson, Nick; Tankala, Kanishka

    2016-03-01

    With the rapid acceptance of fiber lasers and amplifiers for various materials processing and defense applications the long term optical and mechanical reliability of the fiber laser, and therefore the components that make up the laser, is of significant interest to the industrial and defense communities. The double clad fiber used in a fiber laser is a key component whose lifetime in typical deployment conditions needs to be understood. The optical reliability of double clad fiber has recently been studied and a predictive model of fiber lifetime has been published. In contrast, a rigorous model for the mechanical reliability of the fiber and an analysis of the variables affecting the lifetime of the fiber in typical deployment conditions has not been studied. This paper uses the COST-218 model which is widely used for analyzing the mechanical lifetime of fiber used in the telecom industry. The factors affecting lifetime are analyzed to make the reader aware of the design choices a laser manufacturer can make, and the information they must seek from fiber suppliers, to ensure excellent lifetime for double clad fiber and consequently for the fiber laser. It is shown that the fiber's stress corrosion susceptibility, its proof strength, the coil diameter and the length of fiber coiled to achieve good beam quality all have important implications on fiber lifetime.

  12. Theory of a random fiber laser

    NASA Astrophysics Data System (ADS)

    Kolokolov, I. V.; Lebedev, V. V.; Podivilov, E. V.; Vergeles, S. S.

    2014-12-01

    We develop the theory explaining the role of nonlinearity in generation of radiation in a fiber laser that is pumped by external light. The pumping energy is converted into the generating signal due to the Raman scattering supplying an effective gain for the signal. The signal is generated with frequencies near the one corresponding to the maximum value of the gain. Generation conditions and spectral properties of the generated signal are examined. We focus mainly on the case of a random laser where reflection of the signal occurs on impurities of the fiber. From the theoretical standpoint, kinetics of a wave system close to an integrable one are investigated. We demonstrate that in this case, the perturbation expansion in the kinetic equation has to use the closeness to the integrable case.

  13. Theory of a random fiber laser

    SciTech Connect

    Kolokolov, I. V. Lebedev, V. V.; Podivilov, E. V.; Vergeles, S. S.

    2014-12-15

    We develop the theory explaining the role of nonlinearity in generation of radiation in a fiber laser that is pumped by external light. The pumping energy is converted into the generating signal due to the Raman scattering supplying an effective gain for the signal. The signal is generated with frequencies near the one corresponding to the maximum value of the gain. Generation conditions and spectral properties of the generated signal are examined. We focus mainly on the case of a random laser where reflection of the signal occurs on impurities of the fiber. From the theoretical standpoint, kinetics of a wave system close to an integrable one are investigated. We demonstrate that in this case, the perturbation expansion in the kinetic equation has to use the closeness to the integrable case.

  14. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  15. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  16. Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications.

    PubMed

    Mohammed, Waleed; Gu, Xijia

    2010-10-01

    Fiber Bragg gratings (FBGs) are indispensable components in the design of monolithic high-power fiber lasers. As the laser power scales up, the adoption of larger-mode-area fibers with high V numbers poses new challenges for FBG design and fabrication. In this paper, we present the simulation, fabrication, and measurement of the FBGs inscribed on large-mode-area fibers. The simulation used the T-matrix approach to calculate the spectral response of the FBG that matched well with the measured spectra. The observed fringes in the reflection spectrum are explained by the interference between the low-order modes that were also confirmed with the simulation. Some unique features of the FBG and their potential applications are discussed. PMID:20885465

  17. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  18. Thulium fiber laser damage to the ureter

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-07-01

    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  19. A random Q-switched fiber laser.

    PubMed

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  20. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  1. Short pulse dynamics in a linear cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2016-04-01

    New suitable numerical scheme is proposed for simulation of dynamics of oppositely running pulses in a fiber laser with linear cavity. The proposed model allows to include various temporal and spatial effects which affect the laser dynamics. The pulse evolution in the fiber cavity with perfect reflectors at the fiber ends with accounting of fiber group velocity dispersion and self-phase modulation is demonstrated.

  2. Laser beam application with high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Brenner, Berndt; Morgenthal, Lothar

    2007-05-01

    With the new industrial high power fiber lasers we have already stepped into a new generation of laser applications. These lasers are smaller, better, more cost-effective, and offer a processing "on the fly." Of utmost importance is their excellent beam quality which enables us to reduce the size of the focussing head including the scanning mirrors. With the reduced mass of the mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. Using such mirrors with this high beam quality we can shape the key hole geometry, and thus it is possible to decrease the keyhole spiking, which always occur in the case of deep penetration welding. We can generate very thin and deep welding seams, which we have only experienced with electron beam welding. The excellent beam quality of the fiber lasers offers us a lot of new applications from deep penetration welding to high speed welding. By using beam scanning we are able to easily change the beam and the seam geometry. Furthermore, it is possible to work with this kind of laser from a distance of some meters between focussing/scanning head and the work piece. This technique is called remote processing or processing "on the fly." The excellent beam quality also enables us to cut very precisely, and due to the small cutting widths with a very high speed. In this case the main problem is that the roughness of the cutting edge increases a little bit. One reason for this is that we cannot blow out the mold as easily as we can do it with higher cutting widths. There are also polarized fiber lasers on the market where we can use the Brewster effect for different applications. The presentation will cover some physical basics including different industrial applications.

  3. Dispersion measurements of mode-locked fiber laser components

    NASA Astrophysics Data System (ADS)

    Louthain, James A.; Hayduk, Michael J.; Erdmann, Reinhard K.

    2000-07-01

    Precise control of the dispersion within mode-locked laser cavities can lead to optical pulse compression and reduced timing jitter of mode-locked lasers. Two simple measurement techniques are used to provide a complete picture of the dispersion within an erbium doped mode-locked fiber laser cavity. We measured the optical dispersion of erbium-doped fiber, standard single mode fiber, and chirped Bragg gratings. We built a Michelson interferometer with a wideband LED source to measure the dispersion of fiber lengths of less than 1 meter. Next, we measured the dispersion of chirped Bragg gratings using a network analyzer and a tunable laser in a differential phase measurement technique.

  4. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  5. Powerful 2-μm all-fiber laser sources pumped by Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Jin, Xiaoxi; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-11-01

    We present novel and powerful pump schemes for fiber laser sources operating near 2 μm, which employing high power Raman fiber lasers (RFLs) to provide sufficient pump light. Firstly, we demonstrate a Tm-doped fiber laser (TDFL) pumped by two RFLs at 1173 nm. The output power of the TDFL reached 96 W with slope efficiency of 0.42, and the central wavelength located at 1943.3 nm. This is the first TDFL with 100 W-level output power pumped by RFLs around Tm3+ ions' ~1200 nm absorption band. Secondly, we demonstrate a Ho-doped fiber laser (HDFL) employing a 1150 nm RFL as pump source. The 1150 nm RFL provided 110 W pump power and the output power of the HDFL reached 42 W with slope efficiency of 0.37. The lasing wavelength covered from 2046.8 nm to 2049.5 nm with optical signal-to-noise ratio more than 30 dB. This is the first HDFL pumped by a 1150 nm RFL and the highest output power achieved at this pump band. In the last, we present a high power Ho-doped fiber (HDF) superfluorescent source (SS) pumped by a 1150 nm RFL. The SS's output power reached 1.5 W, and the full width at half maximum was about 30 nm. This is the highest output power achieved in HDF as far as we know. The results above indicate promising and powerful pump schemes to achieve higher power output in fiber lasers near 2 μm, which also can be further improved by optimizing the parameters of the sources.

  6. Stimulation of the cochlea using green laser light

    NASA Astrophysics Data System (ADS)

    Wenzel, G. I.; Balster, S.; Lim, H. H.; Zhang, K.; Reich, U.; Lubatschowski, H.; Ertmer, W.; Lenarz, T.; Reuter, G.

    2009-02-01

    The success of conventional hearing aids and electrical cochlear implants have generally been limited to hearing in quiet situations, in part due to a lack of localized (i.e., frequency specificity) sensorineural activation and subsequent impaired speech discrimination in noise. Laser light is a source of energy that can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. Compound action potentials have been elicited using 2.12 µm laser pulses through activation of auditory nerve fibers (Izzo et al. 2006). Laser stimulation (813 nm) of the cochlea has shown to induce basilar membrane motion and cochlear microphonic potentials (Fridberger et al. 2006). We sought to assess if visible light (green, 532 nm, 10 ns pulses) could be used to consistently activate the cochlea. The laser parameters were selected based on our initial attempt to induce an optoacoustic effect as the energy transfer mechanism to the cochlea. Click evoked auditory brainstem responses (AABRs) were recorded preoperatively in ketamine-anesthetized guinea pigs to confirm normal hearing. The bulla and then the cochlea were exposed. Optically evoked ABRs (OABR) were recorded in response to laser stimulation with a 50 µm optical fiber (532 nm, 10 ns pulses, 500 repetitions, 10 pulses/s; Nd:YAG laser) at the round window (RW) directed towards the basilar membrane (BM). OABRs similar in morphology to acoustically evoked ABRs, except for shorter latencies, were obtained for stimulation through the RW with energy levels between 1.7-30 µJ/pulse. The OABRs increased with increasing energy level reaching a saturation level around 13-15 µJ/pulse. Furthermore the responses remained consistent across stimulation over time, including stimulation at 13 µJ/pulse for over 30 minutes, indicating minimal or no damage within the cochlea with this type of laser stimulation. Overall we have demonstrated that laser light stimulation with 532 nm has

  7. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  8. Diode-Pumped Dye Laser Using a Tapered Optical Fiber

    NASA Astrophysics Data System (ADS)

    Patterson, Brian; Stofel, James; Myers, Elliot; Knize, Randy

    2015-05-01

    We describe the construction of a simple dye laser based on a single-mode optical fiber. Light from a 120-mW laser diode (λ = 520 nm) is launched into the fiber. The fiber is tapered to a diameter of approximately 1 μm and placed in Rhodamine 6G laser dye. The pump light interacts with the gain medium through the evanescent field outside the fiber causing stimulated emission, which couples back into the fiber. Mirrors on each end of the fiber provide the necessary feedback for lasing, and a grating is used to narrow the spectral output. We characterize the lasing threshold and output spectrum of the laser. This has been a good project for undergraduate students to learn about lasers and optics.

  9. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  10. Fiber laser front end for high energy petawatt laser systems

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-06-15

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  11. Capillary isotachophoresis with fiber-optic Raman spectroscopic detection. Performance and application to ribonucleotides.

    PubMed

    Walker, P A; Morris, M D

    1998-05-01

    A fiber-optic Raman probe fitted with a microscope objective was used to obtain on-line normal Raman spectra of adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate and uridine 5'-monophosphate separated by capillary isotachophoresis. With multimode optical fiber, the system interrograted a 40-micron length of capillary. Fiber-optic coupling facilitated use of an unmodified spectrograph and conventional capillary mounting systems. Raman spectra were excited with a 2W 532 nm NdYVO4, laser as the excitation source, with collection of 1 spectrum per second. Even at 2.10(-5) M initial concentration, Raman spectra were obtained at a good signal-to-noise ratio. PMID:9618922

  12. Ultra thin fiber laser vector hydrophone

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zhang, Wentao; He, Jun; Li, Fang; Liu, Yuliang

    2011-05-01

    This paper presents a two-axis fiber laser vector hydrophone which uses a V-shaped flexed beam to enhance the sensitivity and reduce the dimensions. Theoretical analyses of the sensitivity and frequent response are given. The key parameters that determine the sensitivity and resonant frequency are discussed. The experimental results show an acceleration sensitivity of 39.2 pm/g and 53.2 pm/g at the x, y axis respectively, a resonant frequency of about 310 Hz, and a directivity resolution larger than 20 dB.

  13. Hybrid femtosecond fiber laser outcrossing Er-doped fiber and Yb-doped fiber

    NASA Astrophysics Data System (ADS)

    Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2014-07-01

    A hybridized scheme of a fiber femtosecond pulse laser was devised with the aim of grafting the frequency comb of an Er-doped fiber oscillator, stabilized around a 1.550 μm center wavelength, onto the 1.0 μm emission range of an Yb-doped fiber amplifier. Test results showed that the frequency comb is successfully transferred to a new 1.034 μm center wavelength with a spectral bandwidth of 21 nm, upholding an original frequency stability of 3.71 × 10-13 at 10 s averaging. This work demonstrates the feasibility of outcrossing different kinds of fibers to shift the spectral range of the frequency comb over a large operating span without loss of stability.

  14. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries. PMID:25322246

  15. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  16. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOEpatents

    Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.

    1997-03-04

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  17. Recent developments in polycrystalline oxide fiber laser materials: production of Yb-doped polycrystalline YAG fiber

    NASA Astrophysics Data System (ADS)

    Lee, HeeDong; Keller, Kristin; Sirn, Brian; Parthasarathy, Triplicane; Cheng, Michael; Hopkins, Frank K.

    2011-09-01

    Laser quality, polycrystalline oxide fibers offer significant advantages over state-of-the-art silica fiber for high energy lasers. Advanced ceramic processing technology, along with a novel powder production process, has potential to produce oxide fibers with an outstanding optical quality for use in the fiber laser applications. The production of contaminant-free green fibers with a high packing density, as well as uniform packing distribution, is a key factor in obtaining laserquality fibers. High quality green fibers are dependent on the powder quality combined with the appropriate slurry formulation. These two fundamental technologies were successfully developed at UES, and used to produce Yb-doped yttrium aluminum garnet (YAG) fibers with high optical quality, high chemical purity, and suitable core diameters down to 20-30 microns.

  18. Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser.

    PubMed

    Hu, Zhijia; Miao, Bo; Wang, Tongxin; Fu, Qiang; Zhang, Douguo; Ming, Hai; Zhang, Qijin

    2013-11-15

    We have demonstrated the realization of a random polymer fiber laser (RPFL) based on laser dye Pyrromethene 597-doped one-dimensional disordered polymer optical fiber (POF). The stabilized coherent laser action for the disordered POF has been obtained by the weak optical multiple scattering of the polyhedral oligomeric silsesquioxanes nanoparticles in the core of the POF in situ formed during polymerization, which was enhanced by the waveguide confinement effect. Meanwhile, the threshold of our RPFL system is almost one order of magnitude lower than that of the liquid core random fiber laser reported previously, which promotes the development of random lasers. PMID:24322095

  19. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    NASA Astrophysics Data System (ADS)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  20. 2μm single frequency fiber laser based on thulium-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2016-03-01

    Single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection (DBR) laser cavity by using a 1.9-cm commercial available Thulium-doped silica fiber, for the first time. The laser was pumped by a 793-nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise (RIN) at different pump power has been measured and analyzed. The successful demonstration with the Thulium-doped silica fiber used here is considered to further promote the commercialization of single frequency fiber laser at 2 μm.

  1. Latest developments of ultrafast fiber laser and its material applications

    NASA Astrophysics Data System (ADS)

    Cho, G. C.; Liu, B.; Shah, L.; Liu, Z.; Che, Y.; Xu, J.

    2009-02-01

    We address recent fiber-based femtosecond laser technology. Specifically, fiber-chirped pulse amplifier is discussed for the enabling the concept of real-world applications. We review recent selected material applications demonstrating advantages of ultrafast dynamics of highly repetitive pulse train in nanoparticle generation in pulsed-laser deposition and reliable Si wafer singulation.

  2. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. PMID:23938497

  3. 150 W highly-efficient Raman fiber laser.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-12-21

    We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A approximately 30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%. PMID:20052078

  4. A Compact 500 MHz Femtosecond All-Fiber Ring Laser

    NASA Astrophysics Data System (ADS)

    Yang, Tong; Huang, Huichang; Yuan, Xiaozhi; Wei, Xiaoming; He, Xin; Mo, Shupei; Deng, Huaqiu; Yang, Zhongmin

    2013-05-01

    We demonstrate a fundamentally mode-locked all-fiber ring laser with the repetition rate up to 500 MHz and pulse duration of 250 fs at 1.5 µm. Only an optical integrated module, a 4.8 cm Er3+/Yb3+-codoped phosphate glass fiber, and a polarization controller are employed to construct the all-fiber ring cavity. Stable mode-locking laser is output by adjusting the polarization controller.

  5. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  6. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-12-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20-50 μm and a length of 0.5-1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime.

  7. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature.

    PubMed

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20-50 μm and a length of 0.5-1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532 nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  8. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    PubMed Central

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  9. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  10. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state. PMID:25606901

  11. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser. PMID:24978517

  12. Pulse-stretched Alexandrite laser for improved optical fiber reliability for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Simons, David; Koschmann, Eric C.

    1992-06-01

    Clinical data shows that short pulse duration lasers used in laser induced shock wave lithotripsy severely damage optical fibers on both the proximal and distal ends which is unsuitable for clinical use. An Alexandrite laser system has been developed that uses dynamic pulse stretching of the Q-switched laser pulse and improved optical fiber coupling to eliminate the fiber damage. The method of pulse stretching presented controls the laser output pulse energy from 50 to 150 millijoules and temporal shape from 0.5 to 1.5 microseconds. This yields effective fragmentation of calculi without damage to the optical fiber.

  13. Characteristics research on self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2014-09-01

    A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. Laser Processing of Carbon Fiber Reinforced Polymer Composite for Optical Fiber Guidelines

    NASA Astrophysics Data System (ADS)

    Lima, M. S. F.; Sakamoto, J. M. S.; Simoes, J. G. A.; Riva, R.

    The replacement of copper wires by optical fibers for control and monitoring of aircraft systems are gaining more and more acceptance due to weight reductions and their intrinsic reliability. The present investigation proposes a new method for producing fiber optical guidelines in carbon fiber reinforced polymer (CFRP) composites using laser texturing and machining. Laser texturing was used to improve the adhesion bonding between the CFRP parts and laser machining is used to create a channel where the optical fiber will be placed and protected. The results show that using only 20 W of a Nd:YAG pulsed laser it is possible to enhance the joint resistance of CFRP composites and also protecting the optical fiber embedded in between two CFRP pieces. Using the proposed technology, the maximum load of a lap joint increased by 85% and the optical fiber remained integral even under severe bending conditions.

  16. Influence of the UV-induced fiber loss on the distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi

    2003-06-01

    It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.

  17. CO2 Laser Radiation Transmission Through Curved Hollow Fibers

    NASA Astrophysics Data System (ADS)

    Dror, Jacob; Gannot, Israel; Morhaim, Orna; Mendlovic, David; Croitoru, Nathan I.

    1989-07-01

    Hollow plastic fibers were produced by depositing metallic and dielectric films on the internal surface of plastic tubes. These fibers can transmit high CO2 laser energy with low atten-uation even in curved trajectories. A mathematical model was developed to describe the energy transmission. The energy distribution at the outlet of the fiber was measured and found to be influenced by the existence of whispering gallery mode. These fibers are suitable for surgical uses.

  18. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    PubMed

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-01

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass. PMID:25968688

  19. Microscopic analysis of laser-induced proximal fiber tip damage during holmium:YAG and thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-04-01

    The thulium fiber laser (TFL) is being studied as an alternative to the standard holmium:YAG laser for lithotripsy. The TFL beam originates within an 18-μm-core thulium-doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller (e.g., 50- to 150-μm core) fibers than possible during holmium laser lithotripsy. This study examines whether the more uniform TFL beam profile also reduces proximal fiber tip damage compared with the holmium laser multimodal beam. Light and confocal microscopy images were taken of the proximal surface of each fiber to inspect for possible laser-induced damage. A TFL beam at a wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, and 500-μs pulse duration, and 100,000 pulses were delivered at each pulse rate setting of 50, 100, 200, 300, and 400 Hz. For comparison, single use, 270-μm-core fibers were collected after clinical holmium laser lithotripsy procedures performed with standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output pulse energy and average power were stable, and no proximal fiber damage was observed at settings up to 35 mJ, 400 Hz, and 14 W average power (n=5). In contrast, confocal microscopy images of fiber tips after holmium lithotripsy showed proximal fiber tip degradation, indicated by small ablation craters on the scale of several micrometers in all fibers (n=20). In summary, the proximal fiber tip of a 105-μm-core fiber transmitted up to 14 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially translate into lower costs for the surgical disposables as well.

  20. Simple design for singlemode high power CW fiber laser using multimode high NA fiber

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Desrosiers, Cynthia; Gagnon, Éric; Lapointe, Marc-André; de Sandro, Jean-Philippe

    2009-02-01

    A large number of high power CW fiber lasers described in the literature use large mode area (LMA) double cladding fibers. These fibers have large core and low core numerical aperture (NA) to limit the number of supported modes and are typically operated under coiling to eliminate higher order modes. We describe here multimode (MM) high NA ytterbium doped fibers used in single mode output high power laser/amplifier configuration. Efficient single mode amplification is realized in the multimode doped fiber by matching the fundamental mode of the doped fiber to the LP01 mode of the fiber Bragg grating (FBG) and by selecting the upper V-number value that limits the overlap of the LP01 to the higher order modes. We show that negligible mode coupling is realized in the doped fiber, which ensures a stable power output over external perturbation without the use of tapers. Fundamental mode operation is maintained at all time without coiling through the use of FBG written in a single mode fiber. We show that such fiber is inherently more photosensitive and easier to splice than LMA fiber. We demonstrate an efficient 75W singlemode CW fiber laser using this configuration and predict that the power scaling to the kW level can be achieved, the design being more practical and resistant to photodarkening compared to conventional low NA LMA fiber.

  1. Design and refinement of rare earth doped multicore fiber lasers

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M.

    2013-09-01

    A novel multicore ytterbium doped fiber laser is designed, with the target of maximizing both the effective mode area and the beam quality, by means of a complete home-made computer code. It can be employed to construct high power and Quasi-Gaussian beam lasers. The novel laser configuration exploits a single mode multicore fiber and does not need Talbot cavity or other in-phase mode selection mechanisms. This is an innovative solution, because to the best of our knowledge, for the first time, we have designed a truly single-mode multicore fiber laser. For comparison we have optimized two other laser configurations which are well known in literature, both employing a multimode multicore fiber and a Talbot cavity as a feedback for the in-phase supermode selection. All three multicore fibers, constituted by the same glass, are doped with the same ytterbium ion concentration and pumped with the same input power. Multimodal fiber lasers exhibit lower beam quality, i.e. a higher beam quality factor M2, with respect to the single mode one, even if suitable Talbot cavities are designed, but they are very competitive when a more compact laser cavity is required for the same output power. The novel single mode nineteen core laser exhibits a simulated effective mode area Aeff = 703 μm2 and a beam quality factor M2 = 1.05, showing better characteristics than the other two lasers.

  2. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  3. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  4. Fluorescent all-fiber light source based on micro-capillaries and on microstructured optical fibers terminated with a microbulb

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko; Bock, Wojtek

    2015-12-01

    An integrated fiber-optic fluorescent light source compatible with photonic-crystal and hollow-core fibers is presented in this paper. We have studied the dependence of the fluorescence spectra on the length of a micro-capillary filled with Rhodamine 6G dissolved in glycerin. As the capillary, we used a standard fiber-optic glass ferrule with two parallel holes having an inner diameter of 125 μm. One of the holes was filled with fluorescing solution, while an SMF-28 fiber polished at 45° with aluminum coating was placed in the second hole to serve as a pumping fiber. As the solution was pumped by continuous-wave laser light at 532 nm, the fluorescence was captured by a microstructured optical fiber immersed in the filled hole. To prevent the solution from penetrating into this receiving fiber, its end was capped by molten borosilicate glass forming a ball lens. Combining the spectra of several fluorescent organic dyes can create a broadband light source compatible with optical fibers that could be used for the development of compact photonic-crystal and hollow-core fiber sensors.

  5. Resonant tandem pumping of Tm-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Rines, Glen A.; Setzler, Scott D.

    2014-06-01

    We have demonstrated efficient lasing of a Tm-doped fiber when pumped with another Tm-doped fiber. In these experiments, we use a 1908 nm Tm-doped fiber laser as a pump source for another Tm-doped fiber laser, operating at a slightly longer wavelength (~2000 nm). Pumping in the 1900 nm region allows for very high optical efficiencies, low heat generation, and significant power scaling potential due to the use of fiber laser pumping. The trade-off is that the ground-state pump absorption at 1908 nm is ~37 times lower than at 795nm. However, the absorption cross-section is still sufficiently high enough to achieve effective pump absorption without exceedingly long fiber lengths. This may also be advantageous for distributing the thermal load in higher power applications.

  6. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  7. Hole drilling with fiber-optically delivered visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.

    1994-12-31

    The use of lasers for high-speed drilling of holes in materials is well documented. To allow easier use of lasers in manufacturing processes, fiber-optically delivered beams are preferable to the use of conventional optics. Lawrence Livermore National Laboratory (LLNL) has adapted fiber-optic technology to its visible light, copper vapor lasers for use in hole drilling studies. Visible lasers afford better coupling of light to the workpiece and when fiber-optically delivered, allow high quality holes to be drilled in difficult accessibility areas and with easier setup. A fiber-optic delivery system was attached to the presently hard-optic copper vapor laser system. This system consisted of a 0.6 mm (0.024 in.) fiber that was then telescoped and refocused by a hard optics package at the workstation end of the fiber. The optics package produced a 0.2 mm (0.008 in.) focused spot size at the workpiece. This system was then run down to a 3-axis CNC machining table to allow part movement for these studies. The fiber-optically delivered light was found to work extremely well for drilling small diameter holes. In summary, it was found that fiber-optically delivered, visible laser beams have several advantages in drilling over those same beams delivered through conventional hard optics. These include much easier setup, reduced system maintenance, and typically higher hole quality.

  8. Characteristics research of self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2013-09-01

    A distributed feedback (DFB) fiber laser with a ratio of backward to forward output power of 1:100 was composed by a 45mm length asymmetrical phase-shifted fiber grating fabricated on 50mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL980-Hp erbium-doped fiber to absorb surplus pump power after the active phase-shifted fiber grating and get population inversion. Using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with narrow line-width and low noise, a narrow-band light filter consisted of a FBG with the same Bragg wavelength as the laser and an optical circulator was used to filter the ASE noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, a DFB fiber laser of 32.5mW output power, 11.5 kHz line width, and -87dB/Hz relative intensity noise (RIN) at 300mW of 980 nm pump power was brought out.

  9. Q-switched Tm-doped fiber lasers using dynamic microbends in oval-coating fibers

    NASA Astrophysics Data System (ADS)

    Araki, S.; Kimpara, K.; Tomiki, M.; Sakata, H.

    2013-06-01

    We present Q-switched pulse generation in a thulium-doped fiber laser by inducing a piezoelectric-driven microbend into an oval-coating fiber. The oval-coating fiber is made of a single-mode fiber in which an acrylic coating is flattened by thermal pressing. A pulse peak power of 1.45 W is obtained with a pump power of 139 mW.

  10. Experimental Non-Contact Evaluation of Delamination in CFRP Composite Plates by Laser Air-Coupled Detection Ultrasonic System

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joon; Lee, Joon-Hyun; Byun, Joon-Hyung

    The objective of this research is to develop non-contact and real time inspection technique based on laser generated ultrasound for evaluating near-surface delamination in Carbon/Epoxy composite fabricated from automated fiber placement system. In this study, A hybrid laser generation/air-coupled detection ultrasonic system for detection and visualization of delamination in composite plates with simulated delamination of the area of 20 mm × 20 mm between the first and the second layer. Optical fiberized Nd:YAG pulse laser (532 nm, 32 mJ) with linear slit array is used to generate ultrasonic guided wave in unidirectional CFRP specimen (24 plies, 2.85 mm thickness). The characteristic of time domain waveform and frequency spectrum of guided wave is discussed. Two- dimensional images are obtained from these characteristics. The convergence of received signal using the pitch-catch and the scattering-reflection technique is discussed.

  11. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  12. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  13. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  14. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens

    2013-02-01

    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  15. High-power single-frequency fiber lasers

    NASA Astrophysics Data System (ADS)

    Guan, Weihua

    Single frequency laser sources are desired in many applications. Various architectures for achieving high power single frequency fiber laser outputs have been investigated and demonstrated. Axial gain apodization can affect the lasing threshold and spectral modal discrimination of DFB lasers. Modeling results show that if properly tailored, the lasing threshold can be reduced by 21% without sacrificing modal discrimination, while simultaneously increasing the differential output power between both ends of the laser. A dual-frequency 2 cm silica fiber laser with a wavelength spacing of 0.3 nm was demonstrated using a polarization maintaining (PM) fiber Bragg grating (FBG) reflector. The output power reached 43 mW with the optical signal to noise ratio (OSNR) greater than 60 dB. By thermally tuning the overlap between the spectra of PM FBG and SM FBG, a single polarisation, single frequency fibre laser was also demonstrated with an output power of 35 mW. From the dual frequency fiber laser, dual frequency switching was achieved by tuning the pump power of the laser. The dual frequency switching was generated by the thermal effects of the absorbed pump in the ytterbium doped fiber. Suppression and elimination of self pulsing in a watt level, dual clad ytterbium doped fiber laser was demonstrated. Self pulsations are caused by the dynamic interaction between the photon population and the population inversion. The addition of a long section of passive fiber in the laser cavity makes the gain recovery faster than the self pulsation dynamics, allowing only stable continuous wave lasing. A single frequency, hybrid Brillouin/ytterbium fiber laser was demonstrated in a 12 m ring cavity The output power reached 40 mW with an OSNR greater than 50 dB. To scale up the output power, a dual clad hybrid Brillouin/ytterbium fiber laser was studied. A numerical model including third order SBS was used to calculate the laser power performance. Simulation shows that 5 W single

  16. Optical Fiber Multiplexer For Industrial Nd:YAG Lasers

    NASA Astrophysics Data System (ADS)

    Goethals, Walther A.

    1989-03-01

    A lot of industrial Nd:YAG lasers are now being equipped with fiber optics for application in flexible manufacturing. One laser can be supplied with several fibers so different processing positions can receive laser power according to the time-and/or energy sharing principle. Most of the time-sharing devices (multiplexers) are based on a galvanometer mirror that couples a converging laser beam into different fibers respectively. From the industry several questions have risen to make these multiplexers faster, more reliable and suitable for smaller diameter fibers. The current designs are limited by the positioning accuracy of the galvanometer mirror and by their sensitiveness to variations in the parameters of the laser beam due to thermal lensing effects. In the patented design of the multiplexer presented here, based on a telescopic image relay and a precision fiber positioning unit, these problems were solved. A prototype has been built which addresses five fibers with 200 μm cores at a switching rate higher than 100 times per second. The fibers have special termination connectors and can be exchanged easily without losing the alignment of the optical system. For spot welding applications with pulsed Nd:YAG lasers this means that this type of multiplexer could be used to take advantage of the high laser pulse rates and the pulse shape and energy programming possibilities that manufacturers of these types of lasers offer nowadays. Another application that has been shown now is the use of several remote laser engraving units served by a single CW/Q-Switched Nd:YAG laser and a fiber multiplexer.

  17. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Ld-Clad-Pumped All-Fiber Tm3+-Doped Silica Fiber Laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Jun; Song, Shi-Fei; Tian, Yi; Wang, Yue-Zhu

    2009-08-01

    The CW 39.4 W all-fiber LD-clad-pumped Tm3+-doped fiber laser output is reported with a slope efficiency of 34% in respect to the pump power. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm-doped fiber. The reflective FBG and Tm-doped fiber end fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high power output, whereas the total spectrum width is less than 2nm at nearly 1.94 μm.

  18. χ{sup (3)} measurements of axial ligand modified high valent tin(IV) porphyrins using degenarete four wave mixing at 532nm

    SciTech Connect

    Narendran, N. K. Siji Chandrasekharan, K.; Soman, Rahul; Arunkumar, Chellaiah; Sudheesh, P.

    2014-10-15

    Porphyrins and metalloporphyrins are unique class of molecules for Nonlinear Optical applications because of their unique structure of altering the central metal atom, large extended π-system, high thermal stability, tunable shape, symmetry and synthetic versatility Here, we report χ{sup (3)} Measurements of a simple phenyl porphyrins and its highvalent tin(IV) porphyrins with Bromination characterized by UV-Visible spectroscopic method. In this study, we employed the Degenerate Four Wave Mixing technique using forward Boxcar geometry with an Nd:YAG nano second pulsed laser as source and it was found that the tin(IV) porphyrin with Bromination exhibits good χ{sup (3)} value and figure of merit.

  19. Process observation in fiber laser-based selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  20. Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Yao, Zhidong; Zong, Jie; Chavez-Pirson, Arturo; Peyghambarian, Nasser; Yu, Jirong

    2009-02-01

    A single frequency fiber laser operating near 2 micron with over 50 mW output power has been demonstrated by using a short piece of newly developed single mode holmium-doped germanate glass fiber. Laser from 2004 nm to 2083 nm was demonstrated from a short Ho-doped fiber laser cavity. A heavily thulium-doped germanate fiber was used as an in-band pump source for the holmium-doped fiber laser. The single frequency fiber laser can be thermally tuned.

  1. Reflectivity variation in asymmetric random distributed feedback Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Abidin, N. H. Z.; Abu Bakar, M. H.; Tamchek, N.; Mahamd Adikan, F. R.; Mahdi, M. A.

    2016-01-01

    This paper demonstrates and discusses the effect of reflectivity on the intracavity power development and spectral profile of a 41.1 km asymmetric (half-opened cavity) random distributed feedback fiber laser with different pumping schemes. The laser cavity is confined by a fiber Bragg grating and the Rayleigh feedback amplified by Raman scattering effect that serves as virtual random distributed mirrors. The laser performance was observed by integrating a variety of power couplers while employing forward and backward pumping schemes. Forward pumping exhibits greater susceptibility to reflectivity variation compared to backward pumping. Meanwhile, higher reflectivity produced better threshold conditions but at the expense of lower saturation power. A power-saturated laser also manifested a broader spectrum than a laser conducted outside the saturation regime. These research findings will be beneficial in understanding the role of reflectivity and pumping configurations in enhancing asymmetric random distributed feedback fiber laser.

  2. Passive mode locking in erbium-ytterbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Thai, Serey; Hayduk, Michael J.

    1999-11-01

    A novel mode-locked erbium-ytterbium fiber laser operating at 1550 nm using multiple quantum well (MQW) saturable absorbers was developed. The laser was constructed in a Fabry-Perot configuration using a fiber Bragg grating as a front reflector and a fiber Bragg grating output as a back reflector of the laser cavity. The passive mode-locking element placed inside the laser cavity is a 75 period InGaAs/InAlAs MQW saturable absorber grown lattice matched on an InP substrate. The output of the laser was taken through the other available port of a wavelength-division demultiplexer. The laser produced mode-locked output pulse trains at 16.67-MHz repetition rate and 10 mW of average output power.

  3. Volume Bragg grating stabilized spectrally narrow Tm fiber laser.

    PubMed

    McComb, Timothy; Sudesh, Vikas; Richardson, Martin

    2008-04-15

    A Tm-doped large mode area (LMA) silica fiber laser has been locked to a stable wavelength of 2,053.9 nm using a volume Bragg grating (VBG). The measured spectral width of the laser output was <300 pm, limited by the spectrometer resolution. Although this laser had modest output (approximately 5W) and slope efficiency (41%), this new approach to spectrally limiting the output of LMA fiber lasers is inherently extendable to kilowatt powers, opening up several applications including high-power pulsed fiber lasers and spectral beam combining. Performance characteristics of the laser compared to one using a dielectric mirror as a high reflector are described, and the results imply low VBG losses. PMID:18414564

  4. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  5. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  6. Laser transmission welding of long glass fiber reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  7. Switchable quadruple-wavelength Erbium-doped fiber laser based on a chirped fiber grating and polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Chen, Weicheng; Chen, Guojie

    2016-04-01

    A switchable quadruple-wavelength Erbium-doped fiber laser based on two Sagnac loops with a chirped fiber grating and polarization-maintaining fiber is proposed and demonstrated experimentally at room temperature. The two loops act as comb filters to excite multi-wavelength output. On the basis of the polarization hole burning effect, the laser can switch flexibly to output ten different modes from single-wavelength to quadruple-wavelength. All of the lasing lines with narrow linewidth have the optical signal-to-noise ratio of more than 35 dB. The laser with good power uniformity shows better stability with respect to the wavelength and peak power.

  8. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  9. Fiber sensor systems based on fiber laser and microwave photonic technologies.

    PubMed

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  10. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    PubMed Central

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P.; Gangopadhyay, Tarun K.; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A.; Loock, Hans-Peter; Lam, Timothy T.-Y.; Chow, Jong H.; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented. PMID:22294902

  11. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wu, Man; Chen, Shuqing; Chen, Yu; Li, Ying

    2016-06-01

    We have demonstrated a wavelength switchable graphene Q-switched fiber laser with two cascaded fiber Bragg gratings. Stable Q-switching operation with central wavelength 1542.9 nm (1543.7 nm), repetition rate 28.4 kHz (22.58 kHz), and pulse duration 2.16 μs (2.65 μs) can be obtained by adjusting the intra-cavity birefringence. Moreover, stable dual-wavelength operation with wavelength spacing 0.8 nm can also be observed. The cascaded fiber gratings combined with the graphene saturable absorber provide a simple and feasible way to get versatile pulsed fiber laser.

  12. Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers.

    PubMed

    Dong, L; Loh, W H; Caplen, J E; Minelly, J D; Hsu, K; Reekie, L

    1997-05-15

    Boron- and germanium-doped highly photosensitive cladding is used in a novel design to achieve photosensitive Er/Yb-doped fibers, permitting short, strong gratings (length approximately 1 cm, reflectivity >99%) to be written without hydrogenation. The high absorption at 980 nm in Er/Yb fibers permits efficient pump absorption over a short device length, which is ideal for achieving highly efficient single-frequency fiber lasers. Both single-frequency Bragg-grating reflector and distributed-feedback lasers with slope efficiencies of 25% with respect to launched pump power have been realized in such fibers. PMID:18185631

  13. Blue laser via IR resonant doubling with 71% fiber to fiber efficiency

    NASA Astrophysics Data System (ADS)

    Danekar, Koustubh; Khademian, Ali; Shiner, David

    2011-08-01

    We report on high efficiency resonant doubling to 486nm using periodically poled KTP. The IR laser source is an FBG stabilized semiconductor laser with a maximum polarization maintaining (PM) fiber coupled output of 840mW. An output power of 680mW at 486nm was obtained from our optimized cavity, giving net efficiency of 81%. Also, we report an 87.5% net efficiency in coupling of this blue light from the servo locked cavity into a single-mode PM fiber. This gives a total of 71% fiber to fiber efficiency. Furthermore, a wall plug efficiency of 21.4% was obtained.

  14. Blue laser via IR resonant doubling with 71% fiber to fiber efficiency.

    PubMed

    Danekar, Koustubh; Khademian, Ali; Shiner, David

    2011-08-01

    We report on high efficiency resonant doubling to 486 nm using periodically poled KTP. The IR laser source is an FBG stabilized semiconductor laser with a maximum polarization maintaining (PM) fiber coupled output of 840 mW. An output power of 680 mW at 486 nm was obtained from our optimized cavity, giving net efficiency of 81%. Also, we report an 87.5% net efficiency in coupling of this blue light from the servo locked cavity into a single-mode PM fiber. This gives a total of 71% fiber to fiber efficiency. Furthermore, a wall plug efficiency of 21.4% was obtained. PMID:21808365

  15. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  16. Hole drilling on glass optical fibers by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hamasaki, Masayuki; Gouya, Kenji; Watanabe, Kazuhiro

    2012-01-01

    A novel optical fiber sensor has been developed for gaseous material detection by means of a femto-second laser which has ultrashort pulse and ultrahigh peak power. This sensor has attractive sensor potion consisted of drilling holes array which is machined on the glass optical fiber. Additionally, the sensor potion is coated with thin gold film. This work expects that an interaction could be induced between transmitted light through fiber core and a bottom of the drilled holes which reaches the fiber core. The interaction could induce near-field optical phenomenon excited by transmitted light through the fiber core. This scheme could make it possible to detect gaseous-material phase substances around the optical fiber. In this study, we found that localized surface plasmon (LSP) was excited by the transmitted light through the fiber core. This paper shows experiment to obtain optimum irradiation conditions and investigation for sensor principle for the development of a novel fiber sensor.

  17. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    NASA Astrophysics Data System (ADS)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  18. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  19. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  20. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  1. Application of fiber laser for a Higgs factory

    SciTech Connect

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  2. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  3. High performance FBG interrogation technology with scan fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Ma, Youchun; Yang, Minwei

    2010-11-01

    A Fiber Bragg gratings (FBG) Interrogation scheme with scan fiber laser was demonstrated. The ring cavity scan fiber laser was investigated and the scan fiber laser module was made and test, the 200Hz scan frequency, ~0.02nm line width, more than 40nm scan range and more than 1 mW output power were obtained. A 12 channels, 20 FBGs per channel FBG interrogator was made with this laser module and the high speed signal process circuit base on FPGA. The centroid finding method which has advantage on interrogation speed and accurate was taken for finding the peak of the return FBG spectrum. The FBG interrogator was test and less than 3pm standard deviation with 200Hz scan frequency were obtained.

  4. Theoretical and Experimental Investigations of Novel Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Walton, Donnell Thaddeus

    Ultrafast science has historically been concerned with the areas of spectroscopy and the study of dynamic processes in the sciences and engineering. With the recent advent of compact, economical sources of ultrashort optical pulses, many potential applications have emerged in the fields of communications, medicine, metrology, and industrial processing. In this thesis, fiber lasers are explored as compact sources of ultra short optical pulses. Several passive modelocking schemes in fiber lasers have been reported. Unfortunately, when implemented in the negative group velocity regime, modelocked fiber lasers are plagued with a multiple-pulsing instability which limits them to low output pulse energy. In this work, a modelocking scheme based on a nonlinear directional coupler is proposed and analyzed. This laser, when embodied as a dual-core fiber, is shown to be immune to the multiple-pulsing instability and produces sub-100-fs pulses in the negative group velocity regime. In the presence of gain saturation, the laser produces 100-fs pulses and can evolve to steady-state from initial noise input when operated under the right conditions. The dual-core fiber laser even produces nanojoule, picosecond when implemented in the regime of positive group velocity dispersion. These pulses are chirped which allows for further compression down to 160 fs. Using a similar model, the first theoretical analysis of passive modelocking in birefringent fiber is performed. The results of the model (45 fs) are in excellent agreement with experimental results (38 fs). Additional wavelengths are also needed if fiber lasers are to be considered viable as compact sources of ultrashort pulses. To this end, a diode-pumped thulium -doped fluorozirconate fiber laser which operates near 800 nm is examined. The upconversion process is shown to be due to avalanche absorption of the pump. By constructing a compact, diode-pumped laser from an unoptimized sample of this fiber, this technique is shown

  5. Dynamic range limits in field determination of fluorescence using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Chudyk, Wayne; Pohlig, Kenneth

    1991-03-01

    Prior work has reported on the usefulness of fiber optic sensors in detection of aromatic organic ground water contaminants such as the benzene toluene ethylbenzene and xylenes (BTEX) fraction of petroleum fuels. Our device is essentially a laser fluorimeter using fiber optic sensors for in-situ measurements. Both field and laboratory work have exhibited limits in the dynamic response range of fluorescence signal versus concentration when excitation occurs in the ultraviolet (266 nm). Potential causes of the observed shallow fluorescence versus concentration response include self-absorption at high concentration and stray light or electronic noise at low concentrations. The observed wide dynamic range resulting from visible excitation (532 nm) is used as a basis for comparison with UV performance. Selfabsorption phenomena are evident from the data at high contaminant concentration but practical applications more often are concerned with low concentrations. Lower limits of detection observed in UV excitation experiments are evaluated as to the possible sources of stray light including fiber luminescence coupling between the excitation and collection fibers in the sensor elastic scattering and reflection signals in the excitation module and spectral impurities in the laser excitation light from the laser flashlamp. Coupling and fiber luminescence in the sensor have been evaluated and resolved the excitation module has been redesigned to reduce potential scattering and the laser source continues to be investigated. 1 . LASER-INDUCED FLUORESCENCE TECHNIQUE Our research group has been

  6. Self-Frequency-Doubling Glass-Fiber Laser

    NASA Technical Reports Server (NTRS)

    Selker, Mark D.; Dallas, Joseph L.

    1993-01-01

    Specially prepared germanium and phosphorous-doped glass optical fiber doped with neodymium shown to act as self-frequency-doubling laser. Self-frequency-doubling fiber laser with further refinements, eliminates need for expensive, easily damaged, nonlinear crystals currently used. Enables one to avoid loss and damage mechanisms associated with interfaces of nonlinear crystals as well as to eliminate angle/temperature phase-matching tuning.

  7. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  8. Laser-Pulse/Fiber-Optic Liquid-Leak Detector

    NASA Technical Reports Server (NTRS)

    Padgett, M. E.

    1986-01-01

    Several potential leak sites monitored using single sensing fiber. Fluid systems monitored quickly for leaks in remote, hazardous, or inaccessible locations by system of compact, lightweight fiber-optic leak sensors presently undergoing development. Sensors installed at potential leak sites as joints, couplings, and fittings. Sensor read by sending laser pulse along fiber, then noting presence or relative amplitude of return pulse. Leak-monitoring technique applicable to wide range of fluid systems and minimizes human exposure to toxic or dangerous fluids.

  9. Phase generated carrier technique for fiber laser hydrophone

    NASA Astrophysics Data System (ADS)

    Li, Rizhong; Wang, Xinbing; Huang, Junbin; Gu, Hongcan

    2013-08-01

    A distributed feedback (DFB) fiber laser is compact, and is very suitable for using as a hydrophone to sense acoustic pressure. A DFB fiber laser hydrophone was researched. In the fiber laser hydrophone signal demodulating system, an unbalanced Michelson fiber interferometer and a Phase Generated Carrier (PGC) method were used. The PGC method can be used to demodulating the acoustic signal from the interference signal. Comparing with the Naval Research Laboratory (NRL) method and Naval Postgraduate School (NPS) method, the digitized PGC method requires a greater amount of computation because of the high signal sampling, but it demands only one interference signal which makes the less fiber connections of the fiber laser hydrophone array. So the fiber laser hydrophone array based on the PGC method has lower complexity and higher reliability than that based on the NRL method or NPS method. The experimental results approve that the PGC method can demodulate acoustic signal between 20~2000 Hz frequency range with good signal-to-noise ratio (SNR) when the PZT driving frequency is 20 kHz.

  10. Fiber-optic interferometer using frequency-modulated laser diodes

    NASA Technical Reports Server (NTRS)

    Beheim, G.

    1986-01-01

    This paper describes an electrically passive fiber-optic interferometer which uses dual frequency-modulated laser diodes. Experimental results show that this type of interferometer can attain a displacement range of 100 micron with subnanometer resolution. This technique can serve as the basis for a number of high-precision fiber-optic sensors.

  11. Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber.

    PubMed

    Nicholson, J W; Bise, R; Alonzo, J; Stockert, T; Trevor, D J; Dimarcello, F; Monberg, E; Fini, J M; Westbrook, P S; Feder, K; Grüner-Nielsen, L

    2008-01-01

    Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF. PMID:18157247

  12. High-brightness, fiber-coupled pump modules in fiber laser applications

    NASA Astrophysics Data System (ADS)

    Hemenway, Marty; Urbanek, Wolfram; Hoener, Kylan; Kennedy, Keith W.; Bao, Ling; Dawson, David; Cragerud, Emily S.; Balsley, David; Burkholder, Gary; Reynolds, Mitch; Price, Kirk; Haden, Jim; Kanskar, Manoj; Kliner, Dahv A.

    2014-03-01

    High-power, high-brightness, fiber-coupled pump modules enable high-performance industrial fiber lasers with simple system architectures, multi-kW output powers, excellent beam quality, unsurpassed reliability, and low initial and operating costs. We report commercially available (element™), single-emitter-based, 9xx nm pump sources with powers up to 130 W in a 105 μm fiber and 250 W in a 200 μm fiber. This combination of high power and high brightness translates into improved fiber laser performance, e.g., simultaneously achieving high nonlinear thresholds and excellent beam quality at kW power levels. Wavelength-stabilized, 976 nm versions of these pumps are available for applications requiring minimization of the gain-fiber length (e.g., generation of high-peak-power pulses). Recent prototypes have achieved output powers up to 300 W in a 200 μm fiber. Extensive environmental and life testing at both the chip and module level under accelerated and real-world operating conditions have demonstrated extremely high reliability, with innovative designs having eliminated package-induced-failure mechanisms. Finally, we report integrated Pump Modules that provide < 1.6 kW of fiber-coupled power conveniently formatted for fiber-laser pumping or direct-diode applications; these 19" rack-mountable, 2U units combine the outputs of up to 14 elements™ using fused-fiber combiners, and they include high-efficiency diode drivers and safety sensors.

  13. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  14. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang

    2015-11-01

    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  15. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2012-04-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  16. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2011-11-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  17. Preface to the Special Issue on short pulse fiber lasers

    NASA Astrophysics Data System (ADS)

    Delavaux, Jean-Marc P.; Grelu, Philippe; Pu, Wang; Ilday, Fatih Ömer

    2014-12-01

    In the last two decades the fiber laser has evolved from a laboratory curiosity to a viable tool in an increasing number of applications in such diverse areas as material processing, atmospheric monitoring, high energy physics, medicine, telecommunications, and defense. The reasons for the growing acceptance of fiber lasers lie in the combination of their many attractive features. Indeed, fiber lasers are together power efficient, compact, light weight, versatile and reliable. Initially, the development of fiber laser technology was led to challenge the dominance of well entrenched solid state lasers used in the lucrative manufacturing industry. Traditionally, the emission wavelength band of interest was mostly limited to the near infrared (NIR) region (i.e. from 1 to 1.6 μm). More recently, extensive fiber laser R&D advances have extended the laser applications to a broader spectrum, from the ultra violet (UV) to the mid-infrared (Mid-IR) wavelength region, and investigated the specific advantages associated with different pulse widths, from ns to fs, and different operating regimes.

  18. Ceramic bracket debonding with Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Demirkan, İrem; Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2016-06-01

    Lasers have the potential for reducing the required debonding force and can prevent the mechanical damage given to the enamel surface as a result of conventional debonding procedure. However, excessive thermal effects limit the use of lasers for debonding purposes. The aim of this study was to investigate the optimal parameters of 1940-nm Tm:fiber laser for debonding ceramic brackets. Pulling force and intrapulpal temperature measurements were done during laser irradiation simultaneously. A laser beam was delivered in two different modes: scanning the fiber tip on the bracket surface with a Z shape movement or direct application of the fiber tip at one point in the center of the bracket. Results showed that debonding force could be decreased significantly compared to the control samples, in which brackets were debonded by only mechanical force. Intrapulpal temperature was kept equal or under the 5.5°C threshold value of probable thermal damage to pulp. Scanning was found to have no extra contribution to the process. It was concluded that using 1940-nm Tm:fiber laser would facilitate the debonding of ceramic brackets and can be proposed as a promising debonding tool with all the advantageous aspects of fiber lasers.

  19. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  20. Detachable fiber optic tips for use in thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187 μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  1. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  2. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  3. Fiber laser modelocked by nonlinear polarization rotation in a fiber loop

    NASA Astrophysics Data System (ADS)

    Kuzin, Evgueni A.; Ibarra-Escamilla, Baldeamr; Gomez-Garcia, D. E.; Haus, Joseph W.

    2002-07-01

    We present the experimental demonstration of a new fiber laser configuration based on the nonlinear optical loop mirror with a symmetrical coupler, and highly twisted low- birefringent fiber in the loop. The nonlinear optical loop mirror configuration operates by nonlinear polarization rotation.

  4. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  5. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber.

    PubMed

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2015-11-15

    A single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection laser cavity by using a 1.9 cm commercially available thulium-doped silica fiber, for the first time, to the best of our knowledge. The laser was pumped by a 793 nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise at different pump power have been measured and analyzed. PMID:26565855

  6. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  7. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  8. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  9. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  10. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  11. Linearly polarized random fiber laser with ultimate efficiency.

    PubMed

    Zlobina, E A; Kablukov, S I; Babin, S A

    2015-09-01

    Linearly polarized pumping of a random fiber laser made of a 500-m PM fiber with PM fiber-loop mirror at one fiber end results in generation of linearly polarized radiation at 1.11 μm with the polarization extinction ratio as high as 25 dB at the output power of up to 9.4 W. The absolute optical efficiency of pump-to-Stokes wave conversion reaches 87%, which is close to the quantum limit and sets a record for Raman fiber lasers with random distributed feedback and with a linear cavity as well. Herewith, the output linewidth at high powers tends to saturation at a level of 1.8 nm. PMID:26368715

  12. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  13. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  14. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  15. Multiplexed multi-longitudinal mode fiber laser sensor.

    PubMed

    Huang, Long; Wang, Peng; Gao, Liang; Zhang, Tingting; Chen, Xiangfei

    2014-10-20

    A multiplexed multi-longitudinal mode fiber laser sensor system is proposed and demonstrated. By incorporating two matched wavelength division multiplexers (WDMs) and a semiconductor optical amplifier (SOA) into a fiber laser cavity, multiwavelength oscillation is established. Each wavelength corresponding to one channel of WDMs contains multi-longitudinal modes. The multiwavelength output of the laser is directed to another WDM which functions as a demultiplexer. By monitoring the longitudinal mode beat frequency generated at photodetectors following the WDM, the sensing information can be demodulated. Preliminary results for multiplexing two sensors measuring strain and temperature are presented to verify the principle of the system. PMID:25401605

  16. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics. PMID:20372636

  17. All-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hua, Dacheng; Su, Jianjia; Cui, Wei; Yan, Yaxi; Jiang, Peipei

    2014-12-01

    We report an all-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation. The high repetition rate ns laser pulses were produced from a fiber Bragg grating (FBG)-constructed fiber laser cavity consisting of a piece of double cladding Yb fiber as the gain medium and a short piece of Bi/Cr-doped fiber as a saturable absorber (SA). By optimizing the fiber length of the Bi/Cr-doped fiber and the reflectivity of the FBG, the Q-switching state of the fiber laser can be adjusted so that the energy storing condition within the fiber cavity can assure the start of stimulated Brillouin scattering (SBS) and as a result, compress the laser pulse duration. The fiber laser had an average laser power output of 1.2 W at 1064 nm with pulse repetition rate of about 80 kHz, almost four times the reported results. The pulse duration was about 1 ns with peak power of about 15 kW. After one stage of amplification, the laser power was raised to about 3 W and was used to pump a 20 m long photonic crystal fiber (PCF). Supercontiuum (SC) laser output was obtained with average power up to 1.24 W and spectrum spanning from 550 to 2200 nm.

  18. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths. PMID:26371923

  19. Fiber laser micro-cutting of stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Baumeister, M.; Dickmann, K.; Hoult, T.

    2006-11-01

    The authors report on laser micro-cutting results for stainless steel foils with the aid of a 100 W fiber laser. This novel laser source combines a high output power in relation to conventional laser sources for micro-processing applications with an excellent beam quality (M2=1.1). Different material thicknesses were evaluated (100 μm to 300 μm). Processing was carried out with cw operation of the laser source, and with nitrogen and oxygen as assisting gases. Besides the high processing rate of oxygen assisted cutting, a better cutting performance in terms of a lower kerf width was obtained.

  20. Space Borne Swath Mapping Laser Altimeters - Comparison of Measurement Approaches

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Harding, D. J.

    2007-12-01

    at 1064 and 532 nm, and for pulsed Ytterbium fiber lasers at about 1?m wavelength. We considered Si APDs for analog detection, InGaAsP photocathode hybrid photomultiplier tubes for photon counting at 1?m, and Si APD single photon counting modules at 532 nm. For all cases we evaluated the probability of detection and the standard deviation of the ranging error as a function of the apparent surface reflectance defined as the product of the surface reflectance times the two-way atmosphere transmission. We also conducted several photon counting laser ranging experiments in the lab and in the field to validate our model and measurement techniques with various photon counting detectors. The results of the analysis and the experiments will be summarized and compared for parameters representative of future missions recommended by the National Research Council (NRC), such as ICESat II, LIST, and DESDynl.

  1. Stable multi-wavelength fiber laser with single-mode fiber in a Sagnac loop.

    PubMed

    Wang, Pinghe; Wang, Lei; Shi, Guohua; He, Tiejun; Li, Heping; Liu, Yong

    2016-04-20

    In this paper, we propose and experimentally demonstrate a stable multi-wavelength fiber laser at 1.5 μm with single-mode fiber (SMF). The Sagnac loop structure with a 48.6:51.4 coupler and 2 km SMF has an intensity-dependent loss, which contributes to suppress the mode competition in the cavity and leads to a steady multi-wavelength output. In the experiment, five stable lasing wavelengths are obtained with a pump power of 300 mW at 980 nm. The demonstrated multi-wavelength fiber laser has great potential for applications in optical communications and optical sensing systems. PMID:27140108

  2. Making custom fiber lasers for use in an atomic physics experiment

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  3. 5W intracavity frequency-doubled green laser for laser projection

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  4. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  5. Laser lithotripsy using double pulse technique

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Doerschel, Klaus; Mueller, Gerhard J.

    1990-07-01

    There are currntly several methods in the field of laser lithotripsy which operate not only at different wavelengths and pulse lengths but also with various types of optical front ends and various irrigation fluids'6. The methods can be divided into two main groups: First, those which utilize stone absorption and plasma formation on the stone surface to initiate stone fragmentation, such as dye lasers. Second, those which generate shock waves and caviatation in the surrounding fluid and which require additional means to produce aplasma (e.g. irrigation, focussing fiber end or metal surfaces). The pulsed Nd:YAG laser belongs to this group. The method presented here is the double pulse technique which is a combination of both methods. It uses two laser pulses with a short time delay transmitted by means of a fiber to destroy body concrements. The first pulse is the first harmonic of the Nd:YAG laser (532nm) which improves the coupling efficiency of the laser radiation with the stone. The second pulse is in the fundamental mode of the laser (1064 nm) delivering the high energy for the stone disruption.

  6. Random fiber laser of POSS solution-filled hollow optical fiber by end pumping

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Zheng, Hongjun; Wang, Lijuan; Tian, Xiujie; Wang, Tongxin; Zhang, Qijin; Zou, Gang; Chen, Yang; Zhang, Qun

    2012-09-01

    Random fiber laser is obtained by end pumping a hollow optical fiber (HOF) filled with a dispersive solution of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles and laser dye pyrromethene 597 (PM597) in carbon disulfide (CS2), in which the concentration is 1.5×10-2 M for PM597 and 18.5 wt% for POSS, respectively. It is found that the pump light at the one end of the liquid core optical fiber (LCOF) can pass the whole length of LCOF because the POSS nanoparticles were dispersed in CS2 at a molecular level (1-3 nm) with high stability and without sedimentation. Above the threshold pump energy (˜0.81 mJ) the random fiber laser appears coherent and resonant feedback multimode lasing in the weakly scattering system. For the LCOF containing PM597 with the same concentration and no POSS nanoparticles, there occurs only ASE that can be observed under the same experimental condition.

  7. 954 nm Raman fiber laser with multimode laser diode pumping

    NASA Astrophysics Data System (ADS)

    Zlobina, E. A.; Kablukov, S. I.; Skvortsov, M. I.; Nemov, I. N.; Babin, S. A.

    2016-03-01

    CW Raman fiber laser emitting at 954 nm under direct pumping by a high-power multimode laser diode at 915 nm is demonstrated. A cavity of the laser is formed with 2.5 km-long multimode graded-index fiber and two mirrors: highly reflective fiber Bragg grating (FBG) at one side and normally cleaved fiber end at the other side. The laser generates low-index transverse modes at the Stokes wavelength with output power above 4 W at a slope efficiency above 40%. It is shown that utilization of a narrowband FBG mirror with low reflectivity instead of the cleaved fiber end with Fresnel reflection leads to stronger spectral mode selection, but the generated power is reduced in this case.

  8. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation.

    PubMed

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian

    2015-10-01

    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation. PMID:24965101

  9. High efficiency Yb:YAG crystalline fiber-waveguide lasers.

    PubMed

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth; Yu, Anthony W

    2014-11-01

    A laser diode (LD) cladding pumped single-mode 1030 nm laser has been demonstrated, in an adhesive-free bonded 40 μm core Yb:YAG crystalline fiber waveguide (CFW). A laser output power of 13.2 W at a wavelength of 1.03 μm has been achieved, for an input pump power of 39.5 W. The corresponded laser efficiency is 33.4%. The laser beam quality is confirmed to be near diffraction-limited, with a measured M2 = 1.02. A LD core pumped single-clad Yb:YAG CFW laser has also been demonstrated with a top-hat laser beam profile, with a laser output power of 28 W and a slope efficiency of 78%. PMID:25361347

  10. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  11. All-fiber amplifier similariton laser based on a fiber Bragg grating filter.

    PubMed

    Olivier, Michel; Gagnon, Mathieu; Duval, Simon; Bernier, Martin; Piché, Michel

    2015-12-01

    This article presents, for the first time to our knowledge, an all-fiber amplifier similariton laser based on a fiber Bragg grating filter. The laser emits 2.9 nJ pulses at a wavelength of 1554 nm with a repetition rate of 31 MHz. The dechirped pulses have a duration of 89 fs. The characteristic features of the pulse profile and spectrum along with the dynamics of the laser are highlighted in representative simulations. These simulations also address the effect of the filter shape and detuning with respect to the gain spectral peak. PMID:26625073

  12. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser.

    PubMed

    Chamorovskiy, A; Marakulin, A V; Ranta, S; Tavast, M; Rautiainen, J; Leinonen, T; Kurkov, A S; Okhotnikov, O G

    2012-05-01

    We report on a 2085 nm holmium-doped silica fiber laser passively mode-locked by semiconductor saturable absorber mirror and carbon nanotube absorber. The laser, pumped by a 1.16 μm semiconductor disk laser, produces 890 femtosecond pulses with the average power of 46 mW and the repetition rate of 15.7 MHz. PMID:22555700

  13. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  14. All-fiber 7 × 1 signal combiner for high power fiber lasers.

    PubMed

    Zhou, Hang; Chen, Zilun; Zhou, Xuanfeng; Hou, Jing; Chen, Jinbao

    2015-04-10

    We present an all-fiber 7×1 signal combiner for high power fiber lasers. Through theoretical analysis, the fabrication method is confirmed and the taper length of the fiber bundle is chosen to be 1 cm to ensure a high transmission efficiency of the combiner. Based on the theoretical results, an all-fiber 7×1 signal combiner with high transmission efficiency is fabricated. A capillary with low refractive index is fused around the bundle of signal fibers to make an additional cladding layer. Then the fiber bundle is tapered to match the core of the output fiber and then spliced with the output fiber. The combiner is tested with a 500 W fiber laser and a temperature increase of 13°C/kW without any active cooling is observed in the combiner. The power transmission efficiency is measured to be close to 99% for each input port and the beam quality M2 is around 10. PMID:25967291

  15. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  16. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  17. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  18. Innovative fiber systems for laser medicine and technology

    NASA Astrophysics Data System (ADS)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar

    2003-10-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4-18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes have been used to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δv=10-4cm-1, provides the unique tool for gas analysis, specifically wiht PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis as 1 ppb level of detectivity for various applications in medicine and biotechnology.

  19. Innovative fiber systems for laser medicine and technology

    NASA Astrophysics Data System (ADS)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar

    2004-09-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δν=10-4cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  20. Femtosecond laser-induced surface structures on carbon fibers.

    PubMed

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan

    2015-12-15

    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers. PMID:26670499

  1. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  2. Highly efficient mid-infrared dysprosium fiber laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-05-15

    A new, highly efficient and power scalable pump scheme for 3 μm class fiber lasers is presented. Using the free-running 2.8 μm emission from an Er3+-doped fluoride fiber laser to directly excite the upper laser level of the H13/26→H15/26 transition of the Dy3+ ion, output at 3.04 μm was produced with a record slope efficiency of 51%. Using comparatively long lengths of Dy3+-doped fluoride fiber, a maximum emission wavelength of 3.26 μm was measured. PMID:27176955

  3. Long-term laser frequency stabilization using fiber interferometers.

    PubMed

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W

    2015-07-01

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10(-8) to 6.9 × 10(-10). The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control. PMID:26233353

  4. Sub-micron texturing of silicon wafer with fiber laser

    NASA Astrophysics Data System (ADS)

    Farrokhi, Hamid; Zhou, Wei; Zheng, Hong Yu; Li, Zhongli

    2011-03-01

    Laser texturing is extensively investigated for modifying surface properties. A continuous wave (CW) fiber laser (λ= 1090nm) was used to pattern a silicon wafer surface in ambient and O2 atmosphere respectively. The O2 gas stream was delivered through a coaxial nozzle to the laser spot. Characterization of the patterned features was carried out by surface profiling, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS or EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Formation of laser-induced silicon oxide sub-micron bumps was observed, which were analyzed and shown to cause changes in surface wetability and reflectivity.

  5. Long-term laser frequency stabilization using fiber interferometers

    SciTech Connect

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W.

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  6. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  7. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  8. A wavelength-tunable fiber laser based on a twin-core fiber comb filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Yin, Guolu

    2013-02-01

    A wavelength-tunable fiber laser based on a twin-core fiber (TCF) comb filter is proposed and demonstrated. The TCF comb filter is fabricated by splicing a 0.85 m long TCF between two standard single mode fibers (SMFs) and with exhibits a good linear strain characteristic with a sensitivity of 1.23 pm/μɛ. The wavelength of the laser can be linearly tuned from 1558.04 nm to 1553.62 nm by applying an axial strain to the TCF comb filter. The optical signal-to-noise ratio (OSNR) of the fiber laser reaches 45 dB. The 3 dB bandwidth is 0.02 nm. The fluctuation of the laser peak in the output power and the wavelength is less than 0.5 dB and within 0.05 nm, respectively. The fiber laser has the advantages of having a simple structure and stable operation under room temperature.

  9. 250 W single-crystal fiber Yb:YAG laser.

    PubMed

    Délen, Xavier; Piehler, Stefan; Didierjean, Julien; Aubry, Nicolas; Voss, Andreas; Ahmed, Marwan Abdou; Graf, Thomas; Balembois, Francois; Georges, Patrick

    2012-07-15

    We demonstrate an Yb:YAG single-crystal fiber laser with 251 W output power in continuous-wave and an optical efficiency of 44%. This performance can be explained by the high overlap between pump and signal beams brought by the pump guiding and by the good thermal management provided by the single-crystal fiber geometry. The oscillator performance with a reflectivity of the output coupler as low as 20% also shows high potential for power amplification. PMID:22825171

  10. Laser-power delivery using chalcogenide glass fibers

    NASA Astrophysics Data System (ADS)

    Hilton, Albert R., Sr.; Hilton, A. R., Jr.; McCord, James; Loretz, Thomas J.

    1997-04-01

    During the last 15 years, numerous programs have been carried out in the U.S., UK, France, Japan, Israel and Russia aimed at providing a flexible chalcogenide glass fiber suited for delivery of power from a carbon dioxide laser emitting at 10.6 micrometer. The success of these programs has been modest at best with output power limited to 10 watts or less. The purpose of this paper is to examine chalcogenide glasses used for fiber from a thermal lensing standpoint.

  11. Amplifier similaritons in a dispersion-mapped fiber laser [Invited

    PubMed Central

    Renninger, William H.; Chong, Andy; Wise, Frank W.

    2011-01-01

    Amplifier similaritons are generated in a dispersion-mapped fiber laser. Output pulse parameters are nearly independent of the net group velocity dispersion (GVD) owing to the strong local nonlinear attraction in the gain fiber, which dictates the pulse evolution. This constitutes a stable mode-locking regime that is capable of generating sub-100-fs pulses over a broad range of anomalous and normal GVD. These features are consistent with numerical simulations. PMID:22109127

  12. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming. PMID:19104536

  13. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  14. Near and medium infrared optical fiber lasers and emerging applications

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Mescia, L.; Allegretti, L.; De Sario, M.; D'Orazio, A.; Di Tommaso, A.; Palmisano, T.; Petruzzelli, V.

    2010-02-01

    Laser cavities emitting in the near and medium infrared wavelength range, made of rare earth doped optical fibers and suitable pairs of integrated mirrors, are used in a large number of applications. Nowadays, the efficient employment of near and medium infrared laser beams is largely widespread in the field of m*aterial processing, surgery, directed energy, remote sensing, spectroscopy, imaging, and so on. In a lot of cases, the high conversion efficiency, the excellent beam quality, the compactness and, the good heat dissipation capability make fiber lasers competitive and attractive with respect to other light sources, such as ion-doped crystal and bulk glass lasers, optical parametric oscillators, semiconductor and gas lasers. The paper aims to recall and/or briefly illustrate a few among the numerous strategies recently followed by research laboratories and industries to obtain laser sources based on rare earth doped optical fibres. A recall on the host materials and the dopants employed for their construction, and the corresponding applications is given, too. Moreover, an example of near infrared (NIR) fiber optic laser development, by employing available on market components is illustrated by underlining the possibility to easily obtain high beam quality.

  15. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  16. Development of Ho:YLF laser pumped by Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Mizutani, Kohei; Ishii, Shoken; Itabe, Toshikazu; Asai, Kazuhiro; Sato, Atsushi

    2014-11-01

    We are developing a 2-micron Ho:YLF laser end-pumped by Tm:fiber laser. The oscillator has ring resonator of 3m length. The laser is operated at high repetition rate of 200-5000 Hz in room temperature. The oscillator and amplifier system showed outputs of about 9W in CW and more than 6W in Q-switched operation. This laser will be used for wind and CO2 concentration measurements.

  17. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  18. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  19. Dissipative solitons in normal-dispersion fiber lasers

    SciTech Connect

    Renninger, W. H.; Chong, A.; Wise, F. W.

    2008-02-15

    Mode-locked fiber lasers in which pulse shaping is based on filtering of a frequency-chirped pulse are analyzed with the cubic-quintic Ginzburg-Landau equation. An exact analytical solution produces a variety of temporal and spectral shapes, which have not been observed in any experimental setting to our knowledge. Experiments agree with the theory over a wide range of parameters. The observed pulses balance gain and loss as well as phase modulations, and thus constitute dissipative temporal solitons. The normal-dispersion fiber laser allows systematic exploration of this class of solitons.

  20. Innovative laser based approaches to laryngeal cancer: what an engineer and physicist need to know

    NASA Astrophysics Data System (ADS)

    Burns, James A.

    2008-02-01

    Innovative laser-based approaches to laryngeal cancer include the clinical applications of two new technologies, photoangiolysis using a 532nm wavelength pulsed-KTP laser and fiber-based cutting using a 2μm wavelength thulium laser. Photoangiolysis is well-suited for treatment of minimally invasive glottic cancer and allows maximum preservation of phonatory surfaces needed for optimal voicing. The thulium laser offers an alternative to the carbon dioxide laser as an endolaryngeal cutting tool due to its enhanced hemostatic properties and fiber-based delivery. Clinical examples of pulsed-KTP laser involution of early glottic cancer will be presented in order to highlight the concept of targeting tumor angiogenesis in treating laryngeal cancer. The surgical experience using the thulium laser for complex endoscopic endolaryngeal excisions of large laryngeal cancers is presented to demonstrate the expanded clinical applications of endolaryngeal cutting offered by this laser. The laryngeal tissue effects of various laser power and pulse width (PW) settings, mode of delivery, active cooling to reduce thermal trauma, and wavelength selection have been extensively studied for the KTP and thulium lasers in both ex-vivo and live-perfusing models. The results from these studies, included herein, determine the clinical efficacy and safety of these innovative laser-based approaches to laryngeal cancer.

  1. A novel fiber laser development for photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.

    2013-03-01

    Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.

  2. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  3. Er/Tm:fiber laser system for coherent Raman microscopy.

    PubMed

    Coluccelli, Nicola; Kumar, Vikas; Cassinerio, Marco; Galzerano, Gianluca; Marangoni, Marco; Cerullo, Giulio

    2014-06-01

    We present a novel architecture for a fiber-based hybrid laser system for coherent Raman microscopy, combining an amplified Er:fiber femtosecond oscillator with a Tm:fiber amplifier boosting the power of the 2-μm portion of a supercontinuum up to 300 mW. This is enough to obtain, by means of nonlinear spectral compression, sub-20-cm(-1) wide pump and Stokes pulses with 2500-3300  cm(-1) frequency detuning and average power at the 100-mW level. Application of this system to stimulated Raman scattering microscopy is discussed. PMID:24875984

  4. Acoustic fiber laser array architecture with reduced optical feedback limitations

    NASA Astrophysics Data System (ADS)

    Molin, S.; Bouffaron, R.; Peigné, A.; Doisy, M.; Mugnier, A.; Pureur, D.

    2014-05-01

    Many sensing applications would benefit of multiplexing a maximum number of Distributed FeedBack Fiber Lasers (DFB FLs) on the same optical fiber. However, in such configurations, some physical mechanisms may impact DFB FLs stable operation, limiting, for instance, the number of DFB FLs spliced on the same fiber and the distance between them. The aim of this experimental study is to investigate the impact of optical feedback on DFB FLs stability. The results of our study are used to propose possible associated architectures.

  5. Laser diode pumped high efficiency Yb:YAG crystalline fiber waveguide lasers

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    Single-clad and double-clad Yb:YAG crystalline fiber waveguides (CFWs) have been prepared with Adhesive-Free Bonding (AFB®) technology. By using a fiber coupled laser diode as pump source, a single-mode laser with near diffraction limited beam quality M2=1.02 has been demonstrated in a double-clad CFW. The laser output power and efficiency are 13.2 W and 34%, respectively. In a single-clad CFW, core pumping was used. The laser output has top-hat beam profile. An output power of 28 W and a slope efficiency of 78% have been achieved respectively.

  6. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  7. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    SciTech Connect

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura; Kawaguchi, Isao; Miura, Yasuhiko; Ino, Tooru

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  8. [INVITED] Multiwavelength operation of erbium-doped fiber-ring laser for temperature measurements

    NASA Astrophysics Data System (ADS)

    Diaz, S.; Lopez-Amo, M.

    2016-04-01

    In this work, simultaneous lasing at up to eight wavelengths is demonstrated in a multi-wavelength erbium-doped fiber ring laser previously reported. This is achieved by introducing a feedback fiber loop in a fiber ring cavity. Eight-wavelength laser emission lines were obtained simultaneously in single-longitudinal mode operation showing a power instability lower than 0.8 dB, and an optical signal-to-noise ratio higher than 42 dB for all the emitted wavelengths. The fiber Bragg gratings give this source the possibility to be also used as sensor-network multiplexing scheme. The application of this system for remote temperature measurements has been demonstrated obtaining good time stability results.

  9. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  10. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.

    PubMed

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yuan, Yijun; Sun, Yunxu; Gu, Yinglong; Yao, Yong

    2016-08-10

    A new hybrid Brillouin erbium fiber laser scheme that employs cascaded multiple Brillouin gain fibers in a ring cavity to realize multiwavelength laser output with switchable frequency spacing is proposed and experimentally investigated. The multiple frequency downshifting processes introduced by multiple stimulated Brillouin scattering (SBS) effects in one round-trip of the cavity make it possible to realize multiwavelength output with frequency spacing that is an integer multiple of the SBS frequency shifting. With two cascaded SBS fibers, the frequency spacing can be switched between single and double SBS frequency shifting by properly adjusting the Brillouin pump power. Multiwavelength outputs with triple or quadruple SBS frequency spacing are also demonstrated by employing three or four SBS gain fibers, respectively. PMID:27534498

  11. Fiber-laser-based photoacoustic microscopy and melanoma cell detection

    PubMed Central

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V.

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed. PMID:21280901

  12. Ultrafast pulses from a mid-infrared fiber laser.

    PubMed

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  13. Fiber-laser-based photoacoustic microscopy and melanoma cell detection.

    PubMed

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed. PMID:21280901

  14. Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Vieira, S.; Marques da Silva, J.; Lavrov, A.; Leite, E.; Cartaxana, P.

    2013-03-01

    The development of a compact low-cost detector for non-destructive assessment of microphytobenthos using laser induced fluorescence was described. The detector was built from a specially modified commercial miniature fiber optic spectrometer (Ocean Optics USB4000). Its usefulness is experimentally verified by the study of diatom-dominated biofilms inhabiting the upper layers of intertidal sediments of the Tagus Estuary, Portugal. It is demonstrated that, operating with a laser emitter producing 30 mJ pulses at the wavelength of 532 nm, the detector is capable to record fluorescence signals with sufficient intensity for the quantitative biomass characterization of the motile epipelic microphytobenthic communities and to monitor their migratory activity. This paves the way for building an entire emitter-detector LIF system for microphytobenthos monitoring, which will enable microalgae communities occupying hardly accessible intertidal flats to be monitored in vivo at affordable cost.

  15. Solid-state laser source of narrowband ultraviolet B light for skin disease care

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong

    2013-03-01

    We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.

  16. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  17. Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta

    2008-12-01

    A short Bi doped fiber laser operating in the wavelength region of 1160-1179 nm has been demonstrated. The influence of unsaturable loss on laser performance is investigated. Excited state absorption in Bi doped germano-alumino silicate fiber is reported in the 900-1300 nm wavelength range under 800 and 1047 nm pumping. Bi luminescence and fluorescence decay properties under different pumping wavelengths are also investigated. PMID:19065243

  18. Pulsed erbium fiber laser with an acetylene-filled photonic crystal fiber for saturable absorption.

    PubMed

    Marty, Patrick Thomas; Morel, Jacques; Feurer, Thomas

    2011-09-15

    We investigate the dynamics of an erbium-doped fiber ring laser that is equipped with an intracavity hollow core photonic crystal fiber gas cell. The cell is filled with acetylene as a saturable absorber. We observe cw operation at low pressures, Q switching at intermediate pressure levels, and mode locking at high pressures applied. Moreover, we show that the transition from the cw to the pulsed mode may be exploited for sensitive gas detection. PMID:21931393

  19. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kurosaki, Ryozo

    2011-03-01

    In this paper, we report on a micro-cutting of carbon fiber reinforced plastics (CFRP) by nanosecond-pulsed laser ablation with a diode-pumped solid state UV laser (DPSS UV laser, λ= 355nm). A well-defined cutting of CFRP which were free of debris and thermal-damages around the grooves, were performed by the laser ablation with a multiple-scanpass irradiation method. CFRP is a high strength composite material with a lightweight, and is increasingly being used various applications. UV pulsed laser ablation is suitable for laser cutting process of CFRP materials, which drastically reduces a thermal damage at cut regions.

  20. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  1. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  2. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  3. Research on ytterbium-doped photonic crystal fiber amplifier for the femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Hou, Zhiyun; Zhang, Sa; Zhou, Guiyao; Xia, Changming; Zhang, Wei; Wu, Jiale; liu, Hongzhan; Zheng, Yan

    2016-01-01

    We report on a single-stage, high-repetition photonic crystal fiber amplifier working at 1030 nm seeded by a femtosecond fiber laser, which generates an output with average power of 2.23 W at a repetition rate of 49.5 MHz and a 3 dB spectral width of 5 nm, corresponding to a pulse energy of 45.2 nJ. After amplification, the spectrum of the femtosecond laser is broadened. A home-made, ytterbium-doped, double-clad photonic crystal fiber fabricated by laser sintering technology combined with a solution doping method with a core diameter of only 24 μm is used as the power amplifier medium. The spectral characteristics as well as the suppression of amplified spontaneous emission are discussed in detail. Experiment confirms that the amplified spontaneous emission becomes negligible with increasing incident seed power and no obvious nonlinear effects arise in this experiment. These results can provide motivation for the application of ytterbium-doped photonic crystal fiber and can provide a potential application for the high-power, all-fiber laser in the future.

  4. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract. PMID:23377013

  5. Thulium fiber laser damage to Nitinol stone baskets

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Our laboratory is studying the experimental Thulium fiber laser (TFL) as an alternative lithotripter to clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to Nitinol stone baskets have been previously reported. Similarly, this study characterizes TFL induced stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 50-500 Hz was delivered through 100-μm-core optical fibers, to a standard 1.9-Fr Nitinol stone basket wire. Stone basket damage was graded as a function of pulse rate, number of pulses, and working distance. Nitinol wire damage decreased with working distance and was non-existent at distances greater than 1.0 mm. In contact mode, 500 pulses delivered at pulse rates >= 200 Hz (<= 2.5 s) were sufficient to cut Nitinol wires. The Thulium fiber laser, operated in low pulse energy and high pulse rate mode, may provide a greater safety margin than standard Holmium laser for lithotripsy, as evidenced by shorter non-contact working distances for stone basket damage than previously reported with Holmium laser.

  6. Advanced experiments with an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.

    2014-07-01

    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  7. Fiber laser pumped high energy cryogenically cooled Ho:YLF laser

    NASA Astrophysics Data System (ADS)

    Lippert, Espen; Fonnum, Helge; Stenersen, Knut

    2012-09-01

    In this paper we report on a high energy, low repetition rate 2-micron-laser, with high conversion efficiency in terms of output energy per pump power. The laser consists of a Ho3+-doped LiYF4 (YLF) crystal cooled to cryogenic temperatures in an unstable resonator, pumped by a thulium fiber laser. The cooling to 77 K makes Ho:YLF a quasi four level laser system, which greatly enhances the extraction efficiency. We achieved 356 mJ in Q-switched operation at 1 Hz PRF when pumping the laser with 58 W for 36 ms. The high beam quality from the fiber laser and the use of an unstable resonator with a graded reflectivity mirror (GRM) resulted in a high quality laser beam with a M2-value of 1.3.

  8. Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber lasers

    NASA Astrophysics Data System (ADS)

    Sazio, Pier J. A.; Sparks, Justin R.; He, Rongrui; Krishnamurthi, Mahesh; Fitzgibbons, Thomas C.; Chaudhuri, Subhasis; Baril, Neil F.; Peacock, Anna C.; Healy, Noel; Gopalan, Venkatraman; Badding, John V.

    2015-02-01

    ZnSe and other zinc chalcogenide semiconductor materials can be doped with divalent transition metal ions to create a mid-IR laser gain medium with active function in the wavelength range 2 - 5 microns and potentially beyond using frequency conversion. As a step towards fiberized laser devices, we have manufactured ZnSe semiconductor fiber waveguides with low (less than 1dB/cm at 1550nm) optical losses, as well as more complex ternary alloys with ZnSxSe(1-x) stoichiometry to potentially allow for annular heterostructures with effective and low order mode corecladding waveguiding.

  9. Fiber-coupled laser-driven flyer plates system

    SciTech Connect

    Zhao Xinghai; Zhao Xiang; Gao Yang; Shan Guangcun

    2011-04-15

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 {mu}m and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  10. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  11. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Zhang, Huanian; Li, Ping

    2016-08-01

    In this letter, a new method for achieving ultra-flat supercontinuum generation is proposed. A picosecond fiber laser was used as the pump source, in a cascaded photonic crystal fiber, ultra-flat supercontinuum generation spectrum at 3 dB level from 1070 up to 1630 nm is obtained, to our knowledge, the 3 dB bandwidth of 560 nm is the most flat supercontinuum generation obtained in photonic crystal fibers, the results indicated that our method is efficient for achieving ultra-flat supercontinuum, which will promote the technical applications of supercontinuum.

  12. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. PMID:25042888

  13. Ultra-long fiber Raman lasers: design considerations

    NASA Astrophysics Data System (ADS)

    Koltchanov, I.; Kroushkov, D. I.; Richter, A.

    2015-03-01

    In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.

  14. Optical-fiber-coupled optical bistable semiconductor lasers

    SciTech Connect

    Zhing Lichen; Tang Yunxin; Qin Ying; Guo Yili

    1986-12-01

    A compact, low input power optical bistable device, consisting of a photodetector, an optical fiber directional coupler, and a semiconductor laser diode, was presented. The principle is described graphically to explain the observed effects such as hysteresis, differential operational gain and memory functions.

  15. Constant Refractive Index Multi-Core Fiber Laser

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A; Mead, R W; Hayden, J S; Krashkevich, D; Alunni, D A

    2002-03-18

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  16. Investigation on fiber laser vector hydrophone: theory and experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Zhang, Faxiang; Ma, Rui; Li, Fang; Liu, Yuliang

    2010-08-01

    A novel underwater fiber laser vector hydrophone is presented. Theoretical and experimental analyses are carried out to test the performance of the hydrophone, which shows a sensitivity of 25 pm/g and a flat frequency response in the range of 5 Hz~200 Hz are achieved. Field demonstration shows that the vector hydrophone has good directivity.

  17. Frequency chirping in semiconductor-optical fiber ring laser

    SciTech Connect

    Zhang, Jiangping; Ye, Peida )

    1990-01-01

    In this letter, a complete small-signal analysis for frequency chirping in the semiconductor-optical fiber ring laser is presented. It shows that chirp-to-power ratio (CPR) strongly depends on the junction phase shift, the optical coupling, and the phase detuning between two cavities, especially if the modulation frequency is below the gigahertz range. 7 refs.

  18. Laser backlight unit based on a leaky optical fiber

    NASA Astrophysics Data System (ADS)

    Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro

    2012-07-01

    A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.

  19. Passively mode-locked single-polarization microstructure fiber laser.

    PubMed

    Ortaç, B; Lecaplain, C; Hideur, A; Schreiber, T; Limpert, J; Tünnermann, A

    2008-02-01

    The generation of high-power and stable ultra-short pulses from a passively mode-locked purely normal dispersion fiber laser is reported using the unique combination of a photonic crystal fiber featuring single-polarization, single-mode, and low nonlinearity with a high modulation depth semiconductor saturable absorber mirror. The environmentally-stable, self-starting fiber laser generates 1.6 W of average power at a repetition rate of 63 MHz, corresponding to a pulse energy of 25 nJ. The emitted pulses are positively chirped with a pulse duration of 3.7 ps. They are compressible down to a near transform-limited duration of 750 fs. Numerical simulations are in good agreement with the experimental results. PMID:18542292

  20. DFB fiber laser hydrophone with band-pass response.

    PubMed

    Zhang, Faxiang; Zhang, Wentao; Li, Fang; Liu, Yuliang

    2011-11-15

    A distributed-feedback fiber laser hydrophone with band-pass response is presented. The design of the hydrophone aims to equalize static pressure and eliminate signal aliasing of high-frequency acoustic components. Theoretical analysis is presented based on electro-acoustic theory. The experimental results agree well with the theory. The measured underwater responses show that the hydrophone has a pressure sensitivity of -170 dB re:pm/μPa over a bandwidth between 100 Hz and 500 Hz. A sensitivity reduction exceeding -35 dB is observed at 2500 Hz. The tested static pressure sensitivity of the hydrophone is -226 dB. The proposed fiber laser hydrophone of this kind is expected to have important application in deep water fiber-optic sonar systems with anti-aliasing, and the understanding gained through this work can be extended to a guide of hydrophone design for required filtering bandwidth. PMID:22089550

  1. Compact all-fiber laser delivering conventional and dissipative solitons.

    PubMed

    Mao, Dong; Liu, Xueming; Han, Dongdong; Lu, Hua

    2013-08-15

    We report the simultaneous generation of conventional soliton (CS) and dissipative soliton (DS) in a mode-locked fiber laser exploiting chirped fiber Bragg grating and four-port circulator. The bandwidth and duration of the CS are 0.28 nm and 15.1 ps, respectively. However, the giant-chirp DS exhibits a quasi-rectangular spectrum with a bandwidth of 9.5 nm. The duration of the output DS is 7.3 ps and can be compressed to 0.55 ps external to the cavity. Our numerical results agree well with the experimental observations. The flexible all-fiber laser can provide three different pulse sources, which is convenient and attractive for practical applications. PMID:24104684

  2. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  3. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  4. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  5. Tunable ring laser using a tapered single mode fiber tip.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2009-12-10

    A tunable ring laser using a tapered single mode fiber tip as a bandpass filter has been proposed and demonstrated for the first time to our knowledge. This is a simple and cost-effective tunable source. It is found that the tuning range and bandwidth of the laser are related to the relaxation time of the optical amplifier, the current of the amplifier, and the steepness of the tip shape. The calculations and experimental results show that the laser has a tuning range of 9 nm in the L-band and the spectral linewidth can be varied from 0.06 nm to 0.17 nm. PMID:20011024

  6. Highly Efficient Operation of Tm:fiber Laser Pumped Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Petros, M.; Yu, Jirong; Petzar, Paul; Trieu, Bo; Chen, Sam; Lee, Hyung; Singh, U.

    2006-01-01

    A 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.

  7. Coilable single crystals fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet; Ribuot, Antoine; Maxwell, Gisele

    2014-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching efficiencies found in bulk crystals, which make them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc.) that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  8. Coilable single crystals fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet; Ribuot, Antoine; Maxwell, Gisele

    2014-02-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  9. Development of fiber-based laser anemometer for SSME application

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Fan, Robert

    1989-01-01

    A recent study by Rocketdyne for NASA identified laser anemometry, using a compact optical head, as a feasible diagnostic instrument for the Space Shuttle Main Engine (SSME) Model Verification experiments. Physical Research, Inc. (PRI) is presently under contract from NASA Lewis to develop and deliver such a laser anemometer system. For this application, it is desired to place the laser at a remote distance from the engine, and use single mode polarization preserving fiber optics for the transmission of the laser light to and from the measurement head. Other requirements are given. Analytical and experimental tools are being used to develop the technologies required for the laser anemometer. These include finite element analysis of the optical head and vibration tests for various optical and mechanical components. Design of the optical head and the fiber optic connectors are driven by the temperature and vibration requirements for the measurement environment. Results of the finite element analysis and the vibration tests of the components are included. Conceptual design of the fiber optic launcher and the optical probe has also been complete. Detailed design of the probe as well as the fabrication and assembly of the components is in progress.

  10. Research of time fiducial and imaging VISAR laser for Shenguang-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wang, Zhenguo; Tian, Xiaocheng; Zhou, Dandan; Zhu, Na; Wang, Jianjun; Li, Mingzhong; Xu, Dangpeng; Dang, Zhao; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Wang, Feng

    2015-10-01

    Time fiducial laser is an important tool for the precise measurement in high energy density physics experiments. The VISAR probe laser is also vital for shock wave diagnostics in ICF experiments. Here, time fiducial laser and VISAR light were generated from one source on SG-III laser facility. After generated from a 1064-nm DFB laser, the laser is modulated by an amplitude modulator driven by 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20-ns VISAR pulse were split by a 1×2 multiplexer and then chosen by two acoustic optic modulators. Using the technique, cost of the system was reduced. The technologies adopted in the system also include pulse polarization stabilization, high precision fiber coupling and energy transmission. The time fiducial laser generated synchronized 12-beam 2ω and 4-beam 3ω laser, providing important reference marks for different detectors and making it convenient for the analysis of diagnostic data. After being amplified by fiber amplifiers and Nd:YAG rod amplifiers, the VISAR laser pulse was frequency-converted to 532-nm pulse by a thermally controlled LBO crystal with final output energy larger than 20 mJ. Finally, the green light was coupled into a 1-mm core diameter, multimode fused silica optical fiber and propagated to the imaging VISAR. The VISAR laser has been used in the VISAR diagnostic physics experiments. Shock wave loading and slowdown processes were measured. Function to measure velocity history of shock wave front movement in different kinds of materials was added to the SG-III laser facility.

  11. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  12. Fiber laser welding of nickel-based superalloy inconel 718

    NASA Astrophysics Data System (ADS)

    Oshobe, Omudhohwo Emaruke

    Inconel 718 (IN 718) is widely used in applications, such as aircraft and power turbine components. Recently, fiber laser welding has become an attractive joining technique in industry for fabrication and repair of service-damaged components. However, a major limitation in the laser welding of IN 718 is that liquation cracking occurs. In the present work, autogenous fiber laser welding of IN 718 was used to study the effects of welding parameters and different pre-weld heat treatments on liquation cracking. Contrary to previous studies, a dual effect of heat input on cracking is observed. A rarely reported effect of heat input is attributed to process instability. Liquation cracking increases with pre-weld heat treatment temperatures that increase grain size and/or, possibly, intregranular boron segregation. The study shows that pre-weld heat treatment at 950oC can be used for repair welding of IN 718 without significant loss in cracking resistance.

  13. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  14. Dual-kind Q-switching of erbium fiber laser

    SciTech Connect

    Barmenkov, Yuri O. Kir'yanov, Alexander V.; Cruz, Jose L.; Andres, Miguel V.

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  15. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  16. Frequency doubling of Raman fiber lasers with random distributed feedback.

    PubMed

    Dontsova, E I; Kablukov, S I; Vatnik, I D; Babin, S A

    2016-04-01

    This Letter presents what we believe is the first experimental study of frequency doubling of a Raman fiber laser (RFL) with random distributed feedback (RDFB) in an MgO:PPLN crystal. We compared two laser configurations, each with a half-open cavity. The cavity contained either a broadband Sagnac mirror or a narrowband fiber Bragg grating (FBG). We found that spectral broadening in the studied configurations of the RDFB RFLs differed from that found in a conventional RFL with a linear cavity, as well as from each other. We also compared the second harmonic generation (SHG) efficiency for these three types of lasers. The highest SHG efficiency was obtained for the RDFB RFL with the FBG delivering >100  mW power at 654 nm. PMID:27192256

  17. Single-fiber tweezers applied for dye lasing in a fluid droplet.

    PubMed

    Liu, Zhihai; Chen, Yunhao; Zhao, Li; Zhang, Yu; Wei, Yong; Li, Hanyang; Liu, Yongjun; Zhang, Yaxun; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yuan, Libo

    2016-07-01

    We report on the first demonstration of a single-fiber optical tweezer that is utilized to stabilize and control the liquid droplet for dye lasing. In order to trap a liquid droplet with a diameter of 15-30 μm, an annular core micro-structured optical fiber is adopted. By using wavelength division multiplexing technology, we couple a trapping light source (980 nm) and a pumping light source (532 nm) into the annular core of the fiber to realize the trapping, controlling, and pumping of the oil droplet. We show that the laser emission spectrum tunes along the same size as the oil droplet. The lasing threshold of the oil droplet with the diameter of 24 μm is 0.7 μJ. The presented fiber-based optical manipulation of liquid droplet micro-lasers can be easily combined with the micro-fluidic chip technology and also may extend the application of optical fiber tweezers for micro-droplet lasing technology in the biological field. PMID:27367077

  18. An all-fiber approach for in-phase supermode phase-locked operation of multicore fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, L.; Schülzgen, A.; Temyanko, V. L.; Li, H.; Moloney, J. V.; Peyghambarian, N.

    2007-02-01

    An all-fiber approach is utilized to phase lock and select the in-phase supermode of compact multicore fiber lasers. Based on the principles of Talbot imaging and waveguide multimode interference, the fundamental supermode is selectively excited within a completely monolithic fiber device. The all-fiber device is constructed by simply fusion splicing passive non-core optical fibers of controlled lengths at both ends of a piece of multicore fiber. Experimental results upon in-house-made 19- and 37-core fibers are demonstrated, which generate output beams with high-brightness far-field intensity distributions. The whole fabricated multicore fiber laser device can in principle be a single fiber chain that is only ~10 cm in length, aligning-free in operation, and robust against environmental disturbance.

  19. YAG-derived fiber for high-power narrow-linewidth fiber lasers

    NASA Astrophysics Data System (ADS)

    Dragic, Peter D.; Liu, Yuh-Shiuan; Ballato, John; Hawkins, Thomas; Foy, Paul

    2012-02-01

    We present experimental and modeling results investigating rare earth-doped (Er and Yb) YAG-derived silica fibers (RYDF) as candidates for use in high-power narrow-linewidth fiber lasers. Fabrication of the RYDFs via a rod-in-tube method, starting from crystalline YAG, and its transformation to the amorphous state is described. Stimulated Brillouin scattering (SBS) suppression results from material properties that cooperate to yield a low Brillouin gain coefficient (BGC), namely reduced photoelastic constant and increased acoustic velocity, mass density, and Brillouin spectral width relative to silica. We find typical BGC values for large-mode-area RYDFs to be around 0.5×10-11 m/W. Utilizing a materials model, these results are extrapolated to compositionally-design further reductions to the BGC, including introducing other co-dopants to the mixture. Finally, we focus on the Yb-doped RYDF (YYDF) and show that it is a good candidate for use in kW-class narrow-linewidth fiber lasers via spectroscopy and amplifier experiments. The RYDFs are found to be very similar to conventional aluminosilicate fibers. We also find that YYDFs offer improved compatibility with phase modulating the laser for further increases in the SBS threshold. Using novel fiber fabrication methods with less-common and low-silica materials can lead to promising glass recipes with ultra-low intrinsic BGCs.

  20. Highly efficient fiber coupling of laser diode bars with > 50% electro-optical efficiency out of the fiber core

    NASA Astrophysics Data System (ADS)

    Fornahl, Udo; Revermann, Markus; Meinschien, Jens

    2008-02-01

    Fiber-coupled diode lasers have become an established source for many industrial applications due to their high wall-plug efficiency, minimal maintenance and cost per watt. To decrease system size and cost for cooler and driver, high coupling efficiencies have become more and more important. Recent developments in broad area laser diode bars (BALB) and beam shaping systems with micro-optical components are leading to new highly efficient fiber coupling. We present newly developed high power diode laser modules which are performing at outstanding efficiencies with smallest package design. The combination of recently designed laser diode bars on passive heat sinks and optimized micro-optics results in laser modules with up to 60W out of a 200μm fiber with a 0.22 NA and > 50% electro-optical efficiency out of the fiber core, based on only one laser diode bar. The applications for such laser diode modules range from pumping of fiber lasers and amplifiers, over materials processing to medical applications. The presentation of the technology will show a path to scale high-brightness laser systems to higher power levels and efficiencies. The combination of different coupling techniques will allow laser modules with 100W out of 100μm fiber core up to 1.6kW out of 400μm fiber core with electro-optical efficiencies of > 45%.

  1. Effect of frequency-doubling pulse Nd:YAG laser on microbial mutation

    NASA Astrophysics Data System (ADS)

    Zhao, Yansheng; Wang, Luyan; Zheng, Heng; Yin, Hongping; Chen, Xiangdong; Tan, Zheng; Wu, Wutong

    1999-09-01

    We are going to report the mutagenic effect of frequency-doubling pulse Nd:YAG laser (532 nm) on microbe. After irradiation with pulse laser, mutants of abscisic acid producing strains and erythromycin producing strains were obtained, one of which could produce 62.1% and 57% more products than control, respectively. In the study of mutagenization of Spirulina platensis caused by pulse laser, we selected a high photosynthetic strains, with improved productivity of protein and exocellular ploysaccharides of 12% and 246%, respectively. The experimental results indicate that frequency-doubling pulse laser (532 nm) is a potential new type of physical mutagenic factor.

  2. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm.

  4. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm. PMID:27416893

  5. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization. PMID:27420499

  6. Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Qi, Yanhui; Sun, Jiang; Kang, Zexin; Ma, Lin; Jin, Wenxing; Jian, Shuisheng

    2016-05-01

    We propose a backward-pump transverse mode fiber laser to generate optical beams based on few-mode fiber Bragg grating. The grating as a transverse mode filter possesses several reflection peaks by adjusting the core-offset. The transverse mode fiber laser operates at extremely low thresholds which are about 20, 16.5 and 16 mW corresponding to different operation wavelengths of 1560.98, 1562.32 and 1563.76 nm, respectively. The optical signal to noise ratios are about 72, 75.5 and 75.8 dB, when the pump power is fixed at 100 mW, respectively. The effectively exciting modes corresponding to each reflection peak interfere with each other. Different optical beams can be achieved by changing the operating wavelength or changing the state of PC. The device maybe find its applications such as sensing, transporting or manipulating microscopic particles.

  7. Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-08-01

    Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  8. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    SciTech Connect

    Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  9. Chalcogenide fiber for mid-infrared transmission and generation of laser source

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Kuis, Robinson A.

    2010-04-01

    Chalcogenide glass fibers are the best candidates for mid-infrared transmission. Their low optical losses and high-power damage threshold are enabling numerous applications: laser power delivery, chemical sensing and imaging. Furthermore, chalcogenide glass fibers are best candidates for demonstrating rare-earth doped fiber lasers and supercontinuum sources in the mid-infrared. The latest results towards the creation of a 4.5 micron fiber laser and a broadband (2-5 micron) supercontinuum source are presented.

  10. Influence of cooling on a bismuth-doped fiber laser and amplifier performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta K

    2009-11-01

    We characterize bismuth-doped fibers under different excitation wavelengths. The fiber laser performance at 1179 nm was investigated, incorporating different cooling arrangements. Effective heat extraction can reduce the temperature-dependent unsaturable loss in fiber, resulting in increased laser performance. The operation of a bismuth-doped fiber amplifier at 1179 nm, at both low and high input signals, is also examined. The amplifier efficiency and the saturation power both depend on effective fiber cooling. PMID:19881653

  11. Thulium fiber laser lithotripsy in an in vitro ureter model.

    PubMed

    Hardy, Luke A; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/ min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy. PMID:25518001

  12. Thulium fiber laser lithotripsy in an in vitro ureter model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  13. Dual-wavelength erbium-doped fiber laser with tunable wavelength spacing using a twin core fiber-based filter

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Wang, Xin; Han, Bolin

    2014-05-01

    A dual-wavelength erbium-doped fiber laser with tunable wavelength spacing was proposed and experimentally demonstrated by using a twin core fiber (TCF)-based filter. Benefiting from the polarization dependence of the TCF-based filter, the laser operated in dual-wavelength oscillation with two orthogonal polarization states. By adjusting the polarization controller, the wavelength spacing was tuned from 0.1 nm to 1.2 nm without shifting the centre position of the two wavelengths. By stretching the TCF, the two wavelengths were simultaneously tuned with fixed wavelength spacing. Such a dual-wavelength fiber laser could find applications in optical fiber sensors and microwave photonics generation.

  14. Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1991-01-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  15. Developing high energy dissipative soliton fiber lasers at 2 micron

    PubMed Central

    Huang, Chongyuan; Wang, Cong; Shang, Wei; Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    While the recent discovered new mode-locking mechanism - dissipative soliton - has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media. PMID:26348563

  16. Developing high energy dissipative soliton fiber lasers at 2 micron

    NASA Astrophysics Data System (ADS)

    Huang, Chongyuan; Wang, Cong; Shang, Wei; Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-09-01

    While the recent discovered new mode-locking mechanism - dissipative soliton - has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media.

  17. Developing high energy dissipative soliton fiber lasers at 2 micron.

    PubMed

    Huang, Chongyuan; Wang, Cong; Shang, Wei; Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    While the recent discovered new mode-locking mechanism--dissipative soliton--has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media. PMID:26348563

  18. Modeling and measurement of ytterbium fiber laser generation spectrum

    NASA Astrophysics Data System (ADS)

    Kablukov, Sergey I.; Zlobina, Ekaterina A.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2012-06-01

    A generation spectrum of a fiber laser becomes broader with increasing generation power. The spectra are rather narrow at low power and become comparable with fiber Bragg gratings (FBG) width at high power. It has been shown that the spectral broadening of a fiber laser can be described analytically if the generation spectrum is much narrower than the FBG width. The developed theory has been compared with experiment. Double clad Yb-doped fiber laser of up to 10 W output power is used in the experiment. Scanning Fabry-Perot interferometer with resolution down to 1.2 pm is applied for accurate spectral measurements. At power level less then 1 W a self-sustained pulsation regime accompanied by a narrow-line self-sweeping is observed. At higher power a quasi-CW generation regime with multiple longitudinal modes is established. Investigation of the regime shows linear increase of the generation width with generation power growth. Slope of the dependence has excellent agreement with the theory, but an additive quantity should be added to describe an absolute value that makes significant contribution at low powers. It has been shown that at low powers a spatial hole burning has to be considered. Theoretical model describing the hole burning effect for multimode cw generation is also developed. After inclusion of the hole burning effect the model starts to agree quantitatively with the linewidth measurements both at low and high powers.

  19. High-brightness 9xxnm fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa

    2015-03-01

    We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.

  20. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits. PMID:26191688

  1. Fiber laser welding of nickel based superalloy Rene 77

    NASA Astrophysics Data System (ADS)

    Janicki, Damian M.

    2013-01-01

    The study of laser bead-on-plate welding of nickel based superalloy Rene 77 using single mode high power fiber laser has been undertaken to determine the effect of process parameters, such as laser power, welding speed and laser beam defocusing, on the weld geometry and quality. Non-porous and crack-free welds can be achieved for a relatively wide range of fiber laser welding parameters. The welding speed has a major effect on the weld aspect ratio. The laser beam defocusing significantly affects the weld bead geometry, the stability of the keyhole and pore formation. The transition from keyhole mode to conduction mode welding occurs between focal point position +2.0 mm and +4.0 mm. The high porosity was observed at the focal point position of +2.0 mm. The heat input higher than18 J/mm results to hot cracking in the heat affected zone (HAZ). Moreover, it was found that the welds with the weld aspect ratio higher than 1.5 contain cracks, which propagate from the HAZ into the weld metal.

  2. Thulium fiber laser-pumped mid-IR OPO

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Jiang, Min; Budni, Peter A.; Ketteridge, Peter A.; Setzler, Scott D.; Young, York E.; McCarthy, John C.; Schunemann, Peter G.; Pollak, Thomas M.; Tayebati, Parviz; Chicklis, Evan P.

    2008-04-01

    Fiber lasers are advancing rapidly due to their ability to generate stable, efficient, and diffraction-limited beams with significant peak and average powers. This is of particular interest as fibers provide an ideal pump source for driving parametric processes. Most nonlinear optical crystals which provide phase-matching to the mid-IR at commercially available fiber pump wavelengths suffer from high absorption above 4μm, resulting in low conversion efficiencies in the 4-5μm spectral region. The nonlinear optical crystals which combine low absorption in this same spectral region with high nonlinear gain require pumping at longer wavelengths (typically >1.9μm). In this paper, we report a novel mid-IR OPO pumped by a pulsed thulium-doped fiber laser operating at 2-microns. The eyesafe thulium-fiber pump laser generates >3W of average power at >30kHz repetition rate with 15-30ns pulses in a near diffraction-limited beam. The ZnGeP II (ZGP) OPO produces tunable mid-IR output power in the 3.4-3.99μm (signal) and the 4.0-4.7μm (idler) spectral regions in both singly resonant (SRO) and doubly resonant (DRO) formats. The highest mid-IR output power achieved from this system was 800mW with 20% conversion efficiency at 40kHz. In a separate experiment, the 3W of 2-micron light was further amplified to the 20W level. This amplified output was also used to pump a ZGP OPO, resulting in 2W of output power in the mid-IR. To our knowledge, these are the first demonstrations of a fiber-pumped ZGP OPO.

  3. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  4. Investigation of laser induced parametric interactions in optical waveguides and fibers

    NASA Technical Reports Server (NTRS)

    Yu, C.

    1978-01-01

    Experimental and theoretical aspects of the laser pump depletion characteristics in an optical fiber due to stimulated Raman scattering, and stimulated Brillouin scattering were studied. A review is presented of research in fiber transmission accompanied by stimulated scattering. Results of experimental work with tunable dye lasers and argon lasers are presented. The spectral profiles of the laser pump and its transmitted light through the fiber are given.

  5. Laser angioplasty with lensed fibers and a holmium:YAG laser in iliac artery occlusions

    NASA Astrophysics Data System (ADS)

    White, Christopher J.; Ramee, Stephen R.; Mesa, Juan E.; Collins, Tyrone J.; Kotmel, Robert; Godfrey, Maureen A.

    1991-05-01

    Holmium-YAG (2.1 (mu) ) laser recanalization was attempted in 10 totally occluded miniature swine iliac arteries using a lensed fiber delivery system. The iliac artery occlusions were created in a Yucatan miniature swine model of atherosclerosis by means of a high cholesterol diet and balloon endothelial denudation. In order to increase the spot size, a spherical silica lens was attached to the distal end of a 300 micrometers core diameter silica optical fiber. The holmium-YAG laser was operated in the free-running mode with 250 microsecond(s) ec pulses at 4 Hz. The energy delivered was 225 mJ per pulse for the 1.0 mm lensed fiber and 200 mJ per pulse for the 1.3 mm lensed fiber. Laser energy was delivered in 2 to 5 second bursts. Successful recanalization was achieved in all 10 arteries attempted without perforation of the arterial wall. The average length of the occlusions was 5.0 +/- 1.8 cm. Following successful laser recanalization significant stenoses (>50%) remained in all of the arteries as judged by angiography. In conclusion, the lensed fibers coupled to the pulsed holmium-YAG laser were safe and effective in recanalizing these difficult lesions in relatively straight iliac arteries. There is potential clinical utility for this system as an adjunct to balloon angioplasty in patients with lesions which are unable to be crossed with guidewires.

  6. A novel laser angioplasty guided hollow fiber using mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Yoshihashi-Suzuki, Sachiko; Yamada, Shinya; Sato, Izuru; Awazu, Kunio

    2006-02-01

    We have proposed selective removal of cholesterol ester by infrared laser of wavelength with 5.75 μm irradiation; the wavelength of 5.75 μm correspond with the ester bond C=O stretching vibration. The flexible laser guiding line and a compact light source are required for our proposal. We used a compact mid-infrared tunable laser by difference frequency generation; DFG laser was developed for substitute light source of free electron laser. In the present work, first, we have developed hollow optical fiber with a diamond lens-tip to deliver DFG laser in the blood vessel and evaluated the transmission of DFG laser from 5.5 μm to 7.5 μm. The transmission of 5.75 μm is about 65%, the DFG beam was focused on the tip of fiber by diamond lens-tip. Secondly, we performed the selective removal experiment of cholesterol ester using the hollow optical fiber with diamond lens-tip and DFG laser. The sample used a two layer model, cholesterol oleate and gelatin. The cholesterol oleate was decomposed by 5.75 μm DFG irradiation with 3.8 W/cm2.

  7. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  8. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation.

    PubMed

    Chen, Rongzhang; Yan, Aidong; Li, Mingshan; Chen, Tong; Wang, Qingqing; Canning, John; Cook, Kevin; Chen, Kevin P

    2013-07-15

    This Letter presents distributed Bragg reflector (DBR) fiber lasers for high-temperature operation at 750°C. Thermally regenerated fiber gratings were used as the feedback elements to construct an erbium-doped DBR fiber laser. The output power of the fiber laser can reach 1 mW at all operating temperatures. The output power fluctuation tested at 750°C was 1.06% over a period of 7 hours. The thermal regeneration grating fabrication process opens new possibilities to design and to implement fiber laser sensors for extreme environments. PMID:23939090

  9. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  10. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Riveiro, A.; Comesaña, R.; Pou, J.

    2009-03-01

    This work presents the results of laser-induced fragmentation of hydroxylapatite microparticles in water dissolution. Calcined fish bones in form of powder, which were previously milled to achieve microsized particles, were used as precursor material. Two different laser sources were employed to reduce the size of the suspended particles: a pulsed Nd:YAG laser and a Ytterbium doped fiber laser working in continuous wave mode. The morphology as well as the composition of the obtained particles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and conventional and high resolution transmission electron microscopy (TEM, HRTEM). The results show that nanometric particles of hydroxylapatite and β-tricalcium phosphate as small as 10 nm diameter can be obtained.

  11. Fiber laser welding of nickel based superalloy Inconel 625

    NASA Astrophysics Data System (ADS)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  12. Fiber-optic laser sensor for mine detection and verification

    NASA Astrophysics Data System (ADS)

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

  13. Fiber-optic laser sensor for mine detection and verification.

    PubMed

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to E(p) = 1 mJ, a repetition rate of f(rep.) = 2-20 kHz and a pulse duration of t(p) = 620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis. PMID:16724144

  14. Transendoscopic soft-tissue laser ablation in the equine upper respiratory tract

    NASA Astrophysics Data System (ADS)

    Bartels, K. E.; MacAllister, C. G.; Dickey, D. T.; Schafer, S. A.; Nordquist, R. E.

    1997-05-01

    Transendoscopic application of Nd:YAG laser energy for treatment of partial upper respiratory obstruction in the horse has been practiced for the last 12 years in both contact and non-contact modes. Endoscopic laser ablation has been limited to wavelengths transmitted through flexible optical fibers. Devices used for this purpose have been primarily the Nd:YAG (1064 nm), KTP (532 nm), holmium (2100 nm), and diode (805 nm) lasers. Few investigations have focused on use of the holmium or diode lasers. Objectives of this study were to evaluate use of fiber-deliverable laser wavelengths provided by newer, more portable, user-friendly, solid-state diode and holmium lasers for ablation of laryngeal tissues of the equine upper respiratory tract. In addition, information on efficacy and dosimetry for both the contact and non-contact modes was obtained using an in vitro cadaveric model. Preliminary conclusions based on histologic evaluation and scanning electron microscopy revealed that diode laser energy has the ability to penetrate laryngeal tissue easily and deeply with minimal collateral coagulation, but is sensitive to tissue color. Holmium laser energy can be used to incise laryngeal tissue easily in contact mode with moderate collateral damage, and absorption does not seem dependent on tissue color.

  15. TECHNICAL NOTE: Development of fiber Bragg grating sensor system using wavelength-swept fiber laser

    NASA Astrophysics Data System (ADS)

    Ryu, Chi-Young; Hong, Chang-Sun

    2002-06-01

    Fiber Bragg grating (FBG) sensors based on the wavelength division multiplexing technology are ideally suited for structural health monitoring. In many applications, it is desirable to form several arrays of optical fiber sensors to monitor the response of structures. In the present study, we constructed an improved FBG sensor system using a wavelength-swept fiber laser which exhibits high output power for several sensor arrays. A fiber cavity etalon was also fabricated for the calibration of the nonlinear output wavelength of a laser and for scaling the information in the wavelength domain for signal processing. The constructed FBG sensor system with the fiber cavity etalon and a reference FBG was applied for strain measurements of a laminated composite panel under axial compressive loading. In order to monitor the structural strain in real time, the signal-processing program was constructed using LabVIEW software for storing and visualizing data from the FBG sensors. Experiments showed that the constructed FBG sensor system and the real-time signal-processing program could successfully monitor the strain of composite laminates. This improved FBG sensor system could be useful for large structures which require a large number of sensor arrays.

  16. Dynamic fiber Bragg grating strain sensor using a wavelength-locked tunable fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    The interrogation systems based on fiber-optic sensors are very attractive for the practical applications in structural health monitoring owing to a number of advantages of optical fiber elements over their electronic counterparts. Among the fiber-optic sensors, the fiber Bragg gratings (FBGs) have their own unique features to be widely used for detection of acoustic emission. We have developed a dynamic strain sensing system by using a tunable single longitudinal mode Erbium-doped fiber ring laser to be locked to the middle-reflection wavelength of the FBG as the demodulation technique. A proportional-integral-derivative device continuously controls the laser wavelength that is kept at the FBG middle-reflection wavelength, thus stabilizing the operating point against quasi-static perturbation, while the high frequency dynamic strain shifts the FBG reflection profile. The reflected power varies in proportion to the applied strain which can be derived directly from AC photocurrent of the reflected signal. We have designed and assembled a fourchannel demodulator system for simultaneous high frequency dynamic strain sensing.

  17. Laparoscopic Partial Nephrectomy Using a Flexible CO2 Laser Fiber

    PubMed Central

    Khalaileh, Abed; Ponomarenko, Oleg; Abu-Gazala, Mahmoud; Lewinsky, Reuven M.; Elazary, Ram; Shussman, Noam; Shalhav, Arieh; Mintz, Yoav

    2012-01-01

    Background and Objectives: Laparoscopic partial nephrectomy (LPN) is a challenging surgery that requires precise tissue cutting and meticulous hemostasis under warm ischemia conditions. In this study, we tested the feasibility of performing LPN using CO2 laser energy transmitted through a specialized flexible mirror optical fiber. Methods: General anesthesia and pneumoperitoneum were induced in 7 farm pigs. Various portions of a kidney, either a pole or a midportion of the kidney, were removed using a novel flexible fiber to transmit CO2 laser energy set at a power of 45W and energy per pulse of 100mJ. The collecting system was approximated with a suture or 2, but no hemostatic measures were taken besides applying a few pulses of the laser to bleeding points. The pigs were sacrificed 3 wk later. Results: Average renal mass removed was 18% of the total kidney weight. All pigs tolerated surgery well. Sharp renal cutting was accomplished in a single continuous incision, with minimal tissue charring and minimal blood loss (<10cc) in all animals. Necropsy revealed no peritoneal or retroperitoneal abnormalities. Histologic examination of the cut surface showed a thin sector of up to 100 μm of coagulation necrosis. Conclusions: We report on the first LPN done using a CO2 laser transmitted through a flexible fiber in an animal model. This novel application of the CO2 laser produced excellent parenchymal incision and hemostasis along with minimal damage to adjacent renal tissue, thus, potentially shortening ischemia time and kidney function loss. Further studies comparing this laser to standard technique are necessary to verify its usefulness for partial nephrectomy. PMID:23484569

  18. Study of mid IR fiber transmission and mode patterns under laser induced stimulated Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Yu, C.; Chong, Yat C.; Zhou, Hongyi

    1990-01-01

    Mid IR fiber transmission and exit radiation mode patterns at various incident CO2 laser power levels appear to be effective diagnostic tools for monitoring laser induced stimulated Brillouin scattering in various mid IR fibers. Such processes are deemed to be essential mechanisms for fiber-optic amplifiers and switches as potential replacements of current repeaters and bistable devices.

  19. A mode-locked fiber laser with a chirped grating mirror

    NASA Astrophysics Data System (ADS)

    Haus, J. W.; Hayduk, M.; Kaechele, W.; Shaulov, G.; Theimer, J.; Teegarden, K.; Wicks, G.

    2000-01-01

    A novel fiber laser was built using a multiple-quantum well mode-locking element and a chirped fiber grating to balance dispersion and nonlinearity. Energetic pulses as short as 2 ps were generated in the cavity and propagated in a fiber to determine the pulse characteristics. Laser cavity modeling and pulse propagation simulations are in good agreement with experiments.

  20. Switchable dual-wavelength fiber laser based on PCF Sagnac loop and broadband FBG

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Feng, Suchun; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-11-01

    Switchable dual-wavelength fiber laser with photonic crystal fiber (PCF) Sagnac loop and broadband fiber Bragg grating (BFBG) at room temperature is demonstrated. By adjusting the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength lasing operations by exploiting polarization hole burning (PHB) and spectral hole burning effects (SHB).

  1. Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Chun-can; Zhang, Fan; Geng, Rui; Liu, Chu; Ning, Ti-gang; Tong, Zhi; Jian, Shui-sheng

    2008-11-01

    A mode-selection method based on a single-mode photonic crystal fiber (PCF) in the multicore fiber (MCF) lasers is presented. The designed PCF has a central core region formed by a missing air-hole, and three air-hole rings. With an appropriate choice of the design parameters of the PCF, the power coupling between the fundamental mode (FM) of the PCF and the fundamental MCF mode can be much higher than those between the FM and the other supermodes. As a result, the fundamental MCF mode has the maximum power reflection coefficient on the right-hand side of the MCF laser cavity, and dominates the output laser power. Since the maximum power of the fundamental MCF mode will lead to the desired laser beam profile, higher the fraction of the fundamental MCF mode power contained in the total output power contributes to higher beam quality. The numerical simulations show that the effectiveness of the fundamental MCF mode-selection is higher in the MCF lasers with the PCF as a mode-selection component than in the MCF lasers based on the free-space Talbot cavity method. Additionally, for the MCF amplifiers, an approach is presented to decrease the sensitivity of the amplifier performance to the variation of Gaussian beam waist utilizing the coupling between the Gaussian beam and the FM of the PCF. The numerical results show that this method can effectively increase the design flexibility for a broad range of the Gaussian beam waist.

  2. All-fiber widely tunable thulium laser

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Legg, T.

    2016-03-01

    We present results from an all-fibre thulium laser system that can be tuned to any wavelength between 1710 - 2110 nm, without using any moving mechanical parts. An Acousto-Optic Tunable Filter (AOTF) is used as the tuning element, which allows for the wavelength to be tuned in ~ 20 μs. Core-pumped and cladding pumped thulium fibres are used to enable lasing action across the wavelength range. We use in-house fabricated fused fibre couplers and combiners that have a flattened coupling response with wavelength to allow for the system to be built in an all fibre design. These couplers have a coupling response that only varies by +/- 10% over the 400 nm operating range. The laser can output powers between 1-5 mW over 1710 - 2110 nm and has a linewidth of <0.2 nm. An Acousto-optic modulator is used as a switch on the output of the laser to switch the signal between core-pumped and cladding-pumped amplifier stages. This allows for the output signals to be amplified to ~1W levels.

  3. Successive soliton explosions in an ultrafast fiber laser.

    PubMed

    Liu, Meng; Luo, Ai-Ping; Yan, Yu-Rong; Hu, Song; Liu, Yi-Chen; Cui, Hu; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-03-15

    Soliton explosions, as one of the most fascinating nonlinear phenomena in dissipative systems, have been investigated in different branches of physics, including the ultrafast laser community. Herein, we reported on the soliton dynamics of an ultrafast fiber laser from steady state to soliton explosions, and to huge explosions by simply adjusting the pump power level. In particular, the huge soliton explosions show that the exploding behavior could operate in a sustained, but periodic, mode from one explosion to another, which we term as "successive soliton explosions." The experimental results will prove to be fruitful to the various communities interested in soliton explosions. PMID:26977664

  4. Delivery of Erbium:YAG laser radiation through side-firing germanium oxide optical fibers

    NASA Astrophysics Data System (ADS)

    Ngo, Anthony K.; Fried, Nathaniel M.

    2006-02-01

    The Erbium:YAG laser is currently being tested experimentally for endoscopic applications in urology, including more efficient laser lithotripsy and more precise incision of urethral strictures than the Holmium:YAG laser. While side-firing silica fibers are available for use with the Ho:YAG laser in urology, no such fibers exist for use with the Er:YAG laser. These applications may benefit from the availability of a side-firing, mid-infrared optical fiber capable of delivering the laser radiation at a 90-degree angle to the tissue. The objective of this study is to describe the simple construction and characterization of a side-firing germanium oxide fiber for potential use in endoscopic laser surgery. Side-firing fibers were constructed from 450-micron-core germanium oxide fibers of 1.45-m-length by polishing the distal tip at a 45-degree angle and placing a 1-cm-long protective quartz cap over the fiber tip. Er:YAG laser radiation with a wavelength of 2.94 microns, pulse duration of 300 microseconds, pulse repetition rate of 3 Hz, and pulse energies of from 5 to 550 mJ was coupled into the fibers. The fiber transmission rate and damage threshold measured 48 +/- 4 % and 149 +/- 37 mJ, respectively (n = 6 fibers). By comparison, fiber transmission through normal germanium oxide trunk fibers measured 66 +/- 3 %, with no observed damage (n = 5 fibers). Sufficient pulse energies were transmitted through the side-firing fibers for contact tissue ablation. Although these initial tests are promising, further studies will need to be conducted, focusing on assembly of more flexible, smaller diameter fibers, fiber bending transmission tests, long-term fiber reliability tests, and improvement of the fiber output spatial beam profile.

  5. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-01-01

    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  6. Stable multiwavelength single longitudinal mode dual ring Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yu, Jin-Long; Wang, Wen-Rui; Pan, Hong-Gang; Yang, En-Ze

    2015-04-01

    A novel stable multiwavelength single longitudinal mode (SLM) dual ring Brillouin fiber laser is proposed and demonstrated. Dual ring configuration with 100 and 10 m length of single mode fiber guarantees each Stokes and anti-Stokes waves in SLM status. Linewidth of the first Stokes wave is below 4 kHz with 60 dB sidemode suppression value. 7 stable SLM lasing wavelengths including the pump with a 5 dB bandwidth of 0.5, 0.084 nm wavelength spacing and 15 dB average optical signal-to-noise ratio are generated through the cascaded SBS and degenerate FWM process. The laser can freely be tuned 30 nm range from 1535 to 1565 nm. The power fluctuation of the first Stokes wave is about 8 % measured by Data Acquisition System in 1 h.

  7. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    PubMed

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-01

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials. PMID:24921775

  8. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser.

    PubMed

    Tang, Yuxing; Chong, Andy; Wise, Frank W

    2015-05-15

    We report a study of a mode-locked thulium (Tm) fiber laser with varying normal dispersion. It is difficult to reach the high-energy dissipative-soliton regime due to the anomalous dispersion of most fibers at 2 μm. With large normal dispersion, the laser exhibits elements of self-similar pulse evolution, and is the first Tm fiber laser to achieve the performance benefits of normal-dispersion operation. The laser generates 7.6 nJ pulses, which can be dechirped to 130 fs duration. The resulting peak power is 4 times higher than that of previous Tm fiber lasers. PMID:26393739

  9. Laser Beam Delivery and Image Transmission Through Multimode Optical Fibers

    NASA Astrophysics Data System (ADS)

    Pan, Anpei

    This dissertation is dedicated to two important branches of optical fiber applications in biomedical engineering: laser beam delivery and image transmission. The optical phase of a light wave is distorted when it propagates through a multimode fiber. To compensate the distortion, a new hologram-generated phase conjugation theoretical model and experimental method has been developed. In the process, a self-pumped phase-conjugating mirror is introduced for recording the hologram. The coherence conditions are carefully matched so that only the desired optical signal is recorded. As a result, a high fidelity phase conjugation wave is produced. The resolution is 4.4 mum, which corresponds the diffraction-limited value of the system. Multimode optical fibers are widely used to deliver laser beams for medical diagnoses and treatments. However the spatial quality of the output beam is very poor. By use of holographic phase precompensation we present a new method to deliver high-quality laser beams. As a result, a highly collimated output beam with only 1.9 mrad divergence, which is 250 times smaller than the usual divergence, is obtained. The brightness is greatly increased. Other desired waves such as spherical wave or Gaussian beams can also be obtained. Another method, which is based on the formation at the remote end of a holographic filter, is also presented. The final output beams are nearly diffraction -limited. The hologram-generated phase conjugation is applied to image transmission through single multimode fibers. By use of Fourier transform theory and the formalism established in this study, the system resolution and the space bandwidth product are analyzed. The resolution of a multimode fiber can be 50 times higher than that of an imaging bundle if their diameters are the same. In the experiments a resolution chart was tested. The experimental results are quite consistent with the theory. A 3-D biological sample--a tooth--was also tested. The limitations of the

  10. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  11. Flexible hollow polycarbonate fiber for endoscopic infrared laser treatment

    NASA Astrophysics Data System (ADS)

    Nakazawa, Masayuki; Shi, Yi-Wei; Iwai, Katsumasa; Matsuura, Yuji; Zhu, Xiao-Song; Miyagi, Mitsunobu

    2007-07-01

    For endoscopic application, inexpensive, safe, and extremely flexible hollow infrared optical fibers have been fabricated based on the polycarbonate (PC) capillary with silver and cyclic olefin polymer (COP) as inner coatings. By optimizing the drawing condition of PC capillary from a commercially available polycarbonate tube and inner-coating process, transmission efficiency of hollow PC fibers is shown to be equal to those of glass capillary based ones. Both Er:YAG laser light and green pilot beam were delivered through the endoscope with low losses even when it was sharply bent with a bending radius as small as 1 centimeter. Preliminary experiments were also conducted on possibility of transmitting infrared thermal image by using bundled silver-coated PC hollow fibers.

  12. Fiber laser FBG sensor system by using a spectrometer demodulation

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjin; Song, Minho

    2011-05-01

    We suggest a spectrometer demodulation method of FBG sensors for the possible uses in wind power generator's blade monitoring. High signal-to-noise ratio outputs and linear demodulation were obtained by combining a fiber laser light source and a spectrometer which used a holographic volume grating and a 512-pixel PD array. Preliminary experimental results are presented to show the feasibility of the suggested FBG demodulation system.

  13. Subpicosecond solitons in an actively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Jones, D. J.; Haus, H. A.; Ippen, E. P.

    1996-11-01

    Experimental results are presented for a study of the stability regime of an actively mode-locked polarization-maintaining fiber ring laser used as a memory. Observations indicate that the pulse widths in the memory can be reduced (by soliton effects) by a factor of approximately 4.4 below the pulse widths predicted by standard active mode-locking theory. Stability regions for the solitons are mapped and compared with theoretical predictions.

  14. Fiber optic detector probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Wu, Chi; Chu, Benjamin

    1989-01-01

    An experimental investigation of the role of fiber optic detector probes in laser light scattering is presented. A quantitative comparison between different detector configurations is accomplished by measuring the time taken for one million photocounts to be accumulated in the extrapolated zeroth delay channel of the net unnormalized intensity time correlation function. A considerable reduction in the accumulation time is achieved by relaxing a rather stringent requirement for the spatial coherence of the optical field.

  15. Fiber laser hydrophone as possible detector of UHE neutrinos

    NASA Astrophysics Data System (ADS)

    Maccioni, E.; Bagnoli, P. E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Morganti, M.; Stefani, F.; Trono, C.

    2007-03-01

    The possibility to use a single mode erbium-doped fiber laser as hydrophone for deep sea acoustic detection is considered. The high sensitivity of these sensors, their immunity from electromagnetic fields and their faculty to work at high environmental pressure, make them particularly suitable for a wide range of deep sea acoustic applications, and in particular as acoustic detectors in under-water telescopes for high-energy neutrinos.

  16. Erbium-doped fiber lasers as deep-sea hydrophones

    NASA Astrophysics Data System (ADS)

    Bagnoli, P. E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-11-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos.

  17. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  18. Flexible high-repetition-rate ultrafast fiber laser

    PubMed Central

    Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, Fengqiu

    2013-01-01

    High-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. PMID:24226153

  19. Frequency doubling of fiber laser radiation of large spectral bandwidths

    NASA Astrophysics Data System (ADS)

    Nyga, Sebastian; Geiger, Jens; Jungbluth, Bernd

    2010-02-01

    In this work the reduction of conversion efficiency due to spectral bandwidth of fiber laser radiation is investigated. Subsequently, compensation optics to correct the spectral phase mismatching inside the nonlinear crystal is dimensioned and tested. For the experimental study a laboratory fiber laser setup is used consisting of a seed diode and a three stage fiber amplifier. The laser delivers an average output power of up to 100 W at 1 MHz. Even below the Raman threshold the output is far away from Fourier limit, providing a nearly Lorentzian spectral shape and a temporal pulse width of 800 ps. As the bandwidth increases nearly linearly with the pump power of the third amplifier stage, this parameter could be controlled for the experiments. All conversion experiments are conducted with a moderate load of the nonlinear crystals, i.e. intensity less than 150 MW/cm2. Without compensation of the spectral phase mismatch, a maximum conversion efficiency of 15 % is attained for a Type I configuration with a 20mm long LBO crystal. Using the compensation setup 27 W of green light are obtained from 60 W infrared light at a bandwidth of 4.7 nm. Therefore the efficiency rises to 44% at the same load.

  20. Fiber photo-catheters for laser treatment of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Peshko, Igor; Rubtsov, Vladimir; Vesselov, Leonid; Sigal, Gennady; Laks, Hillel

    2007-04-01

    A fiber photo-catheter has been developed for surgical treatment of atrial fibrillation with laser radiation. Atrial fibrillation (AF) is a heart rhythm abnormality, which involves irregular and rapid heartbeats. Recent studies demonstrate the superiority of treating AF disease with optical radiation of the near-infrared region. To produce long continuous transmural lesions, solid-state lasers and laser diodes, along with end-emitting fiber catheters, have been used experimentally. The absence of side-emitting flexible catheters with the ability to produce long continuous lesions limits the further development of this technology. In this research, a prototype of an optical catheter, consisting of a flexible 10-cm fiber diffuser has been used to make continuous photocoagulation lesions for effective maze procedure treatments. The system also includes a flexible optical reflector, a series of openings for rapid self-attachment to the tissue, and an optional closed-loop irrigating chamber with circulating saline to cool the optical diffuser and irrigate the tissue.

  1. LD-cladding-pumped 50 pm linewidth Tm 3+ -doped silica fiber laser.

    PubMed

    Yunjun, Zhang; Baoquan, Yao; Youlun, Ju; Hui, Zhou; Yuezhu, Wang

    2008-05-26

    We report on a Tm(3+)-doped fiber laser source operating at 1936.4 nm with a very narrow linewidth (50 pm) laser output. Up to 2.4 W cw laser power was obtained from an 82 cm long Tm(3+)-doped multimode-core fiber cladding pumped by a 792 nm laser diode (LD). The fiber laser cavity included a high-reflective dichroic and a low-reflective FBG output coupler. The multimode fiber Bragg grating (FBG) transmission spectrum and output laser spectrum were measured. By adjusting the distance between the dichroic and the Tm(3+)-doped fiber end, the multipeak laser spectrum changed to a single-peak laser spectrum. PMID:18545481

  2. 1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm.

    PubMed

    Li, Lei; Zhang, Bin; Yin, Ke; Yang, Linyong; Hou, Jing

    2015-07-13

    A high energy all-fiber format nanosecond thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier (MOPA) configuration is presented in this paper. The seed oscillator is a linearly polarized gain-switched fiber laser pumped by a 1550 nm fiber laser. The output pulse of the seed has a polarization extinction ratio (PER) better than 16 dB with a maximal output power of 470 mW. After two-stage double- cladding fiber amplifiers, the average power at 40 kHz was boosted up to 40.5 W. The output pulse has a maximum pulse energy of 1 mJ with a pulse width of 100 ns, which corresponds to a peak power of 10 kW. To the best of our knowledge, it is the highest single pulse energy ever reported for a nanosecond thulium-doped all-fiber MOPA system at 2050 nm. PMID:26191869

  3. Multi-beam Laser Doppler Vibrometer with fiber sensing head

    NASA Astrophysics Data System (ADS)

    Phua, P. B.; Fu, Y.; Guo, M.; Liu, H.

    2012-06-01

    Laser Doppler vibrometry (LDV) is a well known technique to measure the motions, vibrations and mode shapes of structures and machine components. Photodetector-based LDV can only offer a point-wise measurement. However, it is possible to scan the laser beam to build up a vibrometric image. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new method of generating multiple laser beams with different frequency shifts. The laser beams are projected on different points, and the reflected beams interfere with a common reference beam. The cross-talk among object beams can be bypassed with a proper selection of frequency shifts. A simultaneous vibration measurement on multiple points is realized using a single photodetector. Based on the proposed spatial-encoding technology, a self-synchronized prototype of fiber-based multipoint laser Doppler vibrometer at 1550nm wavelength is developed. An addition red pilot laser is used for aiming purpose. It has the flexibility to measure the vibration of different points on various surfaces. The prototype is used to measure the vibration of different points on a cantilever beam and a plate. The measured results match well with simulation results using finite element method (FEM).

  4. Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Sakata, Hajime; Yoshimi, Hitoshi; Otake, Yuki

    2009-03-01

    We report on oscillation wavelength control in erbium-doped fiber ring lasers by adjusting the period of a mechanically induced long-period fiber grating (LPFG) inserted into the fiber ring resonator. Pump light is provided by a 974 nm laser diode (LD), the emission of which is coupled into the fiber ring resonator through a wavelength-division multiplexing coupler. Laser oscillation occurs with a threshold pump LD current of 40 mA, corresponding to a threshold pump power of 5 mW. When a periodic pressure of 0.81 N/mm is applied to form the LPFG, the fiber ring laser exhibits the tunable range of 40.9 nm, i.e., from 1563.1 to 1604 nm, by changing the grating period.

  5. An optimized fiber delivery system for Q-switched, Nd:YAG lasers

    SciTech Connect

    Setchell, R.E.

    1996-11-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. The authors have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work the authors have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. The multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Fiber end faces were prepared by a careful mechanical polishing schedule followed by surface conditioning using a CO{sub 2} laser. In combination, these factors resulted in higher thresholds for breakdown and damage than they had achieved previously in studies that utilized a simple lens injection system.

  6. Investigation on the applications of fiber grating lasers in industrial sensing and pollution monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Yuanzhong

    The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, <2% intensity fluctuation, 100s Hz switching speed and 1:100,000 wavelength extinction ratio. The outstanding advantage of this approach is the simplicity in laser configuration as well as in detection system for dual wavelength laser, because it uses only an overlapped gain medium and one detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long

  7. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  8. Novel multiple output and multiwavelength fiber ring-optical laser

    NASA Astrophysics Data System (ADS)

    Tsao, Shyh-Lin; Lin, Huang-Cuang

    2003-12-01

    The fiber ring structures optical signal processor with semiconductor optical amplifiers (SOA's) have been developed [1]. The SOA's have been demonstrated the ability of direct signal processing combining the optical amplification with ether modulation, detection, or wavelength conversion [2,3]. Moreover, the fiber-optical processors have many advantages. In this paper, we purpose new design configurations of an 8x8 array waveguide grating (AWG) connected to an SOA to achieve a ring configuration and experimentally measure its characteristics. In this paper, we can get fourteen signal processing output simultaneously by using such a fiber ring construction. The multiwavelenght and multiple output rings signal processor can be implemented by connecting any pair of the 8x8 AWG to the SOA. This application can develop a multiple-input-multiple-output processing only optical amplifier. We will present various useful parameters of application this fiber optic processor. References [1] Goodman, J.W.; Moslehi, B, "Novel amplified fiber-optic recirculating delay line processor", J.Lightwave Technol., Vol. 10 Issue: 8, pp.1142-1147, 1992 [2] U. Koren, B. I. Miller, M. G. Yang, T. L. Koch, R. M. Jopson, A. Gnauck, D. Evankow, and M. Chien, "High frequency modulation of strained layer multiple quantum well optical amplifiers", Electron. Lett., vol. 27, pp.62-64, 1991. [3] M. Gustavsson, A. Karlsson, and L. Thylen, "Traveling wave semiconductor laser amplifiers detectors", J. Lightwave Technol., vol. 8, pp. 610-617, 1990.

  9. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  10. Stable double spacing multiwavelength Brillouin-Erbium doped fiber laser based on highly nonlinear fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, B. A.; Al-Alimi, A. W.; Abas, A. F.; Harun, S. W.; Mahdi, M. A.

    2012-05-01

    A double frequency spaced multiwavelength Brillouin-Erbium doped fiber laser (BEDFL) with figure-of-eight cavity have been successfully developed and tested. Double frequency spacing is achieved by using a piece of 2 km of highly nonlinear fiber (HNLF) as a gain medium. Figure-of-eight configuration removes the odd order Stokes signals via a four-port circulator. Fifteen Stokes channels are simultaneously generated with a spacing of 0.154 nm that is around 20 GHz, when the Brillouin pump and 980 nm pump powers are fixed at the optimized values of 6 dBm and 40 mW, respectively. Fourteen anti stoke channels are also obtained, which are generated through four wave mixing (FWM) process in the laser cavity. The output is smooth triangular comb. The BEFL can also be tuned from 1526.5 to 1567.5 nm.

  11. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2011-01-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  12. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2010-12-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  13. Broadly tunable multiwavelength Brillouin-erbium fiber laser using a twin-core fiber coupler

    NASA Astrophysics Data System (ADS)

    Peng, Wanjing; Yan, Fengping; Li, Qi; Liu, Shuo; Tan, Siyu; Feng, Suchun; Feng, Ting

    2014-07-01

    A tunable multiwavelength Brillouin-erbium fiber laser (MW-BEFL) using a twin-core fiber (TCF) coupler is proposed and demonstrated. The TCF coupler is formed by splicing a section of TCF between two single-mode fibers. By simply applying bending curvature on the TCF coupler, the peak net gain is shifted close to the Brillouin pump (BP), which has advantage for suppressing self-lasing cavity modes with low-BP-power injection. In this work, the dependency of the Stokes signals tuning range on the free spectral range (FSR) of TCF coupler is studied. It is also found that the tuning range of MW-BEFL can exceed the FSR of TCF coupler by adopting proper BP power and 980-nm pump power. Up to 40 nm tuning range of MW-BEFL in the absence of self-lasing cavity modes is achieved.

  14. Galvanometer beam-scanning system for laser fiber drawing.

    PubMed

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS. PMID:20208750

  15. All-fiber widely wavelength-tunable thulium-doped fiber ring laser incorporating a Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Hu, K.; Sun, B.; Wang, T.

    2012-04-01

    We demonstrate 1940 to 2010 nm continuous CW wavelength-tuning in a thulium-doped fiber laser (TDFL), using only fiber-format components. A fiber Fabry-Perot (FP) tunable filter is employed to achieve the wavelength tunability of 70 nm. By imposing a 200 Hz triangle wave signal on the filter, rapid wavelength-sweeping is demonstrated from 1952 to 1992 nm every 5 ms, corresponding to 8 nm/ms. This all-fiber wavelength-tunable and swept laser may find applications such as gas monitoring in the wavelength region of 2 μm.

  16. Compact non-cascaded all-fiber Raman laser operating at 1174 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jiachen; Lee, Sang Bae; Lee, Kwanil

    2016-07-01

    We investigate a non-cascaded, all-fiber, single-mode Raman fiber laser (RFL) operating at 1174 nm with an optical slope efficiency of 68%. An ~1-km commercial single-mode fiber is used as the Raman gain medium. The RFL cavity is formed between a high reflectivity fiber Bragg grating (FBG) and a perpendicularly-cleaved fiber facet. The laser is pumped by using a homemade ytterbium-doped fiber laser (YDFL) and can be frequency doubled to generate yellow light. Under the optimum condition, A 6.9-W 1174-nm laser is obtained at maximum available power (24 W) of a laser diode pump. The optical conversion efficiency and the net slope efficiency of the RFL were respectively, 29% and 38%, with respect to launched diode laser power. We also demonstrate yellow-light generation by frequency doubling of the RFL.

  17. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Lonn, Frederick

    1998-01-01

    A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

  18. Intense short-pulse lasers irradiating wire and hollow plasma fibers.

    PubMed

    Zhou, C T; He, X T; Chew, L Y

    2011-03-15

    When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber. PMID:21403730

  19. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    NASA Astrophysics Data System (ADS)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  20. Optical fiber configurations for transmission of laser energy over great distances

    SciTech Connect

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.