Science.gov

Sample records for 53r gene highly

  1. Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes.

    PubMed

    Dai, Kaifan; Liu, Ying; Liu, Mingjie; Xu, Jianqing; Huang, Wei; Huang, Xianggang; Liu, Lianxing; Wan, Yanmin; Hao, Yanling; Shao, Yiming

    2008-09-15

    Interest is increasing regarding replicating poxvirus as HIV vaccine vector. In China, the Tiantan Vaccinia Virus (TV) has been used most extensively in the battle of eradicating smallpox. Recently, TV was developing as vaccine vector to fight against infectious diseases such as human immunodeficiency virus (HIV). However, replicating vaccinia virus sometimes may pose serious post-vaccination complications, especially in immunosuppressed individuals. To develop a safer and more effective TV-based vector, we constructed C12L (vIL-18 binding protein) and A53R (vTNF receptor homolog) gene-deleted mutants which are based on parental TV and VTKgpe (TV expressing HIV gagpol and env gene), respectively. The pathogenicity and immunogenicity were also evaluated. Deleting these two immunomodulatory genes lessened the virulence of the parental virus in both mice and rabbit models. Notably, C12L deletion mutant attenuated the skin virulence of parental virus by as high as approximate 2 logs. Furthermore, VTKgpe with A53R and C12L gene deletion retains the high immunogenicity of the parental virus to elicit strong humoral and cellular responses to the HIV target genes despite the remarkable attenuation. These data suggest that deletion of the cytokine viroceptor gene is feasible to obtain a safer and replication-competent TV vector for vaccination and immunotherapy.

  2. Novel genetic variations of the p53R2 gene in patients with colorectal adenoma and controls

    PubMed Central

    Deng, Zong-Lin; Xie, Da-Wen; Bostick, Roberd M; Miao, Xi-Jiang; Gong, You-Ling; Zhang, Jin-Hui; Wargovich, Michael J

    2005-01-01

    AIM: p53-Inducible ribonucleotide reductase small subunit 2 (p53R2) encodes a 351-amino-acid peptide, which catalyzes conversion of ribonucleoside diphosphates to the corresponding deoxyribonucleotides required for DNA replication and repair. A recent study reported that a point mutation (G/T) in the p53 binding sequence in a colon cancer cell line completely impaired p53R2 protein activity. METHODS: We screened the p53R2 gene coding regions and a regulatory region which contains a p53 binding sequence in 100 patients with colorectal adenoma and 100 control subjects using PCR, cold SSCP, and direct DNA sequencing. RESULTS: Although we did not identify genetic variation in all nine exons, four regulatory-region variants were found, of which three were single nucleotide polymorphisms (SNPs) (nt 1 789 C/G, nt 1 928 A/G, 1 933 T/C), and one was 20 bp insertion which replaced a ATTTT between nt 1 831 and 1 835. Additionally, we determined the frequency of these p53R2 variants in a recently concluded case-control study of incident sporadic colorectal adenomas (163 cases and 210 controls). CONCLUSION: Although more detailed functional characterizations of these polymorphisms remain to be undertaken, these polymorphic sites may be useful for identifying alleles associated with mis-splicing, additional transcript factors and, more generally, in cancer-susceptibility association studies. PMID:16127747

  3. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  4. The hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage.

    PubMed

    Xue, Y; Raharja, A; Sim, W; Wong, E S M; Rahmat, S A B; Lane, D P

    2017-04-06

    Overexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis.

  5. Dominant-negative but not gain-of-function effects of a p53.R270H mutation in mouse epithelium tissue after DNA damage.

    PubMed

    Wijnhoven, Susan W P; Speksnijder, Ewoud N; Liu, Xiaoling; Zwart, Edwin; vanOostrom, Conny Th M; Beems, Rudolf B; Hoogervorst, Esther M; Schaap, Mirjam M; Attardi, Laura D; Jacks, Tyler; van Steeg, Harry; Jonkers, Jos; de Vries, Annemieke

    2007-05-15

    p53 alterations in human tumors often involve missense mutations that may confer dominant-negative or gain-of-function properties. Dominant-negative effects result in inactivation of wild-type p53 protein in heterozygous mutant cells and as such in a p53 null phenotype. Gain-of-function effects can directly promote tumor development or metastasis through antiapoptotic mechanisms or transcriptional activation of (onco)genes. Here, we show, using conditional mouse technology, that epithelium-specific heterozygous expression of mutant p53 (i.e., the p53.R270H mutation that is equivalent to the human hotspot R273H) results in an increased incidence of spontaneous and UVB-induced skin tumors. Expression of p53.R270H exerted dominant-negative effects on latency, multiplicity, and progression status of UVB-induced but not spontaneous tumors. Surprisingly, gain-of-function properties of p53.R270H were not detected in skin epithelium. Apparently, dominant-negative and gain-of-function effects of mutant p53 are highly tissue specific and become most manifest upon stabilization of p53 after DNA damage.

  6. Mouse Models for the p53 R72P Polymorphism Mimic Human Phenotypes

    PubMed Central

    Zhu, Feng; Dollé, Martijn E.T.; Berton, Thomas R.; Kuiper, Raoul V.; Capps, Carrie; Espejo, Alexsandra; McArthur, Mark J.; Bedford, Mark T.; van Steeg, Harry; de Vries, Annemieke; Johnson, David G.

    2010-01-01

    The p53 tumor suppressor gene contains a common single nucleotide polymorphism (SNP) that results in either an arginine or proline at position 72 of the p53 protein. This polymorphism affects the apoptotic activity of p53 but the mechanistic basis and physiological relevance of this phenotypic difference remain unclear. Here we describe the development of mouse models for the p53 R72P SNP using two different approaches. In both sets of models the human or humanized p53 proteins are functional as evidenced by the transcriptional induction of p53 target genes in response to DNA damage and the suppression of early lymphomagenesis. Consistent with in vitro studies, mice expressing the 72R variant protein (p53R) have a greater apoptotic response to several stimuli compared to mice expressing the p53P variant. Molecular studies suggest that both transcriptional and non-transcriptional mechanisms may contribute to the differential abilities of the p53 variants to induce apoptosis. Despite a difference in the acute response to ultraviolet (UV) radiation, no difference in the tumorigenic response to chronic UV exposure was observed between the polymorphic mouse models. These findings suggest that under at least some conditions, the modulation of apoptosis by the R72P polymorphism does not impact the process of carcinogenesis. PMID:20587514

  7. Prevalence of an inherited cancer predisposition syndrome associated with the germ line TP53 R337H mutation in Paraguay.

    PubMed

    Legal, Edith Falcon-de; Ascurra, Marta; Custódio, Gislaine; Ayala, Horacio Legal; Monteiro, Magna; Vega, Celeste; Fernández-Nestosa, María José; Vega, Sonia; Sade, Elis R; Coelho, Izabel M M; Ribeiro, Enilze M S F; Cavalli, Iglenir J; Figueiredo, Bonald C

    2015-04-01

    The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer, and the germline TP53 R337H mutation is the most common mutation reported to date. However, this mutation is associated with a lower cumulative lifetime cancer risk than other mutations in the p53 DNA-binding domain. A detailed statistical analysis of 171,500 DNA tests in Brazilian neonates found that 0.27% of the general population is positive for this mutation, and some of the estimated 200,000 Brazilian R337H carriers in southern and southeastern Brazil have already developed cancer. The present study was designed to estimate R337H prevalence in neighboring Paraguay. To address this question, 10,000 dried blood samples stored in Guthrie cards since 2008 were randomly selected from the Paraguayan municipalities located at the border with Brazil. These samples were tested for R337H mutation using the PCR-restriction fragment length polymorphism assay. This germline mutation was detected in five samples (5/10,000), indicating that the total number of R337H carriers in Paraguay may be as high as 3500. Previous studies have shown that other countries (i.e., Portugal, Spain, and Germany) presented one family with this mutation, leading us to conclude that, besides Brazil and Paraguay, other countries may have multiple families carrying this mutation, which is an inherited syndrome that is difficult to control.

  8. Structurally dependent redox property of ribonucleotide reductase subunit p53R2.

    PubMed

    Xue, Lijun; Zhou, Bingsen; Liu, Xiyong; Wang, Tieli; Shih, Jennifer; Qi, Christina; Heung, Yvonne; Yen, Yun

    2006-02-15

    p53R2 is a newly identified small subunit of ribonucleotide reductase (RR) and plays a key role in supplying precursors for DNA repair in a p53-dependent manner. Currently, we are studying the redox property, structure, and function of p53R2. In cell-free systems, p53R2 did not oxidize a reactive oxygen species (ROS) indicator carboxy-H2DCFDA, but another class I RR small subunit, hRRM2, did. Further studies showed that purified recombinant p53R2 protein has catalase activity, which breaks down H2O2. Overexpression of p53R2 reduced intracellular ROS and protected the mitochondrial membrane potential against oxidative stress, whereas overexpression of hRRM2 did not and resulted in a collapse of mitochondrial membrane potential. In a site-directed mutagenesis study, antioxidant activity was abrogated in p53R2 mutants Y331F, Y285F, Y49F, and Y241H, but not Y164F or Y164C. The fluorescence intensity in mutants oxidizing carboxy-H2DCFDA, in order from highest to lowest, was Y331F > Y285F > Y49F > Y241H > wild-type p53R2. This indicates that Y331, Y285, Y49, and Y241 in p53R2 are critical residues involved in scavenging ROS. Of interest, the ability to oxidize carboxy-H2DCFDA indicated by fluorescence intensity was negatively correlated with RR activity from wild-type p53R2, mutants Y331F, Y285F, and Y49F. Our findings suggest that p53R2 may play a key role in defending oxidative stress by scavenging ROS, and this antioxidant property is also important for its fundamental enzymatic activity.

  9. Transgenic mouse model expressing P53R172H, luciferase, EGFP, and KRASG12D in a single open reading frame for live imaging of tumor

    PubMed Central

    Ju, Hye-Lim; Calvisi, Diego F.; Moon, Hyuk; Baek, Sinhwa; Ribback, Silvia; Dombrowski, Frank; Cho, Kyung Joo; Chung, Sook In; Han, Kwang-Hyub; Ro, Simon Weonsang

    2015-01-01

    Genetically engineered mouse cancer models allow tumors to be imaged in vivo via co-expression of a reporter gene with a tumor-initiating gene. However, differential transcriptional and translational regulation between the tumor-initiating gene and the reporter gene can result in inconsistency between the actual tumor size and the size indicated by the imaging assay. To overcome this limitation, we developed a transgenic mouse in which two oncogenes, encoding P53R172H and KRASG12D, are expressed together with two reporter genes, encoding enhanced green fluorescent protein (EGFP) and firefly luciferase, in a single open reading frame following Cre-mediated DNA excision. Systemic administration of adenovirus encoding Cre to these mice induced specific transgene expression in the liver. Repeated bioluminescence imaging of the mice revealed a continuous increase in the bioluminescent signal over time. A strong correlation was found between the bioluminescent signal and actual tumor size. Interestingly, all liver tumors induced by P53R172H and KRASG12D in the model were hepatocellular adenomas. The mouse model was also used to trace cell proliferation in the epidermis via live fluorescence imaging. We anticipate that the transgenic mouse model will be useful for imaging tumor development in vivo and for investigating the oncogenic collaboration between P53R172H and KRASG12D. PMID:25623590

  10. Combined effects of MDM2 SNP309 and TP53 R72P polymorphisms, and soy isoflavones on breast cancer risk among Chinese women in Singapore

    PubMed Central

    Van Den Berg, David; Jin, Aizhen; Wang, Renwei; Yuan, Jian-Min; Yu, Mimi C.

    2012-01-01

    The MDM2 oncoprotein regulates the p53 pathway and, while functional polymorphisms of the MDM2 and p53 genes have been investigated for association with breast cancer risk, results are largely null or non-conclusive. We have earlier reported that the increased intake of soy isoflavones reduces risk of postmenopausal breast cancer, and experimental studies suggest that dietary isoflavones can down-regulate the expression of the MDM2 oncoprotein. In this study, we investigated the association between the MDM2 SNP309 and TP53 R72P polymorphisms and breast cancer risk using a case–control study of 403 cases and 662 controls nested among 35,303 women in The Singapore Chinese Health Study, a population-based, prospective cohort of middle-aged and elderly men and women who have been continuously followed since 1993. The G allele of the TP53 R72P polymorphism and T allele of the MDM2 SNP309 polymorphism were putative high-risk alleles and exhibited a combined gene–dose-dependent joint effect on breast cancer risk that was more clearly observed in postmenopausal women. Among postmenopausal women, the simultaneous presence of G allele in TP53 and T allele in MDM2 polymorphisms was associated with an odds ratio (OR) of 2.42 [95% confidence interval (CI) 1.06–5.50]. Furthermore, the protective effect of dietary soy isoflavones on postmenopausal breast cancer was mainly confined to women homozygous for the high activity MDM2 allele (GG genotype). In this genetic subgroup, women consuming levels of soy isoflavones above the median level exhibited risk that was half of those with below median intake (OR 0.52; 95% CI 0.28–0.99). Our findings support experimental data implicating combined effects of MDM2 protein and the p53-mediated pathway in breast carcinogenesis, and suggest that soy isoflavones may exert protective effect via down-regulation of the MDM2 protein. PMID:21833626

  11. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    SciTech Connect

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.; Sinning, Allan; Henegar, Jeffrey; Norcross, Erin; Chinchar, V. Gregory

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.

  12. 2.6 Å X-ray Crystal Structure of Human p53R2, a p53 Inducible Ribonucleotide Reductase

    PubMed Central

    Smith, Peter; Zhou, Bingsen; Ho, Nam; Yuan, Yate-Ching; Su, Leila; Tsai, Shiou-Chuan; Yen, Yun

    2009-01-01

    Human p53R2 (hp53R2) is a 351 residue p53-inducible ribonucleotide reductase (RNR) small subunit. It shares >80% sequence identity with hRRM2, the small RNR subunit responsible for normal maintenance of the deoxyribonucleotide (dNTP) pool used for DNA replication, which is active during the S-phase in a cell-cycle dependent fashion. But rather than cyclic dNTP synthesis, hp53R2 has been shown to supply dNTPs for DNA repair to cells in G0-G1 in a p53-dependent fashion. The first x-ray crystal structure of hp53R2 is solved to 2.6 Å, in which monomers A and B exhibit mono- and bi-nuclear iron occupancy, respectively. The pronounced structural differences at three regions between hp53R2 and hRRM2 highlight the possible regulatory role in iron assimilation, and help explain previously observed physical and biochemical differences in the mobility and accessibility of the radical-iron center, as well as radical transfer pathways between the two enzymes. The sequence-structure-function correlations that differentiate hp53R2 and hRRM2 are revealed for the first time. Insight gained from this structural work will be used toward the identification of biological function, regulation mechanism and inhibitors selection in RNR small subunits. PMID:19728742

  13. Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells

    PubMed Central

    Hosain, Salman B.; Khiste, Sachin K.; Uddin, Mohammad B.; Vorubindi, Vindya; Ingram, Catherine; Zhang, Sifang; Hill, Ronald A.; Gu, Xin; Liu, Yong-Yu

    2016-01-01

    Missense mutation of tumor suppressor p53, which exhibits oncogenic gain-of-function (GOF), not only promotes tumor progression, but also diminishes therapeutic efficacies of cancer treatments. However, it remains unclear how a p53 missense mutant contributes to induced pluripotency of cancer stem cells (CSCs) in tumors exposed to chemotherapeutic agents. More importantly, it may be possible to abrogate the GOF by restoring wild-type p53 activity, thereby overcoming the deleterious effects resulting from heterotetramer formation, which often compromises the efficacies of current approaches being used to reactivate p53 function. Herewith, we report that p53 R273H missense mutant urges cancer cells to spawn CSCs. SW48/TP53 cells, which heterozygously carry the p53 R273H hot-spot mutant (R273H/+, introduced by a CRISPR/Casp9 system), were subchronically exposed to doxorubicin in cell culture and in tumor-bearing mice. We found that p53-R273H (TP53-Dox) cells were drug-resistant and exhibited epithelial-mesenchymal transition (EMT) and increased numbers of CSCs (CD44v6+/CD133+), which resulted in enhanced wound healing and tumor formation. Inhibition of glucosylceramide synthase with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) sensitized p53-R273H cancer cells and tumor xenografts to doxorubicin treatments. Intriguingly, PDMP treatments restored wild-type p53 expression in heterozygous R273H mutant cells and in tumors, decreasing CSCs and sensitizing cells and tumors to treatments. This study demonstrated that p53-R273H promotes EMT and induced pluripotency of CSCs in cancer cells exposed to doxorubicin, mainly through Zeb1 and β-catenin transcription factors. Our results further indicate that restoration of p53 through inhibition of ceramide glycosylation might be an effective treatment approach for targeting cancers heterozygously harboring TP53 missense mutations. PMID:27517620

  14. Impact of Neonatal Screening and Surveillance for the TP53 R337H Mutation on Early Detection of Childhood Adrenocortical Tumors

    PubMed Central

    Custódio, Gislaine; Parise, Guilherme A.; Kiesel Filho, Nilton; Komechen, Heloisa; Sabbaga, Cesar C.; Rosati, Roberto; Grisa, Leila; Parise, Ivy Z.S.; Pianovski, Mara A.D.; Fiori, Carmem M.C.M.; Ledesma, Jorge A.; Barbosa, José Renato S.; Figueiredo, Francisco R.O.; Sade, Elis R.; Ibañez, Humberto; Arram, Sohaila B.I.; Stinghen, Sérvio T.; Mengarelli, Luciano R.; Figueiredo, Mirna M.O.; Carvalho, Danilo C.; Avilla, Sylvio G.A.; Woiski, Thiago D.; Poncio, Lisiane C.; Lima, Geneci F.R.; Pontarolo, Roberto; Lalli, Enzo; Zhou, Yinmei; Zambetti, Gerard P.; Ribeiro, Raul C.; Figueiredo, Bonald C.

    2013-01-01

    Purpose The incidence of pediatric adrenocortical tumors (ACTs) is remarkably high in southern Brazil, where more than 90% of patients carry the germline TP53 mutation R337H. We assessed the impact of early detection of this mutation and of surveillance of carriers. Patients and Methods Free newborn screening was offered at all hospitals in the state of Paraná. Parents of positive newborns were tested, and relatives in the carrier line were offered screening. Positive newborns and their relatives age < 15 years were offered surveillance (periodic clinical, laboratory, and ultrasound evaluations). ACTs detected by imaging were surgically resected. Results Of 180,000 newborns offered screening, 171,649 were screened, and 461 (0.27%) were carriers. As of April 2012, ACTs had been diagnosed in 11 of these carriers but in only two neonatally screened noncarriers (P < .001); six patient cases were identified among 228 carrier relatives age < 15 years (total, 19 ACTs). Surveillance participants included 347 (49.6%) of 699 carriers. Tumors were smaller in surveillance participants (P < .001) and more advanced in nonparticipants (four with stage III disease; two deaths). Neonatally screened carriers also had neuroblastoma (n = 1), glioblastoma multiforme (n = 1), choroid plexus carcinoma (n = 2), and Burkitt lymphoma (n = 1). Cancer histories and pedigrees were obtained for 353 families that included 1,704 identified carriers. ACTs were the most frequent cancer among carrier children (n = 48). Conclusion These findings establish the prevalence of the TP53 R337H mutation in Paraná state and the penetrance of ACTs among carriers. Importantly, screening and surveillance of heterozygous carriers are effective in detecting ACTs when readily curable. PMID:23733769

  15. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  16. Generalist genes and high cognitive abilities.

    PubMed

    Haworth, Claire M A; Dale, Philip S; Plomin, Robert

    2009-07-01

    The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.

  17. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  18. Partial genetic deficiency in tissue kallikrein impairs adaptation to high potassium intake in humans.

    PubMed

    Monteiro, Joana S; Blanchard, Anne; Curis, Emmanuel; Chambrey, Régine; Jeunemaitre, Xavier; Azizi, Michel

    2013-12-01

    Inactivation of the tissue kallikrein gene in mice impairs renal handling of potassium due to enhanced H, K-ATPase activity, and induces hyperkalemia. We investigated whether the R53H loss-of-function polymorphism of the human tissue kallikrein gene affects renal potassium handling. In a crossover study, 30 R53R homozygous and 10 R53H heterozygous healthy males were randomly assigned to a low-sodium/high-potassium or a high-sodium/low-potassium diet to modulate tissue kallikrein synthesis. On the seventh day of each diet, participants were studied before and during a 2-h infusion of furosemide to stimulate distal potassium secretion. Urinary kallikrein activity was significantly lower in R53H than in R53R subjects on the low-sodium/high-potassium diet and was similarly reduced in both genotypes on high-sodium/low-potassium. Plasma potassium and renal potassium reabsorption were similar in both genotypes on an ad libitum sodium/potassium diet or after 7 days of a high-sodium/low-potassium diet. However, the median plasma potassium was significantly higher after 7 days of low-sodium/high-potassium diet in R53H than in R53R individuals. Urine potassium excretion and plasma aldosterone concentrations were similar. On the low-sodium/high-potassium diet, furosemide-induced decrease in plasma potassium was significantly larger in R53H than in R53R subjects. Thus, impaired tissue kallikrein stimulation by a low-sodium/high-potassium diet in R53H subjects with partial tissue kallikrein deficiency highlights an inappropriate renal adaptation to potassium load, consistent with experimental data in mice.

  19. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice

    PubMed Central

    Leushacke, Marc; Li, Ling; Wong, Julin S.; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B.; Mann, Karen M.; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P.

    2015-01-01

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy. PMID:26255629

  20. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice.

    PubMed

    Goh, Amanda M; Xue, Yuezhen; Leushacke, Marc; Li, Ling; Wong, Julin S; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B; Mann, Karen M; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P

    2015-07-20

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy.

  1. Gene regulation: hacking the network on a sugar high.

    PubMed

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  2. Nonsyntenic Genes Drive Highly Dynamic Complementation of Gene Expression in Maize Hybrids[W

    PubMed Central

    Larson, Nick B.; Marcon, Caroline; Schnable, James C.; Yeh, Cheng-Ting; Lanz, Christa; Nettleton, Dan; Piepho, Hans-Peter; Schnable, Patrick S.

    2014-01-01

    Maize (Zea mays) displays an exceptional level of structural genomic diversity, which is likely unique among higher eukaryotes. In this study, we surveyed how the genetic divergence of two maize inbred lines affects the transcriptomic landscape in four different primary root tissues of their F1-hybrid progeny. An extreme instance of complementation was frequently observed: genes that were expressed in only one parent but in both reciprocal hybrids. This single-parent expression (SPE) pattern was detected for 2341 genes with up to 1287 SPE patterns per tissue. As a consequence, the number of active genes in hybrids exceeded that of their parents in each tissue by >400. SPE patterns are highly dynamic, as illustrated by their excessive degree of tissue specificity (80%). The biological significance of this type of complementation is underpinned by the observation that a disproportionally high number of SPE genes (75 to 82%) is nonsyntenic, as opposed to all expressed genes (36%). These genes likely evolved after the last whole-genome duplication and are therefore younger than the syntenic genes. In summary, SPE genes shape the remarkable gene expression plasticity between root tissues and complementation in maize hybrids, resulting in a tissue-specific increase of active genes in F1-hybrids compared with their inbred parents. PMID:25315323

  3. High-throughput, high-sensitivity analysis of gene expression in Arabidopsis.

    PubMed

    Kris, Richard Martin; Felder, Stephen; Deyholos, Michael; Lambert, Georgina M; Hinton, James; Botros, Ihab; Martel, Ralph; Seligmann, Bruce; Galbraith, David W

    2007-07-01

    High-throughput gene expression analysis of genes expressed during salt stress was performed using a novel multiplexed quantitative nuclease protection assay that involves customized DNA microarrays printed within the individual wells of 96-well plates. The levels of expression of the transcripts from 16 different genes were quantified within crude homogenates prepared from Arabidopsis (Arabidopsis thaliana) plants also grown in a 96-well plate format. Examples are provided of the high degree of reproducibility of quantitative dose-response data and of the sensitivity of detection of changes in gene expression within limiting amounts of tissue. The lack of requirement for RNA purification renders the assay particularly suited for high-throughput gene expression analysis and for the discovery of novel chemical compounds that specifically modulate the expression of endogenous target genes.

  4. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  5. High frequency of horizontal gene transfer in the oceans.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth; Delaney, Jennifer; Ruhnau, Fabian; Ritchie, Kim B; Paul, John H

    2010-10-01

    Oceanic bacteria perform many environmental functions, including biogeochemical cycling of many elements, metabolizing of greenhouse gases, functioning in oceanic food webs (microbial loop), and producing valuable natural products and viruses. We demonstrate that the widespread capability of marine bacteria to participate in horizontal gene transfer (HGT) in coastal and oceanic environments may be the result of gene transfer agents (GTAs), viral-like particles produced by α-Proteobacteria. We documented GTA-mediated gene transfer frequencies a thousand to a hundred million times higher than prior estimates of HGT in the oceans, with as high as 47% of the culturable natural microbial community confirmed as gene recipients. These findings suggest a plausible mechanism by which marine bacteria acquire novel traits, thus ensuring resilience in the face of environmental change.

  6. Aflatoxin-induced TP53 R249S mutation in hepatocellular carcinoma in Thailand: association with tumors developing in the absence of liver cirrhosis.

    PubMed

    Villar, Stephanie; Ortiz-Cuaran, Sandra; Abedi-Ardekani, Behnoush; Gouas, Doriane; Nogueira da Costa, Andre; Plymoth, Amelie; Khuhaprema, Thiravud; Kalalak, Anant; Sangrajrang, Suleeporn; Friesen, Marlin D; Groopman, John D; Hainaut, Pierre

    2012-01-01

    Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3(rd) among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G → T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥ 67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection.

  7. Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells.

    PubMed

    Yoshikawa, Kazuhito; Hamada, Jun-ichi; Tada, Mitsuhiro; Kameyama, Takeshi; Nakagawa, Koji; Suzuki, Yukiko; Ikawa, Mayumi; Hassan, Nur Mohammad Monsur; Kitagawa, Yoshimasa; Moriuchi, Tetsuya

    2010-12-01

    More than half of all human cancers are associated with mutations of the TP53 gene. In regard to the functional interaction with the remaining wild-type (WT) p53 allele, p53 mutations are classified into two types, recessive and dominant-negative (DN) mutations. The latter mutant protein has a DN activity over the remaining WT allele. We previously showed that the DN p53 mutant was useful as a predictor of poor outcome or a risk factor for metastatic recurrence in patients with some types of cancers, regardless of the presence or absence of loss of heterozygosity (LOH) of WT p53, suggesting that the DN p53 had 'gain-of-function (GOF)' activity besides the transdominance function. In this study, we investigated GOF activity of two DN p53 mutants which had a point mutation at codon 248 (R248Q and R248W), one of the hot spots, by transfecting them respectively into H1299 cells which originally expressed no p53 protein. Growth activity of the transfectants with the two mutants was not different from that of parent or Mock transfectants. Meanwhile, in vitro invasions of Matrigel and type I collagen gel by R248Q-transfectants were significantly higher than those by R248W-transfectants or the control cells. However, there were no differences in cell motile activities, expressions of extracellular matrix-degradative enzymes such as matrix metalloproteinases, urokinase-type plasminogen activator and heparanase, and their inhibitors, between R248Q- and R248W-transfectants. These findings indicate that the p53 mutants have a different quality in GOF activities even if the mutations occurred at the same codon. And detailed information of the status of p53, including transdominancy and GOF activity, is expected to be useful for diagnosis and therapeutic strategy fitting the individual patients.

  8. Muscle plasticity and high throughput gene expression studies.

    PubMed

    Reggiani, Carlo; Kronnie, Geertruuy Te

    2004-01-01

    Changes in gene expression are known to contribute to muscle plasticity. Until recently most studies have described differences of one or few genes at a time, in the last few years, however, the development of new technology of high throughput mRNA expression analysis has allowed the study of a large part if not all transcripts in the same experiment. Knowledge on any muscle adaptive response has already gained from the application of this novel approach, but the most important new findings have come from studies on muscle atrophy. A new and unexpected groups of genes, which increase their expression during atrophy and are, therefore, designated as atrogins, have been discovered. In spite of the impressive power of the new technology many problems are still to be resolved to optimize the experimental design and to extract all information which are provided by the outcome of the global mRNA assessment.

  9. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that participate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  10. HOXB13 and other high penetrant genes for prostate cancer

    PubMed Central

    Pilie, Patrick G; Giri, Veda N; Cooney, Kathleen A

    2016-01-01

    Cancer initiation and progression is the result of an accumulation of mutations in key tumor suppressor genes, mismatch repair genes, or oncogenes, which impact cancer cell growth, death, and differentiation. Mutations occurring in cancer tissue are termed somatic; whereas, heritable mutations that may be passed onto subsequent generations occur in germline DNA. It is these germline mutations that can lead to cancer family syndromes whereby family members carrying a deleterious germline mutation have an increased susceptibility to certain cancer phenotypes. Common features of hereditary cancer syndromes include early age-of-onset, multiple affected generations, rare tumor types, and/or multiple primary malignancies. Approximately, 5%–10% of all common cancers, including prostate cancer, have a hereditary component and are attributable to highly penetrant germline mutations.1 Across all cancer types, known cancer susceptibility syndromes number >100; however, it is important to note that mutations in high-penetrance genes explain only a fraction of heritable cancers.2 Well-known examples of hereditary cancer syndromes include Lynch (HNPCC), Cowden (PHTS), Li-Fraumeni, and Hereditary Breast and Ovarian Cancer (HBOC) syndromes, which are attributable to mutations in mismatch repair genes, PTEN, p53, and BRCA1/2, respectively.3 PMID:27034017

  11. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  12. Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection.

    PubMed

    Nguyen Thi, Le Thuy; Sarmiento, Maria Elena; Calero, Romel; Camacho, Frank; Reyes, Fatima; Hossain, Md Murad; Gonzalez, Gustavo Sierra; Norazmi, Mohd Nor; Acosta, Armando

    2014-09-01

    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.

  13. A Highly Efficient Gene-Targeting System for Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene targeting via homologous recombination is often used to elucidate gene function. For filamentous fungi, the majority of transforming DNA integrates ectopically. Deletion of Aspergillus parasiticus ku70, a gene of the non-homologous end-joining pathway, drastically increased the gene targeting...

  14. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice

    PubMed Central

    Verma, Raj Kumar; Yu, Wei; Shrivastava, Anju; Shankar, Sharmila; Srivastava, Rakesh K.

    2016-01-01

    Activation of sonic hedgehog (Shh) in cancer stem cell (CSC) has been demonstrated with aggressiveness of pancreatic cancer. In order to enhance the biological activity of α-mangostin, we formulated mangostin-encapsulated PLGA nanoparticles (Mang-NPs) and examined the molecular mechanisms by which they inhibit human and KC mice (PdxCre;LSL-KrasG12D) pancreatic CSC characteristics in vitro, and pancreatic carcinogenesis in KPC (PdxCre;LSLKrasG12D;LSL-Trp53R172H) mice. Mang-NPs inhibited human and KrasG12D mice pancreatic CSC characteristics in vitro. Mang-NPs also inhibited EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Slug, and pluripotency maintaining factors Nanog, c-Myc, and Oct4. Furthermore, Mang-NPs inhibited the components of Shh pathway and Gli targets. In vivo, Mang-NPs inhibited the progression of pancreatic intraneoplasia to pancreatic ductal adenocarcinoma and liver metastasis in KPC mice. The inhibitory effects of Mang-NPs on carcinogenesis in KPC mice were associated with downregulation of pluripotency maintaining factors (c-Myc, Nanog and Oct4), stem cell markers (CD24 and CD133), components of Shh pathway (Gli1, Gli2, Patched1/2, and Smoothened), Gli targets (Bcl-2, XIAP and Cyclin D1), and EMT markers and transcription factors (N-cadherin, Slug, Snail and Zeb1), and upregulation of E-cadherin. Overall, our data suggest that Mang-NPs can inhibit pancreatic cancer growth, development and metastasis by targeting Shh pathway. PMID:27624879

  15. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.

  16. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  17. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.

  18. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  19. Regulation of photoreceptor gene transcription via a highly conserved transcriptional regulatory element by vsx gene products

    PubMed Central

    Pan, Yi; Comiskey, Daniel F.; Kelly, Lisa E.; Chandler, Dawn S.

    2016-01-01

    Purpose The photoreceptor conserved element-1 (PCE-1) sequence is found in the transcriptional regulatory regions of many genes expressed in photoreceptors. The retinal homeobox (Rx or Rax) gene product functions by binding to PCE-1 sites. However, other transcriptional regulators have also been reported to bind to PCE-1. One of these, vsx2, is expressed in retinal progenitor and bipolar cells. The purpose of this study is to identify Xenopus laevis vsx gene products and characterize vsx gene product expression and function with respect to the PCE-1 site. Methods X. laevis vsx gene products were amplified with PCR. Expression patterns were determined with in situ hybridization using whole or sectioned X. laevis embryos and digoxigenin- or fluorescein-labeled antisense riboprobes. DNA binding characteristics of the vsx gene products were analyzed with electrophoretic mobility shift assays (EMSAs) using in vitro translated proteins and radiolabeled oligonucleotide probes. Gene transactivation assays were performed using luciferase-based reporters and in vitro transcribed effector gene products, injected into X. laevis embryos. Results We identified one vsx1 and two vsx2 gene products. The two vsx2 gene products are generated by alternate mRNA splicing. We verified that these gene products are expressed in the developing retina and that expression resolves into distinct cell types in the mature retina. Finally, we found that vsx gene products can bind the PCE-1 site in vitro and that the two vsx2 isoforms have different gene transactivation activities. Conclusions vsx gene products are expressed in the developing and mature neural retina. vsx gene products can bind the PCE-1 site in vitro and influence the expression of a rhodopsin promoter-luciferase reporter gene. The two isoforms of vsx have different gene transactivation activities in this reporter gene system. PMID:28003732

  20. Methods for High-Density Admixture Mapping of Disease Genes

    PubMed Central

    Patterson, Nick; Hattangadi, Neil; Lane, Barton; Lohmueller, Kirk E.; Hafler, David A.; Oksenberg, Jorge R.; Hauser, Stephen L.; Smith, Michael W.; O’Brien, Stephen J.; Altshuler, David; Daly, Mark J.; Reich, David

    2004-01-01

    Admixture mapping (also known as “mapping by admixture linkage disequilibrium,” or MALD) has been proposed as an efficient approach to localizing disease-causing variants that differ in frequency (because of either drift or selection) between two historically separated populations. Near a disease gene, patient populations descended from the recent mixing of two or more ethnic groups should have an increased probability of inheriting the alleles derived from the ethnic group that carries more disease-susceptibility alleles. The central attraction of admixture mapping is that, since gene flow has occurred recently in modern populations (e.g., in African and Hispanic Americans in the past 20 generations), it is expected that admixture-generated linkage disequilibrium should extend for many centimorgans. High-resolution marker sets are now becoming available to test this approach, but progress will require (a) computational methods to infer ancestral origin at each point in the genome and (b) empirical characterization of the general properties of linkage disequilibrium due to admixture. Here we describe statistical methods to estimate the ancestral origin of a locus on the basis of the composite genotypes of linked markers, and we show that this approach accurately estimates states of ancestral origin along the genome. We apply this approach to show that strong admixture linkage disequilibrium extends, on average, for 17 cM in African Americans. Finally, we present power calculations under varying models of disease risk, sample size, and proportions of ancestry. Studying ∼2,500 markers in ∼2,500 patients should provide power to detect many regions contributing to common disease. A particularly important result is that the power of an admixture mapping study to detect a locus will be nearly the same for a wide range of mixture scenarios: the mixture proportion should be 10%–90% from both ancestral populations. PMID:15088269

  1. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10)

    PubMed Central

    Li, Haonan; Yang, Allison L.; Yang, Guang-Yu

    2013-01-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice (Pankras/p53 mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan–Meier survival analysis showed that average animal survival in Pankras/p53 mice was 143.7±8.8 days, and average survival with sulindac was increased to 168.0±8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pankras/p53 mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10. PMID:23689354

  2. Too Few High-Risk Women Tested for Breast Cancer Gene: Survey

    MedlinePlus

    ... html Too Few High-Risk Women Tested for Breast Cancer Gene: Survey Only half got BRCA screen, and ... News) -- Though testing for two genes that raise breast cancer risk has been around for decades, a new ...

  3. High-throughput comparison of gene fitness among related bacteria

    PubMed Central

    2012-01-01

    Background The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains and thereby reveal differences not apparent at the gene sequence level. Results A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 isolate (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of transposon insertions or had very few. For three of these nine genes, part of the annotated gene lacked transposon integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498, STM14_2872, STM14_3360, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. Conclusions Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene contributions to fitness among syntenic homologs. Further differences in

  4. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Librado, Pablo; Chang, Tien-Hao; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-05-01

    Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.

  5. Cell types differ in global coordination of splicing and proportion of highly expressed genes

    PubMed Central

    Trakhtenberg, Ephraim F.; Pho, Nam; Holton, Kristina M.; Chittenden, Thomas W.; Goldberg, Jeffrey L.; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  6. A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

    PubMed Central

    Natsoulis, Georges; Bell, John M.; Xu, Hua; Buenrostro, Jason D.; Ordonez, Heather; Grimes, Susan; Newburger, Daniel; Jensen, Michael; Zahn, Jacob M.; Zhang, Nancy; Ji, Hanlee P.

    2011-01-01

    We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies. PMID:21738606

  7. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    PubMed

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification.

  8. Cell type-selective disease-association of genes under high regulatory load.

    PubMed

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-10-15

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner.

  9. Cell type-selective disease-association of genes under high regulatory load

    PubMed Central

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3′ UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. PMID:26338775

  10. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila.

    PubMed

    Zhu, Jun-Yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-20

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors.

  11. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    PubMed

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  12. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species

    DOE PAGES

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; ...

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline inmore » strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less

  13. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

    PubMed Central

    Strucko, Tomas; Buron, Line Due; Jarczynska, Zofia Dorota; Nødvig, Christina Spuur; Mølgaard, Louise; Halkier, Barbara Ann; Mortensen, Uffe Hasbro

    2017-01-01

    Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploiting expression from the multicopy 2 μ-derived plasmid or by targeting genes repeatedly into sequences like Ty or rDNA; in both cases, high gene expression levels are often reached. However, with 2 μ-based plasmid expression, the population of cells is very heterogeneous with respect to protein production; and for integration into repeated sequences it is difficult to determine the genetic setup of the resulting strains and to achieve specific gene doses. For both types of systems, the strains often suffer from genetic instability if proper selection pressure is not applied. Here we present a gene amplification system, CASCADE, which enables construction of strains with defined gene copy numbers. One or more genes can be amplified simultaneously and the resulting strains can be stably propagated on selection-free medium. As proof-of-concept, we have successfully used CASCADE to increase heterologous production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside. PMID:28134264

  14. Structural Relationships between Highly Conserved Elements and Genes in Vertebrate Genomes

    PubMed Central

    Sun, Hong; Skogerbø, Geir; Wang, Zhen; Liu, Wei; Li, Yixue

    2008-01-01

    Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs) are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes. PMID:19008958

  15. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  16. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli.

    PubMed

    Nielsen, Morten T; Madsen, Karina M; Seppälä, Susanna; Christensen, Ulla; Riisberg, Lone; Harrison, Scott J; Møller, Birger Lindberg; Nørholm, Morten H H

    2015-03-20

    Standardization of molecular cloning greatly facilitates advanced DNA engineering, parts sharing, and collaborative efforts such as the iGEM competition. All of these attributes facilitate exploitation of the wealth of genetic information made available by genome and RNA sequencing. Standardization also comes at the cost of reduced flexibility. We addressed this paradox by formulating a set of design principles aimed at maximizing standardization while maintaining high flexibility in choice of cloning technique and minimizing the impact of standard sequences. The design principles were applied to formulate a molecular cloning pipeline and iteratively assemble and optimize a six-gene pathway for protoporphyrin IX synthesis in Escherichia coli. State of the art production levels were achieved through two simple cycles of engineering and screening. The principles defined here are generally applicable and simplifies the experimental design of projects aimed at biosynthetic pathway construction or engineering.

  17. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms.

    PubMed

    Adler, Marlen; Anjum, Mehreen; Berg, Otto G; Andersson, Dan I; Sandegren, Linus

    2014-06-01

    An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different submodels, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kilo base pairs of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modeling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be offset by positive selection for novel beneficial functions.

  18. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips.

    PubMed

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M

    2010-12-01

    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  19. Gene Expression Profile of High IFN-γ Producers Stimulated with Leishmania braziliensis Identifies Genes Associated with Cutaneous Leishmaniasis

    PubMed Central

    Carneiro, Marcia W.; Fukutani, Kiyoshi F.; Andrade, Bruno B.; Curvelo, Rebecca P.; Cristal, Juqueline R.; Carvalho, Augusto M.; Barral, Aldina

    2016-01-01

    Background The initial response to Leishmania parasites is essential in determining disease development or resistance. In vitro, a divergent response to Leishmania, characterized by high or low IFN-γ production has been described as a potential tool to predict both vaccine response and disease susceptibility in vivo. Methods and findings We identified uninfected and healthy individuals that were shown to be either high- or low IFN-γ producers (HPs and LPs, respectively) following stimulation of peripheral blood cells with Leishmania braziliensis. Following stimulation, RNA was processed for gene expression analysis using immune gene arrays. Both HPs and LPs were shown to upregulate the expression of CXCL10, IFI27, IL6 and LTA. Genes expressed in HPs only (CCL7, IL8, IFI44L and IL1B) were associated with pathways related to IL17 and TREM 1 signaling. In LPs, uniquely expressed genes (for example IL9, IFI44, IFIT1 and IL2RA) were associated with pathways related to pattern recognition receptors and interferon signaling. We then investigated whether the unique gene expression profiles described here could be recapitulated in vivo, in individuals with active Cutaneous Leishmaniasis or with subclinical infection. Indeed, using a set of six genes (TLR2, JAK2, IFI27, IFIT1, IRF1 and IL6) modulated in HPs and LPs, we could successfully discriminate these two clinical groups. Finally, we demonstrate that these six genes are significantly overexpressed in CL lesions. Conclusion Upon interrogation of the peripheral response of naive individuals with diverging IFN-γ production to L. braziliensis, we identified differences in the innate response to the parasite that are recapitulated in vivo and that discriminate CL patients from individuals presenting a subclinical infection. PMID:27870860

  20. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    SciTech Connect

    Toyoshiba, Hiroyoshi . E-mail: toyoshiba.hiroyoshi@nies.go.jp; Sone, Hideko; Yamanaka, Takeharu; Parham, Frederick M.; Irwin, Richard D.; Boorman, Gary A.; Portier, Christopher J.

    2006-09-15

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity.

  1. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  2. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  3. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.

    PubMed

    Slot, Jason C; Rokas, Antonis

    2011-01-25

    Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK:

  4. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.

    PubMed

    Chen, Sui-Pi; Huang, Guan-Hua

    2014-06-01

    This paper uses a Bayesian formulation of a clustering procedure to identify gene-gene interactions under case-control studies, called the Algorithm via Bayesian Clustering to Detect Epistasis (ABCDE). The ABCDE uses Dirichlet process mixtures to model SNP marker partitions, and uses the Gibbs weighted Chinese restaurant sampling to simulate posterior distributions of these partitions. Unlike the representative Bayesian epistasis detection algorithm BEAM, which partitions markers into three groups, the ABCDE can be evaluated at any given partition, regardless of the number of groups. This study also develops permutation tests to validate the disease association for SNP subsets identified by the ABCDE, which can yield results that are more robust to model specification and prior assumptions. This study examines the performance of the ABCDE and compares it with the BEAM using various simulated data and a schizophrenia SNP dataset.

  5. Gene expression profiling in undifferentiated thyroid carcinoma induced by high-dose radiation

    PubMed Central

    Bang, Hyun Soon; Choi, Moo Hyun; Kim, Cha Soon; Choi, Seung Jin

    2016-01-01

    Published gene expression studies for radiation-induced thyroid carcinogenesis have used various methodologies. In this study, we identified differential gene expression in a human thyroid epithelial cell line after exposure to high-dose γ-radiation. HTori-3 cells were exposed to 5 or 10 Gy of ionizing radiation using two dose rates (high-dose rate: 4.68 Gy/min, and low-dose rate: 40 mGy/h) and then implanted into the backs of BALB/c nude mice after 4 (10 Gy) or 5 weeks (5 Gy). Decreases in cell viability, increases in giant cell frequency, anchorage-independent growth in vitro, and tumorigenicity in vivo were observed. Particularly, the cells irradiated with 5 Gy at the high-dose rate or 10 Gy at the low-dose rate demonstrated more prominent tumorigenicity. Gene expression profiling was analyzed via microarray. Numerous genes that were significantly altered by a fold-change of >50% following irradiation were identified in each group. Gene expression analysis identified six commonly misregulated genes, including CRYAB, IL-18, ZNF845, CYP24A1, OR4N4 and VN1R4, at all doses. These genes involve apoptosis, the immune response, regulation of transcription, and receptor signaling pathways. Overall, the altered genes in high-dose rate (HDR) 5 Gy and low-dose rate (LDR) 10 Gy were more than those of LDR 5 Gy and HDR 10 Gy. Thus, we investigated genes associated with aggressive tumor development using the two dosage treatments. In this study, the identified gene expression profiles reflect the molecular response following high doses of external radiation exposure and may provide helpful information about radiation-induced thyroid tumors in the high-dose range. PMID:27006382

  6. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  7. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  8. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  9. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  10. Searching for the Genes of Unconventional High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Jiangping

    In the past, both curates and iron-based superconductors were discovered accidentally. Lacking of successful predictions on new high Tc materials is one of major obstacles to reach a consensus on the high Tc mechanism. In this talk, we discuss two emergent principles, which are called as the correspondence principle and the selective magnetic pairing rule, to unify the understanding of both cuprates and iron-based superconductors. These two principles provide an unified explanation why the d-wave pairing symmetry and the s-wave pairing symmetry are robust respectively in cuprates and iron-based superconductors. In the meanwhile, the above two principles explain the rareness of unconventional high Tc superconductivity, identify necessary electronic environments required for high Tc superconductivity and finally serve as direct guiding rules to search new high Tc materials. We predict that the third family of unconventional high Tc superconductors exist in the compounds which carry two dimensional hexagonal lattices formed by cation-anion trigonal bipyramidal complexes with a d filling configuration on the cation ions. Their superconducting states are expected to be dominated by the d+id pairing symmetry and their maximum Tc should be higher than those of iron-based superconductors. Verifying the prediction can convincingly establish the high Tc superconducting mechanism and pave a way to design new high Tc superconductors

  11. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  12. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.

    PubMed

    Zhang, Ning; Zeng, Liping; Shan, Hongyan; Ma, Hong

    2012-09-01

    Organismal phylogeny provides a crucial evolutionary framework for many studies and the angiosperm phylogeny has been greatly improved recently, largely using organellar and rDNA genes. However, low-copy protein-coding nuclear genes have not been widely used on a large scale in spite of the advantages of their biparental inheritance and vast number of choices. Here, we identified 1083 highly conserved low-copy nuclear genes by genome comparison. Furthermore, we demonstrated the use of five nuclear genes in 91 angiosperms representing 46 orders (73% of orders) and three gymnosperms as outgroups for a highly resolved phylogeny. These nuclear genes are easy to clone and align, and more phylogenetically informative than widely used organellar genes. The angiosperm phylogeny reconstructed using these genes was largely congruent with previous ones mainly inferred from organellar genes. Intriguingly, several new placements were uncovered for some groups, including those among the rosids, the asterids, and between the eudicots and several basal angiosperm groups. These conserved universal nuclear genes have several inherent qualities enabling them to be good markers for reconstructing angiosperm phylogeny, even eukaryotic relationships, further providing new insights into the evolutionary history of angiosperms.

  13. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    SciTech Connect

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  14. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    PubMed Central

    Butler, Merlin G.; Rafi, Syed K.; Manzardo, Ann M.

    2015-01-01

    Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families. PMID:25803107

  15. High-performance web services for querying gene and variant annotation.

    PubMed

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  16. Identifying reproducible cancer-associated highly expressed genes with important functional significances using multiple datasets

    PubMed Central

    Huang, Haiyan; Li, Xiangyu; Guo, You; Zhang, Yuncong; Deng, Xusheng; Chen, Lufei; Zhang, Jiahui; Guo, Zheng; Ao, Lu

    2016-01-01

    Identifying differentially expressed (DE) genes between cancer and normal tissues is of basic importance for studying cancer mechanisms. However, current methods, such as the commonly used Significance Analysis of Microarrays (SAM), are biased to genes with low expression levels. Recently, we proposed an algorithm, named the pairwise difference (PD) algorithm, to identify highly expressed DE genes based on reproducibility evaluation of top-ranked expression differences between paired technical replicates of cells under two experimental conditions. In this study, we extended the application of the algorithm to the identification of DE genes between two types of tissue samples (biological replicates) based on several independent datasets or sub-datasets of a dataset, by constructing multiple paired average gene expression profiles for the two types of samples. Using multiple datasets for lung and esophageal cancers, we demonstrated that PD could identify many DE genes highly expressed in both cancer and normal tissues that tended to be missed by the commonly used SAM. These highly expressed DE genes, including many housekeeping genes, were significantly enriched in many conservative pathways, such as ribosome, proteasome, phagosome and TNF signaling pathways with important functional significances in oncogenesis. PMID:27796338

  17. Characterization of Squamate Olfactory Receptor Genes and Their Transcripts by the High-Throughput Sequencing Approach

    PubMed Central

    Dehara, Yuki; Hashiguchi, Yasuyuki; Matsubara, Kazumi; Yanai, Tokuma; Kubo, Masahito; Kumazawa, Yoshinori

    2012-01-01

    The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese python's draft genome (∼280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizard's olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms. PMID:22511035

  18. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    PubMed Central

    2012-01-01

    Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes

  19. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae

    PubMed Central

    Azvolinsky, Anna; Giresi, Paul G.; Lieb, Jason D.; Zakian, Virginia A.

    2009-01-01

    SUMMARY Replication forks face multiple obstacles that slow their progression. By two-dimensional gel analysis, yeast forks pause at stable DNA protein complexes, and this pausing is greatly increased in the absence of the Rrm3 helicase. We used a genome wide approach to identify 96 sites of very high DNA polymerase binding in wild type cells. Most of these binding sites were not previously identified pause sites. Rather, the most highly represented genomic category among high DNA polymerase binding sites was the open reading frames (ORFs) of highly transcribed RNA polymerase II genes. Twice as many pause sites were identified in rrm3 compared to wild type cells as pausing in this strain occurred at both highly transcribed RNA polymerase II genes and the previously identified protein DNA complexes. ORFs of highly transcribed RNA polymerase II genes are the first class of natural pause sites that are not exacerbated in rrm3 cells. PMID:19560424

  20. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    PubMed

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  1. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila

    PubMed Central

    Zhu, Jun-yi; Fu, Yulong; Nettleton, Margaret; Richman, Adam; Han, Zhe

    2017-01-01

    Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors. DOI: http://dx.doi.org/10.7554/eLife.22617.001 PMID:28084990

  2. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

    PubMed Central

    Brommage, Robert; Liu, Jeff; Hansen, Gwenn M; Kirkpatrick, Laura L; Potter, David G; Sands, Arthur T; Zambrowicz, Brian; Powell, David R; Vogel, Peter

    2014-01-01

    Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets. PMID:26273529

  3. A highly divergent gene cluster in honey bees encodes a novel silk family.

    PubMed

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  4. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction.

    PubMed

    Markholt, S; Grøndahl, M L; Ernst, E H; Andersen, C Yding; Ernst, E; Lykke-Hartmann, K

    2012-02-01

    The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood but follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis. The array data were confirmed by qPCR for selected genes. A total of 6301 unique genes were identified as significantly expressed representing enriched specific functional categories such as 'RNA binding', 'translation initiation' and 'structural molecule activity'. Several genes, some not previously known to be associated with early oocyte development, were identified with exceptionally high expression levels, such as the anti-proliferative transmembrane protein with an epidermal growth factor-like and two follistatin-like domains (TMEFF2), the Rho-GTPase-activating protein oligophrenin 1 (OPHN1) and the mitochondrial-encoded ATPase6 (ATP6). Thus, the present study provides not only a technique to capture and perform transcriptome analysis of the sparse material of human oocytes from the earliest follicle stages but further includes a comprehensive basis for our understanding of the regulatory factors and pathways present during early human folliculogenesis.

  5. High polymorphism in big defensin gene expression reveals presence-absence gene variability (PAV) in the oyster Crassostrea gigas.

    PubMed

    Rosa, Rafael D; Alonso, Pascal; Santini, Adrien; Vergnes, Agnès; Bachère, Evelyne

    2015-04-01

    We report here the first evidence in an invertebrate, the oyster Crassostrea gigas, of a phenomenon of Presence-Absence Variation (PAV) affecting immune-related genes. We previously evidenced an extraordinary interindividual variability in the basal mRNA abundances of oyster immune genes including those coding for a family of antimicrobial peptides, the big defensins (Cg-BigDef). Cg-BigDef is a diverse family composed of three members: Cg-BigDef1 to -3. Here, we show that besides a high polymorphism in Cg-BigDef mRNA expression, not all individual oysters express simultaneously the three Cg-BigDefs. Moreover, in numerous individuals, no expression of Cg-BigDefs could be detected. Further investigation at the genomic level revealed that in individuals in which the transcription of one or all Cg-BigDefs was absent the corresponding Cg-bigdef gene was missing. In our experiments, no correlation was found between Cg-bigdef PAV and oyster capacity to survive Vibrio infections. The discovery of P-A immune genes in oysters leads to reconsider the role that the immune system plays in the individual adaptation to survive environmental, biotic and abiotic stresses.

  6. Suppression subtractive hybridization reveals differential gene expression in sunflower grown in high P.

    PubMed

    Padmanabhan, Priya; Sahi, Shivendra V

    2011-06-01

    Sunflower (Helianthus annuus L.) is a commercially important oilseed crop. Previous studies proved that this crop is a promising plant species for phytoextraction of excess soil phosphorus (P) because of its superior P accumulating characteristics. Suppression subtractive hybridization (SSH) strategy was employed to isolate and characterize genes that are induced in response to high P in this crop. SSH library was prepared using cDNA generated from plants treated with high P as the 'tester'. Based on the results of dot blot analysis, 360 positive cDNA clones were selected from the SSH library for sequencing. A total of 89 non-redundant expressed sequence tags (ESTs) were identified as high P-responsive genes and they were classified into 6 functional groups. Several genes involved in metabolism showed markedly preferential expression in the library. For further confirmation, thirteen of the representative ESTs were selected from all categories for RT-PCR analysis and the results showed up-regulation of these genes in response to high P-treatment. The gene expression data derived from this study suggested that several of the up-regulated genes identified under high P-treatment might be involved in P-accumulation and tolerance in this plant.

  7. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Xu, Chuan; Zhang, Xing; Qian, Ying; Chen, Xiaoxuan; Liu, Ran; Zeng, Guohong; Zhao, Hong; Fang, Weiguo

    2014-01-01

    Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the "model" fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of

  8. High frequency vector-mediated transformation and gene replacement in Tetrahymena.

    PubMed Central

    Gaertig, J; Gu, L; Hai, B; Gorovsky, M A

    1994-01-01

    Recently, we developed a mass DNA-mediated transformation technique for the ciliated protozoan Tetrahymena thermophila that introduces transforming DNA by electroporation into conjugating cells. Other studies demonstrated that a neomycin resistance gene flanked by Tetrahymena H4-I gene regulatory sequences transformed Tetrahymena by homologous recombination within the H4-I locus when microinjected into the macronucleus. We describe the use of conjugant electrotransformation (CET) for gene replacement and for the development of new independently replicating vectors and a gene cassette that can be used as a selectable marker in gene knockout experiments. Using CET, the neomycin resistance gene flanked by H4-I sequences transformed Tetrahymena, resulting in the replacement of the H4-I gene or integrative recombination of the H4-I/neo/H4-I gene (but not vector sequences) in the 5' or 3' flanking region of the H4-I locus. Gene replacement was obtained with non-digested plasmid DNA but releasing the insert increased the frequency of replacement events about 6-fold. The efficiency of transformation by the H4-I/neo/H4-I selectable marker was unchanged when a single copy of the Tetrahymena rDNA replication origin was included on the transforming plasmid. However, the efficiency of transformation using CET increased greatly when a tandem repeat of the replication origin fragment was used. This high frequency of transformation enabled mapping of the region required for H4-I promoter function to within 333 bp upstream of the initiator ATG. Similarly approximately 300 bp of sequence downstream of the translation terminator TGA of the beta-tubulin 2 (BTU2) gene could substitute for the 3' region of the H4-I gene. This hybrid H4-I/neo/BTU2 gene did not transform Tetrahymena when subcloned on a plasmid lacking an origin of replication, but did transform at high frequency on a two origin plasmid. Thus, the H4-I/neo/BTU2 cassette is a selectable marker that can be used for gene

  9. Lung Gene Therapy with Highly Compacted DNA Nanoparticles that Overcome the Mucus Barrier

    PubMed Central

    Suk, Jung Soo; Kim, Anthony J.; Trehan, Kanika; Schneider, Craig S.; Cebotaru, Liudmila; Woodward, Owen M.; Boylan, Nicholas J.; Boyle, Michael P.; Lai, Samuel K.; Guggino, William B.; Hanes, Justin

    2014-01-01

    Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ. Intranasal administration of the mucus penetrating DNA nanoparticles greatly enhanced particle distribution, retention and gene transfer in the mouse lung airways compared to conventional gene carriers. Successful delivery of a full-length plasmid encoding the cystic fibrosis transmembrane conductance regulator protein was achieved in mouse lungs and airway cells, including a primary culture of mucus-covered human airway epithelium grown at air-liquid interface, without causing acute inflammation or toxicity. Highly compacted mucus penetrating DNA nanoparticles hold promise for lung gene therapy. PMID:24440664

  10. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells

    PubMed Central

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-01

    Summary CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. PMID:26771356

  11. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-12

    CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing.

  12. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism.

    PubMed

    Griffin, Jennifer E; Gawronski, Jeffrey D; Dejesus, Michael A; Ioerger, Thomas R; Akerley, Brian J; Sassetti, Christopher M

    2011-09-01

    The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets.

  13. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    PubMed

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.

  14. High-Resolution Melting Analysis of the TPMT Gene: A Study in the Polish Population

    PubMed Central

    Borun, Pawel; Milanowska, Katarzyna; Jakubowska-Burek, Ludwika; Zakerska, Oliwia; Dobrowolska-Zachwieja, Agnieszka; Plawski, Andrzej; Froster, Ursula G.; Szalata, Marlena; Slomski, Ryszard

    2013-01-01

    The thiopurine S-methyltransferase (TPMT) gene encoding thiopurine methyltransferase is a crucial enzyme in metabolism of thiopurine drugs: azathioprine and 6-mercoptopurine, which are used in the treatment of leukemia or inflammatory bowel diseases. Genetic polymorphism of the TPMT gene correlates with activity of this enzyme, individual reaction, and dosing of thiopurines. Thirty-one variants of the TPMT gene with low enzymatic activity have been described with three major alleles: TPMT*2 (c.238G>C), *3A (c.460 G>A, c.719A>G), and *3C (c.719A>G), accounting for 80% to 95% of inherited TPMT deficiency in different populations in the world. The aim of the study was to establish a rapid and highly sensitive method of analysis for the complete coding sequence of the TPMT gene and to determine the spectrum and prevalence of the TPMT gene sequence variations in the Polish population. Recently, high-resolution melting analysis (HRMA) has become a highly sensitive, automated, and economical technique for mutation screening or genotyping. We applied HRMA for the first time to TPMT gene scanning. In total, we analyzed 548 alleles of the Polish population. We found 11 different sequence variations, where two are novel changes: c.200T>C (p.P67S, TPMT*30) and c.595G>A (p.V199I, TPMT*31). Detection of these new rare alleles TPMT*30 and *31 in the Polish population suggests the need to analyze the whole TPMT gene and maybe also the extension of routinely used tests containing three major alleles, TPMT*2, *3A, and *3C. Identification of sequence variants using HRMA is highly sensitive and less time consuming compared to standard sequencing. We conclude that HRMA can be easy integrated into genetic testing of the TPMT gene in patients treated with thiopurines. PMID:23252704

  15. High-resolution melting analysis of the TPMT gene: a study in the Polish population.

    PubMed

    Skrzypczak-Zielinska, Marzena; Borun, Pawel; Milanowska, Katarzyna; Jakubowska-Burek, Ludwika; Zakerska, Oliwia; Dobrowolska-Zachwieja, Agnieszka; Plawski, Andrzej; Froster, Ursula G; Szalata, Marlena; Slomski, Ryszard

    2013-02-01

    The thiopurine S-methyltransferase (TPMT) gene encoding thiopurine methyltransferase is a crucial enzyme in metabolism of thiopurine drugs: azathioprine and 6-mercoptopurine, which are used in the treatment of leukemia or inflammatory bowel diseases. Genetic polymorphism of the TPMT gene correlates with activity of this enzyme, individual reaction, and dosing of thiopurines. Thirty-one variants of the TPMT gene with low enzymatic activity have been described with three major alleles: TPMT*2 (c.238G>C), *3A (c.460 G>A, c.719A>G), and *3C (c.719A>G), accounting for 80% to 95% of inherited TPMT deficiency in different populations in the world. The aim of the study was to establish a rapid and highly sensitive method of analysis for the complete coding sequence of the TPMT gene and to determine the spectrum and prevalence of the TPMT gene sequence variations in the Polish population. Recently, high-resolution melting analysis (HRMA) has become a highly sensitive, automated, and economical technique for mutation screening or genotyping. We applied HRMA for the first time to TPMT gene scanning. In total, we analyzed 548 alleles of the Polish population. We found 11 different sequence variations, where two are novel changes: c.200T>C (p.P67S, TPMT*30) and c.595G>A (p.V199I, TPMT*31). Detection of these new rare alleles TPMT*30 and *31 in the Polish population suggests the need to analyze the whole TPMT gene and maybe also the extension of routinely used tests containing three major alleles, TPMT*2, *3A, and *3C. Identification of sequence variants using HRMA is highly sensitive and less time consuming compared to standard sequencing. We conclude that HRMA can be easy integrated into genetic testing of the TPMT gene in patients treated with thiopurines.

  16. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    PubMed

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  17. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    PubMed

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  18. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy.

    PubMed

    Mastorakos, Panagiotis; da Silva, Adriana L; Chisholm, Jane; Song, Eric; Choi, Won Kyu; Boyle, Michael P; Morales, Marcelo M; Hanes, Justin; Suk, Jung Soo

    2015-07-14

    Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(β-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.

  19. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    PubMed

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives.

  20. Supramolecular Aggregate as a High-Efficiency Gene Carrier Mediated with Optimized Assembly Structure.

    PubMed

    Zhang, Yi; Duan, Junkun; Cai, Lingguang; Ma, Dong; Xue, Wei

    2016-11-02

    For cancer gene therapy, a safe and high-efficient gene carrier is a must. To resolve the contradiction between gene transfection efficiency and cytotoxicity, many polymers with complex topological structures have been synthesized, although their synthesis processes and structure control are difficult as well as the high molecular weight also bring high cytotoxicity. We proposed an alternative strategy that uses supramolecular inclusion to construct the aggregate from the small molecules for gene delivery, and to further explore the relationship between the topological assembly structure and their ability to deliver gene. Herein, PEI-1.8k-conjugating β-CD through 6-hydroxyl (PEI-6-CD) and 2-hydroxyl (PEI-2-CD) have been synthesized respectively and then assembled with diferrocene (Fc)-ended polyethylene glycol (PEG-Fc). The obtained aggregates were then used to deliver MMP-9 shRNA plasmid for MCF-7 cancer therapy. It was found that the higher gene transfection efficiency can be obtained by selecting PEI-2-CD as the host and tuning the host/guest molar ratios. With the rational modulation of supramolecular architectures, the aggregate played the functions similar to macromolecules which exhibit higher transfection efficiency than PEI-25k, but show much lower cytotoxicity because of the nature of small/low molecules. In vitro and in vivo assays confirmed that the aggregate could deliver MMP-9 shRNA plasmid effectively into MCF-7 cells and then downregulate MMP-9 expression, which induced the significant MCF-7 cell apoptosis, as well inhibit MCF-7 tumor growth with low toxicity. The supramolecular aggregates maybe become a promising carrier for cancer gene therapy and also provided an alternative strategy for designing new gene carriers.

  1. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.

    PubMed

    Ye, G N; Hajdukiewicz, P T; Broyles, D; Rodriguez, D; Xu, C W; Nehra, N; Staub, J M

    2001-02-01

    Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.

  2. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips

    PubMed Central

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.

    2010-01-01

    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  3. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  4. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification.

    PubMed

    Algamal, Zakariya Yahya; Lee, Muhammad Hisyam

    2015-12-01

    Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes. Second, it does not perform well when the pairwise correlations between variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to address these issues and encourage grouping effects simultaneously. The real data results indicate that AAElastic is significantly consistent in selecting genes compared to the other three competitor regularization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classification.

  5. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans

    PubMed Central

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.

    2015-01-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438

  6. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis.

    PubMed

    Sugimura, Yusaku; Saito, Katsuharu

    2017-02-01

    The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.

  7. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    NASA Astrophysics Data System (ADS)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  8. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    PubMed Central

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A.A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-01-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool. PMID:27995928

  9. Prediction of highly expressed genes in microbes based on chromatin accessibility

    PubMed Central

    Willenbrock, Hanni; Ussery, David W

    2007-01-01

    Background It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI) values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes. Results We find that absolute gene expression levels are correlated with the position preference in many microbial genomes. It is postulated that in these regions, the DNA may be more accessible to the transcriptional machinery. Moreover, ribosomal proteins and ribosomal RNA are encoded by DNA having significantly lower position preference values than other genes in fast-replicating microbes. Conclusion This insight into DNA structure-dependent gene expression in microbes may be exploited for predicting the expression of non-translated genes such as non-coding RNAs that may not be predicted by any of the conventional codon usage bias approaches. PMID:17295928

  10. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters

    PubMed Central

    Seyedsayamdost, Mohammad R.

    2014-01-01

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as “cryptic” or “silent” to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria. PMID:24808135

  11. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  12. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression

    DOE PAGES

    Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.; ...

    2016-06-08

    In this study, the evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil andmore » symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.« less

  13. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    PubMed

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  14. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    PubMed Central

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  15. Express primer tool for high-throughput gene cloning and expression.

    SciTech Connect

    Yoon, J. R.; Laible, P. D.; Gu, M.; Scott, H. N.; Collart, F. R.; Biosciences Division

    2002-12-01

    High-throughput approaches for gene cloning and expression require the development of new nonstandard tools for molecular biologists and biochemists. We introduce a Web-based tool to design primers specifically for the generation of expression clones for both laboratory-scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for the simultaneous amplification of multiple target genes.

  16. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection

    PubMed Central

    Watkins-Chow, Dawn E.; Varshney, Gaurav K.; Garrett, Lisa J.; Chen, Zelin; Jimenez, Erin A.; Rivas, Cecilia; Bishop, Kevin S.; Sood, Raman; Harper, Ursula L.; Pavan, William J.; Burgess, Shawn M.

    2016-01-01

    Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity. PMID:28040780

  17. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection.

    PubMed

    Watkins-Chow, Dawn E; Varshney, Gaurav K; Garrett, Lisa J; Chen, Zelin; Jimenez, Erin A; Rivas, Cecilia; Bishop, Kevin S; Sood, Raman; Harper, Ursula L; Pavan, William J; Burgess, Shawn M

    2017-02-09

    Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.

  18. Cyclen-Based Cationic Lipids for Highly Efficient Gene Delivery towards Tumor Cells

    PubMed Central

    Zhang, Yang; Ren, Jiang; Fu, Yun; Zhang, Ji; Zhu, Wen; Yu, Xiao-Qi

    2011-01-01

    Background Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required. Methods In this report, we designed and synthesized three amphiphilic molecules (L1–L3) with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen), imidazolium and a hydrophobic dodecyl chain. Their interactions with plasmid DNA were studied via electrophoretic gel retardation assays, fluorescent quenching experiments, dynamic light scattering and transmission electron microscopy. The in vitro gene transfection assay and cytotoxicity assay were conducted in four cell lines. Results Results indicated that L1 and L3-formed liposomes could effectively bind to DNA to form well-shaped nanoparticles. Combining with neutral lipid DOPE, L3 was found with high efficiency in gene transfer in three tumor cell lines including A549, HepG2 and H460. The optimized gene transfection efficacy of L3 was nearly 5.5 times more efficient than that of the popular commercially available gene delivery agent Lipofectamine 2000™ in human lung carcinoma cells A549. In addition, since L1 and L3 had nearly no gene transfection performance in normal cells HEK293, these cationic lipids showed tumor cell-targeting property to a certain extent. No significant cytotoxicity was found for the lipoplexes formed by L1–L3, and their cytotoxicities were similar to or slightly lower than the lipoplexes prepared from Lipofectamine 2000™. Conclusion Novel cyclen-based cationic lipids for effective in vitro gene transfection were founded, and these studies here may extend the application areas of macrocyclic polyamines, especially for cyclen. PMID:21887233

  19. Molecular Recognition Enables Nanosubstrate-Mediated Delivery of Gene-Encapsulated Nanoparticles with High Efficiency

    PubMed Central

    2015-01-01

    Substrate-mediated gene delivery is a promising method due to its unique ability to preconcentrate exogenous genes onto designated substrates. However, many challenges remain to enable continuous and multiround delivery of the gene using the same substrates without depositing payloads and immobilizing cells in each round of delivery. Herein we introduce a gene delivery system, nanosubstrate-mediated delivery (NSMD) platform, based on two functional components with nanoscale features, including (1) DNA⊂SNPs, supramolecular nanoparticle (SNP) vectors for gene encapsulation, and (2) Ad-SiNWS, adamantane (Ad)-grafted silicon nanowire substrates. The multivalent molecular recognition between the Ad motifs on Ad-SiNWS and the β-cyclodextrin (CD) motifs on DNA⊂SNPs leads to dynamic assembly and local enrichment of DNA⊂SNPs from the surrounding medium onto Ad-SiNWS. Subsequently, once cells settled on the substrate, DNA⊂SNPs enriched on Ad-SiNWS were introduced through the cell membranes by intimate contact with individual nanowires on Ad-SiNWS, resulting in a highly efficient delivery of exogenous genes. Most importantly, sequential delivery of multiple batches of exogenous genes on the same batch cells settled on Ad-SiNWS was realized by sequential additions of the corresponding DNA⊂SNPs with equivalent efficiency. Moreover, using the NSMD platform in vivo, cells recruited on subcutaneously transplanted Ad-SiNWS were also efficiently transfected with exogenous genes loaded into SNPs, validating the in vivo feasibility of this system. We believe that this nanosubstrate-mediated delivery platform will provide a superior system for in vitro and in vivo gene delivery and can be further used for the encapsulation and delivery of other biomolecules. PMID:24708312

  20. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Daoust, Philippe; Dagenais-Bellefeuille, Steve; Bertomeu, Thierry; Letourneau, Louis; Lang, B. Franz; Morse, David

    2012-01-01

    Dinoflagellates are an important component of the marine biota, but a large genome with high–copy number (up to 5,000) tandem gene arrays has made genomic sequencing problematic. More importantly, little is known about the expression and conservation of these unusual gene arrays. We assembled de novo a gene catalog of 74,655 contigs for the dinoflagellate Lingulodinium polyedrum from RNA-Seq (Illumina) reads. The catalog contains 93% of a Lingulodinium EST dataset deposited in GenBank and 94% of the enzymes in 16 primary metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, indicating it is a good representation of the transcriptome. Analysis of the catalog shows a marked underrepresentation of DNA-binding proteins and DNA-binding domains compared with other algae. Despite this, we found no evidence to support the proposal of polycistronic transcription, including a marked underrepresentation of sequences corresponding to the intergenic spacers of two tandem array genes. We also have used RNA-Seq to assess the degree of sequence conservation in tandem array genes and found their transcripts to be highly conserved. Interestingly, some of the sequences in the catalog have only bacterial homologs and are potential candidates for horizontal gene transfer. These presumably were transferred as single-copy genes, and because they are now all GC-rich, any derived from AT-rich contexts must have experienced extensive mutation. Our study not only has provided the most complete dinoflagellate gene catalog known to date, it has also exploited RNA-Seq to address fundamental issues in basic transcription mechanisms and sequence conservation in these algae. PMID:23019363

  1. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    PubMed

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families.

  2. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation.

    PubMed

    Beck, Michaël; Rombouts, Charlotte; Moreels, Marjan; Aerts, An; Quintens, Roel; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Ernst, Eric; Dieriks, Birger; Lee, Ryonfa; De Vos, Winnok H; Lambert, Charles; Van Oostveldt, Patrick; Baatout, Sarah

    2014-10-01

    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-κB, may be involved in these cellular responses.

  3. Spread of a New Parasitic B Chromosome Variant Is Facilitated by High Gene Flow

    PubMed Central

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Cabrero, Josefa; Perfectti, Francisco; Camacho, Juan Pedro M.

    2013-01-01

    The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite) expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox) and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR) markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD). Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population. PMID:24386259

  4. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

    PubMed Central

    Ayoub, Nadia A.; Garb, Jessica E.; Tinghitella, Robin M.; Collin, Matthew A.; Hayashi, Cheryl Y.

    2007-01-01

    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers. PMID:17565367

  5. Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes.

    PubMed

    Feichtinger, Julia; Aldeailej, Ibrahim; Anderson, Rebecca; Almutairi, Mikhlid; Almatrafi, Ahmed; Alsiwiehri, Naif; Griffiths, Keith; Stuart, Nicholas; Wakeman, Jane A; Larcombe, Lee; McFarlane, Ramsay J

    2012-08-01

    Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-analyses of clinical data sets from a range of tumour types resulting in the identification of a large cohort of highly specific cancer biomarker genes, including the recombination hot spot activator PRDM9 and the meiotic cohesin genes SMC1beta and RAD21L. These genes not only provide excellent cancer biomarkers for diagnostics and prognostics, but may serve as oncogenes and have excellent drug targeting potential.

  6. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.

    PubMed

    Chan, H F; Ma, S; Tian, J; Leong, K W

    2017-03-09

    The rapid advances in synthetic biology and biotechnology are increasingly demanding high-throughput screening technology, such as screening of the functionalities of synthetic genes for optimization of protein expression. Compartmentalization of single cells in water-in-oil (W/O) emulsion droplets allows screening of a vast number of individualized assays, and recent advances in automated microfluidic devices further help realize the potential of droplet technology for high-throughput screening. However these single-emulsion droplets are incompatible with aqueous phase analysis and the inner droplet environment cannot easily communicate with the external phase. We present a high-throughput, miniaturized screening platform for microchip-synthesized genes using microfluidics-generated water-in-oil-in-water (W/O/W) double emulsion (DE) droplets that overcome these limitations. Synthetic gene variants of fluorescent proteins are synthesized with a custom-built microarray inkjet synthesizer, which are then screened for expression in Escherichia coli (E. coli) cells. Bacteria bearing individual fluorescent gene variants are encapsulated as single cells into DE droplets where fluorescence signals are enhanced by 100 times within 24 h of proliferation. Enrichment of functionally-correct genes by employing an error correction method is demonstrated by screening DE droplets containing fluorescent clones of bacteria with the red fluorescent protein (rfp) gene. Permeation of isopropyl β-d-1-thiogalactopyranoside (IPTG) through the thin oil layer from the external solution initiates target gene expression. The induced expression of the synthetic fluorescent proteins from at least ∼100 bacteria per droplet generates detectable fluorescence signals to enable fluorescence-activated cell sorting (FACS) of the intact droplets. This technology obviates time- and labor-intensive cell culture typically required in conventional bulk experiment.

  7. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer.

    PubMed

    Park, Heae Surng; Jang, Min Hye; Kim, Eun Joo; Kim, Hyun Jeong; Lee, Hee Jin; Kim, Yu Jung; Kim, Jee Hyun; Kang, Eunyoung; Kim, Sung-Won; Kim, In Ah; Park, So Yeon

    2014-09-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in triple-negative breast cancer and is emerging as a therapeutic target. EGFR gene copy number alteration and mutation are highly variable and scientists have been challenged to define their prognostic significance in triple-negative breast cancer. We examined EGFR protein expression, EGFR gene copy number alteration and mutation of exon 18 to 21 in 151 cases of triple-negative breast cancer and correlated these findings with clinical outcomes. In addition, intratumoral agreement of EGFR protein overexpression and gene copy number alteration was evaluated. EGFR overexpression was found in 97 of 151 cases (64%) and high EGFR gene copy number was detected in 50 cases (33%), including 3 gene amplification (2%) and 47 high polysomy (31%). Five EGFR mutations were detected in 4 of 151 cases (3%) and included G719A in exon 18 (n=1), V786M in exon 20 (n=1), and L858R in exon 21 (n=3). One case had two mutations (G719A and L858R). High EGFR copy number, but not EGFR mutation, correlated with EGFR protein overexpression. Intratumoral heterogeneity of EGFR protein overexpression and EGFR copy number alteration was not significant. In survival analyses, high EGFR copy number was found to be an independent prognostic factor for poor disease-free survival in patients with triple-negative breast cancer. Our findings showed that EGFR mutation was a rare event, but high EGFR copy number was relatively frequent and correlated with EGFR overexpression in triple-negative breast cancer. Moreover, high EGFR copy number was associated with poor clinical outcome in triple-negative breast cancer, suggesting that evaluation of EGFR copy number may be useful for predicting outcomes in patients with triple-negative breast cancer and for selecting patients for anti-EGFR-targeted therapy.

  8. A highly effective TALEN-mediated approach for targeted gene disruption in Xenopus tropicalis and zebrafish.

    PubMed

    Liu, Yun; Luo, Daji; Lei, Yong; Hu, Wei; Zhao, Hui; Cheng, Christopher H K

    2014-08-15

    Transcription activator like effector nucleases (TALENs) is a promising approach to disrupt intended genomic loci. The assembly of highly effective TALENs is critical for successful genome editing. Recently we reported a convenient and robust platform to construct customized TALENs. The TALENs generated by this platform have been proven to be highly effective for gene disruption in Xenopus tropicalis and zebrafish as well as large genomic deletions in zebrafish. The one-time success rate of targeted gene disruption is about 90% for more than 100 genomic loci tested, with the mutation frequencies often reaching above 50%. Here we describe the validated protocol for TALEN assembly, methods for generating gene knockout animals in X. tropicalis and zebrafish, as well as the protocol for engineering large genomic deletions in zebrafish.

  9. High-throughput genomic mapping of vector integration sites in gene therapy studies.

    PubMed

    Beard, Brian C; Adair, Jennifer E; Trobridge, Grant D; Kiem, Hans-Peter

    2014-01-01

    Gene therapy has enormous potential to treat a variety of infectious and genetic diseases. To date hundreds of patients worldwide have received hematopoietic cell products that have been gene-modified with retrovirus vectors carrying therapeutic transgenes, and many patients have been cured or demonstrated disease stabilization as a result (Adair et al., Sci Transl Med 4:133ra57, 2012; Biffi et al., Science 341:1233158, 2013; Aiuti et al., Science 341:1233151, 2013; Fischer et al., Gene 525:170-173, 2013). Unfortunately, for some patients the provirus integration dysregulated the expression of nearby genes leading to clonal outgrowth and, in some cases, cancer. Thus, the unwanted side effect of insertional mutagenesis has become a major concern for retrovirus gene therapy. The careful study of retrovirus integration sites (RIS) and the contribution of individual gene-modified clones to hematopoietic repopulating cells is of crucial importance for all gene therapy studies. Supporting this, the US Food and Drug Administration (FDA) has mandated the careful monitoring of RIS in all clinical trials of gene therapy. An invaluable method was developed: linear amplification mediated-polymerase chain reaction (LAM-PCR) capable of analyzing in vitro and complex in vivo samples, capturing valuable genomic information directly flanking the site of provirus integration. Linking this method and similar methods to high-throughput sequencing has now made possible an unprecedented understanding of the integration profile of various retrovirus vectors, and allows for sensitive monitoring of their safety. It also allows for a detailed comparison of improved safety-enhanced gene therapy vectors. An important readout of safety is the relative contribution of individual gene-modified repopulating clones. One limitation of LAM-PCR is that the ability to capture the relative contribution of individual clones is compromised because of the initial linear PCR common to all current methods

  10. Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda.

    PubMed

    Ishikawa, Asano; Ishikawa, Yuki; Okada, Yasukazu; Miyazaki, Satoshi; Miyakawa, Hitoshi; Koshikawa, Shigeyuki; Brisson, Jennifer A; Miura, Toru

    2012-03-01

    Aphids exhibit several polyphenisms in which discontinuous, alternative phenotypes are produced depending on environmental conditions. One representative example is the wing polyphenism, where winged and wingless females are produced through parthenogenesis. Previous work has shown that, in some aphid species, the density condition sensed by the mother aphid determines the developmental fate of embryos in her ovary, with high densities leading to winged progeny and low densities to wingless progeny. However, little is known about the molecular and physiological mechanisms underlying the wing polyphenism. To identify genes involved in the wing-morph determination in the vetch aphid, Megoura crassicauda, we compared maternal and embryonic transcripts between high- and low-density conditions using differential display, followed by quantitative real-time PCR (qRT-PCR). Under the high-density condition, two genes (Uba1 and Naca) were found to be upregulated in maternal tissues without ovaries, while one gene (ClpP) was upregulated in ovaries containing embryos. Uba1 and Naca encode factors that function in protein modification or transcriptional/translational regulation, respectively. In addition to differential display, candidate gene approaches focusing on morphogenetic and endocrine genes, i.e., wg, dpp, ap, hh, InR, IRS, Foxo, EcR, and USP, were also carried out. We found that wg was upregulated in maternal tissues under the high-density condition. The identified genes from both approaches are candidates for further study of their involvement in the transduction of density signals in mother aphids and/or the initial process of wing differentiation in embryos.

  11. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn; Bendixen, Christian; Wang, Xuefei; Conley, Lene Nagstrup; Berget, Ingunn; Tajet, Håvard; Grindflek, Eli

    2007-01-01

    Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between

  12. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake

    PubMed Central

    DeMaere, Matthew Z.; Williams, Timothy J.; Allen, Michelle A.; Brown, Mark V.; Gibson, John A. E.; Rich, John; Lauro, Federico M.; Dyall-Smith, Michael; Davenport, Karen W.; Woyke, Tanja; Kyrpides, Nikos C.; Tringe, Susannah G.; Cavicchioli, Ricardo

    2013-01-01

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to −20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange. PMID:24082106

  13. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.

    PubMed

    DeMaere, Matthew Z; Williams, Timothy J; Allen, Michelle A; Brown, Mark V; Gibson, John A E; Rich, John; Lauro, Federico M; Dyall-Smith, Michael; Davenport, Karen W; Woyke, Tanja; Kyrpides, Nikos C; Tringe, Susannah G; Cavicchioli, Ricardo

    2013-10-15

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.

  14. DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis.

    PubMed

    Li, Jun; Wei, Hairong; Zhao, Patrick Xuechun

    2013-01-01

    Analysis of genome-scale gene networks (GNs) using large-scale gene expression data provides unprecedented opportunities to uncover gene interactions and regulatory networks involved in various biological processes and developmental programs, leading to accelerated discovery of novel knowledge of various biological processes, pathways and systems. The widely used context likelihood of relatedness (CLR) method based on the mutual information (MI) for scoring the similarity of gene pairs is one of the accurate methods currently available for inferring GNs. However, the MI-based reverse engineering method can achieve satisfactory performance only when sample size exceeds one hundred. This in turn limits their applications for GN construction from expression data set with small sample size. We developed a high performance web server, DeGNServer, to reverse engineering and decipher genome-scale networks. It extended the CLR method by integration of different correlation methods that are suitable for analyzing data sets ranging from moderate to large scale such as expression profiles with tens to hundreds of microarray hybridizations, and implemented all analysis algorithms using parallel computing techniques to infer gene-gene association at extraordinary speed. In addition, we integrated the SNBuilder and GeNa algorithms for subnetwork extraction and functional module discovery. DeGNServer is publicly and freely available online.

  15. Identification of Genes Preferentially Expressed by Highly Virulent Piscine Streptococcus agalactiae upon Interaction with Macrophages

    PubMed Central

    Guo, Chang-Ming; Chen, Rong-Rong; Kalhoro, Dildar Hussain; Wang, Zhao-Fei; Liu, Guang-Jin; Lu, Cheng-Ping; Liu, Yong-Jie

    2014-01-01

    Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB. PMID:24498419

  16. Mammalian ets-1 and ets-2 genes encode highly conserved proteins.

    PubMed Central

    Watson, D K; McWilliams, M J; Lapis, P; Lautenberger, J A; Schweinfest, C W; Papas, T S

    1988-01-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, we have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is greater than 95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published findings indicates that ets is a family of genes whose members share distinct domains. PMID:2847145

  17. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  18. A Benefit of High Temperature: Increased Effectiveness of a Rice Bacterial Blight Disease Resistance Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures promote development of many plant diseases and reduce effectiveness of disease resistance (R) genes. In many rice producing countries, two crops of rice are produced, with more disease occurring in the season with higher day/night temperatures. While studying the factors that influ...

  19. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    ERIC Educational Resources Information Center

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  20. Turning (Ir gene) low responders into high responders by antibody manipulation of the developing immune system.

    PubMed Central

    Martinz, C; Marcos, M A; Pereira, P; Marquez, C; Toribio, M; de la Hera, A; Cazenave, P A; Coutinho, A

    1987-01-01

    The ability of helper T cells directed against trinitrophenyl-modified syngeneic spleen cells to recognize low-hapten densities on target cells is under major histocompatibility complex-linked Ir gene control. Thus, BALB/c (H-2d) mice are low responders while H-2 congenic BALB.C3H (H-2k) mice are high responders. Immunization of adult BALB/c mice with the monoclonal antibody F6(51), directed to shared idiotopes by anti-trinitrophenyl antibodies and clonal receptors on anti-trinitrophenyl-self helper T cells, leads to the production of high titers of circulating idiotype, has no influence on helper T cell idiotypic profiles, but shifts to a high-responder phenotype the ability of helper T cells to recognize low-hapten densities. These effects on Ir gene phenotype are even more striking in untreated progenies from F6(51)-immunized BALB/c females, which are better responders than genetically high-responder BALB.C3H mice, although completely different in the expression of the F6(51)-defined clonotype. The general significance of these findings on Ir gene-directed T-cell repertoire selection is discussed, for they constitute formal evidence against antigen-presentation as a mechanism of Ir gene effects and strong support for the importance of maternal influences on the development of T-cell repertoires. PMID:2954161

  1. Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture.

    PubMed

    Winkworth-Lawrence, Cynthia; Lange, Katharina

    2016-11-01

    Antibiotic resistance is a major public health concern with growing evidence of environmental gene reservoirs, especially in freshwater. However, the presence of antibiotic resistance genes in freshwater, in addition to the wide spectrum of land use contaminants like nitrogen and phosphate, that waterways are subjected to is inconclusive. Using molecular analyses, freshwater benthic rock biofilms were screened for genes conferring resistance to antibiotics used in both humans and farmed animals (aacA-aphD to aminoglycosides; mecA to ß-lactams; ermA and ermB to macrolides; tetA, tetB, tetK, and tetM to tetracyclines; vanA and vanB to glycopeptides). We detected widespread low levels of antibiotic resistance genes from 20 waterways across southern New Zealand throughout the year (1.3 % overall detection rate; 480 samples from three rocks per site, 20 sites, eight occasions; July 2010-May 2011). Three of the ten genes, ermB, tetK, and tetM, were detected in 62 of the 4800 individual screens; representatives confirmed using Sanger sequencing. No distinction could be made between human and agricultural land use contamination sources based on gene presence distribution alone. However, land use pressures are suggested by moderate correlations between antibiotic resistance genes and high-intensity farming in winter. The detection of antibiotic resistance genes at several sites not subject to known agricultural pressures suggests human sources of resistance, like waterway contamination resulting from unsatisfactory toilet facilities at recreational sites.

  2. Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    PubMed Central

    2011-01-01

    Background The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of cis-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression. Findings We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using in silico prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes. Conclusions Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression. PMID

  3. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  4. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.

    PubMed

    Rautio, Jari J; Huuskonen, Anne; Vuokko, Heikki; Vidgren, Virve; Londesborough, John

    2007-09-01

    Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment.

  5. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases.

    PubMed

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-06-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.

  6. Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins.

    PubMed Central

    Capel, J; Jarillo, J A; Salinas, J; Martínez-Zapater, J M

    1997-01-01

    We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes. PMID:9342870

  7. Different gene expressions between cattle and yak provide insights into high-altitude adaptation.

    PubMed

    Wang, K; Yang, Y; Wang, L; Ma, T; Shang, H; Ding, L; Han, J; Qiu, Q

    2016-02-01

    DNA sequence variation has been widely reported as the genetic basis for adaptation, in both humans and other animals, to the hypoxic environment experienced at high altitudes. However, little is known about the patterns of gene expression underlying such hypoxic adaptations. In this study, we examined the differences in the transcriptomes of four organs (heart, kidney, liver and lung) between yak and cattle, a pair of closely related species distributed at high and low altitudes respectively. Of the four organs examined, heart shows the greatest differentiation between the two species in terms of gene expression profiles. Detailed analyses demonstrated that some genes associated with the oxygen supply system and the defense systems that respond to threats of hypoxia are differentially expressed. In addition, genes with significantly differentiated patterns of expression in all organs exhibited an unexpected uniformity of regulation along with an elevated frequency of nonsynonymous substitutions. This co-evolution of protein sequences and gene expression patterns is likely to be correlated with the optimization of the yak metabolic system to resist hypoxia.

  8. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    PubMed Central

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  9. Reverse engineering and analysis of genome-wide gene regulatory networks from gene expression profiles using high-performance computing.

    PubMed

    Belcastro, Vincenzo; Gregoretti, Francesco; Siciliano, Velia; Santoro, Michele; D'Angelo, Giovanni; Oliva, Gennaro; di Bernardo, Diego

    2012-01-01

    Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.

  10. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia.

    PubMed

    Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan

    2014-01-01

    Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species.

  11. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley

    PubMed Central

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  12. High occurrence of functional new chimeric genes in survey of rice chromosome 3 short arm genome sequences.

    PubMed

    Zhang, Chengjun; Wang, Jun; Marowsky, Nicholas C; Long, Manyuan; Wing, Rod A; Fan, Chuanzhu

    2013-01-01

    In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa's Chr3s. Among the 28 new genes, two recently duplicated segments contained eight genes. Fourteen of the 28 new genes consist of chimeric gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing, and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice's broad diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation.

  13. High-resolution timing of cell cycle-regulated gene expression

    PubMed Central

    Rowicka, Maga; Kudlicki, Andrzej; Tu, Benjamin P.; Otwinowski, Zbyszek

    2007-01-01

    The eukaryotic cell division cycle depends on an intricate sequence of transcriptional events. Using an algorithm based on maximum-entropy deconvolution, and expression data from a highly synchronized yeast culture, we have timed the peaks of expression of transcriptionally regulated cell cycle genes to an accuracy of 2 min (≈1% of the cell cycle time). The set of 1,129 cell cycle-regulated genes was identified by a comprehensive analysis encompassing all available cell cycle yeast data sets. Our results reveal distinct subphases of the cell cycle undetectable by morphological observation, as well as the precise timeline of macromolecular complex assembly during key cell cycle events. PMID:17827275

  14. Genes

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Genes URL of this page: //medlineplus.gov/ency/article/ ...

  15. A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers.

    PubMed

    Heine-Suñer, D; Díaz-Guillén, M A; de Villena, F P; Robledo, M; Benítez, J; Rodríguez de Córdoba, S

    1997-01-01

    Sixteen microsatellite markers, including two described here, were used to construct a high-resolution map of the 1q32 region encompassing the regulator of the complement activation (RCA) gene cluster. The RCA genes are a group of related genes coding for plasma and membrane associated proteins that collectively control activation of the complement component C3. We provide here the location of two new genes within the RCA gene cluster. These genes are PFKFB2 that maps 15 kilobases (kb) upstream of the C4BPB gene, and a gene located 4 kb downstream of C4BPA, which seems to code for the 72 000 Mr component of the signal recognition particle (SRP72). Neither of these two genes is related structurally or functionally to the RCA genes. In addition, our map shows the centromere-telomere orientation of the C4BPB/MCP linkage group, which is: centromere-PFKFB2-C4BPB-C4BPA-SRP72-C4BPAL1++ +-C4BPAL2-telomere, and outlines an interval with a significant female-male recombination difference which suggests the presence of a female-specific hotspot(s) of recombination.

  16. High initiation rates at the ribosomal gene promoter do not depend upon spacer transcription.

    PubMed Central

    Labhart, P; Reeder, R H

    1989-01-01

    We report experiments that test the model that in Xenopus laevis, RNA polymerase I is "handed over" in a conservative fashion from the T3 terminator to the adjacent gene promoter. We have introduced transcription-terminating lesions into the ribosomal DNA repeat by irradiating cultured cells with ultraviolet light. We used isolated nuclei to measure the effect of such lesions on transcription. UV damage sufficient to prevent all elongating RNA polymerase from reaching T3 from upstream had no adverse effect on the density of RNA polymerase at the very 5' end of the gene. We conclude that high rates of transcription initiation at the gene promoter do not depend upon polymerase passing from one repeat to the next or on polymerase initiating at the spacer promoters. Images PMID:2470092

  17. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  18. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup

    PubMed Central

    Wheeler, Marsha M.; Robinson, Gene E.

    2014-01-01

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture. PMID:25034029

  19. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    PubMed

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  20. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    PubMed

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens.

  1. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  2. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  3. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  4. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  5. High intensity focused ultrasound-induced gene activation in sublethally injured tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Kon, Takashi; Li, Chuanyuan; Zhong, Pei

    2005-11-01

    Cultured human cervical cancer (HeLa) and rat mammary carcinoma (R3230Ac) cells were transfected with vectors encoding green fluorescent protein (GFP) under the control of hsp70B promoter. Aliquots of 10-μl transfected cells (5×107 cells/ml) were placed in 0.2-ml thin-wall polymerase chain reaction tubes and exposed to 1.1-MHz high intensity focused ultrasound (HIFU) at a peak negative pressure P-=2.68 MPa. By adjusting the duty cycle of the HIFU transducer, the cell suspensions were heated to a peak temperature from 50 to 70 °C in 1-10 s. Exposure dependent cell viability and gene activation were evaluated. For a 5-s HIFU exposure, cell viability dropped from 95% at 50 °C to 13% at 70 °C. Concomitantly, gene activation in sublethally injured tumor cells increased from 4% at 50 °C to 41% at 70 °C. A similar trend was observed at 60 °C peak temperature as the exposure time increased from 1 to 5 s. Further increase of exposure duration to 10 s led to significantly reduced cell viability and lower overall gene activation in exposed cells. Altogether, maximum HIFU-induced gene activation was achieved at 60 °C in 5 s. Under these experimental conditions, HIFU-induced gene activation was found to be produced primarily by thermal rather than mechanical stresses.

  6. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands.

    PubMed

    von Wintersdorff, Christian J H; Penders, John; Stobberingh, Ellen E; Oude Lashof, Astrid M L; Hoebe, Christian J P A; Savelkoul, Paul H M; Wolffs, Petra F G

    2014-04-01

    We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance.

  7. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  8. High Rates of Antimicrobial Drug Resistance Gene Acquisition after International Travel, the Netherlands

    PubMed Central

    von Wintersdorff, Christian J.H.; Penders, John; Stobberingh, Ellen E.; Lashof, Astrid M.L. Oude; Hoebe, Christian J.P.A.; Savelkoul, Paul H.M.

    2014-01-01

    We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance. PMID:24655888

  9. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    PubMed Central

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  10. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  11. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    PubMed Central

    2009-01-01

    Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an

  12. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family.

    PubMed Central

    Braun, E L; Fuge, E K; Padilla, P A; Werner-Washburne, M

    1996-01-01

    The regulation of cellular growth and proliferation in response to environmental cues is critical for development and the maintenance of viability in all organisms. In unicellular organisms, such as the budding yeast Saccharomyces cerevisiae, growth and proliferation are regulated by nutrient availability. We have described changes in the pattern of protein synthesis during the growth of S. cerevisiae cells to stationary phase (E. K. Fuge, E. L. Braun, and M. Werner-Washburne, J. Bacteriol. 176:5802-5813, 1994) and noted a protein, which we designated Snz1p (p35), that shows increased synthesis after entry into stationary phase. We report here the identification of the SNZ1 gene, which encodes this protein. We detected increased SNZ1 mRNA accumulation almost 2 days after glucose exhaustion, significantly later than that of mRNAs encoded by other postexponential genes. SNZ1-related sequences were detected in phylogenetically diverse organisms by sequence comparisons and low-stringency hybridization. Multiple SNZ1-related sequences were detected in some organisms, including S. cerevisiae. Snz1p was found to be among the most evolutionarily conserved proteins currently identified, indicating that we have identified a novel, highly conserved protein involved in growth arrest in S. cerevisiae. The broad phylogenetic distribution, the regulation of the SNZ1 mRNA and protein in S. cerevisiae, and identification of a Snz protein modified during sporulation in the gram-positive bacterium Bacillus subtilis support the hypothesis that Snz proteins are part of an ancient response that occurs during nutrient limitation and growth arrest. PMID:8955308

  13. Gene therapy to improve high-density lipoprotein metabolism and function.

    PubMed

    Van Craeyveld, Eline; Gordts, Stephanie; Jacobs, Frank; De Geest, Bart

    2010-05-01

    Plasma levels of high-density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo), apo A-I, are inversely correlated with the incidence of ischemic cardiovascular diseases. Till now, evaluation of the hypothesis that elevation of HDL cholesterol reduces atherosclerotic burden and/or decreases ischemic cardiovascular events in humans has been hampered by the lack of drugs that selectively increase HDL cholesterol. In contrast to the lack of clinical data, evidence for a direct causal role of HDL in modulating atherogenesis in experimental models has been provided by investigations in human apo A-I transgenic mice and rabbits. The development of gene transfer technologies with a sufficiently high therapeutic index may pave the road for a selective and effective HDL raising therapeutic intervention. The goal of a therapeutic strategy that modulates HDL metabolism is not an increase of HDL cholesterol as such, but an enhancement of HDL function. The value of HDL cholesterol as a surrogate end-point to predict reduced atherosclerosis or a decrease in clinical events may be highly dependent on the mechanism leading to an increased level of HDL cholesterol. In the case of gene transfer, this implies that beneficial effects of increasing HDL cholesterol will be dependent on the transgene that is expressed. Here, we critically review HDL metabolism and HDL function in relation to the development of HDL raising gene transfer, advances and drawbacks of different gene transfer technologies, and experimental gene transfer studies evaluating the effect of raised HDL on histological and functional outcomes in animal models.

  14. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  15. High rates of gene flow by pollen and seed in oak populations across Europe.

    PubMed

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L; Fogelqvist, Johan; Goicoechea, Pablo G; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5-8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21-88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20-66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.

  16. Selecting highly affine and well-expressed TCRs for gene therapy of melanoma.

    PubMed

    Jorritsma, Annelies; Gomez-Eerland, Raquel; Dokter, Maarten; van de Kasteele, Willeke; Zoet, Yvonne M; Doxiadis, Ilias I N; Rufer, Nathalie; Romero, Pedro; Morgan, Richard A; Schumacher, Ton N M; Haanen, John B A G

    2007-11-15

    A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.

  17. High mobility group (HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis.

    PubMed

    Aronstein, K A; Murray, K D; de León, J H; Qin, X; Weinstock, G M

    2007-01-01

    The genome of the honeybee fungal pathogen Ascosphaera apis (Maassen) encodes three putative high mobility group (HMG-box) transcription factors. The predicted proteins (MAT1-2, STE11 and HTF), each of which contain a single strongly conserved HMG-box, exhibit high similarity to mating type proteins and STE11-like transcription factors previously identified in other ascomycete fungi, some of them important plant and human pathogens. In this study we characterized the A. apis HMG-box containing genes and analyzed the structure of the mating type locus (MAT1-2) and its flanking regions. The MAT1-2 locus contains a single gene encoding a protein with an HMG-box. We also have determined the transcriptional patterns of all three HMG-box containing genes in both mating type idiomorphs and discuss a potential role of these transcription factors in A. apis development and reproduction. A multiplex PCR method with primers amplifying mat1-2-1 and Ste11 gene fragments is described. This new method allows for identification of a single mating type idiomorph and might become an essential tool for applied and basic research of chalkbrood disease in honeybees.

  18. High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells

    PubMed Central

    Chng, Zhenzhi; Peh, Gary S. L.; Herath, Wishva B.; Cheng, Terence Y. D.; Ang, Heng-Pei; Toh, Kah-Peng; Robson, Paul; Mehta, Jodhbir S.; Colman, Alan

    2013-01-01

    Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type. PMID:23844023

  19. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2)

    PubMed Central

    2010-01-01

    Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus), a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella) possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1) part of Oculina's innate immunity repertoire, and 2) evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change. PMID:20482872

  20. High-level protein expression following single and dual gene cloning of infectious bronchitis virus N and S genes using baculovirus systems.

    PubMed

    Abdel-Moneim, Ahmed S; Giesow, Katrin; Keil, Günther M

    2014-03-01

    Baculovirus is an efficient system for the gene expression that can be used for gene transfer to both insect and different vertebrate hosts. The nucleocapsid gene (N) of the infectious bronchitis virus was cloned in a baculovirus expression system for insect cell expression. Dual expression vectors containing IBV N and spike (S) proteins of the avian infectious bronchitis virus were engineered under the control of human and murine cytomegalovirus immediate-early enhancer/promoter elements in combination with the baculoviral polyhedrin and p10 promoters for simultaneous expression in both vertebrate and insect cells. Transduction of the N gene in the insect Sf9 cells revealed a high level of protein expression. The expressed protein, used in ELISA, effectively detected chicken anti-IBV antibodies with high specificity. Transduction of mammalian and avian cells with BacMam viruses revealed that dual expression cassettes yielded high levels of protein from both transcription units.

  1. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior.

    PubMed

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Neumann Arvidson, Sandra Marie; Loeschcke, Volker; Demontis, Ditte; Kristensen, Torsten Nygaard

    2016-01-02

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim was to investigate the impact of disruption of 14 candidate genes for human attention-deficit/hyperactivity disorder (ADHD) on fly behavior. By obtaining a range of correlated measures describing the space of variables for behavioral activity we show, that some mutants display similar phenotypic responses, and furthermore, that the genes disrupted in those mutants had common molecular functions; namely processes related to cGMP activity, cation channels and serotonin receptors. All but one of the candidate genes resulted in aberrant behavioral activity, suggesting involvement of these genes in behavioral activity in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans.

  2. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family

    PubMed Central

    2013-01-01

    Background Horizontal gene transfer has shaped the evolution of the ammonium transporter/ammonia permease gene family. Horizontal transfers of ammonium transporter/ammonia permease genes into the fungi include one transfer from archaea to the filamentous ascomycetes associated with the adaptive radiation of the leotiomyceta. The horizontally transferred gene has subsequently been lost in most of the group but has been selectively retained in lichenizing fungi. However, some groups of lichens appear to have secondarily lost the archaeal ammonium transporter. Definitive assessment of gene loss can only be made via whole genome sequencing. Results Ammonium transporter/ammonia permease gene sequences were recovered from the assembled genomes of eight lichenizing fungi in key clades including the Caliciales, the Peltigerales, the Ostropomycetidae, the Acarosporomycetidae, the Verrucariales, the Arthoniomycetidae and the Lichinales. The genes recovered were included in a refined phylogenetic analysis. The hypothesis that lichens symbiotic with a nitrogen-fixing cyanobacterium as a primary photobiont or lichens living in high nitrogen environments lose the plant-like ammonium transporters was upheld, but did not account for additional losses of ammonium transporters/ammonia permeases in the lichens from the Acarosporomycetidae, Chaetotheriomycetes and Arthoniomycetes. In addition, the four ammonium transporter/ammonia permease genes from Cladonia grayi were shown to be functional by expressing the lichen genes in a strain of Saccharomyces cerevisiae in which all three native ammonium transporters were deleted, and assaying for growth on limiting ammonia as a sole nitrogen source. Conclusions Given sufficient coverage, next-generation sequencing technology can definitively address the loss of a gene in a genome when using environmental DNA isolated from lichen thalli collected from their natural habitats. Lichen-forming fungi have been losing ammonium transporters

  3. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics.

    PubMed

    Shen, Jianliang; Xu, Rong; Mai, Junhua; Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-11-26

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.

  4. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.

    PubMed

    Varin, Thibault; Lovejoy, Connie; Jungblut, Anne D; Vincent, Warwick F; Corbeil, Jacques

    2012-01-01

    Polar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived from Proteobacteria and Cyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation of Actinobacteria and Alphaproteobacteria in the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups.

  5. A gateway cloning vector set for high-throughput functional analysis of genes in planta.

    PubMed

    Curtis, Mark D; Grossniklaus, Ueli

    2003-10-01

    The current challenge, now that two plant genomes have been sequenced, is to assign a function to the increasing number of predicted genes. In Arabidopsis, approximately 55% of genes can be assigned a putative function, however, less than 8% of these have been assigned a function by direct experimental evidence. To identify these functions, many genes will have to undergo comprehensive analyses, which will include the production of chimeric transgenes for constitutive or inducible ectopic expression, for antisense or dominant negative expression, for subcellular localization studies, for promoter analysis, and for gene complementation studies. The production of such transgenes is often hampered by laborious conventional cloning technology that relies on restriction digestion and ligation. With the aim of providing tools for high throughput gene analysis, we have produced a Gateway-compatible Agrobacterium sp. binary vector system that facilitates fast and reliable DNA cloning. This collection of vectors is freely available, for noncommercial purposes, and can be used for the ectopic expression of genes either constitutively or inducibly. The vectors can be used for the expression of protein fusions to the Aequorea victoria green fluorescent protein and to the beta-glucuronidase protein so that the subcellular localization of a protein can be identified. They can also be used to generate promoter-reporter constructs and to facilitate efficient cloning of genomic DNA fragments for complementation experiments. All vectors were derived from pCambia T-DNA cloning vectors, with the exception of a chemically inducible vector, for Agrobacterium sp.-mediated transformation of a wide range of plant species.

  6. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

  7. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  8. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome.

    PubMed

    Fu, H; Park, W; Yan, X; Zheng, Z; Shen, B; Dooner, H K

    2001-07-17

    The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3' untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.

  9. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high-level gene expression.

    PubMed

    Wang, Yan; Kim, Jin Yong; Park, Myeong Soo; Ji, Geun Eog

    2012-08-01

    For the development of a food-grade expression system for Bifidobacterium, a strong promoter leading to high-level expression of cloned gene is a prerequisite. For this purpose, a promoter screening host-vector system for Bifidobacterium has been established using β-glucosidase from Bifidobacterium lactis as a reporter and Bifidobacterium bifidum BGN4 as a host, which is β-glucosidase negative strain. Seven putative promoters showing constitutive high-level expression were selected through microarray analysis based on the genome sequence of B. bifidum BGN4. They were cloned into upstream of β-glucosidase gene and transformed into Escherichia coli DH5α and B. bifidum BGN4. Promoter activities were analyzed both in E. coli and B. bifidum BGN4 by measuring β-glucosidase activity. β-Glucosidase activities in all of the transformants showed growth-associated characteristics. Among them, P919 was the strongest in B. bifidum BGN4 and showed maximum activity at 18 h, while P895 was the strongest in E. coli DH5α at 7 h. This study shows that novel strong promoters such as P919 can be used for high-level expression of foreign genes in Bifidobacterium and will be useful for the construction of an efficient food-grade expression system.

  10. Effects of High Fat Feeding on Liver Gene Expression in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Almon, Richard R.; DuBois, Debra C.; Sukumaran, Siddharth; Wang, Xi; Xue, Bai; Nie, Jing; Jusko, William J.

    2012-01-01

    Effects of high fat diet (HFD) on obesity and, subsequently, on diabetes are highly variable and modulated by genetics in both humans and rodents. In this report, we characterized the response of Goto-Kakizaki (GK) rats, a spontaneous polygenic model for lean diabetes and healthy Wistar-Kyoto (WKY) controls, to high fat feeding from weaning to 20 weeks of age. Animals fed either normal diet or HFD were sacrificed at 4, 8, 12, 16 and 20 weeks of age and a wide array of physiological measurements were made along with gene expression profiling using Affymetrix gene array chips. Mining of the microarray data identified differentially regulated genes (involved in inflammation, metabolism, transcription regulation, and signaling) in diabetic animals, as well as the response of both strains to HFD. Functional annotation suggested that HFD increased inflammatory differences between the two strains. Chronic inflammation driven by heightened innate immune response was identified to be present in GK animals regardless of diet. In addition, compensatory mechanisms by which WKY animals on HFD resisted the development of diabetes were identified, thus illustrating the complexity of diabetes disease progression. PMID:23236253

  11. Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations.

    PubMed

    Vallino, Marta; Drogo, Vanessa; Abba', Simona; Perotto, Silvia

    2005-07-01

    A heavy metal tolerant strain of the ericoid mycorrhizal species Oidiodendron maius, isolated from roots of Vaccinium myrtillus growing in soil heavily contaminated with zinc, was previously shown to tolerate high concentrations of zinc and cadmium ions in the growth medium. We have investigated the genetic basis of this fungal strain tolerance to high zinc concentrations by using an untargeted approach. From a cDNA library constructed by using mRNA from Zn-treated O. maius mycelia, 444 clones were randomly selected and 318 were sequenced. Sequence analysis identified 219 unique clones: 117 showed homology to previously identified genes, 26 matched unknown protein coding regions found in other organisms, and 76 were novel. Variation in the gene expression level after a 20-day treatment with high concentrations of Zn was monitored on 130 unigenes by reverse northern blot hybridisation. Sixteen unigenes were shown to be either up- (9) or down- (7) regulated. The putative function of these genes and their involvement in stress tolerance is discussed.

  12. High sequence turnover in the regulatory regions of the developmental gene hunchback in insects.

    PubMed

    Hancock, J M; Shaw, P J; Bonneton, F; Dover, G A

    1999-02-01

    Extensive sequence analysis of the developmental gene hunchback and its 5' and 3' regulatory regions in Drosophila melanogaster, Drosophila virilis, Musca domestica, and Tribolium castaneum, using a variety of computer algorithms, reveals regions of high sequence simplicity probably generated by slippage-like mechanisms of turnover. No regions are entirely refractory to the action of slippage, although the density and composition of simple sequence motifs varies from region to region. Interestingly, the 5' and 3' flanking regions share short repetitive motifs despite their separation by the gene itself, and the motifs are different in composition from those in the exons and introns. Furthermore, there are high levels of conservation of motifs in equivalent orthologous regions. Detailed sequence analysis of the P2 promoter and DNA footprinting assays reveal that the number, orientation, sequence, spacing, and protein-binding affinities of the BICOID-binding sites varies between species and that the 'P2' promoter, the nanos response element in the 3' untranslated region, and several conserved boxes of sequence in the gene (e.g., the two zinc-finger regions) are surrounded by cryptically-simple-sequence DNA. We argue that high sequence turnover and genetic redundancy permit both the general maintenance of promoter functions through the establishment of coevolutionary (compensatory) changes in cis- and trans-acting genetic elements and, at the same time, the possibility of subtle changes in the regulation of hunchback in the different species.

  13. A highly conserved SOX6 double binding site mediates SOX6 gene downregulation in erythroid cells

    PubMed Central

    Cantu', Claudio; Grande, Vito; Alborelli, Ilaria; Cassinelli, Letizia; Cantu’, Ileana; Colzani, Maria Teresa; Ierardi, Rossella; Ronzoni, Luisa; Cappellini, Maria Domenica; Ferrari, Giuliana; Ottolenghi, Sergio; Ronchi, Antonella

    2011-01-01

    The Sox6 transcription factor plays critical roles in various cell types, including erythroid cells. Sox6-deficient mice are anemic due to impaired red cell maturation and show inappropriate globin gene expression in definitive erythrocytes. To identify new Sox6 target genes in erythroid cells, we used the known repressive double Sox6 consensus within the εy-globin promoter to perform a bioinformatic genome-wide search for similar, evolutionarily conserved motifs located within genes whose expression changes during erythropoiesis. We found a highly conserved Sox6 consensus within the Sox6 human gene promoter itself. This sequence is bound by Sox6 in vitro and in vivo, and mediates transcriptional repression in transient transfections in human erythroleukemic K562 cells and in primary erythroblasts. The binding of a lentiviral transduced Sox6FLAG protein to the endogenous Sox6 promoter is accompanied, in erythroid cells, by strong downregulation of the endogenous Sox6 transcript and by decreased in vivo chromatin accessibility of this region to the PstI restriction enzyme. These observations suggest that the negative Sox6 autoregulation, mediated by the double Sox6 binding site within its own promoter, may be relevant to control the Sox6 transcriptional downregulation that we observe in human erythroid cultures and in mouse bone marrow cells in late erythroid maturation. PMID:20852263

  14. Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations.

    PubMed

    Brown, A J; Planta, R J; Restuhadi, F; Bailey, D A; Butler, P R; Cadahia, J L; Cerdan, M E; De Jonge, M; Gardner, D C; Gent, M E; Hayes, A; Kolen, C P; Lombardia, L J; Murad, A M; Oliver, R A; Sefton, M; Thevelein, J M; Tournu, H; van Delft, Y J; Verbart, D J; Winderickx, J; Oliver, S G

    2001-06-15

    The expression of 1008 open reading frames (ORFs) from the yeast Saccharomyces cerevisiae has been examined under eight different physiological conditions, using classical northern analysis. These northern data have been compared with publicly available data from a microarray analysis of the diauxic transition in S.cerevisiae. The results demonstrate the importance of comparing biologically equivalent situations and of the standardization of data normalization procedures. We have also used our northern data to identify co-regulated gene clusters and define the putative target sites of transcriptional activators responsible for their control. Clusters containing genes of known function identify target sites of known activators. In contrast, clusters comprised solely of genes of unknown function usually define novel putative target sites. Finally, we have examined possible global controls on gene expression. It was discovered that ORFs that are highly expressed following a nutritional upshift tend to employ favoured codons, whereas those overexpressed in starvation conditions do not. These results are interpreted in terms of a model in which competition between mRNA molecules for translational capacity selects for codons translated by abundant tRNAs.

  15. Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations

    PubMed Central

    Brown, Alistair J.P.; Planta, Rudi J.; Restuhadi, Fajar; Bailey, David A.; Butler, Philip R.; Cadahia, Jose L.; Cerdan, M.Esperanza; De Jonge, Martine; Gardner, David C.J.; Gent, Manda E.; Hayes, Andrew; Kolen, Carin P.A.M.; Lombardia, Luis J.; Murad, Abdul Munir Abdul; Oliver, Rachel A.; Sefton, Mark; Thevelein, Johan M.; Tournu, Helene; van Delft, Yvon J.; Verbart, Dennis J.; Winderickx, Joris; Oliver, Stephen G.

    2001-01-01

    The expression of 1008 open reading frames (ORFs) from the yeast Saccharomyces cerevisiae has been examined under eight different physiological conditions, using classical northern analysis. These northern data have been compared with publicly available data from a microarray analysis of the diauxic transition in S.cerevisiae. The results demonstrate the importance of comparing biologically equivalent situations and of the standardization of data normalization procedures. We have also used our northern data to identify co-regulated gene clusters and define the putative target sites of transcriptional activators responsible for their control. Clusters containing genes of known function identify target sites of known activators. In contrast, clusters comprised solely of genes of unknown function usually define novel putative target sites. Finally, we have examined possible global controls on gene expression. It was discovered that ORFs that are highly expressed following a nutritional upshift tend to employ favoured codons, whereas those overexpressed in starvation conditions do not. These results are interpreted in terms of a model in which competition between mRNA molecules for translational capacity selects for codons translated by abundant tRNAs. PMID:11406594

  16. The myostatin gene of Mytilus chilensis evidences a high level of polymorphism and ubiquitous transcript expression.

    PubMed

    Núñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2014-02-15

    Myostatin (MSTN) is a protein of the Transforming Growth Factor-β (TGF-β) superfamily and plays a crucial role in muscular development for higher vertebrates. However, its biological function in marine invertebrates remains undiscovered. This study characterizes the full-length sequence of the Mytilus chilensis myostatin gene (Mc-MSTN). Furthermore, tissue transcription patterns and putative single nucleotide polymorphisms (SNPs) were also identified. The Mc-MSTN cDNA sequence showed 3528 base pairs (bp), consisting of 161 bp of 5' UTR, 2,110 bp of 3' UTR, and an open reading frame of 1,257 bp encoding for 418 amino acids and with an RXXR proteolytic site and nine cysteine-conserved residues. Gene transcription analysis revealed that the Mc-MSTN has ubiquitous expression among several tissues, with higher expression in the gonads and mantle than in the digestive gland, gills, and hemolymph. Furthermore, high levels of polymorphisms were detected (28 SNPs in 3'-UTR and 9 SNPs in the coding region). Two SNPs were non-synonymous and involved amino acid changes between Glu/Asp and Thr/Ile. Until now, the MSTN gene has been mainly related to muscle growth in marine bivalves. However, the present study suggests a putative biological function not entirely associated to muscle tissue and contributes molecular evidence to the current debate about the function of the MSTN gene in marine invertebrates.

  17. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.

    PubMed

    Sparks, Lauren M; Xie, Hui; Koza, Robert A; Mynatt, Randall; Hulver, Matthew W; Bray, George A; Smith, Steven R

    2005-07-01

    Obesity and type 2 diabetes have been associated with a high-fat diet (HFD) and reduced mitochondrial mass and function. We hypothesized a HFD may affect expression of genes involved in mitochondrial function and biogenesis. To test this hypothesis, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarray analysis revealed 297 genes were differentially regulated by the HFD (Bonferonni adjusted P < 0.001). Six genes involved in oxidative phosphorylation (OXPHOS) decreased. Four were members of mitochondrial complex I: NDUFB3, NDUFB5, NDUFS1, and NDUFV1; one was SDHB in complex II and a mitochondrial carrier protein SLC25A12. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1) alpha and PGC1beta mRNA were decreased by -20%, P < 0.01, and -25%, P < 0.01, respectively. In a separate experiment, we fed C57Bl/6J mice a HFD for 3 weeks and found that the same OXPHOS and PGC1 mRNAs were downregulated by approximately 90%, cytochrome C and PGC1alpha protein by approximately 40%. Combined, these results suggest a mechanism whereby HFD downregulates genes necessary for OXPHOS and mitochondrial biogenesis. These changes mimic those observed in diabetes and insulin resistance and, if sustained, may result in mitochondrial dysfunction in the prediabetic/insulin-resistant state.

  18. Predictive models of gene regulation from high-throughput epigenomics data.

    PubMed

    Althammer, Sonja; Pagès, Amadís; Eyras, Eduardo

    2012-01-01

    The epigenetic regulation of gene expression involves multiple factors. The synergistic or antagonistic action of these factors has suggested the existence of an epigenetic code for gene regulation. Highthroughput sequencing (HTS) provides an opportunity to explore this code and to build quantitative models of gene regulation based on epigenetic differences between specific cellular conditions. We describe a new computational framework that facilitates the systematic integration of HTS epigenetic data. Our method relates epigenetic signals to expression by comparing two conditions. We show its effectiveness by building a model that predicts with high accuracy significant expression differences between two cell lines, using epigenetic data from the ENCODE project. Our analyses provide evidence for a degenerate epigenetic code, which involves multiple genic regions. In particular, signal changes at the 1st exon, 1st intron, and downstream of the polyadenylation site are found to associate strongly with expression regulation. Our analyses also show a different epigenetic code for intron-less and intron-containing genes. Our work provides a general methodology to do integrative analysis of epigenetic differences between cellular conditions that can be applied to other studies, like cell differentiation or carcinogenesis.

  19. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  20. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells.

    PubMed Central

    Taghian, D G; Nickoloff, J A

    1997-01-01

    Double-strand breaks (DSBs) stimulate chromosomal and extrachromosomal recombination and gene targeting. Transcription also stimulates spontaneous recombination by an unknown mechanism. We used Saccharomyces cerevisiae I-SceI to stimulate recombination between neo direct repeats in Chinese hamster ovary (CHO) cell chromosomal DNA. One neo allele was controlled by the dexamethasone-inducible mouse mammary tumor virus promoter and inactivated by an insertion containing an I-SceI site at which DSBs were introduced in vivo. The other neo allele lacked a promoter but carried 12 phenotypically silent single-base mutations that create restriction sites (restriction fragment length polymorphisms). This system allowed us to generate detailed conversion tract spectra for recipient alleles transcribed at high or low levels. Transient in vivo expression of I-SceI increased homologous recombination 2,000- to 10,000-fold, yielding recombinants at frequencies as high as 1%. Strikingly, 97% of these products arose by gene conversion. Most products had short, bidirectional conversion tracts, and in all cases, donor neo alleles (i.e., those not suffering a DSB) remained unchanged, indicating that conversion was fully nonreciprocal. DSBs in exogenous DNA are usually repaired by end joining requiring little or no homology or by nonconservative homologous recombination (single-strand annealing). In contrast, we show that chromosomal DSBs are efficiently repaired via conservative homologous recombination, principally gene conversion without associated crossing over. For DSB-induced events, similar recombination frequencies and conversion tract spectra were found under conditions of low and high transcription. Thus, transcription does not further stimulate DSB-induced recombination, nor does it appear to affect the mechanism(s) by which DSBs induce gene conversion. PMID:9343400

  1. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9.

    PubMed

    Gil-Humanes, Javier; Wang, Yanpeng; Liang, Zhen; Shan, Qiwei; Ozuna, Carmen V; Sánchez-León, Susana; Baltes, Nicholas J; Starker, Colby; Barro, Francisco; Gao, Caixia; Voytas, Daniel F

    2017-03-01

    The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence-specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T-DNA, biolistics or by stably integrating nuclease-encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10-fold enhancements in GT frequencies have been achieved using DNA virus-based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon-based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110-fold increase in expression of a reporter gene relative to non-replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12-fold greater than non-viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene-targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV-based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.

  2. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  3. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    PubMed Central

    2012-01-01

    Background The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an “upside-down pyramid” form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Results Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Conclusions Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time. PMID:22594378

  4. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  5. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes

    PubMed Central

    Park, Wonkeun; Zhai, Jixian; Lee, Jung-Youn

    2009-01-01

    Gene silencing is a useful technique for elucidating biological function of genes by knocking down their expression. A recently developed artificial microRNAs (amiRNAs) exploits an endogenous gene silencing mechanism that processes natural miRNA precursors to small silencing RNAs that target transcripts for degradation. Based on natural miRNA structures, amiRNAs are commonly designed such that they have a few mismatching nucleotides with respect to their target sites as well as within mature amiRNA duplexes. In this study, we performed an analysis in which the conventional and modified form of an amiRNA was compared side by side. We showed that the amiRNA containing 5′ mismatch with its amiRNA* and perfect complementarity to its target gene acted as a highly potent gene silencing agent against AP1, achieving a desired null mutation effect. In addition, a simultaneous silencing of two independent genes, AP1 and CAL1 wastested by employing a multimeric form of amiRNAs. Advantages and potential disadvantages of using amiRNAs with perfect complementarity to the target gene are discussed. The results presented here should be helpful in designing more specific and effective gene silencing agents. PMID:19066901

  6. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  7. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    PubMed

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-02

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids.

  8. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli.

    PubMed

    Lee, C Y; Szittner, R B; Meighen, E A

    1991-10-01

    The lux genes required for light expression in the luminescent bacterium Photobacterium leiognathi (ATCC 25521) have been cloned and expressed in Escherichia coli and their organization and nucleotide sequence determined. Transformation of a recombinant 9.5-kbp chromosomal DNA fragment of P. leiognathi into an E. coli mutant (43R) gave luminescent colonies that were as bright as those of the parental strain. Moreover, expression of the lux genes in the mutant E. coli was strong enough so that not only were high levels of luciferase detected in crude extracts, but the fatty-acid reductase activity responsible for synthesis of the aldehyde substrate for the luminescent reaction could readily be measured. Determination of the 7.3-kbp nucleotide sequence of P. leiognathi DNA, including the genes for luciferase (luxAB) and fatty-acid reductase (luxCDE) as well as a new lux gene (luxG) found recently in luminescent Vibrio species, showed that the order of the lux genes was luxCDABEG. Moreover, luxF, a gene homologous to luxB and located between luxB and luxE in Photobacterium but not Vibrio strains, was absent. In spite of this different lux gene organization, an intergenic stem-loop structure between luxB and luxE was discovered to be highly conserved in other Photobacterium species after luxF.

  9. EST mining for structure and expression of genes in the region of the wheat high-molecular-weight glutenin loci.

    PubMed

    Anderson, O D

    2009-08-01

    An in-depth analysis was carried out with expressed sequence tags (ESTs) for genes in and near the HMW-GS loci. Considerations for using ESTs are discussed, including the occurrence of chimeric and aberrant HMW-GS ESTs. Complete gene sequences demonstrated the feasibility of constructing accurate full-length coding regions from EST assemblies and found, or supported, errors in several previously reported HMW-GS gene sequences. New complete HMW-GS gene sequences are reported for the cultivars Chinese Spring and Glenlea. The Ay subunit gene, which is considered null in cultivated wheats, was shown to transcribe in at least two germplasms. Analyses support the conclusion that of the five known genes within this genomic region, the two HMW-GS genes and the globulin gene are highly expressed. The other two genes, encoding a receptor kinase and a protein kinase, have one and no identifiable wheat EST, respectively, although ESTs are found for the orthologous genes in barley. The ESTs of all five genes within the HMW-GS region are either definitely associated with the endosperm or possibly originate from imbibed seed, suggesting the four distinct gene classes in this region are part of a seed or endosperm chromatin domain. EST resources were also used to determine relative abundance of ESTs for all classes of wheat prolamines and indicated differential levels of expression both among germplasms and among the three genomes of hexaploid wheats.

  10. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers.

    PubMed

    Sambatti, Julianno B M; Strasburg, Jared L; Ortiz-Barrientos, Daniel; Baack, Eric J; Rieseberg, Loren H

    2012-05-01

    In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.

  11. Different pattern of Galleria mellonella jhbp gene expression in high five and Sf9 cells.

    PubMed

    Andruszewska, Grażyna; Ożyhar, Andrzej; Kochman, Marian; Schmidt, Marcin

    2013-03-01

    Juvenile hormone binding protein (JHBP) is the key element of the system that transmits hormone signals to target tissues. Recently, we found that the core promoter of the jhbp gene is strongly under the control of the TATA box and the transcription start site. In this report, we have shown that the jhbp promoter contains distal regulatory elements whose functionality clearly depends on the particular cell environment and that the scope of research from one cell line is insufficient to generalize the conclusions of the analysis. Cf1/Usp (where Usp is ultraspiracle protein previously known as Cf1, chorion factor 1) elements suppressed transcription of the reporter gene in the High Five cell line but not in the Sf9 cell line. However, upstream from all three Cf1/Usp elements there is a DNA sequence, containing the Zeste element, which activates jhbp in both systems. We found that juvenile hormone strongly inhibited the activity of the jhbp promoter in the Sf9 cell line, whereas it did not have an effect in the High Five cell line. A second key hormone that controls insect development--20-hydroxyecdysone, was also found to suppress the transcription of jhbp. This is the first report describing how these two hormones affect jhbp gene expression in different cell lines.

  12. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  13. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system.

    PubMed

    Eroglu, Erdal; Tiwari, Pooja M; Waffo, Alain B; Miller, Michael E; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2013-01-01

    The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs), which consisted of poly(2-hydroxyethyl methacrylate) nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV)-F gene construct (a model for a DNA vaccine). The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM), fluorescence activated cell sorting (FACS), and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR), we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo.

  14. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system

    PubMed Central

    Eroglu, Erdal; Tiwari, Pooja M; Waffo, Alain B; Miller, Michael E; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2013-01-01

    The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs), which consisted of poly(2-hydroxyethyl methacrylate) nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV)-F gene construct (a model for a DNA vaccine). The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM), fluorescence activated cell sorting (FACS), and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR), we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo. PMID:23610520

  15. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products.

    PubMed

    Scripture, J B; Voelker, C; Miller, S; O'Donnell, R T; Polgar, L; Rade, J; Horazdovsky, B F; Hogg, R W

    1987-09-05

    The nucleotide sequence of the "high-affinity" L-arabinose transport operon has been determined 3' from the regulatory region and found to contain three open reading frames designated araF, araG and araH. The first gene 3' to the regulatory region, araF, encodes the 23-residue signal peptide and the 306-residue mature form of the L-arabinose binding protein (33,200 Mr). The binding protein, which has been described elsewhere, is hydrophilic, soluble and found in the periplasm of Escherichia coli. This gene is followed by an intragenic space of 72 nucleotides, which contains a region of dyad symmetry 23 nucleotides long capable of forming an 11-member stem-loop. The second gene, designated araG, contains an open reading frame capable of encoding an equally hydrophilic protein containing 504 residues (55,000 Mr). Following a 14-nucleotide spacer, which does not appear to have any secondary structure, the third open reading frame, herein designated araH, is capable of encoding a hydrophobic protein containing 329 residues (34,000 Mr) that can only be envisioned as having an integral membrane location. 3' to araH there is a T-rich region containing a 24-nucleotide area of dyad symmetry centered 55 nucleotides from the termination codon. Analysis of the derived primary sequences of the araG and araH products indicates the nature and potential features of these components. The araG protein was found to possess internal homology between its amino and carboxyl-terminal halves, suggesting a common origin. The araG gene product has been shown to be homologous to the rbsA gene product, the hisP product, the ptsB product and the malK product, all of which presumably play similar roles in their respective transport systems. Putative ATP binding sites are observed within the regions of homology. The araH gene product has been shown to be homologous to the rbsC gene product, which is the first observed homology between two purported membrane proteins.

  16. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.

    PubMed

    Engel, Isaac; Seumois, Grégory; Chavez, Lukas; Samaniego-Castruita, Daniela; White, Brandie; Chawla, Ashu; Mock, Dennis; Vijayanand, Pandurangan; Kronenberg, Mitchell

    2016-06-01

    Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.

  17. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs

    PubMed Central

    Engel, Isaac; Seumois, Grégory; Chavez, Lukas; Samaniego-Castruita, Daniela; White, Brandie; Chawla, Ashu; Mock, Dennis; Vijayanand, Pandurangan; Kronenberg, Mitchell

    2016-01-01

    Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus ‘imprints’ distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions. PMID:27089380

  18. High efficiency of replication and expression of foreign genes in SV40-transformed human fibroblasts.

    PubMed Central

    Boast, S; La Mantia, G; Lania, L; Blasi, F

    1983-01-01

    Human fibroblasts (HF) were transformed in vitro with origin-defective SV40 DNA (ori-) using the calcium phosphate co-precipitation technique. The SV40 ori- transformed human cells (HSF) were able to replicate efficiently a recombinant DNA molecule containing the ori sequence of SV40 DNA. Transfection of HFS with pTBC1, a recombinant pi vx plasmid containing the herpes simplex virus thymidine kinase (HSV-TK) gene and the ori SV40 sequences, results in high levels of TK mRNA of correct size. The pTBC1 plasmid does not appear to contain 'poison' sequences and can be efficiently re-established in Escherichia coli after replication in human cells. This host vector system may be of great usefulness in studying the expression of human genes in human cells. Images Fig. 2. Figure 3. PMID:6321161

  19. A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping.

    PubMed

    Neves, Leandro Gomide; Davis, John M; Barbazuk, William B; Kirst, Matias

    2014-01-10

    Loblolly pine (Pinus taeda L.) is an economically and ecologically important conifer for which a suite of genomic resources is being generated. Despite recent attempts to sequence the large genome of conifers, their assembly and the positioning of genes remains largely incomplete. The interspecific synteny in pines suggests that a gene-based map would be useful to support genome assemblies and analysis of conifers. To establish a reference gene-based genetic map, we performed exome sequencing of 14729 genes on a mapping population of 72 haploid samples, generating a resource of 7434 sequence variants segregating for 3787 genes. Most markers are single-nucleotide polymorphisms, although short insertions/deletions and multiple nucleotide polymorphisms also were used. Marker segregation in the population was used to generate a high-density, gene-based genetic map. A total of 2841 genes were mapped to pine's 12 linkage groups with an average of one marker every 0.58 cM. Capture data were used to detect gene presence/absence variations and position 65 genes on the map. We compared the marker order of genes previously mapped in loblolly pine and found high agreement. We estimated that 4123 genes had enough sequencing depth for reliable detection of markers, suggesting a high marker conversation rate of 92% (3787/4123). This is possible because a significant portion of the gene is captured and sequenced, increasing the chances of identifying a polymorphic site for characterization and mapping. This sub-centiMorgan genetic map provides a valuable resource for gene positioning on chromosomes and guide for the assembly of a reference pine genome.

  20. Strategies for achieving high-level expression of genes in Escherichia coli.

    PubMed Central

    Makrides, S C

    1996-01-01

    Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli. PMID:8840785

  1. Overexpression of Cotton RAV1 Gene in Arabidopsis Confers Transgenic Plants High Salinity and Drought Sensitivity

    PubMed Central

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development. PMID:25710493

  2. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  3. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques.

    PubMed Central

    Shanahan, C M; Cary, N R; Metcalfe, J C; Weissberg, P L

    1994-01-01

    Calcification is common in atheromatous plaques and may contribute to plaque rupture and subsequent thrombosis. However, little is known about the mechanisms which regulate the calcification process. Using in situ hybridization and immunohistochemistry we show that two bone-associated proteins, osteopontin (OP) and matrix Gla protein (MGP), are highly expressed in human atheromatous plaques. High levels of OP mRNA and protein were found in association with necrotic lipid cores and areas of calcification. The predominant cell type in these areas was the macrophage-derived foam cell, although some smooth muscle cells could also be identified. MGP was expressed uniformly by smooth muscle cells in the normal media and at high levels in parts of the atheromatous intima. Highest levels of this matrix-associated protein were found in lipid-rich areas of the plaque. The pattern of expression of these two genes contrasted markedly with that of calponin and SM22 alpha, genes expressed predominantly by differentiated smooth muscle cells and whose expression was generally confined to the media of the vessel. The postulated function of OP and MGP as regulators of calcification in bone and the high levels and colocalization of both in atheromatous plaques suggest they have an important role in plaque pathogenesis and stability. Images PMID:8200973

  4. Fish Oil Decreases Hepatic Lipogenic Genes in Rats Fasted and Refed on a High Fructose Diet

    PubMed Central

    de Castro, Gabriela S.; Cardoso, João Felipe R.; Calder, Philip C.; Jordão, Alceu A.; Vannucchi, Helio

    2015-01-01

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet. PMID:25751821

  5. Fish oil decreases hepatic lipogenic genes in rats fasted and refed on a high fructose diet.

    PubMed

    de Castro, Gabriela S; Cardoso, João Felipe R; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-03-05

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  6. Analysis of KLLN as a high-penetrance breast cancer predisposition gene.

    PubMed

    Thompson, Ella R; Gorringe, Kylie L; Choong, David Y H; Eccles, Diana M; Mitchell, Gillian; Campbell, Ian G

    2012-07-01

    KLLN is a p53 target gene with DNA binding function and represents a highly plausible candidate breast cancer predisposition gene. We screened for predisposing variants in 860 high-risk breast cancer families using high resolution melt analysis. A germline c.339_340delAG variant predicted to cause premature termination of the protein after 57 alternative amino acid residues was identified in 3/860 families who tested negative for BRCA1 and BRCA2 mutations and in 1/84 sporadic breast cancer cases. However, the variant was also detected in 2/182 families with known BRCA1 or BRCA2 mutations and in 2/464 non-cancer controls. Furthermore, loss of the mutant allele was detected in 2/2 breast tumors. Our data suggest that pathogenic mutations in KLLN are rare in breast cancer families and the c.339_340delAG variant does not represent a high-penetrance breast cancer risk allele.

  7. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    PubMed

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum.

  8. In situ Expression of Functional Genes Reveals Nitrogen Cycling at High Temperatures in Terrestrial Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Loiacono, S. T.; Meyer-Dombard, D. R.

    2011-12-01

    An essential element for life, nitrogen occurs in all living organisms and is critical for the synthesis of amino acids, proteins, nucleic acids, and other forms of biomass. Thus, nitrogen cycling likely plays a vital role in microbial metabolic processes as well as nutrient availability. For microorganisms in "extreme" environments, this means developing adaptations that allow them to survive in harsh conditions and still perform the metabolisms essential to sustain life. Recent studies have screened biofilms and thermal sediments of Yellowstone National Park (YNP) thermal features for the presence of nifH genes, which code for a key enzyme in the nitrogen fixation process [1-4]. Furthermore, analysis of nitrogen isotopes in biofilms across a temperature and chemical gradient revealed that nitrogen fixation likely varies across the chemosynthetic/photosynthetic ecotone [5]. Although research has evaluated and confirmed the presence of nifH genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use. Instead, other methods, such as culturing, isotope tracer assays, and gene expression studies are required to provide direct evidence of biological nitrogen fixation. Culturing and isotope tracer approaches have successfully revealed high-temperature biological nitrogen fixation in both marine hydrothermal vent microbial communities [6] and in acidic, terrestrial hydrothermal sediment [3]. Transcriptomics-based techniques (using mRNA extracted from samples to confirm in situ expression of targeted genes) have been much more limited in number, and only a few studies have, to date, investigated in situ expression of the nifH gene in thermophilic microbial communities [2, 7]. This study explores the presence and expression of nifH genes in several features of the Lower Geyser Basin (LGB) of YNP. Nucleic acids from chemosynthetic and photosynthetic microbial communities were extracted and then amplified

  9. High-resolution melt analysis to detect sequence variations in highly homologous gene regions: application to CYP2B6.

    PubMed

    Twist, Greyson P; Gaedigk, Roger; Leeder, J Steven; Gaedigk, Andrea

    2013-06-01

    High-resolution melt (HRM) analysis using 'release-on-demand' dyes, such as EvaGreen(®) has the potential to resolve complex genotypes in situations where genotype interpretation is complicated by the presence of pseudogenes or allelic variants in close proximity to the locus of interest. We explored the utility of HRM to genotype a SNP (785A>G, K262R, rs2279343) that is located within exon 5 of the CYP2B6 gene, which contributes to the metabolism of a number of clinically used drugs. Testing of 785A>G is challenging, but crucial for accurate genotype determination. This SNP is part of multiple known CYP2B6 haplotypes and located in a region that is identical to CYP2B7, a nonfunctional pseudogene. Because small CYP2B6-specific PCR amplicons bracketing 785A>G cannot be generated, we simultaneously amplified both genes. A panel of 235 liver tissue DNAs and five Coriell samples were assessed. Eight CYP2B6/CYP2B7 diplotype combinations were found and a novel variant 769G>A (D257N) was discovered. The frequency of 785G corresponded to those reported for Caucasians and African-Americans. Assay performance was confirmed by CYP2B6 and/or CYP2B7 sequence analysis in a subset of samples, using a preamplified CYP2B6-specific long-range-PCR amplicon as HRM template. Inclusion rather than exclusion of a homologous pseudogene allowed us to devise a sensitive, reliable and affordable assay to test this CYP2B6 SNP. This assay design may be utilized to overcome the challenges and limitations of other methods. Owing to the flexibility of HRM, this assay design can easily be adapted to other gene loci of interest.

  10. Two ras genes in Dictyostelium minutum show high sequence homology, but different developmental regulation from Dictyostelium discoideum rasD and rasG genes.

    PubMed

    van Es, S; Kooistra, R A; Schaap, P

    1997-03-10

    The social amoeba Dictyostelium discoideum expresses five ras genes at different stages of development. One of them, DdrasD is expressed during postaggregative development and transcription is induced by extracellular cAMP. A homologue of DdrasD, the DdrasG gene, is expressed exclusively during vegetative growth. We cloned two ras homologues Dmras1 and Dmras2 from the primitive species D. minutum, which show high homology to DdrasD and DdrasG and less homology to the other Ddras genes. In contrast to the DdrasD and DdrasG genes, both the Dmras1 and Dmras2 genes are expressed during the entire course of development. The expression levels are low during growth, increase at the onset of starvation and do not decrease until fruiting bodies have formed. Expression of neither Dmras1 or Dmras2 is regulated by cAMP. So even though the high degree of homology between the ras genes of different species suggests conservation of function, this function is apparently not associated with a specific developmental stage.

  11. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  12. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    SciTech Connect

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  13. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  14. Genes that are involved in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High Hydrostatic Pressure (HHP) treatment can be used to control L. monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes....

  15. Predicted highly expressed genes in Nocardia farcinica and the implication to its primary metabolism and nocardial virulence

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-02-23

    Nocardia farcinica is a gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top {approx}10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with early analysis in Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ''house-keeping'' functions important for cell growth. However, fifteen genes putatively involved in no cardial virulence were predicted as PHX in N. farcinica, which included genes encoding four Mce virulence proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS was essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first approximates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigation.

  16. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints.

    PubMed

    McEvoy, Christopher R E; Cloete, Ruben; Müller, Borna; Schürch, Anita C; van Helden, Paul D; Gagneux, Sebastien; Warren, Robin M; Gey van Pittius, Nicolaas C

    2012-01-01

    Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.

  17. High-Throughput Retina-Array for Screening 93 Genes Involved in Inherited Retinal Dystrophy

    PubMed Central

    Song, Jin; Smaoui, Nizar; Ayyagari, Radha; Stiles, David; Benhamed, Sonia; MacDonald, Ian M.; Daiger, Stephen P.; Tumminia, Santa J.; Hejtmancik, Fielding

    2011-01-01

    Purpose. Retinal dystrophy (RD) is a broad group of hereditary disorders with heterogeneous genotypes and phenotypes. Current available genetic testing for these diseases is complicated, time consuming, and expensive. This study was conducted to develop and apply a microarray-based, high-throughput resequencing system to detect sequence alterations in genes related to inherited RD. Methods. A customized 300-kb resequencing chip, Retina-Array, was developed to detect sequence alterations of 267,550 bases of both sense and antisense sequence in 1470 exons spanning 93 genes involved in inherited RD. Retina-Array was evaluated in 19 patient samples with inherited RD provided by the eyeGENE repository and four Centre d'Etudes du Polymorphisme Humaine reference samples through a high-throughput experimental approach that included an automated PCR assay setup and quantification, efficient post-quantification data processing, optimized pooling and fragmentation, and standardized chip processing. Results. The performance of the chips demonstrated that the average base pair call rate and accuracy were 93.56% and 99.86%, respectively. In total, 304 candidate variations were identified using a series of customized screening filters. Among 174 selected variations, 123 (70.7%) were further confirmed by dideoxy sequencing. Analysis of patient samples using Retina-Array resulted in the identification of 10 known mutations and 12 novel variations with high probability of deleterious effects. Conclusions. This study suggests that Retina-Array might be a valuable tool for the detection of disease-causing mutations and disease severity modifiers in a single experiment. Retinal-Array may provide a powerful and feasible approach through which to study genetic heterogeneity in retinal diseases. PMID:22025579

  18. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance.

  19. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    PubMed

    Lu, Cairui; Zou, Changsong; Song, Guoli

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  20. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.

  1. Gene synthesis by integrated polymerase chain assembly and PCR amplification using a high-speed thermocycler

    PubMed Central

    TerMaat, Joel R.; Pienaar, Elsje; Whitney, Scott E.; Mamedov, Tarlan G.; Subramanian, Anuradha

    2013-01-01

    Polymerase chain assembly (PCA) is a technique used to synthesize genes ranging from a few hundred base pairs to many kilobase pairs in length. In traditional PCA, equimolar concentrations of single stranded DNA oligonucleotides are repeatedly hybridized and extended by a polymerase enzyme into longer dsDNA constructs, with relatively few full-length sequences being assembled. Thus, traditional PCA is followed by a second primer-mediated PCR reaction to amplify the desired full-length sequence to useful, detectable quantities. Integration of assembly and primer-mediated amplification steps into a single reaction using a high-speed thermocycler is shown to produce similar results. For the integrated technique, the effects of oligo concentration, primer concentration, and number of oligonucleotides are explored. The technique is successfully demonstrated for the synthesis of two genes encoding EPCR-1 (653 bp) and pUC19 β-lactamase (929 bp) in under 20 min. However, rapid integrated PCA–PCR was found to be problematic when attempted with the TM-1 gene (1509 bp). Partial oligonucleotide sets of TM-1 could be assembled and amplified simultaneously, indicating that the technique may be limited to a maximum number of oligonucleotides due to competitive annealing and competition for primers. PMID:19799938

  2. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  3. High-Throughput and Combinatorial Gene Expression on a Chip for Metabolism-Induced Toxicology Screening

    PubMed Central

    Kwon, Seok Joon; Lee, Dong Woo; Shah, Dhiral A.; Ku, Bosung; Jeon, Sang Youl; Solanki, Kusum; Ryan, Jessica D.; Clark, Douglas S.; Dordick, Jonathan S.; Lee, Moo-Yeal

    2014-01-01

    Differential expression of various drug-metabolizing enzymes in the human liver may cause deviations of pharmacokinetic profiles, resulting in inter-individual variability of drug toxicity and/or efficacy. Here we present the “Transfected Enzyme and Metabolism Chip” (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1, and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner. PMID:24799042

  4. Genomic Integration of High-Risk HPV Alters Gene Expression in Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Walline, Heather M; Komarck, Christine M; McHugh, Jonathan B; Bellile, Emily L; Brenner, J Chad; Prince, Mark E; McKean, Erin L; Chepeha, Douglas B; Wolf, Gregory T; Worden, Francis P; Bradford, Carol R; Carey, Thomas E

    2016-10-01

    High-risk HPV (hrHPV) is the leading etiologic factor in oropharyngeal cancer. HPV-positive oropharyngeal tumors generally respond well to therapy, with complete recovery in approximately 80% of patients. However, it remains unclear why some patients are nonresponsive to treatment, with 20% of patients recurring within 5 years. In this study, viral factors were examined for possible clues to differences in tumor behavior. Oropharynx tumors that responded well to therapy were compared with those that persisted and recurred. Viral oncogene alternate transcripts were assessed, and cellular sites of viral integration were mapped and sequenced. Effects of integration on gene expression were assessed by transcript analysis at the integration sites. All of the tumors demonstrated active viral oncogenesis, indicated by expression of HPV E6 and E7 oncogenes and alternate E6 splicing. In the responsive tumors, HPV integration occurred exclusively in intergenic chromosome regions, except for one tumor with viral integration into TP63. Each recurrent tumor exhibited complex HPV integration patterns into cancer-associated genes, including TNFRSF13B, SCN2A, SH2B1, UBE2V2, SMOC1, NFIA, and SEMA6D Disrupted cellular transcripts were identified in the region of integration in four of the seven affected genes.

  5. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Su, Jian-Qiang; Chen, Zheng; Zhou, Xue; Zhu, Yong-Guan

    2014-08-19

    Reclaimed water irrigation (RWI) in urban environments is becoming popular, due to rapid urbanization and water shortage. The continuous release of residual antibiotics and antibiotic resistance genes (ARGs) from reclaimed water could result in the dissemination of ARGs in the downstream environment. This study provides a comprehensive profile of ARGs in park soils exposed to RWI through a high-throughput quantitative PCR approach. 147 ARGs encoding for resistance to a broad-spectrum of antibiotics were detected among all park soil samples. Aminoglycoside and beta-lactam were the two most dominant types of ARGs, and antibiotic deactivation and efflux pump were the two most dominant mechanisms in these RWI samples. The total enrichment of ARGs varied from 99.3-fold to 8655.3-fold compared to respective controls. Six to 60 ARGs were statistically enriched among these RWI samples. Four transposase genes were detected in RWI samples. TnpA-04 was the most enriched transposase gene with an enrichment was up to 2501.3-fold in Urumqi RWI samples compared with control soil samples. Furthermore, significantly positive correlation was found between ARGs and transposase abundances, indicating that transposase might be involved in the propagation of ARGs. This study demonstrated that RWI resulted in the enrichment of ARGs in urban park soils.

  6. High Expression of Endogenous Retroviral Envelope Gene in the Equine Fetal Part of the Placenta

    PubMed Central

    Stefanetti, Valentina; Marenzoni, Maria Luisa; Passamonti, Fabrizio; Cappelli, Katia; Garcia-Etxebarria, Koldo; Coletti, Mauro; Capomaccio, Stefano

    2016-01-01

    Endogenous retroviruses (ERVs) are proviral phases of exogenous retroviruses that have co-evolved with vertebrate genomes for millions of years. Previous studies have identified the envelope (env) protein genes of retroviral origin preferentially expressed in the placenta which suggests a role in placentation based on their membrane fusogenic capacity and therefore they have been named syncytins. Until now, all the characterized syncytins have been associated with three invasive placentation types: the endotheliochorial (Carnivora), the synepitheliochorial (Ruminantia), and the hemochorial placentation (human, mouse) where they play a role in the syncytiotrophoblast formation. The purpose of the present study was to evaluate whether EqERV env RNA is expressed in horse tissues as well and investigate if the horse, possessing an epitheliochorial placenta, has “captured” a common retroviral env gene with syncytin-like properties in placental tissues. Interestingly, although in the equine placenta there is no syncytiotrophoblast layer at the maternal-fetal interface, our results showed that EqERV env RNA is highly expressed at that level, as expected for a candidate syncytin-like gene but with reduced abundance in the other somatic tissues (nearly 30-fold lower) thus suggesting a possible role in the placental tissue. Although the horse is one of the few domestic animals with a sequenced genome, few studies have been conducted about the EqERV and their expression in placental tissue has never been investigated. PMID:27176223

  7. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    PubMed Central

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  8. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    PubMed

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  9. High diversity and no significant selection signal of human ADH1B gene in Tibet

    PubMed Central

    2012-01-01

    Background ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia. Results The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed

  10. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions.

    PubMed

    Cassan-Wang, Hua; Soler, Marçal; Yu, Hong; Camargo, Eduardo Leal O; Carocha, Victor; Ladouce, Nathalie; Savelli, Bruno; Paiva, Jorge A P; Leplé, Jean-Charles; Grima-Pettenati, Jacqueline

    2012-12-01

    Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.

  11. High frequencies of antibiotic resistance genes in infants' meconium and early fecal samples.

    PubMed

    Gosalbes, M J; Vallès, Y; Jiménez-Hernández, N; Balle, C; Riva, P; Miravet-Verde, S; de Vries, L E; Llop, S; Agersø, Y; Sørensen, S J; Ballester, F; Francino, M P

    2016-02-01

    The gastrointestinal tract (GIT) microbiota has been identified as an important reservoir of antibiotic resistance genes (ARGs) that can be horizontally transferred to pathogenic species. Maternal GIT microbes can be transmitted to the offspring, and recent work indicates that such transfer starts before birth. We have used culture-independent genetic screenings to explore whether ARGs are already present in the meconium accumulated in the GIT during fetal life and in feces of 1-week-old infants. We have analyzed resistance to β-lactam antibiotics (BLr) and tetracycline (Tcr), screening for a variety of genes conferring each. To evaluate whether ARGs could have been inherited by maternal transmission, we have screened perinatal fecal samples of the 1-week-old babies' mothers, as well as a mother-infant series including meconium, fecal samples collected through the infant's 1st year, maternal fecal samples and colostrum. Our results reveal a high prevalence of BLr and Tcr in both meconium and early fecal samples, implying that the GIT resistance reservoir starts to accumulate even before birth. We show that ARGs present in the mother may reach the meconium and colostrum and establish in the infant GIT, but also that some ARGs were likely acquired from other sources. Alarmingly, we identified in both meconium and 1-week-olds' samples a particularly elevated prevalence of mecA (>45%), six-fold higher than that detected in the mothers. The mecA gene confers BLr to methicillin-resistant Staphylococcus aureus, and although its detection does not imply the presence of this pathogen, it does implicate the young infant's GIT as a noteworthy reservoir of this gene.

  12. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry.

    PubMed

    Shmueli, Ron B; Bhise, Nupura S; Green, Jordan J

    2013-03-01

    Non-viral gene delivery using polymeric nanoparticles has emerged as an attractive approach for gene therapy to treat genetic diseases(1) and as a technology for regenerative medicine(2). Unlike viruses, which have significant safety issues, polymeric nanoparticles can be designed to be non-toxic, non-immunogenic, non-mutagenic, easier to synthesize, chemically versatile, capable of carrying larger nucleic acid cargo and biodegradable and/or environmentally responsive. Cationic polymers self-assemble with negatively charged DNA via electrostatic interaction to form complexes on the order of 100 nm that are commonly termed polymeric nanoparticles. Examples of biomaterials used to form nanoscale polycationic gene delivery nanoparticles include polylysine, polyphosphoesters, poly(amidoamines)s and polyethylenimine (PEI), which is a non-degradable off-the-shelf cationic polymer commonly used for nucleic acid delivery(1,3) . Poly(beta-amino ester)s (PBAEs) are a newer class of cationic polymers(4) that are hydrolytically degradable(5,6) and have been shown to be effective at gene delivery to hard-to-transfect cell types such as human retinal endothelial cells (HRECs)(7), mouse mammary epithelial cells(8), human brain cancer cells(9) and macrovascular (human umbilical vein, HUVECs) endothelial cells(10). A new protocol to characterize polymeric nanoparticles utilizing nanoparticle tracking analysis (NTA) is described. In this approach, both the particle size distribution and the distribution of the number of plasmids per particle are obtained(11). In addition, a high-throughput 96-well plate transfection assay for rapid screening of the transfection efficacy of polymeric nanoparticles is presented. In this protocol, poly(beta-amino ester)s (PBAEs) are used as model polymers and human retinal endothelial cells (HRECs) are used as model human cells. This protocol can be easily adapted to evaluate any polymeric nanoparticle and any cell type of interest in a multi

  13. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    SciTech Connect

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng . E-mail: Dongfeng_pan@yahoo.com

    2005-09-09

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.

  14. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    PubMed

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans.

  15. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits

    PubMed Central

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression. PMID:25429295

  16. Development of a facile method for high throughput screening with reporter gene assays.

    PubMed

    Goetz, A S; Andrews, J L; Littleton, T R; Ignar, D M

    2000-10-01

    This report describes a facile methodology for high throughput screening with stable mammalian cell reporter gene assays. We have adapted a 96-well adherent cell method to an assay in which cells propagated in suspension are dispensed into 96- or 384-well plates containing test compounds in 100% DMSO. The validation of a stable CHO cell line that expresses 6xCRE-luciferase for use as a reporter gene host cell line is described. The reporter gene, when expressed in this particular CHO cell line, appears to respond specifically to modulation of cAMP levels, thus the cell line is appropriate for screening and pharmacological analysis of Galpha(s)- and Galpha(i)-coupled seven-transmembrane receptors. The development of the new suspension cell assay in both 96- and 384-well formats was performed using a derivative of the CHO host reporter cell line that was stably transfected with human melanocortin-1 receptor. The response of this cell line to NDP-alpha-melanocyte-stimulating hormone and forskolin was nearly identical between the adherent and suspension methods. The new method offers improvements in cost, throughput, cell culture effort, compound stability, accuracy of compound delivery, and hands-on time. The 384-well assay can be performed at high capacity in any laboratory without the use of expensive automation systems such that a single person can screen 100 plates per day with 3.5-4 h hands-on time. Although the system has been validated using Galpha(s)-coupled receptor-mediated activation of a cAMP response element, the method can be applied to other types of targets and/or transcriptional response elements.

  17. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage.

    PubMed

    Shiraki, Toshiyuki; Kondo, Shinji; Katayama, Shintaro; Waki, Kazunori; Kasukawa, Takeya; Kawaji, Hideya; Kodzius, Rimantas; Watahiki, Akira; Nakamura, Mari; Arakawa, Takahiro; Fukuda, Shiro; Sasaki, Daisuke; Podhajska, Anna; Harbers, Matthias; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide

    2003-12-23

    We introduce cap analysis gene expression (CAGE), which is based on preparation and sequencing of concatamers of DNA tags deriving from the initial 20 nucleotides from 5' end mRNAs. CAGE allows high-throughout gene expression analysis and the profiling of transcriptional start points (TSP), including promoter usage analysis. By analyzing four libraries (brain, cortex, hippocampus, and cerebellum), we redefined more accurately the TSPs of 11-27% of the analyzed transcriptional units that were hit. The frequency of CAGE tags correlates well with results from other analyses, such as serial analysis of gene expression, and furthermore maps the TSPs more accurately, including in tissue-specific cases. The high-throughput nature of this technology paves the way for understanding gene networks via correlation of promoter usage and gene transcriptional factor expression.

  18. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas

    PubMed Central

    Ponnampalam, Stephen N.; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A.

    2016-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4×44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a P<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (P<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  19. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas.

    PubMed

    Ponnampalam, Stephen N; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A

    2017-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a p<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (p<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  20. [Effects of intergenic interaction of the high pigmentation gene hp-2(dg) (high pigment-2 dark green) with the gene B (beta-carotene) in tomato].

    PubMed

    Kuzemenskiĭ, A V

    2008-01-01

    It was shown that during intergenic interaction of genes hp-2(dg) and B in dihomozygote an additive factor is formed activating biogenesis of beta-carotene in tomato fruits. In the genotype B/B//hp-2(dg)/hp-2(dg) there is preserved the positive effects of the gene hp-2(dg) on the content of ascorbic acid and the negative one on the content of titrated acids. With this stabilization of the gene hp-2(dg) genetic depression is observed, which is manifested in the increased productivity of B/B//hp-2(dg)/hp-2(dg)-genotypes.

  1. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  2. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  3. Rapid identification of Borrelia by high resolution melting analysis of the groEL gene.

    PubMed

    Koś, Władysław; Wodecka, Beata; Anklewicz, Marek; Skotarczak, Bogumiła

    2013-01-01

    This study examined the possibility of applying a new diagnostic method, high resolution analysis of DNA denaturation curve (high resolution melting - HRM), for identification of Borrelia species. DNA samples were obtained from Ixodes ricinus ticks collected from vegetation and removed from hunted roe deer. For differentiation of Borrelia species, the HRM protocol based on the analysis of the groEL gene was applied. A product characteristic for Borrelia was obtained in 19/123 samples (15.4%). The studied isolates were classified as four species: B. garinii, B. valaisiana, B. afzelii and B. miyamotoi. Two separate groups of isolates within the B. afzelii species were also found. The results show that the groEL gene is useful for rapid differentiation of B. burgdorferi sensu lato with the HRM method from different extracts of DNA and it also allows precise differentiation of Borrelia species and strains. The HRM method shortened and simplified detection and differentiation of Borrelia species from different biological sources.

  4. High interleukin-4 expression and interleukin-4 gene polymorphisms are associated with susceptibility to human paracoccidioidomycosis

    PubMed Central

    Mendonça, Mônica Sawan; Peraçolli, Terezinha S; Silva-Vergara, Mário León; Ribeiro, Sílvio C; Oliveira, Rafael Faria; Mendes, Rinaldo Poncio; Rodrigues, Virmondes

    2015-01-01

    Paracoccidioidomycosis (PCM) is caused by dimorphic fungi from theParacoccidioides brasiliensis complex. Previous studies have demonstrated that the severity of disease is associated with a T-helper 2 immune response characterised by high interleukin (IL)-4 production. In the present study we analysed two polymorphisms in the IL-4 gene (-590 C/T and intron-3 microsatellite) in 76 patients with PCM and 73 control subjects from an endemic area. The production of IL-4 by peripheral blood mononuclear cells after antigen or phytohaemagglutinin stimulation was determined by ELISA. A significant correlation was observed between the RP2/RP2 intron-3 genotype and infection with Paracoccidioides sp. (p = 0.011), whereas the RP1/RP1 genotype was correlated with resistance. No significant correlation was observed for the IL-4 promoter polymorphism. Furthermore, the low IL-4 expression observed in the control group compared with patients was associated with the RP1/RP1 genotype. These results suggest that IL-4polymorphisms might be associated with the ability of the host to control Paracoccidioides sp. infection. The relevance of this polymorphism is supported by the observation that patients with disease produce high levels of IL-4 following mitogen or antigen stimulation. The IL-4 gene is located in the cytokine cluster region of chromosome 5 where other polymorphisms have also been described. PMID:26517657

  5. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis

    SciTech Connect

    Jean, G.; Fuchshuber, A.; Gribouval, O.

    1996-03-01

    Infantile nephropathic cystinosis is an autosomal recessive disorder characterized biochemically by an abnormally high intracellular content of free cystine in different organs and tissues due to a transport defect of cystine through the lysosomal membrane. Affected children present with the Fanconi syndrome and usually develop progressive renal failure within the 1st decade of life. Measurement of free cystine in purified polymorphonuclear leukocytes provides an accurate method for diagnosis and detection of heterozygous carriers previously determined by their leukocyte cystine content in the linkage analysis. This approach allowed us to obtain highly significant results, confirming the localization of the cystinosis gene locus recently mapped to the short arm of chromosome 17 by the Cystinosis Collaborative Research Group. Crucial recombination events allowed us to refine the interval of the cystinosis gene to a genetic distance of 1 cM. No evidence of genetic heterogeneity was found. Our results demonstrate that the use of the previously determined phenotypes of heterozygous carriers in linkage analysis provides a reliable method for the investigation of simplex families in autosomal recessive traits. 25 refs., 4 figs., 1 tab.

  6. Development of small high-copy-number plasmid vectors for gene expression in Caulobacter crescentus.

    PubMed

    Umelo-Njaka, E; Nomellini, J F; Yim, H; Smit, J

    2001-07-01

    Caulobacter crescentus is a bacterium with a distinctive life cycle and so it is studied as a cell development model. In addition, we have adapted this bacterium for recombinant protein production and display based on the crystalline surface protein (S)-layer and its C-terminal secretion signal. We report here the development of small, high-copy-number plasmid vectors and methods for producing an obligate expression host. The vectors are based on a narrow-host-range colE1-replicon-based plasmid commonly used in Escherichia coli, to which was added the replication origin of the IncQ plasmid RSF1010. C. crescentus strains were modified to enable plasmid replication by introduction of the RSF1010 repBAC genes at the recA locus. The small (4.0-4.5 kb) plasmids were in high copy numbers in both C. crescentus and E. coli and amenable to rapid methods for plasmid isolation and DNA sequencing. The method for introducing repBAC is suitable for other C. crescentus strains or any bacterium with an adequately homologous recA gene. Application of the vector for protein expression, based on the type I secretion system of the S-layer protein, when compared to constructs in broad-host-range plasmids, resulted in reduced time and steps required from clone construction to recombinant protein recovery and increased protein yield.

  7. Lognormality and oscillations in the coverage of high-throughput transcriptomic data towards gene ends

    NASA Astrophysics Data System (ADS)

    Innocenti, Nicolas; Aurell, Erik

    2013-10-01

    High-throughput transcriptomics experiments have reached the stage where the count of the number of reads alignable to a given position can be treated as an almost-continuous signal. This allows us to ask questions of biophysical/biotechnical nature, but which may still have biological implications. Here we show that when sequencing RNA fragments from one end, as is the case on most platforms, an oscillation in the read count is observed at the other end. We further show that these oscillations can be well described by Kolmogorov’s 1941 broken stick model. We investigate how the model can be used to improve predictions of gene ends (3‧ transcript ends), but conclude that with present data the improvement is only marginal. The results highlight subtle effects in high-throughput transcriptomics experiments which do not have a biological origin, but which may still be used to obtain biological information.

  8. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang

    2013-04-01

    This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.

  9. High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood

    PubMed Central

    Martin, Katherine J.; Graner, Edgard; Li, Yi; Price, Laura M.; Kritzman, Brian M.; Fournier, Marcia V.; Rhei, Esther; Pardee, Arthur B.

    2001-01-01

    Early detection is an effective means of reducing cancer mortality. Here, we describe a highly sensitive high-throughput screen that can identify panels of markers for the early detection of solid tumor cells disseminated in peripheral blood. The method is a two-step combination of differential display and high-sensitivity cDNA arrays. In a primary screen, differential display identified 170 candidate marker genes differentially expressed between breast tumor cells and normal breast epithelial cells. In a secondary screen, high-sensitivity arrays assessed expression levels of these genes in 48 blood samples, 22 from healthy volunteers and 26 from breast cancer patients. Cluster analysis identified a group of 12 genes that were elevated in the blood of cancer patients. Permutation analysis of individual genes defined five core genes (P ≤ 0.05, permax test). As a group, the 12 genes generally distinguished accurately between healthy volunteers and patients with breast cancer. Mean expression levels of the 12 genes were elevated in 77% (10 of 13) untreated invasive cancer patients, whereas cluster analysis correctly classified volunteers and patients (P = 0.0022, Fisher's exact test). Quantitative real-time PCR confirmed array results and indicated that the sensitivity of the assay (1:2 × 108 transcripts) was sufficient to detect disseminated solid tumor cells in blood. Expression-based blood assays developed with the screening approach described here have the potential to detect and classify solid tumor cells originating from virtually any primary site in the body. PMID:11226293

  10. Identification of Transcription Factor Genes and Their Correlation with the High Diversity of Stramenopiles

    PubMed Central

    Buitrago-Flórez, Francisco Javier; Restrepo, Silvia; Riaño-Pachón, Diego Mauricio

    2014-01-01

    The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles. PMID:25375671

  11. Identification of transcription factor genes and their correlation with the high diversity of stramenopiles.

    PubMed

    Buitrago-Flórez, Francisco Javier; Restrepo, Silvia; Riaño-Pachón, Diego Mauricio

    2014-01-01

    The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles.

  12. GeneLab for High Schools: Data Mining for the Next Generation

    NASA Technical Reports Server (NTRS)

    Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth

    2016-01-01

    Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections

  13. High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing1

    PubMed Central

    Liu, Qing; Singh, Surinder P.; Green, Allan G.

    2002-01-01

    We have genetically modified the fatty acid composition of cottonseed oil using the recently developed technique of hairpin RNA-mediated gene silencing to down-regulate the seed expression of two key fatty acid desaturase genes, ghSAD-1-encoding stearoyl-acyl-carrier protein Δ9-desaturase and ghFAD2-1-encoding oleoyl-phosphatidylcholine ω6-desaturase. Hairpin RNA-encoding gene constructs (HP) targeted against either ghSAD-1 or ghFAD2-1 were transformed into cotton (Gossypium hirsutum cv Coker 315). The resulting down-regulation of the ghSAD-1 gene substantially increased stearic acid from the normal levels of 2% to 3% up to as high as 40%, and silencing of the ghFAD2-1 gene resulted in greatly elevated oleic acid content, up to 77% compared with about 15% in seeds of untransformed plants. In addition, palmitic acid was significantly lowered in both high-stearic and high-oleic lines. Similar fatty acid composition phenotypes were also achieved by transformation with conventional antisense constructs targeted against the same genes, but at much lower frequencies than were achieved with the HP constructs. By intercrossing the high-stearic and high-oleic genotypes, it was possible to simultaneously down-regulate both ghSAD-1 and ghFAD2-1 to the same degree as observed in the individually silenced parental lines, demonstrating for the first time, to our knowledge, that duplex RNA-induced posttranslational gene silencing in independent genes can be stacked without any diminution in the degree of silencing. The silencing of ghSAD-1 and/or ghFAD2-1 to various degrees enables the development of cottonseed oils having novel combinations of palmitic, stearic, oleic, and linoleic contents that can be used in margarines and deep frying without hydrogenation and also potentially in high-value confectionery applications. PMID:12177486

  14. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  15. Effects of high-sulphur water on hepatic gene expression of steers fed fibre-based diets.

    PubMed

    Kessler, K L; Olson, K C; Wright, C L; Austin, K J; McInnerney, K; Johnson, P S; Cockrum, R R; Jons, A M; Cammack, K M

    2013-10-01

    Sulphur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high-sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost-effective. Determination of genes differentially expressed in response to high-S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre-fed steers consuming high-S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low-S water control (566 mg/kg SO4 ; n = 24), high-S water (3651 mg/kg SO4 ; n = 24) or high-S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low-S control (n = 4) and high-S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high- vs. low-S water consumption. Real-time RT-PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high-S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S-affected ruminant

  16. Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements

    PubMed Central

    Zhang, Tingting; Stilwell, Jackie L.; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A.; Gray, Joe W.; Alivisatos, A. Paul; Chen, Fanqing Frank

    2009-01-01

    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10–20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing ~22,000 total probe sets, containing 18,400 probe sets from known genes. Only ~50 genes (~0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater

  17. Methionine synthase: high-resolution mapping of the human gene and evaluation as a candidate locus for neural tube defects.

    PubMed

    Brody, L C; Baker, P J; Chines, P S; Musick, A; Molloy, A M; Swanson, D A; Kirke, P N; Ghosh, S; Scott, J M; Mills, J L

    1999-08-01

    Periconceptual folate supplementation has been found to prevent the occurrence of many neural tube defects (NTDs). Consequently, genetic variation in folate metabolism genes is expected to contribute to the risk for neural tube defects. Methionine synthase catalyzes the vitamin B(12)-dependent conversion of homocysteine and 5-methyltetrahydrofolate to methionine and tetrahydrofolate. The observation that homocysteine and vitamin B(12) levels are independent predictors of NTD risk suggested that methionine synthase could be a candidate gene for NTDs. To assess the role of the MS gene in NTDs, we performed high-resolution physical mapping of the MS locus, isolated highly polymorphic markers linked to the MS gene, and tested for an association between specific MS alleles and NTDs. We mapped the MS gene to a position between 909 and 913 cR(10000) on chromosome 1 by radiation hybrid mapping. Polymorphic markers D1S1567 and D1S1568 map to locations no more than 900 and 194 kb from the MS gene, respectively. The segregation of these polymorphic markers was measured in 85 Irish NTD families. No allele of either marker showed a significant association with NTDs using the transmission disequilibrium test. A lack of association was also observed for the D1919G missense mutation within the gene. Our results suggest that inherited variation in the MS gene does not contribute to NTD risk in this population.

  18. Genes for psychosis and creativity: a promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement.

    PubMed

    Kéri, Szabolcs

    2009-09-01

    Why are genetic polymorphisms related to severe mental disorders retained in the gene pool of a population? A possible answer is that these genetic variations may have a positive impact on psychological functions. Here, I show that a biologically relevant polymorphism of the promoter region of the neuregulin 1 gene (SNP8NRG243177/rs6994992) is associated with creativity in people with high intellectual and academic performance. Intriguingly, the highest creative achievements and creative-thinking scores were found in people who carried the T/T genotype, which was previously shown to be related to psychosis risk and altered prefrontal activation.

  19. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues

    PubMed Central

    Szafron, Lukasz Michal; Balcerak, Anna; Grzybowska, Ewa Anna; Pienkowska-Grela, Barbara; Felisiak-Golabek, Anna; Podgorska, Agnieszka; Kulesza, Magdalena; Nowak, Natalia; Pomorski, Pawel; Wysocki, Juliusz; Rubel, Tymon; Dansonka-Mieszkowska, Agnieszka; Konopka, Bozena; Lukasik, Martyna; Kupryjanczyk, Jolanta

    2015-01-01

    CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene. PMID:25978564

  20. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    PubMed Central

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  1. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    PubMed

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.

  2. Fasting and sampling time affect liver gene expression of high-fat diet-fed mice.

    PubMed

    Lee, C Y

    2010-05-01

    Several physiological and biological variables are known to affect peroxisome proliferator-activated receptor (PPAR)-α-dependent signaling pathway and plasma biochemical profiles. However, less is known about the effect of these variables on high-fat diet-fed mice. In a 5-week study, C57BL/6 mice were divided into control (C) and high-fat diet-fed (H) groups, whereby before dissection, each group was subdivided into non-fasted (nC and nH) and a 15-h fasted mice (fC and fH) killed in the early light cycle, and a 15-h fasted mice (eC and eH) killed in the late phase of the light cycle. Liver and blood from the vena cava were collected. Non-fasted nC and nH mice have a marginal difference in their body weight gain, whereas significant differences were found for fasted mice. In nH mice, PPAR-α, acyl-CoA oxidase and insulin-like growth factor-binding protein expressions were significantly elevated, in contrast to fatty acid synthase (Fasn), stearoyl CoA-desaturase (SCD)-1, and elongase (ELOVL)-6 expressions. Fasn was profoundly induced in fH mice, while decreased sterol regulatory-binding protein-1 and SCD-1 were found only in eH mice. Different from the gene expression profiles, plasma total cholesterol level of the eH mice was higher than controls, whereas nH mice have increased plasma non-esterified fatty acids. Only glucose level of the fH mice was higher than that observed for controls. Results showed that fasting and sampling time have significantly affected liver gene expression and plasma biochemical indices of the high-fat diet-treated mice. An overlook in these aspects can cause serious discrepancies in the experimental data and their interpretations.

  3. Gene expression in breast muscle and duodenum from low and high feed efficient broilers.

    PubMed

    Ojano-Dirain, C; Toyomizu, M; Wing, T; Cooper, M; Bottje, W G

    2007-02-01

    This study was conducted to evaluate messenger RNA (mRNA) expression of genes that are involved in energy metabolism and mitochondrial biogenesis: avian adenine nucleotide translocator (avANT), cytochrome oxidase III (COX III), inducible nitric oxide synthase (iNOS), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), avian PPAR-gamma coactivator-1alpha (avPGC-1alpha), and avian uncoupling protein in breast muscle and duodenum of broilers with low and high feed efficiency (FE). Total RNA was extracted from snap-frozen tissues from male broilers with low (0.55 +/- 0.01) and high (0.72 +/- 0.01) FE (n = 8 per group). Total RNA was reverse-transcribed using oligo(dT), random primers, or both followed by real-time reverse transcription-PCR. Protein oxidation, measured as protein carbonyls, was also evaluated in duodenal mucosa. Protein carbonyls were higher in low FE mucosa in tissue homogenate and mitochondrial fraction. The mRNA expression of iNOS and PPAR-gamma in the duodenum was lower in the low FE broilers, with no differences in avANT, COX III, and avPGC-1alpha. In contrast, expression of avANT and COX III mRNA in breast muscle was lower in low FE broilers with no differences in iNOS, PPAR-gamma, and avPGC-1alpha. The avian uncoupling protein in breast muscle was higher in low FE birds (P = 0.068). These results indicate that there are differences in the expression of mRNA encoding for mitochondrial transcription factors and proteins in breast muscle and duodenal tissue between low and high FE birds. The differences that were observed may also reflect inherent metabolic and gene regulation differences between tissues.

  4. Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments.

    PubMed

    Zhang, Qi-Lin; Zhang, Li; Zhao, Tian-Xuan; Wang, Juan; Zhu, Qian-Hua; Chen, Jun-Yuan; Yuan, Ming-Long

    2017-04-30

    The adaptive evolution of animals to high-elevation environments has been extensively studied in vertebrates, while few studies have focused on insects. Gynaephora species (Lepidoptera: Lymantriinae) are endemic to the Qinghai-Tibetan Plateau (QTP) and represent an important insect pest of alpine meadows. Here, we present a detailed comparative analysis of the mitochondrial genomes (mitogenomes) of two Gynaephora species inhabiting different high-elevation environments: G. alpherakii and G. menyuanensis. The results indicated that the general mitogenomic features (genome size, nucleotide composition, codon usage and secondary structures of tRNAs) were well conserved between the two species. All of mitochondrial protein-coding genes were evolving under purifying selection, suggesting that selection constraints may play a role in ensuring adequate energy production. However, a number of substitutions and indels were identified that altered the protein conformations of ATP8 and NAD1, which may be the result of adaptive evolution of the two Gynaephora species to different high-elevation environments. Levels of gene expression for nine mitochondrial genes in nine different developmental stages were significantly suppressed in G. alpherakii, which lives at the higher elevation (~4800m above sea level), suggesting that gene expression patterns could be modulated by atmospheric oxygen content and environmental temperature. These results enhance our understanding of the genetic bases for the adaptive evolution of insects endemic to the QTP.

  5. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes.

    PubMed

    Gaur, Vikram Singh; Singh, U S; Gupta, Atul K; Kumar, Anil

    2012-03-01

    Two rice genotypes, Kalanamak 3119 (KN3119) and Pusa Basmati 1(PB1) differing in their optimum nitrogen requirements (30 and 120 kg/ha, respectively) were undertaken to study the expression of both high and low affinity ammonium transporter genes responsible for ammonium uptake. Exposing the roots of the seedlings of both the genotypes to increasing (NH(4))(2)SO(4) concentrations revealed that all the three families of rice AMT genes are expressed, some of which get altered in a genotype and concentration specific manner. This indicates that individual ammonium transporter genes have defined contributions for ammonium uptake and plant growth. Interestingly, in response to increasing nitrogen concentrations, a root specific high affinity gene, AMT1;3, was repressed in the roots of KN3119 but not in PB1 indicating the existence of a differential ammonium sensing mechanism. This also indicates that not only AMT1;3 is involved not only in ammonium uptake but may also in ammonium sensing. Further, if it can differentiate and could be used as a biomarker for nitrogen responsiveness. Expression analysis of low affinity AMT genes showed that, both AMT2;1 and AMT2;2 have high levels of expression in both roots and shoots and in KN3119 are induced at low ammonium concentrations. Expressions of AMT3 family genes were higher shoots than in the roots indicating that these genes are probably involved in the translocation and distribution of ammonium ions in leaves. The expression of the only high affinity AMT gene, AMT1;1, along with six low affinity AMT genes in the shoots suggests that low affinity AMTs in the shoots leaves are involved in supporting AMT1;1 to carry out its activities/function efficiently.

  6. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif

    PubMed Central

    Pujari, Venugopal; Radebaugh, Catherine A.; Chodaparambil, Jayanth V.; Muthurajan, Uma M.; Almeida, Adam R.; Fischbeck, Julie A.; Luger, Karolin; Stargell, Laurie A.

    2010-01-01

    Spn1 plays essential roles in the regulation of gene expression by RNA Polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP, TFIIS and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here we report the high-resolution (1.85Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is comprised of eight alpha-helices in a right handed super helical arrangement, and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity. PMID:20875428

  7. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif.

    PubMed

    Pujari, Venugopal; Radebaugh, Catherine A; Chodaparambil, Jayanth V; Muthurajan, Uma M; Almeida, Adam R; Fischbeck, Julie A; Luger, Karolin; Stargell, Laurie A

    2010-11-19

    Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.

  8. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    PubMed

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-07-15

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.

  9. Functional characterization of putative cilia genes by high-content analysis

    PubMed Central

    Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.

    2011-01-01

    Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087

  10. The human archain gene, ARCN1, has highly conserved homologs in rice and drosophila

    SciTech Connect

    Radice, P.; Jones, C.; Perry, H.

    1995-03-01

    A novel human gene, ARCN1, has been identified in chromosome band 11q23.3. It maps approximately 50 kb telomeric to MLL, a gene that is disrupted in a number of leukemia-associated translocation chromosomes. cDNA clones representing ARCN1 hybridize to 4-kb mRNA species present in all tissues tested. Sequencing of cDNAs suggests that at least two forms of mRNA with alternative 5 {prime} ends are present within the cell. The mRNA with the longest open reading frame gives rise to a protein of 57 kDa. Although the sequence reported is novel, remarkable similarity is observed with two predicted protein sequences from partial DNA sequences generated by rice (Oryza sativa) and fruit fly (Drosophila melanogaster) genome projects. The degree of sequence conservation is comparable to that observed for highly conserved structural proteins, such as heat shock protein HSP70, and is greater than that of {gamma}-gubulin and heat shock protein HSP60. A more distant relationship to the group of clathrin-associated proteins suggests a possible role in vesicle structure or trafficking. In view of its ancient pedigree and a potential involvement in cellular architecture, the authors propose that the ARCN1 protein be named archain. 20 refs., 5 figs.

  11. Single cell visualization of transcription kinetics variance of highly mobile identical genes using 3D nanoimaging

    PubMed Central

    Annibale, Paolo; Gratton, Enrico

    2015-01-01

    Multi-cell biochemical assays and single cell fluorescence measurements revealed that the elongation rate of Polymerase II (PolII) in eukaryotes varies largely across different cell types and genes. However, there is not yet a consensus whether intrinsic factors such as the position, local mobility or the engagement by an active molecular mechanism of a genetic locus could be the determinants of the observed heterogeneity. Here by employing high-speed 3D fluorescence nanoimaging techniques we resolve and track at the single cell level multiple, distinct regions of mRNA synthesis within the model system of a large transgene array. We demonstrate that these regions are active transcription sites that release mRNA molecules in the nucleoplasm. Using fluctuation spectroscopy and the phasor analysis approach we were able to extract the local PolII elongation rate at each site as a function of time. We measured a four-fold variation in the average elongation between identical copies of the same gene measured simultaneously within the same cell, demonstrating a correlation between local transcription kinetics and the movement of the transcription site. Together these observations demonstrate that local factors, such as chromatin local mobility and the microenvironment of the transcription site, are an important source of transcription kinetics variability. PMID:25788248

  12. High-molecular-weight polyethyleneimine conjuncted pluronic for gene transfer agents.

    PubMed

    Liang, Wenqing; Gong, Haiyang; Yin, Dongfeng; Lu, Shiyong; Fu, Qiang

    2011-01-01

    In order to enhance the gene delivery efficiency and decrease cytotoxicity of polyplexes, copolymers consisting of branched polyethyleneimine (PEI) 25 kDa grafted with Pluronic (F127, F68, P105) were successfully synthesized using a simple two-step procedure. The copolymers were tested for cytotoxicity and DNA condensation and complexation properties. Their polyplexes with plasmid DNA were characterized in terms of DNA size and surface charge and transfection efficiency. The complex sizes were below 300 nm, which implicated their potential for intracellular delivery. The Pluronic-g-PEI exhibited better condensation and complexation properties than PEI 25 kDa. The cytotoxicity of PEI was strongly reduced after copolymerization. The Pluronic-g-PEI showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in HeLa cells. Compared with unmodified PEI 25 kDa Pluronic-g-PEI showed much higher transfection efficiency. These results demonstrate that polyplexes prepared using a combined strategy of surface crosslinking and grafted with Pluronic seem to provide promising properties as stable, high transfection efficiency vectors.

  13. Candidate genes and pathways downstream of PAX8 involved in ovarian high-grade serous carcinoma

    PubMed Central

    Soriano, Amata Amy; Monticelli, Antonella; Affinito, Ornella; Cocozza, Sergio; Zannini, Mariastella

    2016-01-01

    Understanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC. We have recently reported that PAX8 is involved in the tumorigenic phenotype of ovarian cancer cells. In this study, to uncover genes and pathways downstream of PAX8 involved in ovarian carcinoma we have determined the molecular profiles of ovarian cancer cells and in parallel of Fallopian tube epithelial cells by means of a silencing approach followed by an RNA-seq analysis. Interestingly, we highlighted the involvement of pathways like WNT signaling, epithelial-mesenchymal transition, p53 and apoptosis. We believe that our analysis has led to the identification of candidate genes and pathways regulated by PAX8 that could be additional targets for the therapy of ovarian carcinoma. PMID:27259239

  14. Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles.

    PubMed

    Fisicaro, Emilia; Compari, Carlotta; Bacciottini, Franco; Contardi, Laura; Pongiluppi, Erika; Barbero, Nadia; Viscardi, Guido; Quagliotto, Pierluigi; Donofrio, Gaetano; Krafft, Marie Pierre

    2017-02-01

    Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,1' position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds' biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds' hydrogenated counterparts, the tight relationship between the solution thermodynamics data and their biological performance is amazing, making "old" methods the foundation to deeply understanding "new" applications.

  15. Yersinia High Pathogenicity Island genes modify the Escherichia coli primary metabolome independently of siderophore production

    PubMed Central

    Lv, Haitao; Henderson, Jeffrey P

    2013-01-01

    Bacterial siderophores may enhance pathogenicity by scavenging iron but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption. PMID:22035238

  16. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.

    PubMed

    Manière, X; Krisko, A; Pellay, F X; Di Meglio, J-M; Hersen, P; Matic, I

    2014-12-01

    Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.

  17. Yersinia high pathogenicity island genes modify the Escherichia coli primary metabolome independently of siderophore production.

    PubMed

    Lv, Haitao; Henderson, Jeffrey P

    2011-12-02

    Bacterial siderophores may enhance pathogenicity by scavenging iron, but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption.

  18. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  19. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary.

    PubMed

    Gutierrez West, Casandra K; Klein, Savannah L; Lovell, Charles R

    2013-04-01

    Virulence factor genes encoding the thermostable direct hemolysin (tdh) and the thermostable direct hemolysin-related hemolysin (trh) are strongly correlated with virulence of the emergent human pathogen Vibrio parahaemolyticus. The gene encoding the thermolabile hemolysin (tlh) is also considered a signature molecular marker for the species. These genes are typically reported in very low percentages (1 to 2%) of nonclinical strains. V. parahaemolyticus strains were isolated from various niches within a pristine estuary (North Inlet, SC) and were screened for these genes using both newly designed PCR primers and more commonly used primers. DNA sequences of tdh and trh were recovered from 48% and 8.3%, respectively, of these North Inlet strains. The recovery of pathogenic V. parahaemolyticus strains in such high proportions from an estuarine ecosystem that is virtually free of anthropogenic influences indicates the potential for additional, perhaps environmental roles of the tdh and trh genes.

  20. Detection of the esp gene in high-level gentamicin resistant Enterococcus faecalis strains from pet animals in Japan.

    PubMed

    Harada, Tetsuya; Tsuji, Noboru; Otsuki, Koichi; Murase, Toshiyuki

    2005-03-20

    We investigated the prevalence of the esp gene and the susceptibility to gentamicin in Enterococcus faecalis and E. faecium strains obtained from pet animals. Nine of 30 E. faecalis and 2 of 38 E. faecium strains from the pet animals had the esp gene. Three esp-positive E. faecalis strains, which were isolated from two dogs and a cat, showed gentamicin MICs of > or =256 microg/ml and harbored the high-level gentamicin resistance (HLGR) gene, aac(6')-Ie-aph(2'')-Ia. Of the nine esp-positive E. faecalis strains, five, including the three strains with the HLGR gene, were closely related by numerical analysis of PFGE patterns. Longitudinal investigation needs to elucidate whether the HLGR gene was incorporated into a subpopulation of the esp-positive E. faecalis.

  1. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    SciTech Connect

    Ferrari, S.; Finelli, P.; Rocchi, M.

    1996-07-15

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mouse Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.

  2. Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number

    PubMed Central

    Lakhssassi, Naoufal; Zhou, Zhou; Liu, Shiming; Colantonio, Vincent; AbuGhazaleh, Amer; Meksem, Khalid

    2017-01-01

    Soybean seed oil typically contains 18–20% oleic acid. Increasing the content of oleic acid is beneficial for health and biodiesel production. Mutations in FAD2-1 genes have been reported to increase seed oleic acid content. A subset of 1,037 mutant families from a mutagenized soybean cultivar (cv.) Forrest population was screened using reverse genetics (TILLING) to identify mutations within FAD2 genes. Although no fad2 mutants were identified using gel-based TILLING, four fad2-1A and one fad2-1B mutants were identified to have high seed oleic acid content using forward genetic screening and subsequent target sequencing. TILLING has been successfully used as a non-transgenic reverse genetic approach to identify mutations in genes controlling important agronomic traits. However, this technique presents limitations in traits such as oil composition due to gene copy number and similarities within the soybean genome. In soybean, FAD2 are present as two copies, FAD2-1 and FAD2-2. Two FAD2-1 members: FAD2-1A and FAD2-1B; and three FAD2-2 members: FAD2-2A, FAD2-2B, and FAD2-2C have been reported. Syntenic, phylogenetic, and in silico analysis revealed two additional members constituting the FAD2 gene family: GmFAD2-2D and GmFAD2-2E, located on chromosomes 09 and 15, respectively. They are presumed to have diverged from other FAD2-2 members localized on chromosomes 19 (GmFAD2-2A and GmFAD2-2B) and 03 (GmFAD2-2C). This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean. PMID:28348573

  3. Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number.

    PubMed

    Lakhssassi, Naoufal; Zhou, Zhou; Liu, Shiming; Colantonio, Vincent; AbuGhazaleh, Amer; Meksem, Khalid

    2017-01-01

    Soybean seed oil typically contains 18-20% oleic acid. Increasing the content of oleic acid is beneficial for health and biodiesel production. Mutations in FAD2-1 genes have been reported to increase seed oleic acid content. A subset of 1,037 mutant families from a mutagenized soybean cultivar (cv.) Forrest population was screened using reverse genetics (TILLING) to identify mutations within FAD2 genes. Although no fad2 mutants were identified using gel-based TILLING, four fad2-1A and one fad2-1B mutants were identified to have high seed oleic acid content using forward genetic screening and subsequent target sequencing. TILLING has been successfully used as a non-transgenic reverse genetic approach to identify mutations in genes controlling important agronomic traits. However, this technique presents limitations in traits such as oil composition due to gene copy number and similarities within the soybean genome. In soybean, FAD2 are present as two copies, FAD2-1 and FAD2-2. Two FAD2-1 members: FAD2-1A and FAD2-1B; and three FAD2-2 members: FAD2-2A, FAD2-2B, and FAD2-2C have been reported. Syntenic, phylogenetic, and in silico analysis revealed two additional members constituting the FAD2 gene family: GmFAD2-2D and GmFAD2-2E, located on chromosomes 09 and 15, respectively. They are presumed to have diverged from other FAD2-2 members localized on chromosomes 19 (GmFAD2-2A and GmFAD2-2B) and 03 (GmFAD2-2C). This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean.

  4. Validation of a prognostic multi-gene signature in high-risk neuroblastoma using the high throughput digital NanoString nCounter™ system.

    PubMed

    Stricker, Thomas P; Morales La Madrid, Andres; Chlenski, Alexandre; Guerrero, Lisa; Salwen, Helen R; Gosiengfiao, Yasmin; Perlman, Elizabeth J; Furman, Wayne; Bahrami, Armita; Shohet, Jason M; Zage, Peter E; Hicks, M John; Shimada, Hiroyuki; Suganuma, Rie; Park, Julie R; So, Sara; London, Wendy B; Pytel, Peter; Maclean, Kirsteen H; Cohn, Susan L

    2014-05-01

    Microarray-based molecular signatures have not been widely integrated into neuroblastoma diagnostic classification systems due to the complexities of the assay and requirement for high-quality RNA. New digital technologies that accurately quantify gene expression using RNA isolated from formalin-fixed paraffin embedded (FFPE) tissues are now available. In this study, we describe the first use of a high-throughput digital system to assay the expression of genes in an "ultra-high risk" microarray classifier in FFPE high-risk neuroblastoma tumors. Customized probes corresponding to the 42 genes in a published multi-gene neuroblastoma signature were hybridized to RNA isolated from 107 FFPE high-risk neuroblastoma samples using the NanoString nCounter™ Analysis System. For classification of each patient, the Pearson's correlation coefficient was calculated between the standardized nCounter™ data and the molecular signature from the microarray data. We demonstrate that the nCounter™ 42-gene panel sub-stratified the high-risk cohort into two subsets with statistically significantly different overall survival (p = 0.0027) and event-free survival (p = 0.028). In contrast, none of the established prognostic risk markers (age, stage, tumor histology, MYCN status, and ploidy) were significantly associated with survival. We conclude that the nCounter™ System can reproducibly quantify expression levels of signature genes in FFPE tumor samples. Validation of this microarray signature in our high-risk patient cohort using a completely different technology emphasizes the prognostic relevance of this classifier. Prospective studies testing the prognostic value of molecular signatures in high-risk neuroblastoma patients using FFPE tumor samples and the nCounter™ System are warranted.

  5. A highly efficient molecular cloning platform that utilises a small bacterial toxin gene.

    PubMed

    Mok, Wendy W K; Li, Yingfu

    2013-04-15

    Molecular cloning technologies that have emerged in recent years are more efficient and simpler to use than traditional strategies, but many have the disadvantages of requiring multiple steps and expensive proprietary enzymes. We have engineered cloning vectors containing variants of IbsC, a 19-residue toxin from Escherichia coli K-12. These toxic peptides offer selectivity to minimise the background, labour, and cost associated with conventional molecular cloning. As demonstrated with the cloning of reporter genes, this "detox cloning" system consistently produced over 95 % positive clones. Purification steps between digestion and ligation are not necessary, and the total time between digestion and plating of transformants can be as little as three hours. Thus, these IbsC-based cloning vectors are as reliable and amenable to high-throughput cloning as commercially available systems, and have the advantage of being more time-efficient and cost-effective.

  6. Mining high-throughput experimental data to link gene and function

    PubMed Central

    Blaby-Haas, Crysten E.; de Crécy-Lagard, Valérie

    2011-01-01

    Nearly 2200 genomes encoding some 6 million proteins have now been sequenced. Around 40% of these proteins are of unknown function even when function is loosely and minimally defined as “belonging to a superfamily”. In addition to in silico methods, the swelling stream of high-throughput experimental data can give valuable clues for linking these “unknowns” with precise biological roles. The goal is to develop integrative data-mining platforms that allow the scientific community at large to access and utilize this rich source of experimental knowledge. To this end, we review recent advances in generating whole-genome experimental datasets, where this data can be accessed, and how it can be used to drive prediction of gene function. PMID:21310501

  7. Gene expression and physiological responses associated to stomatal functioning in Rosa×hybrida grown at high relative air humidity.

    PubMed

    Carvalho, Dália R A; Vasconcelos, Marta W; Lee, Sangseok; Koning-Boucoiran, Carole F S; Vreugdenhil, Dick; Krens, Frans A; Heuvelink, Ep; Carvalho, Susana M P

    2016-12-01

    High relative air humidity (RH≥85%) during growth disturbs stomatal functioning, resulting in excessive water loss in conditions of high evaporative demand. We investigated the expression of nine abscisic acid (ABA)-related genes (involved in ABA biosynthesis, oxidation and conjugation) and two non-ABA related genes (involved in the water stress response) aiming to better understand the mechanisms underlying contrasting stomatal functioning in plants grown at high RH. Four rose genotypes with contrasting sensitivity to high RH (one sensitive, one tolerant and two intermediate) were grown at moderate (62±3%) or high (89±4%) RH. The sensitive genotype grown at high RH showed a significantly higher stomatal conductance (gs) and water loss in response to closing stimuli as compared to the other genotypes. Moreover, high RH reduced the leaf ABA concentration and its metabolites to a greater extent in the sensitive genotype as compared to the tolerant one. The large majority of the studied genes had a relevant role on stomatal functioning (NCED1, UGT75B2, BG2, OST1, ABF3 and Rh-APX) while two others showed a minor contribution (CYP707A3 and BG1) and AAO3, CYP707A1 and DREB1B did not contribute to the tolerance trait. These results show that multiple genes form a highly complex regulatory network acting together towards the genotypic tolerance to high RH.

  8. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    PubMed Central

    Hayes, Christopher J.; Dalton, Tara M.

    2015-01-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  9. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-08

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

  10. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    PubMed

    Dezfulian, Mohammad H; Soulliere, Danielle M; Dhaliwal, Rajdeep K; Sareen, Madhulika; Crosby, William L

    2012-01-01

    The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  11. [Clinical significance and distribution of BRCA genes mutation in sporadic high grade serous ovarian cancer].

    PubMed

    Liu, W L; Wang, Z Z; Zhao, J Z; Hou, Y Y; Wu, X X; Li, W; Dong, B; Tong, T T; Guo, Y J

    2017-01-25

    Objective: To investigate the mutations of BRCA genes in sporadic high grade serous ovarian cancer (HGSOC) and study its clinical significance. Methods: Sixty-eight patients between January 2015 and January 2016 from the Affiliated Cancer Hospital of Zhengzhou University were collected who were based on pathological diagnosis of ovarian cancer and had no reported family history, and all patients firstly hospitalized were untreated in other hospitals before. (1) The BRCA genes were detected by next-generation sequencing (NGS) method. (2) The serum tumor markers included carcinoembryonic antigen (CEA), CA(125), CA(199), and human epididymis protein 4 (HE4) were detected by the chemiluminescence methods, and their correlation was analyzed by Pearson linear correlation. Descriptive statistics and comparisons were performed using two-tailed t-tests, Pearson's chi square test, Fisher's exact tests or logistic regression analysis as appropriate to research the clinicopathologic features associated with BRCA mutations, including age, International Federation of Gynecology and Obstetrics (FIGO) stage, platinum-based chemotherapy sensitivity, distant metastases, serum tumor markers (STM) . Results: (1) Fifteen cases (22%, 15/68) BRCA mutations were identified (BRCA1: 11 cases; BRCA2: 4 cases), and four novel mutations were observed. (2) The levels of CEA, CA(199), and HE4 were lower in BRCA mutations compared to that in control group, while no significant differences were found (P>0.05), but the level of CA(125) was much higher in BRCA mutation group than that in controls (t=-3.536, P=0.003). Further linear regression analysis found that there was a significant linear correlation between CA(125) and HE4 group (r=0.494, P<0.01), and the same correlation as CEA and CA(199) group (r=0.897, P<0.01). (3) Single factor analysis showed that no significant differences were observed in onset age, FIGO stage, distant metastasis, and STM between BRCA(+) and BRCA(-) group (P>0

  12. Criteria for high-level expression of a fungal laccase gene in transgenic maize.

    PubMed

    Hood, Elizabeth E; Bailey, Michele R; Beifuss, Katherine; Magallanes-Lundback, Maria; Horn, Michael E; Callaway, Evelyn; Drees, Carol; Delaney, Donna E; Clough, Richard; Howard, John A

    2003-03-01

    Expression of industrial enzymes in transgenic plants offers an alternative system to fungal fermentation for large-scale production. Very high levels of expression are required to make the enzymes cost-effective. We tested several parameters to determine the best method for achieving high levels of expression for a fungal laccase gene. Transgenic maize plants were generated using an Agrobacterium-mediated system. The molecular parameters that induced the highest expression were the maize embryo-preferred globulin 1 promoter and targeting of the protein to the cell wall. Two independent transgenic events that yielded multiple clonal plants were characterized in detail. Independent transgenic events 01 and 03 contained two or one copies of T-DNA, respectively. Plants derived from a single transgenic event varied in expression level, and the variation in expression levels was heritable. Within the seed, expression in these plants was primarily within the embryo, and was associated with seed browning and limited germination. High oil germplasm was used to increase germination, as well as to assist in increasing expression 20-fold in five generations through breeding and selection.

  13. A New High-Level Gentamicin Resistance Gene, aph(2")-Id, in Enterococcus spp.

    PubMed Central

    Tsai, Shane F.; Zervos, Marcus J.; Clewell, Don B.; Donabedian, Susan M.; Sahm, Daniel F.; Chow, Joseph W.

    1998-01-01

    Enterococcus casseliflavus UC73 is a clinical blood isolate with high-level resistance to gentamicin. DNA preparations from UC73 failed to hybridize with intragenic probes for aac(6′)-Ie-aph(2")-Ia and aph(2")-Ic. A 4-kb fragment from UC73 was cloned and found to confer resistance to gentamicin in Escherichia coli DH5α transformants. Nucleotide sequence analysis revealed the presence of a 906-bp open reading frame whose deduced amino acid sequence had a region with homology to the aminoglycoside-modifying enzyme APH(2")-Ic and to the C-terminal domain of the bifunctional enzyme AAC(6′)-APH(2"). The gene is designated aph(2")-Id, and its observed phosphotransferase activity is designated APH(2")-Id. A PCR-generated intragenic probe hybridized to the genomic DNA from 17 of 118 enterococcal clinical isolates (108 with high-level gentamicin resistance) from five hospitals. All 17 were vancomycin-resistant Enterococcus faecium isolates, and pulsed-field typing revealed three distinct clones. The combination of ampicillin plus either amikacin or neomycin exhibited synergistic killing against E. casseliflavus UC73. Screening and interpretation of high-level aminoglycoside resistance in enterococci may need to be modified to include detection of APH(2")-Id. PMID:9593155

  14. Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes

    PubMed Central

    FUJII, Wataru; ONUMA, Asuka; YOSHIOKA, Shin; NAGASHIMA, Keisuke; SUGIURA, Koji; NAITO, Kunihiko

    2015-01-01

    The generation efficiencies of mutation-induced mice when using engineered zinc-finger nucleases (ZFNs) have been generally 10 to 20% of obtained pups in previous studies. The discovery of high-affinity DNA-binding modules can contribute to the generation of various kinds of novel artificial chromatin-targeting tools, such as zinc-finger acetyltransferases, zinc-finger histone kinases and so on, as well as improvement of reported zinc-finger recombinases and zinc-finger methyltransferases. Here, we report a novel ZFN pair that has a highly efficient mutation-induction ability in murine zygotes. The ZFN pair induced mutations in all obtained mice in the target locus, exon 17 of aminopeptidase Q gene, and almost all of the pups had biallelic mutations. This high efficiency was also shown in the plasmid DNA transfected in a cultured human cell line. The induced mutations were inherited normally in the next generation. The zinc-finger modules of this ZFN pair are expected to contribute to the development of novel ZF-attached chromatin-targeting tools. PMID:26460691

  15. Comparative Mitogenomics of the Genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) Revealed Conserved Gene Rearrangement and High Sequence Variations

    PubMed Central

    Ma, Zhihong; Yang, Xuefen; Bercsenyi, Miklos; Wu, Junjie; Yu, Yongyao; Wei, Kaijian; Fan, Qixue; Yang, Ruibin

    2015-01-01

    To understand the molecular evolution of mitochondrial genomes (mitogenomes) in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and compared with those of another four Odontobutis species. Our results displayed similar mitogenome features among species in genome organization, base composition, codon usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA cluster observed in mitogenomes of these five closely related freshwater sleepers suggests that this unique gene order is conserved within Odontobutis. Additionally, the present gene order and the positions of associated intergenic spacers of these Odontobutis mitogenomes indicate that this unusual gene rearrangement results from tandem duplication and random loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of sequence variation, mainly due to the differences of corresponding intergenic sequences in gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming a monophyletic group, and the interspecific phylogenetic relationships are associated with structural differences among their mitogenomes. The present study contributes to understanding the evolutionary patterns of Odontobutidae species. PMID:26492246

  16. Comparative Mitogenomics of the Genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) Revealed Conserved Gene Rearrangement and High Sequence Variations.

    PubMed

    Ma, Zhihong; Yang, Xuefen; Bercsenyi, Miklos; Wu, Junjie; Yu, Yongyao; Wei, Kaijian; Fan, Qixue; Yang, Ruibin

    2015-10-20

    To understand the molecular evolution of mitochondrial genomes (mitogenomes) in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and compared with those of another four Odontobutis species. Our results displayed similar mitogenome features among species in genome organization, base composition, codon usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA cluster observed in mitogenomes of these five closely related freshwater sleepers suggests that this unique gene order is conserved within Odontobutis. Additionally, the present gene order and the positions of associated intergenic spacers of these Odontobutis mitogenomes indicate that this unusual gene rearrangement results from tandem duplication and random loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of sequence variation, mainly due to the differences of corresponding intergenic sequences in gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming a monophyletic group, and the interspecific phylogenetic relationships are associated with structural differences among their mitogenomes. The present study contributes to understanding the evolutionary patterns of Odontobutidae species.

  17. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    PubMed

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  18. Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukaemia.

    PubMed

    Paulsson, Kajsa; An, Qian; Moorman, Anthony V; Parker, Helen; Molloy, Gael; Davies, Teresa; Griffiths, Mike; Ross, Fiona M; Irving, Julie; Harrison, Christine J; Young, Bryan D; Strefford, Jon C

    2009-03-01

    Promoter methylation is a common phenomenon in tumours, including haematological malignancies. In the present study, we investigated 36 cases of high hyperdiploid (>50 chromosomes) acute lymphoblastic leukaemia (ALL) with methylation-specific multiplex ligase-dependent probe amplification to determine the extent of aberrant methylation in this subgroup. The analysis, which comprised the promoters of 35 known tumour suppressor genes, showed that 16 genes displayed abnormal methylation in at least one case each. The highest number of methylated gene promoters seen in a single case was thirteen, with all but one case displaying methylation for at least one gene. The most common targets were ESR1 (29/36 cases; 81%), CADM1 (IGSF4, TSLC1; 25/36 cases; 69%), FHIT (24/36 cases; 67%) and RARB (22/36 cases; 61%). Interestingly, quantitative reverse transcription-polymerase chain reaction showed that although methylation of the CADM1 and RARB promoters resulted in the expected pattern of downregulation of the respective genes, no difference could be detected in FHIT expression between methylation-positive and -negative cases. Furthermore, TIMP3 was not expressed regardless of methylation status, showing that aberrant methylation does not always lead to gene expression changes. Taken together, our findings suggest that aberrant methylation of tumour suppressor gene promoters is a common phenomenon in high hyperdiploid ALL.

  19. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    SciTech Connect

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N.

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  20. Emory University: High-Throughput Protein-Protein Interaction Dataset for Lung Cancer-Associated Genes | Office of Cancer Genomics

    Cancer.gov

    To discover novel PPI signaling hubs for lung cancer, CTD2 Center at Emory utilized large-scale genomics datasets and literature to compile a set of lung cancer-associated genes. A library of expression vectors were generated for these genes and utilized for detecting pairwise PPIs with cell lysate-based TR-FRET assays in high-throughput screening format. Read the abstract.

  1. High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro

    NASA Astrophysics Data System (ADS)

    Qian, A. R.; Yang, P. F.; Hu, L. F.; Zhang, W.; Di, S. M.; Wang, Z.; Han, J.; Gao, X.; Shang, P.

    2010-09-01

    The effects of a high magnetic gradient environment (HMGE) on the cytoskeletal architecture and genes associated with the cytoskeleton in osteoblasts (MC3T3-E1 and MG-63 cells) were investigated using confocal microscopy, real-time polymerase chain reaction (PCR) and atomic force microscopy (AFM). The findings showed that, under diamagnetic levitation conditions, the architecture and average height of the cytoskeleton and surface roughness in osteoblasts were dramatically altered. HMGE affects cytoskeleton arrangement and cytoskeleton-associated gene expression.

  2. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species.

    SciTech Connect

    Li, J.; Romine, Margaret F.; Ward, M.

    2007-08-01

    A conserved cluster of chemotaxis genes was identified from the genome sequences of fifteen Shewanella species. An in-frame deletion of the cheA-3 gene, which is located in this cluster, was created in S. oneidensis MR-1 and the gene shown to be essential for chemotactic responses to anaerobic electron acceptors. The CheA-3 protein showed strong similarity to Vibrio cholerae CheA-2 and P. aeruginosa CheA-1, two proteins that are also essential for chemotaxis. The genes encoding these proteins were shown to be located in chemotaxis gene clusters closely related to the cheA-3-containing cluster in Shewanella species. The results of this study suggest that a combination of gene neighborhood and homology analyses may be used to predict which cheA genes are essential for chemotaxis in groups of closely related microorganisms.

  3. Concept development of housekeeping genes in the high-throughput sequencing era.

    PubMed

    Kai, Wei; Lei, Ma

    2017-02-20

    Housekeeping genes are typically constitutive genes that are required for the maintenance of basic cellular functions, and are stably expressed in all cells of an organism under all conditions and during all developmental stages. The definition and development of housekeeping genes reflect their essence and characteristics at different times. The present study reviews the concept development of housekeeping genes based on the technologies that quantify gene expression levels. We also analyze pig housekeeping genes by RNA-seq data, and discuss conceptual issues raised by the rapid progress of technologies and the growth of data. Our present study summarizes that housekeeping genes should be defined at different levels, and changing times will witness its conceptual development.

  4. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection.

    PubMed

    Beard, Cheryl E; Court, Leon; Boets, Annemie; Mourant, Roslyn; Van Rie, Jeroen; Akhurst, Raymond J

    2008-09-01

    Of 188 Australian Bacillus thuringiensis strains screened for genes encoding soluble insecticidal proteins by polymerase chain reaction/restriction-length fragment polymorphism (RFLP) analysis, 87% showed the presence of such genes. Although 135 isolates (72%) produced an RFLP pattern identical to that expected for vip3A genes, 29 isolates possessed a novel vip-like gene. The novel vip-like gene was cloned from B. thuringiensis isolate C81, and sequence analysis demonstrated that it was 94% identical to the vip3Ba1 gene. The new gene was designated vip3Bb2. Cell-free supernatants from both the B. thuringiensis strain C81 and from Escherichia coli expressing the Vip3Bb2 protein were toxic for the cotton bollworm, Helicoverpa armigera.

  5. Knowledge-driven analysis identifies a gene-gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations.

    PubMed

    Ma, Li; Brautbar, Ariel; Boerwinkle, Eric; Sing, Charles F; Clark, Andrew G; Keinan, Alon

    2012-01-01

    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene-gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein-protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected P(c) = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene-gene interaction in the European American cohorts from the Framingham Heart Study (P(c) = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; P(c) = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (P(c) = 0.004) and in the Hispanic American sample from MESA (P(c) = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene-gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations.

  6. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation.

    PubMed

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2009-05-01

    Salinity stress is one of the major factors which reduce crop plants growth and productivity resulting in significant economic losses worldwide. Therefore, it would be fruitful to isolate and functionally identify new salinity stress-induced genes for understanding the mechanism and developing salinity stress tolerant plants. Based on functional gene screening assay, we have isolated few salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs. Sequence analysis of three of these genes revealed homology to Ribosomal-L30E (RPL30E), Chlorophyll-a/b-binding protein (Chla/bBP) and FIDDLEHEAD (FDH). The salinity tolerance of these genes in bacteria was further confirmed by using another strain of E. coli (DH5alpha) transformants. The homology based computational modeling of these proteins suggested the high degree of conservation with the conserved domains of their homologous partners. The reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression of these cDNAs (except the FDH) was upregulated in pea plants in response to NaCl stress. We observed that there was no significant effect of Li(+) ion on the expression level of these genes, while an increase in response to K(+) ion was observed. Overall, this study provides an evidence for a novel function of these genes in high salinity stress tolerance. The PsFDH showed constitutive expression in planta suggesting that it can be used as constitutively expressed marker gene for salinity stress tolerance in plants. This study brings new direction in identifying novel function of unidentified genes in abiotic stress tolerance without previous knowledge of the genome sequence.

  7. Gene polymorphisms, apoptotic capacity and cancer risk.

    PubMed

    Imyanitov, Evgeny N

    2009-04-01

    Programmed cell death has been implicated in various aspects of cancer development. Apoptotic capacity is a subject of significant interindividual variations, which are largely attributed to hereditary traits. Single nucleotide polymorphisms (SNPs) located within cell death genes may influence cancer risk in various ways. Low activity of apoptosis may favor cancer development because of the failure to eliminate cellular clones carrying DNA damage and propensity to inflammation, but may also protect against malignancy due to preservation of antitumor immune cells. Phenotyping studies assessing cell death rate in cancer patients versus healthy controls are limited in number and produced controversial results. TP53 R72P polymorphism is the only SNP whose functional impact on apoptotic response has been replicated in independent investigations. Intriguingly, meta-analysis of TP53 genotyping studies has provided evidence for the association between apoptosis-deficient TP53 genotype and tumor susceptibility. Systematic analysis of cancer-predisposing relevance of other apoptotic gene SNPs remains to be done.

  8. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data

    PubMed Central

    Chang, Jing; Huang, Liya; Cao, Qing; Liu, Fang

    2016-01-01

    To identify potential key microRNAs (miRNAs) and their target genes for colorectal cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver metastasis tissues from eight CRC patients. Paired t-test and NOISeq separately were utilized to identify differentially expressed miRNAs (DE-miRNAs) and genes. Then, target genes with differential expression and opposite expression trends were identified for DE-miRNAs. Combined with tumor suppressor gene, tumor-associated gene, and TRANSFAC databases, CRC-restricted miRNAs were screened out based on miRNA-target pairs. Compared with normal tissues, there were 56 up- and 37 downregulated miRNAs in metastasis tissues, as well as eight up- and 30 downregulated miRNAs in tumor tissues. miRNA-1 was downregulated in tumor and metastasis tissues, while its target oncogenes TWIST1 and GATA4 were upregulated. Besides, miRNA-let-7f-1-3p was downregulated in tumor tissues, which also targeted TWIST1. In addition, miRNA-133b and miRNA-4458 were downregulated in tumor tissues, while their common target gene DUSP9 was upregulated. Conversely, miRNA-450-b-3p was upregulated in metastasis tissues, while its target tumor suppressor gene CEACAM7 showed downregulation. The identified CRC-restricted miRNAs might be implicated in cancer progression via their target genes, suggesting their potential usage in CRC treatment. PMID:27069368

  9. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    PubMed Central

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  10. Ultra High-Resolution Gene Centric Genomic Structural Analysis of a Non-Syndromic Congenital Heart Defect, Tetralogy of Fallot

    PubMed Central

    Bittel, Douglas C.; Zhou, Xin-Gang; Kibiryeva, Nataliya; Fiedler, Stephanie; O’Brien, James E.; Marshall, Jennifer; Yu, Shihui; Liu, Hong-Yu

    2014-01-01

    Tetralogy of Fallot (TOF) is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH) microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months). Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs) ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1) for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001). We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects. PMID:24498113

  11. The phenotypic patterns of essential hypertension are the key to identifying "high blood pressure" genes.

    PubMed

    Korner, P I

    2010-01-01

    hypertension provide targets for identifying high BP genes. Reading the genome from the phenotype will require new approaches, such as those used in developmental genetics. In addition, transgenic technology may help verify hypotheses and examine whether an observed effect is through single or multiple mechanisms. To obtain answers will require substantial collaborative efforts between physiologists and geneticists.

  12. elt-1, a gene encoding a Caenorhabditis elegans GATA transcription factor, is highly expressed in the germ lines with msp genes as the potential targets.

    PubMed

    Shim, Y H

    1999-10-31

    The Caenorhabditis elegans ELT-1 protein, a homolog of the vertebrate GATA transcription factor family, is a transcription activator that can recognize the GATA motif. We previously showed that the elt-1 mRNA was primarily expressed in C. elegans embryos. To examine whether the elt-1 mRNA in embryos is maternal, paternal or zygotic, Northern blot analysis was performed with RNA isolated from the C. elegans germ-line mutant strains, fem-2 (b245)lf, fem-3 (q20)gf, him-8 (e1489), and glp-4 (bn2). This analysis revealed that the high level of elt-1 mRNA in the C. elegans embryos resulted from either the maternal or the paternal transcription, rather than from the zygotic expression. These results further demonstrated that elt-1 was highly expressed in the germ-line of both sexes. To investigate the possible target genes for the ELT-1 protein in the germ line, the ELT-1 protein was expressed and tested for its binding specificity to the GATA motif that is present in the promoter region of the C. elegans major sperm protein genes. It was found that two conserved cis-elements, AGATCT and AGATAA, in the proximal promoter region of the msp-113 gene provided the best recognition site for ELT-1. Mutational analysis showed that the GATC core sequence was necessary for strong transactivation of the reporter gene, and that the combination of GATC and GATA motif resulted in a stronger transactivation by ELT-1 than either the duplicated GATC or GATA motif. These results suggest that the potential target for the ELT-1 protein in the germ-line may be one of the major sperm protein gene family.

  13. Population divergence and gene flow in an endangered and highly mobile seabird

    USGS Publications Warehouse

    Welch, A. J.; Fleischer, R. C.; James, H. F.; Wiley, A. E.; Ostrom, P. H.; Adams, J.; Duvall, F.; Holmes, N.; Hu, D.; Penniman, J.; Swindle, K. A.

    2012-01-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future.

  14. Multiplexed chemiluminescent assays in ArrayPlates for high-throughput measurement of gene expression

    NASA Astrophysics Data System (ADS)

    Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.

    2002-06-01

    Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.

  15. Local adaptation despite high gene flow in the waterfall-climbing Hawaiian goby, Sicyopterus stimpsoni.

    PubMed

    Moody, K N; Hunter, S N; Childress, M J; Blob, R W; Schoenfuss, H L; Blum, M J; Ptacek, M B

    2015-02-01

    Environmental heterogeneity can promote the emergence of locally adapted phenotypes among subpopulations of a species, whereas gene flow can result in phenotypic and genotypic homogenization. For organisms like amphidromous fishes that change habitats during their life history, the balance between selection and migration can shift through ontogeny, making the likelihood of local adaptation difficult to predict. In Hawaiian waterfall-climbing gobies, it has been hypothesized that larval mixing during oceanic dispersal counters local adaptation to contrasting topographic features of streams, like slope gradient, that can select for predator avoidance or climbing ability in juvenile recruits. To test this hypothesis, we used morphological traits and neutral genetic markers to compare phenotypic and genotypic distributions in recruiting juveniles and adult subpopulations of the waterfall-climbing amphidromous goby, Sicyopterus stimpsoni, from the islands of Hawai'i and Kaua'i. We found that body shape is significantly different between adult subpopulations from streams with contrasting slopes and that trait divergence in recruiting juveniles tracked stream topography more so than morphological measures of adult subpopulation differentiation. Although no evidence of population genetic differentiation was observed among adult subpopulations, we observed low but significant levels of spatially and temporally variable genetic differentiation among juvenile cohorts, which correlated with morphological divergence. Such a pattern of genetic differentiation is consistent with chaotic genetic patchiness arising from variable sources of recruits to different streams. Thus, at least in S. stimpsoni, the combination of variation in settlement cohorts in space and time coupled with strong postsettlement selection on juveniles as they migrate upstream to adult habitats provides the opportunity for morphological adaptation to local stream environments despite high gene flow.

  16. High-affinity L-arabinose transport operon. Gene product expression and mRNAs.

    PubMed

    Horazdovsky, B F; Hogg, R W

    1987-09-05

    Various portions of the "high-affinity" L-arabinose transport operon were cloned into the plasmid expression vector pKK223-3 and the operon-encoded protein products were identified. The results indicate that three proteins are encoded by this operon. The first is a 33,000 Mr protein that is the product of the promoter-proximal L-arabinose binding protein coding sequence, araF. A 52,000 Mr protein is encoded by sequence 3' to araF and has been assigned to the araG locus. The sequence 3' to araG encodes a 31,000 Mr protein that has been assigned to the araH locus. Both the araG and araH gene products are localized in the membrane fraction of the cell, implying a role in the membrane-associated complex of the high-affinity L-arabinose transport system. Nuclease S1 protection studies indicate that two operon message populations are present in the cell, a full-length operon transcript and a seven- to tenfold more abundant binding protein-specific message. The relative abundance of these two message populations correlates with the differential expression of the binding protein and the membrane-associated proteins of the transport system.

  17. An Innovative Plant Genomics and Gene Annotation Program for High School, Community College, and University Faculty

    PubMed Central

    Hilgert, Uwe; Nash, E. Bruce; Micklos, David A.

    2008-01-01

    Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day “Plant Genomics and Gene Annotation” workshop was held at Florida A&M University in Tallahassee, FL, to enhance participants' knowledge and understanding of plant molecular genetics and assist them in developing and honing their laboratory and computer skills. Florida A&M University is a historically black university with over 95% African-American student enrollment. Sixteen participants, including high school (56%) and community college faculty (25%), attended the workshop. Participants carried out in vitro and in silico experiments with maize, Arabidopsis, soybean, and food products to determine the genotype of the samples. Benefits of the workshop included increased awareness of plant biology research for high school and college level students. Participants completed pre- and postworkshop evaluations for the measurement of effectiveness. Participants demonstrated an overall improvement in their postworkshop evaluation scores. This article provides a detailed description of workshop activities, as well as assessment and long-term support for broad classroom implementation. PMID:18765753

  18. Novel, highly expressed late nodulin gene (LjNOD16) from Lotus japonicus

    SciTech Connect

    Kapranov, P.; Bruijn, F.J. de; Szczyglowski, K.

    1997-04-01

    We have isolated a Lotus japonicus cDNA corresponding to a highly abundant, late nodule-specific RNA species that encodes a polypeptide with a predicted molecular mass of 15.6 kD. The protein and its corresponding gene were designated NIj16 and LjNOD16, respectively. LjNOD16 was found to be expressed only in the infected cells of L. japonicus nodules. Related DNA sequences could be identified in the genomes of both Glycine max and Medicago sativa. In the latter, a homologous mRNA species was detected in the nodules. Unlike LiNOD16, its alfalfa homologs appear to represent low-abundance mRNA species. However, the proteins corresponding to the LjNOD16 and its alfalfa homolog could be detected at similar levels in nodules but not in roots of both legume species. The predicted amino acid sequence analysis of nodulin NIj16 revealed the presence of a long {alpha}-helical region and a positively charged C terminus. The former domain has a very high propensity to form a coiled-coil type structure, indicating that nodulin NIj16 may interact with an as-yet-unidentified protein target(s) in the nodule-infected cells. Homology searches revealed no significant similarities to any known sequences in the databases, with the exception of two related, anonymous Arabidopsis expressed sequence tags.

  19. Express Primer Tool for high-throughput gene cloning and expression

    SciTech Connect

    2002-12-01

    A tool to assist in the design of primers for DNA amplification. The Express Primer web-based tool generates primer sequences specifically for the generation of expression clones for both lab scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for simultaneous amplification of multiple target genes. The Express Primer Tool enables the user to specify various experimental parameters (e.g. optimal Tm, Tm range, maximum Tm difference) for single or multiple candidate sequence(s) in FASTA format input as a flat text (ASCII) file. The application generates condidate primers, selects optimal primer pairs, and writes the forward and reverse primers pairs to an Excel file that is suitable for electronic submission to a synthesis facility. The program parameters emphasize high-throughput but allow for target atrition at various stages of the project.

  20. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes.

    PubMed

    Desmond-Le Quéméner, Elie; Rimboud, Mickaël; Bridier, Arnaud; Madigou, Céline; Erable, Benjamin; Bergel, Alain; Bouchez, Théodore

    2016-08-01

    Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes.

  1. Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization.

    PubMed

    Segovia, Nathaly; Dosta, Pere; Cascante, Anna; Ramos, Victor; Borrós, Salvador

    2014-05-01

    The main limitation of gene therapy towards clinics is the lack of robust, safe and efficient gene delivery vectors. This paper describes new polycations for gene delivery based on poly(β-amino ester)s (pBAE) containing terminal oligopeptides. The authors developed oligopeptide-modified pBAE-pDNA nanoparticles that achieve better cellular viability and higher transfection efficacy than other end-modified pBAE and commercial transfection agents. Gene expression in highly permissive cell lines was remarkably high, but transfection efficiency in less-permissive cell lines was highly dependent on oligopeptide composition and nanoparticle formulation. Moreover, the use of selected oligopeptides in the pBAE formulation led to preferential intracellular localization of the particles. Particle analysis of highly efficient pBAE formulations revealed different particle sizes and charge features, which indicates chemical pseudotyping of the particle surface, related to the oligopeptide chemical nature. In conclusion, chemical modification at the termini of pBAE with amine-rich oligopeptides is a powerful strategy for developing delivery systems for future gene therapy applications.

  2. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping.

    PubMed

    Raudsepp, Terje; Lee, Eun-Joon; Kata, Srinivas R; Brinkmeyer, Candice; Mickelson, James R; Skow, Loren C; Womack, James E; Chowdhary, Bhanu P

    2004-02-24

    Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.

  3. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    PubMed Central

    Straccia, Marco; Garcia-Diaz Barriga, Gerardo; Sanders, Phil; Bombau, Georgina; Carrere, Jordi; Mairal, Pedro Belio; Vinh, Ngoc-Nga; Yung, Sun; Kelly, Claire M; Svendsen, Clive N; Kemp, Paul J; Arjomand, Jamshid; Schoenfeld, Ryan C; Alberch, Jordi; Allen, Nicholas D; Rosser, Anne E; Canals, Josep M

    2015-01-01

    A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening. PMID:26417608

  4. Risk Factors in Normal-Tension Glaucoma and High-Tension Glaucoma in relation to Polymorphisms of Endothelin-1 Gene and Endothelin-1 Receptor Type A Gene

    PubMed Central

    Wróbel-Dudzińska, Dominika; Kosior-Jarecka, Ewa; Łukasik, Urszula; Kocki, Janusz; Witczak, Agnieszka; Mosiewicz, Jerzy; Żarnowski, Tomasz

    2015-01-01

    The aim of the research is to analyse the influence of polymorphisms of endothelin-1 gene and endothelin-1 receptor type A gene on the clinical condition of patients with primary open angle glaucoma. Methods. 285 Polish patients took part in the research (160 normal-tension glaucoma and 125 high-tension glaucoma). DNA was isolated by standard methods and genotype distributions of four polymorphisms in genes encoding endothelin-1 (K198N) and endothelin-1 receptor type A polymorphisms (C1222T, C70G, and G231A) were determined. Genotype distributions were compared between NTG and HTG groups. The clinical condition of participants was examined for association with polymorphisms. Results. A similar frequency of occurrence of the polymorphic varieties of the studied genes was observed in patients with NTG and HTG. There is no relation between NTG risk factors and examined polymorphisms. NTG patients with TT genotype of K198N polymorphism presented with the lowest intraocular pressure in comparison to GG + GT genotype (p = 0.03). In NTG patients with CC genotype of C1222T polymorphism (p = 0.028) and GG of C70G polymorphism (p = 0.03) the lowest values of mean blood pressure were observed. Conclusions. The studied polymorphic varieties (K198N, C1222T) do have an influence on intraocular pressure as well as arterial blood pressure in NTG patients. PMID:26697209

  5. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  6. Localization of a highly conserved human potassium channel gene (NGK2-KV4-KCNC1) to chromosome 11p15

    SciTech Connect

    Ried, T.; Ward, D.C. ); Rudy, B.; Miera, V.S. de; Lau, D.; Sen, K. )

    1993-02-01

    Several genes (the Shaker or Sh gene family) encoding components of voltage-gated K[sub +] channels have been identified in various species. Based on sequence similarities Sh genes are classified into four groups or subfamilies. Mammalian genes of each one of these subfamilies also show high levels of sequence similarity to one of four related Drosophila genes: Shaker, Shab, Shaw, and Shal. Here we report the isolation of human cDNAs for a Shaw-related product (NGK2,KV2.1a) previously identified in rat and mice. A comparison of the nucleotide and deduced amino acid sequence of NGK2 in rodents and humans shows that this product is highly conserved in mammals; the human NGK2 protein shows over 99% amino acid sequence identity to its rodent homologue. The gene (NGK2-KV4; KCNC1) encoding NGK2 was mapped to human chromosome 11p15 by fluorescence in situ hybridization with the human NGK2 cDNAs. 65 refs., 2 figs., 1 tab.

  7. A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

    PubMed Central

    Yan, Lijie; Jackson, Andrew O.; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei

    2011-01-01

    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies. PMID:22031834

  8. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients.

  9. High Level Aminoglycoside Resistance and Distribution of Aminoglycoside Resistant Genes among Clinical Isolates of Enterococcus Species in Chennai, India

    PubMed Central

    Padmasini, Elango; Padmaraj, R.; Ramesh, S. Srivani

    2014-01-01

    Enterococci are nosocomial pathogen with multiple-drug resistance by intrinsic and extrinsic mechanisms. Aminoglycosides along with cell wall inhibitors are given clinically for treating enterococcal infections. 178 enterococcal isolates were analyzed in this study. E. faecalis is identified to be the predominant Enterococcus species, along with E. faecium, E. avium, E. hirae, E. durans, E. dispar and E. gallinarum. High level aminoglycoside resistance (HLAR) by MIC for gentamicin (GM), streptomycin (SM) and both (GM + SM) antibiotics was found to be 42.7%, 29.8%, and 21.9%, respectively. Detection of aminoglycoside modifying enzyme encoding genes (AME) in enterococci was identified by multiplex PCR for aac(6′)-Ie-aph(2′′)-Ia; aph(2′′)-Ib; aph(2′′)-Ic; aph(2′′)-Id and aph(3′)-IIIa genes. 38.2% isolates carried aac(6′)-Ie-aph(2′′)-Ia gene and 40.4% isolates carried aph(3′)-IIIa gene. aph(2′′)-Ib; aph(2′′)-Ic; aph(2′′)-Id were not detected among our study isolates. aac(6′)-Ie-aph(2′′)-Ia and aph(3′)-IIIa genes were also observed in HLAR E. durans, E. avium, E. hirae, and E. gallinarum isolates. This indicates that high level aminoglycoside resistance genes are widely disseminated among isolates of enterococci from Chennai. PMID:24672306

  10. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  11. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  12. Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.

    PubMed

    Pradervand, Sylvain; Paillusson, Alexandra; Thomas, Jérôme; Weber, Johann; Wirapati, Pratyaksha; Hagenbüchle, Otto; Harshman, Keith

    2008-05-01

    The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

  13. Identification of differentially expressed genes related to metabolic syndrome induced with high-fat diet in E3 rats.

    PubMed

    Lan, Xi; Li, Dongmin; Zhong, Bo; Ren, Juan; Wang, Xuan; Sun, Qingzhu; Li, Yue; Liu, Lee; Liu, Li; Lu, Shemin

    2015-02-01

    Understanding the genes differentially expressing in aberrant organs of metabolic syndrome (MetS) facilitates the uncovering of molecular mechanisms and the identification of novel therapeutic targets for the disease. This study aimed to identify differentially expressed genes related to MetS in livers of E3 rats with high-fat-diet-induced metabolic syndrome (HFD-MetS). E3 rats were fed with high-fat diet for 24 weeks to induce MetS. Then, suppression subtractive hybridization (SSH) technology was used to identify the genes differentially expressed between HFD-MetS and control E3 rat livers. Twenty positive recombinant clones were chosen randomly from forward subtractive library and sent to sequence. BLAST analysis in GenBank database was used to determine the property of each cDNA fragment. In total, 11 annotated genes, 3 ESTs, and 2 novel gene fragments were identified by SSH technology. The expression of four genes (Alb, Pip4k2a, Scd1, and Tf) known to be associated with MetS and other five genes (Eif1, Rnase4, Rps12, Rup2, and Tmsb4) unknown to be relevant to MetS was significantly up-regulated in the livers of HFD-MetS E3 rats compared with control rats using real-time quantitative PCR (RT-qPCR). By analyzing the correlations between the expression of these nine genes and serum concentrations of TG, Tch, HDL-C, and LDL-C, we found that there were significant positive correlations between TG and the expression of five genes (Alb, Eif1, Pip4k2a, Rps12, and Tmsb4x), Tch and three genes (Rnase4, Scd1, and Tmsb4x), and LDL-C and two genes (Rnase4 and Scd1), as well there were significant negative correlations between HDL-C and the expression of three genes (Rup2, Scd1, and Tf). This study provides important clues for unraveling the molecular mechanisms of MetS.

  14. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels

    PubMed Central

    Jiang, Xian-cheng; Bruce, Can; Mar, Jefferson; Lin, Min; Ji, Yong; Francone, Omar L.; Tall, Alan R.

    1999-01-01

    It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plasma of F2 homozygous PLTP–/– mice showed complete loss of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and partial loss of free cholesterol transfer activities. Moreover, the in vivo transfer of [3H]phosphatidylcholine ether from very-low-density proteins (VLDL) to HDL was abolished in PLTP–/– mice. On a chow diet, PLTP–/– mice showed marked decreases in HDL phospholipid (60%), cholesterol (65%), and apo AI (85%), but no significant change in non-HDL lipid or apo B levels, compared with wild-type littermates. On a high-fat diet, HDL levels were similarly decreased, but there was also an increase in VLDL and LDL phospholipids (210%), free cholesterol (60%), and cholesteryl ester (40%) without change in apo B levels, suggesting accumulation of surface components of TRL. Vesicular lipoproteins were shown by negative-stain electron microscopy of the free cholesterol– and phospholipid-enriched IDL/LDL fraction. Thus, PLTP is the major factor facilitating transfer of VLDL phospholipid into HDL. Reduced plasma PLTP activity causes markedly decreased HDL lipid and apoprotein, demonstrating the importance of transfer of surface components of TRL in the maintenance of HDL levels. Vesicular lipoproteins accumulating in PLTP–/– mice on a high-fat diet could influence the development of atherosclerosis. PMID:10079112

  15. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    PubMed Central

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  16. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype.

    PubMed

    Lieberman, Michal; Segev, Orit; Gilboa, Nehama; Lalazar, Avraham; Levin, Ilan

    2004-05-01

    A tomato EST sequence, highly homologous to the human and Arabidopsis thaliana UV-damaged DNA binding protein 1 (DDB1), was mapped to the centromeric region of the tomato chromosome 2. This region was previously shown to harbor the HP-1 gene, encoding the high pigment-1 ( hp-1) and the high pigment-1(w) ( hp-1(w)) mutant phenotypes. Recent results also show that the A. thaliana DDB1 protein interacts both genetically and biochemically with the protein encoded by DEETIOLATED1, a gene carrying three tomato mutations that are in many respects isophenotypic to hp-1: high pigment-2 ( hp-2), high pigment-2(j) ( hp-2(j)) and dark green ( dg). The entire coding region of the DDB1 gene was sequenced in an hp-1 mutant and its near-isogenic normal plant in the cv. Ailsa Craig background, and also in an hp-1(w) mutant and its isogenic normal plant in the GT breeding line background. Sequence analysis revealed a single A(931)-to-T(931) base transversion in the coding sequence of the DDB1 gene in the hp-1 mutant plants. This transversion results in the substitution of the conserved asparagine at position 311 to a tyrosine residue. In the hp-1(w) mutant, on the other hand, a single G(2392)-to-A(2392) transition was observed, resulting in the substitution of the conserved glutamic acid at position 798 to a lysine residue. The single nucleotide polymorphism that differentiates hp-1 mutant and normal plants in the cv. Ailsa Craig background was used to design a pyrosequencing genotyping system. Analysis of a resource F(2) population segregating for the hp-1 mutation revealed a very strong linkage association between the DDB1 locus and the photomorphogenic response of the seedlings, measured as hypocotyl length (25gene encoding the hp-1 and hp-1(w) mutant phenotypes.

  17. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library.

    PubMed

    Jacquiod, Samuel; Demanèche, Sandrine; Franqueville, Laure; Ausec, Luka; Xu, Zhuofei; Delmont, Tom O; Dunon, Vincent; Cagnon, Christine; Mandic-Mulec, Ines; Vogel, Timothy M; Simonet, Pascal

    2014-11-20

    A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events.

  18. SOR1, a gene required for photosensitizer and singlet oxygen resistance in Cercospora fungi, is highly conserved in divergent organisms.

    PubMed

    Ehrenshaft, M; Jenns, A E; Chung, K R; Daub, M E

    1998-03-01

    Filamentous Cercospora fungi are resistant to photosensitizing compounds that generate singlet oxygen. C. nicotianae photosensitizer-sensitive mutants were restored to full resistance by transformation with SOR1 (Singlet Oxygen Resistance 1), a gene recovered from a wild-type genomic library. SOR1 null mutants generated via targeted gene replacement confirmed the requirement for SOR1 in photosensitizer resistance. SOR1 RNA is present throughout the growth cycle. Although resistance to singlet oxygen is rare in biological systems, SOR1, a gene with demonstrated activity against singlet-oxygen-generating photosensitizers, is highly conserved in organisms from widely diverse taxa. The characterization of SOR1 provides an additional phenotype to this large group of evolutionarily conserved genes.

  19. High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice.

    PubMed

    Atshaves, Barbara P; McIntosh, Avery L; Storey, Stephen M; Landrock, Kerstin K; Kier, Ann B; Schroeder, Friedhelm

    2010-02-01

    Since liver fatty acid binding protein (L-FABP) facilitates uptake/oxidation of long-chain fatty acids in cultured transfected cells and primary hepatocytes, loss of L-FABP was expected to exacerbate weight gain and/or obesity in response to high dietary fat. Male and female wild-type (WT) and L-FABP gene-ablated mice, pair-fed a defined isocaloric control or high fat diet for 12 weeks, consumed equal amounts of food by weight and kcal. Male WT mice gained weight faster than their female WT counterparts regardless of diet. L-FABP gene ablation enhanced weight gain more in female than male mice-an effect exacerbated by high fat diet. Dual emission X-ray absorptiometry revealed high-fat fed male and female WT mice gained mostly fat tissue mass (FTM). L-FABP gene ablation increased FTM in female, but not male, mice-an effect also exacerbated by high fat diet. Concomitantly, L-FABP gene ablation decreased serum beta-hydroxybutyrate in male and female mice fed the control diet and, even more so, on the high-fat diet. Thus, L-FABP gene ablation decreased fat oxidation and sensitized all mice to weight gain as whole body FTM and LTM-with the most gain observed in FTM of control vs high-fat fed female L-FABP null mice. Taken together, these results indicate loss of L-FABP exacerbates weight gain and/or obesity in response to high dietary fat.

  20. Analysis of genetic interaction networks shows that alternatively spliced genes are highly versatile.

    PubMed

    Talavera, David; Sheoran, Ritika; Lovell, Simon C

    2013-01-01

    Alternative splicing has the potential to increase the diversity of the transcriptome and proteome. Where more than one transcript arises from a gene they are often so different that they are quite unlikely to have the same function. However, it remains unclear if alternative splicing generally leads to a gene being involved in multiple biological processes or whether it alters the function within a single process. Knowing that genetic interactions occur between functionally related genes, we have used them as a proxy for functional versatility, and have analysed the sets of genes of two well-characterised model organisms: Caenorhabditis elegans and Drosophila melanogaster. Using network analyses we find that few genes are functionally homogenous (only involved in a few functionally-related biological processes). Moreover, there are differences between alternatively spliced genes and genes with a single transcript; specifically, genes with alternatively splicing are, on average, involved in more biological processes. Finally, we suggest that factors other than specific functional classes determine whether a gene is alternatively spliced.

  1. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae.

    PubMed

    Sheng, Ping; Li, Yushan; Marshall, Sean D G; Zhang, Hongyu

    2015-07-21

    In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95%) of glycosyl hydrolase families including GH2 (24 genes), GH8 (27 genes), GH10 (19 genes), GH11 (14 genes) and GH36 (17 genes) families was retrieved, and certain sequences of GH2 (10.61%), GH8 (3.33%), and GH11 (18.42%) families had <60% identities with known sequences in GenBank, indicating their novelty. Based on phylogenetic analysis, sequences from hemicellulase families were related to enzymes from Bacteroidetes and Firmicutes. Fragments from cellulase family were most associated with the phylum of Proteobacteria. Furthermore, a full-length endo-xylanase gene was obtained, and the enzyme exhibited activity over a broad range of pH levels. Our results indicate that there are large number of cellulolytic and xylanolytic bacteria in the hindgut of H. parallela larvae, and these symbiotic bacteria play an important role in the degradation of roots and other organic matter for the host insect.

  2. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae

    PubMed Central

    Sheng, Ping; Li, Yushan; Marshall, Sean D. G.; Zhang, Hongyu

    2015-01-01

    In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95%) of glycosyl hydrolase families including GH2 (24 genes), GH8 (27 genes), GH10 (19 genes), GH11 (14 genes) and GH36 (17 genes) families was retrieved, and certain sequences of GH2 (10.61%), GH8 (3.33%), and GH11 (18.42%) families had <60% identities with known sequences in GenBank, indicating their novelty. Based on phylogenetic analysis, sequences from hemicellulase families were related to enzymes from Bacteroidetes and Firmicutes. Fragments from cellulase family were most associated with the phylum of Proteobacteria. Furthermore, a full-length endo-xylanase gene was obtained, and the enzyme exhibited activity over a broad range of pH levels. Our results indicate that there are large number of cellulolytic and xylanolytic bacteria in the hindgut of H. parallela larvae, and these symbiotic bacteria play an important role in the degradation of roots and other organic matter for the host insect. PMID:26197317

  3. High-performance gene expression module analysis tool and its application to chemical toxicity data.

    PubMed

    Fujibuchi, Wataru; Kim, Hyeryung; Okada, Yoshifumi; Taniguchi, Takeaki; Sone, Hideko

    2009-01-01

    Gene clustering is one of the main themes of data mining approaches in bioinformatics. Although it has the power to analyze gene function, interpretation of the results becomes increasingly difficult when the number of experiments (samples) exceeds hundreds or more. A new type of clustering called "biclustering," where genes and experiments are coclustered in a large-scale of gene expression data, has been extensively studied in the last decade. We have developed "SAMURAI," an original program that detects all the biclusters or "gene modules" whose genes have similar expression patterns to query profile using the ultrafast data mining algorithm called Linear-time Closed itemset Miner (LCM). Using chemical toxicity dataset from J&J rat liver experiments, we compiled an exhaustive dictionary of gene modules by searching datasets of gene modules with each chemical exposure experiment as query. Through the module analysis, we found that our program can detect up/down-regulated gene sets that significantly represent particular GO functions or KEGG pathways, thereby unraveling reactions and mechanisms common to different toxicochemical treatments of hepatocytes.

  4. Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis.

    PubMed

    Jia, Libin; Young, Marian F; Powell, John; Yang, Liming; Ho, Nicola C; Hotchkiss, Robert; Robey, Pamela Gehron; Francomano, Clair A

    2002-01-01

    Human bone marrow stromal cells (HBMSC) are pluripotent cells with the potential to differentiate into osteoblasts, chondrocytes, myelosupportive stroma, and marrow adipocytes. We used high-throughput DNA sequencing analysis to generate 4258 single-pass sequencing reactions (known as expressed sequence tags, or ESTs) obtained from the 5' (97) and 3' (4161) ends of human cDNA clones from a HBMSC cDNA library. Our goal was to obtain tag sequences from the maximum number of possible genes and to deposit them in the publicly accessible database for ESTs (dbEST of the National Center for Biotechnology Information). Comparisons of our EST sequencing data with nonredundant human mRNA and protein databases showed that the ESTs represent 1860 gene clusters. The EST sequencing data analysis showed 60 novel genes found only in this cDNA library after BLAST analysis against 3.0 million ESTs in NCBI's dbEST database. The BLAST search also showed the identified ESTs that have close homology to known genes, which suggests that these may be newly recognized members of known gene families. The gene expression profile of this cell type is revealed by analyzing both the frequency with which a message is encountered and the functional categorization of expressed sequences. Comparing an EST sequence with the human genomic sequence database enables assignment of an EST to a specific chromosomal region (a process called digital gene localization) and often enables immediate partial determination of intron/exon boundaries within the genomic structure. It is expected that high-throughput EST sequencing and data mining analysis will greatly promote our understanding of gene expression in these cells and of growth and development of the skeleton.

  5. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.

    PubMed

    Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh

    2016-04-01

    Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.

  6. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers.

    PubMed

    Köping-Höggård, M; Vårum, K M; Issa, M; Danielsen, S; Christensen, B E; Stokke, B T; Artursson, P

    2004-10-01

    Nonviral gene delivery systems based on conventional high-molecular-weight chitosans are efficient after lung administration in vivo, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow dissociation and release of plasmid DNA, resulting in a slow onset of action. We therefore developed highly effective nonviral gene delivery systems with improved physical properties from a series of chitosan oligomers, ranging in molecular weight from 1.2 to 10 kDa. First, we established structure-property relationships with regard to polyplex formation and in vivo efficiency after lung administration to mice. In a second step, we isolated chitosan oligomers from a preferred oligomer fraction to obtain fractions, ranging from 10 to 50-mers, of more homogeneous size distributions with polydispersities ranging from 1.01 to 1.09. Polyplexes based on chitosan oligomers dissociated more easily than those of a high-molecular-weight ultrapure chitosan (UPC, approximately a 1000-mer), and released pDNA in the presence of anionic heparin. The more easily dissociated polyplexes mediated a faster onset of action and gave a higher gene expression both in 293 cells in vitro and after lung administration in vivo as compared to the more stable UPC polyplexes. Already 24 h after intratracheal administration, a 120- to 260-fold higher luciferase gene expression was observed compared to UPC in the mouse lung in vivo. The gene expression in the lung was comparable to that of PEI (respective AUCs of 2756+/-710 and 3320+/-871 pg luciferase x days/mg of total lung protein). In conclusion, a major improvement of chitosan-mediated nonviral gene delivery to the lung was obtained by using polyplexes of well-defined chitosan oligomers. Polyplexes of oligomer fractions also had superior physicochemical properties to commonly used high-molecular-weight UPC.

  7. Genome-Wide Identification of New Reference Genes for qRT-PCR Normalization under High Temperature Stress in Rice Endosperm.

    PubMed

    Xu, Heng; Bao, Jian-Dong; Dai, Ji-Song; Li, Yongqing; Zhu, Ying

    2015-01-01

    qRT-PCR is one of the most popular approaches to analyze specific gene expression level, and stably expressed reference genes are essential to obtain reliable results. However, many reference genes are only stable under certain circumstances and different reference genes might be required in different experiments. High temperature is a common stress that affects rice endosperm development and it has become a hot topic recently. Although study about reference genes at different developmental stages in rice has been reported, these genes may not be suitable to study high temperature mediated responses especially in endosperm. In our quest for proper reference genes to quantify gene expression in rice endosperm under high temperature, we studied 6 candidate genes selected from the transcriptome data and 11 housekeeping genes. All genes were analyzed with qRT-PCR and the expression stability was assessed with software geNorm and NormFinder. Fb15 and eIF-4a were identified as the two most stable genes in endosperm at different developmental stages, while high temperature treatment has a least effect on expression of Fb15 and UBQ5 in rice endosperm. Our results provide some good candidate reference genes for qRT-PCR normalization in rice endosperm under different temperatures.

  8. Angiotensin II receptor 1 gene variants are associated with high-altitude pulmonary edema risk.

    PubMed

    Jin, Tianbo; Ren, Yongchao; Zhu, Xikai; Li, Xun; Ouyang, Yongri; He, Xue; Zhang, Zhiying; Zhang, Yuan; Kang, Longli; Yuan, Dongya

    2016-11-22

    Previous studies demonstrated that Angiotensin II Receptor 1 (AGTR1) may play an important role in the development of high-altitude pulmonary edema. We envisaged a role for AGTR1 gene variants in the pathogenesis of HAPE and investigated their potential associations with HAPE in a Han Chinese population. We genotyped seven AGTR1 polymorphisms in 267 patients with diagnosed HAPE and 304 controls and evaluated their association with risk of HAPE. Statistically significant associations were found for the single nucleotide polymorphisms (SNPs) rs275651 (p = 0.017; odds ratio [OR] = 0.65) and rs275652 (p = 0.016; OR = 0.64). Another SNP rs10941679 showed a marginally significant association after adjusting for age and sex in the additive genetic model (adjusted OR = 1.44, 95% CI = 1.01-2.04, p = 0.040). Haplotype analysis confirmed that the haplotype "AG" was associated with a 35% reduction in the risk of developing HAPE, while the haplotype "AA" increased the risk of developing HAPE by 44%. These results provide the first evidence linking genetic variations in AGTR1 with HAPE risk in Han Chinese individuals.

  9. Performance comparison of laying hens segregating for the frizzle gene under thermoneutral and high ambient temperatures.

    PubMed

    Zerjal, T; Gourichon, D; Rivet, B; Bordas, A

    2013-06-01

    The effect on thermotolerance of the incompletely dominant frizzle (F) gene, which causes feather curling and feather mass reduction, was investigated in 281 laying hens that were homozygous for the frizzle mutation (FF), heterozygous (FN), or normally feathered (NN). One-half of the birds were kept under standard conditions (22°C) and half were exposed to high ambient temperatures (32°C) between 24 and 46 wk of age. Egg production, egg quality, feed efficiency, and dissection traits were recorded and compared. At standard conditions, egg production and quality traits did not differ among the 3 genotypes, whereas feed efficiency was lower for the homozygous birds. Under heat stress conditions, the superiority of the FF hens was evident for all egg quantity and quality traits. No significant difference was measured between heterozygous carriers and normally feathered hens, indicating that the incomplete dominant frizzle mutation behaved as a recessive mutation regarding heat tolerance. From this study, we deduced that the F mutation in its homozygous state has a beneficial effect in decreasing heat stress in poultry production, and it could be particularly advantageous in tropical countries where average temperatures are never too low to negatively affect feed efficiency.

  10. High prevalence of an anti-hypertriglyceridemic variant of the MLXIPL gene in Central Asia.

    PubMed

    Nakayama, Kazuhiro; Yanagisawa, Yoshiko; Ogawa, Ayumi; Ishizuka, Yuumi; Munkhtulga, Lkhagvasuren; Charupoonphol, Phitaya; Supannnatas, Somjit; Kuartei, Stevenson; Chimedregzen, Ulziiburen; Koda, Yoshiro; Ishida, Takafumi; Kagawa, Yasuo; Iwamoto, Sadahiko

    2011-12-01

    MLXIPL is a transcription factor integral to the regulation of glycolysis and lipogenesis in the liver. Common variants of the MLXIPL gene (MLXIPL) are known to influence plasma triglyceride levels in people of European descent. As MLXIPL has a key role in energy storage, genetic variations of the MLXIPL may be relevant to physiological adaptations to nutritional stresses that have occurred during the evolution of modern humans. In the present study, we assessed the phenotypic consequences of the Q241H variant of MLXIPL in populations of Asian and Oceanian origin and also surveyed the prevalence of Q241H variant in populations worldwide. Multiple linear regression models based on 2373 individuals of Asian origin showed that the H allele was significantly associated with decreased concentrations of plasma triglycerides (P=0.0003). Direct genotyping of 1455 individuals from Africa, Asia and Oceania showed that the triglyceride-lowering H allele was found at quite low frequencies (0.00-0.16) in most of the populations examined. The exceptions were some Central Asian populations, including Mongolians, Tibetans and Uyghurs, which exhibited much higher frequencies of the H allele (0.21-0.26). The high prevalence of the H allele in Central Asia implies that the Q241H variant of MLXIPL might have been significant for utilization of carbohydrates and fats in the common ancestors of these populations, who successfully adapted to the environment of Central Asia by relying on nomadic livestock herding.

  11. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  12. High gene flow between alternative morphs and the evolutionary persistence of facultative paedomorphosis

    PubMed Central

    Oromi, Neus; Michaux, Johan; Denoël, Mathieu

    2016-01-01

    Paedomorphosis and metamorphosis are two major developmental processes that characterize the evolution of complex life cycles in many lineages. Whereas these processes were fixed in some taxa, they remained facultative in others, with alternative phenotypes expressed in the same populations. From a genetic perspective, it is still unknown whether such phenotypes form a single population or whether they show some patterns of isolation in syntopy. This has deep implications for understanding the evolution of the phenotypes, i.e. towards their persistence or their fixation and speciation. Newts and salamanders are excellent models to test this hypothesis because they exhibit both developmental processes in their populations: the aquatic paedomorphs retain gills, whereas the metamorphs are able to colonize land. Using microsatellite data of coexisting paedomorphic and metamorphic palmate newts (Lissotriton helveticus), we found that they formed a panmictic population, which evidences sexual compatibility between the two phenotypes. The high gene flow could be understood as an adaptation to unstable habitats in which phenotypic plasticity is favored over the fixation of developmental alternatives. This makes then possible the persistence of a polyphenism: only metamorphosis could be maintained in case of occasional drying whereas paedomorphosis could offer specific advantages in organisms remaining in water. PMID:27534370

  13. Angiotensin II receptor 1 gene variants are associated with high-altitude pulmonary edema risk

    PubMed Central

    Zhu, Xikai; Li, Xun; Ouyang, Yongri; He, Xue; Zhang, Zhiying; Zhang, Yuan; Kang, Longli; Yuan, Dongya

    2016-01-01

    Previous studies demonstrated that Angiotensin II Receptor 1 (AGTR1) may play an important role in the development of high-altitude pulmonary edema. We envisaged a role for AGTR1 gene variants in the pathogenesis of HAPE and investigated their potential associations with HAPE in a Han Chinese population. We genotyped seven AGTR1 polymorphisms in 267 patients with diagnosed HAPE and 304 controls and evaluated their association with risk of HAPE. Statistically significant associations were found for the single nucleotide polymorphisms (SNPs) rs275651 (p = 0.017; odds ratio [OR] = 0.65) and rs275652 (p = 0.016; OR = 0.64). Another SNP rs10941679 showed a marginally significant association after adjusting for age and sex in the additive genetic model (adjusted OR = 1.44, 95% CI = 1.01-2.04, p = 0.040). Haplotype analysis confirmed that the haplotype “AG” was associated with a 35% reduction in the risk of developing HAPE, while the haplotype “AA” increased the risk of developing HAPE by 44%. These results provide the first evidence linking genetic variations in AGTR1 with HAPE risk in Han Chinese individuals. PMID:27732943

  14. High-Throughput Screening for Spermatogenesis Candidate Genes in the AZFc Region of the Y Chromosome by Multiplex Real Time PCR Followed by High Resolution Melting Analysis

    PubMed Central

    Alechine, Evguenia; Corach, Daniel

    2014-01-01

    Microdeletions in the AZF region of the Y chromosome are among the most frequent genetic causes of male infertility, although the specific role of the genes located in this region is not fully understood. AZFa and AZFb deletions impair spermatogenesis since no spermatozoa are found in the testis. Deletions of the AZFc region, despite being the most frequent in azoospermic patients, do not correlate with spermatogenic failure. Therefore, the aim of this work was to develop a screening method to ascertain the presence of the main spermatogenesis candidate genes located in the AZFc region in the light of the identification of those responsible for spermatogenic failure. DAZ, CDY, BPY2, PRY, GOLGA2LY and CSGP4LY genes were selected on the basis of their location in the AZFc region, testis-only expression, and confirmed or predicted protein codification. AMEL and SRY were used as amplification controls. The identification of Real Time PCR products was performed by High Resolution Melting analysis with SYTO 9 as intercalating dye. The herein described method allows a rapid, simple, low-cost, high-throughput screening for deletions of the main AZFc genes in patients with spermatogenic failure. This provides a strategy that would accelerate the identification of spermatogenesis candidate genes in larger populations of patients with non-obstructive idiopathic azoospermia. PMID:24828879

  15. High-throughput screening for spermatogenesis candidate genes in the AZFc region of the Y chromosome by multiplex real time PCR followed by high resolution melting analysis.

    PubMed

    Alechine, Evguenia; Corach, Daniel

    2014-01-01

    Microdeletions in the AZF region of the Y chromosome are among the most frequent genetic causes of male infertility, although the specific role of the genes located in this region is not fully understood. AZFa and AZFb deletions impair spermatogenesis since no spermatozoa are found in the testis. Deletions of the AZFc region, despite being the most frequent in azoospermic patients, do not correlate with spermatogenic failure. Therefore, the aim of this work was to develop a screening method to ascertain the presence of the main spermatogenesis candidate genes located in the AZFc region in the light of the identification of those responsible for spermatogenic failure. DAZ, CDY, BPY2, PRY, GOLGA2LY and CSGP4LY genes were selected on the basis of their location in the AZFc region, testis-only expression, and confirmed or predicted protein codification. AMEL and SRY were used as amplification controls. The identification of Real Time PCR products was performed by High Resolution Melting analysis with SYTO 9 as intercalating dye. The herein described method allows a rapid, simple, low-cost, high-throughput screening for deletions of the main AZFc genes in patients with spermatogenic failure. This provides a strategy that would accelerate the identification of spermatogenesis candidate genes in larger populations of patients with non-obstructive idiopathic azoospermia.

  16. Developing Pedagogical Tools to Improve Teaching Multiple Models of the Gene in High School

    ERIC Educational Resources Information Center

    Auckaraaree, Nantaya

    2013-01-01

    Multiple models of the gene are used to explore genetic phenomena in scientific practices and in the classroom. In genetics curricula, the classical and molecular models are presented in disconnected domains. Research demonstrates that, without explicit connections, students have difficulty developing an understanding of the gene that spans…

  17. Changes in Expression of Genes Regulating Airway Inflammation Following a High-Fat Mixed Meal in Asthmatics

    PubMed Central

    Li, Qian; Baines, Katherine J.; Gibson, Peter G.; Wood, Lisa G.

    2016-01-01

    Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma subjects. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthmatics. Subjects with asthma (n = 11) and healthy controls (n = 8) consumed a high-fat/energy meal, containing total energy (TE) of 3846 kJ and 48 g of total fat (20.5 g saturated). Sputum was induced at 0 and 4 h, and gene expression was examined by microarray and quantitative real-time PCR (qPCR). Following the high fat dietary challenge, 168 entities were significantly differentially expressed greater than >1.5 fold in subjects with asthma, whereas, in healthy controls, only 14 entities were differentially expressed. Of the 168 genes that were changed in asthma, several biological processes were overrepresented, with 25 genes involved in “immune system processes”. qPCR confirmed that S100P, S100A16, MAL and MUC1 were significantly increased in the asthma group post-meal. We also observed a strong correlation and a moderate correlation between the change in NLRP12 and S100A16 gene expression at 4 h compared to baseline, and the change in total and saturated non-esterified plasma fatty acid levels at 2 h compared to baseline. In summary, our data identifies differences in inflammatory gene expression that may contribute to increased airway neutrophilia following a high fat meal in subjects with asthma and may provide useful therapeutic targets for immunomodulation. This may be particularly relevant to obese asthmatics, who are habitually consuming diets with a high fat content. PMID:26751474

  18. High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources.

    PubMed

    Hideno, Akihiro; Inoue, Hiroyuki; Fujii, Tatsuya; Yano, Shinichi; Tsukahara, Kenichiro; Murakami, Katsuji; Yunokawa, Harunobu; Sawayama, Shigeki

    2013-06-01

    The gene expression of a cellulase-producing fungus, Acremonium cellulolyticus, was investigated after culturing with three different carbon sources: glycerol, lactose, and Solka-Floc powdered cellulose (SF). High-coverage gene expression profiling (HiCEP) analysis, a method requiring no prior sequence knowledge, was used to screen genes upregulated at the early stage of cellulase production. SF was used as a strong inducer of cellulase production, lactose was used as an inducer of the expression of cellulase genes at the early stage of the culture, and glycerol was used as a negative control. Approximately 15,000 transcript-derived fragments (TDFs) were detected in each sample prepared from the culture grown for 16 h. Based on the expression profiles of the cultured cells, 36 fragments upregulated in both the SF and lactose cultures were selected and sequenced. The deduced gene products of 31 TDFs were likely related to biomass degradation, sugar metabolism, transcriptional regulation, protein modification and metabolism, cell wall recycling, fatty acid and polyketide biosynthesis, and other functions. Quantitative real-time reverse-transcriptase polymerase chain reaction analysis verified that almost all of the transcripts obtained by HiCEP analysis were upregulated in the SF and lactose cultures grown for 18 h. Some of the TDFs in the SF culture were further upregulated over the course of 72 h. The gene products from these TDFs would provide insight into improving the cellulase productivity of A. cellulolyticus.

  19. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements.

    PubMed

    Dybvig, K; Sitaraman, R; French, C T

    1998-11-10

    The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.

  20. Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters.

    PubMed Central

    Polidoros, A N; Scandalios, J G

    1998-01-01

    The Cat3 gene of maize exhibits a transcriptionally regulated circadian rhythm. In the present study we examined the following: (1) the extent of the circadian Cat3 expression between maize genotypes of diverse origin; (2) the functional significance of a Tourist transposable element located in the Cat3 promoter of the inbred line W64A, which harbors putative regulatory elements (GATA repeat, CCAAT boxes) shown to be involved in the light induction and circadian regulation of the Arabidopsis CAB2, as well as other plant genes; and (3) aspects of the physiological role of CAT-3 in maize metabolism. Results confirm that the circadian Cat3 expression is a general phenomenon in maize. Regulation of Cat3 gene expression is not dependent on the presence of the Tourist element in the promoter of the gene nor on the presence of motifs similar to those found significant in the circadian expression of the Arabidopsis CAB2 gene. Structural diversity was revealed in the Cat3 promoters of maize genotypes of diverse origins. However, highly conserved regions with putative regulatory motifs were identified. Relevance of the conserved regions to the circadian regulation of the gene is discussed. Possible physiological roles of CAT-3 are suggested. PMID:9584112

  1. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    PubMed Central

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  2. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora.

    PubMed

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng; Guo, Suxia

    2016-04-07

    Alcaligenes faecalisNBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides.

  3. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora

    PubMed Central

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng

    2016-01-01

    Alcaligenes faecalis NBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  4. Hepatic Gene Expression Related to Lower Plasma Cholesterol in Hamsters Fed High Fat Diets Supplemented with Blueberry Pomace and Extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed plasma lipid profiles, and genes related to cholesterol and bile acid metabolism, and inflammation in livers as well as adipose tissue from Syrian Golden hamsters fed high-fat diets supplemented with blueberry (BB) pomace byproducts including 8% dried whole blueberry peels (BBPWHL), 2% d...

  5. Global Gene Expression Responses to Low- or High-Dose Radiation in a Human Three-Dimensional Tissue Model

    PubMed Central

    Mezentsev, Alexandre; Amundson, Sally A.

    2011-01-01

    Accumulating data suggest that the biological responses to high and low doses of radiation are qualitatively different, necessitating the direct study of low-dose responses to better understand potential risks. Most such studies have used two-dimensional culture systems, which may not fully represent responses in three-dimensional tissues. To gain insight into low-dose responses in tissue, we have profiled global gene expression in EPI-200, a three-dimensional tissue model that imitates the structure and function of human epidermis, at 4, 16 and 24 h after exposure to high (2.5 Gy) and low (0.1 Gy) doses of low-LET protons. The most significant gene ontology groups among genes altered in expression were consistent with effects observed at the tissue level, where the low dose was associated with recovery and tissue repair, while the high dose resulted in loss of structural integrity and terminal differentiation. Network analysis of the significantly responding genes suggested that TP53 dominated the response to 2.5 Gy, while HNF4A, a novel transcription factor not previously associated with radiation response, was most prominent in the low-dose response. HNF4A protein levels and phosphorylation were found to increase in tissues and cells after low- but not high-dose irradiation. PMID:21486161

  6. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    PubMed

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

  7. High-Throughput Sequence Analysis of Turbot (Scophthalmus maximus) Transcriptome Using 454-Pyrosequencing for the Discovery of Antiviral Immune Genes

    PubMed Central

    Pereiro, Patricia; Balseiro, Pablo; Romero, Alejandro; Dios, Sonia; Forn-Cuni, Gabriel; Fuste, Berta; Planas, Josep V.; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio

    2012-01-01

    Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an

  8. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells.

    PubMed

    Kong, Lingdan; Alves, Carla S; Hou, Wenxiu; Qiu, Jieru; Möhwald, Helmuth; Tomás, Helena; Shi, Xiangyang

    2015-03-04

    We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene. We show that all vectors are capable of transfecting the hMSCs with both pDNAs. Gene transfection using pEGFPLuc was demonstrated by quantitative Luc activity assay and qualitative evaluation by fluorescence microscopy. For the transfection with hBMP-2, the gene delivery efficiency was evaluated by monitoring the hBMP-2 concentration and the level of osteogenic differentiation of the hMSCs via alkaline phosphatase activity, osteocalcin secretion, calcium deposition, and von Kossa staining assays. Our results reveal that the stem cell gene delivery efficiency is largely dependent on the composition and the surface functionality of the dendrimer-based vectors. The coexistence of RGD and AuNPs rendered the designed dendrimeric vector with specific stem cell binding ability likely via binding of integrin receptor on the cell surface and improved three-dimensional conformation of dendrimers, which is beneficial for highly efficient and specific stem cell gene delivery applications.

  9. Hydrodynamic delivery of FGF21 gene alleviates obesity and fatty liver in mice fed a high-fat diet.

    PubMed

    Gao, Mingming; Ma, Yongjie; Cui, Ran; Liu, Dexi

    2014-07-10

    FGF21 is a secreted protein that plays critical roles in regulating glucose and lipid metabolism. In this study, we evaluated the effects of FGF21 gene transfer on C57BL/6 mice fed a high fat diet (HFD). We demonstrate that transfer of the FGF21 gene using a hydrodynamics-based procedure increased mRNA levels of FGF21 exclusively in the liver, consequently generating a sustained high level of FGF21 protein in blood that peaked at 500 ng/ml 1 day after injection, leading to a variety of beneficial effects including blockade of HFD-induced obesity, alleviation of fatty liver and improvement in glucose homeostasis. These effects were associated with altered expression of Ucp1, Dio2, Pgc1α, Pparγ2, Mgat1, F4/80, Mcp1 and Tnfα, which are involved in thermogenesis, lipogenesis and chronic inflammation in the liver and adipose tissues. Transfer of the FGF21 gene in HFD-induced obese mice greatly increased the expression of thermogenic genes in adipose tissue, resulting in similar improvements in systemic metabolism including reduction of adiposity, alleviation of fatty liver and attenuation of insulin resistance. Mechanistic studies on the effects of FGF21 gene transfer in lean mice revealed that mice transferred with FGF21 gene displayed suppressed lipogenesis in the liver and enhanced thermogenesis in brown adipose tissue which was coincident with a significant improvement in glucose tolerance. Collectively, our results suggest that transfer of the FGF21 gene could be considered a promising approach for treating obesity and its complications.

  10. In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor.

    PubMed Central

    Alvarez-Maya, I.; Navarro-Quiroga, I.; Meraz-Ríos, M. A.; Aceves, J.; Martinez-Fong, D.

    2001-01-01

    BACKGROUND: Recently, we synthesized a nonviral gene vector capable of transfecting cell lines taking advantage of neurotensin (NT) internalization. The vector is NT cross-linked with poly-L-lysine, to which a plasmid DNA was bound to form a complex (NT-polyplex). Nigral dopamine neurons are able to internalize NT, thus representing a target for gene transfer via NT-polyplex. This hypothesis was tested here using reporter genes encoding green fluorescent protein or chloramphenicol acetyl transferase. MATERIALS AND METHODS: NT-polyplex was injected into the substantia nigra. Double immunofluorescence labeling was used to reveal the cell type involved in the propidium iodide-labeled polyplex internalization and reporter gene expression. RESULTS: Polyplex internalization was observed within dopamine neurons but not within glial cells, and was prevented by both hypertonic sucrose solution and SR-48692, a selective nonpeptide antagonist of NT receptors. Reporter gene expression was observed in dopamine neurons from 48 hr up to 15 days after NT-polyplex injection, and was prevented by SR-48692. However, no expression was seen when the NT-polyplex was injected into the ansiform lobule of the cerebellum, which contains low- but not high-affinity NT receptors. Neither internalization nor expression was observed in cultured glial cells, despite the NT-polyplex binding to those cells that was prevented by levocabastine, a low-affinity NT receptor antagonist. CONCLUSIONS: These results suggest that high-affinity NT receptors mediate the uptake of NT-polyplex with the subsequent reporter gene expression in vivo. NT polyfection may be used to transfer genes of physiologic interest to nigrostriatal dopamine neurons, and to produce transgenic animal models of dopamine-related diseases. PMID:11471555

  11. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis.

    PubMed

    Nakajima, Keisuke; Yaoita, Yoshio

    2015-01-16

    Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3'UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3'UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf). In contrast, TALEN mRNAs without this 3'UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT) stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  12. High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer

    PubMed Central

    Kimbung, Siker; Lettiero, Barbara; Feldt, Maria; Bosch, Ana; Borgquist, Signe

    2016-01-01

    There is sufficient evidence that statins have a protective role against breast cancer proliferation and recurrence, but treatment predictive biomarkers are lacking. Breast cancer cell lines displaying diverse sensitivity to atorvastatin were subjected to global transcriptional profiling and genes significantly altered by statin treatment were identified. Atorvastatin treatment strongly inhibited proliferation in estrogen receptor (ER) negative cell lines and a commensurate response was also evident on the genome-wide transcriptional scale, with ER negative cells displaying a robust deregulation of genes involved in the regulation of cell cycle progression and apoptosis. Interestingly, atorvastatin upregulated genes involved in the cholesterol biosynthesis pathway in all cell lines, irrespective of sensitivity to statin treatment. However, the level of pathway induction; measured as the fold change in transcript levels, was inversely correlated to the effect of statin treatment on cell growth. High expression of cholesterol biosynthesis genes before treatment was associated with resistance to statin therapy in cell lines and clinical biopsies. Furthermore, high expression of cholesterol biosynthesis genes was independently prognostic for a shorter recurrence-free and overall survival, especially among ER positive tumors. Dysregulation of cholesterol biosynthesis is therefore predictive for both sensitivity to anti-cancer statin therapy and prognosis following primary breast cancer diagnosis. PMID:27458152

  13. Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH–Based Screen

    PubMed Central

    Joyce, Eric F.; Williams, Benjamin R.; Xie, Tiao; Wu, C.-ting

    2012-01-01

    The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate “pairing promoting genes” and candidate “anti-pairing genes,” providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing. PMID:22589731

  14. Diversity of the chlorite dismutase gene in low and high organic carbon rhizosphere soil colonized by perchlorate-reducing bacteria.

    PubMed

    Struckhoff, Garrett C; Livermore, Joshua A; Parkin, Gene F

    2013-01-01

    Chlorite dismutase (cld) is an essential enzyme in the biodegradation of perchlorate. The objective of this study was to determine the change in sequence diversity of the cld gene, and universal bacterial 16S rRNA genes, in soil samples under varying conditions of organic carbon, bioaugmentation, and plant influence. The cld gene diversity was not different between high organic carbon (HOC) and low organic carbon (LOC) soil. Combining results from HOC and LOC soil, diversity of the cld gene was decreased in soil that had been bioaugmented or planted. However, with both bioaugmentation and planting the cld diversity was not decreased. These observations were repeated when focusing on LOC soil. However, in HOC soil the cld diversity was not affected by reactor treatment. General bacterial diversity as measured with 16S rRNA was significantly greater in HOC soil than in LOC soil, but no significant difference was observed between reference soil and planted or bioaugmented soil. Different sequences of the cld gene occur in different species of microorganisms. In LOC soil, combining bioaugmentation and planting results in a highly diverse population of perchlorate degraders. This diverse population will be more resilient and is desirable where perchlorate reduction is a critical remediation process. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  15. Highly efficient retinal gene delivery with helper-dependent adenoviral vectors

    PubMed Central

    Lam, Simon; Cao, Huibi; Wu, Jing; Duan, Rongqi; Hu, Jim

    2015-01-01

    There have been significant advancements in the field of retinal gene therapy in the past several years. In particular, therapeutic efficacy has been achieved in three separate human clinical trials conducted to assess the ability of adeno-associated viruses (AAV) to treat of a type of Leber’s congenital amaurosis caused by RPE65 mutations. However, despite the success of retinal gene therapy with AAV, challenges remain for delivering large therapeutic genes or genes requiring long DNA regulatory elements for controlling their expression. For example, Stargardt’s disease, a form of juvenile macular degeneration, is caused by defects in ABCA4, a gene that is too large to be packaged in AAV. Therefore, we investigated the ability of helper dependent adenovirus (HD-Ad) to deliver genes to the retina as it has a much larger transgene capacity. Using an EGFP reporter, our results showed that HD-Ad can transduce the entire retinal epithelium of a mouse using a dose of only 1 × 105 infectious units and maintain transgene expression for at least 4 months. The results demonstrate that HD-Ad has the potential to be an effective vector for the gene therapy of the retina. PMID:26161435

  16. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis

    SciTech Connect

    Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; Rautengarten, Carsten; Liwanag, April J.M.; Loqué, Dominique; Scheller, Henrik V.

    2014-12-10

    Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in

  17. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis

    DOE PAGES

    Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; ...

    2014-12-10

    Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested ifmore » overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while

  18. PCR Primers to Study the Diversity of Expressed Fungal Genes Encoding Lignocellulolytic Enzymes in Soils Using High-Throughput Sequencing

    PubMed Central

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the

  19. Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria)

    PubMed Central

    Muir, A P; Biek, R; Thomas, R; Mable, B K

    2014-01-01

    Both environmental and genetic influences can result in phenotypic variation. Quantifying the relative contributions of local adaptation and phenotypic plasticity to phenotypes is key to understanding the effect of environmental variation on populations. Identifying the selective pressures that drive divergence is an important, but often lacking, next step. High gene flow between high- and low-altitude common frog (Rana temporaria) breeding sites has previously been demonstrated in Scotland. The aim of this study was to assess whether local adaptation occurs in the face of high gene flow and to identify potential environmental selection pressures that drive adaptation. Phenotypic variation in larval traits was quantified in R. temporaria from paired high- and low-altitude sites using three common temperature treatments. Local adaptation was assessed using QST–FST analyses, and quantitative phenotypic divergence was related to environmental parameters using Mantel tests. Although evidence of local adaptation was found for all traits measured, only variation in larval period and growth rate was consistent with adaptation to altitude. Moreover, this was only evident in the three mountains with the highest high-altitude sites. This variation was correlated with mean summer and winter temperatures, suggesting that temperature parameters are potentially strong selective pressures maintaining local adaptation, despite high gene flow. PMID:24330274

  20. Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

    PubMed Central

    Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan

    2014-01-01

    ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been

  1. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE PAGES

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  2. The empirical Bayes estimators of fine-scale population structure in high gene flow species.

    PubMed

    Kitada, Shuichi; Nakamichi, Reiichiro; Kishino, Hirohisa

    2017-02-27

    An empirical Bayes (EB) pairwise FST estimator was previously introduced and evaluated for its performance by numerical simulation. In this study, we conducted coalescent simulations and generated genetic population structure mechanistically, and compared the performance of the EBFST with Nei's GST , Nei & Chesser's bias-corrected GST (GST _NC ), Weir & Cockerham's ϴ (ϴWC ),( and ϴ with finite sample correction (ϴWC _F ). We also introduced EB estimators for Hedrick' G'ST and Jost' D. We applied these estimators to publicly available SNP genotypes of Atlantic herring. We also examined the power to detect the environmental factors causing the population structure. Our coalescent simulations revealed that the finite sample correction of ϴWC is necessary to assess population structure using pairwise FST values. For microsatellite markers, EBFST performed the best among the present estimators regarding both bias and precision under high gene flow scenarios (FST >0.032). For 300 SNPs, EBFST had the highest precision in all cases, but the bias was negative and greater than those for GST_NC and (ϴWC_F ) in all cases. GST_NC and (ϴWC_F ) performed very similarly at all levels of FST . As the number of loci increased up to 10 000, the precision of GST_NC and ϴWC_F became slightly better than for EBFST for cases with FST >0.004, even though the size of the bias remained constant. The EB estimators described the fine-scale population structure of the herring, and revealed that ~56% of the genetic differentiation was caused by sea surface temperature and salinity. The R package FINEPOP for implementing all estimators used here is available on CRAN. This article is protected by copyright. All rights reserved.

  3. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.

    PubMed

    Nosaka, K

    1990-02-09

    The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.

  4. A multi-layer microchip for high-throughput single-cell gene expression profiling.

    PubMed

    Sun, Hao

    2016-09-01

    Microfluidics or Bio-MEMS technology offers significant advantages for performing high-throughput screens and sensitive assays. The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine because it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. Previously, we reported two kinds of prototypes for integrated on-chip gene expression profiling at the single-cell level, and the throughput was designed to be 6. In this work, we present a five-layer microfluidic system for parallelized, rapid, quantitative analysis of RNA templates with low abundance at the single-cell level. The microchip contains two multiplexors and one partitioning valve group, and it leverages a matrix (6 × 8) of quantitative reverse transcription polymerase chain reaction (RT-qPCR) units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of biomolecules in a simplified operation procedure. A comprehensive metallic nanofilm with passivation layer is used to run polymerase chain reaction (PCR) temperature cycles. To demonstrate the utility of the approach, artificial synthesized RNA templates (XenoRNA) and mRNA templates from single cells are employed to perform the 48-readout RT-qPCRs. The PCR products are imaged on a fluorescence microscope using a hydrolysis probe/primer set (TaqMan). Fluorescent intensities of passive reference dye and a fluorescein amidite reporter dye are acquired and measured at the end of PCR cycles.

  5. Highly Specific Targeting of the TMPRSS2/ERG Fusion Gene in Prostate Cancer Using Liposomal Nanotechnology

    DTIC Science & Technology

    2012-06-01

    time due to elimination by reticuloendothelial system. To increase stability and blood circulation half- life coating nanoparticles with polymers such...ERG fusion gene in prostate cancer using liposomal nanotechnology PRINCIPAL INVESTIGATOR: Bulent Ozpolat, M.D., Ph.D...fusion gene in prostate cancer using liposomal nanotechnology 5b. GRANT NUMBER W81XWH-09-1-0385 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  6. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23.

    PubMed

    Wang, Chunlian; Fan, Yinglun; Zheng, Chongke; Qin, Tengfei; Zhang, Xiaoping; Zhao, Kaijun

    2014-10-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world's population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene.

  7. MKK5 regulates high light-induced gene expression of Cu/Zn superoxide dismutase 1 and 2 in Arabidopsis.

    PubMed

    Xing, Yu; Cao, Qingqin; Zhang, Qing; Qin, Ling; Jia, Wensuo; Zhang, Jianhua

    2013-07-01

    Superoxide dismutases (SODs) convert the superoxide radical to hydrogen peroxide and molecular oxygen, and play crucial roles in plant tolerance to oxidative stress. Expression of many genes encoding SODs is promoted in response to environmental stresses, but the exact mechanism of such promotion is largely unknown. Here, we report that MKK5, a mitogen-activated protein kinase kinase, mediated the high light-induced expression of genes of two copper/zinc SODs, CSD1 and CSD2, and was involved in the oxidative adaptation to high light stress. In response to high light, wild-type Arabidopsis plants showed much enhanced expression of CSD1 and CSD2 and higher enzyme activity of MKK5. In the MKK5-RNAi (RNA interference) lines, however, the induction of CSD1 and CSD2 as well as the activation of MKK5 activity were completely arrested. In contrast, overexpression of MKK5 promoted the expression of CSD1 and CSD2. MKK5-RNAi gene silencing and CSD1/2-RNAi suppression plants became much more sensitive to high light stress than wild-type plants, and the double mutant mkk5 csd1 exhibited hypersensitivity to the stress. Plants overexpressing MKK5 showed enhanced tolerance to high light stress. Our results demonstrate that MKK5 mediated a signal of the high light-induced expression of the genes CSD1 and CSD2. Manipulating MKK5 and thereby up-regulating the levels of CSD1 and CSD2 transcripts can improve plant tolerance to high light stress.

  8. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray[OA

    PubMed Central

    Yamakawa, Hiromoto; Hirose, Tatsuro; Kuroda, Masaharu; Yamaguchi, Takeshi

    2007-01-01

    To elucidate the effect of high temperature on grain-filling metabolism, developing rice (Oryza sativa) ‘Nipponbare’ caryopses were exposed to high temperature (33°C/28°C) or control temperature (25°C/20°C) during the milky stage. Comprehensive gene screening by a 22-K DNA microarray and differential hybridization, followed by expression analysis by semiquantitative reverse transcription-PCR, revealed that several starch synthesis-related genes, such as granule-bound starch synthase I (GBSSI) and branching enzymes, especially BEIIb, and a cytosolic pyruvate orthophosphate dikinase gene were down-regulated by high temperature, whereas those for starch-consuming α-amylases and heat shock proteins were up-regulated. Biochemical analyses of starch showed that the high temperature-ripened grains contained decreased levels of amylose and long chain-enriched amylopectin, which might be attributed to the repressed expression of GBSSI and BEIIb, respectively. SDS-PAGE and immunoblot analysis of storage proteins revealed decreased accumulation of 13-kD prolamin, which is consistent with the diminished expression of prolamin genes under elevated temperature. Ripening under high temperature resulted in the occurrence of grains with various degrees of chalky appearance and decreased weight. Among them, severely chalky grains contained amylopectin enriched particularly with long chains compared to slightly chalky grains, suggesting that such alterations of amylopectin structure might be involved in grain chalkiness. However, among high temperature-tolerant and sensitive cultivars, alterations of neither amylopectin chain-length distribution nor amylose content were correlated to the degree of grain chalkiness, but rather seemed to be correlated to grain weight decrease, implying different underlying mechanisms for the varietal difference in grain chalkiness. The possible metabolic pathways affected by high temperature and their relevance to grain chalkiness are

  9. Targeted high-throughput growth hormone 1 gene sequencing reveals high within-breed genetic diversity in South African goats.

    PubMed

    Ncube, K T; Mdladla, K; Dzomba, E F; Muchadeyi, F C

    2016-06-01

    This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction-targeted gene amplification together with Illumina MiSeq next-generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (n = 17), Tankwa (n = 15) and South African village (n = 35) goat populations. A range of 27-58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within-breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within-population selection programs, particularly with SA village goats.

  10. An integrative study on the impact of highly differentially methylated genes on expression and cancer etiology

    PubMed Central

    2017-01-01

    DNA methylation is an important epigenetic phenomenon that plays a key role in the regulation of expression. Most of the studies on the topic of methylation’s role in cancer mechanisms include analyses based on differential methylation, with the integration of expression information as supporting evidence. In the present study, we sought to identify methylation-driven patterns by also integrating protein-protein interaction information. We performed integrative analyses of DNA methylation, expression, SNP and copy number data on paired samples from six different cancer types. As a result, we found that genes that show a methylation change larger than 32.2% may influence cancer-related genes via fewer interaction steps and with much higher percentages compared with genes showing a methylation change less than 32.2%. Additionally, we investigated whether there were shared cancer mechanisms among different cancer types. Specifically, five cancer types shared a change in AGTR1 and IGF1 genes, which implies that there may be similar underlying disease mechanisms among these cancers. Additionally, when the focus was placed on distinctly altered genes within each cancer type, we identified various cancer-specific genes that are also supported in the literature and may play crucial roles as therapeutic targets. Overall, our novel graph-based approach for identifying methylation-driven patterns will improve our understanding of the effects of methylation on cancer progression and lead to improved knowledge of cancer etiology. PMID:28178311

  11. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets.

    PubMed

    Abergel, Chantal; Coutard, Bruno; Byrne, Deborah; Chenivesse, Sabine; Claude, Jean-Baptiste; Deregnaucourt, Céline; Fricaux, Thierry; Gianesini-Boutreux, Celine; Jeudy, Sandra; Lebrun, Régine; Maza, Caroline; Notredame, Cédric; Poirot, Olivier; Suhre, Karsten; Varagnol, Majorie; Claverie, Jean-Michel

    2003-01-01

    With more than 100 antibacterial drugs at our disposal in the 1980's, the problem of bacterial infection was considered solved. Today, however, most hospital infections are insensitive to several classes of antibacterial drugs, and deadly strains of Staphylococcus aureus resistant to vancomycin--the last resort antibiotic--have recently begin to appear. Other life-threatening microbes, such as Enterococcus faecalis and Mycobacterium tuberculosis are already able to resist every available antibiotic. There is thus an urgent, and continuous need for new, preferably large-spectrum, antibacterial molecules, ideally targeting new biochemical pathways. Here we report on the progress of our structural genomics program aiming at the discovery of new antibacterial gene targets among evolutionary conserved genes of uncharacterized function. A series of bioinformatic and comparative genomics analyses were used to identify a set of 221 candidate genes common to Gram-positive and Gram-negative bacteria. These genes were split between two laboratories. They are now submitted to a systematic 3-D structure determination protocol including cloning, protein expression and purification, crystallization, X-ray diffraction, structure interpretation, and function prediction. We describe here our strategies for the 111 genes processed in our laboratory. Bioinformatics is used at most stages of the production process and out of 111 genes processed--and 17 months into the project--108 have been successfully cloned, 103 have exhibited detectable expression, 84 have led to the production of soluble protein, 46 have been purified, 12 have led to usable crystals, and 7 structures have been determined.

  12. A highly sensitive and accurate gene expression analysis by sequencing ("bead-seq") for a single cell.

    PubMed

    Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki

    2015-02-15

    Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes.

  13. High-level expression of a cloned HLA heavy chain gene introduced into mouse cells on a bovine papillomavirus vector.

    PubMed

    DiMaio, D; Corbin, V; Sibley, E; Maniatis, T

    1984-02-01

    A gene encoding the heavy chain of an HLA human histocompatibility antigen was isolated from a library of human DNA by recombination and selection in vivo. After insertion into a bovine papillomavirus (BPV) DNA expression vector, the gene was introduced into cultured mouse cells. Cells transformed with the HLA-BPV plasmids did not appear to contain extrachromosomal viral DNA, whereas BPV recombinants usually replicated as plasmids in transformed cell lines. Large amounts of HLA RNA were produced by the transformed cells, and the rate of synthesis of human heavy chain was several-fold higher than in the JY cell line, a well-characterized human lymphoblastoid cell line which expresses high levels of surface HLA antigen. Substantial amounts of human heavy chain accumulated in the transformed cells, and HLA antigen was present at the cell surface. These observations establish the feasibility of using BPV vectors to study the structure and function of HLA antigens and the expression of cloned HLA genes.

  14. Mining genes involved in the stratification of Paris Polyphylla seeds using high-throughput embryo Transcriptome sequencing

    PubMed Central

    2013-01-01

    Background Paris polyphylla var. yunnanensis is an important medicinal plant. Seed dormancy is one of the main factors restricting artificial cultivation. The molecular mechanisms of seed dormancy remain unclear, and little genomic or transcriptome data are available for this plant. Results In this study, massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform was used to generate a substantial sequence dataset for the P. polyphylla embryo. 369,496 high quality reads were obtained, ranging from 50 to 1146 bp, with a mean of 219 bp. These reads were assembled into 47,768 unigenes, which included 16,069 contigs and 31,699 singletons. Using BLASTX searches of public databases, 15,757 (32.3%) unique transcripts were identified. Gene Ontology and Cluster of Orthologous Groups of proteins annotations revealed that these transcripts were broadly representative of the P. polyphylla embryo transcriptome. The Kyoto Encyclopedia of Genes and Genomes assigned 5961 of the unique sequences to specific metabolic pathways. Relative expression levels analysis showed that eleven phytohormone-related genes and five other genes have different expression patterns in the embryo and endosperm in the seed stratification process. Conclusions Gene annotation and quantitative RT-PCR expression analysis identified 464 transcripts that may be involved in phytohormone catabolism and biosynthesis, hormone signal, seed dormancy, seed maturation, cell wall growth and circadian rhythms. In particular, the relative expression analysis of sixteen genes (CYP707A, NCED, GA20ox2, GA20ox3, ABI2, PP2C, ARP3, ARP7, IAAH, IAAS, BRRK, DRM, ELF1, ELF2, SFR6, and SUS) in embryo and endosperm and at two temperatures indicated that these related genes may be candidates for clarifying the molecular basis of seed dormancy in P. polyphlla var. yunnanensis. PMID:23718911

  15. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    PubMed Central

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  16. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2012-12-01

    Alteration of the oxidative stress of hepatocellular carcinoma (HCC) cells can influence the expressions of genes favored angiogenesis. Quinone reductase 2 which can activate quinones leading to reactive oxygen species production is a melatonin receptor known as MT3. Prazosin prescribed for benign prostate hyperplasia and hypertension is a potent antagonist for MT3. This study was to investigate the influence of therapeutic concentrations of prazosin (0.01 and 0.1μM) on cell proliferation and differential expressions of CCL2, CCL20, CXCL6, CXCL10, IL8 and IL6 genes related to inflammation and/or oxidative stress in human HCC cell lines. Two HCC cell lines including one without susceptible to amphotericin B-induced oxidative stress (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were investigated by 0.01 and 0.1μM prazosin. The premixed WST-1 cell proliferation reagent was applied for proliferation assay. Differential expressions of genes were examined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that both 0.01 and 0.1μM prazosin did not influence cell proliferation in both cell lines. Both 0.01 and 0.1μM prazosin in cell line A and 0.01μM prazosin in cell line B did not cause differential expressions of tested genes. However, 0.1μM prazosin caused remarkable up-regulation of IL6 gene and slightly up-regulation of CCL2 gene in cell line B. In conclusion, high therapeutic concentration of prazosin can up-regulate angiogenic IL6 and CCL2 genes in human HCC cells susceptible to amphotericin B-induced oxidative stress. Clinical application of prazosin in patients with HCC should consider this possibility.

  17. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria

    PubMed Central

    Gey van Pittius, Nico C; Gamieldien, Junaid; Hide, Winston; Brown, Gordon D; Siezen, Roland J; Beyers, Albert D

    2001-01-01

    Background The genome of Mycobacterium tuberculosis H37Rv has five copies of a cluster of genes known as the ESAT-6 loci. These clusters contain members of the CFP-10 (lhp) and ESAT-6 (esat-6) gene families (encoding secreted T-cell antigens that lack detectable secretion signals) as well as genes encoding secreted, cell-wall-associated subtilisin-like serine proteases, putative ABC transporters, ATP-binding proteins and other membrane-associated proteins. These membrane-associated and energy-providing proteins may function to secrete members of the ESAT-6 and CFP-10 protein families, and the proteases may be involved in processing the secreted peptide. Results Finished and unfinished genome sequencing data of 98 publicly available microbial genomes has been analyzed for the presence of orthologs of the ESAT-6 loci. The multiple duplicates of the ESAT-6 gene cluster found in the genome of M. tuberculosis H37Rv are also conserved in the genomes of other mycobacteria, for example M. tuberculosis CDC1551, M. tuberculosis 210, M. bovis, M. leprae, M. avium, and the avirulent strain M. smegmatis. Phylogenetic analyses of the resulting sequences have established the duplication order of the gene clusters and demonstrated that the gene cluster known as region 4 (Rv3444c-3450c) is ancestral. Region 4 is also the only region for which an ortholog could be found in the genomes of Corynebacterium diphtheriae and Streptomyces coelicolor. Conclusions Comparative genomic analysis revealed that the presence of the ESAT-6 gene cluster is a feature of some high-G+C Gram-positive bacteria. Multiple duplications of this cluster have occurred and are maintained only within the genomes of members of the genus Mycobacterium. PMID:11597336

  18. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression

    SciTech Connect

    Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Suh, Steven; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-06-08

    In this study, the evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  19. The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery

    PubMed Central

    Zhou, Dezhong; Cutlar, Lara; Gao, Yongsheng; Wang, Wei; O’Keeffe-Ahern, Jonathan; McMahon, Sean; Duarte, Blanca; Larcher, Fernando; Rodriguez, Brian J.; Greiser, Udo; Wang, Wenxin

    2016-01-01

    Nonviral gene therapy holds great promise but has not delivered treatments for clinical application to date. Lack of safe and efficient gene delivery vectors is the major hurdle. Among nonviral gene delivery vectors, poly(β-amino ester)s are one of the most versatile candidates because of their wide monomer availability, high polymer flexibility, and superior gene transfection performance both in vitro and in vivo. However, to date, all research has been focused on vectors with a linear structure. A well-accepted view is that dendritic or branched polymers have greater potential as gene delivery vectors because of their three-dimensional structure and multiple terminal groups. Nevertheless, to date, the synthesis of dendritic or branched polymers has been proven to be a well-known challenge. We report the design and synthesis of highly branched poly(β-amino ester)s (HPAEs) via a one-pot “A2 + B3 + C2”–type Michael addition approach and evaluate their potential as gene delivery vectors. We find that the branched structure can significantly enhance the transfection efficiency of poly(β-amino ester)s: Up to an 8521-fold enhancement in transfection efficiency was observed across 12 cell types ranging from cell lines, primary cells, to stem cells, over their corresponding linear poly(β-amino ester)s (LPAEs) and the commercial transfection reagents polyethyleneimine, SuperFect, and Lipofectamine 2000. Moreover, we further demonstrate that HPAEs can correct genetic defects in vivo using a recessive dystrophic epidermolysis bullosa graft mouse model. Our findings prove that the A2 + B3 + C2 approach is highly generalizable and flexible for the design and synthesis of HPAEs, which cannot be achieved by the conventional polymerization approach; HPAEs are more efficient vectors in gene transfection than the corresponding LPAEs. This provides valuable insight into the development and applications of nonviral gene delivery and demonstrates great prospect for their

  20. Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders

    PubMed Central

    Panero, Julieta; Stella, Flavia; Schutz, Natalia; Fantl, Dorotea Beatriz; Slavutsky, Irma

    2015-01-01

    Telomerase, shelterin proteins and various interacting factors, named non-shelterin proteins, are involved in the regulation of telomere length (TL). Altered expression of any of these telomere-associated genes can lead to telomere dysfunction, causing genomic instability and disease development. In this study, we investigated the expression profile of a set of non-shelterin genes involved in essential processes such as replication (RPA1), DNA damage repair pathways (MRE11-RAD50-NBS1) and stabilization of telomerase complex (DKC1), in 35 patients with monoclonal gammopathy of undetermined significance (MGUS) and 40 cases with multiple myeloma (MM). Results were correlated with hTERT expression, TL and clinical parameters. Overall, a significant increase in DKC1, RAD50, MRE11, NBS1 and RPA1 expression along with an upregulation of hTERT in MM compared with MGUS was observed (p≤0.032). Interestingly, in both entities high mRNA levels of non-shelterin genes were associated with short TLs and increased hTERT expression. Significant differences were observed for DKC1 in MM (p ≤0.026), suggesting an important role for this gene in the maintenance of short telomeres by telomerase in myeloma plasma cells. With regard to clinical associations, we observed a significant increase in DKC1, RAD50, MRE11 and RPA1 expression in MM cases with high bone marrow infiltration (p≤0.03) and a tendency towards cases with advanced ISS stage, providing the first evidence of non-shelterin genes associated to risk factors in MM. Taken together, our findings bring new insights into the intricate mechanisms by which telomere-associated proteins collaborate in the maintenance of plasma cells immortalization and suggest a role for the upregulation of these genes in the progression of the disease. PMID:26366868

  1. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression.

    PubMed

    Batut, Philippe; Dobin, Alexander; Plessy, Charles; Carninci, Piero; Gingeras, Thomas R

    2013-01-01

    Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes.

  2. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells.

    PubMed

    Tokunaga, Masakuni; Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Buchner, David A; Chun, Tae-Hwa

    2014-06-01

    Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots.

  3. High Resolution Melting Analysis for Rapid Mutation Screening in Gyrase and Topoisomerase IV Genes in Quinolone-Resistant Salmonella enterica

    PubMed Central

    Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequenci